WorldWideScience

Sample records for telescope spacer design

  1. Computer-Aided Design Method of Warp-Knitted Jacquard Spacer Fabrics

    Directory of Open Access Journals (Sweden)

    Li Xinxin

    2016-06-01

    Full Text Available Based on a further study on knitting and jacquard principles, this paper presents a mathematical design model to make computer-aided design of warp-knitted jacquard spacer fabrics more efficient. The mathematical model with matrix method employs three essential elements of chain notation, threading and Jacquard designing. With this model, the processing to design warp-knitted jacquard spacer fabrics with CAD software is also introduced. In this study, the sports shoes which have separated functional areas according to the feet structure and characteristics of movement are analysed. The results show the different patterns on Jacquard spacer fabrics that are seamlessly stitched with jacquard technics. The computer-aided design method of warp-knitted jacquard spacer fabrics is efficient and simple.

  2. CFD application to advanced design for high efficiency spacer grid

    International Nuclear Information System (INIS)

    Ikeda, Kazuo

    2014-01-01

    Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity

  3. CFD application to advanced design for high efficiency spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuo, E-mail: kazuo3_ikeda@ndc.mhi.co.jp

    2014-11-15

    Highlights: • A new LDV was developed to investigate the local velocity in a rod bundle and inside a spacer grid. • The design information that utilizes for high efficiency spacer grid has been obtained. • CFD methodology that predicts flow field in a PWR fuel has been developed. • The high efficiency spacer grid was designed using the CFD methodology. - Abstract: Pressurized water reactor (PWR) fuels have been developed to meet the needs of the market. A spacer grid is a key component to improve thermal hydraulic performance of a PWR fuel assembly. Mixing structures (vanes) of a spacer grid promote coolant mixing and enhance heat removal from fuel rods. A larger mixing vane would improve mixing effect, which would increase the departure from nucleate boiling (DNB) benefit for fuel. However, the increased pressure loss at large mixing vanes would reduce the coolant flow at the mixed fuel core, which would reduce the DNB margin. The solution is to develop a spacer grid whose pressure loss is equal to or less than the current spacer grid and that has higher critical heat flux (CHF) performance. For this reason, a requirement of design tool for predicting the pressure loss and CHF performance of spacer grids has been increased. The author and co-workers have been worked for development of high efficiency spacer grid using Computational Fluid Dynamics (CFD) for nearly 20 years. A new laser Doppler velocimetry (LDV), which is miniaturized with fiber optics embedded in a fuel cladding, was developed to investigate the local velocity profile in a rod bundle and inside a spacer grid. The rod-embedded fiber LDV (rod LDV) can be inserted in an arbitrary grid cell instead of a fuel rod, and has the advantage of not disturbing the flow field since it is the same shape as a fuel rod. The probe volume of the rod LDV is small enough to measure spatial velocity profile in a rod gap and inside a spacer grid. According to benchmark experiments such as flow velocity

  4. Hydraulic Design Criteria for Spacer Grids of Nuclear Fuel Element

    International Nuclear Information System (INIS)

    Juanico, Luis; Brasnarof, Daniel

    2000-01-01

    In this paper a hydraulic model for calculating the pressure drop on the CARA spacer grids is extended.This model is validated and feedback from experimental hydraulic test performed in a low pressure loop.The importance of the spacer grid geometric parameter (that is, its thickness and length, the number and kind of their fix spacer), developing hydraulic design criteria for spacer grid on fuel element

  5. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    Science.gov (United States)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared telescope. The SYZ telescope design consists of three aspheric mirrors with non-zero power, including a relay mirror below the primary mirror. SYZ design yields a good imaging quality and has a relatively flat field curvature at Nasmyth focus. To evaluate the science-compatibility of this three-mirror telescope, in this paper, we thoroughly compare the performance of SYZ design with that of Ritchey–Chrétien (RC) design, a conventional two-mirror telescope design. Further, we propose the Observing Information Throughput (OIT) as a metric for quantitatively evaluating the telescopes’ science performance. We find that although a SYZ telescope yields a superb imaging quality over a large field of view, a two-mirror (RC) telescope design holds a higher overall throughput, a better diffraction-limited imaging quality in the central field of view (FOV < 5‧) which is better for the performance of extreme Adaptive Optics (AO), and a generally better scientific performance with a higher OIT value. D. Ma & Z. Cai contributed equally to this paper.

  6. Optimized Design of Spacer in Electrodialyzer Using CFD Simulation Method

    Science.gov (United States)

    Jia, Yuxiang; Yan, Chunsheng; Chen, Lijun; Hu, Yangdong

    2018-06-01

    In this study, the effects of length-width ratio and diversion trench of the spacer on the fluid flow behavior in an electrodialyzer have been investigated through CFD simulation method. The relevant information, including the pressure drop, velocity vector distribution and shear stress distribution, demonstrates the importance of optimized design of the spacer in an electrodialysis process. The results show width of the diversion trench has a great effect on the fluid flow compared with length. Increase of the diversion trench width could strength the fluid flow, but also increase the pressure drop. Secondly, the dead zone of the fluid flow decreases with increase of length-width ratio of the spacer, but the pressure drop increases with the increase of length-width ratio of the spacer. So the appropriate length-width ratio of the space should be moderate.

  7. 3-D flow analyses for design of nuclear fuel spacer

    Energy Technology Data Exchange (ETDEWEB)

    Karouta, Z. [ABB Combustion Engineering, Windsor, CT (United States); GU, Chun-Yuan [ABB Corporate Research, Vaesteras (Sweden); Schoelin, B. [ABB Atom AB, Vaesteras (Sweden)

    1995-09-01

    The Computational Fluid Dynamics (CFD) code, CFDS-FLOW3D, was used to develop improved fuel designs for PWR cores. It was used primarily to understand the fluid dynamics of grid spacers, the mass transfer between subchannels caused by spacers and in the long term to develop two-phase models which enable prediction of critical heat flux in PWR fuel. A single subchannel of one grid span was modeled. In this model different spacer designs with mixing devices were analyzed. A special treatment of the boundary condition was developed making use of flow symmetry to model the mass transfer between different subchannels and minimize the size of the computational model. This reduced the computational model to a fraction of a subchannel using traditional periodic boundary conditions. The Navier-Stokes equation was solved for the liquid and the flow turbulence was modeled by k-{xi} turbulence model. The spacer and mixing device were treated as infinite thin surfaces in the model and a zero velocity condition and turbulent wall function were applied on each side of the thin surfaces. This approach simulated the swirl from the mixing devices well, but had the drawback of not predicting pressure drop accurately since the wake behind the plates and the acceleration effect of the spacers were ignored. CFDS-FLOW3D models with mixing devices were applied in the single-phase flow regime. Velocity profiles from the CFDS-FLOW3D models were compared to Laser Doppler Velocimeter measurements taken from the flow field downstream of spaces in a full scale, cold water test loop. The predicted axial and lateral velocity profiles were in good agreement with the measurements. The evaluation of the performance of different spacer devices was made by comparing the swirl ratio downstream of the grid spacers. It is planned to evaluate heat transfer coefficient downstream of the spaces, to implement two-phase flow models, and to model the superheated boundary layer on the surface of the fuel rod.

  8. Structural Stator Spacers

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Andreasen, Jens H.; Pijanowski, J. M.

    2001-01-01

    This paper presents a powerful new design aspect to reduce acoustic noise and vibration of electro-magnetic origin for electrical machines, by introducing improved slot wedges referred to as "Structural Stator Spacers". These spacers, by using a very stiff dielectric and non magnetic material...

  9. Optical Design of the STAR-X Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-01-01

    Top-level science goals of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these goals, the field-of-view of the telescope should be about 1 square-degree, the angular resolution should be 5 arc-seconds or below across large part of the field-of-view. The on-axis effective area at 1 KeV should be about 2,000 sq cm. Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center for the STAR-X telescope. The telescope shells are divided into 30-degree segments. Individual telescopes and meta-shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 KeV range. We consider Wolter-Schwarzschild, and Modified-Wolter-Schwarzschild telescope designs as basic building blocks of the nested STAR-X telescope. These designs offer an excellent resolution over a large field of views. Nested telescopes are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the telescopes. Large number of internal and external baffle vane structures are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace based tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  10. Fouling resistant membrane spacers

    KAUST Repository

    Ghaffour, Noreddine

    2017-10-12

    Disclosed herein are spacers having baffle designs and perforations for efficiently and effectively separating one or more membrane layers a membrane filtration system. The spacer (504) includes a body (524) formed at least in part by baffles (520) that are interconnected, and the baffles define boundaries of openings or apertures (525) through a thickness direction of the body of the spacer. Alternatively or additionally, passages or perforations (526A, 526B) may be present in the spacer layer or baffles for fluid flow there through, with the passages and baffles having a numerous different shapes and sizes.

  11. Mechanical design of SST-GATE, a dual-mirror telescope for the Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, Jean-Laurent; Huet, Jean-Michel; Amans, Jean-Philippe; Dumas, Delphine; Laporte, Philippe; Sol, Hélène; Blake, Simon

    2014-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays over a wide band of energy, from a few tens of GeV to more than 100 TeV. Two sites are foreseen to view the whole sky where about 100 telescopes, composed of three different classes, related to the specific energy region to be investigated, will be installed. Among these, the Small Size class of Telescopes, SSTs, are devoted to the highest energy region, to beyond 100 TeV. Due to the large number of SSTs, their unit cost is an important parameter. At the Observatoire de Paris, we have designed a prototype of a Small Size Telescope named SST-GATE, based on the dual-mirror Schwarzschild-Couder optical formula, which has never before been implemented in the design of a telescope. Over the last two years, we developed a mechanical design for SST-GATE from the optical and preliminary mechanical designs made by the University of Durham. The integration of this telescope is currently in progress. Since the early stages of mechanical design of SST-GATE, finite element method has been used employing shape and topology optimization techniques to help design several elements of the telescope. This allowed optimization of the mechanical stiffness/mass ratio, leading to a lightweight and less expensive mechanical structure. These techniques and the resulting mechanical design are detailed in this paper. We will also describe the finite element analyses carried out to calculate the mechanical deformations and the stresses in the structure under observing and survival conditions.

  12. Optical Design for a Survey X-Ray Telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2014-01-01

    Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-of-view.

  13. Liverpool Telescope 2: beginning the design phase

    Science.gov (United States)

    Copperwheat, Christopher M.; Steele, Iain A.; Barnsley, Robert M.; Bates, Stuart D.; Bode, Mike F.; Clay, Neil R.; Collins, Chris A.; Jermak, Helen E.; Knapen, Johan H.; Marchant, Jon M.; Mottram, Chris J.; Piascik, Andrzej S.; Smith, Robert J.

    2016-07-01

    The Liverpool Telescope is a fully robotic 2-metre telescope located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope began routine science operations in 2004, and currently seven simultaneously mounted instruments support a broad science programme, with a focus on transient followup and other time domain topics well suited to the characteristics of robotic observing. Work has begun on a successor facility with the working title `Liverpool Telescope 2'. We are entering a new era of time domain astronomy with new discovery facilities across the electromagnetic spectrum, and the next generation of optical survey facilities such as LSST are set to revolutionise the field of transient science in particular. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time, and will be designed to meet the challenges of this new era. Following a conceptual design phase, we are about to begin the detailed design which will lead towards the start of construction in 2018, for first light ˜2022. In this paper we provide an overview of the facility and an update on progress.

  14. Wide Field Infrared Survey Telescope [WFIRST]: telescope design and simulated performance

    Science.gov (United States)

    Goullioud, R.; Content, D. A.; Kuan, G. M.; Moore, J. D.; Chang, Z.; Sunada, E. T.; Villalvazo, J.; Hawk, J. P.; Armani, N. V.; Johnson, E. L.; Powell, C. A.

    2012-09-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics missions by the Astro2010 Decadal Survey, incorporating the Joint Dark Energy Mission payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of the Astro2010 Decadal Survey, the team has been working with the WFIRST Science Definition Team to refine mission and payload concepts. We present the current interim reference mission point design of the payload, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slit-less spectroscopy science channels. We also present the first results of Structural/Thermal/Optical performance modeling of the telescope point design.

  15. Fouling Resilient Perforated Feed Spacers for Membrane Filtration

    KAUST Repository

    Kerdi, Sarah

    2018-04-24

    The improvement of feed spacers with optimal geometry remains a key challenge for spiral-wound membrane systems in water treatment due to their impact on the hydrodynamic performance and fouling development. In this work, novel spacer designs are proposed by intrinsically modifying cylindrical filaments through perforations. Three symmetric perforated spacers (1-Hole, 2-Hole, and 3-Hole) were in-house 3D-printed and experimentally evaluated in terms of permeate flux, feed channel pressure drop and membrane fouling. Spacer performance is characterized and compared with standard no perforated (0-Hole) design under constant feed pressure and constant feed flow rate. Perforations in the spacer filaments resulted in significantly lowering the net pressure drop across the spacer filled channel. The 3-Hole spacer was found to have the lowest pressure drop (50% - 61%) compared to 0-Hole spacer for various average flow velocities. Regarding permeate flux production, the 0-Hole spacer produced 5.7 L.m-2.h-1 and 6.6 L.m-2.h-1 steady state flux for constant pressure and constant feed flow rate, respectively. The 1-Hole spacer was found to be the most efficient among the perforated spacers with 75% and 23% increase in permeate production at constant pressure and constant feed flow, respectively. Furthermore, membrane surface of 1-Hole spacer was found to be cleanest in terms of fouling, contributing to maintain higher permeate flux production. Hydrodynamic understanding of these perforated spacers is also quantified by performing Direct Numerical Simulation (DNS). The performance enhancement of these perforated spacers is attributed to the formation of micro-jets in the spacer cell that aided in producing enough unsteadiness/turbulence to clean the membrane surface and mitigate fouling phenomena. In the case of 1-Hole spacer, the unsteadiness intensity at the outlet of micro-jets and the shear stress fluctuations created inside the cells are higher than those observed with

  16. Fouling resilient perforated feed spacers for membrane filtration.

    Science.gov (United States)

    Kerdi, Sarah; Qamar, Adnan; Vrouwenvelder, Johannes S; Ghaffour, Noreddine

    2018-04-24

    The improvement of feed spacers with optimal geometry remains a key challenge for spiral-wound membrane systems in water treatment due to their impact on the hydrodynamic performance and fouling development. In this work, novel spacer designs are proposed by intrinsically modifying cylindrical filaments through perforations. Three symmetric perforated spacers (1-Hole, 2-Hole, and 3-Hole) were in-house 3D-printed and experimentally evaluated in terms of permeate flux, feed channel pressure drop and membrane fouling. Spacer performance is characterized and compared with standard no perforated (0-Hole) design under constant feed pressure and constant feed flow rate. Perforations in the spacer filaments resulted in significantly lowering the net pressure drop across the spacer filled channel. The 3-Hole spacer was found to have the lowest pressure drop (50%-61%) compared to 0-Hole spacer for various average flow velocities. Regarding permeate flux production, the 0-Hole spacer produced 5.7 L m -2 .h -1 and 6.6 L m -2 .h -1 steady state flux for constant pressure and constant feed flow rate, respectively. The 1-Hole spacer was found to be the most efficient among the perforated spacers with 75% and 23% increase in permeate production at constant pressure and constant feed flow, respectively. Furthermore, membrane surface of 1-Hole spacer was found to be cleanest in terms of fouling, contributing to maintain higher permeate flux production. Hydrodynamic understanding of these perforated spacers is also quantified by performing Direct Numerical Simulation (DNS). The performance enhancement of these perforated spacers is attributed to the formation of micro-jets in the spacer cell that aided in producing enough unsteadiness/turbulence to clean the membrane surface and mitigate fouling phenomena. In the case of 1-Hole spacer, the unsteadiness intensity at the outlet of micro-jets and the shear stress fluctuations created inside the cells are higher than those

  17. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures

    CERN Document Server

    Greve, Albert

    2010-01-01

    Radio telescopes as well as communication antennas operate under the influence of gravity, temperature and wind. Among those, temperature influences may degrade the performance of a radio telescope through transient changes of the focus, pointing, path length and sensitivity, often in an unpredictable way. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures reviews the design and construction principles of radio telescopes in view of thermal aspects and heat transfer with the variable thermal environment; it explains supporting thermal model calculations and the application and efficiency of thermal protection and temperature control; it presents many measurements illustrating the thermal behaviour of telescopes in the environment of their observatory sites. The book benefits scientists and radio/communication engineers, telescope designers and construction firms as well as telescope operators, observatory staff, but also the observing astronomer who is directly confronted with the t...

  18. Thermal emissivity analysis of a GEMINI 8-meter telescopes design

    Science.gov (United States)

    St. Clair Dinger, Ann

    1993-01-01

    The GEMINI 8-meter Telescopes Project is designing twin 8-meter telescopes to be located in Hawaii and Chile. The GEMINI telescopes will have interchangeable secondary mirrors for use in the visible and IR. The APART/PADE program is being used to evaluate the effective IR emissivity of the IR configuration plus enclosure as a function of mirror contamination at three IR wavelengths. The goal is to design a telescope whose effective IR emissivity is no more than 2 percent when the mirrors are clean.

  19. Habitable Exoplanet Imager Optical Telescope Concept Design

    Science.gov (United States)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  20. Habitable exoplanet imager optical telescope concept design

    Science.gov (United States)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  1. San Pedro Martir Telescope: Mexican design endeavor

    Science.gov (United States)

    Toledo-Ramirez, Gengis K.; Bringas-Rico, Vicente; Reyes, Noe; Uribe, Jorge; Lopez, Aldo; Tovar, Carlos; Caballero, Xochitl; Del-Llano, Luis; Martinez, Cesar; Macias, Eduardo; Lee, William; Carramiñana, Alberto; Richer, Michael; González, Jesús; Sanchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Segura, Jose; Rubio, Saul; Gonzalez, German; Hernandez, Obed; García, Mary; Lazaro, Jose; Rosales-Ortega, Fabian; Herrera, Joel; Sierra, Gerardo; Serrano, Hazael

    2016-08-01

    The Telescopio San Pedro Martir (TSPM) is a new ground-based optical telescope project, with a 6.5 meters honeycomb primary mirror, to be built in the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) located in Baja California, Mexico. The OAN-SPM has an altitude of 2830 meters above sea level; it is among the best location for astronomical observation in the world. It is located 1830 m higher than the atmospheric inversion layer with 70% of photometric nights, 80% of spectroscopic nights and a sky brightness up to 22 mag/arcsec2. The TSPM will be suitable for general science projects intended to improve the knowledge of the universe established on the Official Mexican Program for Science, Technology and Innovation 2014-2018. The telescope efforts are headed by two Mexican institutions in name of the Mexican astronomical community: the Universidad Nacional Autonoma de Mexico and the Instituto Nacional de Astrofisica, Optica y Electronica. The telescope has been financially supported mainly by the Consejo Nacional de Ciencia y Tecnologia (CONACYT). It is under development by Mexican scientists and engineers from the Center for Engineering and Industrial Development. This development is supported by a Mexican-American scientific cooperation, through a partnership with the University of Arizona (UA), and the Smithsonian Astrophysical Observatory (SAO). M3 Engineering and Technology Corporation in charge of enclosure and building design. The TSPM will be designed to allow flexibility and possible upgrades in order to maximize resources. Its optical and mechanical designs are based upon those of the Magellan and MMT telescopes. The TSPM primary mirror and its cell will be provided by the INAOE and UA. The telescope will be optimized from the near ultraviolet to the near infrared wavelength range (0.35-2.5 m), but will allow observations up to 26μm. The TSPM will initially offer a f/5 Cassegrain focal station. Later, four folded Cassegrain and

  2. Zircaloy spacer grid for boiling light water reactors

    International Nuclear Information System (INIS)

    Borgiani, F.; Cali', G.P.; Cerretti, P.; Pazzo, P.

    1975-01-01

    The need to increase the neutronic efficiency of the new cores of BWR's, lead to study types of spacer-grids made of low neutronic absorption materials as zircaloy-4. The particular mechanical behaviour of this material suggested to design a spacer-grids such as to utilize only blanking, slotting and bending operations as plastic forming and to avoid therefore drawing effects. The optimization of the bending procedures lead to a final spacer-grids configuration equally stiff in all directions and planes. Only for the ''elastic constraints'' nichel alloy sheets were used to made easy the whole spacer design. The ''rigid constraints'', supporting the rods, have been obtained directly from the spacer structure. Calculations were performed to verify the mechanical strength of the main grid components. In this framework a computer code was developed to find the best elastic characteristic of the ''elastic constraints'' taking into account the machining tolerances. Some original methods to test the integral behaviour of the grid assembled as well as the procedures to be adopted for its best maintenance, are described

  3. The E-ELT project: the telescope main structure detailed design study

    Science.gov (United States)

    Marchiori, Gianpietro; Busatta, Andrea; Ghedin, Leonardo; De Lorenzi, Simone

    2012-09-01

    The European Extremely Large Telescope (E-ELT) is the biggest telescope in the world. Within the Detailed Design activities, ESO has awarded EIE GROUP (European Industrial Engineering) a contract for the Design of the Main Structure to the point where the concept of the telescope has been consolidated, from a construction point of view. All the Design activities have been developed in order to create an integrated system in terms of functionality and performance, while the engineering activities have been performed with the aim of obtaining a telescope that can be built, transported, integrated, with a reduced maintainability.

  4. Design Evolution of the Wide Field Infrared Survey Telescope Using Astrophysics Focused Telescope Assets (WFIRST-AFTA) and Lessons Learned

    Science.gov (United States)

    Peabody, Hume L.; Peters, Carlton V.; Rodriguez-Ruiz, Juan E.; McDonald, Carson S.; Content, David A.; Jackson, Clifton E.

    2015-01-01

    The design of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) continues to evolve as each design cycle is analyzed. In 2012, two Hubble sized (2.4 m diameter) telescopes were donated to NASA from elsewhere in the Federal Government. NASA began investigating potential uses for these telescopes and identified WFIRST as a mission to benefit from these assets. With an updated, deeper, and sharper field of view than previous design iterations with a smaller telescope, the optical designs of the WFIRST instruments were updated and the mechanical and thermal designs evolved around the new optical layout. Beginning with Design Cycle 3, significant analysis efforts yielded a design and model that could be evaluated for Structural-Thermal-Optical-Performance (STOP) purposes for the Wide Field Imager (WFI) and provided the basis for evaluating the high level observatory requirements. Development of the Cycle 3 thermal model provided some valuable analysis lessons learned and established best practices for future design cycles. However, the Cycle 3 design did include some major liens and evolving requirements which were addressed in the Cycle 4 Design. Some of the design changes are driven by requirements changes, while others are optimizations or solutions to liens from previous cycles. Again in Cycle 4, STOP analysis was performed and further insights into the overall design were gained leading to the Cycle 5 design effort currently underway. This paper seeks to capture the thermal design evolution, with focus on major design drivers, key decisions and their rationale, and lessons learned as the design evolved.

  5. Design and end-to-end modelling of a deployable telescope

    Science.gov (United States)

    Dolkens, Dennis; Kuiper, Hans

    2017-09-01

    Deployable optics have the potential of revolutionizing the field of high resolution Earth Observation. By offering the same resolutions as a conventional telescope, while using a much smaller launch volume and mass, the costs of high resolution image data can be brought down drastically. In addition, the technology will ultimately enable resolutions that are currently unattainable due to limitations imposed by the size of launcher fairings. To explore the possibilities and system complexities of a deployable telescope, a concept study was done to design a competitive deployable imager. A deployable telescope was designed for a ground sampling distance of 25 cm from an orbital altitude of 550 km. It offers an angular field of view of 0.6° and has a panchromatic channel as well as four multispectral bands in the visible and near infrared spectrum. The optical design of the telescope is based on an off-axis Korsch Three Mirror Anastigmat. A freeform tertiary mirror is used to ensure a diffraction limited image quality for all channels, while maintaining a compact design. The segmented primary mirror consists of four tapered aperture segments, which can be folded down during launch, while the secondary mirror is mounted on a deployable boom. In its stowed configuration, the telescope fits within a quarter of the volume of a conventional telescope reaching the same resolution. To reach a diffraction limited performance while operating in orbit, the relative position of each individual mirror segment must be controlled to a fraction of a wavelength. Reaching such tolerances with deployable telescope challenging, due to inherent uncertainties in the deployment mechanisms. Adding to the complexity is the fact that the telescope will be operating in a Low Earth Orbit (LEO) where it will be exposed to very dynamic thermal conditions. Therefore, the telescope will be equipped with a robust calibration system. Actuators underneath the primary mirror will be controlled using

  6. Radio telescope reflectors historical development of design and construction

    CERN Document Server

    Baars, Jacob W M

    2018-01-01

    This book demonstrates how progress in radio astronomy is intimately linked to the development of reflector antennas of increasing size and precision. The authors describe the design and construction of major radio telescopes as those in Dwingeloo, Jodrell Bank, Parkes, Effelsberg and Green Bank since 1950 up to the present as well as millimeter wavelength telescopes as the 30m MRT of IRAM in Spain, the 50m LMT in Mexico and the ALMA submillimeter instrument. The advances in methods of structural design and coping with environmental influences (wind, temperature, gravity) as well as application of new materials are explained in a non-mathematical, descriptive and graphical way along with the story of the telescopes. Emphasis is placed on the interplay between astronomical and electromagnetic requirements and structural, mechanical and control solutions. A chapter on management aspects of large telescope projects closes the book. The authors address a readership with interest in the progress of engineering sol...

  7. The Advanced Gamma-ray Imaging System (AGIS): Telescope Mechanical Designs

    Science.gov (United States)

    Guarino, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Horan, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Wagner, R.; Woods, M.; Vassiliev, V.

    2008-04-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 40 GeV-100 TeV is based on an array of sim 100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvements of AGIS sensitivity, angular resolution and reliability of operation impose demanding technological and cost requirements on the design of IACTs. The relatively inexpensive Davies-Cotton telescope design has been used in ground-based gamma-ray astronomy for almost fifty years and is an excellent option. We are also exploring alternative designs and in this submission we focus on the recent mechanical design of a two-mirror telescope with a Schwarzschild-Couder (SC) optical system. The mechanical structure provides support points for mirrors and camera. The design was driven by the requirement of minimizing the deflections of the mirror support structures. The structure is also designed to be able to slew in elevation and azimuth at 10 degrees/sec.

  8. Design considerations for large detector arrays on submillimeter-wave telescopes

    Science.gov (United States)

    Stark, Antony A.

    2000-07-01

    The emerging technology of large (approximately 10,000 pixel) submillimeter-wave bolometer arrays presents a novel optical design problem -- how can such arrays be fed by diffraction- limited telescope optics where the primary mirror is less than 100,000 wavelengths in diameter? Standard Cassegrain designs for radiotelescope optics exhibit focal surface curvature so large that detectors cannot be placed more than 25 beam diameters from the central ray. The problem is worse for Ritchey-Chretien designs, because these minimize coma while increasing field curvature. Classical aberrations, including coma, are usually dominated by diffraction in submillimeter- wave single dish telescopes. The telescope designer must consider (1) diffraction, (2) aberration, (3) curvature of field, (4) cross-polarization, (5) internal reflections, (6) the effect of blockages, (7) means of beam chopping on- and off-source, (8) gravitational and thermal deformations of the primary mirror, (9) the physical mounting of large detector packages, and (10) the effect of gravity and (11) vibration on those detectors. Simultaneous optimization of these considerations in the case of large detector arrays leads to telescopes that differ considerably from standard radiotelescope designs. Offset optics provide flexibility for mounting detectors, while eliminating blockage and internal reflections. Aberrations and cross-polarization can be the same as on-axis designs having the same diameter and focal length. Trade-offs include the complication of primary mirror homology and an increase in overall cost. A dramatic increase in usable field of view can be achieved using shaped optics. Solutions having one to six mirrors will be discussed, including possible six-mirror design for the proposed South Pole 10 m telescope.

  9. Optical design of a Michelson wide-field multiple-aperture telescope

    Science.gov (United States)

    Cassaing, Frederic; Sorrente, Beatrice; Fleury, Bruno; Laubier, David

    2004-02-01

    Multiple-Aperture Optical Telescopes (MAOTs) are a promising solution for very high resolution imaging. In the Michelson configuration, the instrument is made of sub-telescopes distributed in the pupil and combined by a common telescope via folding periscopes. The phasing conditions of the sub-pupils lead to specific optical constraints in these subsystems. The amplitude of main contributors to the wavefront error (WFE) is given as a function of high level requirements (such as field or resolution) and free parameters, mainly the sub-telescope type, magnification and diameter. It is shown that for the periscopes, the field-to-resolution ratio is the main design driver and can lead to severe specifications. The effect of sub-telescopes aberrations on the global WFE can be minimized by reducing their diameter. An analytical tool for the MAOT design has been derived from this analysis, illustrated and validated in three different cases: LEO or GEO Earth observation and astronomy with extremely large telescopes. The last two cases show that a field larger than 10 000 resolution elements can be covered with a very simple MAOT based on Mersenne paraboloid-paraboloid sub-telescopes. Michelson MAOTs are thus a solution to be considered for high resolution wide-field imaging, from space or ground.

  10. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1978-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 0 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (DG) [de

  11. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1980-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (orig.)

  12. Tradespace investigation of strategic design factors for large space telescopes

    Science.gov (United States)

    Karlow, Brandon; Jewison, Christopher; Sternberg, David; Hall, Sherrie; Golkar, Alessandro

    2015-04-01

    Future large telescope arrays require careful balancing of satisfaction across the stakeholders' community. Development programs usually cannot afford to explicitly address all stakeholder tradeoffs during the conceptual design stage, but rather confine the analysis to performance, cost, and schedule discussions, treating policy and budget as constraints defining the envelope of the investigation. Thus, it is of interest to develop an integrated stakeholder analysis approach to explicitly address the impact of all stakeholder interactions on the design of large telescope arrays to address future science and exploration needs. This paper offers a quantitative approach for modeling some of the stakeholder influences relevant to large telescope array designs-the linkages between a given mission and the wider NASA community. The main goal of the analysis is to explore the tradespace of large telescope designs and understand the effects of different design decisions in the stakeholders' network. Proposed architectures that offer benefits to existing constellations of systems, institutions, and mission plans are expected to yield political and engineering benefits for NASA stakeholders' wider objectives. If such synergistic architectures are privileged in subsequent analysis, regions of the tradespace that better meet the needs of the wider NASA community can be selected for further development.

  13. BWR fuel assembly with improved spacer and fuel bundle design for enhanced thermal-hydraulic performance

    International Nuclear Information System (INIS)

    Mildrum, C.M.; Taleyarkhan, R.P.

    1987-01-01

    In a fuel assembly having a bundle of elongated fuel rods disposed in side-by-side relationship so as to form an array of spaced fuel rods, an outer tubular flow channel surrounding the fuel rods so as to direct flow of coolant/moderator fluid along the fuel rods, a hollow water cross extending centrally through and interconnected with the outer flow channel so as to divide the channel into separate compartments and the bundle of fuelrods into a plurality of mini-bundles thereof being disposed in the compartments, and spacers axially displaced along the fuel rods in each of the mini-bundles thereof. Each spacer is composed of inner and outer means which together define spacer cells at corner, side and interior locations of the spacer and have respective protrusions formed thereon which extend into cells so as to maintain the fuel rods received through the spacer cells in laterally spaced relationships. The improvement is described which comprises: (a) a generally uniform poison coating within at least a majority of the fuel rods; (b) a predetermined pattern of fuel enrichment with respect to the fuel rods of each mini-bundle thereof which together with the uniform poison coating within the fuel rods ensures that the packing powers of the fuel rods in the corner and side cells of the spacers are less than the peaking power of a leading one of the fuel rods in the interior cells of the spacers; and (c) each of the fuel rods being received through the cells of each spacer having a diametric size smaller than that of each of the fuel rods received through the side and interior cells of each spacer, the diametric sizes of each of the fuel rods received through the side and interior cells of each spacer being generally equal

  14. Design and manufacturing of the CFRP lightweight telescope structure

    Science.gov (United States)

    Stoeffler, Guenter; Kaindl, Rainer

    2000-06-01

    Design of earthbound telescopes is normally based on conventional steel constructions. Several years ago thermostable CFRP Telescope and reflector structures were developed and manufacturing for harsh terrestrial environments. The airborne SOFIA TA requires beyond thermostability an excessive stiffness to mass ratio for the structure fulfilling performance and not to exceed mass limitations by the aircraft Boeing 747 SP. Additional integration into A/C drives design of structure subassemblies. Thickness of CFRP Laminates, either filament wound or prepreg manufactured need special attention and techniques to gain high material quality according to aerospace requirements. Sequential shop assembly of the structure subassemblies minimizes risk for assembling TA. Design goals, optimization of layout and manufacturing techniques and results are presented.

  15. Design and development of telescope control system and software for the 50/80 cm Schmidt telescope

    Science.gov (United States)

    Kumar, T. S.; Banavar, R. N.

    2012-09-01

    In this paper, we describe the details of telescope controller design for the 50/80 cm Schmidt telescope at the Aryabhatta Research Institute of observational sciencES. The GUI based software for commanding the telescope is developed in Visual C++. The hardware architecture features a distributed network of microcontrollers over CAN. The basic functionality can also be implemented using the dedicated RS232 port per board. The controller is able to perform with negligible rms velocity errors. At fine speeds limit cycles are exhibited due to nonlinear friction. At speeds over 3.90 × 10-02 radians/sec, the PI controller performs with peak errors less than 1%.

  16. Modular and Reusable Power System Design for the BRRISON Balloon Telescope

    Science.gov (United States)

    Truesdale, Nicholas A.

    High altitude balloons are emerging as low-cost alternatives to orbital satellites in the field of telescopic observation. The near-space environment of balloons allows optics to perform near their diffraction limit. In practice, this implies that a telescope similar to the Hubble Space Telescope could be flown for a cost of tens of millions as opposed to billions. While highly feasible, the design of a balloon telescope to rival Hubble is limited by funding. Until a prototype is proven and more support for balloon science is gained, projects remain limited in both hardware costs and man hours. Thus, to effectively create and support balloon payloads, engineering designs must be efficient, modular, and if possible reusable. This thesis focuses specifically on a modular power system design for the BRRISON comet-observing balloon telescope. Time- and cost-saving techniques are developed that can be used for future missions. A modular design process is achieved through the development of individual circuit elements that span a wide range of capabilities. Circuits for power conversion, switching and sensing are designed to be combined in any configuration. These include DC-DC regulators, MOSFET drivers for switching, isolated switches, current sensors and voltage sensing ADCs. Emphasis is also given to commercially available hardware. Pre-fabricated DC-DC converters and an Arduino microcontroller simplify the design process and offer proven, cost-effective performance. The design of the BRRISON power system is developed from these low-level circuits elements. A board for main power distribution supports the majority of flight electronics, and is extensible to additional hardware in future applications. An ATX computer power supply is developed, allowing the use of a commercial ATX motherboard as the flight computer. The addition of new capabilities is explored in the form of a heater control board. Finally, the power system as a whole is described, and its overall

  17. Optimization of coronagraph design for segmented aperture telescopes

    Science.gov (United States)

    Jewell, Jeffrey; Ruane, Garreth; Shaklan, Stuart; Mawet, Dimitri; Redding, Dave

    2017-09-01

    The goal of directly imaging Earth-like planets in the habitable zone of other stars has motivated the design of coronagraphs for use with large segmented aperture space telescopes. In order to achieve an optimal trade-off between planet light throughput and diffracted starlight suppression, we consider coronagraphs comprised of a stage of phase control implemented with deformable mirrors (or other optical elements), pupil plane apodization masks (gray scale or complex valued), and focal plane masks (either amplitude only or complex-valued, including phase only such as the vector vortex coronagraph). The optimization of these optical elements, with the goal of achieving 10 or more orders of magnitude in the suppression of on-axis (starlight) diffracted light, represents a challenging non-convex optimization problem with a nonlinear dependence on control degrees of freedom. We develop a new algorithmic approach to the design optimization problem, which we call the "Auxiliary Field Optimization" (AFO) algorithm. The central idea of the algorithm is to embed the original optimization problem, for either phase or amplitude (apodization) in various planes of the coronagraph, into a problem containing additional degrees of freedom, specifically fictitious "auxiliary" electric fields which serve as targets to inform the variation of our phase or amplitude parameters leading to good feasible designs. We present the algorithm, discuss details of its numerical implementation, and prove convergence to local minima of the objective function (here taken to be the intensity of the on-axis source in a "dark hole" region in the science focal plane). Finally, we present results showing application of the algorithm to both unobscured off-axis and obscured on-axis segmented telescope aperture designs. The application of the AFO algorithm to the coronagraph design problem has produced solutions which are capable of directly imaging planets in the habitable zone, provided end

  18. Mixing vane grid spacer

    International Nuclear Information System (INIS)

    Patterson, J.F.; Galbraith, K.P.

    1978-01-01

    An improved mixing vane grid spacer having enhanced flow mixing capability by virtue of mixing vanes being positioned at welded intersecting joints of the spacer wherein each mixing vane has an opening or window formed therein substantially directly over the welded joint to provide improved flow mixing capability is described. Some of the vanes are slotted, depending on their particular location in the spacers. The intersecting joints are welded by initially providing consumable tabs at and within each window, which are consumed during the welding of the spacer joints

  19. Stress Analysis of Single Spacer Grid Support considering Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. G.; Jung, D. H.; Kim, J. H. [Chungnam National University, Daejeon (Korea, Republic of); Park, J. K.; Jeon, K. L. [Korea Nuclear Fuel, Daejeon (Korea, Republic of)

    2010-10-15

    Pressurized water reactor (PWR) nuclear fuel assembly is mainly composed of a top-end piece, a bottom-end piece, lots of fuel rods, and several spacer grids. Among them, the main function of spacer grid is protecting fuel rods from Fluid Induced Vibration (FIV). The cross section of spacer grid assembled by laser welding in upper and lower point. When the fuel rod inserted in spacer gird, spring and dimple and around of welded area got a stresses. The main hypothesis of this analysis is the boundary area of HAZ and base metal can get a lot of damage than other area by FIV. So, design factors of spacer grid mainly considered to preventing the fatigue failure in HAZ and spring and dimple of spacer grid. From previous researching, the environment in reactor verified. Pressure and temperature of light water observed 15MPa and 320 .deg. C, and vibration of the fuel rod observed within 0 {approx} 50Hz. In this study, mechanical properties of zirconium alloy that extracted from the test and the spacer grid model which used in the PWR were applied in stress analyzing. General-purpose finite element analysis program was used ANSYS Workbench 12.0.1 version. 3-D CAD program CATIA was used to create spacer grid model

  20. Optical telescope refocussing mechanism concept design on remote sensing satellite

    Science.gov (United States)

    Kuo, Jen-Chueh; Ling, Jer

    2017-09-01

    The optical telescope system in remote sensing satellite must be precisely aligned to obtain high quality images during its mission life. In practical, because the telescope mirrors could be misaligned due to launch loads, thermal distortion on supporting structures or hygroscopic distortion effect in some composite materials, the optical telescope system is often equipped with refocussing mechanism to re-align the optical elements while optical element positions are out of range during image acquisition. This paper is to introduce satellite Refocussing mechanism function model design development process and the engineering models. The design concept of the refocussing mechanism can be applied on either cassegrain type telescope or korsch type telescope, and the refocussing mechanism is located at the rear of the secondary mirror in this paper. The purpose to put the refocussing mechanism on the secondary mirror is due to its higher sensitivity on MTF degradation than other optical elements. There are two types of refocussing mechanism model to be introduced: linear type model and rotation type model. For the linear refocussing mechanism function model, the model is composed of ceramic piezoelectric linear step motor, optical rule as well as controller. The secondary mirror is designed to be precisely moved in telescope despace direction through refocussing mechanism. For the rotation refocussing mechanism function model, the model is assembled with two ceramic piezoelectric rotational motors around two orthogonal directions in order to adjust the secondary mirror attitude in tilt angle and yaw angle. From the validation test results, the linear type refocussing mechanism function model can be operated to adjust the secondary mirror position with minimum 500 nm resolution with close loop control. For the rotation type model, the attitude angle of the secondary mirror can be adjusted with the minimum 6 sec of arc resolution and 5°/sec of angle velocity.

  1. Fuel spacer

    International Nuclear Information System (INIS)

    Nishida, Koji; Yokomizo, Osamu; Kanazawa, Toru; Kashiwai, Shin-ichi; Orii, Akihito.

    1992-01-01

    The present invention concerns a fuel spacer for a fuel assembly of a BWR type reactor and a PTR type reactor. Springs each having a vane are disposed on the side surface of a circular cell which supports a fuel rods. A vortex streams having a vertical component are formed by the vanes in the flowing direction of a flowing channel between adjacent cylindrical cells. Liquid droplets carried by streams are deposited on liquid membrane streams flowing along the fuel rod at the downstream of the spacer by the vortex streams. In view of the above, the liquid droplets can be deposited to the fuel rod without increasing the amount of metal of the spacer. Accordingly, the thermal margin of the fuel assembly can be improved without losing neutron economy. (I.N.)

  2. The Advanced Gamma-ray Imaging System (AGIS): Telescope Optical System Designs

    Science.gov (United States)

    Vassiliev, Vladimir; Buckley, Jim; Falcone, Abe; Fegan, Steven; Finley, John; Gaurino, Victor; Hanna, David; Kaaret, Philip; Konopelko, Alex; Krawczynski, Henric; Romani, Roger; Weekes, Trevor

    2008-04-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory based on an array of ˜100 imaging atmospheric Cherenkov telescopes (IACTs) with a sensitivity to gamma-rays in the energy range 40 GeV-100 TeV. The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of the IACTs. In this submission we focus on the optical system (OS) of the AGIS telescopes and consider options which include traditional Davies-Cotton and the other prime- focus telescope designs, as well as a novel two-mirror aplanatic OS originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes such as cold and hot glass slumping, cured CFRP, and electroforming provide new opportunities for cost effective solutions for the design of the OS. We evaluate the capabilities of these mirror fabrication methods for the AGIS project.

  3. Mechanical/structural performance test method of a spacer grid

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho

    2000-06-01

    The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. In order to develop the spacer grid with the high mechanical performance, the mechanical and structural properties of the spacer grids must be extensively examined while designing it. In this report, the mechanical/structural test methods, i.e. the characteristic test of a spacer grid spring or dimple, static buckling test of a partial or full size spacer grid and dynamic impact test of them are described. The characteristic test of a spacer grid spring or dimple is accomplished with universal tensile test machine, a specimen is fixed with test fixture and then applied compressive load. The characteristic test data is saved at loading and unloading event. The static buckling test of a partial or full size spacer grid is executed with the same universal tensile testing machine, a specimen is fixed between cross-heads and then applied the compressive load. The buckling strength is decided the maximum strength at load vs. displacement curve. The dynamic impact test of a partial or full size spacer grid is performed with pendulum type impact machine and free fall shock test machine, a specimen is fixed with test fixture and then applied the impact load by impact hammer. Specially, the pendulum type impact test machine is also possible under the operating temperature because a furnace is separately attached with test machine

  4. Numerical investigation on practicability of reducing MCST by using grid spacer in a tight rod bundle

    International Nuclear Information System (INIS)

    Zhu, Xiaojing; Morooka, Shinichi; Oka, Yoshiaki

    2014-01-01

    Highlights: • Standard grid spacer design causes decreased heat transfer in a tight rod bundle. • Heat transfer is greatly enhanced by flow-enhancing features. • Swirling flow adversely affects the heat transfer downstream of grid spacer. • Enhanced heat transfer by existing grid spacer is limited in a short region. • Improved grid spacer can effectively reduce MCST. - Abstract: The numerical investigation was carried out to reveal the practicability of reducing the maximum cladding surface temperature (MCST) within the inner sub-channel of a tight, hexagon rod bundle using commercial CFD code STAR CCM+ 6.04. The special heat transfer and pressure drop characteristics caused by four existing grid spacer designs were discussed in detail by analyzing the effects of grid strap length, different flow enhancing features and different Reynolds numbers. It was found that the local heat transfer within the grid strap is greatly enhanced due to the raised flow velocity. Both the standard grid spacer and the grid spacer with split-vanes cause decreased heat transfer in the downstream region. The friction drag is very influential in the tight rod bundle and can eliminate the positive effect of flow blockage on the heat transfer performance. The grid spacer with flow blockage discs induces relatively good heat transfer performance and higher pressure drop within sub-channels, indicating a tradeoff between the heat transfer augmentation and the pressure drop. The combination of multiple existing grid spacers can reduce the MCST to a certain level, but the corresponding disadvantages cannot be ignored. The improved grid spacer design was proposed based on the overall considerations of heat transfer and pressure drop characteristics and has been proved more suitable to widely reduce MCST for SCWR than any other grid spacer designs involved in present study

  5. Novel optical designs for consumer astronomical telescopes and their application to professional imaging

    Science.gov (United States)

    Wise, Peter; Hodgson, Alan

    2006-06-01

    Since the launch of the Hubble Space Telescope there has been widespread popular interest in astronomy. A further series of events, most notably the recent Deep Impact mission and Mars oppositions have served to fuel further interest. As a result more and more amateurs are coming into astronomy as a practical hobby. At the same time more sophisticated optical equipment is becoming available as the price to performance ratio become more favourable. As a result larger and better optical telescopes are now in use by amateurs. We also have the explosive growth in digital imaging technologies. In addition to displacing photographic film as the preferred image capture modality it has made the capture of high quality astronomical imagery more accessible to a wider segment of the astronomy community. However, this customer requirement has also had an impact on telescope design. There has become a greater imperative for wide flat image fields in these telescopes to take advantage of the ongoing advances in CCD imaging technology. As a result of these market drivers designers of consumer astronomical telescopes are now producing state of the art designs that result in wide, flat fields with optimal spatial and chromatic aberrations. Whilst some of these designs are not scalable to the larger apertures required for professional ground and airborne telescope use there are some that are eminently suited to make this transition.

  6. Conceptual design and structural analysis for an 8.4-m telescope

    Science.gov (United States)

    Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego

    2004-09-01

    This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.

  7. Nuclear reactor fuel assembly spacer grids

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    Designs of nuclear reactor fuel assembly spacer grids for supporting and spacing fuel elements are described which do not utilize resilient grid plate protrusions in the peripheral band but retain the advantages inherent in the combination resilient and rigid protrusion cells. (U.K.)

  8. The Unique Optical Design of the CTI-II Survey Telescope

    Science.gov (United States)

    Ackermann, Mark R.; McGraw, J. T.; MacFarlane, M.

    2006-12-01

    The CCD/Transit Instrument with Innovative Instrumentation (CTI-II) is being developed for precision ground-based astrometric and photometric astronomical observations. The 1.8m telescope will be stationary, near-zenith pointing and will feature a CCD-mosaic array operated in time-delay and integrate (TDI) mode to image a continuous strip of the sky in five bands. The heart of the telescope is a Nasmyth-like bent-Cassegrain optical system optimized to produce near diffraction-limited images with near zero distortion over a circular1.42 deg field. The optical design includes an f/2.2 parabolic ULE primary with no central hole salvaged from the original CTI telescope and adds the requisite hyperbolic secondary, a folding flat and a highly innovative all-spherical, five lens corrector which includes three plano surfaces. The reflective and refractive portions of the design have been optimized as individual but interdependent systems so that the same reflective system can be used with slightly different refractive correctors. At present, two nearly identical corrector designs are being evaluated, one fabricated from BK-7 glass and the other of fused silica. The five lens corrector consists of an air-spaced triplet separated from follow-on air-spaced doublet. Either design produces 0.25 arcsecond images at 83% encircled energy with a maximum of 0.0005% distortion. The innovative five lens corrector design has been applied to other current and planned Cassegrain, RC and super RC optical systems requiring correctors. The basic five lens approach always results in improved performance compared to the original designs. In some cases, the improvement in image quality is small but includes substantial reductions in distortion. In other cases, the improvement in image quality is substantial. Because the CTI-II corrector is designed for a parabolic primary, it might be especially useful for liquid mirror telescopes. We describe and discuss the CTI-II optical design with respect

  9. Analytical prediction of fuel assembly spacer grid loss coefficient

    International Nuclear Information System (INIS)

    Lim, J. S.; Nam, K. I.; Park, S. K.; Kwon, J. T.; Park, W. J.

    2002-01-01

    The analytical prediction model of the fuel assembly spacer grid pressure loss coefficient has been studied. The pressure loss of gap between the test section wall and spacer grid was separated from the current model and the different friction drag coefficient on spacer straps from high Reynolds number region were used to low Reynolds number region. The analytical model has been verified based on the hydraulic pressure drop test results for the spacer grids of three types for 5x5, 16x16(or 17x17) arrays. The analytical model predicts the pressure loss coefficients obtained from test results within the maximum errors of 12% and 7% for 5x5 test bundle and full size bundle, respectively, at Reynolds number 500,000 of the core operating condition. This result shows that the analytical model can be used for research and design change of the nuclear fuel assembly

  10. Optimization of graded multilayer designs for astronomical x-ray telescopes

    DEFF Research Database (Denmark)

    Mao, P.H.; Harrison, F.A.; Windt, D.L.

    1999-01-01

    We developed a systematic method for optimizing the design of depth-graded multilayers for astronomical hard-x-ray and soft-gamma-ray telescopes based on the instrument's bandpass and the field of view. We apply these methods to the design of the conical-approximation Wolter I optics employed...... by the balloon-borne High Energy Focusing Telescope, using W/Si as the multilayer materials. In addition, we present optimized performance calculations of mirrors, using other material pairs that are capable of extending performance to photon energies above the W K-absorption edge (69.5 keV), including Pt/C, Ni...

  11. Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design

    Science.gov (United States)

    Wisdom, Cate; Vanoosten, Sarah Kay; Boone, Kyle W.; Khvostenko, Dmytro; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2016-08-01

    Surgical site infection is a common cause of post-operative morbidity, often leading to implant loosening, ultimately requiring revision surgery, increased costs and worse surgical outcomes. Since implant failure starts at the implant surface, creating and controlling the bio-material interface will play a critical role in reducing infection while improving host cell-to-implant interaction. Here, we engineered a biomimetic interface based upon a chimeric peptide that incorporates a titanium binding peptide (TiBP) with an antimicrobial peptide (AMP) into a single molecule to direct binding to the implant surface and deliver an antimicrobial activity against S. mutans and S. epidermidis, two bacteria which are linked with clinical implant infections. To optimize antimicrobial activity, we investigated the design of the spacer domain separating the two functional domains of the chimeric peptide. Lengthening and changing the amino acid composition of the spacer resulted in an improvement of minimum inhibitory concentration by a three-fold against S. mutans. Surfaces coated with the chimeric peptide reduced dramatically the number of bacteria, with up to a nine-fold reduction for S. mutans and a 48-fold reduction for S. epidermidis. Ab initio predictions of antimicrobial activity based on structural features were confirmed. Host cell attachment and viability at the biomimetic interface were also improved compared to the untreated implant surface. Biomimetic interfaces formed with this chimeric peptide offer interminable potential by coupling antimicrobial and improved host cell responses to implantable titanium materials, and this peptide based approach can be extended to various biomaterials surfaces.

  12. Buckling behavior analysis of spacer grid by lateral impact load

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kang, Heung Seok; Kim, Hyung Kyu; Song, Kee Nam

    2000-05-01

    The spacer grid is one of the main structural components in the fuel assembly, Which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing it. In this report, free fall type shock tests on the several kinds of the specimens of the spacer grids were also carried out in order to compare the results among the candidate grids. A free fall carriage on the specimen accomplishes the test. In addition to this, a finite element method for predicting the critical impact strength of the spacer grids is described. FE method on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic impact analysis using ABAQUS/explicit code. The simulated results results also similarly predicted the local buckling phenomena and were found to give good correspondence with the shock test results

  13. The Advanced Gamma-ray Imaging System (AGIS) Telescope Optical System Designs

    Science.gov (United States)

    Bugaev, V.; Buckley, J.; Diegel, S.; Falcone, A.; Fegan, S.; Finley, J.; Guarino, V.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Ramsey, B.; Romani, R.; Vassiliev, V.; Weekes, T.

    2008-12-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory operating in the energy range 25 GeV-100 TeV, which is based on an array of ~20-100 imaging atmospheric Cherenkov telescopes (IACTs). The desired improvement in sensitivity, angular resolution, and reliability of operation of AGIS imposes demanding technological and cost requirements on the design of the IACTs. We are considering several options for the optical system (OS) of the AGIS telescopes, which include the traditional Davies-Cotton design as well as novel two-mirror design. Emerging mirror production technologies based on replication processes such as cold and hot glass slumping, cured carbon fiber reinforced plastic (CFRP), and electroforming provide new opportunities for cost-effective solutions for the design of the OS.

  14. Spacer device for nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Anthony, A.J.; Gaines, A.L.; Krawiec, D.M.

    1974-01-01

    The grid-type spacer device consists of two rows of main spacers arranged parallel to each other with some space in between, the first row extending perpendicular to the second row. Parallel to the respective rows of main spacers there are rows of secondary spacers interlocked with the main spacers. The individual spacers are welded together at their points of intersection. A large number of spring cages are installed within the spacer device to hold in place the main spacers which are oriented at right angles relative to each other. In addition, the spring cages serve for supporting the fuel elements. The spacers are made of zirconium which does not greatly influence the neutron capture cross section of the reactor. The material of the spring cages with the spring elements is a nickel alloy. It has the necessary stress relaxation properties to be able to force the fuel elements against the spacers under the action of the spring. (DG) [de

  15. Polyetheretherketone (PEEK) Spacers for Anterior Cervical Fusion: A Retrospective Comparative Effectiveness Clinical Trial.

    Science.gov (United States)

    Lemcke, Johannes; Al-Zain, Ferass; Meier, Ullrich; Suess, Olaf

    2011-01-01

    Anterior cervical decompression and fusion (ACDF) is the standard surgical treatment for radiculopathy and myelopathy. Polyetheretherketone (PEEK) has an elasticity similar to bone and thus appears well suited for use as the implant in ACDF procedures. The aim of this study is to examine the clinical and radiographic outcome of patients treated with standing alone PEEK spacers without bone morphogenic protein (BMP) or plating and to examine the influence of the different design of the two spacers on the rate of subsidence and dislocation. This retrospective comparative study reviewed 335 patients treated by ACDF in a specialized urban hospital for radiculopathy or myelopathy due to degenerative pathologies. The Intromed PEEK spacer was used in 181 patients from 3/2002 to 11/2004, and the AMT SHELL spacer was implanted in 154 patients from 4/2004 to 12/2007. The follow-up rate was 100% at three months post-op and 82.7% (277 patients) at one year. The patients were assessed with the Japanese Orthopedic Association (JOA) questionnaire and radiographically. At the one-year follow-up there were 118/277 patients with an excellent clinical outcome on the JOA, 112/277 with a good outcome, 20/277 with a fair outcome, and 27/277 with a poor outcome. Subsidence was observed in 13.3% of patients with the Intromed spacer vs 8.4% of the patients with the AMT SHELL. Dislocation of the spacer was observed in 10 of the 181 patients with Intromed spacers but in none of the 154 patients with Shell spacers. The study demonstrates that ACDF with standing alone PEEK cages leads to excellent and good clinical outcomes. The differences we observed in the subsidence rate between the two spacers were not significant and cannot be related to a single design feature of the spacers.

  16. Spacer st4ructure

    International Nuclear Information System (INIS)

    Masetti, W.R.

    1978-01-01

    A spacer structure is described for maintaining a spaced relation between a plurality of generally parallel fuel rods within a housing in a nuclear reactor. The spacer structure is comprised of a grid pattern of ribs slotted to interlock with each other. The slots are arranged in such a way that when the ribs are welded to each other, the weld shrinkage is distributed uniformly in all directions to reduce or eliminate the amount of rework necessary in manufacturing the spacer structure

  17. Requirements and concept design for large earth survey telescope for SEOS

    Science.gov (United States)

    Mailhot, P.; Bisbee, J.

    1975-01-01

    The efforts of a one year program of Requirements Analysis and Conceptual Design for the Large Earth Survey Telescope for the Synchronous Earth Observatory Satellite is summarized. A 1.4 meter aperture Cassegrain telescope with 0.6 deg field of view is shown to do an excellent job in satisfying the observational requirements for a wide range of earth resources and meteorological applications. The telescope provides imagery or thermal mapping in ten spectral bands at one time in a field sharing grouping of linear detector arrays. Pushbroom scanning is accomplished by spacecraft slew.

  18. Mechanical conceptual design of 6.5 meter telescope: Telescopio San Pedro Mártir (TSPM)

    Science.gov (United States)

    Uribe, Jorge; Bringas, Vicente; Reyes, Noe; Tovar, Carlos; López, Aldo; Caballero, Xóchitl; Martínez, César; Toledo, Gengis; Lee, William; Carramiñana, Alberto; González, Jesús; Richer, Michael; Sánchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Rubio, Saúl; González, Germán.; Hernández, Obed; Segura, José; Macias, Eduardo; García, Mary; Lazaro, José; Rosales, Fabián.; del Llano, Luis

    2016-07-01

    Telescopio San Pedro Mártir (TSPM) project intends to build a 6.5 meters telescope with alt-azimuth design, currently at the conceptual design. The project is an association between Instituto de Astronomía de la Universidad Nacional Autónoma de México (IA-UNAM) and the Instituto Nacional de Astrofísica, Óptica Electrónica (INAOE) in partnership with department of Astronomy and Steward Observatory of University of Arizona and Smithsonian Astrophysical Observatory of Harvard University. Conceptual design of the telescope is lead and developed by the Centro de Ingeniería y Desarrollo Industrial (CIDESI). An overview of the feasibility study and the structural conceptual design are summarized in this paper. The telescope concept is based on telescopes already commissioned such as MMT and the Baade and Clay Magellan telescopes, building up on these proven concepts. The main differences relative to the Magellan pair are; the elevation axis is located 1 meter above the primary mirror vertex, allowing for a similar field of view at the Cassegrain and both Nasmyth focal stations; instead of using a vane ends to position the secondary mirror TSPM considers an Steward platform like MMT; finally TSPM has a larger floor distance to m1 cell than Magellans and MMT. Initially TSPM will operate with an f/5 Cassegrain station, but the design considers further Nasmyth configurations from a Cassegrain f/5 up to a Gregorian f/11. The telescope design includes 7 focal stations: 1 Cassegrain; 2 Nasmyth; and 4 folded-Cassegrain. The telescope will be designed and manufactured in Mexico, will be design in Queretaro by CIDESI and built between Queretaro and Michoacán manufacturing facilities; it will be preassembled in these facilities and disassembled to send it to the San Pedro Mártir Observatory for final integration. The azimuth and altitude structure is planned to be constructed in modules and transported by truck and shipped to Ensenada and finally to the OAN where is going

  19. Preliminary design study of the TMT Telescope structure system: overview

    Science.gov (United States)

    Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry

    2014-07-01

    We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the

  20. A simulation methodology of spacer grid residual spring deflection for predictive and interpretative purposes

    International Nuclear Information System (INIS)

    Kim, K. T.; Kim, H. K.; Yoon, K. H.

    1994-01-01

    The in-reactor fuel rod support conditions against the fretting wear-induced damage can be evaluated by spacer grid residual spring deflection. In order to predict the spacer grid residual spring deflection as a function of burnup for various spring designs, a simulation methodology of spacer grid residual spring deflection has been developed and implemented in the GRIDFORCE program. The simulation methodology takes into account cladding creep rate, initial spring deflection, initial spring force, and spring force relaxation rate as the key parameters affecting the residual spring deflection. The simulation methodology developed in this study can be utilized as an effective tool in evaluating the capability of a newly designed spacer grid spring to prevent the fretting wear-induced damage

  1. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    Science.gov (United States)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  2. Experimental study of mechanical properties on spacer in NHR

    International Nuclear Information System (INIS)

    Jiang Yueyuan; Shi Jibing; Xu Yong

    2007-01-01

    The spacer of NHR-200 is composed mainly of the inner, outer and cornual strips which are ranged in egg-crate of 12 x 12-3. First, the pre-distortion of three kinds of three-arc springs on reactor working condition and their related clipping-force ranges are analyzed in this paper. Secondly, the mechanical experiments of 1:1 prototype, such as the load-distortion experiments, which the load and distortion are respectively measured by strain gauge and displacement sensor, of three kinds of springs, rigid supports and the spacers in two different directions are carried out on a special experimental facility. The experimental results show that the spacer can completely meet the design demands of mechanical properties of the fuel assemblies in NHR-200. (authors)

  3. Evaluation of spacer grid spring characteristics by means of physical tests and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, Carlos Frederico Mattos, E-mail: carlosschettino@inb.gov.br [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil)

    2017-11-01

    Among all fuel assemblies' components, the spacer grids play an important structural role during the energy generation process, mainly due for its primary functional requirement, that is, to provide fuel rod support. The present work aims to evaluate the spring characteristics of a specific spacer grid design used in a PWR fuel assembly type 16 x 16. These spring characteristics comprises the load versus deflection capability and its spring rate, which are very important, and also mandatory, to be correctly established in order to preclude spacer grid spring and fuel rod cladding fretting during operation, as well as prevent an excessive fuel rod buckling. This study includes physical tests and numerical simulation. The tests were performed on an adapted load cell mechanical device, using as a specimen a single strap of the spacer grid. Three numerical models were prepared using the Finite Element Method, with the support of the commercial code ANSYS. One model was built to validate the simulation according to the performed physical test, the others were built inserting a gradient of temperature (Beginning Of Life hot condition) and to evaluate the spacer grid spring characteristics in End Of Life condition. The obtained results from physical test and numerical model have shown a good agreement between them, therefore validating the simulation. The obtained results from numerical models make available information regarding the spacer grid design purpose, such as the behavior of the fuel rod cladding support during operation. Therewith, these evaluations could be useful to improve the spacer grid design. (author)

  4. Evaluation of spacer grid spring characteristics by means of physical tests and numerical simulation

    International Nuclear Information System (INIS)

    Schettino, Carlos Frederico Mattos

    2017-01-01

    Among all fuel assemblies' components, the spacer grids play an important structural role during the energy generation process, mainly due for its primary functional requirement, that is, to provide fuel rod support. The present work aims to evaluate the spring characteristics of a specific spacer grid design used in a PWR fuel assembly type 16 x 16. These spring characteristics comprises the load versus deflection capability and its spring rate, which are very important, and also mandatory, to be correctly established in order to preclude spacer grid spring and fuel rod cladding fretting during operation, as well as prevent an excessive fuel rod buckling. This study includes physical tests and numerical simulation. The tests were performed on an adapted load cell mechanical device, using as a specimen a single strap of the spacer grid. Three numerical models were prepared using the Finite Element Method, with the support of the commercial code ANSYS. One model was built to validate the simulation according to the performed physical test, the others were built inserting a gradient of temperature (Beginning Of Life hot condition) and to evaluate the spacer grid spring characteristics in End Of Life condition. The obtained results from physical test and numerical model have shown a good agreement between them, therefore validating the simulation. The obtained results from numerical models make available information regarding the spacer grid design purpose, such as the behavior of the fuel rod cladding support during operation. Therewith, these evaluations could be useful to improve the spacer grid design. (author)

  5. Improved spacers for high temperature gas-cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Nordstroem, L A [Swiss Federal Institute for Reactor Research, Wuerenlingen (Switzerland)

    1984-07-01

    Experimental and analytical investigations in the field of heat exchanger thermohydraulics have been performed at EIR for many years, Basic studies have been carried out on heat transfer and pressure loss for tube bundles of different geometries and tube surfaces. As a part of this overall R+D programme for heat exchangers, investigations have been carried out on spacer pressure loss in bundles with longitudinal flow. An analytical spacer pressure loss model was developed which could handle different types of subchannel within the bundle. The model has been evaluated against experiments, using about 25 spacers of widely differing geometries. In a gas-cooled reactor it is important to keep the pressure loss over the primary circuit heat exchangers to a minimum. In exchangers with grid spacers these contribute a significant proportion of the overall bundle losses. For example, in the HHT Recuperator, with a shell-side pressure loss of 3.5 % of the inlet pressure, the spacers cause about one half of this loss. Reducing the loss to, say, 2.5 % results in an overall increase in plant efficiency by more than 1 % - a significant improvement Preliminary analysis identified 5 geometries in particular which were chosen for experimental evaluation as part of a joint project with the SULZER Company, to develop a low pressure-loss spacer for HHT heat exchangers (longitudinal counter-flow He/He and He/H{sub 2}O designs). The aim of the tests was to verify the low pressure-loss characteristics of these spacer grid types, as well as the quality of the results calculated by the computer code analytical model. The experimental and analytical results are compared in this report.

  6. Microbial fuel cells with an integrated spacer and separate anode and cathode modules

    KAUST Repository

    He, Weihua

    2016-01-01

    A new type of scalable MFC was developed based on using alternating graphite fiber brush array anode modules and dual cathode modules in order to simplify construction, operation, and maintenance of the electrodes. The modular MFC design was tested with a single (two-sided) cathode module with a specific surface area of 29 m2 m−3 based on a total liquid volume (1.4 L; 20 m2 m−3 using the total reactor volume of 2 L), and two brush anode modules. Three different types of spacers were used in the cathode module to provide structural stability, and enhance air flow relative to previous cassette (combined anode–cathode) designs: a low-profile wire spacer; a rigid polycarbonate column spacer; and a flexible plastic mesh spacer. The best performance was obtained using the wire spacer that produced a maximum power density of 1100 ± 10 mW m−2 of cathode (32 ± 0.3 W m−3 based on liquid volume) with an acetate-amended wastewater (COD = 1010 ± 30 mg L−1), compared to 1010 ± 10 mW m−2 for the column and 650 ± 20 mW m−2 for the mesh spacers. Anode potentials were unaffected by the different types of spacers. Raw domestic wastewater produced a maximum of 400 ± 8 mW m−2 under fed batch conditions (wire-spacers), which is one of the highest power densities for this fuel. Over time the maximum power was reduced to 300 ± 10 mW m−2 and 275 ± 7 mW m−2 for the two anode compartments, with only slightly less power of 250 ± 20 mW m−2 obtained under continuous flow conditions. In fixed-resistance tests, the average COD removal was 57 ± 5% at a hydraulic retention time of 8 h. These results show that this modular MFC design can both simplify reactor construction and enable relatively high power generation from even relatively dilute wastewater.

  7. The Hubble Space Telescope nickel-hydrogen battery design

    Science.gov (United States)

    Nawrocki, D. E.; Armantrout, J. D.; Standlee, D. J.; Baker, R. C.; Lanier, J. R.

    1990-01-01

    Details are presented of the HST (Hubble Space Telescope) battery cell, battery package, and module mechanical and electrical designs. Also included are a summary of acceptance, qualification, and vibration tests and thermal vacuum testing. Unique details of battery cell charge retention performance characteristics associated with prelaunch hold conditions are discussed. Special charge control methods to minimize thermal dissipation during pad charging operations are summarized. This module design meets all NASA fracture control requirements for manned missions.

  8. Characterization of feed channel spacer performance using geometries obtained by X-ray computed tomography

    KAUST Repository

    Haaksman, Viktor A.

    2016-09-09

    Spiral-wound membrane modules used in water treatment for water reuse and desalination make use of spacer meshes for keeping the membrane leaves apart and for enhancing the mass transfer. Computational fluid dynamics (CFD) has gained importance in the design of new spacers with optimized hydrodynamic characteristics, but this requires a precise description of the spacer geometry. This study developed a method to obtain accurate three-dimensional (3-D) geometry representations for any given spacer design from X-ray computed tomography (CT) scans. The method revealed that the filaments of industrial spacers have a highly variable cross-section size and shape, which impact the flow characteristics in the feed channel. The pressure drop and friction factors were calculated from numerical simulations on five commercially available feed spacers used in practice. Model solutions compared well to experimental data measured using a flow cell for average velocities up to 0.2 m/s, as used in industrial reverse osmosis and nanofiltration membrane operations. A newly-proposed spacer geometry with alternating strand thickness was tested, which was found to yield a lower pressure drop while being highly efficient in converting the pumping power into membrane shear. Numerical model solutions using CFD with geometries from CT scans were closer to measurements than those obtained using the traditional circular cross-section strand simplification, indicating that CT scans are very well suitable to approximate real feed spacer geometries. By providing detailed insight on the spacer filament shape, CT scans allow better quantification of local distribution of velocity and shear, possibly leading to more accurate estimations of fouling and concentration polarization. © 2016 Elsevier B.V.

  9. The effect of endoskeleton on antibiotic impregnated cement spacer for treating deep hip infection

    Directory of Open Access Journals (Sweden)

    Hsu Wei-Hsiu

    2011-01-01

    Full Text Available Abstract Backgrounds A two-stage revision arthroplasty was suggested optimal treatment for deep infections in hip joint. The effect of endoskeleton of cement spacers on the interim function and infection control remains unclear. Methods From Jan. 2004 to Dec. 2007, we collected a prospective cohort of consecutive 34 patients who treated with two-stage revision total hip arthroplasty for deep infection of hip joint. In group 1, fifteen patients were treated by a novel design augmented with hip compression screw while nineteen patients were treated by traditional design in group 2. Results No fracture of cement spacer occurred in group 1 while 6 cases developed spacer failure in group 2. (p Conclusions Patients being treated for deep infection of hip joint using cement spacer augmented with stronger endoskeleton have lower pain levels and better joint function between stages.

  10. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  11. Flow behavior of droplets downstream of the spacer

    International Nuclear Information System (INIS)

    Kodama, Eiichiro; Morishita, Kiyohide; Aritomi, Masanori; Yano, Takashi

    1998-01-01

    The fuel spacer, of which role is to maintain an appropriate rod-to-rod clearance, is one of the components of a Boiling Water Reactor (BWR) fuel rod bundles. The fuel spacer influences flow characteristics of the liquid film in fuel rod bundles, so that its geometry influences greatly thermal hydraulics such as critical power and pressure drop therein. The purpose of this study is to clarify the effect of the spacer geometry on the core flow split downstream of the spacer. Phase Doppler Anemometry (PDA) was used for their meausrement under the conditions of a small amount of droplets in mist flows. From the experimental results, the normalized droplet velocity profiles with a spacer were split by the spacer and were different between a wider and a narrower regions in the channel, however, they became uniform at the distance far 100mm from the spacer. In the case without a spacer, the velocity was monotonously increasing nearer the rod surface with going toward the center of the channel. In the case with a spacer, the velocity profile downstream of the spacer changed in the narrower region of the channel. This tendency became more remarkable with thickening the spacer and widening clearance between the spacer and the wall. In this paper, 'drift' velocity effect was applied for the spacer model, due to the gas flows were split by the spacer which is based on the momentum balance between the narrower and wider channels. This model was confirmed from the experimental results that the droplet flowed from a wider region to a narrower one. This drift effect appeared more strongly as the spacer became thicker and the clearance did narrower. The analytical results explained qualitatively the measured ones. It is clarified that the drift effect proposed in this work was a dominant factor on droplet deposition downstream of the spacer

  12. Design of the GOES Telescope secondary mirror mounting

    Science.gov (United States)

    Hookman, Robert A.

    1989-01-01

    The GOES Telescope utilizes a flexure mounting system for the secondary mirror to minimize thermally induced distortions of the secondary mirror. The detailed design is presented along with a discussion of the microradian pointing requirements and how they were achieved. The methodology used to dynamically tune the flexure/secondary mirror assembly to minimize structural interactions will also be discussed.

  13. A study on improvement of analytical prediction model for spacer grid pressure loss coefficients

    International Nuclear Information System (INIS)

    Lim, Jonh Seon

    2002-02-01

    Nuclear fuel assemblies used in the nuclear power plants consist of the nuclear fuel rods, the control rod guide tubes, an instrument guide tube, spacer grids,a bottom nozzle, a top nozzle. The spacer grid is the most important component of the fuel assembly components for thermal hydraulic and mechanical design and analyses. The spacer grids fixed with the guide tubes support the fuel rods and have the very important role to activate thermal energy transfer by the coolant mixing caused to the turbulent flow and crossflow in the subchannels. In this paper, the analytical spacer grid pressure loss prediction model has been studied and improved by considering the test section wall to spacer grid gap pressure loss independently and applying the appropriate friction drag coefficient to predict pressure loss more accurately at the low Reynolds number region. The improved analytical model has been verified based on the hydraulic pressure drop test results for the spacer grids of three types with 5x5, 16x16, 17x17 arrays, respectively. The pressure loss coefficients predicted by the improved analytical model are coincident with those test results within ±12%. This result shows that the improved analytical model can be used for research and design change of the nuclear fuel assembly

  14. Analyses of the Collapse Behavior of a Spacer Grid

    International Nuclear Information System (INIS)

    Jang, Myung-Geun; Na, Geum Ju; Jag, Yeon-Hui; Kim, Hee Cheol; Kim, Jong-Bong; Kim, Jaeyoug

    2016-01-01

    In order to investigate the protection capability of a spacer grid assembly for impact load, a hammer impact test has been carried out. The crush strength is measured in the hammer impact test. Song et al. carried out the experiment and finite element analysis for the hammer impact test for various weld line depth. Park et al. designed the spacer grid shape to get required crush strength via finite element analysis. Song et al. also optimized the spacer grid shape to maximize the crush strength, and carried out the finite element analysis for the hammer impact test considering the weld properties. Kim et al. carried out finite element analysis for various guide tube hole shape and compared the crush shape and crush strength. In this study, the effect of shape defect on the crush behavior in the hammer impact test is investigated. The spacer grid cannot be exactly the square. Therefore a lateral displacement (imperfection) is imposed to square spacer grid and then hammer impact is carried out. The effect of the lateral imperfection on the crush strength is investigated. The effect of the shape defect on the crushing behavior in the hammer impact test is investigated by finite element analysis. It is shown that the collapse become severe as the lateral imperfection displacement increases, especially when the imperfection is greater than or equal to 0.7 mm

  15. Innovative enclosure dome/observing aperture system design for the MROI Array Telescopes

    Science.gov (United States)

    Busatta, A.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    The close-pack array of the MROI necessitated an original design for the Unit Telescope Enclosure (UTE) at Magdalena Ridge Observatory. The Magdalena Ridge Observatory Interferometer (MROI) is a project which comprises an array of up to ten (10) 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. The most compact configuration includes all ten telescopes, several of which are at a relative distance of less than 8m center to center from each other. Since the minimum angle of the field of regard is 30° with respect to the horizon, it is difficult to prevent optical blockage caused by adjacent UTEs in this compact array. This paper presents the design constraints inherent in meeting the requirement for the close-pack array. An innovative design enclosure was created which incorporates an unique dome/observing aperture system. The description of this system focuses on how the field of regard requirement led to an unique and highly innovative concept that had to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). Finally, we describe the wide use of composites materials and structures (e.g. glass/carbon fibres, sandwich panels etc.) on the aperture system which represents the only way to guarantee adequate thermal and environmental protection, compactness, structural stability and limited power consumption due to reduced mass.

  16. Development of a High Performance Spacer Grid

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Song, K. N.; Yoon, K. H. (and others)

    2007-03-15

    A spacer grid in a LWR fuel assembly is a key structural component to support fuel rods and to enhance the heat transfer from the fuel rod to the coolant. In this research, the main research items are the development of inherent and high performance spacer grid shapes, the establishment of mechanical/structural analysis and test technology, and the set-up of basic test facilities for the spacer grid. The main research areas and results are as follows. 1. 18 different spacer grid candidates have been invented and applied for domestic and US patents. Among the candidates 16 are chosen from the patent. 2. Two kinds of spacer grids are finally selected for the advanced LWR fuel after detailed performance tests on the candidates and commercial spacer grids from a mechanical/structural point of view. According to the test results the features of the selected spacer grids are better than those of the commercial spacer grids. 3. Four kinds of basic test facilities are set up and the relevant test technologies are established. 4. Mechanical/structural analysis models and technology for spacer grid performance are developed and the analysis results are compared with the test results to enhance the reliability of the models.

  17. High-contrast imager for Complex Aperture Telescopes (HiCAT): testbed design and coronagraph developments

    Science.gov (United States)

    N'Diaye, Mamadou; Choquet, E.; Pueyo, L.; Elliot, E.; Perrin, M. D.; Wallace, J.; Anderson, R. E.; Carlotti, A.; Groff, T. D.; Hartig, G. F.; Kasdin, J.; Lajoie, C.; Levecq, O.; Long, C.; Macintosh, B.; Mawet, D.; Norman, C. A.; Shaklan, S.; Sheckells, M.; Sivaramakrishnan, A.; Soummer, R.

    2014-01-01

    We present a new high-contrast imaging testbed designed to provide complete solutions for wavefront sensing and control and starlight suppression with complex aperture telescopes (NASA APRA; Soummer PI). This includes geometries with central obstruction, support structures, and/or primary mirror segmentation. Complex aperture telescopes are often associated with large telescope designs, which are considered for future space missions. However, these designs makes high-contrast imaging challenging because of additional diffraction features in the point spread function. We present a novel optimization approach for the testbed optical and opto-mechanical design that minimizes the impact of both phase and amplitude errors from the wave propagation of testbed optics surface errors. This design approach allows us to define the specification for the bench optics, which we then compare to the manufactured parts. We discuss the testbed alignment and first results. We also present our coronagraph design for different testbed pupil shapes (AFTA or ATLAST), which involves a new method for the optimization of Apodized Pupil Lyot Coronagraphs (APLC).

  18. Opto-mechanical design and development of a 460mm diffractive transmissive telescope

    Science.gov (United States)

    Qi, Bo; Wang, Lihua; Cui, Zhangang; Bian, Jiang; Xiang, Sihua; Ma, Haotong; Fan, Bin

    2018-01-01

    Using lightweight, replicated diffractive optics, we can construct extremely large aperture telescopes in space.The transmissive primary significantly reduces the sensitivities to out of plane motion as compared to reflective systems while reducing the manufacturing time and costs. This paper focuses on the design, fabrication and ground demonstration of a 460mm diffractive transmissive telescope the primary F/# is 6, optical field of view is 0.2° imagine bandwidth is 486nm 656nm.The design method of diffractive optical system was verified, the ability to capture a high-quality image using diffractive telescope collection optics was tested.The results show that the limit resolution is 94lp/mm, the diffractive system has a good imagine performance with broad bandwidths. This technology is particularly promising as a means to achieve extremely large optical primaries from compact, lightweight packages.

  19. Challenges of extreme load hexapod design and modularization for large ground-based telescopes

    Science.gov (United States)

    Gloess, Rainer; Lula, Brian

    2010-07-01

    The hexapod is a parallel kinematic manipulator that is the minimum arrangement for independent control of six degrees of freedom. Advancing needs for hexapod performance, capacity and configurations have driven development of highly capable new actuator designs. This paper describes new compact hexapod design proposals for high load capacity, and corresponding hexapod actuator only mechanisms suitable for integration as structural motion elements in next-generation telescope designs. These actuators provide up to 90 000N load capability while preserving sub-micrometer positional capability and in-position stability. The design is optimized for low power dissipation and incorporates novel encoders direct manufactured with the nut flange to achieve more than 100000 increments per revolution. In the hexapod design we choose cardan joints for the actuator that have axis offsets to provide optimized stiffness. The additional computational requirements for offset axes are readily solved by advanced kinematic algorithms and modern hardware. The paper also describes the hexapod controller concept with individual actuator designs, which allows the integration of hexapod actuators into the main telescope structure to reduce mass and provide the telescope designer more design freedom in the incorporation of these types of motion systems. An adaptive software package was developed including collision control feature for real-time safety during hexapod movements.

  20. A mechanical design for a detection unit for a deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Berbee, E.M.; Boer Rookhuizen, H.; Heine, E.; Mul, G. [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Wolf, E. de, E-mail: e.dewolf@nikhef.nl [University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands)

    2013-10-11

    The future KM3NeT neutrino telescope will be built on the seabed of the Mediterranean Sea at a depth between three and five kilometers. The high ambient pressure, but also the fact that the detector is hardly accessible, put severe constraints on the mechanical design of the detection units of the telescope. A detection unit is a vertical structure that supports the optical sensors of the telescope. It has a height of almost 900 m; two data cables run along the full length of the structure. The detection unit will be installed at the seabed as a compact package. Once acoustically released, it unfurls to its full length. The stability of the detection unit during unfurling and during operation is an important requirement for the mechanical design of the structure. We present the evolution of the design of the detection unit for the KM3NeT detector.

  1. A mechanical design for a detection unit for a deep-sea neutrino telescope

    International Nuclear Information System (INIS)

    Berbee, E.M.; Boer Rookhuizen, H.; Heine, E.; Mul, G.; Wolf, E. de

    2013-01-01

    The future KM3NeT neutrino telescope will be built on the seabed of the Mediterranean Sea at a depth between three and five kilometers. The high ambient pressure, but also the fact that the detector is hardly accessible, put severe constraints on the mechanical design of the detection units of the telescope. A detection unit is a vertical structure that supports the optical sensors of the telescope. It has a height of almost 900 m; two data cables run along the full length of the structure. The detection unit will be installed at the seabed as a compact package. Once acoustically released, it unfurls to its full length. The stability of the detection unit during unfurling and during operation is an important requirement for the mechanical design of the structure. We present the evolution of the design of the detection unit for the KM3NeT detector

  2. Spacer for supporting fuel element boxes

    International Nuclear Information System (INIS)

    Wild, E.

    1979-01-01

    A spacer plate unit arranged externally on each side and at a predetermined level of a polygonal fuel element box for mutually supporting, with respect to one another, a plurality of the fuel element boxes forming a fuel element bundle, is formed of a first and a second spacer plate part each having the same length and the same width and being constituted of unlike first and second materials, respectively. The first and second spacer plate parts of the several spacer plate units situated at the predetermined level are arranged in an alternating continuous series when viewed in the peripheral direction of the fuel element box, so that any two spacer plate units belonging to face-to-face oriented sides of two adjoining fuel element boxes in the fuel element bundle define interfaces of unlike materials

  3. Side insertable spacer

    International Nuclear Information System (INIS)

    Patterson, J.F.; Ewing, R.H.

    1992-01-01

    This patent describes a spacer for restraining the fuel rods of a nuclear fuel assembly, the assembly being formed of a plurality of parallel, elongated fuel rods so arranged that the assembly is bounded by a polygon having an even number of sides, the rods being so arranged as to lie in a plurality of sets of parallel rows, the rows of each set being perpendicular to one of the sides of the polygon. It comprises a number of spacer combs equal to at least half the number of the sides of the polygon, the spacer combs being superposed on each other, each of the spacer combs comprising: a single base strip having a length equal to that of one of the sides of the polygon and grid strips equal in number to the spaces between rows in one of the sets, and at least a majority of the grid strips being of a length sufficient to extend substantially the full length of the rows; the grid strips being provided with spring members positioned to engage each of the rods; the grid strips being provided with spring members positioned to engage each of the rods; the grid strips being secured to and extending at right angles to the base strip; the grid strips of different combs being positioned at angles to each other, so as to occupy the spaces between rows in different sets

  4. Fouling Resilient Perforated Feed Spacers for Membrane Filtration

    KAUST Repository

    Kerdi, Sarah; Qamar, Adnan; Vrouwenvelder, Johannes S.; Ghaffour, NorEddine

    2018-01-01

    drop across the spacer filled channel. The 3-Hole spacer was found to have the lowest pressure drop (50% - 61%) compared to 0-Hole spacer for various average flow velocities. Regarding permeate flux production, the 0-Hole spacer produced 5.7 L.m-2.h-1

  5. The design of 1-wire net meteorological observatory for 2.4 m telescope

    Science.gov (United States)

    Zhu, Gao-Feng; Wei, Ka-Ning; Fan, Yu-Feng; Xu, Jun; Qin, Wei

    2005-03-01

    The weather is an important factor to affect astronomical observations. The 2.4 m telescope can not work in Robotic Mode without the weather data input. Therefore it is necessary to build a meteorological observatory near the 2.4 m telescope. In this article, the design of the 1-wire net meteorological observatory, which includes hardware and software systems, is introduced. The hardware system is made up of some kinds of sensors and ADC. A suited power station system is also designed. The software system is based on Windows XP operating system and MySQL data management system, and a prototype system of browse/server model is developed by JAVA and JSP. After being tested, the meteorological observatory can register the immediate data of weather, such as raining, snowing, and wind speed. At last, the data will be stored for feature use. The product and the design can work well for the 2.4 m telescope.

  6. Antibiotic impregnated total femur spacers: a technical tip

    Directory of Open Access Journals (Sweden)

    Colin D. Canham, MD

    2018-03-01

    Full Text Available Simultaneous prosthetic joint infection of ipsilateral hip and knee arthroplasties is often accompanied by significant bone loss and presents a challenging reconstructive problem. Two-stage reconstruction is favored and requires the placement of a total femur spacer, which is not a commercially available device. We describe a surgical technique, reporting on 2 cases in which a customized total femur antibiotic impregnated spacer was created by combining an articulating knee spacer and an articulating hip spacer with a reinforced cement dowel construct connecting the 2 spacers. Custom total femoral spacers are useful in the management of infected femoral megaprostheses and cases with ipsilateral injected hip and knee arthroplasties and severe femoral bone loss. Keywords: total femur spacer, revision arthroplasty, total hip arthroplasty, total knee arthroplasty, prosthetic joint infection

  7. Pros and cons of symmetrical dual-k spacer technology in hybrid FinFETs

    Science.gov (United States)

    Pradhan, K. P.; Andrade, M. G. C.; Sahu, P. K.

    2016-12-01

    The symmetrical dual-k spacer technology in hybrid FinFETs has been widely explored for better electrostatic control of the fin-based devices in nanoscale region. Since, high-k tangible spacer materials are broadly became a matter of study due to their better immunity to the short channel effects (SCEs) in nano devices. However, the only cause that restricts the circuit designers from using high-k spacer is the unreasonable increasing fringing capacitances. This work quantitatively analyzed the benefits and drawbacks of considering two different dielectric spacer materials symmetrically in either sides of the channel for the hybrid device. From the demonstrated results, the inclusion of high-k spacer predicts an effective reduction in off-state leakage along with an improvement in drive current. However, these devices have paid the cost in terms of a high total gate-to-gate capacitance (Cgg) that consequently results poor cutoff frequency (fT) and delay.

  8. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells

    KAUST Repository

    Yang, Qiao

    2012-04-01

    Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm -2) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduced power by 33%. Completely covering the air cathode with a solid plate did not eliminate power generation, indicating oxygen leakage into the reactor. The S1.5 spacer slightly increased columbic efficiencies (from 20% to 24%) as a result of reduced oxygen transfer into the system. Based on operating conditions (1000ς, CE=20%), it was estimated that 0.9Lh -1 of air would be needed for 1m 2 of cathode area suggesting active air flow may be needed for larger scale MFCs. © 2012 Elsevier Ltd.

  9. Experimental investigations of turbulent flows in rod bundles with and without spacer grids

    International Nuclear Information System (INIS)

    Trippe, G.

    1979-07-01

    In the thermofluiddynamic design of liquid metal cooled reactor fuel elements the lack of experimentally confirmed knowledge of the three-dimensional flow events in rod bundles provided with spacer grids has appeared as a significant problem. To close this gap of knowledge, detailed measurements of the local velocities were made on a 19-rod bundle model. The Pitot method of differential pressure measurements was used as the measuring system. In the first part of the work the fully developed flow regime not influenced by spacers was investigated. A simple relation was derived for distributing the mass flow among the subchannels of a rod bundle; it is but slightly dependent on the Reynolds number. This relation allows a quick, coarse calculation of the distribution of the undisturbed, fully developed mass flow in bundles with similar geometries. By evaluation of further experiments known from the literature, empirical relationships were found for the local velocity distribution within the subchannels of such bundles. In the second part the effect of grid shaped spacers was investigated. The three-dimensional flow events caused by the spacers were completely recorded and interpreted physically. The deeper understanding of these flow processes can now serve to improve the model concept used in the present design computer programs. Single results of the investigations which take primary importance are the quantitative relations existing between the changes of mass flow in the bundle boundary zone, caused by a spacer, and the geometry of this spacer. The transferability to other bundle geometries was discussed and delimited. Moreover, it was shown that the mass flow in the bundle boundary zone can be successively reduced by spacers placed one behind the other in the bundle. A noticeable dependence of flow events on the Reynolds number was not found for the range relevant in practical application (30.000 [de

  10. Effects of spacer orientations on the cake formation during membrane fouling: Quantitative analysis based on 3D OCT imaging.

    Science.gov (United States)

    Liu, Xin; Li, Weiyi; Chong, Tzyy Haur; Fane, Anthony G

    2017-03-01

    Spacer design plays an important role in improving the performance of membrane processes for water/wastewater treatment. This work focused on a fundamental issue of spacer design, i.e., investigating the effects of spacer orientations on the fouling behavior during a membrane process. A series of fouling experiments with different spacer orientation were carried out to in situ characterize the formation of a cake layer in a spacer unit cell via 3D optical coherence tomography (OCT) imaging. The cake layers formed at different times were digitalized for quantitatively analyzing the variation in the cake morphology as a function of time. In particular, the local deposition rates were evaluated to determine the active regions where the instantaneous changes in deposit thickness were significant. The characterization results indicate that varying the spacer orientation could substantially change the evolution of membrane fouling by particulate foulants and thereby result in a cake layer with various morphologies; the competition between growth and erosion at different locations would instantaneously respond to the micro-hydrodynamic environment that might change with time. This work confirms that the OCT-based characterization method is a powerful tool for exploring novel spacer design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Packaging design criteria modified fuel spacer burial box. Revision 1

    International Nuclear Information System (INIS)

    Stevens, P.F.

    1994-01-01

    Various Hanford facilities must transfer large radioactively contaminated items to burial/storage. Presently, there are eighteen Fuel Spacer Burial Boxes (FSBBs) available on the Hanford Site for transport of such items. Previously, the FSBBS were transported from a rail car to the burial trench via a drag-off operation. To allow for the lifting of the boxes into the burial trench, it will be necessary to improve the packagings lifting attachments and provide structural reinforcement. Additional safety improvements to the packaging system will be provided by the addition of a positive closure system and package ventilation. FSBBs that are modified in such a manner are referred to as Modified Fuel Spacer Burial Boxes (MFSBs). The criteria provided by this PDC will be used to demonstrate that the transfer of the MFSB will provide an equivalent degree of safety as would be provided by a package meeting offsite transportation requirements. This fulfills the onsite transportation safety requirements implemented in WHC-CM-2-14, Hazardous Material Packaging and Shipping. A Safety Analysis Report for Packaging (SARP) will be prepared to evaluate the safety of the transfer operation. Approval of the SARP is required to authorize transfer. Criteria are also established to ensure burial requirements are met

  12. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Craig, W.W.; Windt, D.L.

    2000-01-01

    Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10 less than or similar to E less......-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution...

  13. Device for a nuclear reactor. [Fuel element spacers

    Energy Technology Data Exchange (ETDEWEB)

    Foulds, R B; Kasberg, A H; Puechl, K H; Bleiberg, M L

    1972-03-08

    A spacer design for fuel element clusters for PWR type reactors is described. It consists of a frame supporting an egg-carton like grid each sector of which is provided with springs which grip the fuel pins. The spring design is such as to prevent fuel pin vibrations and at same time accommodate fuel pin deformations. Formulae for the calculation of natural frequencies, spring stiffness and friction loads are presented.

  14. Design drivers for a wide-field multi-object spectrograph for the William Herschel Telescope

    NARCIS (Netherlands)

    Balcells, Marc; Benn, Chris R.; Carter, David; Dalton, Gavin B.; Trager, Scott C.; Feltzing, Sofia; Verheijen, M.A.W.; Jarvis, Matt; Percival, Will; Abrams, Don C.; Agocs, Tibor; Brown, Anthony G. A.; Cano, Diego; Evans, Chris; Helmi, Amina; Lewis, Ian J.; McLure, Ross; Peletier, Reynier F.; Pérez-Fournon, Ismael; Sharples, Ray M.; Tosh, Ian A. J.; Trujillo, Ignacio; Walton, Nic; Westhall, Kyle B.

    Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a

  15. Pressure Drop Test of Hybrid Mixing Vane Spacer Grid

    Energy Technology Data Exchange (ETDEWEB)

    Oh, D. S.; Chang, S. K.; Kim, B. D.; Chun, S. Y.; Chun, T. H

    2007-08-15

    The pressure loss test has been accomplished in the test section containing 5x5 rod bundle with a length of 2 m including 3 spacer grids. The test has been performed for the 5 kinds of spacer grids to compare the pressure loss characteristics: 1. Plain spacer grid which has the same body of the Hybrid but without vane (Plain), 2. Hybrid Vane spacer grid (Hybrid), 3. Hybrid-SC spacer grid which is constructed with coined, chamfered strip and is fabricated by spot welding, 4. Hybrid-LC spacer grid which is constructed with coined, chamfered strip and is fabricated by line welding along intersection line, 5. Westinghouse spacer grid with split vane (Plus-7). The pressure loss coefficient of the Plain, Hybrid, Hybrid-SC, Hybrid-LC, and Plus-7 spacer grid is 0.93, 1.15, 1.02, 1.04, and 1.08, respectively.

  16. Comparative studies of 111In-labeled monoclonal antibody using spacer-containing and non-spacer bifunctional chelates. 2

    International Nuclear Information System (INIS)

    Sun, Baofu

    1994-01-01

    Indium-111-labeled A7 monoclonal antibodies using two spacer-containing chelates, succinimido-EGS-DTPA (EGS-DTPA: diester spacer) and maleimido-C10-Bz-EDTA (C10-Bz-EDTA: hydrocarbon spacer) were investigated in human LS180 colon tumor bearing nude mice and were compared with two non-spacer chelates, cyclic DTPA dianhydride (cDTPAA) and isothiocyanatobenzyl-EDTA (SCN-Bz-EDTA). Compared with immunoconjugates using non-spacer chelates, immunoconjugates using spacer-containing chelates, especially C10-Bz-EDTA-A7 showed lower 111 In activity in normal organs. The radioactivity in the liver for C10-Bz-EDTA-A7 decreased continuously till 96 hrs postinjection, however, this liver radioactivity for EGS-DTPA-A7 showed little change after 24 hrs. Moreover, in liver subcellular distribution study, EGS-DTPA-A7 showed a higher activity retention in mitochondrial fraction which contained lysosome, a place for metabolizing and storing of 111 In labeled antibody, than that of C10-Bz-EDTA-A7. The C10-Bz-EDTA-A7 conjugate demonstrated more preferable tumor-to-non tumor contrast on the scintigrams than that found with other three immunoconjugates. Up to 96 hrs postinjection, tumor bearing nude mice injecting with immunoconjugates using spacer-containing chelates exreted twice radioactivity from whole body than that excreted by using non-spacer chelates. Interestingly, different from other three chelates, C10-Bz-EDTA-A7 were mainly excreted via feces. We conclude that the decrease of radioactivity in normal tissues in the case of EGS-DTPA-A7 was due to the rapid decrease of activity in the blood, while in the case of C10-Bz-EDTA-A7 it was due to the quickly excreted small metabolite through faces. 111 In labeled C10-Bz-EDTA conjugate is superior, at least when conjugated with A7, to other three chelate conjugates used in this study. (author)

  17. Pressure Drop of Chamfer on Spacer Grid Strap

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euijae; Kim, Kanghoon; Kim, Kyounghong; Nahm, Keeyil [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2014-05-15

    A swirl flow and cross flow are generated by the spacer grid with mixing vane that enhances the thermal performance and critical heat flux (CHF). The additional pressure drop makes it difficult to meet acceptance criteria for overall pressure drop in fuel assembly depending upon the pump capacity. The chamfer on the end of spacer grid strap is one solution to reduce additional pressure drop without any adverse effect on flow fields. In this research, the pressure drop tests for spacer grid with and without chamfer were carried out at the hydraulic test facility. The result can be applied to develop high performance nuclear fuel assemblies for Pressurized Water Reactor (PWR) plants. The pressure drop tests for 5x5 spacer grid with and without chamfer as well as 6x6 spacer grid with and without chamfer were carried out at the INFINIT test facility. The Reynolds number ranged about from 16000 to 75000. The sweep-up and sweep-down test showed that the direction of sweep did not affect the pressure drop. The chamfer on spacer grid strap reduced the pressure drop due to the decreased in ratio of inlet area to outlet area. The pressure loss coefficient for spacer grid with chamfer was by up to 13.8 % lower than that for spacer grid without chamfer. Hence, the chamfer on spacer grid strap was one of effective ways to reduce the pressure drop.

  18. Structural design considerations for an 8-m space telescope

    Science.gov (United States)

    Arnold, William r., Sr.; Stahl, H. Philip

    2009-08-01

    NASA's upcoming ARES V launch vehicle, with its' immense payload capacities (both volume and mass) has opened the possibilities for a whole new paradigm of space observatories. It becomes practical to consider a monolith mirror of sufficient size to permit significant scientific advantages, both in collection area and smoothness or figure at a reasonable price. The technologies and engineering to manufacture and test 8 meter class monoliths is mature, with nearly a dozen of such mirrors already in operation around the world. This paper will discuss the design requirements to adapt an 8m meniscus mirror into a Space Telescope System, both launch and operational considerations are included. With objects this massive and structurally sensitive, the mirror design must include all stages of the process. Based upon the experiences of the Hubble Space Telescope, testing and verification at both component and integrated system levels are considered vital to mission success. To this end, two different component level test methods for gravity sag (the so call zero- gravity simulation or test mount) are proposed, with one of these methods suitable for the full up system level testing as well.

  19. Hard X-ray/soft gamma-ray telescope designs for future astrophysics missions

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Pivovaroff, Michael J.

    2013-01-01

    We present several concept designs of hard X-ray/soft λ-ray focusing telescopes for future astrophysics missions. The designs are based on depth graded multilayer coatings. These have been successfully employed on the NuSTAR mission for energies up to 80 keV. Recent advances in demonstrating...

  20. The potential of standard and modified feed spacers for biofouling control

    KAUST Repository

    Araú jo, Paula A.; Kruithof, Joop C.; van Loosdrecht, Mark C.M.; Vrouwenvelder, Johannes S.

    2012-01-01

    The impact of feed spacers on initial feed channel pressure (FCP) drop, FCP increase and biomass accumulation has been studied in membrane fouling simulators using feed spacers applied in commercially available nanofiltration and reverse osmosis spiral wound membrane modules. All spacers had a similar geometry.Our studies showed that biofouling was not prevented by (i) variation of spacer thickness, (ii) feed spacer orientation, (iii) feed spacer coating with silver, copper or gold and (iv) using a biostatic feed spacer. At constant feed flow, a lower FCP and FCP increase were observed for a thicker feed spacer. At constant linear flow velocity, roughly the same FCP development and biomass accumulation were found irrespective of the feed spacer thickness: hydrodynamics and substrate load were more important for development and impact of biofouling than the thickness of currently applied spacers. Use of biostatic and metal coated spacers were not effective for biofouling control. The same small reduction of biofouling rate was observed with copper and silver coated spacers as well as uncoated 45° rotated spacers.The studied modified spacers were not effective for biofouling prevention and control. The impact of biofouling on FCP increase was reduced significantly by a lower linear flow velocity, while spacer orientation and spacer thickness in membrane modules had a smaller but still significant effect. © 2012 Elsevier B.V.

  1. The potential of standard and modified feed spacers for biofouling control

    KAUST Repository

    Araújo, Paula A.

    2012-06-01

    The impact of feed spacers on initial feed channel pressure (FCP) drop, FCP increase and biomass accumulation has been studied in membrane fouling simulators using feed spacers applied in commercially available nanofiltration and reverse osmosis spiral wound membrane modules. All spacers had a similar geometry.Our studies showed that biofouling was not prevented by (i) variation of spacer thickness, (ii) feed spacer orientation, (iii) feed spacer coating with silver, copper or gold and (iv) using a biostatic feed spacer. At constant feed flow, a lower FCP and FCP increase were observed for a thicker feed spacer. At constant linear flow velocity, roughly the same FCP development and biomass accumulation were found irrespective of the feed spacer thickness: hydrodynamics and substrate load were more important for development and impact of biofouling than the thickness of currently applied spacers. Use of biostatic and metal coated spacers were not effective for biofouling control. The same small reduction of biofouling rate was observed with copper and silver coated spacers as well as uncoated 45° rotated spacers.The studied modified spacers were not effective for biofouling prevention and control. The impact of biofouling on FCP increase was reduced significantly by a lower linear flow velocity, while spacer orientation and spacer thickness in membrane modules had a smaller but still significant effect. © 2012 Elsevier B.V.

  2. A non-electrostatic spacer for aerosol delivery

    DEFF Research Database (Denmark)

    Bisgaard, H; Anhøj, J; Klug, B

    1995-01-01

    to 6 years, suspected to have asthma the non-electrostatic spacer delivered a mean total dose of budesonide aerosol of 39% of the nominal dose, which was significantly higher than the Babyhaler (28%), the Nebuhaler (21%), and the AeroChamber (19%). These differences were most pronounced in children......A pear shaped non-electrostatic spacer, composed of steel with a volume of 250 ml and equipped with a facemask containing integrated inlet and outlet valves for inspiration and expiration, was compared with three plastic spacers. The plastic spacers were primed with repeated puffs from a budesonide...... was 27 seconds and independent of the use of p-MDI. In vitro the maximum dose of budesonide from a p-MDI, expressed as a percentage of the nominal dose, was 56% from the non-electrostatic spacer, 61% from the Nebuhaler, 45% from the Babyhaler, and 30% from the AeroChamber. In 124 children, age 6 months...

  3. A non-electrostatic spacer for aerosol delivery

    DEFF Research Database (Denmark)

    Bisgaard, H; Anhøj, J; Klug, B

    1995-01-01

    A pear shaped non-electrostatic spacer, composed of steel with a volume of 250 ml and equipped with a facemask containing integrated inlet and outlet valves for inspiration and expiration, was compared with three plastic spacers. The plastic spacers were primed with repeated puffs from a budesonide...... pressurised metered dose inhaler (p-MDI) to minimise the electrostatic charge on the plastic. The procedure prolonged the half life (t1/2) of the aerosol in the Nebuhaler from nine to 32 seconds. A normal cleaning procedure reduced the aerosol t1/2 back to baseline. The t1/2 of the aerosol in the metal spacer...... was 27 seconds and independent of the use of p-MDI. In vitro the maximum dose of budesonide from a p-MDI, expressed as a percentage of the nominal dose, was 56% from the non-electrostatic spacer, 61% from the Nebuhaler, 45% from the Babyhaler, and 30% from the AeroChamber. In 124 children, age 6 months...

  4. Numerical simulation and optimized design of cased telescoped ammunition interior ballistic

    Directory of Open Access Journals (Sweden)

    Jia-gang Wang

    2018-04-01

    Full Text Available In order to achieve the optimized design of a cased telescoped ammunition (CTA interior ballistic design, a genetic algorithm was introduced into the optimal design of CTA interior ballistics with coupling the CTA interior ballistic model. Aiming at the interior ballistic characteristics of a CTA gun, the goal of CTA interior ballistic design is to obtain a projectile velocity as large as possible. The optimal design of CTA interior ballistic is carried out using a genetic algorithm by setting peak pressure, changing the chamber volume and gun powder charge density. A numerical simulation of interior ballistics based on a 35 mm CTA firing experimental scheme was conducted and then the genetic algorithm was used for numerical optimization. The projectile muzzle velocity of the optimized scheme is increased from 1168 m/s for the initial experimental scheme to 1182 m/s. Then four optimization schemes were obtained with several independent optimization processes. The schemes were compared with each other and the difference between these schemes is small. The peak pressure and muzzle velocity of these schemes are almost the same. The result shows that the genetic algorithm is effective in the optimal design of the CTA interior ballistics. This work will be lay the foundation for further CTA interior ballistic design. Keywords: Cased telescoped ammunition, Interior ballistics, Gunpowder, Optimization genetic algorithm

  5. Die spacer thickness reproduction for central incisor crown fabrication with combined computer-aided design and 3D printing technology: an in vitro study.

    Science.gov (United States)

    Hoang, Lisa N; Thompson, Geoffrey A; Cho, Seok-Hwan; Berzins, David W; Ahn, Kwang Woo

    2015-05-01

    The inability to control die spacer thickness has been reported. However, little information is available on the congruency between the computer-aided design parameters for die spacer thickness and the actual printout. The purpose of this study was to evaluate the accuracy and precision of the die spacer thickness achieved by combining computer-aided design and 3-dimensional printing technology. An ivorine maxillary central incisor was prepared for a ceramic crown. The prepared tooth was duplicated by using polyvinyl siloxane duplicating silicone, and 80 die-stone models were produced from Type IV dental stone. The dies were randomly divided into 5 groups with assigned die spacer thicknesses of 25 μm, 45 μm, 65 μm, 85 μm, and 105 μm (n=16). The printed resin copings, obtained from a printer (ProJet DP 3000; 3D Systems), were cemented onto their respective die-stone models with self-adhesive resin cement and stored at room temperature until sectioning into halves in a buccolingual direction. The internal gap was measured at 5 defined locations per side of the sectioned die. Images of the printed resin coping/die-stone model internal gap dimensions were obtained with an inverted bright field metallurgical microscope at ×100 magnification. The acquired digital image was calibrated, and measurements were made using image analysis software. Mixed models (α=.05) were used to evaluate accuracy. A false discovery rate at 5% was used to adjust for multiple testing. Coefficient of variation was used to determine the precision for each group and was evaluated statistically with the Wald test (α=.05). The accuracy, expressed in terms of the mean differences between the prescribed die spacer thickness and the measured internal gap (standard deviation), was 50 μm (11) for the 25 μm group simulated die spacer thickness, 30 μm (10) for the 45 μm group, 15 μm (14) for the 65 μm group, 3 μm (23) for the 85 μm group, and -10 μm (32) for the 105 μm group. The

  6. ESO Telescope Designer Raymond Wilson Wins Prestigious Kavli Award for Astrophysics

    Science.gov (United States)

    2010-06-01

    with four individual telescopes with 17.5 cm thick 8.2-metre mirrors. Active optics has contributed towards making the VLT the world's most successful ground-based observatory and will be an integral part of ESO's European Extremely Large Telescope (E-ELT) project. Active optics technology is also part of the twin 10-metre Keck telescopes, the Subaru telescope's 8.2-metre mirror and the two 8.1-metre Gemini telescopes. Co-prize winners Jerry Nelson and Roger Angel respectively pioneered the use of segmentation in telescope primary mirrors - as used on the Keck telescopes, and the development of lightweight mirrors with short focal ratios. A webcast from Oslo, Norway, announcing the prize winners is available at www.kavlifoundation.org and www.kavliprize.no. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  7. Nuclear reactor spring strip grid spacer

    International Nuclear Information System (INIS)

    Patterson, J.F.; Flora, B.S.

    1978-01-01

    A bimetallic grid spacer is described comprising a grid structure of zircaloy formed by intersecting striplike members which define fuel element openings for receiving fuel elements and spring strips made of Inconel positioned within the grid structure for cooperating with the fuel elements to maintain them in their desired position. A plurality of these spring strips extend longitudinally between sides of the grid structure, being locked in position by the grid retaining strips. The fuel rods, which are disposed in the fuel openings formed in the grid structure, are positioned by means of the springs associated with the spring strips and a plurality of dimples which extend from the zircaloy grid structure into the openings. In one embodiment the strips are disposed in a plurality of arrays with those spring strip arrays situated in opposing diagonal quadrants of the grid structure extending in the same direction and adjacent spring strip arrays in each half of the spacer extending in relatively perpendicular directions. Other variations of the spring strip arrangements for a particular fuel design are disclosed herein

  8. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F., E-mail: higorfabiano@gmail.com, E-mail: mdora@nuclear.ufmg.br, E-mail: vitors@cdtn.br, E-mail: aacs@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10{sup 4} to 5.4 x 10{sup 4}. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  9. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    International Nuclear Information System (INIS)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F.

    2017-01-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10"4 to 5.4 x 10"4. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  10. Mirrors design, analysis and manufacturing of the 550mm Korsch telescope experimental model

    Science.gov (United States)

    Huang, Po-Hsuan; Huang, Yi-Kai; Ling, Jer

    2017-08-01

    In 2015, NSPO (National Space Organization) began to develop the sub-meter resolution optical remote sensing instrument of the next generation optical remote sensing satellite which follow-on to FORMOSAT-5. Upgraded from the Ritchey-Chrétien Cassegrain telescope optical system of FORMOSAT-5, the experimental optical system of the advanced optical remote sensing instrument was enhanced to an off-axis Korsch telescope optical system which consists of five mirrors. It contains: (1) M1: 550mm diameter aperture primary mirror, (2) M2: secondary mirror, (3) M3: off-axis tertiary mirror, (4) FM1 and FM2: two folding flat mirrors, for purpose of limiting the overall volume, reducing the mass, and providing a long focal length and excellent optical performance. By the end of 2015, we implemented several important techniques including optical system design, opto-mechanical design, FEM and multi-physics analysis and optimization system in order to do a preliminary study and begin to develop and design these large-size lightweight aspheric mirrors and flat mirrors. The lightweight mirror design and opto-mechanical interface design were completed in August 2016. We then manufactured and polished these experimental model mirrors in Taiwan; all five mirrors ware completed as spherical surfaces by the end of 2016. Aspheric figuring, assembling tests and optical alignment verification of these mirrors will be done with a Korsch telescope experimental structure model in 2018.

  11. Eddy current detection of spacers in the fuel channels of CANDU nuclear reactors

    International Nuclear Information System (INIS)

    Krause, T.W.; Schankula, J.; Sullivan, S.P.

    2002-01-01

    Garter Spring (GS) spacers in the fuel channels of CANDU nuclear reactors maintain separation between the hot pressure tube and surrounding moderator cooled calandria tube. Eddy current detection of the four GSs provides assurance that spacers are at or close to design positions and are performing their intended function of maintaining a non-zero gap between pressure tube and calandria tube. Pressure tube constrictions, resulting from relatively less diametral creep at end-of-fuel bundle locations, also produce large eddy current signals. Large constrictions, present in higher service pressure tubes, can produce signals that are 10 times larger than GS signals, reducing GS detectability to 30% in standard GS-detect probes. The introduction of field-focussing elements into the design of the standard GS detection eddy current probe has been used to recover the detectability of GS spacers by increasing the signal amplitude obtained from GSs relative to that from constrictions by a factor of 10. The work presented here compares laboratory, modelling and in-reactor measurements of GS and constriction signals obtained from the standard probe with that obtained from field-focussed eddy current probe designs. (author)

  12. ATHENA: system design and implementation for a next generation x-ray telescope

    Science.gov (United States)

    Ayre, M.; Bavdaz, M.; Ferreira, I.; Wille, E.; Lumb, D.; Linder, M.

    2015-08-01

    ATHENA, Europe's next generation x-ray telescope, has recently been selected for the 'L2' slot in ESA's Cosmic Vision Programme, with a mandate to address the 'Hot and Energetic Universe' Cosmic Vision science theme. The mission is currently in the Assessment/Definition Phase (A/B1), with a view to formal adoption after a successful System Requirements Review in 2019. This paper will describe the reference mission architecture and spacecraft design produced during Phase 0 by the ESA Concurrent Design Facility (CDF), in response to the technical requirements and programmatic boundary conditions. The main technical requirements and their mapping to resulting design choices will be presented, at both mission and spacecraft level. An overview of the spacecraft design down to subsystem level will then be presented (including the telescope and instruments), remarking on the critically-enabling technologies where appropriate. Finally, a programmatic overview will be given of the on-going Assessment Phase, and a snapshot of the prospects for securing the `as-proposed' mission within the cost envelope will be given.

  13. High corrosion-resistant fuel spacers

    International Nuclear Information System (INIS)

    Yoshida, Toshimi; Takase, Iwao; Ikeda, Shinzo; Masaoka, Isao; Nakajima, Junjiro.

    1986-01-01

    Purpose: To enable manufacturing BWR fuel spacers by prior-art production process, using a zirconium-base alloy having very excellent corrosion resistance. Method: A highly improved nodular-resistant, corrosion-resistant zirconium alloy is devised by adding a slight amount of niobium, titanium and vanadium to zircaloy, of which fuel spacers are produced. That is, there can be obtained an alloy having much more excellent nodular resistance than conventional zircaloy, and free from a large change in plasticity, workability, and weldability, by adding to zirconium about 1.5 % of tin, about 0.15 % of iron, about 0.05 % of chromium, about 0.05 % of nickel, and 0.05 to 0.5 % of at least one or two kinds of niobium, titanium and vanadium. Using this zirconium-base alloy can manufacture fuel spacers by the same manufacturing process, thus improving economy and reliability. (Kamimura, M.)

  14. Mechanical test for fuel assembly spacer grid

    International Nuclear Information System (INIS)

    Kang, Heung Seok; Jeong, Yeon Ho; Song, Kee Nam; Kim, Hyung Kyu; Yoon, Kyung Ho; Bang, Je Keun.

    1997-06-01

    In order to propose some tests for a new spacer grid, the grid mechanical tests performed by ABB-CE, KWU and Westinghouse have been investigated. It is known that a static compression test, a dynamic impact test, and a grid spring characteristic test were commonly carried out by the vendors when a prototype spacer grid was developed. The static compression test is to measure the stresses on the strips as well as to obtain the grid stiffness. The dynamic impact test is to get some basic data for accident analysis such as impact stiffness, impact strength, and coefficient of restitution. Since each fuel vendor has his theory on an accident analysis, every vendor employs his particular method for the dynamic impact test. The dynamic impact test can be divided into two in accordance with the number of impact face, and the duration of impact pulse. One is an one-sided impact test and the other is an through-gird impact test. The duration of the impact pulse for the former is considerably shorter than the latter. Therefore, the grid can endure much higher load under the one-sided impact condition than under the through-grid impact condition. The grid spring characteristic test is to obtain a force versus deflection curve. This curve is very important in designing the spacer grid to provide fuel rods with a sound supports in core. (author). 18 tabs., 26 figs

  15. The afocal telescope optical design and tolerance analysis for the ESA ARIEL mission

    Science.gov (United States)

    Da Deppo, Vania; Middleton, Kevin; Focardi, Mauro; Morgante, Gianluca; Grella, Samuele; Claudi, Riccardo; Pace, Emanuele; Ficai Veltroni, Iacopo; Micela, Giuseppina

    2017-11-01

    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three present candidates for the next ESA medium-class science mission (M4) to be launched in 2026. During its 3.5 years of scientific operations from L2 orbit, this mission will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the Solar System. The aim is to enable a deep understanding of the physics and chemistry of these exoplanets. ARIEL is based on a 1-m class telescope ahead of a suite of instruments: two spectrometer channels covering the band 1.95 to 7.80 µm and four photometric channels (two wide and two narrow band) in the range 0.5 to 1.9 μm. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is based on an eccentric pupil two-mirror classic Cassegrain configuration coupled to a tertiary paraboloidal mirror. An all-aluminum structure has been considered for the telescope layout, and a detailed tolerance analysis has been conducted to assess the telescope feasibility. This analysis has been done including the different parts of the realization and life of the instrument, from integration on-ground to in-flight stability during the scientific acquisitions. The primary mirror (M1) temperature will be monitored and finely tuned via an active thermal control system based on thermistors and heaters. The heaters will be switched on and off to maintain the M1 temperature within ±1K thanks to a proportional-integral-derivative (PID) controller.

  16. Design, Synthesis and Hydrolytic Behavior of Mutual Prodrugs of NSAIDs with Gabapentin Using Glycol Spacers

    Directory of Open Access Journals (Sweden)

    Hiba Najeh Alsaad

    2012-10-01

    Full Text Available The free –COOH present in NSAIDs is thought to be responsible for the GI irritation associated with all traditional NSAIDs. Exploitation of mutual prodrugs is an approach wherein the NSAID is covalently bounded to a second pharmacologically active carrier/drug with the ultimate aim of reducing the gastric irritation. In this study some NSAIDs were conjugated with gabapentin via ester bonds using glycol spacers with the expectation of reducing gastric adverse effects and obtaining synergistic analgesic effects. The kinetics of ester hydrolysis were studied in two different non enzymatic buffer solutions at pH 1.2 and 7.4, as well as in 80% human plasma using HPLC with chloroform -methanol as mobile phase. Compounds 9a–c with ethylene glycol spacers showed significant stability at buffer solutions with half lives ranging from about 8–25 h, while the underwent a reasonable plasma hydrolysis (49%–88% in 2 h. Compound 9d with a propylene glycol spacer shows a higher rate of enzymatic hydrolysis than the corresponding ethylene glycol compound 9c. The result of compounds 9a-c indicate that these compounds may be stable during their passage through the GIT until reaching the blood circulation.

  17. Design and implementation of the UFFO burst alert and trigger telescope

    DEFF Research Database (Denmark)

    Kim, J.E.; Ahmad, S.; Barrillon, P.

    2012-01-01

    The Ultra Fast Flash Observatory pathfinder (UFFO-p) is a telescope system designed for the detection of the prompt optical/UV photons from Gamma-Ray Bursts (GRBs), and it will be launched onboard the Lomonosov spacecraft in 2012. The UFFO-p consists of two instruments: the UFFO Burst Alert and T...

  18. Nanoparticle-Based Brachytherapy Spacers for Delivery of Localized Combined Chemoradiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajiv, E-mail: r.kumar@neu.edu [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States); Belz, Jodi [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Markovic, Stacey [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts (United States); Jadhav, Tej; Fowle, William [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Niedre, Mark [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts (United States); Cormack, Robert; Makrigiorgos, Mike G. [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States); Sridhar, Srinivas [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. Methods and Materials: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. Results: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. Conclusions: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when

  19. Nanoparticle-Based Brachytherapy Spacers for Delivery of Localized Combined Chemoradiation Therapy

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Belz, Jodi; Markovic, Stacey; Jadhav, Tej; Fowle, William; Niedre, Mark; Cormack, Robert; Makrigiorgos, Mike G.; Sridhar, Srinivas

    2015-01-01

    Purpose: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. Methods and Materials: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. Results: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. Conclusions: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when

  20. The Advanced Gamma-ray Imaging System (AGIS): Schwarzschild-Couder (SC) Telescope Mechanical and Optical System Design

    Science.gov (United States)

    Byrum, Karen L.; Vassiliev, V.; AGIS Collaboration

    2010-03-01

    AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of AGIS telescopes. In this submission, we outline the status of the development of the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic telescope. This design can provide a field of view and angular resolution significantly better to those offered by the traditional Davies-Cotton optics utilized in present-day IACTs. Other benefits of the novel design include isochronous focusing and compatibility with cost-effective, high quantum efficiency image sensors such as multi-anode PMTs, silicon PMTs (SiPMs), or image intensifiers.

  1. Development of structural technology for a high performance spacer grid

    International Nuclear Information System (INIS)

    Song, Kee Nam; Kim, H. K.; Kang, H. S.

    2003-03-01

    A spacer grid in a LWR fuel assembly is a key structural component to support fuel rods and to enhance the heat transfer from the fuel rod to the coolant. In this research, the main research items are the development of inherent and high performance spacer grid shapes, the establishment of mechanical/structural analysis and test technology, and the set-up of basic test facilities for the spacer grid. The main research areas and results are as follows. 1. 14 different spacer grid candidates have been invented and applied for domestic and US patents. Among the candidates six are chosen from the patent. 2. Two kinds of spacer grids are finally selected for the advanced LWR fuel after detailed performance tests on the candidates and commercial spacer grids from a mechanical/structural point of view. According to the test results the features of the selected spacer grids are better than those of the commercial spacer grids. 3. Four kinds of basic test facilities are set up and the relevant test technologies are established. 4. Mechanical/structural analysis models and technology for spacer grid performance are developed and the analysis results are compared with the test results to enhance the reliability of the models

  2. Bimetallic spacer means for a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1981-01-01

    A bimetallic spacer means designed to be cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The subject bimetallic spacer means in accord with one embodiment of the invention includes a member formed, at least principally, of Zircaloy to which are attached a plurality of stainless steel strips. The latter stainless steel strips are located on the external surface of the Zircaloy member and with the major axis of each of the plurality of stainless steel strips extending substantially perpendicular to the major axis of the Zircaloy member. In accord with another embodiment of the invention, the subject bimetallic spacer means includes a member formed at least principally of Zircaloy to which a plurality of stainless steel strips are attached so as to be positioned thereon externally thereof and with the major axis of each of the plurality of stainless steel strips extending substantially parallel to the major axis of the Zircaloy member. In accord with a further embodiment of the invention, the stainless steel strips are attached to preselected members, each embodying at least a cladding of Zircaloy, which are located in the rows of fuel rods that define the perimeter of the fuel matrix of the nuclear fuel assembly. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. Namely, the stainless steel strips expand laterally relative to the fuel assembly and thereby occupy the space adjacent to the external surface of the fuel assembly

  3. Design of a Telescopic Linear Actuator Based on Hollow Shape Memory Springs

    Science.gov (United States)

    Spaggiari, Andrea; Spinella, Igor; Dragoni, Eugenio

    2011-07-01

    Shape memory alloys (SMAs) are smart materials exploited in many applications to build actuators with high power to mass ratio. Typical SMA drawbacks are: wires show poor stroke and excessive length, helical springs have limited mechanical bandwidth and high power consumption. This study is focused on the design of a large-scale linear SMA actuator conceived to maximize the stroke while limiting the overall size and the electric consumption. This result is achieved by adopting for the actuator a telescopic multi-stage architecture and using SMA helical springs with hollow cross section to power the stages. The hollow geometry leads to reduced axial size and mass of the actuator and to enhanced working frequency while the telescopic design confers to the actuator an indexable motion, with a number of different displacements being achieved through simple on-off control strategies. An analytical thermo-electro-mechanical model is developed to optimize the device. Output stroke and force are maximized while total size and power consumption are simultaneously minimized. Finally, the optimized actuator, showing good performance from all these points of view, is designed in detail.

  4. An insulating grid spacer for large-area MICROMEGAS chambers

    International Nuclear Information System (INIS)

    Bernard, D.; Delagrange, H.; D'Enterria, D.G.; Guay, M.L.M. Le; Martinez, G.; Mora, M.J.; Pichot, P.; Roy, D.; Schutz, Y.; Gandi, A.; Oliveira, R. de

    2002-01-01

    We present a novel design for large-area gaseous detectors based on the MICROMEGAS technology. This technology incorporates an insulating grid, sandwiched between the micro-mesh and the anode-pad plane, which provides a uniform 200 μm amplification gap. The uniformity of the amplification gap thickness has been verified. The gain performances of the detector are presented and compared to the values obtained with detectors using cylindrical micro spacers. The new design presents several technical and financial advantages

  5. Space telescope design to directly image the habitable zone of Alpha Centauri

    Science.gov (United States)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-09-01

    The scientific interest in directly imaging and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging missions such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A and B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios on the order of 1010 are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets may allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induced Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a highprecision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to ~2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  6. Apodized Pupil Lyot Coronagraphs designs for future segmented space telescopes

    Science.gov (United States)

    St. Laurent, Kathryn; Fogarty, Kevin; Zimmerman, Neil; N’Diaye, Mamadou; Stark, Chris; Sivaramakrishnan, Anand; Pueyo, Laurent; Vanderbei, Robert; Soummer, Remi

    2018-01-01

    A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as the platform to realize this scientific breakthrough is the Large UV/Optical/IR Surveyor (LUVOIR). Such a mission would also address a broad range of topics in astrophysics with a multi-wavelength suite of instruments.In support of the community’s assessment of the scientific capability of a LUVOIR mission, the Exoplanet Exploration Program (ExEP) has launched a multi-team technical study: Segmented Coronagraph Design and Analysis (SCDA). The goal of this study is to develop viable coronagraph instrument concepts for a LUVOIR-type mission. Results of the SCDA effort will directly inform the mission concept evaluation being carried out by the LUVOIR Science and Technology Definition Team. The apodized pupil Lyot coronagraph (APLC) is one of several coronagraph design families that the SCDA study is assessing. The APLC is a Lyot-style coronagraph that suppresses starlight through a series of amplitude operations on the on-axis field. Given a suite of seven plausible segmented telescope apertures, we have developed an object-oriented software toolkit to automate the exploration of thousands of APLC design parameter combinations. In the course of exploring this parameter space we have established relationships between APLC throughput and telescope aperture geometry, Lyot stop, inner working angle, bandwidth, and contrast level. In parallel with the parameter space exploration, we have investigated several strategies to improve the robustness of APLC designs to fabrication and alignment errors and integrated a Design Reference Mission framework to evaluate designs with scientific yield metrics.

  7. Preclinical Evaluation of Bioabsorbable Polyglycolic Acid Spacer for Particle Therapy

    International Nuclear Information System (INIS)

    Akasaka, Hiroaki; Sasaki, Ryohei; Miyawaki, Daisuke; Mukumoto, Naritoshi; Sulaiman, Nor Shazrina Binti; Nagata, Masaaki; Yamada, Shigeru; Murakami, Masao; Demizu, Yusuke; Fukumoto, Takumi

    2014-01-01

    Purpose: To evaluate the efficacy and safety of a polyglycolic acid (PGA) spacer through physical and animal experiments. Methods and Materials: The spacer was produced with surgical suture material made of PGA, forming a 3-dimensional nonwoven fabric. For evaluation or physical experiments, 150-MeV proton or 320-MeV carbon-ion beams were used to generate 60-mm width of spread-out Bragg peak. For animal experiments, the abdomens of C57BL/6 mice, with or without the inserted PGA spacers, were irradiated with 20 Gy of carbon-ion beam (290 MeV) using the spread-out Bragg peak. Body weight changes over time were scored, and radiation damage to the intestine was investigated using hematoxylin and eosin stain. Blood samples were also evaluated 24 days after the irradiation. Long-term thickness retention and safety were evaluated using crab-eating macaques. Results: No chemical or structural changes after 100 Gy of proton or carbon-ion irradiation were observed in the PGA spacer. Water equivalency of the PGA spacer was equal to the water thickness under wet condition. During 24 days' observation after 20 Gy of carbon-ion irradiation, the body weights of mice with the PGA spacer were relatively unchanged, whereas significant weight loss was observed in those mice without the PGA spacer (P<.05). In mice with the PGA spacer, villus and crypt structure were preserved after irradiation. No inflammatory reactions or liver or renal dysfunctions due to placement of the PGA spacer were observed. In the abdomen of crab-eating macaques, thickness of the PGA spacer was maintained 8 weeks after placement. Conclusions: The absorbable PGA spacer had water-equivalent, bio-compatible, and thickness-retaining properties. Although further evaluation is warranted in a clinical setting, the PGA spacer may be effective to stop proton or carbon-ion beams and to separate normal tissues from the radiation field

  8. An innovative telescope control system architecture for SST-GATE telescopes at the CTA Observatory

    Science.gov (United States)

    Fasola, Gilles; Mignot, Shan; Laporte, Philippe; Abchiche, Abdel; Buchholtz, Gilles; Jégouzo, Isabelle

    2014-07-01

    SST-GATE (Small Size Telescope - GAmma-ray Telescope Elements) is a 4-metre telescope designed as a prototype for the Small Size Telescopes (SST) of the Cherenkov Telescope Array (CTA), a major facility for the very high energy gamma-ray astronomy of the next three decades. In this 100-telescope array there will be 70 SSTs, involving a design with an industrial view aiming at long-term service, low maintenance effort and reduced costs. More than a prototype, SST-GATE is also a fully functional telescope that shall be usable by scientists and students at the Observatoire de Meudon for 30 years. The Telescope Control System (TCS) is designed to work either as an element of a large array driven by an array controller or in a stand-alone mode with a remote workstation. Hence it is built to be autonomous with versatile interfacing; as an example, pointing and tracking —the main functions of the telescope— are managed onboard, including astronomical transformations, geometrical transformations (e.g. telescope bending model) and drive control. The core hardware is a CompactRIO (cRIO) featuring a real-time operating system and an FPGA. In this paper, we present an overview of the current status of the TCS. We especially focus on three items: the pointing computation implemented in the FPGA of the cRIO —using CORDIC algorithms— since it enables an optimisation of the hardware resources; data flow management based on OPCUA with its specific implementation on the cRIO; and the use of an EtherCAT field-bus for its ability to provide real-time data exchanges with the sensors and actuators distributed throughout the telescope.

  9. Novel ventilation design of combining spacer and mesh structure in sports T-shirt significantly improves thermal comfort.

    Science.gov (United States)

    Sun, Chao; Au, Joe Sau-chuen; Fan, Jintu; Zheng, Rong

    2015-05-01

    This paper reports on novel ventilation design in sports T-shirt, which combines spacer and mesh structure, and experimental evidence on the advantages of design in improving thermal comfort. Evaporative resistance (Re) and thermal insulation (Rc) of T-shirts were measured using a sweating thermal manikin under three different air velocities. Moisture permeability index (i(m)) was calculated to compare the different designed T-shirts. The T-shirts of new and conventional designs were also compared by wearer trials, which were comprised of 30 min treadmill running followed by 10 min rest. Skin temperature, skin relative humidity, heart rate, oxygen inhalation and energy expenditure were monitored, and subjective sensations were asked. Results demonstrated that novel T-shirt has 11.1% significant lower im than control sample under windy condition. The novel T-shirt contributes to reduce the variation of skin temperature and relative humidity up to 37% and 32%, as well as decrease 3.3% energy consumption during exercise. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Design of UHECR telescope with 1 arcmin resolution and 50 deg. field of view

    CERN Document Server

    Sasaki, M; Asaoka, Y

    2002-01-01

    A new telescope design based on Baker-Nunn optics is proposed for observation of ultra-high-energy cosmic rays (UHECRs). The optical system has an image resolution better than 0.02 deg. within a wide field of view of 50 deg. angular diameter. When combined with a high-quality imaging device, the proposed design enables the directions of UHECRs and high-energy neutrinos to be determined with an accuracy better than 1 arcmin. The outstanding resolution of this telescope allows charge-separated cosmic-rays to be resolved and the source to be determined accurately. This marked improvement in angular resolution will allow the multi-wavelength and 'multi-particle' observations of astronomical objects through collaboration with established astronomical observations.

  11. Bioinformatics analyses of Shigella CRISPR structure and spacer classification.

    Science.gov (United States)

    Wang, Pengfei; Zhang, Bing; Duan, Guangcai; Wang, Yingfang; Hong, Lijuan; Wang, Linlin; Guo, Xiangjiao; Xi, Yuanlin; Yang, Haiyan

    2016-03-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) are inheritable genetic elements of a variety of archaea and bacteria and indicative of the bacterial ecological adaptation, conferring acquired immunity against invading foreign nucleic acids. Shigella is an important pathogen for anthroponosis. This study aimed to analyze the features of Shigella CRISPR structure and classify the spacers through bioinformatics approach. Among 107 Shigella, 434 CRISPR structure loci were identified with two to seven loci in different strains. CRISPR-Q1, CRISPR-Q4 and CRISPR-Q5 were widely distributed in Shigella strains. Comparison of the first and last repeats of CRISPR1, CRISPR2 and CRISPR3 revealed several base variants and different stem-loop structures. A total of 259 cas genes were found among these 107 Shigella strains. The cas gene deletions were discovered in 88 strains. However, there is one strain that does not contain cas gene. Intact clusters of cas genes were found in 19 strains. From comprehensive analysis of sequence signature and BLAST and CRISPRTarget score, the 708 spacers were classified into three subtypes: Type I, Type II and Type III. Of them, Type I spacer referred to those linked with one gene segment, Type II spacer linked with two or more different gene segments, and Type III spacer undefined. This study examined the diversity of CRISPR/cas system in Shigella strains, demonstrated the main features of CRISPR structure and spacer classification, which provided critical information for elucidation of the mechanisms of spacer formation and exploration of the role the spacers play in the function of the CRISPR/cas system.

  12. An insulating grid spacer for large-area MICROMEGAS chambers

    CERN Document Server

    Bernard, D; D'Enterria, D G; Le Guay, M; Martínez, G; Mora, M J; Pichot, P; Roy, D; Schutz, Y; Gandi, A; De Oliveira, R

    2002-01-01

    We present an original design for large area gaseous detectors based on the MICROMEGAS technology. This technology incorporates an insulating grid, sandwiched between the micro-mesh and the anode-pad plane, which provides an uniform 200 $\\mu$m amplification gap. The uniformity of the amplification gap thickness has been verified under several experimental conditions. The gain performances of the detector are presented and compared to the values obtained with detectors using cylindrical micro spacers. The new design presents several technical and financial advantages.

  13. Optimum design of a coded mask X-ray telescope for rocket applications

    International Nuclear Information System (INIS)

    Gunson, J.; Polychronopulos, B.

    1976-01-01

    A review of the principles of current X-ray telescopes is made with particular emphasis on two-step imaging techniques involving coding masks. The merits and limitations of the various types of coding masks in use are examined in detail. The limitations are shown to arise from the finite nature of practical masks. By postulating periodicity, 'optimum masks' can be constructed with ideal imaging qualities. The theory for the design of such masks and the practical considerations involved in the design of a rocket-borne X-ray telescope system are discussed in full, with particular attention paid to resolution, field of view and image noise. The main emphasis throughout the paper is on one-dimensional masks but two-dimensional masks are also studied. It is concluded that optimum masks could prove very valuable in astronomical applications and also in other fields such as radiography, where high imaging quality coupled with high sensitivity and low cost are of utmost importance. (author)

  14. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model

    OpenAIRE

    Zoulinakis, Georgios; Ferrer-Blasco, Teresa

    2017-01-01

    Purpose. To design an intraocular telescopic system (ITS) for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses’ placement in the eye model and their powers. Ray tracing in bot...

  15. Biomechanical Analysis of an Expandable Lumbar Interbody Spacer.

    Science.gov (United States)

    Soriano-Baron, Hector; Newcomb, Anna G U S; Malhotra, Devika; Palma, Atilio E; Martinez-Del-Campo, Eduardo; Crawford, Neil R; Theodore, Nicholas; Kelly, Brian P; Kaibara, Taro

    2018-06-01

    Recently developed expandable interbody spacers are widely accepted in spinal surgery; however, the resulting biomechanical effects of their use have not yet been fully studied. We analyzed the biomechanical effects of an expandable polyetheretherketone interbody spacer inserted through a bilateral posterior approach with and without different modalities of posterior augmentation. Biomechanical nondestructive flexibility testing was performed in 7 human cadaveric lumbar (L2-L5) specimens followed by axial compressive loading. Each specimen was tested under 6 conditions: 1) intact, 2) bilateral L3-L4 cortical screw/rod (CSR) alone, 3) WaveD alone, 4) WaveD + CSR, 5) WaveD + bilateral L3-L4 pedicle screw/rod (PSR), and 6) WaveD + CSR/PSR, where CSR/PSR was a hybrid construct comprising bilateral cortical-level L3 and pedicle-level L4 screws interconnected by rods. The range of motion (ROM) with the interbody spacer alone decreased significantly compared with the intact condition during flexion-extension (P = 0.02) but not during lateral bending or axial rotation (P ≥ 0.19). The addition of CSR or PSR to the interbody spacer alone condition significantly decreased the ROM compared with the interbody spacer alone (P ≤ 0.002); and WaveD + CSR, WaveD + PSR, and WaveD + CSR/PSR (hybrid) (P ≥ 0.29) did not differ. The axial compressive stiffness (resistance to change in foraminal height during compressive loading) with the interbody spacer alone did not differ from the intact condition (P = 0.96), whereas WaveD + posterior instrumentation significantly increased compressive stiffness compared with the intact condition and the interbody spacer alone (P ≤ 0.001). The WaveD alone significantly reduced ROM during flexion-extension while maintaining the axial compressive stiffness. CSR, PSR, and CSR/PSR hybrid constructs were all effective in augmenting the expandable interbody spacer system and improving its stability. Copyright © 2018 Elsevier Inc. All

  16. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators

    KAUST Repository

    Siddiqui, Amber

    2016-12-22

    Feed spacers are an essential part of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules. Geometric modification of feed spacers is a potential option to reduce the impact of biofouling on the performance of membrane systems. The objective of this study was to evaluate the biofouling potential of two commercially available reference feed spacers and four modified feed spacers. The spacers were compared on hydraulic characterization and in biofouling studies with membrane fouling simulators (MFSs). The virgin feed spacer was characterized hydraulically by their resistance, measured in terms of feed channel pressure drop, performed by operating MFSs at varying feed water flow rates. Short-term (9 days) biofouling studies were carried out with nutrient dosage to the MFS feed water to accelerate the biofouling rate. Long-term (96 days) biofouling studies were done without nutrient dosage to the MFS feed water. Feed channel pressure drop was monitored and accumulation of active biomass was quantified by adenosine tri phosphate (ATP) determination. The six feed spacers were ranked on pressure drop (hydraulic characterization) and on biofouling impact (biofouling studies). Significantly different trends in hydraulic resistance and biofouling impact for the six feed spacers were observed. The same ranking for biofouling impact on the feed spacers was found for the (i) short-term biofouling study with nutrient dosage and the (ii) long-term biofouling study without nutrient dosage. The ranking for hydraulic resistance for six virgin feed spacers differed significantly from the ranking of the biofouling impact, indicating that hydraulic resistance of clean feed spacers does not predict the hydraulic resistance of biofouled feed spacers. Better geometric design of feed spacers can be a suitable approach to minimize impact of biofouling in spiral wound membrane systems.

  17. Simulation study of transfer characteristics for spacer-filled membrane distillation desalination modules

    International Nuclear Information System (INIS)

    Chang, Hsuan; Hsu, Jian-An; Chang, Cheng-Liang; Ho, Chii-Dong; Cheng, Tung-Wen

    2017-01-01

    Highlights: • A 3D CFD model takes in transmembrane heat and mass transfer developed. • DCMD modules using spacer-filled and empty channels for desalination simulated. • Fluid flow, heat transfer and mass transfer profiles revealed. • Correlations of friction factor and Nusselt number developed. - Abstract: Membrane distillation (MD) is an emerging and promising membrane separation process, which can directly utilize renewable thermal energy or low-grade waste heat, for applications in water or wastewater treatment and food industry. However, a major drawback of MD process is its low energy efficiency. Spacer is the most suggested and studied eddy promoter to enhance the heat and mass transfer, which further improves both the separation and the energy utilization performance, of MD processes. This paper presents the results of a 3D computational fluid dynamics (CFD) simulation of DCMD (direct contact membrane distillation) modules using channels with and without spacers for desalination application. The model employs permeable wall boundary condition to take into account the transmembrane heat and mass transfer and simulates the entire module length. The simulation reveals similar fluctuating distributions of temperature polarization coefficient, transmembrane heat and mass fluxes as well as the shear stress on the membrane surface along the entire module length. Correlations have been developed for friction factor and average Nusselt number. These correlations are useful for the analysis and design of DCMD modules. The extent of heat transfer enhancement by spacers depends on the geometry of spacers and the Reynolds number of fluid.

  18. Impact analysis of the spacer grid assembly and shape optimization of the attached spring

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. J.; Lee, Z. N. [Hanyang University, Seoul (Korea)

    2002-04-01

    Spacer grids support fuel rods and maintain geometry from external impact loads. A simulation is performed for the strength of a spacer grid under the impact load. The critical impact load that leads to plastic deformation is identified by a free-fall test. A finite element model is established for the nonlinear simulation of the impact process. The simulation model is tuned based on the free-fall test. The model considers the aspects of welding and the contacts between components. Nonlinear finite element analysis is carried out using a software system called ABAQUS/EXPLICIT. The results are discussed from a design viewpoint. Design requirements are defined and a design process is established. The design process includes mathematical optimization as well as practical design method. The shape of the grid spring is designed to maintain its function during the lifetime of the fuel assembly. A structural optimization method is employed for the shape design. A good design is found. Commercial codes are utilized for structural analysis and optimization. 18 refs., 61 figs., 3 tabs. (Author)

  19. Fuel assembly spacer

    International Nuclear Information System (INIS)

    Shirakawa, Ken-etsu.

    1988-01-01

    Purpose: To reduce the pressure loss of coolants by fuel assembly spacers. Constitution: Spacers for supporting a fuel assembly are attached by means of a plurality of wires to an outer frame. The outer frame is made of shape memory alloy such that the wires are caused to slacken at normal temperature and the slacking of the wires is eliminated in excess of the transition temperature. Since the wires slacken at the normal temperature, fuel rods can be inserted easily. After the insertion of the fuel rods, when the entire portion or the outer frame is heated by water or gas at a predetermined temperature, the outer frame resumes its previously memorized shape to tighten the wires and, accordingly, the fuel rods can be supported firmly. In this way, since the fuel rods are inserted in the slacken state of the wires and, after the assembling, the outer frame resumes its memorized shape, the assembling work can be conducted efficiently. (Kamimura, M.)

  20. Measurement and model development of the droplet diameter in rod bundles with spacer grids in the reactor core

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Lee, Eo Hwak; Yoo, Seung Hun; Jin, Hyung Gon; Kim, In Hun [KAIST, Daejeon (Korea, Republic of)

    2010-05-15

    To understand and to predict the heat transfer between superheated steam and droplets properly during reflood phase of LBLOCA of APR1400, it is very important to measure broken droplet sizes by spacer grids. A study, therefore, has been performed to investigate droplet size in rod bundles with spacer grids and to develop a spacer grid droplet size model for safety analysis codes. Experiments were conducted with liquid droplets (SMD of 300{approx}700 {mu}m) impacting on various spacer grids at air superficial velocity of 10 and 20 m/s based on FLECHT SEASET. The test channel and the grids were heated to 150 .deg. C to prevent the formation of liquid film during tests. The spacer grids were designed refer to the Korean fuel rod bundles (Korean Standard Fuel, Plus 7) of APR1400 with various blockage area ratio and grid geometries (strap thickness, mixing vane) and about 15,000 droplets were measured at upstream and downstream of the grids in 16 tests. As a result, the measurement of broken droplet size by spacer grids with photography method is presented and the droplet size model related to spacer grids as a function of blockage area ratio is suggested in this report

  1. Rehme correlation for spacer pressure drop compared to XT-ADS rod bundle simulations and water experiment

    International Nuclear Information System (INIS)

    Batta, A.; Class, A.; Litfin, K.; Wetzel, T.

    2011-01-01

    The Rehme correlation is the most common formula to estimate the pressure drop of spacers in the design phase of new bundle geometries. It is based on considerations of momentum losses and takes into account the obstruction of the flow cross section but it ignores the geometric details of the spacer design. Within the framework of accelerator driven sub-critical reactor systems (ADS), heavy-liquid-metal (HLM) cooled fuel assemblies are considered. At the KArlsruhe Liquid metal LAboratory (KALLA) of the Karlsruhe Institute of Technology a series of experiments to quantify both pressure losses and heat transfer in HLM-cooled rod bundles are performed. The present study compares simulation results obtained with the commercial CFD code Star-CCM to experiments and the Rehme correlation. It can be shown that the Rehme correlation, simulations and experiments all yield similar trends, but quantitative predictions can only be delivered by the CFD which takes into account the full geometric details of the spacer geometry. (orig.)

  2. PCR-Internal Transcribed Spacer (ITS) genes sequencing and ...

    African Journals Online (AJOL)

    Methods: DNA extraction, purification, amplification and sequencing of Internal Transcribed Spacer (ITS) genes were per- formed using ... Keywords: Internal transcribed spacer genes, phylogenetic, genetic relationship, clinical and environmental fungi, HIV-TB. ... Nigeria. An Ethical clearance was obtained from the Eth-.

  3. The great Melbourne telescope

    CERN Document Server

    Gillespie, Richard

    2011-01-01

    Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.

  4. The Dutch Open Telescope: History, Status, Prospects

    NARCIS (Netherlands)

    Rutten, R.J.

    1999-01-01

    After many years of persistent telescope design and telescope construction, R.H. Hammerschlag has installed his Dutch Open Telescope (DOT) on La Palma. I brie y review its history and design. The future of optical solar physics at Utrecht hinges on a recently-funded three- year DOT science

  5. Surface-Tethered Iterative Carbohydrate Synthesis (STICS): A spacer study

    Science.gov (United States)

    Ganesh, N. Vijaya; Fujikawa, Kohki; Tan, Yih Horng; Nigudkar, Swati S.

    2013-01-01

    Comparative study of STICS using HPLC-assisted experimental set-up clearly demonstrated benefits of using longer spacer-anchoring systems. The use of mixed self-assembled monolayers helps to provide the required space for glycosylation reaction around the immobilized glycosyl acceptor. Both extension of the spacer length and using mixed self-assembled monolayers help to promote reaction and the beneficial effects may include moving the glycosyl acceptor further out into solution and providing additional conformational flexibility. It is possible that surface-immobilized glycosyl acceptors with a longer spacer (C8-O-C8)-lipoic acid have a higher tendency to mimic a solution-phase reaction environment than that of acceptors with shorter spacers. PMID:23822088

  6. Nuclear reactor spring strip grid spacer

    International Nuclear Information System (INIS)

    Patterson, J.F.; Flora, B.S.

    1980-01-01

    An improved and novel grid spacer was developed for use in nuclear reactor fuel assemblies. It is comprised of a series of intersecting support strips and a peripheral support band attached to the ends of the support strips. Each of the openings into which the fuel element is inserted has a number of protruding dimples and springs extending in different directions. The dimples coact with the springs to secure the fuel rods in the openings. Compared with previous designs, this design gives more positive alignment of the support stips while allowing greater flexibility to counterbalance the effects of thermal expansion. The springs are arranged in alternating directions so that the reaction forces tend to counterbalance each other, which in turn minimizes the reaction loads on the supporting structure. (D.N.)

  7. Design review of the Brazilian Experimental Solar Telescope

    Science.gov (United States)

    Dal Lago, A.; Vieira, L. E. A.; Albuquerque, B.; Castilho, B.; Guarnieri, F. L.; Cardoso, F. R.; Guerrero, G.; Rodríguez, J. M.; Santos, J.; Costa, J. E. R.; Palacios, J.; da Silva, L.; Alves, L. R.; Costa, L. L.; Sampaio, M.; Dias Silveira, M. V.; Domingues, M. O.; Rockenbach, M.; Aquino, M. C. O.; Soares, M. C. R.; Barbosa, M. J.; Mendes, O., Jr.; Jauer, P. R.; Branco, R.; Dallaqua, R.; Stekel, T. R. C.; Pinto, T. S. N.; Menconi, V. E.; Souza, V. M. C. E. S.; Gonzalez, W.; Rigozo, N.

    2015-12-01

    The Brazilian's National Institute for Space Research (INPE), in collaboration with the Engineering School of Lorena/University of São Paulo (EEL/USP), the Federal University of Minas Gerais (UFMG), and the Brazilian's National Laboratory for Astrophysics (LNA), is developing a solar vector magnetograph and visible-light imager to study solar processes through observations of the solar surface magnetic field. The Brazilian Experimental Solar Telescope is designed to obtain full disk magnetic field and line-of-sight velocity observations in the photosphere. Here we discuss the system requirements and the first design review of the instrument. The instrument is composed by a Ritchey-Chrétien telescope with a 500 mm aperture and 4000 mm focal length. LCD polarization modulators will be employed for the polarization analysis and a tuning Fabry-Perot filter for the wavelength scanning near the Fe II 630.25 nm line. Two large field-of-view, high-resolution 5.5 megapixel sCMOS cameras will be employed as sensors. Additionally, we describe the project management and system engineering approaches employed in this project. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the heliosphere, the development of this instrument plays an important role in advancing scientific knowledge in this field. In particular, the Brazilian's Space Weather program will benefit most from the development of this technology. We expect that this project will be the starting point to establish a strong research program on Solar Physics in Brazil. Our main aim is to progressively acquire the know-how to build state-of-art solar vector magnetograph and visible-light imagers for space-based platforms.

  8. A telescope with augmented reality functions

    Science.gov (United States)

    Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.

  9. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  10. Membrane with integrated spacer

    NARCIS (Netherlands)

    Balster, J.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2010-01-01

    Many membrane processes are severely influenced by concentration polarisation. Turbulence promoting spacers placed in between the membranes can reduce the diffusional resistance of concentration polarisation by inducing additional mixing. Electrodialysis (ED) used for desalination suffers from

  11. Barriers and supports to implementation of MDI/spacer use in nine Canadian pediatric emergency departments: a qualitative study

    Directory of Open Access Journals (Sweden)

    Graham Ian D

    2009-10-01

    Full Text Available Abstract Background Despite recent research supporting the use of metered dose inhalers with spacer devices (MDI/spacers in pediatric emergency departments (PEDs for acute exacerbations of asthma, uptake of this practice has been slow. The objectives of this study were to determine the barriers and supports to implementing MDI/spacer research and to identify factors associated with early and late adoption of MDI/spacers in Canadian PEDs. Methods Using a comparative case study design, we classified nine tertiary care pediatric hospital PEDs based on their stage of implementation. Data were collected using focus group interviews with physicians, registered nurses (RNs, and respiratory therapists (RTs, and individual interviews with both patient care and medical directors at each site. Initial coding was based on the Ottawa Model of Research Use (OMRU categories of elements known to influence the uptake of innovations. Results One hundred and fifty healthcare professionals from nine different healthcare institutions participated in this study. Lack of leadership in the form of a research champion, a lack of consensus about the benefits of MDI/spacers among staff, perceived resistance from patients/parents, and perceived increased cost and workload associated with MDI/spacer use were the most prevalent barriers to the adoption of the MDI/spacer. Common strategies used by early-adopting sites included the active participation of all professional groups in the adoption process in addition to a well-planned and executed educational component for staff, patients, and families. Early adopter sites were also more likely to have the MDI/spacer included in a clinical protocol/pathway. Conclusion Potential barriers and supports to implementation have been identified that will help EDs adopt MDI/spacer use. Future interventions intended to increase MDI/spacer use in PEDs will need to be sensitive to the barriers identified in this study.

  12. A Study on Structural Strength of Irradiated Spacer Grid for PWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y. G.; Baek, S. J.; Kim, D. S.; Yoo, B. O.; Ahn, S. B.; Chun, Y. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, J. I.; Kim, Y. H.; Lee, J. J. [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    A fuel assembly consists of an array of fuel rods, spacer grids, guide thimbles, instrumentation tubes, and top and bottom nozzles. In PWR (Pressurized light Water Reactor) fuel assemblies, the spacer grids support the fuel rods by the friction forces between the fuel rods and springs/dimples. Under irradiation, the spacer grids supporting the fuel rods absorb vibration impacts due to the reactor coolant flow, and also bear static and dynamic loads during operation inside the nuclear reactor and transportation for spent fuel storage. Thus, it is important to understand the characteristics of deformation behavior and the change in structural strength of an irradiated spacer grid.. In the present study, the static compression test of a spacer grid was conducted to investigate the structural strength of the irradiated spacer grid in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. To evaluate the structural strength of an irradiated spacer grid, hot cell tests were carried out at IMEF of KAERI. The fuel assembly was dismantled and the irradiated spacer grid was obtained for the compression test. The apparatus for measuring the compression strength of the irradiated spacer grid was developed and installed successfully in the hot cell.

  13. Feasibility Study of Interactive Game Technologies to Improve Experience with Inhaler Spacer Devices in Young Children

    OpenAIRE

    Aslam, Tariq; Shakir, Savana; Murray, Clare

    2016-01-01

    IntroductionThe correct use of inhaler devices with facemasks and spacers in young children can be difficult for both children and parents, resulting in distress for both, poor adherence and ineffective drug delivery. The aim of this study was to develop and assess the utility and impact of an interactive electronic game designed to improve the experience of spacer devices in young asthmatic children.MethodsThe Respiratory Aid For Inhaler (RAFIhaler) technology consists of a smartphone mounte...

  14. Design and Expected Performance of GISMO-2, a Two Color Millimeter Camera for the IRAM 30 m Telescope

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Dwek, Eli; Hilton, Gene; Fixsen, Dale J.; Irwin, Kent; Jhabvala, Christine; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; hide

    2014-01-01

    We present the main design features for the GISMO-2 bolometer camera, which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISMO-2 will operate simultaneously in the 1 and 2 mm atmospherical windows. The 1 mm channel uses a 32 × 40 TES-based backshort under grid (BUG) bolometer array, the 2 mm channel operates with a 16 × 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISMO-2 was strongly influenced by our experience with the GISMO 2mm bolometer camera, which is successfully operating at the 30 m telescope. GISMO is accessible to the astronomical community through the regularIRAMcall for proposals.

  15. Development of a new feed channel spacer for reverse osmosis elements. Phase 2 final report, October 1, 1994--December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Milstead, C.E.; Riley, R.L.

    1998-02-11

    During Phase 1, computer modeling techniques were used as the prime instrument of evaluation of designs for a new feed channel spacer to replace the 30 mil thick standard mesh (Vexar) spacer currently used in ROWPU [Reverse Osmosis Water Processing Unit] spiral-wound elements. A hemispherical peg model, based on a Bed of Nails concept developed in Phase 1, was selected for prototype production of spiral-wound elements for field testing. Evaluation in the See-Thru test cell to observe pressure drops through the spacer, feed mixing patterns and ease of cleaning fouled membrane samples showed considerable benefit over Vexar. This design would be suitable for production by roll embossing (or rotary punching) methods instead of expensive injection molding techniques. A 10{1/2} inch die set was fabricated to prove this concept using a 12 ton press brake. Due to a number of factors, however, the equipment did not work as anticipated and numerous modifications are currently in progress. This work will continue at no cost to the government until completed. A seawater test system has been constructed for field testing of various commercially available feed channel spacers for comparison with the Vexar spacer.

  16. Design of a general purpose data collection module for the NuTel telescope

    International Nuclear Information System (INIS)

    Velikzhanin, Y.S.; Chi, Y.; Hou, W.S.; Hsu, C.C.; Shiu, J.G.; Ueno, K.; Wang, M.Z.; Yeh, P.

    2005-01-01

    We have developed a Data Collection Module (DCM) to digitize, store and select data from the NuTel telescope, which observes Cherenkov photons from near horizontal air showers. Multi-anode photo-multiplier tubes (MAPMT) are used as photon-sensitive devices. DCM processes 32 input signals from the charge-sensitive pre-amplifiers located close to the MAPMT. The module design uses 40-MHz 10-bit pipeline ADCs and medium-size FPGAs. A programmable gain/attenuation control x0.5-2 is applied to each channel before the ADC providing a comfortable operation with a multi-channel system using MAPMT as photon-sensitive device because the gain of MAPMT fluctuates from channel to channel as 1:3. DCM has a flexible on-board trigger inside FPGA firmware. The system design is made in 32-bit 33-MHz cPCI. Thirty-two DCMs housed in two crates process signals from the two telescopes of 512 channels each looking to the same direction for coincidence

  17. Scientific management of Space Telescope

    Science.gov (United States)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  18. Development of a light-weight beryllium Cassegrain telescope: from the optical design to the performance measurement

    Science.gov (United States)

    Viertl, Jacques; Greger, Ralf; Di Domenico, Maurizio; Francou, Laurent; Ellouzi, Marina; Blum, Steffen; Kudielka, Klaus; Weigel, Thomas; Rugi Grond, Elisabetta; Piazza, Daniele

    2012-12-01

    The BepiColombo Laser Altimeter (BELA) is selected to fly on board of the ESA's BepiColombo Mercury Planetary Orbiter (MPO). The instrument will be the first European planetary laser altimeter system. RUAG Space is the industrial prime for the Receiver part of the scientific instrument. The BELA Receiver is a joined effort of Swiss industries under the leading role of RUAG and University of Bern as co-Prime. A core element is the light weighted Receiver Telescope (RTL), to collect the laser pulse reflected from the planet's surface. An innovative design was required to deal with the very challenging Mercury's environmental conditions and with the very stringent instrument's mass budget. The Optothermo- mechanical analyses lead to the design of a 1250mm focal length Cassegrain telescope made of Beryllium. It provides an aperture of 204 mm diameter and a 2 mm thick primary mirror for a total mass of less than 600gr. The manufacturing and the integration needed special developments. This paper presents the design analyses and the major challenges which had to be solved. Discussing some aspects of the telescope integration and test campaign, the finally achieved performances and lessons learnt will be presented.

  19. In vitro microbiologic evaluation of PTFE and cotton as spacer materials.

    Science.gov (United States)

    Paranjpe, Avina; Jain, Sumita; Alibhai, Karim J; Wadhwani, Chandur P; Darveau, Richard P; Johnson, James D

    2012-09-01

    To microbiologically evaluate the efficacy of cotton and polytetrafluoroethylene (PTFE) tape used as spacer materials. Twenty-six extracted human molars were restored using either cotton or PTFE tape as spacers under a standardized provisional restorative material (Cavit). The teeth were incubated for 7 days in a culture of Streptococcus gordonii or in liquid media alone. The spacers were removed and tested for bacterial contamination. The access cavities were also evaluated for bacterial contamination. Nine of 10 teeth with cotton spacers and one of 10 teeth with PTFE spacers were positive for S gordonii growth. The nine teeth in the cotton group also showed contamination of the access cavities. Even under optimal conditions, cotton spacers may cause leakage into the access cavities. Cotton fibers may serve as a route for bacterial contamination of the access cavities and root canal space. In contrast, PTFE tape did not provide an avenue for bacterial contamination.

  20. Design and operation of a field telescope for cosmic ray geophysical tomography

    Directory of Open Access Journals (Sweden)

    N. Lesparre

    2012-04-01

    Full Text Available The cosmic ray muon tomography gives an access to the density structure of geological targets. In the present article we describe a muon telescope adapted to harsh environmental conditions. In particular the design optimizes the total weight and power consumption to ease the deployment and increase the autonomy of the detector. The muon telescopes consist of at least two scintillator detection matrices readout by photosensors via optical fibres. Two photosensor options have been studied. The baseline option foresees one multianode photomultiplier (MAPM per matrix. A second option using one multipixel photon counter (MPPC per bar is under development. The readout electronics and data acquisition system developed for both options are detailed. We present a first data set acquired in open-sky conditions compared with the muon flux detected across geological objects.

  1. Design of the data management system for hard X-ray modulation telescope based on real-time Linux

    International Nuclear Information System (INIS)

    Jia Tao; Zhang Zhi

    2004-01-01

    Hard X-ray Modulation Telescope is an electronic subsystem, the data management system for capturing the data of the telescope, then managing and transferring them. The data management system also deals with the communication with the satellite. Because of these functions, it needs highly steady quality and good real-time performance. This paper describes the design of the system. (authors)

  2. The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.

    Science.gov (United States)

    Shmakov, Sergey A; Sitnik, Vassilii; Makarova, Kira S; Wolf, Yuri I; Severinov, Konstantin V; Koonin, Eugene V

    2017-09-19

    Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems store the memory of past encounters with foreign DNA in unique spacers that are inserted between direct repeats in CRISPR arrays. For only a small fraction of the spacers, homologous sequences, called protospacers, are detectable in viral, plasmid, and microbial genomes. The rest of the spacers remain the CRISPR "dark matter." We performed a comprehensive analysis of the spacers from all CRISPR- cas loci identified in bacterial and archaeal genomes, and we found that, depending on the CRISPR-Cas subtype and the prokaryotic phylum, protospacers were detectable for 1% to about 19% of the spacers (~7% global average). Among the detected protospacers, the majority, typically 80 to 90%, originated from viral genomes, including proviruses, and among the rest, the most common source was genes that are integrated into microbial chromosomes but are involved in plasmid conjugation or replication. Thus, almost all spacers with identifiable protospacers target mobile genetic elements (MGE). The GC content, as well as dinucleotide and tetranucleotide compositions, of microbial genomes, their spacer complements, and the cognate viral genomes showed a nearly perfect correlation and were almost identical. Given the near absence of self-targeting spacers, these findings are most compatible with the possibility that the spacers, including the dark matter, are derived almost completely from the species-specific microbial mobilomes. IMPORTANCE The principal function of CRISPR-Cas systems is thought to be protection of bacteria and archaea against viruses and other parasitic genetic elements. The CRISPR defense function is mediated by sequences from parasitic elements, known as spacers, that are inserted into CRISPR arrays and then transcribed and employed as guides to identify and inactivate the cognate parasitic genomes. However, only a small fraction of the CRISPR spacers

  3. Mechanical Design, Simulation, and Testing of Self-Aligning Gaussian Telescope and Stand for ITER LFS Reflectometer Diagnostic

    Science.gov (United States)

    Broughton, Rachel; Gomez, Michael; Zolfaghari, Ali; Morris, Lewis

    2016-10-01

    A self-aligning Gaussian telescope has been designed to compensate for the effect of movement in the ITER vacuum vessel on the transmission line. The purpose of the setup is to couple microwaves into and out of the vessel across the vacuum windows while allowing for both slow movements of the vessel, due to thermal growth, and rapid movements, due to vibrations and disruptions. Additionally, a test stand has been designed specifically to hold this telescope in order to imitate these movements. Consequently, this will allow for the assessment of the efficacy in applying the self-aligning Gaussian telescope approach. The motions of the test stand, as well as the stress on the telescope mechanism, have been virtually simulated using ANSYS workbench. A prototype of this test stand and self-aligning telescope will be built using a combination of custom machined parts and ordered parts. The completed mechanism will be tested at the lab in four different ways: slow single- and multi-direction movements, rapid multi-direction movement, functional laser alignment and self-aligning tests, and natural frequency tests. Once the prototype successfully passes all requirements, it will be tested with microwaves in the LFSR transmission line test stand at General Atomics. This work is supported by US DOE Contract No. DE-AC02-09CH11466.

  4. Eddy current monitoring of spacers in coolant channel assemblies of nuclear reactor

    International Nuclear Information System (INIS)

    Bhole, V.M.; Rastogi, P.K.; Kulkarni, P.G.; Vijayaraghavan, R.

    1993-01-01

    An eddy current testing method has been standardised for monitoring spacer springs which are used in coolant channel assemblies of pressurised heavy water nuclear reactors (PHWRs). The standard bobbin coil probe used for monitoring the spacer spring detects only the location but does not monitor the tilt orientation and tilt angle of a tilted spacer spring. The knowledge of location along with the tilt orientation of the spacer spring greatly improves the performance of repositioning methods. A modified probe with angular windings has been developed in laboratory tests for monitoring the location as well as the tilt orientation of the spacer springs. Experimental results are presented showing excellent performance of the modified probe in monitoring the exact location as well as tilt orientation of a spacer spring. The modified probe has also been used successfully in the field during repositioning of spacer springs in PHWRs before commissioning. (Author)

  5. Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope

    Science.gov (United States)

    Datta, R.; Austermann, J.; Beall, J. A.; Becker, D.; Coughlin, K. P.; Duff, S. M.; Gallardo, P.A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; hide

    2016-01-01

    We present the design and the preliminary on-sky performance with respect to beams and pass bands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments.

  6. Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope

    Science.gov (United States)

    Datta, R.; Austermann, J.; Beall, J. A.; Becker, D.; Coughlin, K. P.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Lanen, J. V.; Li, D.; McMahon, J.; Munson, C. D.; Nati, F.; Niemack, M. D.; Page, L.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Schillaci, A.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    We present the design and the preliminary on-sky performance with respect to beams and passbands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments.

  7. The mechanical design of CHARIS: an exoplanet IFS for the Subaru Telescope

    Science.gov (United States)

    Galvin, Michael B.; Carr, Michael A.; Groff, Tyler D.; Kasdin, N. Jeremy; Fagan, Radford; Hayashi, Masahiko; Takato, Naruhisa

    2014-07-01

    Princeton University is designing and building an integral field spectrograph (IFS), the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), for integration with the Subaru Corona Extreme Adaptive Optics (SCExAO) system and the AO188 adaptive optics system on the Subaru Telescope. CHARIS and SCExAO will measure spectra of hot, young Jovian planets in a coronagraphic image across J, H, and K bands down to an 80 milliarcsecond inner working angle. Here we present the current status of the mechanical design of the CHARIS instrument.

  8. Numerical analysis of the spacer grids' compression strength

    International Nuclear Information System (INIS)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N.

    2013-01-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  9. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer.

    Science.gov (United States)

    Peng, Zheng-Hong; Sima, Monika; Salama, Mohamed E; Kopečková, Pavla; Kopeček, Jindřich

    2013-12-01

    Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (-GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer--DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates' in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice.

  10. Design of a high-magnification and low-aberration compact catadioptric telescope for the Advanced Virgo gravitational-wave interferometric detector

    International Nuclear Information System (INIS)

    Buy, C; Barsuglia, M; Tacca, M; Genin, E; Gouaty, R

    2017-01-01

    Advanced Virgo is a major upgrade of the Virgo gravitational-wave detector, aiming to increase its sensitivity by an order of magnitude. Among the main modifications of the instrument, the size of the laser beam inside the central area has been roughly doubled. Consequently, the input/output optics systems have been re-designed. Due to the overall Advanced Virgo optical scheme, high-magnification and compact telescopes are needed. These telescopes also have to fulfill stringent requirements in terms of aberrations, separation of secondary beams and scattered light. In this paper we describe the design of the Advanced Virgo telescopes and their estimated performances in terms of tuning capability and optical properties. (paper)

  11. Parametric cost models for space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtnay

    2017-11-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  12. Parametric Cost Models for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  13. Antibiotic-impregnated articulating cement spacer for infected total knee arthroplasty

    Directory of Open Access Journals (Sweden)

    Parag Garg

    2011-01-01

    Full Text Available Background : Standard treatment of chronic infected total knee arthroplasty (TKA is a two-stage revision, the first step being placement of an antibiotic-impregnated cement spacer. Here we describe the results of a new technique (modification of the Goldstien′s technique for intraoperative manufacture of a customized articulating spacer at minimal cost and with relatively good conformity and longevity. Materials and Methods : Thirty-six infected knees underwent this procedure from June 2002 to May 2007. The technique consists of using the freshened femur and tibia interface as molds wrapped in a tin foil for manufacturing the two components of the spacer with antibiotic-impregnated methyl methycrylate cement. We used the spacer and the femoral component of the trial set of a TKA system to mold them to perfect articulation. We also reinforced the spacer with a K-wire scaffold to prevent fracture of the cement mantle in the last 21 cases. Results : All 36 knees showed excellent results in terms of infection control, mobility, and stability. There was significant improvement in the WOMAC and Knee Society Scores (20 and 39 points respectively. There were two fractures of the spacers in the initial 15 cases that did not have K-wire scaffolding but none in the last 21 that had reinforcement. Conclusion : This technique provides a more conforming spacer, with good range of motion and stability. The reinforcement helps in preventing the fracture of the cement mantle and is cost effective.

  14. Operating performance of the gamma-ray Cherenkov telescope: An end-to-end Schwarzschild–Couder telescope prototype for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Dournaux, J.L., E-mail: jean-laurent.dournaux@obspm.fr [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); De Franco, A. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Laporte, P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); White, R. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Greenshaw, T. [University of Liverpool, Oliver Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX (United Kingdom); Sol, H. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Abchiche, A. [CNRS, Division technique DT-INSU, 1 Place Aristide Briand, 92190 Meudon (France); Allan, D. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Amans, J.P. [GEPI, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Paris Cité, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); Armstrong, T.P. [Department of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE (United Kingdom); Balzer, A.; Berge, D. [GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Boisson, C. [LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Place J. Janssen, 92190 Meudon (France); and others

    2017-02-11

    The Cherenkov Telescope Array (CTA) consortium aims to build the next-generation ground-based very-high-energy gamma-ray observatory. The array will feature different sizes of telescopes allowing it to cover a wide gamma-ray energy band from about 20 GeV to above 100 TeV. The highest energies, above 5 TeV, will be covered by a large number of Small-Sized Telescopes (SSTs) with a field-of-view of around 9°. The Gamma-ray Cherenkov Telescope (GCT), based on Schwarzschild–Couder dual-mirror optics, is one of the three proposed SST designs. The GCT is described in this contribution and the first images of Cherenkov showers obtained using the telescope and its camera are presented. These were obtained in November 2015 in Meudon, France.

  15. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems

    KAUST Repository

    Siddiqui, Amber

    2016-01-02

    Feed spacers are important for the impact of biofouling on the performance of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane systems. The objective of this study was to propose a strategy for developing, characterizing, and testing of feed spacers by numerical modeling, three-dimensional (3D) printing of feed spacers and experimental membrane fouling simulator (MFS) studies. The results of numerical modeling on the hydraulic behavior of various feed spacer geometries suggested that the impact of spacers on hydraulics and biofouling can be improved. A good agreement was found for the modeled and measured relationship between linear flow velocity and pressure drop for feed spacers with the same geometry, indicating that modeling can serve as first step in spacer characterization. An experimental comparison study of a feed spacer currently applied in practice and a 3D printed feed spacer with the same geometry showed (i) similar hydraulic behavior, (ii) similar pressure drop development with time and (iii) similar biomass accumulation during MFS biofouling studies, indicating that 3D printing technology is an alternative strategy for development of thin feed spacers with a complex geometry. Based on the numerical modeling results, a modified feed spacer with low pressure drop was selected for 3D printing. The comparison study of the feed spacer from practice and the modified geometry 3D printed feed spacer established that the 3D printed spacer had (i) a lower pressure drop during hydraulic testing, (ii) a lower pressure drop increase in time with the same accumulated biomass amount, indicating that modifying feed spacer geometries can reduce the impact of accumulated biomass on membrane performance. The combination of numerical modeling of feed spacers and experimental testing of 3D printed feed spacers is a promising strategy (rapid, low cost and representative) to develop advanced feed spacers aiming to reduce the impact of biofilm formation on

  16. Established Designs For Advanced Ground Based Astronomical Telescopes In The 1-meter To 4-meter Domain

    Science.gov (United States)

    Hull, Anthony B.; Barentine, J.; Legters, S.

    2012-01-01

    The same technology and analytic approaches that led to cost-effective unmitigated successes for the spaceborne Kepler and WISE telescopes are now being applied to meter-class to 4-meter-class ground telescopes, providing affordable solutions to ground astronomy, with advanced features as needed for the application. The range of optical and mechanical performance standards and features that can be supplied for ground astronomy shall be described. Both classical RC designs, as well as unobscured designs are well represented in the IOS design library, allowing heritage designs for both night time and day time operations, the latter even in the proximity of the sun. In addition to discussing this library of mature features, we will also describe a process for working with astronomers early in the definition process to provide the best-value solution. Solutions can include remote operation and astronomical data acquisition and transmission.

  17. (ISSR) and internal transcribed spacer

    African Journals Online (AJOL)

    Cladistic relationships within the genus Cinnamomum (Lauraceae) in Taiwan based on analysis of leaf morphology and inter-simple sequence repeat (ISSR) and internal transcribed spacer (ITS) molecular markers.

  18. Amateur Telescope Making

    Science.gov (United States)

    Tonkin, Stephen

    Many amateur astronomers make their own instruments, either because of financial considerations or because they are just interested. Amateur Telescope Making offers a variety of designs for telescopes, mounts and drives which are suitable for the home-constructor. The designs range from simple to advanced, but all are within the range of a moderately well-equipped home workshop. The book not only tells the reader what he can construct, but also what it is sensible to construct given what time is available commercially. Thus each chapter begins with reasons for undertaking the project, then looks at theoretical consideration before finishing with practical instructions and advice. An indication is given as to the skills required for the various projects. Appendices list reputable sources of (mail order) materials and components. The telescopes and mounts range from "shoestring" (very cheap) instruments to specialist devices that are unavailable commercially.

  19. Orthognathic model surgery with LEGO key-spacer.

    Science.gov (United States)

    Tsang, Alfred Chee-Ching; Lee, Alfred Siu Hong; Li, Wai Keung

    2013-12-01

    A new technique of model surgery using LEGO plates as key-spacers is described. This technique requires less time to set up compared with the conventional plaster model method. It also retains the preoperative setup with the same set of models. Movement of the segments can be measured and examined in detail with LEGO key-spacers. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. An optics education program designed around experiments with small telescopes

    Science.gov (United States)

    Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.; Dokter, Erin F. C.

    2010-08-01

    The National Optical Astronomy Observatory has led the development of a new telescope kit for kids as part of a strategic plan to interest young children in science. This telescope has been assembled by tens of thousands of children nationwide, who are now using this high-quality telescope to conduct optics experiments and to make astronomical observations. The Galileoscope telescope kit and its associated educational program are an outgrowth of the NSF sponsored "Hands-On Optics" (HOO) project, a collaboration of the SPIE, the Optical Society of America, and NOAO. This project developed optics kits and activities for upper elementary students and has reached over 20,000 middle school kids in afterschool programs. HOO is a highly flexible educational program and was featured as an exemplary informal science program by the National Science Teachers Association. Our new "Teaching with Telescopes" program builds on HOO, the Galileoscope and other successful optical education projects.

  1. System for measuring spacer pin pitch in a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Isono, Kenji; Tateishi, Yoshinori; Mano, Tadashi.

    1975-01-01

    Object: To reduce the period for discriminating whether or not spacer pin pitch is satisfactory by simultaneously inserting a number of reference rods into a nuclear fuel assembly spacer ring element of a reactor and arranging them such that they can be simultaneously withdrawn to simplify the withdrawing operation. Structure: A spacer provided with a ring element which clamps a nuclear fuel element is supported on a spacer support with a rod secured to the support as a guide and is secured to the support by securing means. A vertically movable structure with a reference rod provided upright and thru-holes formed in two support plates provided in the same row as the spacer ring element is operated by a fluid pressure mechanism to simultaneously insert the reference rod into the spacer ring element. The reference rod is mounted in support plates via ball bearings such that it is slightly movable in the horizontal direction, and it is aligned with respect to the core of the ring element. The intercore distance of the reference rod is measured with the reference rod inserted in the ring element, thereby measuring the space pin pitch. From the results of measurement, discrimination as to whether the spacer is satisfactory or not is made. (Kamimura, M.)

  2. James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

    Science.gov (United States)

    Feinber, Lee D.; Clampin, Mark; Keski-Kuha, Ritva; Atkinson, Charlie; Texter, Scott; Bergeland, Mark; Gallagher, Benjamin B.

    2012-01-01

    In a little under a decade, the James Webb Space Telescope (JWST) program has designed, manufactured, assembled and tested 21 flight beryllium mirrors for the James Webb Space Telescope Optical Telescope Element. This paper will summarize the mirror development history starting with the selection of beryllium as the mirror material and ending with the final test results. It will provide an overview of the technological roadmap and schedules and the key challenges that were overcome. It will also provide a summary or the key tests that were performed and the results of these tests.

  3. A mechanical design for a detection unit for a deep-sea neutrino telescope

    NARCIS (Netherlands)

    Berbee, E.M.; Boer Rookhuizen, H.; Heine, E.; de Wolf, E.

    2013-01-01

    The future KM3NeT neutrino telescope will be built on the seabed of the Mediterranean Sea at a depth between three and five kilometers. The high ambient pressure, but also the fact that the detector is hardly accessible, put severe constraints on the mechanical design of the detection units of the

  4. Hydrogel Spacer Prospective Multicenter Randomized Controlled Pivotal Trial: Dosimetric and Clinical Effects of Perirectal Spacer Application in Men Undergoing Prostate Image Guided Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mariados, Neil, E-mail: nmariados@ampofny.com [Associated Medical Professionals of New York, Syracuse, New York (United States); Sylvester, John [21st Century Oncology, East Bradenton, Florida (United States); Shah, Dhiren [Western New York Urology Associates, Cancer Care of WNY, Cheektowaga, New York (United States); Karsh, Lawrence [The Urology Center of Colorado, Denver, Colorado (United States); Hudes, Richard [Chesapeake Urology Research Associates, The Prostate Center, Owings Mills, Maryland (United States); Beyer, David [Arizona Oncology Services Foundation, Phoenix, Arizona (United States); Kurtzman, Steven [Urological Surgeons of Northern California, Campbell, California (United States); Bogart, Jeffrey [The Research Foundation of State University of New York, SUNY Upstate Medical University, Syracuse, New York (United States); Hsi, R. Alex [Peninsula Cancer Center, Poulsbo, Washington (United States); Kos, Michael [Urology Nevada, Reno, Nevada (United States); Ellis, Rodney [University Hospitals Case Medical Center, Cleveland, Ohio (United States); Logsdon, Mark [Sutter Health Sacramento Sierra Region, Sutter Institute for Medical Research, Sacramento, California (United States); Zimberg, Shawn [Advanced Radiation Centers of New York, Lake Success, New York (United States); Forsythe, Kevin [Oregon Urology Institute, Springfield, Oregon (United States); Zhang, Hong [University of Rochester, Rochester, New York (United States); Soffen, Edward [CentraState Medical Center, Freehold, New Jersey (United States); Francke, Patrick [Carolina Regional Cancer Center, 21st Century Oncology, Myrtle Beach, South Carolina (United States); Mantz, Constantine [21st Century Oncology, Fort Meyers, Florida (United States); Rossi, Peter [Emory University, Atlanta, Georgia (United States); DeWeese, Theodore [The Johns Hopkins University, Baltimore, Maryland (United States); and others

    2015-08-01

    Purpose: Perirectal spacing, whereby biomaterials are placed between the prostate and rectum, shows promise in reducing rectal dose during prostate cancer radiation therapy. A prospective multicenter randomized controlled pivotal trial was performed to assess outcomes following absorbable spacer (SpaceOAR system) implantation. Methods and Materials: Overall, 222 patients with clinical stage T1 or T2 prostate cancer underwent computed tomography (CT) and magnetic resonance imaging (MRI) scans for treatment planning, followed with fiducial marker placement, and were randomized to receive spacer injection or no injection (control). Patients received postprocedure CT and MRI planning scans and underwent image guided intensity modulated radiation therapy (79.2 Gy in 1.8-Gy fractions). Spacer safety and impact on rectal irradiation, toxicity, and quality of life were assessed throughout 15 months. Results: Spacer application was rated as “easy” or “very easy” 98.7% of the time, with a 99% hydrogel placement success rate. Perirectal spaces were 12.6 ± 3.9 mm and 1.6 ± 2.0 mm in the spacer and control groups, respectively. There were no device-related adverse events, rectal perforations, serious bleeding, or infections within either group. Pre-to postspacer plans had a significant reduction in mean rectal V70 (12.4% to 3.3%, P<.0001). Overall acute rectal adverse event rates were similar between groups, with fewer spacer patients experiencing rectal pain (P=.02). A significant reduction in late (3-15 months) rectal toxicity severity in the spacer group was observed (P=.04), with a 2.0% and 7.0% late rectal toxicity incidence in the spacer and control groups, respectively. There was no late rectal toxicity greater than grade 1 in the spacer group. At 15 months 11.6% and 21.4% of spacer and control patients, respectively, experienced 10-point declines in bowel quality of life. MRI scans at 12 months verified spacer absorption. Conclusions: Spacer

  5. CFRP solutions for the innovative telescopes design

    Science.gov (United States)

    Rampini, Francesco; Marchiori, Gianpietro

    2006-02-01

    The new frontiers of the research in the astronomic field require the use of more and more advanced high-performance structures. Only an adequate technological innovation of conventional telescopes and radio-telescopes allow to obtain structures able to meet the new specification of the projects. Besides, technological innovation is founded not only on the identification of more and more sophisticated mechanisms and optical instruments, but also on the development of new materials and manufacturing processes for the entire structure that constitute an instrument such as a telescope or a radio-telescope. Among these materials, the use of the carbon fibre is highly important. This material, which is already widely used in the aerospace and automotive fields, shall join also the astronomic field for ground instruments. Thanks to the experience acquired with instruments like ALMA, the industry of composites is now able to guarantee different solutions at relatively low costs that allow the instruments of new generation to move extremely important steps in the development of scientific research. Not just materials, but also processes, through which the materials are worked and manufactured, are extremely important. The use of technologies, such as hand lay-up vacuum bag, compression moulding, table rolling of composite tubes, filament winding, poltrusion and Resin Transfer Moulding (RTM), allow to identify the ideal solution both for big dimension objects, such as backup structure, main mirror structure of quadripod legs, and relatively small objects, such as actuators, adjusters system, etc. The wide choice, concerning the use of composite materials, and their techniques of production, allow the technicians to satisfy the exigencies of astronomers be they addressed to simple control of the weights or of the stiffness of the structures, or to specific thermal behaviour of the piece itself.

  6. The large binocular telescope.

    Science.gov (United States)

    Hill, John M

    2010-06-01

    The Large Binocular Telescope (LBT) Observatory is a collaboration among institutions in Arizona, Germany, Italy, Indiana, Minnesota, Ohio, and Virginia. The telescope on Mount Graham in Southeastern Arizona uses two 8.4 m diameter primary mirrors mounted side by side. A unique feature of the LBT is that the light from the two Gregorian telescope sides can be combined to produce phased-array imaging of an extended field. This cophased imaging along with adaptive optics gives the telescope the diffraction-limited resolution of a 22.65 m aperture and a collecting area equivalent to an 11.8 m circular aperture. This paper describes the design, construction, and commissioning of this unique telescope. We report some sample astronomical results with the prime focus cameras. We comment on some of the technical challenges and solutions. The telescope uses two F/15 adaptive secondaries to correct atmospheric turbulence. The first of these adaptive mirrors has completed final system testing in Firenze, Italy, and is planned to be at the telescope by Spring 2010.

  7. Design of a telescope control system using an ARM microcontroller with embedded RTOS

    Science.gov (United States)

    Peñuela Pico, Cristian R.; Atara Montañez, Fabian A.; Cuervo, Juan C.; Gonzalez-Llorente, Jesus

    2014-08-01

    This work presents the design of a wireless control system that allows driving all the necessary instruments to control the orientation of an equatorial mounting telescope through a real time operative system (RTOS) that runs over ARM microcontroller. The control system is commanded through a user-interface which works under Android platform giving the user the option to control the tracking mode, right ascension, and declination. The system was successfully deployed and tested during a one-hour observation of the Moon. The frequency measured by the oscilloscope is 66.67 Hz which equals the sidereal speed. The telescope control systems allows the user to have a better precision when locating a star but also to cover long-duration tracking processes

  8. Design of off-axial Gregory telescope design with freeform mirror corrector

    Science.gov (United States)

    Bazhanov, Yu.; Vlakhko, V.

    2017-08-01

    In this paper a well-known approach is used for calculation of off-axis three-mirror telescope. It includes usage of conic cross-sections properties, each of the sections forming a stigmatic image. To create a compact optical system, a flat mirror aberration corrector is introduced, which is at later stage transformed into a free-form surface in order to compensate field aberrations. Similarly, one can introduce such a corrector in finalized layout for its further optimization and getting a suitable form, including the conversion of multimirrors axial optical system into decentered one. As an example, off-axial Gregory telescope embodiment is used for infrared waveband region, due to the fact that, unlike the Cassegrain telescope, it provides a real exit pupil, and usage of the mirror corrector brings several advantages. Firstly, this feature may be used to include cold stop or adaptive mirror in the exit pupil, wherein corrector is introduced into a converging beam before the focus of the first mirror. Secondly, when placing corrector in the exit pupil of the optical system it is possible to eliminate high and low order aberrations of center point, which in turn improves optical system f-number, and minimize field aberrations. As another example, off-axial Ritchey-Chretien telescope embodiment is used as a good fit for visible region systems. Analysis and calculation results of optical systems with free-form correctors with surfaces, defined by Power polynomial series are presented in this paper. Advantages of different freeform surfaces usage depends on optical system layouts specifics.

  9. Biofouling Control in Spiral-Wound Membrane Systems: Impact of Feed Spacer Modification and Biocides

    KAUST Repository

    Siddiqui, Amber

    2016-12-01

    High-quality drinking water can be produced with membrane-based filtration processes like reverse osmosis and nanofiltration. One of the major problems in these membrane systems is biofouling that reduces the membrane performance, increasing operational costs. Current biofouling control strategies such as pre-treatment, membrane modification, and chemical cleaning are not sufficient in all cases. Feed spacers are thin (0.8 mm), complex geometry meshes that separate membranes in a module. The main objective of this research was to evaluate whether feed spacer modification is a suitable strategy to control biofouling. Membrane fouling simulator studies with six feed spacers showed differences in biofouled spacer performance, concluding that (i) spacer geometry influences biofouling impact and (ii) biofouling studies are essential for evaluation of spacer biofouling impact. Computed tomography (CT) was found as a suitable technique to obtain three-dimensional (3D) measurements of spacers, enabling more representative mathematical modeling of hydraulic behavior of spacers in membrane systems. A strategy for developing, characterizing, and testing of spacers by numerical modeling, 3D printing of spacers and experimental membrane fouling simulator studies was developed. The combination of modeling and experimental testing of 3D printed spacers is a promising strategy to develop advanced spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral-wound membrane systems.

  10. Efficient thermal diode with ballistic spacer

    Science.gov (United States)

    Chen, Shunda; Donadio, Davide; Benenti, Giuliano; Casati, Giulio

    2018-03-01

    Thermal rectification is of importance not only for fundamental physics, but also for potential applications in thermal manipulations and thermal management. However, thermal rectification effect usually decays rapidly with system size. Here, we show that a mass-graded system, with two diffusive leads separated by a ballistic spacer, can exhibit large thermal rectification effect, with the rectification factor independent of system size. The underlying mechanism is explained in terms of the effective size-independent thermal gradient and the match or mismatch of the phonon bands. We also show the robustness of the thermal diode upon variation of the model's parameters. Our finding suggests a promising way for designing realistic efficient thermal diodes.

  11. Ertapenem Articulating Spacer for the Treatment of Polymicrobial Total Knee Arthroplasty Infection

    Directory of Open Access Journals (Sweden)

    Dragan Radoicic

    2016-01-01

    Full Text Available Introduction. Periprosthetic joint infections (PJIs are the primary cause of early failure of the total knee arthroplasty (TKA. Polymicrobial TKA infections are often associated with a higher risk of treatment failure. The aim of the study was to assess the efficacy of ertapenem loaded spacers in the treatment of polymicrobial PJI. Methods. There were 18 patients enrolled; nine patients with polymicrobial PJI treated with ertapenem loaded articulating spacers were compared to the group of 9 patients treated with vancomycin or ceftazidime loaded spacers. Results. Successful reimplantation with revision implants was possible in 66.67%. Ertapenem spacers were used in 6 cases in primary two-stage procedure and in 3 cases in secondary spacer exchange. Successful infection eradication was achieved in all cases; final reimplantation with revision knee arthroplasty implants was possible in 6 cases. Conclusion. Ertapenem can be successfully used as antimicrobial addition to the cement spacers in two-stage revision treatment of polymicrobial PJIs. However, this type of spacer may also be useful in the treatment of infections caused by monomicrobial extended spectrum beta-lactamases producing gram-negative bacilli. Further clinical studies are required to evaluate the efficacy and safety of ertapenem spacers in the treatment of polymicrobial and monomicrobial PJIs.

  12. Design and control of one precise tracking simulation bed for Chinese 20/30 meter optic/infrared telescope

    Science.gov (United States)

    Ren, Changzhi; Li, Xiaoyan; Song, Xiaoli; Niu, Yong; Li, Aihua; Zhang, Zhenchao

    2012-09-01

    Direct drive technology is the key to solute future 30-m and larger telescope motion system to guarantee a very high tracking accuracy, in spite of unbalanced and sudden loads such as wind gusts and in spite of a structure that, because of its size, can not be infinitely stiff. However, this requires the design and realization of unusually large torque motor that the torque slew rate must be extremely steep too. A conventional torque motor design appears inadequate. This paper explores one redundant unit permanent magnet synchronous motor and its simulation bed for 30-m class telescope. Because its drive system is one high integrated electromechanical system, one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. This paper discusses the design and control of the precise tracking simulation bed in detail.

  13. Experimental investigation of turbulent flow through spacer grids in fuel rod bundles

    International Nuclear Information System (INIS)

    Caraghiaur, Diana; Anglart, Henryk; Frid, Wiktor

    2009-01-01

    This paper contains experimental data of pressure, velocity and turbulence intensity in a 24-rod fuel bundle with spacer grids. Detailed pressure measurements inside the spacer grid have been obtained by use of a sliding pressure-sensing rod. Laser Doppler Velocimetry technique was used to measure the local axial velocity and its fluctuating component upstream and downstream of the spacer grid in sub-channels with different blockage ratios. The measurements show a changing pattern in function of radial position in the cross-section of the fuel bundle. For sub-channels close to the box wall, the turbulence intensity suddenly increases just downstream of the spacer and then gradually decays. In inner sub-channels, however, the turbulence intensity downstream of the spacer decreases below its upstream value and then gradually increases until it reaches the maximum value at approximately two spacer heights. The present study reveals that spacer effects, such as local pressure distribution and turbulence intensity enhancement, not only depend exclusively on the local geometry details, but also on the location in the cross-section of the rod bundle.

  14. Experimental investigation of turbulent flow through spacer grids in fuel rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Caraghiaur, Diana [Royal Institute of Technology, Division of Nuclear Reactor Technology, Department of Physics, School of Engineering Sciences, AlbaNova University Center, SE-106 91 Stockholm (Sweden)], E-mail: dianac@kth.se; Anglart, Henryk [Royal Institute of Technology, Division of Nuclear Reactor Technology, Department of Physics, School of Engineering Sciences, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Frid, Wiktor [Swedish Radiation Safety Authority, Reactor Technology and Structural Integrity, SE-171 16 Stockholm (Sweden)

    2009-10-15

    This paper contains experimental data of pressure, velocity and turbulence intensity in a 24-rod fuel bundle with spacer grids. Detailed pressure measurements inside the spacer grid have been obtained by use of a sliding pressure-sensing rod. Laser Doppler Velocimetry technique was used to measure the local axial velocity and its fluctuating component upstream and downstream of the spacer grid in sub-channels with different blockage ratios. The measurements show a changing pattern in function of radial position in the cross-section of the fuel bundle. For sub-channels close to the box wall, the turbulence intensity suddenly increases just downstream of the spacer and then gradually decays. In inner sub-channels, however, the turbulence intensity downstream of the spacer decreases below its upstream value and then gradually increases until it reaches the maximum value at approximately two spacer heights. The present study reveals that spacer effects, such as local pressure distribution and turbulence intensity enhancement, not only depend exclusively on the local geometry details, but also on the location in the cross-section of the rod bundle.

  15. Measurement of grid spacer's enhanced droplet cooling under reflood condition in a PWR by LDA

    International Nuclear Information System (INIS)

    Lee, S.L.; Sheen, H.J.; Cho, S.K.; Issapour, I.; Hua, S.Q.

    1984-01-01

    Reported is an experiment designed for the measurements of grid spacer's enhanced droplet cooling under reflood condition at elevated temperatures in a steam environment. The flow channel consists of a simulated 1.60m-long pressurized water reactor (PWR) fuel rod bundle of 2 x 2 electrically heated rods. Embedded thermocouples are used to measure the rod cladding temperature at various axial levels and an unshielded Chromel-Alumel thermocouple sheathed by a small Inconel tube is traversed in the center of the subchannel to measure the temperatures of the water and steam coolant phases at various levels. The droplet dynamics across the grid spacer is directly obtained by a special laser-Doppler anemometry technique for the in situ simultaneous measurement of velocity and size of droplets through two observation windows on the test channel, one immediately before and one immediately after the grid spacer. Some results are presented and analyzed

  16. Far Sidelobes Measurement of the Atacama Cosmology Telescope

    Science.gov (United States)

    Duenner, Rolando; Gallardo, Patricio; Wollack, Ed; Henriquez, Fernando; Jerez-Hanckes, Carlos

    2012-01-01

    The Atacama Cosmology Telescope (ACT) is a 6m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145GHz, 220 GHz and 280 GHz. Its off-axis Gregorian design is intended to minimize and control the off-axis sidelobe response, which is critical for scientific purposes. The expected sidelobe level for this kind of design is less than -50 dB and can be challenging to measure. Here we present a measurement of the 145 GHz far sidelobes of ACT done on the near-field of the telescope. We used a 1 mW microwave source placed 13 meters away from the telescope and a chopper wheel to produce a varying signal that could be detected by the camera for different orientations of the telescope. The source feed was designed to produce a wide beam profile. Given that the coupling is expected to be dominated by diffraction over the telescope shielding structure, when combined with a measurements of the main beam far field response, these measurement can be used to validate elements of optical design and constrain the level of spurious coupling at large angles. Our results show that the diffractive coupling beyond the ground screen is consistently below -75 dB, satisfying the design expectations.

  17. Grid spacers for use in a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Kuwako, Akira.

    1987-01-01

    Purpose: To obtain spacers capable of reducing the pressure loss by enlarging coolant flow channels when the fuel temperature is high, while capable of reliably maintaining the fuel pins with no vibrations when the fuel temperature is low. Constitution: This invention concerns grid spacers for constituting fuel assemblies for use in water cooled reactors. Memory shape alloys are disposed at least a portion of a spacer element that takes such a shape as urging the pin when the fuel temperature is low, while enlarging the coolant flow channel to reduce the pressure loss when the fuel temperature is high. (Ikeda, J.)

  18. CMPO-calix[4]arenes with spacer containing intramolecular hydrogen bonding: Effect of local rigidification on solvent extraction toward f-block elements

    International Nuclear Information System (INIS)

    Chu, Hongzhu; He, Lutao; Jiang, Qian; Fang, Yuyu; Jia, Yiming; Yuan, Xiangyang; Zou, Shuliang; Li, Xianghui; Feng, Wen; Yang, Yuanyou; Liu, Ning; Luo, Shunzhong; Yang, Yanqiu; Yang, Liang; Yuan, Lihua

    2014-01-01

    Highlights: • Three CMPO-calix[4]arenes with spacer containing intramolecular hydrogen bonds were designed and synthesized. • The influence of local rigidification caused by intramolecular hydrogen bonds upon extraction of f-elements was investigated. • Selective extraction is realized via tuning local chelating surroundings by aid of intramolecular hydrogen bonds. -- Abstract: To understand intramolecular hydrogen bonding in effecting liquid–liquid extraction behavior of CMPO-calixarenes, three CMPO-modified calix[4]arenes (CMPO-CA) 5a–5c with hydrogen-bonded spacer were designed and synthesized. The impact of spacer rotation that is hindered by introduction of intramolecular hydrogen bonding upon extraction of La 3+ , Eu 3+ , Yb 3+ , Th 4+ , and UO 2 2+ has been examined. The results show that 5b and 5c containing only one hydrogen bond with a less hindered rotation spacer extract La 3+ more efficiently than 5a containing two hydrogen bonds with a more hindered rotation spacer, demonstrating the importance of local rigidification of spacer in the design of extractants in influencing the coordination environment. The large difference in extractability between La 3+ and Yb 3+ (or Eu 3+ ) by 5b (or 5c), and the small difference by 5a, suggests intramolecular hydrogen bonding do exert pronounced influence upon selective extraction of light and heavy lanthanides. Log–log plot analysis indicates a 1:1, 2:1 and 1:1 stoichiometry (ligand/metal) for the extracted complex formed between 5b and La 3+ , Th 4+ , UO 2 2+ , respectively. Additionally, their corresponding acyclic analogs 7a–7c exhibit negligible extraction toward these metal ions. These results reveal the possibility of selective extraction via tuning local chelating surroundings of CMPO-CA by aid of intramolecular hydrogen bonding

  19. The influence of the preliminary garter spring spacer simulator clamping force in the pressure tube spacer -calandria tube hook-up simulator aging behaviour

    International Nuclear Information System (INIS)

    Gyongyosi, T.; Deloreanu, G.; Puiu, D.; Corbescu, B.; Anghel, N.; Dinu, E.

    2016-01-01

    The garter spring spacer is a specially constructed torsion spring used to fit-out the CANDU 6 fuel channel. The pressure tube ageing decreases the gap to the calandria tube. Continuous gap decrease directly affects the garter spring spacers behavior during fuel channel assembly operation. The preliminary clamping force value of the garter spring spacer assembly is important for its ageing behavior. This paper briefly describes the experimental technological facilities used for conducted the experiments and highlights some of the important moments during an experiment carried out in laboratory conditions, without using pressurized boiled water and irradiation working conditions. The results analysis and some conclusions are outlined at the end, pointing out that a garter spring spacer preliminary clamping force increase reduces the vibration response signal amplitude, and does not lead to its relaxation. The paper is dedicated to specialists working in research and technological engineering. (authors)

  20. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    Science.gov (United States)

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

  1. The DAG project, a 4m class telescope: the telescope main structure performances

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Ghedin, L.; Marcuzzi, E.; Manfrin, C.; Battistel, C.; Pirnay, O.; Flebus, Carlo; Yeşilyaprak, C.; Keskin, O.; Yerli, S.

    2016-07-01

    Dogu Anatolu Gözlemevi (DAG-Eastern Anatolia Observatory) Project is a 4m class optical, near-infrared Telescope and suitable enclosure which will be located at an altitude of 3.170m in Erzurum, Turkey. The DAG telescope is a project fully funded by Turkish Ministry of Development and the Atatürk University of Astrophysics Research Telescope - ATASAM. The Project is being developed by the Belgian company AMOS (project leader), which is also the optics supplier and EIE GROUP, the Telescope Main Structure supplier and responsible for the final site integration. The design of the Telescope Main Structure fits in the EIE TBO Program which aims at developing a Dome/Telescope systemic optimization process for both performances and competitive costs based on previous project commitments like NTT, VLT, VST and ASTRI. The optical Configuration of the DAG Telescope is a Ritchey-Chretien with two Nasmyth foci and a 4m primary thin mirror controlled in shape and position by an Active Optic System. The main characteristics of the Telescope Main Structure are an Altitude-Azimuth light and rigid structure system with Direct Drive Systems for both axis, AZ Hydrostatic Bearing System and Altitude standard bearing system; both axes are equipped with Tape Encoder System. An innovative Control System characterizes the telescope performance.

  2. Characterization of feed channel spacer performance using geometries obtained by X-ray computed tomography

    KAUST Repository

    Haaksman, Viktor A.; Siddiqui, Amber; Schellenberg, Carsten; Kidwell, James; Vrouwenvelder, Johannes S.; Picioreanu, Cristian

    2016-01-01

    design from X-ray computed tomography (CT) scans. The method revealed that the filaments of industrial spacers have a highly variable cross-section size and shape, which impact the flow characteristics in the feed channel. The pressure drop and friction

  3. Comparison of velocity and temperature fields for two types of spacers in an annular channel

    Directory of Open Access Journals (Sweden)

    Lávička David

    2012-04-01

    Full Text Available The paper deals with measurement of flow field using a modern laser method (PIV in an annular channel of very small dimension - a fuel cell model. The velocity field was measured in several positions and plains around the spacer. The measurement was extended also to record temperatures by thermocouples soldered into stainless-steel tube wall. The measurement was focused on cooling process of the preheated fuel cell tube model, where the tube was very slowly flooded with water. Main result of the paper is comparison of two spacer's designs with respect to measured velocity and temperature fields.

  4. Preliminary analysis of the effect of the grid spacers on the reflood heat transfer

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Murao, Yoshio

    1982-02-01

    The results are described about the preliminary analysis of the effect of the grid spacers on the heat transfer during reflood phase of a PWR LOCA. Experiments at JAERI and other facilities showed substantial heat transfer enhancement near the grid spacers. The heat transfer enhancement decreases with the distance from the grid spacers in the downstream region of the grid spacers. Several mechanisms are discussed about the heat transfer enhancement near the grid spacers. A model of a coalescence of the water droplets downstream the spacers is proposed based on the review of the experimental data. The heat transfer correlation for the saturated film boiling is utilized to quantify the heat transfer augmentation by the grid spacers. (author)

  5. OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS

    International Nuclear Information System (INIS)

    Swetz, D. S.; Devlin, M. J.; Dicker, S. R.; Ade, P. A. R.; Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M.; Appel, J. W.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hincks, A. D.; Jarosik, N.; Chervenak, J.; Doriese, W. B.; Hilton, G. C.; Irwin, K. D.; Duenner, R.

    2011-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  6. Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems

    Science.gov (United States)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Battistelli, E. S.; Burger, B.; Chervenak, J.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Hincks, A. D.; Irwin, K. D.; Jarosik, N.; Kaul, M.; Klein, J.; Lau, J. M.; Limon, M.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Thornton, R.; Tucker, C.; Wollack, E.; Zhao, Y.

    2011-06-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' × 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  7. Spacer engineered Trigate SOI TFET: An investigation towards harsh temperature environment applications

    Science.gov (United States)

    Mallikarjunarao; Ranjan, Rajeev; Pradhan, K. P.; Artola, L.; Sahu, P. K.

    2016-09-01

    In this paper, a novel N-channel Tunnel Field Effect Transistor (TFET) i.e., Trigate Silicon-ON-Insulator (SOI) N-TFET with high-k spacer is proposed for better Sub-threshold swing (SS) and OFF-state current (IOFF) by keeping in mind the sensitivity towards temperature. The proposed model can achieve a Sub-threshold swing less than 35 mV/decade at various temperatures, which is desirable for designing low power CTFET for digital circuit applications. In N-TFET source doping has a significant effect on the ON-state current (ION) level; therefore more electrons will tunnel from source to channel region. High-k Spacer i.e., HfO2 is used to enhance the device performance and also it avoids overlapping of transistors in an integrated circuits (IC's). We have designed a reliable device by performing the temperature analysis on Transfer characteristics, Drain characteristics and also on various performance metrics like ON-state current (ION), OFF-state current (IOFF), ION/IOFF, Trans-conductance (gm), Trans-conductance Generation Factor (TGF), Sub-threshold Swing (SS) to observe the applications towards harsh temperature environment.

  8. BWR fuel assembly having fuel rod spacers axially positioned by exterior springs

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1988-01-01

    In a fuel assembly having spaced fuel rods, an outer hollow tubular flow channel surrounding the fuel rods so as to direct flow of coolant/moderator fluid there-along, and at least one spacer being disposed along the channel and about the fuel rods so as to maintain them in side-by-side spaced relationship, an arrangement for disposing the spacer in a desired axial position along the fuel rods is described comprising: yieldably resilient springs disposed between an interior side of the outer channel and an exterior side of the spacer. The springs have an inherent spring bias directed away from the exterior sides of the spacers and toward the interior side of the channel such that by contact with the channel and spacer the springs assume states in which they are deflected away from the channel interior side so as to exert sufficient compressive contacting force thereon to maintain the spacer substantially stationary in the desired axial position along the fuel rods

  9. Design of an x-ray telescope optics for XEUS

    Science.gov (United States)

    Graue, Roland; Kampf, Dirk; Wallace, Kotska; Lumb, David; Bavdaz, Marcos; Freyberg, Michael

    2017-11-01

    The X-ray telescope concept for XEUS is based on an innovative high performance and light weight Silicon Pore Optics technology. The XEUS telescope is segmented into 16 radial, thermostable petals providing the rigid optical bench structure of the stand alone XRay High Precision Tandem Optics. A fully representative Form Fit Function (FFF) Model of one petal is currently under development to demonstrate the outstanding lightweight telescope capabilities with high optically effective area. Starting from the envisaged system performance the related tolerance budgets were derived. These petals are made from ceramics, i.e. CeSiC. The structural and thermal performance of the petal shall be reported. The stepwise alignment and integration procedure on petal level shall be described. The functional performance and environmental test verification plan of the Form Fit Function Model and the test set ups are described in this paper. In parallel to the running development activities the programmatic and technical issues wrt. the FM telescope MAIT with currently 1488 Tandem Optics are under investigation. Remote controlled robot supported assembly, simultaneous active alignment and verification testing and decentralised time effective integration procedures shall be illustrated.

  10. The Gemini 8-Meter Telescopes Project

    Science.gov (United States)

    Boroson, Todd A.

    1995-05-01

    The Gemini 8-Meter Telescopes Project is an international partnership to build and operate two 8-meter telescopes, one on Mauna Kea, Hawaii, and one on Cerro Pachon, Chile. The telescopes will be international facilities, open to the scientific communities of the six member countries, the United States (50%), the United Kingdom (25%), Canada (15%), Chile (5%), Argentina (2.5%), and Brazil (2.5%). The telescopes are designed to exploit the best atmospheric conditions at these excellent sites. Near diffraction limited performance will be delivered at 2.2 microns and longward, with minimal degradation of the best seeing conditions at shorter wavelengths. The telescopes and facilities are designed to achieve emissivity opportunity. First light for the Mauna Kea telescope is expected in late 1998, and for the Cerro Pachon telescope in mid-2000. This talk will report on construction progress, the instrumental capabilities, and operations strategies being considered. The Gemini 8-meter Telescopes Project is managed by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation which serves as executive agency for the Gemini partner countries. U.S. participation in the project is through the U.S. Gemini Program, a division of the National Optical Astronomy Observatories. NOAO is operated by AURA, Inc. under cooperative agreement with the National Science Foundation.

  11. Numerical analysis of the spacer grids' compression strength

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N., E-mail: carlosschettino@inb.gov.br, E-mail: jpg@metal.eeimvr.uff.br [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Programa de Engenharia Metalurgica

    2013-07-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  12. Impact of spacer thickness on biofouling in forward osmosis

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-06-01

    Forward osmosis (FO) indirect desalination systems integrate wastewater recovery with seawater desalination. Niche applications for FO systems have been reported recently, due to the demonstrated advantages compared to conventional high-pressure membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Among them, wastewater recovery has been identified to be particularly suitable for practical applications. However, biofouling in FO membranes has rarely been studied in applications involving wastewater effluents. Feed spacers separating the membrane sheets in cross-flow systems play an important role in biofilm formation. The objective of this study was to determine the influence of feed spacer thickness (28, 31 and 46mil) on biofouling development and membrane performance in a FO system, using identical cross-flow cells in parallel studies. Flux development, biomass accumulation, fouling localization and composition were determined and analyzed. For all spacer thicknesses, operated at the same feed flow and the same run time, the same amount of biomass was found, while the flux reduction decreased with thicker spacers. These observations are in good agreement with biofouling studies for RO systems, considering the key differences between FO and RO. Our findings contradict previous cross-flow studies on particulate/colloidal fouling, where higher cross-flow velocities improved system performance. Thicker spacers reduced the impact of biofouling on FO membrane flux. © 2014 Elsevier Ltd.

  13. Impact of spacer thickness on biofouling in forward osmosis.

    Science.gov (United States)

    Valladares Linares, R; Bucs, Sz S; Li, Z; AbuGhdeeb, M; Amy, G; Vrouwenvelder, J S

    2014-06-15

    Forward osmosis (FO) indirect desalination systems integrate wastewater recovery with seawater desalination. Niche applications for FO systems have been reported recently, due to the demonstrated advantages compared to conventional high-pressure membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Among them, wastewater recovery has been identified to be particularly suitable for practical applications. However, biofouling in FO membranes has rarely been studied in applications involving wastewater effluents. Feed spacers separating the membrane sheets in cross-flow systems play an important role in biofilm formation. The objective of this study was to determine the influence of feed spacer thickness (28, 31 and 46 mil) on biofouling development and membrane performance in a FO system, using identical cross-flow cells in parallel studies. Flux development, biomass accumulation, fouling localization and composition were determined and analyzed. For all spacer thicknesses, operated at the same feed flow and the same run time, the same amount of biomass was found, while the flux reduction decreased with thicker spacers. These observations are in good agreement with biofouling studies for RO systems, considering the key differences between FO and RO. Our findings contradict previous cross-flow studies on particulate/colloidal fouling, where higher cross-flow velocities improved system performance. Thicker spacers reduced the impact of biofouling on FO membrane flux. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Impact of spacer thickness on biofouling in forward osmosis

    KAUST Repository

    Valladares Linares, Rodrigo; Bucs, Szilard; Li, Z.; AbuGhdeeb, M.; Amy, Gary L.; Vrouwenvelder, Johannes S.

    2014-01-01

    Forward osmosis (FO) indirect desalination systems integrate wastewater recovery with seawater desalination. Niche applications for FO systems have been reported recently, due to the demonstrated advantages compared to conventional high-pressure membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Among them, wastewater recovery has been identified to be particularly suitable for practical applications. However, biofouling in FO membranes has rarely been studied in applications involving wastewater effluents. Feed spacers separating the membrane sheets in cross-flow systems play an important role in biofilm formation. The objective of this study was to determine the influence of feed spacer thickness (28, 31 and 46mil) on biofouling development and membrane performance in a FO system, using identical cross-flow cells in parallel studies. Flux development, biomass accumulation, fouling localization and composition were determined and analyzed. For all spacer thicknesses, operated at the same feed flow and the same run time, the same amount of biomass was found, while the flux reduction decreased with thicker spacers. These observations are in good agreement with biofouling studies for RO systems, considering the key differences between FO and RO. Our findings contradict previous cross-flow studies on particulate/colloidal fouling, where higher cross-flow velocities improved system performance. Thicker spacers reduced the impact of biofouling on FO membrane flux. © 2014 Elsevier Ltd.

  15. Orbit and geometry constraints on the design and operation of a long-life SIRTF mission. [Shuttle Infrared Telescope Facility

    Science.gov (United States)

    Jackson, R. W.

    1984-01-01

    For a long-life SIRTF mission, the ability of the telescope to observe targets everywhere in the sky is an important requirement. For low-inclination orbits, a telescope aperture shade must be designed for Sun and Earth Limb avoidance angles of 50 deg to 60 deg to prevent unwanted radiation from entering the telescope. The minimum orbit inclination depends on the Earth Limb avoidance angle. About 30 percent of the sky will be prohibited for observations during any day in orbit, with about 100 days in orbit required to observe the entire sky.

  16. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    NARCIS (Netherlands)

    de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else

    2016-01-01

    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics

  17. MO-AB-BRA-02: Modeling Nanoparticle-Eluting Spacer Degradation During Brachytherapy Application with in Situ Dose-Painting

    Energy Technology Data Exchange (ETDEWEB)

    Boateng, F [University of Massachusetts Lowell, Lowell, Massachusetts (United States); Ngwa, W [University of Massachusetts Lowell, Lowell, Massachusetts (United States); Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Brachytherapy application with in situ dose-painting using gold nanoparticles (GNP) released from GNP-loaded brachytherapy spacers has been proposed as an innovative approach to increase therapeutic efficacy during brachytherapy. This work investigates the dosimetric impact of slow versus burst release of GNP from next generation biodegradable spacers. Methods: Mathematical models were developed based on experimental data to study the release of GNP from a spacer designed with FDA approved poly(lactic-co-glycolic acid) (PLGA) polymer. The diffusion controlled released process and PLGA polymer degradation kinetics was incorporated in the calculations for the first time. An in vivo determined diffusion coefficient was used for determining the concentration profiles and corresponding dose enhancement based on initial GNP-loading concentrations of 7 mg/g. Results: The results showed that there is significant delay before the concentration profile of GNP diffusion in the tumor is similar to that when burst release is assumed as in previous studies. For example, in the case of burst release after spacer administration, it took up to 25 days for all the GNP to be released from the spacer using diffusion controlled release process only. However, it took up to 45 days when a combined model for both diffusion and polymer degradation processes was used. Based on the tumor concentration profiles, a significant dose enhancement factor (DEF >20%), could be attained at a tumor distances of 5 mm from a spacer loaded with 10 nm GNP sizes. Conclusion: The results highlight the need to take the slow release of GNP from spacers and factors such as biodegradation of polymers into account in research development of GNP-eluting spacers for brachytherapy applications with in-situ dose-painting using gold nanoparticles. The findings suggest that I-125 may be the more appropriate for such applications given the relatively longer half-live compared to other radioisotopes like Pd-103

  18. Where size does matter: foldable telescope design for microsat application

    Science.gov (United States)

    Segert, Tom; Danziger, Björn; Lieder, Matthias

    2017-11-01

    The DOBSON SPACE TELESCOPE Project (DST) at the Technical University of Berlin (TUB) believes that micro satellites can be a challenging competitor in the high resolution remote sensing market. Using a micro satellite as basis for a remote sensing platform will dramatically reduce the cost for the end users thereby initiating the predicted remote sensing boom. The Challenging task is that an optic required for a GSD smaller than 1m is much bigger than the given room for secondary payload. In order to break the volume limits of hitchhiker payloads the DST team develops an optical telescope with deployable structures. The core piece of DST is a 20 inch modified Cassegrain optic. Stored during ascend the instrument fits in a box measuring 60 x 60 x 30cm (including telescope and optical plane assembly). After the satellite was released into free space the telescope unfolds and collimates automatically.

  19. A Study on Cell Size of Irradiated Spacer Grid for PWR Fuel

    International Nuclear Information System (INIS)

    Jin, Y. G.; Kim, G. S.; Ryu, W. S. and others

    2014-01-01

    The spacer grids supporting the fuel rods absorb vibration impacts due to the reactor coolant flow, and grid spring force decreases under irradiation. This reduction of contact force might cause grid-to-rod fretting wear. The fretting failure of the fuel rod is one of the recent significant issues in the nuclear industry from an economical as well as a safety concern. Thus, it is important to understand the characteristics of cell spring behavior and the change in size of grid cells for an irradiated spacer grid. In the present study, the dimensional measurement of a spacer grid was conducted to investigate the cell size of an irradiated spacer grid in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. To evaluate the fretting wear performance of an irradiated spacer grid, hot cell tests were carried out at IMEF of KAERI. Hot cell examinations include dimensional measurements for the irradiated spacer grid. The change of cell sizes was dependent on the direction of the spacer grids, leading to significant gap variations. It was found that the change in size of the cell springs due to irradiation-induced stress relaxation and creep during the fuel residency in the reactor core affect the contact behavior between the fuel rod and the cell spring

  20. Heterogeneous diversity of spacers within CRISPR

    Science.gov (United States)

    Deem, Michael; He, Jiankui

    2011-03-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial and archaeal DNA have recently been shown to be a new type of anti-viral immune system in these organisms. We here study the diversity of spacers in CRISPR under selective pressure. We propose a population dynamics model that explains the biological observation that the leader-proximal end of CRISPR is more diversified and the leader-distal end of CRISPR is more conserved. This result is shown to be in agreement with recent experiments. Our results show that the CRISPR spacer structure is influenced by and provides a record of the viral challenges that bacteria face. 1) J. He and M. W. Deem, Phys. Rev. Lett. 105 (2010) 128102

  1. LSST telescope and site status

    Science.gov (United States)

    Gressler, William J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) Project1 received its construction authorization from the National Science Foundation in August 2014. The Telescope and Site (T and S) group has made considerable progress towards completion in subsystems required to support the scope of the LSST science mission. The LSST goal is to conduct a wide, fast, deep survey via a 3-mirror wide field of view optical design, a 3.2-Gpixel camera, and an automated data processing system. The summit facility is currently under construction on Cerro Pachón in Chile, with major vendor subsystem deliveries and integration planned over the next several years. This paper summarizes the status of the activities of the T and S group, tasked with design, analysis, and construction of the summit and base facilities and infrastructure necessary to control the survey, capture the light, and calibrate the data. All major telescope work package procurements have been awarded to vendors and are in varying stages of design and fabrication maturity and completion. The unique M1M3 primary/tertiary mirror polishing effort is completed and the mirror now resides in storage waiting future testing. Significant progress has been achieved on all the major telescope subsystems including the summit facility, telescope mount assembly, dome, hexapod and rotator systems, coating plant, base facility, and the calibration telescope. In parallel, in-house efforts including the software needed to control the observatory such as the scheduler and the active optics control, have also seen substantial advancement. The progress and status of these subsystems and future LSST plans during this construction phase are presented.

  2. ATLAS barrel hadron tile calorimeter: spacers plates mass production

    International Nuclear Information System (INIS)

    Artikov, A.M.; Budagov, Yu.A.; Khubua, J.

    1999-01-01

    In this article we expose the main problems of the mass production of the so-called 'spacer plates' for the ATLAS Barrel Hadron Tile Calorimeter. We describe all practical solutions of these problems. Particularly we present the measurement procedures and calculation schemes we used for the spacers dimensions determination. The results of the calculations are presented

  3. On the impact analysis of a PWR spacer grid

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, S. H.

    2012-01-01

    A spacer grid, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the most important structural components in a PWR fuel assembly. From a structural point of view, the spacer grid is required to have sufficient crush strength under lateral loads so that nuclear fuel rods are maintained in a cool able geometry, and that control rods can be inserted. The capacity of a spacer grid to resist lateral loads is usually characterized in terms of its crush strength, and it was reported that the lateral crush strength of the spacer grid is closely related with welding quality of the spacer grid. Microstructures in the weld zone, including a heat affected zone (HAZ), are different from that in a parent material. Consequently, the mechanical properties in the weld zone are different from those in the parent material to some extent. When a welded structure is loaded, the mechanical behavior of the welded structure might be different from the case of a structure with homogeneous mechanical properties. Nonetheless, mechanical properties in the welded structure have been neglected in many structural analyses of the spacer grid due to a lack of mechanical properties in the weld zone. When the weld zone is very narrow and the interfaces are not clear, it is difficult to take tensile test specimens in the weld zone. The reason for this is that the mechanical properties in the parent material are usually used in the structural analyses in the welded structure. As an aside, it has been recently determined that the ball indentation technique has the potential to be an excellent substitute for a standard tensile test, particularly in the case of small specimens or property gradient materials such as welds. In this study, to investigate the effect on the mechanical behavior of the spacer grid when using weld mechanical properties, strength analyses considering the weld mechanical properties recently obtained

  4. Systems engineering implementation in the preliminary design phase of the Giant Magellan Telescope

    Science.gov (United States)

    Maiten, J.; Johns, M.; Trancho, G.; Sawyer, D.; Mady, P.

    2012-09-01

    Like many telescope projects today, the 24.5-meter Giant Magellan Telescope (GMT) is truly a complex system. The primary and secondary mirrors of the GMT are segmented and actuated to support two operating modes: natural seeing and adaptive optics. GMT is a general-purpose telescope supporting multiple science instruments operated in those modes. GMT is a large, diverse collaboration and development includes geographically distributed teams. The need to implement good systems engineering processes for managing the development of systems like GMT becomes imperative. The management of the requirements flow down from the science requirements to the component level requirements is an inherently difficult task in itself. The interfaces must also be negotiated so that the interactions between subsystems and assemblies are well defined and controlled. This paper will provide an overview of the systems engineering processes and tools implemented for the GMT project during the preliminary design phase. This will include requirements management, documentation and configuration control, interface development and technical risk management. Because of the complexity of the GMT system and the distributed team, using web-accessible tools for collaboration is vital. To accomplish this GMTO has selected three tools: Cognition Cockpit, Xerox Docushare, and Solidworks Enterprise Product Data Management (EPDM). Key to this is the use of Cockpit for managing and documenting the product tree, architecture, error budget, requirements, interfaces, and risks. Additionally, drawing management is accomplished using an EPDM vault. Docushare, a documentation and configuration management tool is used to manage workflow of documents and drawings for the GMT project. These tools electronically facilitate collaboration in real time, enabling the GMT team to track, trace and report on key project metrics and design parameters.

  5. Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control

    KAUST Repository

    Araújo, Paula A.

    2012-06-01

    The influence of polydopamine- and polydopamine-. graft-poly(ethylene glycol)-coated feed spacers and membranes, copper-coated feed spacers, and commercially-available biostatic feed spacers on biofouling has been studied in membrane fouling simulators. Feed spacers and membranes applied in practical membrane filtration systems were used; biofouling development was monitored by feed channel pressure drop increase and biomass accumulation. Polydopamine and polydopamine-. g-PEG are hydrophilic surface modification agents expected to resist protein and bacterial adhesion, while copper feed spacer coatings and biocides infused in feed spacers are expected to restrict biological growth. Our studies showed that polydopamine and polydopamine-. g-PEG coatings on feed spacers and membranes, copper coatings on feed spacers, and a commercial biostatic feed spacer did not have a significant impact on feed channel pressure drop increase and biofilm accumulation as measured by ATP and TOC content. The studied spacer and membrane modifications were not effective for biofouling control; it is doubtful that feed spacer and membrane modification, in general, may be effective for biofouling control regardless of the type of applied coating. © 2012 Elsevier B.V.

  6. Effects of grid spacer with mixing vane on entrainments and depositions in two-phase annular flows

    Directory of Open Access Journals (Sweden)

    Akimaro Kawahara

    2015-06-01

    Full Text Available The effects of mixing vanes (MVs attached to a grid spacer on the characteristics of air–water annular flows were experimentally investigated. To know the effects, a grid spacer with or without MV was inserted in a vertical circular pipe of 16-mm internal diameter. For three cases (i.e., no spacer, spacer without MV, and spacer with MV, the liquid film thickness, liquid entrainment fraction, and deposition rate were measured by the constant current method, single liquid film extraction method, and double liquid film extraction method, respectively. The MVs significantly promote the re-deposition of liquid droplets in the gas core flow into the liquid film on the channel walls. The deposition mass transfer coefficient is three times higher for the spacer with MV than for the spacer without MV, even for cases 0.3-m downstream from the spacer. The liquid film thickness becomes thicker upstream and downstream for the spacer with MV, compared with the thickness for the spacer without MV and for the case with no spacer.

  7. The effect of spacer grid critical component on pressure drop under both single and two phase flow conditions

    International Nuclear Information System (INIS)

    Han, B.; Yang, B.W.; Zhang, H.; Mao, H.; Zha, Y.

    2016-01-01

    As pressure drop is one of the most critical thermal hydraulic parameters for spacer grids the accurate estimation of it is the key to the design and development of spacer grids. Most of the available correlations for pressure drop do not contain any real geometrical parameters that characterize the grid effect. The main functions for spacer grid are structural support and flow mixing. Once the boundary sublayer near the rod bundle is disturbed, the liquid forms swirls or flow separation that affect pressure drop. However, under two phase flow conditions, due to the existence of steam bubble, the complexity for spacer grid are multiplied and pressure drop calculation becomes much more challenging. The influence of the dimple location, distance of mixing vane to the nearest strip, and the effect of inter-subchannel mixing among neighboring subchannels on pressure drop and downstream flow fields are analyzed in this paper. Based on this study, more detailed space grid geometry parameters are recommended for adding into the correlation when predicting pressure drop.

  8. A simulation study on the variation of virtual NMR signals by winding, bobbin, spacer error of HTS magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Seong; Lee, Woo Seung; Kim, Jin Sub; Song, Seung Hyun; Nam, Seok Ho; Jeon, Hae Ryong; Beak, Geon Woo; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)

    2016-09-15

    Recently, production technique and property of the High-Temperature Superconductor (HTS) tape have been improved. Thus, the study on applying an HTS magnet to the high magnetic field application is rapidly increased. A Nuclear Magnetic Resonance (NMR) spectrometer requires high magnitude and homogeneous of central magnetic field. However, the HTS magnet has fabrication errors because shape of HTS is tape and HTS magnet is manufactured by winding HTS tape to the bobbin. The fabrication errors are winding error, bobbin diameter error, spacer thickness error and so on. The winding error occurs when HTS tape is departed from the arranged position on the bobbin. The bobbin diameter and spacer thickness error occur since the diameter of bobbin and spacer are inaccurate. These errors lead magnitude and homogeneity of central magnetic field to be different from its ideal design. The purpose of this paper is to investigate the effect of winding error, bobbin diameter error and spacer thickness error on the central field and field homogeneity of HTS magnet using the virtual NMR signals in MATLAB simulation.

  9. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition

    DEFF Research Database (Denmark)

    Liu, Tao; Li, Yingjun; Wang, Xiaodi

    2015-01-01

    Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I......, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci...... in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence...

  10. Measurement and CFD calculation of spacer loss coefficient for a tight-lattice fuel bundle

    International Nuclear Information System (INIS)

    In, Wang Kee; Shin, Chang Hwan; Kwack, Young Kyun; Lee, Chi Young

    2015-01-01

    Highlights: • Experiment and CFD analysis evaluated the pressure drop in a spacer grid. • The measurement and CFD errors for the spacer loss coefficient were estimated. • The spacer loss coefficient for the dual-cooled annular fuel bundle was determined. • The CFD prediction agrees with the measured spacer loss coefficient within 8%. - Abstract: An experiment and computational fluid dynamics (CFD) analysis were performed to evaluate the pressure drop in a spacer grid for a dual-cooled annular fuel (DCAF) bundle. The DCAF bundle for the Korean optimum power reactor (OPR1000) is a 12 × 12 tight-lattice rod array with a pitch-to-diameter ratio of 1.08 owing to a larger outer diameter of the annular fuel rod. An experiment was conducted to measure the pressure drop in spacer grid for the DCAF bundle. The test bundle is a full-size 12 × 12 rod bundle with 11 spacer grid. The test condition covers a Reynolds number range of 2 × 10 4 –2 × 10 5 by changing the temperature and flow rate of water. A CFD analysis was also performed to predict the pressure drop through a spacer grid using the full-size and partial bundle models. The pressure drop and loss coefficient of a spacer grid were predicted and compared with the experimental results. The CFD predictions of spacer pressure drop and loss coefficient agree with the measured values within 8%. The spacer loss coefficient for the DCAF bundle is estimated to be approximately 1.50 at a nominal operating condition of OPR1000, i.e., Re = 4 × 10 5

  11. Success of Two-Stage Reimplantation in Patients Requiring an Interim Spacer Exchange.

    Science.gov (United States)

    George, Jaiben; Miller, Evan M; Curtis, Gannon L; Klika, Alison K; Barsoum, Wael K; Mont, Michael A; Higuera, Carlos A

    2018-03-23

    Some patients undergoing a 2-stage revision for a periprosthetic joint infection require a repeat spacer in the interim (removal of existing spacer with insertion of a new spacer or spacer exchange) due to persistent infection. The objectives of this study are to (1) determine the factors associated with patients who receive a repeat spacer and (2) compare the infection-free survival (overall and stratified by joint type) of reimplantation in patients who did or did not receive a repeat spacer. From 2001 to 2014, 347 hip or knee 2-stage revisions that finally underwent reimplantation and had a minimum 2-year follow-up were identified. An interim spacer exchange was performed in 59 (17%) patients (exchange cohort). Patient-related and organism-related factors were compared between the exchange and non-exchange cohorts. Kaplan-Meier survival curves were performed to assess the success (absence of signs of infection, reoperation for infection, periprosthetic joint infection-related mortality) of both cohorts. Patients in the exchange group had higher comorbidity score (P = .020), prolonged time to reimplantation (P exchange cohort, and 78% (knee 77%, hip 78%) in the non-exchange cohort (P = .020). Patients requiring an interim spacer exchange were found to have more comorbidities, prolonged treatment period, and were more likely to be infected with a resistant organism. About one-third of such patients became reinfected within 5 years compared to only one-fifth of the patients without an interim spacer exchange. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Separator-spacer for electrochemical systems

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Newby, Kenneth R.; Bellows, Richard J.

    1983-08-02

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  13. Effects of different rod spacers (helical types) on coolant crossmixing

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Sviridenko, E.Ya.; Matyukhin, N.M.; Rymkevich, K.S.; Ushakov, P.A.

    1981-11-01

    The results of investigations (electromagnetic measuring method) on coolant cross mixing in rod clusters with spiral wire spacers with different winding directions, with alternating unfinned and finned rods (case 'fin to rod'), as well as in rod clusters with much space between the rods, (case 'fin to fin') are reported. The local fluid dynamics parameters (distribution of the transversal and longitudinal velocity component) that define the physical processes of the coolant exchange in the rod clusters with helical spacers are explained. The investigation results for different helical spacer types are compared with each other. (orig.) [de

  14. A decade of cost-reduction in very large telescopes - The SST as prototype of special-purpose telescopes

    Science.gov (United States)

    Smith, Harlan J.

    1989-10-01

    Many design and technical innovations over the past ten or fifteen years have reduced the costs of very large telescopes by nearly an order of magnitude over those of classical designs. Still a further order of magnitude reduction is possible if the telescope is specialized for on-axis spectroscopy, giving up especially the luxuries of wide field, multiple focal positions, and access to all the sky at will. The SST (Spectroscopic Survey Telescope) will use eighty-five 1-m circular mirrors mounted in a steel frame composed of hundreds of interlocking tetrahedrons, keeping a fixed elevation angle of 60 deg with rotation only in azimuth. Using an optical fiber it will feed as much light to spectrographs as can be done by a conventional 8-m telescope, yet has a target basic completion cost of only $6 million.

  15. Ideas for future large single dish radio telescopes

    Science.gov (United States)

    Kärcher, Hans J.; Baars, Jacob W. M.

    2014-07-01

    The existing large single dish radio telescopes of the 100m class (Effelsberg, Green Bank) were built in the 1970s and 1990s. With some active optics they work now down to 3 millimeter wavelength where the atmospheric quality of the site is also a limiting factor. Other smaller single dish telescopes (50m LMT Mexico, 30m IRAM Spain) are located higher and reach sub-millimeter quality, and the much smaller 12m antennas of the ALMA array reach at a very high site the Terahertz region. They use advanced technologies as carbon fiber structures and flexible body control. We review natural limits to telescope design and use the examples of a number of telescopes for an overview of the available state-of-the-art in design, engineering and technologies. Without considering the scientific justification we then offer suggestions to realize ultimate performance of huge single dish telescopes (up to 160m). We provide an outlook on design options, technological frontiers and cost estimates.

  16. Solution-processed organic tandem solar cells with embedded optical spacers

    NARCIS (Netherlands)

    Hadipour, Afshin; de Boer, Bert; Blom, Paul W. M.

    2007-01-01

    We demonstrate a solution-processed polymer tandem solar cell in which the two photoactive single cells are separated by an optical spacer. The use of an optical spacer allows for an independent optimization of both the electronic and optical properties of the tandem cell. The optical transmission

  17. CMPO-calix[4]arenes with spacer containing intramolecular hydrogen bonding: effect of local rigidification on solvent extraction toward f-block elements.

    Science.gov (United States)

    Chu, Hongzhu; He, Lutao; Jiang, Qian; Fang, Yuyu; Jia, Yiming; Yuan, Xiangyang; Zou, Shuliang; Li, Xianghui; Feng, Wen; Yang, Yuanyou; Liu, Ning; Luo, Shunzhong; Yang, Yanqiu; Yang, Liang; Yuan, Lihua

    2014-01-15

    To understand intramolecular hydrogen bonding in effecting liquid-liquid extraction behavior of CMPO-calixarenes, three CMPO-modified calix[4]arenes (CMPO-CA) 5a-5c with hydrogen-bonded spacer were designed and synthesized. The impact of spacer rotation that is hindered by introduction of intramolecular hydrogen bonding upon extraction of La(3+), Eu(3+), Yb(3+), Th(4+), and UO2(2+) has been examined. The results show that 5b and 5c containing only one hydrogen bond with a less hindered rotation spacer extract La(3+) more efficiently than 5a containing two hydrogen bonds with a more hindered rotation spacer, demonstrating the importance of local rigidification of spacer in the design of extractants in influencing the coordination environment. The large difference in extractability between La(3+) and Yb(3+) (or Eu(3+)) by 5b (or 5c), and the small difference by 5a, suggests intramolecular hydrogen bonding do exert pronounced influence upon selective extraction of light and heavy lanthanides. Log-log plot analysis indicates a 1:1, 2:1 and 1:1 stoichiometry (ligand/metal) for the extracted complex formed between 5b and La(3+), Th(4+), UO2(2+), respectively. Additionally, their corresponding acyclic analogs 7a-7c exhibit negligible extraction toward these metal ions. These results reveal the possibility of selective extraction via tuning local chelating surroundings of CMPO-CA by aid of intramolecular hydrogen bonding. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  19. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    Science.gov (United States)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  20. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. © 2014 Elsevier Ltd.

  1. "Slit Mask Design for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph"

    Science.gov (United States)

    Williams, Darius; Marshall, Jennifer L.; Schmidt, Luke M.; Prochaska, Travis; DePoy, Darren L.

    2018-01-01

    The Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS) is currently in development for the Giant Magellan Telescope (GMT). GMACS will employ slit masks with a usable diameter of approximately 0.450 m for the purpose of multi-slit spectroscopy. Of significant importance are the design constraints and parameters of the multi-object slit masks themselves as well as the means for mapping astronomical targets to physical mask locations. Analytical methods are utilized to quantify deformation effects on a potential slit mask due to thermal expansion and vignetting of target light cones. Finite element analysis (FEA) is utilized to simulate mask flexure in changing gravity vectors. The alpha version of the mask creation program for GMACS, GMACS Mask Simulator (GMS), a derivative of the OSMOS Mask Simulator (OMS), is introduced.

  2. Rise to SUMMIT: the Sydney University Multiple-Mirror Telescope

    Science.gov (United States)

    Moore, Anna M.; Davis, John

    2000-07-01

    The Sydney University Multiple Mirror Telescope (SUMMIT) is a medium-sized telescope designed specifically for high resolution stellar spectroscopy. Throughout the design emphasis has been placed on high efficiency at low cost. The telescope consists of four 0.46 m diameter mirrors mounted on a single welded steel frame. Specially designed mirror cells support and point each mirror, allowing accurate positioning of the images on optical fibers located at the foci of the mirrors. Four fibers convey the light to the future location of a high resolution spectrograph away from the telescope in a stable environment. An overview of the commissioning of the telescope is presented, including the guidance and automatic mirror alignment and focussing systems. SUMMIT is located alongside the Sydney University Stellar Interferometer at the Paul Wild Observatory, near Narrabri, Northern New South Wales.

  3. DynamiX, numerical tool for design of next-generation x-ray telescopes.

    Science.gov (United States)

    Chauvin, Maxime; Roques, Jean-Pierre

    2010-07-20

    We present a new code aimed at the simulation of grazing-incidence x-ray telescopes subject to deformations and demonstrate its ability with two test cases: the Simbol-X and the International X-ray Observatory (IXO) missions. The code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, accounting for the x-ray interactions and for the telescope motion and deformation. The simulation produces images and spectra for any telescope configuration using Wolter I mirrors and semiconductor detectors. This numerical tool allows us to study the telescope performance in terms of angular resolution, effective area, and detector efficiency, accounting for the telescope behavior. We have implemented an image reconstruction method based on the measurement of the detector drifts by an optical sensor metrology. Using an accurate metrology, this method allows us to recover the loss of angular resolution induced by the telescope instability. In the framework of the Simbol-X mission, this code was used to study the impacts of the parameters on the telescope performance. In this paper we present detailed performance analysis of Simbol-X, taking into account the satellite motions and the image reconstruction. To illustrate the versatility of the code, we present an additional performance analysis with a particular configuration of IXO.

  4. DynamiX, numerical tool for design of next-generation x-ray telescopes

    International Nuclear Information System (INIS)

    Chauvin, Maxime; Roques, Jean-Pierre

    2010-01-01

    We present a new code aimed at the simulation of grazing-incidence x-ray telescopes subject to deformations and demonstrate its ability with two test cases: the Simbol-X and the International X-ray Observatory (IXO) missions. The code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, accounting for the x-ray interactions and for the telescope motion and deformation. The simulation produces images and spectra for any telescope configuration using Wolter I mirrors and semiconductor detectors. This numerical tool allows us to study the telescope performance in terms of angular resolution, effective area, and detector efficiency, accounting for the telescope behavior. We have implemented an image reconstruction method based on the measurement of the detector drifts by an optical sensor metrology. Using an accurate metrology, this method allows us to recover the loss of angular resolution induced by the telescope instability. In the framework of the Simbol-X mission, this code was used to study the impacts of the parameters on the telescope performance. In this paper we present detailed performance analysis of Simbol-X, taking into account the satellite motions and the image reconstruction. To illustrate the versatility of the code, we present an additional performance analysis with a particular configuration of IXO.

  5. DynamiX, numerical tool for design of next-generation x-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, Maxime; Roques, Jean-Pierre

    2010-07-20

    We present a new code aimed at the simulation of grazing-incidence x-ray telescopes subject to deformations and demonstrate its ability with two test cases: the Simbol-X and the International X-ray Observatory (IXO) missions. The code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, accounting for the x-ray interactions and for the telescope motion and deformation. The simulation produces images and spectra for any telescope configuration using Wolter I mirrors and semiconductor detectors. This numerical tool allows us to study the telescope performance in terms of angular resolution, effective area, and detector efficiency, accounting for the telescope behavior. We have implemented an image reconstruction method based on the measurement of the detector drifts by an optical sensor metrology. Using an accurate metrology, this method allows us to recover the loss of angular resolution induced by the telescope instability. In the framework of the Simbol-X mission, this code was used to study the impacts of the parameters on the telescope performance. In this paper we present detailed performance analysis of Simbol-X, taking into account the satellite motions and the image reconstruction. To illustrate the versatility of the code, we present an additional performance analysis with a particular configuration of IXO.

  6. A new concept of imaging system: telescope windows

    Science.gov (United States)

    Bourgenot, Cyril; Cowie, Euan; Young, Laura; Love, Gordon; Girkin, John; Courtial, Johannes

    2018-02-01

    A Telescope window is a novel concept of transformation-optics consisting of an array of micro-telescopes, in our configuration, of a Galilean type. When the array is considered as one multifaceted device, it acts as a traditional Galilean telescope with distinctive and attractive properties such as compactness and modularity. Each lenslet, can in principle, be independently designed for a specific optical function. In this paper, we report on the design, manufacture and prototyping, by diamond precision machining, of 2 concepts of telescope windows, and discuss both their performances and limitations with a view to use them as potential low vision aid devices to support patients with macular degeneration.

  7. Active control of the Chinese Giant Solar Telescope

    Science.gov (United States)

    Dai, Yichun; Yang, Dehua; Jin, Zhenyu; Liu, Zhong; Qin, Wei

    2014-07-01

    The Chinese Giant Solar Telescope (CGST) is the next generation solar telescope of China with diameter of 8 meter. The unique feature of CGST is that its primary is a ring, which facilitates the polarization detection and thermal control. In its present design and development phase, two primary mirror patterns are considered. For one thing, the primary mirror is expected to construct with mosaic mirror with 24 trapezoidal (or petal) segments, for another thing, a monolithic mirror is also a candidate for its primary mirror. Both of them depend on active control technique to maintain the optical quality of the ring mirror. As a solar telescope, the working conditions of the CGST are quite different from those of the stellar telescopes. To avoid the image deterioration due to the mirror seeing and dome seeing, especially in the case of the concentration of flux in a solar telescope, large aperture solar projects prefer to adopt open telescopes and open domes. In this circumstance, higher wind loads act on the primary mirror directly, which will cause position errors and figure errors of the primary with matters worse than those of the current 10-meter stellar telescopes with dome protect. Therefore, it gives new challenges to the active control capability, telescope structure design, and wind shielding design. In this paper, the study progress of active control of CGST for its mosaic and monolithic mirror are presented, and the wind effects on such two primary mirrors are also investigated.

  8. Building the Hubble Space Telescope

    International Nuclear Information System (INIS)

    O'dell, C.R.

    1989-01-01

    The development of the design for the Hubble Space Telescope (HST) is discussed. The HST optical system is described and illustrated. The financial and policy issues related to the development of the HST are considered. The actual construction of the HST optical telescope is examined. Also, consideration is given to the plans for the HST launch

  9. ANTARES: The first undersea neutrino telescope

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  10. ANTARES: The first undersea neutrino telescope

    International Nuclear Information System (INIS)

    Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Ameli, F.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A.C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  11. Carbon Fiber Mirror for a CubeSat Telescope

    Science.gov (United States)

    Kim, Young-Soo; Jang, Jeong Gyun; Kim, Jihun; Nam, Uk Won

    2017-08-01

    Telescope mirrors made by carbon fibers have been increasingly used especially for space applications, and they may replace the traditional glass mirrors. Glass mirrors are easy to fabricate, but needed to be carefully handled as they are brittle. Other materials have also been considered for telescope mirrors, such as metals, plastics, and liquids even. However glass and glass ceramics are still commonly and dominantly used.Carbon fiber has mainly been used for mechanical supports like truss structure and telescope tubes, as it is stiff and light-weight. It can also be a good material for telescope mirrors, as it has additional merits of non-brittle and very low thermal expansion. Therefore, carbon fiber mirror would be suitable for space telescopes which should endure the harsh vibration conditions during launch.A light-weight telescope made by carbon fiber has been designed for a small satellite which would have much less weight than conventional ones. In this poster, mirror materials are reviewed, and a design of carbon fiber telescope is presented and discussed.

  12. European Extremely Large Telescope: progress report

    Science.gov (United States)

    Tamai, R.; Spyromilio, J.

    2014-07-01

    The European Extremely Large Telescope is a project of the European Southern Observatory to build and operate a 40-m class optical near-infrared telescope. The telescope design effort is largely concluded and construction contracts are being placed with industry and academic/research institutes for the various components. The siting of the telescope in Northern Chile close to the Paranal site allows for an integrated operation of the facility providing significant economies. The progress of the project in various areas is presented in this paper and references to other papers at this SPIE meeting are made.

  13. Air-water flooding in multirod channels: effects of spacer grids and blockages

    International Nuclear Information System (INIS)

    Cha, Jong Hee; Jun, Hyung Gil

    1993-01-01

    This paper presents the experimental results on flooding of countercurrent flow in vertical multirod channels, which consists of falling water film and upward air flow. In particular, the effects of spacer grids, with and without mixing vane, and of blockage in the multirod bundle on the behaviour of flooding were investigated. The 5 x 5 zircaloy tube bundle was used for the test section. The comparison of previous analytical models and empirical correlations with present data on flooding showed that the existing models and correlations predict much higher flooding curves. The spacer grid causes the lower flooding air flow rate to compare with the bare rod bundle. However, the mixing spacer grids need a higher flooding air flow rate for a constant liquid flow rate than the spacer grids without mixing vanes. The bundle containing blockages has the highest flooding air flow rate among the bundles with spacer grids and blokages. Empirical flooding correlations for the three types of test section have been made. (Author)

  14. Review of lunar telescope studies at MSFC

    Science.gov (United States)

    Hilchey, John D.; Nein, Max E.

    1993-09-01

    In the near future astronomers can take advantage of the lunar surface as the new 'high ground' from which to study the universe. Optical telescopes placed and operated on the lunar surface would be successors to NASA's Great Observatories. Four telescopes, ranging in aperture from a 16-m, IR/Vis/UV observatory down to a 1-m, UV 'transit' instrument, have been studied by the Lunar Telescope Working Group and the LUTE (lunar telescope ultraviolet experiment) Task Team of the Marshall Space Flight Center (MSFC). This paper presents conceptual designs of the telescopes, provides descriptions of the telescope subsystem options selected for each concept, and outlines the potential evolution of their science capabilities.

  15. LQG and maximum entropy control design for the Hubble Space Telescope

    Science.gov (United States)

    Collins, Emmanuel G., Jr.; Richter, Stephen

    Solar array vibrations are responsible for serious pointing control problems on the Hubble Space Telescope (HST). The original HST control law was not designed to attenuate these disturbances because they were not perceived to be a problem prior to launch. However, significant solar array vibrations do occur due to large changes in the thermal environment as the HST orbits the earth. Using classical techniques, Marshall Space Flight Center in conjunction with Lockheed Missiles and Space Company developed modified HST controllers that were able to suppress the influence of the vibrations of the solar arrays on the line-of-sight (LOS) performance. Substantial LOS improvement was observed when two of these controllers were implemented on orbit. This paper describes the development of modified HST controllers by using modern control techniques, particularly linear-quadratic-gaussian (LQG) design and Maximum Entropy robust control design, a generalization of LQG that incorporates robustness constraints with respect to modal errors. The fundamental issues are discussed candidly and controllers designed using these modern techniques are described.

  16. Two-stage revision of septic knee prosthesis with articulating knee spacers yields better infection eradication rate than one-stage or two-stage revision with static spacers.

    Science.gov (United States)

    Romanò, C L; Gala, L; Logoluso, N; Romanò, D; Drago, L

    2012-12-01

    The best method for treating chronic periprosthetic knee infection remains controversial. Randomized, comparative studies on treatment modalities are lacking. This systematic review of the literature compares the infection eradication rate after two-stage versus one-stage revision and static versus articulating spacers in two-stage procedures. We reviewed full-text papers and those with an abstract in English published from 1966 through 2011 that reported the success rate of infection eradication after one-stage or two-stage revision with two different types of spacers. In all, 6 original articles reporting the results after one-stage knee exchange arthoplasty (n = 204) and 38 papers reporting on two-stage revision (n = 1,421) were reviewed. The average success rate in the eradication of infection was 89.8% after a two-stage revision and 81.9% after a one-stage procedure at a mean follow-up of 44.7 and 40.7 months, respectively. The average infection eradication rate after a two-stage procedure was slightly, although significantly, higher when an articulating spacer rather than a static spacer was used (91.2 versus 87%). The methodological limitations of this study and the heterogeneous material in the studies reviewed notwithstanding, this systematic review shows that, on average, a two-stage procedure is associated with a higher rate of eradication of infection than one-stage revision for septic knee prosthesis and that articulating spacers are associated with a lower recurrence of infection than static spacers at a comparable mean duration of follow-up. IV.

  17. Boiling transition phenomenon in BWR fuel assemblies effect of fuel spacer shape on critical power

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shin-ichi; Mitsutake, Toru; Yokobori, Seiichi; Kimura, Jiro.

    1996-01-01

    A thorough understanding of the thermal-hydraulic phenomena near fuel spacer is necessary for the accurate prediction of the critical power of BWR fuel assemblies, and is thus essential for effective developments of a new BWR fuel assembly. The main purpose of this study is to develop an accurate method for predicting the effect of spacer shapes on critical power. Tests have been conducted under actual BWR operating conditions, using an annulus flow channel consisting of a heated rod and circular-tube channel, and BWR simulated 4x4 rod bundles with heater rods unheated just upsteam of spacer. The effect of spacer shapes on critical power was predicted analytically based on the droplet deposition rate estimation. The droplet deposition rate for different spacer shapes was calculated using a single-phase flow model. The prediction results were compared with the test results for the annulus flow channel using ring-type spacers. Analytical results of critical power agreed with measured critical power from point of the effects of changes in the rod-spacer clearance and the spacer thickness on critical power. (author)

  18. A technical report on the evaluation of the integrity for the TIG welded spacer grid

    International Nuclear Information System (INIS)

    Song, Kee Nam; Yoo, Ho Sik; Lww, Chang Woo

    1994-07-01

    The spacer grid, which supports fuel rods, guide thimble and instrumentation tube, is classified into two types according to their strap material,.ie. inconel and zircaloy spacer grid. KOFA fuel of 14 x 14 and 17 x 17 type has seven and eight spacer grid respectively. Zircaloy spacer grid is assembled by straps whose cross points are welded by TIG welding method. This technical report provides to give some information about structure and function of the spacer grid and the basis and characteristic of the TIG welding method. A series of test which is conducted to evaluate the integrity of TIG welded zircaloy spacer grid and their results have been also studied. (Author) 18 refs., 23 figs., 3 tabs

  19. A technical report on the evaluation of the integrity for the TIG welded spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Yoo, Ho Sik; Lww, Chang Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    The spacer grid, which supports fuel rods, guide thimble and instrumentation tube, is classified into two types according to their strap material,.ie. inconel and zircaloy spacer grid. KOFA fuel of 14 x 14 and 17 x 17 type has seven and eight spacer grid respectively. Zircaloy spacer grid is assembled by straps whose cross points are welded by TIG welding method. This technical report provides to give some information about structure and function of the spacer grid and the basis and characteristic of the TIG welding method. A series of test which is conducted to evaluate the integrity of TIG welded zircaloy spacer grid and their results have been also studied. (Author) 18 refs., 23 figs., 3 tabs.

  20. Numerical simulation of bubble motion about a grid spacer in a rod bundle

    International Nuclear Information System (INIS)

    Zhang, Zheng; Hosokawa, Shigeo; Hayashi, Kosuke; Tomiyama, Akio

    2009-01-01

    Numerical simulations based on a three-dimensional two-way bubble tracking method are carried out to predict bubble motions in a square duct with an obstacle and in a two-by-three rod bundle with a grid spacer. Comparisons between measured and predicted bubble motions demonstrate that the two-way bubble tracking method gives good predictions for trajectories of small bubbles in the upstream side of the grid spacer in the rod bundle geometry. The predicted bubble trajectories clearly show that bubbles are apt to migrate toward the rod surface in the vicinity of the bottom of the grid spacer. Analysis of forces acting on the bubbles confirms that pressure gradient force induced by the presence of the spacer is the main cause of the bubble lateral migration toward the rod surface. Motions of steam bubbles at a nominal operating condition of a pressurized water reactor (PWR) are also predicted by using the bubble tracking method, which indicates that steam bubbles also migrate toward the rod surface at the upstream side of the spacer due to the spacer-induced pressure gradient force. (author)

  1. Modeling the effect of spacers and biofouling on forward osmosis performance

    KAUST Repository

    Mosqueira Santillá n, Marí a José

    2014-01-01

    and operational conditions. For this, a two dimensional numerical model for FO systems was developed using computational fluid dynamics (CFD). This model allowed the evaluation of the impact of (i) spacers and (ii) biofilm, and (iii) the combined impact of spacers

  2. Articulating spacers used in two-stage revision of infected hip and knee prostheses abrade with time.

    Science.gov (United States)

    Fink, Bernd; Rechtenbach, Annett; Büchner, Hubert; Vogt, Sebastian; Hahn, Michael

    2011-04-01

    Articulating spacers used in two-stage revision surgery of infected prostheses have the potential to abrade and subsequently induce third-body wear of the new prosthesis. We asked whether particulate material abraded from spacers could be detected in the synovial membrane 6 weeks after implantation when the spacers were removed for the second stage of the revision. Sixteen hip spacers (cemented prosthesis stem articulating with a cement cup) and four knee spacers (customized mobile cement spacers) were explanted 6 weeks after implantation and the synovial membranes were removed at the same time. The membranes were examined by xray fluorescence spectroscopy, xray diffraction for the presence of abraded particles originating from the spacer material, and analyzed in a semiquantitative manner by inductively coupled plasma mass spectrometry. Histologic analyses also were performed. We found zirconium dioxide in substantial amounts in all samples, and in the specimens of the hip synovial lining, we detected particles that originated from the metal heads of the spacers. Histologically, zirconium oxide particles were seen in the synovial membrane of every spacer and bone cement particles in one knee and two hip spacers. The observations suggest cement spacers do abrade within 6 weeks. Given the presence of abrasion debris, we recommend total synovectomy and extensive lavage during the second-stage reimplantation surgery to minimize the number of abraded particles and any retained bacteria.

  3. Computational model for turbulent flow around a grid spacer with mixing vane

    International Nuclear Information System (INIS)

    Tsutomu Ikeno; Takeo Kajishima

    2005-01-01

    Turbulent mixing coefficient and pressure drop are important factors in subchannel analysis to predict onset of DNB. However, universal correlations are difficult since these factors are significantly affected by the geometry of subchannel and a grid spacer with mixing vane. Therefore, we propose a computational model to estimate these factors. Computational model: To represent the effect of geometry of grid spacer in computational model, we applied a large eddy simulation (LES) technique in couple with an improved immersed-boundary method. In our previous work (Ikeno, et al., NURETH-10), detailed properties of turbulence in subchannel were successfully investigated by developing the immersed boundary method in LES. In this study, additional improvements are given: new one-equation dynamic sub-grid scale (SGS) model is introduced to account for the complex geometry without any artificial modification; the higher order accuracy is maintained by consistent treatment for boundary conditions for velocity and pressure. NUMERICAL TEST AND DISCUSSION: Turbulent mixing coefficient and pressure drop are affected strongly by the arrangement and inclination of mixing vane. Therefore, computations are carried out for each of convolute and periodic arrangements, and for each of 30 degree and 20 degree inclinations. The difference in turbulent mixing coefficient due to these factors is reasonably predicted by our method. (An example of this numerical test is shown in Fig. 1.) Turbulent flow of the problem includes unsteady separation behind the mixing vane and vortex shedding in downstream. Anisotropic distribution of turbulent stress is also appeared in rod gap. Therefore, our computational model has advantage for assessing the influence of arrangement and inclination of mixing vane. By coarser computational mesh, one can screen several candidates for spacer design. Then, by finer mesh, more quantitative analysis is possible. By such a scheme, we believe this method is useful

  4. Deformation behavior of cell spring of an irradiated spacer grid

    International Nuclear Information System (INIS)

    Jin, Y. G.; Baek, S. J.; Ryu, W. S.; Kim, G. S.; Yoo, B. O.; Kim, D. S.; Ahn, S. B.; Chun, Y. B.; Choo, Y. S.

    2012-01-01

    Mechanical properties of a space grid of a fuel assembly are of great importance for fuel operation reliability in extended fuel burnup and duration of fuel life. The spacer grid with inner and outer straps has cell spring and dimples, which are in contact with the fuel rod. The spacer grids supporting the fuel rods absorb vibration impacts due to the reactor coolant flow and also grid spring force is decreasing under irradiation. This reduction of contact force might cause the grid to rod fretting wear. The fretting failure of the fuel rod is one of the significant issues recently in the nuclear industry from an economical as well as a safety concern. Thus, it is important to understand the characteristics of cell spring behavior for an irradiated spacer grid. In the present study, the stiffness test and dimensional measurement of cell springs were conducted to investigate the deformation behavior of cell springs of an irradiated spacer grid in a hot cell at IMEF (irradiated materials examination facility) of KAERI

  5. Implementation of spacer therapy for acute asthma in children.

    LENUS (Irish Health Repository)

    Vandeleur, M

    2009-09-01

    The aim was to develop and implement an evidence based guideline for the treatment of acute asthma using a metered dose inhaler and spacer combination. Children admitted to Cork University Hospital Paediatric Department with acute asthma were identified during two identical 2 month seasonal periods before (2005) and after (2006) implementation of the new guidelines in September 2006. Pre-intervention and post-intervention audits by case note review were performed to determine the impact of and compliance with this evidence-based guideline emphasising patient assessment, spacer delivered bronchodilator and specific discharge criteria. Patients had similar characteristics during the two study periods. There was a raised threshold for admission after guideline implementation with 11\\/52 patients having mild exacerbations in 2006, compared to 21\\/36 in 2005. Duration of admission was less in the post-implementation group for equivalent exacerbation severity e.g. for moderate severity; 28 hours in 2005, 23 hours in 2006. Duration of bronchodilator therapy was shorter in 2006 and more likely to be given by spacer device earlier for equivalent levels of severity e.g. for moderate exacerbations, in 2006 the average length of salbutamol therapy was 18 hours with 12 hours by spacer device, in 2005 the average length of therapy was 25 hours with 3 hours by spacer. There was earlier initiation of oral corticosteroids; the average time to administration was 56 minutes in 2006 and 227 minutes in 2005. There was an improved documentation of asthma education in 2006 e.g. inhaler technique was reviewed in 37\\/52 in 2006, 21\\/35 in 2005 and better use of written action plans.

  6. Effect of spacer grids on CHF in tube bundles

    International Nuclear Information System (INIS)

    Jayanti, Sreenivas; Valette, Michel

    2004-01-01

    Spacers grids are used to support tube bundles in steam generators and in nuclear reactor fuel assemblies. These grids interface with the flow and heat transfer in a number of ways and their effect has been studied by a number of researchers. It is known that generally they have a beneficial effect on critical heat flux (CHF) in typical nuclear reactor assemblies. However, the enhancement obtained depends on the geometric characteristics of the spacer grids as well as on the parameter range in terms of pressure, local mass velocity and quality. In the present study, the problem is approached in the context of a one-dimensional three-field model. Unlike in previous approaches, no specific modeling of the constitutive laws is made to account for spacer effects and only the geometric details such as the reduction in the cross-sectional area and the hydraulic diameter are included in the calculation which is otherwise the same as that for flow through a single tube. It is shown by comparison with literature data that this approach leads to satisfactory prediction of the thermal-hydraulic effects of spacers and that the beneficial effects of spacers on dry out can be manifested only when the entrainment rate is neither too high nor too low. Their effect on reducing the post-dry out wall temperature is also limited to certain cases. The present work has been performed as part of the EDF-CEA Neptune project also supported by the Institut de Radioprotection et de Surete Nucleaire (IRSN, France) and FRAMATOME-ANP. NEPTUNE is a new set of two phase thermalhydraulic computer codes devoted to safety analysis of nuclear power plants. (author)

  7. Effect of a spacer moiety on radiometal labelled Neurotensin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Mascarin, A.; Valverde, I.E.; Mindt, T.L. [Univ. of Basel Hospital (Switzerland). Div. of Radiopharmaceutical Chemistry

    2013-07-01

    The binding sequence of the regulatory peptide Neurotensin, NT(8-13), represents a promising tumour-specific vector for the development of radiopeptides useful in nuclear oncology for the diagnosis (imaging) and therapy of cancer. A number of radiometal-labelled NT(8-13) derivatives have been reported, however, the effect of the spacer which connects the vector with the radiometal complex has yet not been investigated systematically. Because a spacer moiety can influence potentially important biological characteristics of radiopeptides, we synthesized three [DOTA({sup 177}Lu)]-X-NT(8-13) derivatives and evaluated the effect of a spacer (X) on the physico-chemical properties of the conjugate including lipophilicity, stability, and in vitro receptor affinity and cell internalization. (orig.)

  8. Multi-Scaled Modeling the Mechanical Properties of Tubular Composites Reinforced with Innovated 3D Weft Knitted Spacer Fabrics

    Science.gov (United States)

    Omrani, Elahe; Hasani, Hossein; Dibajian, Sayed Houssain

    2018-02-01

    Textile composites of 3D integrated spacer configurations have been recently focused by several researchers all over the world. In the present study, newly-designed tubular composites reinforced with 3D spacer weft knitted fabrics were considered and the effects of their structural parameters on some applicable mechanical properties were investigated. For this purpose, two different samples of 3D spacer weft knitted textile types in tubular form were produced on an electronic flat knitting machine, using glass/nylon hybrid yarns. Thermoset tubular-shaped composite parts were manufactured via vacuum infusion molding process using epoxy resin. The mechanical properties of the produced knitted composites in term of external static and internal hydrostatic pressures were evaluated. Resistance of the produced composites against the external static and internal hydrostatic pressures was numerically simulated using multi-scale modeling method. The finding revealed that there is acceptable correlation between experimental and theoretical results.

  9. Influence of an interpositional spacer on the behaviour of the tibiofemoral joint: a finite element study.

    Science.gov (United States)

    Checa, S; Taylor, M; New, A

    2008-10-01

    Interpositional arthroplasty is considered by many surgeons for the treatment of isolated medial compartment osteoarthritis of the knee. In this procedure, an interpositional spacer is inserted into the medial compartment of the joint with no bone resection and no mechanical fixation. Major problems such as implant dislocation, severe pain or need for revision have been reported post-operatively. In this study, the kinematics of a knee implanted with an interpositional spacer made of either polyurethane or cobalt-chrome during walking, stair ascent and squatting cycles have been predicted and compared to the normal knee using finite element analysis. In addition, articular cartilage stress histories have been examined to obtain distributions of cumulative stress, a measure of the likelihood of articular cartilage degeneration. The insertion of a polyurethane interpositional spacer in the medial side of the knee did not affect knee kinematics as compared to the normal knee, but caused an increase of articular cartilage cumulative contact stress exposures in the medial compartment of the joint. The knee implanted with the Co-Cr spacer exhibited similar trends in knee kinematics, however significantly different ranges of motion were observed during some periods of the activity cycles, specifically during the first half of the walking cycle where lower ranges of motion were predicted. In addition, higher articular cartilage cumulative contact stress exposures were observed in both compartments of the knee. In both cases, cumulative contact stress exposures of the tibial articular cartilage were more affected than those of the femoral articular cartilage. These results suggest implant material as an important parameter in the design phase of interpositional spacers.

  10. Manipulation of recombination zone by utilizing the donor of electroplex as a spacer

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Zhaoyue, E-mail: lvzhaoyue@ecust.edu.cn [Department of Physics, School of Science, East China University of Science & Technology, Shanghai 200237 (China); Yin, Yuehong [Department of Applied Physics, Institute of Physical Chemistry, Henan Polytechnic University, Jiaozuo, Henan Province 454000 (China); Xiao, Jing [Physics and Electronic Engineering College, Taishan University, Shandong Province 271021,China (China)

    2016-11-15

    The emission of electroplex is varied with applied voltages, leading to poor color stability of devices. In this work, the recombination region was investigated in organic light-emitting diodes (OLEDs) based on the electroplex between N,N’-diphenyl-N,N’-bis(1-naphthyl-phenyl)-1,1′-biphenyl-4,4′-diamine(NPB) and 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,2,4-oxadiazole (PBD). Color stability was manipulated by introducing the donor of electroplex as a spacer, which plays an important role of recombination zone for electroplex-based OLEDs. The 5-nm-spacer-device brought out a tolerable chromaticity coordinate shift of less than 0.01 for both x- and y-value. White light emission with CIE coordinates of (0.37,0.28) and (0.33,0.26) at 12 V was achieved when the thickness of spacer was 7 and 10 nm, respectively. The 7-nm-spacer-device exhibited better color stability than the 10-nm-spacer-device. This proves that adjusting spacer thickness is a simple and efficient method to control recombination region and can be useful for fulfilling color-stable electroplex-based white emission.

  11. Manipulation of recombination zone by utilizing the donor of electroplex as a spacer

    International Nuclear Information System (INIS)

    Lü, Zhaoyue; Yin, Yuehong; Xiao, Jing

    2016-01-01

    The emission of electroplex is varied with applied voltages, leading to poor color stability of devices. In this work, the recombination region was investigated in organic light-emitting diodes (OLEDs) based on the electroplex between N,N’-diphenyl-N,N’-bis(1-naphthyl-phenyl)-1,1′-biphenyl-4,4′-diamine(NPB) and 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,2,4-oxadiazole (PBD). Color stability was manipulated by introducing the donor of electroplex as a spacer, which plays an important role of recombination zone for electroplex-based OLEDs. The 5-nm-spacer-device brought out a tolerable chromaticity coordinate shift of less than 0.01 for both x- and y-value. White light emission with CIE coordinates of (0.37,0.28) and (0.33,0.26) at 12 V was achieved when the thickness of spacer was 7 and 10 nm, respectively. The 7-nm-spacer-device exhibited better color stability than the 10-nm-spacer-device. This proves that adjusting spacer thickness is a simple and efficient method to control recombination region and can be useful for fulfilling color-stable electroplex-based white emission.

  12. Information and Communications Technology (ICT) Infrastructure for the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the

  13. A functional analysis of the spacer of V(DJ recombination signal sequences.

    Directory of Open Access Journals (Sweden)

    Alfred Ian Lee

    2003-10-01

    Full Text Available During lymphocyte development, V(DJ recombination assembles antigen receptor genes from component V, D, and J gene segments. These gene segments are flanked by a recombination signal sequence (RSS, which serves as the binding site for the recombination machinery. The murine Jbeta2.6 gene segment is a recombinationally inactive pseudogene, but examination of its RSS reveals no obvious reason for its failure to recombine. Mutagenesis of the Jbeta2.6 RSS demonstrates that the sequences of the heptamer, nonamer, and spacer are all important. Strikingly, changes solely in the spacer sequence can result in dramatic differences in the level of recombination. The subsequent analysis of a library of more than 4,000 spacer variants revealed that spacer residues of particular functional importance are correlated with their degree of conservation. Biochemical assays indicate distinct cooperation between the spacer and heptamer/nonamer along each step of the reaction pathway. The results suggest that the spacer serves not only to ensure the appropriate distance between the heptamer and nonamer but also regulates RSS activity by providing additional RAG:RSS interaction surfaces. We conclude that while RSSs are defined by a "digital" requirement for absolutely conserved nucleotides, the quality of RSS function is determined in an "analog" manner by numerous complex interactions between the RAG proteins and the less-well conserved nucleotides in the heptamer, the nonamer, and, importantly, the spacer. Those modulatory effects are accurately predicted by a new computational algorithm for "RSS information content." The interplay between such binary and multiplicative modes of interactions provides a general model for analyzing protein-DNA interactions in various biological systems.

  14. How to use an inhaler - no spacer

    Science.gov (United States)

    ... MDI) administration - no spacer; Bronchial nebulizer; Wheezing - nebulizer; Reactive airway - nebulizer; COPD - ... 66. National Asthma Education and Prevention Program website. How to use a metered-dose inhaler. ...

  15. Effect of plastic spacer handling on salbutamol lung deposition in asthmatic children

    DEFF Research Database (Denmark)

    Lipworth, Brian J; Lee, Daniel K C; Anhøj, Jacob

    2002-01-01

    AIMS: To study the effects of electrostatics in a plastic spacer on the lung deposition of salbutamol in asthmatic children. METHODS: Twenty-five children (5-12 years) with mild asthma were given salbutamol hydrofluoroalkane pressurized metered dose inhaler 400 micro g via a 750 ml plastic spacer...... on separate days. Blood samples were taken for plasma salbutamol at 5, 10, 15 and 20 min after inhalation to measure lung bioavailability as a surrogate for relative lung dose. With immediate inhalation following actuation, a new rinsed spacer (NewRinsed ) was compared with a used spacer after repeated daily...... log transformed and expressed as geometric mean fold difference for the average plasma salbutamol concentration (Cav) over 20 min. RESULTS: There were significant differences (P NewRinsed 1.92 fold (95% CI 1.15, 3...

  16. Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Z. M., E-mail: zaki.saleh@aauj.edu, E-mail: zakimsaleh@yahoo.com; Nasser, H.; Özkol, E.; Günöven, M.; Abak, K. [Middle East Technical University, Center for Solar Energy Research and Applications (GÜNAM) (Turkey); Canli, S. [Middle East Technical University, Central Laboratory (Turkey); Bek, A.; Turan, R. [Middle East Technical University, Center for Solar Energy Research and Applications (GÜNAM) (Turkey)

    2015-10-15

    Plasmonic interfaces consisting of silver nanoparticles of different sizes (50–100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size and broadened into the red with the increasing spacer layer thickness. The photocurrent measured in a-Si:H is not only consistent with the red-shift and broadening of the LSPR, but exhibits critical dependence on the spacer layer thickness also. The samples with plasmonic interfaces and a SiNx spacer layer exhibit appreciable enhancement of photocurrent compared with flat a-Si:H reference depending on the size of the Ag nanoparticle. Simulations conducted on one-dimensional square structures exhibit electric fields that are localized near the plasmonic structures but extend appreciably into the higher refractive index a-Si:H. These simulations produce a clear red-shift and broadening of extinction spectra for all spacer layer thicknesses and predict an enhancement in photocurrent in agreement with experimental results. The spectral dependence of photocurrent for six plasmonic interfaces with different Ag nanoparticle sizes and spacer layer thicknesses are correlated with the optical spectra and compared with the simulations to predict an optimal spacer layer thickness.

  17. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong

    2006-03-15

    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  18. Shelf life of pie caps with biodegradable films as spacers

    Directory of Open Access Journals (Sweden)

    Daniela Verónica Escobar Gianni

    2013-01-01

    Full Text Available Commonly pie caps at market use polyethylene films as spacers between them. This paper studies the conventional spacers replacement with edible and biodegradable films made with whey protein isolate (WPI and potassium sorbate as a preservative. Besides facilitating the separation of pie caps, with this application is intended to increase their shelf life. The films made by the compression molding method were used as spacers in pie caps without preservative in their formula (A and with preservative (B and they were compared with conventional polyethylene spacers (C. During four months, monthly sensory, microbiological and physicochemical (humidity evaluations were done on the pie caps, together with humidity and solubility evaluations of the films. None of the samples showed microbiological or sensory deterioration. The sensory attributes showed no or slight difference in study time. Between samples the differences were minor: the best scores were for sample A in color, sample C in flavor, and samples B and C in texture and overall liking. The edible films have an interesting potential for this application, although studies in disguise the flavor of serum should be done.

  19. Hot fuel examination facility element spacer wire-wrap machine

    International Nuclear Information System (INIS)

    Tobias, D.A.; Sherman, E.K.

    1989-01-01

    Nondestructive examinations of irradiated experimental fuel elements conducted in the Argonne National Laboratory Hot Fuel Examination Facility/North (HFEF/N) at the Idaho National Engineering Laboratory include laser and contact profilometry (element diameter measurements), electrical eddy-current testing for cladding and thermal bond defects, bow and length measurements, neutron radiography, gamma scanning, remote visual exam, and photography. Profilometry was previously restricted to spiral profilometry of the element to prevent interference with the element spacer wire wrapped in a helix about the Experimental Breeder Reactor II (EBR-II)-type fuel element from end to end. By removing the spacer wire prior to conducting profilometry examination, axial profilometry techniques may be used, which are considerably faster than spiral techniques and often result in data acquisition more important to experiment sponsors. Because the element must often be reinserted into the nuclear reactor (EBR-II) for additional irradiation, however, the spacer wire must be reinstalled on the highly irradiated fuel element by remote means after profilometry of the wireless elements. The element spacer wire-wrap machine developed at HFEF is capable of helically wrapping fuel elements with diameters up to 1.68 cm (0.660 in.) and 2.44-m (96-in.) lengths. The machine can accommodate almost any desired wire pitch length by simply inserting a new wrapper gear module

  20. Knitting Technologies And Tensile Properties Of A Novel Curved Flat-Knitted Three-Dimensional Spacer Fabrics

    Directory of Open Access Journals (Sweden)

    Li Xiaoying

    2015-09-01

    Full Text Available This paper introduces a knitting technique for making innovative curved three-dimensional (3D spacer fabrics by the computer flat-knitting machine. During manufacturing, a number of reinforcement yarns made of aramid fibres are inserted into 3D spacer fabrics along the weft direction to enhance the fabric tensile properties. Curved, flat-knitted 3D spacer fabrics with different angles (in the warp direction were also developed. Tensile tests were carried out in the weft and warp directions for the two spacer fabrics (with and without reinforcement yarns, and their stress–strain curves were compared. The results showed that the reinforcement yarns can reduce the fabric deformation and improve tensile stress and dimensional stability of 3D spacer fabrics. This research can help the further study of 3D spacer fabric when applied to composites.

  1. Effect of the spacer group nature on the optical and electrical properties of confined poly( p-phenylene vinylene) derivatives

    Science.gov (United States)

    Benzarti-Ghédira, Maha; Zahou, Imen; Hrichi, Haikel; Jaballah, Nejmeddine; Ben Chaâbane, Rafik; Majdoub, Mustapha; Ben Ouada, Hafedh

    2015-09-01

    This study is an investigation about the effect of chemical modification on the morphological, optical and electrical properties of semiconducting organic thin films. Two confined poly( p-phenylene vinylene) (PPV)-type polymers containing different spacer groups were studied: P1 has an isopropylidene spacer group and P2 with hexafluoroisopropylidene spacer. The UV-Vis absorption and PL analysis showed a stronger π- π interaction in the P1 film; in P2, the π-stacking is limited by the introduction of a bulky trifluoromethyl (CF3) groups on the spacer units. The P2 exhibits a better film quality as illustrated by the atomic force microscopy. The HOMO and LUMO energy levels and electrochemical band gap of the polymers were determinate by the cyclic voltammetry. The electrical properties of ITO/PPV derivative/Al diodes were investigated by means of current-voltage and show a space-charge-limited current conduction mechanism with higher mobility in the P2 thin layer. The impedance spectra of the devices can be discussed in terms of an equivalent circuit model designed as a parallel resistance ( R p) and capacitance ( C p) network in series with a resistance.

  2. Enhancement of nuclear heat transfer in a typical pressurized water reactor by new spacer grids

    International Nuclear Information System (INIS)

    Nazifi, M.; Nematollahi, M.

    2007-01-01

    The fuel element geometry typically used in nuclear reactor is rod bundle whose rod-to-rod clearance is maintained by grid spacer. The heat generated in the rod by nuclear reaction is removed by coolant, usually in turbulent flow. The coolant moves axially through the subchannels. Fuel spacer grid affects the coolant flow distribution in a fuel rod bundle, and so spacer geometry has a strong influence on a bundle's thermal-hydraulic characteristics such as critical heat flux and pressure drop. An understanding of the detailed structure of the turbulent flow and heat transfer in the rod bundle, used especially as nuclear fuel elements, is of major interest to the nuclear power industry for their safe and reliable operation. The flow mixing devices on grid spacer would enhance the mixing rate between sub-channels and promote the turbulence in subchannel. The present study evaluates the effects of mixing vane shape on flow structure and heat transfer downstream of mixing vane in a sub-channel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. Six new shapes mixing vane designed by the authors, are simulated numerically to evaluate the performance in enhancing the heat transfer, in comparison with commercialized split vane. Standard K-epsilon model are used as a turbulence closure model and periodic and symmetry condition are set as boundary conditions. The capability of the model to predict the coolant flow distribution inside rod bundles is shown and discussed on the base of comparison with experimental data for a variety of geometrical and Reynolds number conditions. It is conformed that the turbulence in the sub-channel was significantly promoted by spacer and mixing devices but rapidly decreased to a fully developed level approximately 10 time of hydraulic diameter downstream of the top of spacer. Ring type mixer showed a high

  3. Suppression of subthreshold characteristics variation for junctionless multigate transistors using high-k spacers

    International Nuclear Information System (INIS)

    Lou, Haijun; Zhang, Baili; Li, Dan; Lin, Xinnan; He, Jin; Chan, Mansun

    2015-01-01

    In this work, the high-k spacer is proposed to suppress the subthreshold characteristics variation of junctionless multigate transistor (JMT) with non-ideal sidewall angle for the first time. It is demonstrated that the variation of subthreshold characteristics induced by the changing sidewall angle is efficiently suppressed by high-k spacers due to the enhanced corner effect through the fringe capacitance, and the electrostatic integrity of JMTs is also improved at sub-22 nm gate length. Two key parameters of high-k spacer, the thickness and length, have been optimized in terms of the suppression of subthreshold characteristics variation. Then their optimal values are proposed. The benefit of high-k spacer makes JMTs more scalable. (paper)

  4. Mechanical design for the Evryscope: a minute cadence, 10,000-square-degree FoV, gigapixel-scale telescope

    Science.gov (United States)

    Ratzloff, Jeff; Law, Nicholas M.; Fors, Octavi; Wulfken, Philip J.

    2015-01-01

    We designed, tested, prototyped and built a compact 27-camera robotic telescope that images 10,000 square degrees in 2-minute exposures. We exploit mass produced interline CCD Cameras with Rokinon consumer lenses to economically build a telescope that covers this large part of the sky simultaneously with a good enough pixel sampling to avoid the confusion limit over most of the sky. We developed the initial concept into a 3-d mechanical design with the aid of computer modeling programs. Significant design components include the camera assembly-mounting modules, the hemispherical support structure, and the instrument base structure. We simulated flexure and material stress in each of the three main components, which helped us optimize the rigidity and materials selection, while reducing weight. The camera mounts are CNC aluminum and the support shell is reinforced fiberglass. Other significant project components include optimizing camera locations, camera alignment, thermal analysis, environmental sealing, wind protection, and ease of access to internal components. The Evryscope will be assembled at UNC Chapel Hill and deployed to the CTIO in 2015.

  5. Design Development of a Combined Deployment and Pointing System for the International Space Station Neutron Star Interior Composition Explorer Telescope

    Science.gov (United States)

    Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, TOdd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa; hide

    2016-01-01

    This paper describes the design of a unique suite of mechanisms that make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses four stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.

  6. Effect of GFRP spacer on local deformation of large superconductor in coil pack

    International Nuclear Information System (INIS)

    Nishimura, Arata; Tamura, Hitoshi; Mito, Toshiyuki; Yamamoto, Junya

    1994-01-01

    Design and construction of the Large Helical Device (LHD) are in progress at the National Institute for Fusion Science (NIFS) in Japan. The LHD has superconducting poloidal and helical coils, and many efforts have been undertaken to develop these large superconductors. When designing a large superconducting magnet, the mechanical behavior of the wound structure becomes a very important factor since the apparent rigidity affects the design of a coil support structure and the superconducting coil needs to endure the large electro-magnetic force it creates. Also, non-linear mechanical behavior should yield the instability of the magnet. In this paper, local deformation in a large conductor caused by GFRP spacers and epoxy adhesives was investigated after compressive rigidity testing. The epoxy adhesive used for attaching the GFRP spacers to the superconductor changed shape from an almost square sheet into a lens-like sheet during deformation, and a dent appeared on the surface of the superconductor. Three-dimensional FEM analysis showed that a compressive stress in the vertical direction of the loading axis existed in the adhesive plane. This stress component makes the adhesive lens-like and it results in the dent created during the compressive testing. This local deformation should yield a part of the permanent deformation observed after the compressive load cycle at 4.2 K

  7. A hard X-ray telescope/concentrator design based on graded period multilayer coatings

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Joensen, K. D.; Gorenstein, P.

    1995-01-01

    It is shown that compact designs of multifocus, conical approximations to highly nested Wolter I telescopes, as well as single reflection concentrators, employing realistic graded period W/Si or Ni/C multilayer coatings, allow one to obtain more than 1000 cm2 of on-axis effective area at 40 ke...... that it is smaller than roughly 1 mm. The design can be realized with foils as thin (≤0.4 mm) as used for ASCA and SODART or with closed, slightly thicker (∼1.0 mm) mirror shells as used for JET-X and XMM. The effect of an increase of the inner radius is quantified on the effective area for multilayered mirrors up...

  8. Muon telescope based on Micromegas detectors: From design to data acquisition

    Directory of Open Access Journals (Sweden)

    Lázaro Ignacio

    2014-01-01

    Full Text Available We describe the basis of the muon telescope used within the Temporal Tomography Densitometric by the Measure of Muons (T2DM2 project developed in the LSBB URL facilities. The telescope allows measuring the flux of muons, as well as their energy and origin for the characterization of spatial and temporal rock density variations.

  9. A virtual reality environment for telescope operation

    Science.gov (United States)

    Martínez, Luis A.; Villarreal, José L.; Ángeles, Fernando; Bernal, Abel

    2010-07-01

    Astronomical observatories and telescopes are becoming increasingly large and complex systems, demanding to any potential user the acquirement of great amount of information previous to access them. At present, the most common way to overcome that information is through the implementation of larger graphical user interfaces and computer monitors to increase the display area. Tonantzintla Observatory has a 1-m telescope with a remote observing system. As a step forward in the improvement of the telescope software, we have designed a Virtual Reality (VR) environment that works as an extension of the remote system and allows us to operate the telescope. In this work we explore this alternative technology that is being suggested here as a software platform for the operation of the 1-m telescope.

  10. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    Science.gov (United States)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  11. Spacer grid for a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    The spacer grid consists of pairs of plates forming rectangular cells and enclosing the cylindrical fuel assemblies. They have got rigid as well as elastic projections extending into the cells and holding the fuel assemblies. Additional pairs of plates are arranged in about the center of the grid of plates. They have got only elastic projections extending on both sides of the plates into one cell each. This spacer grid may be used for reactor cores with and without fuel channels. By the combination of spring-elastic and rigid projections there is obtained a reinforced outer tie. Hydraulic pressure losses, parasitic neutron capture, and hot spots are essentially reduced. (DG) [de

  12. Las Cumbres Observatory 1-Meter Global Science Telescope Network

    Science.gov (United States)

    Pickles, Andrew; Dubberley, M.; Haldeman, B.; Haynes, R.; Posner, V.; Rosing, W.; staff, LCOGT

    2009-05-01

    We present the optical, mechanical and electronic design of the LCOGT 1-m telescope. These telescopes are planned to go in pairs to each of 6 sites worldwide, complementing 0.4m telescopes and 2-m telescopes at two existing sites. This science network is designed to provide continuously available photometric monitoring and spectroscopy of variable sources. The 1-m optical design is an f/8 quasi-RC system, with a doublet corrector and field flattener to provide good image quality out to 0.8 degrees. The field of view of the Fairchild 4K science CCD is 27 arcmin, with 0.39 arcsec pixels. The mechanical design includes a stiff C-ring equatorial mount and friction drive rollers, mounted on a triangular base that can be adjusted for latitude. Another friction drive is coupled at the Declination axis to the M1 mirror cell, that forms the main Optical Tube Assembly (OTA) structural element. The OTA design includes a stiff carbon fiber truss assembly, with offset vanes to an M2 drive that provides remote focus, tilt and collimation. The tube assembly weighs about 600 Kg, including Hextek mirrors, 4K science CCD, filter wheel, autoguiders and medium resolution spectrograph pick-off fiber. The telescopes will be housed in domes at existing observatory sites. They are designed to operate remotely and reliably under centralized control for automatic, optimized scheduling of observations with available hardware.

  13. Modeling the effect of spacers and biofouling on forward osmosis performance

    KAUST Repository

    Mosqueira Santillán, María José

    2014-11-01

    Currently, the most utilized desalination technology is reverse osmosis (RO), where a membrane is used as a physical barrier to separate the salts from the seawater, using high hydraulic pressure as driving force. A major problem in RO systems is biofouling, caused by severe growth of bacterial biofilms. Both, the need of an external energy input, as well as biofouling, impose a high cost on RO operation. Forward osmosis (FO) is an alternative membrane process that uses an osmotic pressure difference as driving force. FO uses a concentrated draw solution to generate high osmotic pressure, which extracts water across a semi permeable membrane from a feed solution. One of the main advantages of FO is the limited amount of external energy required to extract water from the feed solution. The objective of this research is the assessment of the impact of spacers, separating the membrane sheets, and biofouling on the FO system performance. This type of studies allow the optimization of membrane devices and operational conditions. For this, a two dimensional numerical model for FO systems was developed using computational fluid dynamics (CFD). This model allowed the evaluation of the impact of (i) spacers and (ii) biofilm, and (iii) the combined impact of spacers and biofilm on the performance of FO systems. The results obtained showed that the presence of spacers improved the performance of FO systems. Cavity configuration spacer gave the higher water flux across the membrane in clean systems; whereas for biofouled systems, the submerged configuration showed a better performance. In absence of spacers, the thickness or amount of biofilm is inversely proportional with the water flux. Furthermore, membrane surface coverage of the biofilm is more important than the amount of biofilm in terms of the impact on the performance. The numerical model can be adapted with other parameters (e.g. membrane and spacer thickness, feed and draw solution, solution concentration, etc.) to

  14. Biofouling patterns in spacer filled channels: High resolution imaging for characterization of heterogeneous biofilms

    KAUST Repository

    Staal, Marc

    2017-08-15

    Biofilms develop in heterogeneous patterns at a µm scale up to a cm scale, and patterns become more pronounced when biofilms develop under complex hydrodynamic flow regimes. Spatially heterogeneous biofilms are especially known in spiral wound reverse osmosis (RO) and nanofiltration (NF) membrane filtration systems used for desalination and wastewater reuse to produce high quality (drinking) water. These spiral wound membrane modules contain mesh-like spacer structures used to create an intermembrane space and improve water mixing. Spacers create inhomogeneous water flow patterns resulting in zones favouring biofilm growth, possibly leading to biofouling thus hampering water production. Oxygen sensing planar optodes were used to visualize variations in oxygen decrease rates (ODR). ODR is an indication of biofilm activity. In this study, ODR images of multiple repetitive spacer areas in a membrane fouling simulator were averaged to produce high resolution, low noise ODR images. Averaging 40 individual spacer areas improved the ODR distribution image significantly and allowed comparison of biofilm patterning over a spacer structure at different positions in an RO filter. This method clearly showed that most active biofilm accumulated on and in direct vicinity of the spacer. The averaging method was also used to calculate the deviation of ODR patterning from individual spacer areas to the average ODR pattern, proposing a new approach to determine biofilm spatial heterogeneity. This study showed that the averaging method can be applied and that the improved, averaged ODR images can be used as an analytical, in-situ, non-destructive method to assess and quantify the effect of membrane installation operational parameters or different spacer geometries on biofilm development in spiral wound membrane systems characterized by complex hydrodynamic conditions.

  15. Liverpool Telescope and Liverpool Telescope 2

    Science.gov (United States)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  16. MROI Array telescopes: the relocatable enclosure domes

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  17. Research report on development of spacer grid strap for AFA 3G fuel assembly

    International Nuclear Information System (INIS)

    Ye Yuandong

    2004-11-01

    The current development and tendency for fuel assemblies being of low leakage, high burn-up and long cycle fuel reload in the world are presented, and the necessity and feasibility to develop the spacer grid for high burn-up fuel assembly are elaborated. Considering all the activities in implementing of spacer grid and the technical difficulties in machining of tools, the major technological processes are introduced; the research program and the approaches to develop the spacer grid while research targets and overall schedule are defined and some key technical points and applicable practices are discussed. Finally the requirements and the conditions necessary for developing of spacer grid are proposed. (authors)

  18. Process development for the manufacturing of state-of-the-art spacer grids

    Energy Technology Data Exchange (ETDEWEB)

    Schebitz, Florian; Dietrich, Matthias [Advanced Nuclear Fuels GmbH, Karlstein (Germany)

    2013-07-01

    At the beginning it was questioned if 'time to market' is really important for the nuclear industry. The clear answer is YES. Even if the development times might be longer compared to projects in other industries it is still beneficial to use concurrent engineering. In the world wide network of manufacturing sites, Advanced Nuclear Fuels GmbH in Karlstein is quite often involved when the development of new processes is necessary. As ANF Karlstein is delivering products around the world the experience with different customer requirements supports an optimized solution in order to fulfill these principle requirements and to deliver state-of-the-art products like spacer grids. Continues feedback from process development already improves the first prototypes. In the meantime ANF Karlstein manufactured the components for both new fuel assembly designs which are introduced as a first set of Lead Fuel Assemblies. For the manufacturing of the next sets of spacer grids (for tests and next series of Lead Fuel Assemblies) the described processes will be used and further improved, so that an industrialized solution is available. (orig.)

  19. GRANITE- A steroscopic imaging Chernkov telescope system

    International Nuclear Information System (INIS)

    Shubnell, M.; Akerlof, C.W.; Cawley, M.F.; Chantell, M.; Fegan, D.J.; Fennell, S.; O'Flaherty, K.S.; Freeman, S.; Frishman, D.; Gaidos, J.A.; Hagan, J.; Harris, K.; Hillas, A.M.; Kerrick, A.D.; Lamb, R.C.; Lappin, T.; Lawrence, M.A.; Levy, H.; Lewis, D.A.; Meyer, D.I.; Mohanty, G.; Punch, M.; Reynolds, P.T.; Rovero, A.C.; Sembroski, G.; Weaverdyck, C.; Weekes, T.C.; Whitaker, T.; Wilson, C.

    1993-01-01

    A second 10 meter class imaging telescope was constructed on Mt. Hopkins, Arizona, the site of the original 10 meter Whipple Cherenkov telescope. The twin telescope system with a 140 meter base line will allow both a reduction in the energy threshold and an improvement in the rejection of the hardonic background. The new telescope started operation in December 1991. With the final completion of the first installation stage (GRANITE I) during spring 92, it is now operating simultaneously with the orginal reflector. We describe in this paper design and construction of the new instrument and demonstrate the capability of the experiment to record coincident events

  20. A functional analysis of the spacer of V(D)J recombination signal sequences.

    Science.gov (United States)

    Lee, Alfred Ian; Fugmann, Sebastian D; Cowell, Lindsay G; Ptaszek, Leon M; Kelsoe, Garnett; Schatz, David G

    2003-10-01

    During lymphocyte development, V(D)J recombination assembles antigen receptor genes from component V, D, and J gene segments. These gene segments are flanked by a recombination signal sequence (RSS), which serves as the binding site for the recombination machinery. The murine Jbeta2.6 gene segment is a recombinationally inactive pseudogene, but examination of its RSS reveals no obvious reason for its failure to recombine. Mutagenesis of the Jbeta2.6 RSS demonstrates that the sequences of the heptamer, nonamer, and spacer are all important. Strikingly, changes solely in the spacer sequence can result in dramatic differences in the level of recombination. The subsequent analysis of a library of more than 4,000 spacer variants revealed that spacer residues of particular functional importance are correlated with their degree of conservation. Biochemical assays indicate distinct cooperation between the spacer and heptamer/nonamer along each step of the reaction pathway. The results suggest that the spacer serves not only to ensure the appropriate distance between the heptamer and nonamer but also regulates RSS activity by providing additional RAG:RSS interaction surfaces. We conclude that while RSSs are defined by a "digital" requirement for absolutely conserved nucleotides, the quality of RSS function is determined in an "analog" manner by numerous complex interactions between the RAG proteins and the less-well conserved nucleotides in the heptamer, the nonamer, and, importantly, the spacer. Those modulatory effects are accurately predicted by a new computational algorithm for "RSS information content." The interplay between such binary and multiplicative modes of interactions provides a general model for analyzing protein-DNA interactions in various biological systems.

  1. Effect of plastic spacer handling on salbutamol lung deposition in asthmatic children

    DEFF Research Database (Denmark)

    Lipworth, Brian J; Lee, Daniel K C; Anhøj, Jacob

    2002-01-01

    AIMS: To study the effects of electrostatics in a plastic spacer on the lung deposition of salbutamol in asthmatic children. METHODS: Twenty-five children (5-12 years) with mild asthma were given salbutamol hydrofluoroalkane pressurized metered dose inhaler 400 micro g via a 750 ml plastic spacer...

  2. Optical absorption enhancement by inserting ZnO optical spacer in plasmonic organic solar cells

    Science.gov (United States)

    N'Konou, Kekeli; Torchio, Philippe

    2018-01-01

    Optical absorption enhancement (AE) using coupled optical spacer and plasmonic effects in standard and inverted organic solar cells (OSCs) are demonstrated using the finite-difference time-domain numerical method. The influence of an added zinc oxide (ZnO) optical spacer layer inserted below the active layer in standard architecture is first theoretically investigated while the influence of varying the ZnO cathodic buffer layer thickness in inverted design is studied on AE. Then, the embedding of a square periodic array of core-shell silver-silica nanospheres (Ag@SiO2 NSs) at different positions in standard and inverted OSCs is performed while AE and short-circuit current density (Jsc) are calculated. As a result of previous combined effects, the optimized standard plasmonic OSCs present 15% and 79.45% enhancement in J over the reference with and without ZnO optical spacer layer, respectively, and a 16% increase of AE when Ag@SiO2 NSs are placed on top of the PEDOT:PSS layer. Compared to the inverted OSC reference, the plasmonic OSCs present 26% and 27% enhancement in J and AE, respectively, when the Ag@SiO2 NSs are located on top of the ZnO layer. Furthermore, the spatial position of these NSs in such OSCs is a key parameter for increasing light absorption via enhanced electromagnetic field distribution.

  3. Technological Aspects of Creating Large-size Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available A concept of the telescope creation, first of all, depends both on a choice of the optical scheme to form optical radiation and images with minimum losses of energy and information and on a choice of design to meet requirements for strength, stiffness, and stabilization characteristics in real telescope operation conditions. Thus, the concept of creating large-size telescopes, certainly, involves the use of adaptive optics methods and means.The level of technological capabilities to realize scientific and engineering ideas define a successful development of large-size optical telescopes in many respects. All developers pursue the same aim that is to raise an amount of information by increasing a main mirror diameter of the telescope.The article analyses the adaptive telescope designs developed in our country. Using a domestic ACT-25 telescope as an example, it considers creation of large-size optical telescopes in terms of technological aspects. It also describes the telescope creation concept features, which allow reaching marginally possible characteristics to ensure maximum amount of information.The article compares a wide range of large-size telescopes projects. It shows that a domestic project to create the adaptive ACT-25 super-telescope surpasses its foreign counterparts, and there is no sense to implement Euro50 (50m and OWL (100m projects.The considered material gives clear understanding on a role of technological aspects in development of such complicated optic-electronic complexes as a large-size optical telescope. The technological criteria of an assessment offered in the article, namely specific informational content of the telescope, its specific mass, and specific cost allow us to reveal weaknesses in the project development and define a reserve regarding further improvement of the telescope.The analysis of results and their judgment have shown that improvement of optical largesize telescopes in terms of their maximum

  4. Application of a hydrogel spacer for postoperative salvage radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Pinkawa, Michael; Schubert, Carolin; Escobar-Corral, Nuria; Holy, Richard; Eble, Michael J.

    2015-01-01

    In contrast to primary radiotherapy, no reports are available for a hydrogel spacer application in postoperative salvage radiotherapy for prostate cancer. A 77-year-old patient presented 20 years after radical prostatectomy with a digitally palpable local recurrence at the urethrovesical anastomosis (PSA 5.5 ng/ml). The hydrogel spacer (10 ml, SpaceOAR trademark) was injected between the local recurrence and rectal wall under transrectal ultrasound guidance. Treatment planning was performed with an intensity-modulated technique up to a total dose of 76 Gy in 2-Gy fractions. The same planning was performed based on computed tomography before spacer injection for comparison. The local recurrence, initially directly on the rectal wall, could be displaced more than 1 cm from the rectal wall after hydrogel injection. With a mean total dose of 76 Gy to the planning target volume, rectal wall volumes included in the 70 Gy, 60 Gy, 50 Gy isodoses were 0 cm 3 , 0 cm 3 , and 0.4 cm 3 with a spacer and 2.9 cm 3 , 4.5 cm 3 , and 6.2 cm 3 without a spacer, respectively. The patient reported rectal urgency during radiotherapy, completely resolving after the end of treatment. The PSA level was 5.4 ng/ml a week before the end of radiotherapy and dropped to 0.9 ng/ml 5 months after radiotherapy. A hydrogel spacer was successfully applied for dose-escalated radiotherapy in a patient with macroscopic local prostate cancer recurrence at the urethrovesical anastomosis to decrease the dose at the rectal wall. This option can be considered in specifically selected patients. (orig.) [de

  5. Ghost telescope and ghost Fourier telescope with thermal light

    International Nuclear Information System (INIS)

    Gong Wenlin; Han Shensheng

    2011-01-01

    As important observation tools, telescopes are very useful in remote observations. We report a proof-of-principle experimental demonstration of ghost telescope scheme and show that, by measuring the intensity correlation of two light fields and only changing the position of the detector in the reference path, ghost telescope and ghost Fourier telescope can be obtained even if a single-pixel detector is fixed in Fresnel region of the object. Differences between conventional telescope and ghost telescope are also discussed.

  6. Lunar-based optical telescopes: Planning astronomical tools of the twenty-first century

    Science.gov (United States)

    Hilchey, J. D.; Nein, M. E.

    1995-02-01

    A succession of optical telescopes, ranging in aperture from 1 to 16 m or more, can be deployed and operated on the lunar surface over the next half-century. These candidates to succeed NASA's Great Observatories would capitalize on the unique observational advantages offered by the Moon. The Lunar Telescope Working Group and the LUTE Task Team of the George C. Marshall Space Flight Center (MSFC) have assessed the feasibility of developing and deploying these facilities. Studies include the 16-m Large Lunar Telescope (LLT); the Lunar Cluster Telescope Experiment (LCTE), a 4-m precursor to the LLT; the 2-m Lunar Transit Telescope (LTT); and its precursor, the 1-m Lunar Ultraviolet Telescope Experiment (LUTE). The feasibility of developing and deploying each telescope was assessed and system requirements and options for supporting technologies, subsystems, transportation, and operations were detailed. Influences of lunar environment factors and site selection on telescope design and operation were evaluated, and design approaches and key tradeoffs were established. This paper provides an overview of the study results. Design concepts and brief system descriptions are provided, including subsystem and mission options selected for the concepts.

  7. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  8. Advanced Athermal Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed innovative athermal telescope design uses advanced lightweight and high-stiffness material of Beryllium-Aluminum (Be-38Al). Peregrine's expertise with...

  9. The independent loss model with ordered insertions for the evolution of CRISPR spacers.

    Science.gov (United States)

    Baumdicker, F; Huebner, A M I; Pfaffelhuber, P

    2018-02-01

    Today, the CRISPR (clustered regularly interspaced short palindromic repeats) region within bacterial and archaeal genomes is known to encode an adaptive immune system. We rely on previous results on the evolution of the CRISPR arrays, which led to the ordered independent loss model, introduced by Kupczok and Bollback (2013). When focusing on the spacers (between the repeats), new elements enter a CRISPR array at rate θ at the leader end of the array, while all spacers present are lost at rate ρ along the phylogeny relating the sample. Within this model, we compute the distribution of distances of spacers which are present in all arrays in a sample of size n. We use these results to estimate the loss rate ρ from spacer array data for n=2 and n=3. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Technology of electron beam welding for Zr-4 alloy spacer grid

    International Nuclear Information System (INIS)

    Pei Qiusheng; Wu Xueyi; Yang Qishun

    1989-10-01

    The welding technology for Zr-4 alloy spacer grid by using vacuum electron beam was studied. Through a series of welding technological experiments, metallographic examinations of seam structure and detecting tests for welding defect by X-ray defectoscopy, a good welding technology was selected to meet the requirements. The experimental results indicated that the Zr-4 alloy spacer grid welded by vacuum electron beam welding is feasible

  11. The Submillimeter Telescope (SMT) project

    International Nuclear Information System (INIS)

    Martin, R.N.; Baars, J.W.M.

    1990-01-01

    To exploit the potential of submillimeter astronomy, the Submillimeter Telescope (SMT) will be located at an altitude of 3178 meters on Emerald Peak 75 miles northeast of Tucson in Southern Arizona. The instrument is an altazimuth mounted f/13.8 Cassegrain homology telescope with two Nasmyth and bent Cassegrain foci. It will have diffraction limited performance at a wavelength of 300 microns and an operating overall figure accuracy of 15 microns rms. An important feature of the SMT is the construction of the primary and secondary reflectors out of aluminum-core CFRP face sheet sandwich panels, and the reflector backup structure and secondary support out of CFRP structural elements. This modern technology provides both a means for reaching the required precision of the SMT for both night and day operation (basically because of the low coefficient of thermal expansion and high strength-to-weight ratio of CFRP) and a potential route for the realization of lightweight telescopes of even greater accuracy in the future. The SMT will be the highest accuracy radio telescope ever built (at least a factor of 2 more accurate than existing telescopes). In addition, the SMT will be the first 10 m-class submillimeter telescope with a surface designed for efficient measurements at the important 350 microns wavelength atmospheric window. 9 refs

  12. In vitro performance of three combinations of spacers and pressurized metered dose inhalers for treatment in children

    DEFF Research Database (Denmark)

    Berg, E; Madsen, J; Bisgaard, H

    1998-01-01

    The performance of pressurized metered dose inhalers (pMDIs) and spacers in correct dose recommendations is important, but limited information on dose delivery and fine-particle dose from different combinations of spacers and pMDIs is available. In this study, three combinations of spacers and p...... and spacers, with the NebuChamber giving the highest dose, both as delivered dose and in droplets account for these differences....

  13. Secondary mirror system for the European Solar Telescope (EST)

    Science.gov (United States)

    Cavaller, L.; Siegel, B.; Prieto, G.; Hernandez, E.; Casalta, J. M.; Mercader, J.; Barriga, J.

    2010-07-01

    The European Solar Telescope (EST) is a European collaborative project to build a 4m class solar telescope in the Canary Islands, which is now in its design study phase. The telescope will provide diffraction limited performance for several instruments observing simultaneously at the Coudé focus at different wavelengths. A multi-conjugated adaptive optics system composed of a tip-tilt mirror and several deformable mirrors will be integrated in the telescope optical path. The secondary mirror system is composed of the mirror itself (Ø800mm), the alignment drives and the cooling system needed to remove the solar heat load from the mirror. During the design study the feasibility to provide fast tip-tilt capabilities at the secondary mirror to work as the adaptive optics tip-tilt mirror is also being evaluated.

  14. The Southern African Large Telescope project

    Science.gov (United States)

    Buckley, David A. H.; Charles, Philip A.; Nordsieck, Kenneth H.; O'Donoghue, Darragh

    The recently completed Southern African Large Telescope (SALT) is a low cost, innovative, 10 m class optical telescope, which began limited scientific operations in August 2005, just 5 years after ground-breaking. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous systems engineering approach has ensured that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array and a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable 10 m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900 nm) and featuring some niche observational capabilities, SALT will have an ability to conduct some unique science. This includes high time resolution studies, for which some initial results have already been obtained. Many of the versatile modes available with the RSS - which is currently being commissioned - are unique and provide unparallelled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (with slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot étalons and interference filters, will extend the multiplex advantage over resolutions from 300 to 9000 and fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (to between 1.5 to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror and AO. Finally, extrapolations of the SALT/HET designs to ELT proportions remain viable and are surely more affordable than conventional

  15. The Swift Ultra-Violet/Optical Telescope

    International Nuclear Information System (INIS)

    Roming, Peter; Hunsberger, S.D.; Nousek, John; Mason, Keith

    2001-01-01

    The Ultra-Violet/Optical Telescope (UVOT) provides the Swift Gamma-Ray Burst Explorer with the capability of quickly detecting and characterizing the optical and ultraviolet properties of gamma ray burst counterparts. The UVOT design is based on the design of the Optical Monitor on XMM-Newton. It is a Ritchey-Chretien telescope with microchannel plate intensified charged-coupled devices (MICs) that deliver sub-arcsecond imaging. These MICs are photon-counting devices, capable of detecting low intensity signal levels. When flown above the atmosphere, the UVOT will have the sensitivity of a 4m ground based telescope, attaining a limiting magnitude of 24 for a 1000 second observation in the white light filter. A rotating filter wheel allows sensitive photometry in six bands spanning the UV and visible, which will provide photometric redshifts of objects in the 1-3.5z range. For bright counterparts, such as the 9th magnitude GRB990123, or for fainter objects down to 17th magnitude, two grisms provide low-resolution spectroscopy

  16. Non linear fe analysis on the static buckling behavior of the spacer grid structures

    International Nuclear Information System (INIS)

    Song, K.N.; Yoon, K.H.

    2001-01-01

    In this study considered is the static buckling behavior of spacer grids in the fuel assembly, which are required to have a sufficient strength against an accident like earthquake. Special attention is given to the finite element modeling of the spot-welding and the constraints between the spacer strips assembled together: it is found that a proper treatment of the constraints is critical for accurate assessment of the buckling behavior including strain localization at the point of spot welding. The buckling strength of the 17 x 17 spacer grid, which is difficult to analyze due to a large number of degrees of freedom, is estimated from analysis for the smaller models 3 x 3, 5 x 5, 7 x 7, and 9 x 9 spacer grids. (authors)

  17. Investigation of the performance behavior of a forward osmosis membrane system using various feed spacer materials fabricated by 3D printing technique.

    Science.gov (United States)

    Yanar, Numan; Son, Moon; Yang, Eunmok; Kim, Yeji; Park, Hosik; Nam, Seung-Eun; Choi, Heechul

    2018-07-01

    Recently, feed spacer research for improving the performance of a membrane module has adopted three-dimensional (3D) printing technology. This study aims to improve the performance of membrane feed spacers by using various materials and incorporating 3D printing. The samples were fabricated after modeling with 3D computer-aided design (CAD) software to investigate the mechanical strength, water flux, reverse solute flux, and fouling performances. This research was performed using acrylonitrile butadiene styrene (ABS), polypropylene (PP), and natural polylactic acid (PLA) as printing material, and the spacer model was produced using a diamond-shaped feed spacer, with a commercially available product as a reference. The 3D printed samples were initially compared in terms of size and precision with the 3D CAD model, and deviations were observed between the products and the CAD model. Then, the spacers were tested in terms of mechanical strength, water flux, reverse solute flux, and fouling (alginate-based waste water was used as a model foulant). Although there was not much difference among the samples regarding the water flux, better performances than the commercial product were obtained for reverse solute flux and fouling resistance. When comparing the prominent performance of natural PLA with the commercial product, PLA was found to have approximately 10% less fouling (based on foulant volume per unit area and root mean square roughness values), although it showed similar water flux. Thus, another approach has been introduced for using bio-degradable materials for membrane spacers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. An impact test system design and its applications to dynamic buckling of a spacer grid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sheng, E-mail: liusheng_05@126.com; Fan, Chenguang; Yang, Yiren

    2016-11-15

    This study is aimed at investigating the dynamic buckling load, dynamic stiffness, damping and buckling characteristics of the spacer grid assembly (SGA). A pendulum impact test system is designed to experiment the buckling of SGAs. Three criterions are discussed and compared to determine the buckling loads of SGAs: B-R criterion, energy criterion and extreme value criterion. Two approaches are applied to calculate the dynamic stiffness of SGAs: One method is natural period method based on the hypothesis of harmonic motion of the pendulum whose period is approximated because of the passivation and tailing of the impact force time history; and the other is energy method based on the conservation of mechanical energy. The equivalent viscous damping is defined as the resultant cause of dissipation and is obtained by the energy principle. The impact force time history loses its approximate symmetry after buckling occurs. The impact force and displacement reach their maxima almost at the same time at pre-buckling states but not post-buckling states. Vertical straps in SGA are found to be transversely shared by horizontal straps at the buckling position. The buckling of SGA results from the lack of strength of complete structure; and the strength of material has no effects on the buckling.

  19. High performance Lyot and PIAA coronagraphy for arbitrarily shaped telescope apertures

    Energy Technology Data Exchange (ETDEWEB)

    Guyon, Olivier; Hinz, Philip M. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Cady, Eric [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Belikov, Ruslan [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Martinache, Frantz, E-mail: guyon@naoj.org [National Astronomical Observatory of Japan, Subaru Telescope, Hilo, HI 96720 (United States)

    2014-01-10

    Two high-performance coronagraphic approaches compatible with segmented and obstructed telescope pupils are described. Both concepts use entrance pupil amplitude apodization and a combined phase and amplitude focal plane mask to achieve full coronagraphic extinction of an on-axis point source. While the first concept, called Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC), relies on a transmission mask to perform the pupil apodization, the second concept, called Phase-Induced Amplitude Apodization complex mask coronagraph (PIAACMC), uses beam remapping for lossless apodization. Both concepts theoretically offer complete coronagraphic extinction (infinite contrast) of a point source in monochromatic light, with high throughput and sub-λ/D inner working angle, regardless of aperture shape. The PIAACMC offers nearly 100% throughput and approaches the fundamental coronagraph performance limit imposed by first principles. The steps toward designing the coronagraphs for arbitrary apertures are described for monochromatic light. Designs for the APCMLC and the higher performance PIAACMC are shown for several monolith and segmented apertures, such as the apertures of the Subaru Telescope, Giant Magellan Telescope, Thirty Meter Telescope, the European Extremely Large Telescope, and the Large Binocular Telescope. Performance in broadband light is also quantified, suggesting that the monochromatic designs are suitable for use in up to 20% wide spectral bands for ground-based telescopes.

  20. Optical and thermal design of 1.5-m aperture solar UV visible and IR observing telescope for Solar-C mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Horiuchi, T.; Matsumoto, Y.; Takeyama, N.

    2017-11-01

    The next Japanese solar mission, SOLAR-C, which has been envisaged after successful science operation of Hinode (SOLAR-B) mission, is perusing two plans: plan-A and plan-B, and under extensive study from science objectives as well as engineering point of view. The plan-A aims at performing out-of-ecliptic observations for investigating, with helioseismic approach, internal structure and dynamo mechanisms of the Sun. It also explores polar regions where fast solar wind is believed to originate. A baseline orbit for plan-A is a circular orbit of 1 AU distance from the Sun with its inclination at around or greater than 40 degrees. The plan-B aims to study small-scale plasma processes and structures in the solar atmosphere which attract researchers' growing interest, followed by many Hinode discoveries [1], for understanding fully dynamism and magnetic nature of the atmosphere. With plan-B, high-angular-resolution investigation of the entire solar atmosphere (from the photosphere to the corona, including their interface layers, i.e., chromosphere and transition region) is to be performed with enhanced spectroscopic and spectro-polarimetric capability as compared with Hinode, together with enhanced sensitivity towards ultra-violet wavelengths. The orbit of plan-B is either a solar synchronous polar orbit of altitude around 600 km or a geosynchronous orbit to ensure continuous solar observations. After the decision of any one of the two plans, the SOLAR-C will be proposed for launch in mid-2010s. In this paper, we will present a basic design of one of major planned instrumental payload for the plan-B: the Solar Ultra-violet Visible and near IR observing Telescope (hereafter referred to as SUVIT). The basic concept in designing the SUVIT is to utilize as much as possible a heritage of successful telescope of the Solar Optical Telescope (SOT) aboard Hinode [2]. Major differences of SUVIT from SOT are the three times larger aperture of 1.5 m, which enables to collect one

  1. A study on the characteristics of the spacer spring by finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Keun; Kim, Hyung Kyu; Kim, Kyu Tae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The mechanical integrity of spacer springs in KOFA was certified through the mechanical tests by KWU. In this report, the spacer spring characteristics were obtained by using a commercial FEM code ANSYS, and the calculated results were compared with the mechanical test results. It has been found that the analytical results from ANSYS were in good agreement with the test results in the actual working range of the spacer springs even though some errors occurred in the range of initial spring deflection. The errors were thought to occur due to the simplified boundary conditions and the nominal dimensions which are used in calculations rather than the as-fabricated dimensions. Though the results from ANSYS are not fully satisfied, the analytical method in this report has been verified to be used as a method for investigating the characteristic of spacer springs roughly before conducting mechanical tests. 8 tabs., 25 figs (Author) .new.

  2. Processing of data from innovative parabolic strip telescope.

    Science.gov (United States)

    Kosejk, Vladislav; Novy, J.; Chadzitaskos, Goce

    2015-12-01

    This paper presents an innovative telescope design based on the usage of a parabolic strip fulfilling the function of an objective. Isaac Newton was the first to solve the problem of chromatic aberration, which is caused by a difference in the refractive index of lenses. This problem was solved by a new kind of telescope with a mirror used as an objective. There are many different kinds of telescopes. The most basic one is the lens telescope. This type of a telescope uses a set of lenses. Another type is the mirror telescope, which employs the concave mirror, spherical parabolic mirror or hyperbolically shaped mirror as its objective. The lens speed depends directly on the surface of a mirror. Both types can be combined to form a telescope composed of at least two mirrors and a set of lenses. The light is reflected from the primary mirror to the secondary one and then to the lens system. This type is smaller-sized, with a respectively reduced lens speed. The telescope design presented in this paper uses a parabolic strip fulfilling the function of an objective. Observed objects are projected as lines in a picture plane. Each of the lines of a size equal to the size of the strip corresponds to the sum of intensities of the light coming perpendicular to the objective from an observed object. A series of pictures taken with a different rotation and processed by a special reconstruction algorithm is needed to get 2D pictures. The telescope can also be used for fast detection of objects. In this mode, the rotation and multiple pictures are not needed, just one picture in the focus of a mirror is required to be taken.

  3. Design and performance of axes controller for the 50/80 cm ARIES Schmidt telescope

    Science.gov (United States)

    Kumar, T. S.; Banwar, R. N.

    We describe here the details of R.A. and Dec axes controller for the 50/80 cm Schmidt telescope at Aryabhatta Research Institute of observational sciencES (ARIES). Each axis is driven by a set of two motors for backlash-free motion and is coupled to on-shaft encoder for absolute position measurements. Additional incremental encoders are provided though a backlash-free reduction for velocity feedback. A pulse width modulation (PWM) based proportional and integral (PI) controller is designed to drive the twin-motor drive of each axis. The overall telescope control architecture features a distributed network of simple low cost PIC microcontrollers interfaced via CAN bus and RS232 ports. Using this controller it has been observed that the rms velocity errors at slew, set, guide, fine and tracking speeds are negligible. Excessive preload on the gearbox bearings results in a highly nonlinear behavior at fine speeds owing to dynamics of friction. We found that the peak errors in the tracking performance and fine speeds can be improved by properly adjusting the preloads on the gearbox bearings.

  4. Software design and code generation for the engineering graphical user interface of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Tanci, Claudio; Tosti, Gino; Antolini, Elisa; Gambini, Giorgio F.; Bruno, Pietro; Canestrari, Rodolfo; Conforti, Vito; Lombardi, Saverio; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvatore

    2016-08-01

    ASTRI is an on-going project developed in the framework of the Cherenkov Telescope Array (CTA). An end- to-end prototype of a dual-mirror small-size telescope (SST-2M) has been installed at the INAF observing station on Mt. Etna, Italy. The next step is the development of the ASTRI mini-array composed of nine ASTRI SST-2M telescopes proposed to be installed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort carried on by Italy, Brazil and South-Africa and led by the Italian National Institute of Astrophysics, INAF. To control the ASTRI telescopes, a specific ASTRI Mini-Array Software System (MASS) was designed using a scalable and distributed architecture to monitor all the hardware devices for the telescopes. Using code generation we built automatically from the ASTRI Interface Control Documents a set of communication libraries and extensive Graphical User Interfaces that provide full access to the capabilities offered by the telescope hardware subsystems for testing and maintenance. Leveraging these generated libraries and components we then implemented a human designed, integrated, Engineering GUI for MASS to perform the verification of the whole prototype and test shared services such as the alarms, configurations, control systems, and scientific on-line outcomes. In our experience the use of code generation dramatically reduced the amount of effort in development, integration and testing of the more basic software components and resulted in a fast software release life cycle. This approach could be valuable for the whole CTA project, characterized by a large diversity of hardware components.

  5. Twin-Telescope Wettzell (TTW)

    Science.gov (United States)

    Hase, H.; Dassing, R.; Kronschnabl, G.; Schlüter, W.; Schwarz, W.; Lauber, P.; Kilger, R.

    2007-07-01

    Following the recommendations made by the VLBI2010 vision report of the IVS, a proposal has been made to construct a Twin Telescope for the Fundamental Station Wettzell in order to meet the future requirements of the next VLBI generation. The Twin Telescope consists of two identical radiotelescopes. It is a project of the Federal Agency for Cartography and Geodesy (BKG). This article summarizes the project and some design ideas for the Twin-Telescope. %ZALMA (2005). Technical Specification for Design, Manufacturing, Transport and Integration on Site of the ALMA ANTENNAS, Doc. ALMA-34.00.00.00.006-BSPE. Behrend, D. (2006). VLBI2010 Antenna Specs, Data sheet. DeBoer, D. (2001). The ATA Offset Gregorian Antenna, ATA Memo #16, February 10. Imbriale, W.A. (2006). Design of a Wideband Radio Telescope, Jet Propulsion Laboratory and S. Weinreb and H. Mandi, California Institute of Technology. Kilger, R. (2007). TWIN-Design studies, Presentation for the IVS board members (internal document),Wettzell. Kronschnabl, G. (2006). Subject: Memo from Bill Petrachenko, E-mail to the Twin-Working Group (in German), July. Lindgren, ETS-Lindgren (2005). The Model 3164-05 Open Boundary Quadridge Horn, Data Sheet. Niell, A., A. Whitney, W. Petrachenko, W. Schlüter, N. Vandenberg, H.Hase, Y. Koyama, C. Ma, H. Schuh, G. Tucari (2006). in: IVS Annual Report 2005, pg. 13-40, NASA/TP-2006-214136, April. Olsson, R., Kildal, P.-S., and Weinreb, S. (2006). IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, February. Petrachenko, B. (2006). The Case For and Against Multiple Antennas at a Site, IVS Memorandum, 2006-019v01. Petrachenko, B. (2006). IVS Memorandum, 2006-016v01. RFSpin (2004). Double Ridged Waveguide Horn-Model DRH20, Antenna Specifications, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Crossed Log- Periodic Antennas HL024A1/S1, Data Sheet. Rohde&Schwarz (2004). SHF Antennas Log-Periodic Antennas HL050/HL050S1, Data Sheet. Rogers, A.E.E. (2006). Simulations of broadband

  6. Development of the optical system for the SST-1M telescope of the Cherenkov Telescope Array observatory

    CERN Document Server

    Ostrowski, Michael; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Schioppa, E. jr; Schovanek, P.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.; Barciński, T.; Karczewski, M.; Kukliński, J. Nicolau; Płatos, Ł.; Rataj, M.; Wawer, P.; Wawrzaszek, R.

    2016-01-01

    The prototype of a Davies-Cotton small size telescope (SST-1M) has been designed and developed by a consortium of Polish and Swiss institutions and proposed for the Cherenkov Telescope Array (CTA) observatory. The main purpose of the optical system is to focus the Cherenkov light emitted by extensive air showers in the atmosphere onto the focal plane detectors. The main component of the system is a dish consisting of 18 hexagonal mirrors with a total effective collection area of 6.47 m2 (including the shadowing and estimated mirror reflectivity). Such a solution was chosen taking into account the analysis of the Cherenkov light propagation and based on optical simulations. The proper curvature and stability of the dish is ensured by the mirror alignment system and the isostatic interface to the telescope structure. Here we present the design of the optical subsystem together with the performance measurements of its components.

  7. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    International Nuclear Information System (INIS)

    Daqiq, Reza; Ghobadi, Nader

    2016-01-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  8. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Energy Technology Data Exchange (ETDEWEB)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-15

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  9. Final design and progress of WEAVE : the next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; Middleton, Kevin; Benn, Chris; Dee, Kevin; Sayède, Frédéric; Lewis, Ian; Pragt, Johannes; Pico, Sergio; Walton, Nic; Rey, Jeurg; Allende Prieto, Carlos; Peñate, José; Lhome, Emilie; Agócs, Tibor; Alonso, José; Terrett, David; Brock, Matthew; Gilbert, James; Schallig, Ellen; Ridings, Andy; Guinouard, Isabelle; Verheijen, Marc; Tosh, Ian; Rogers, Kevin; Lee, Martin; Steele, Iain; Stuik, Remko; Tromp, Niels; Jaskó, Attila; Carrasco, Esperanza; Farcas, Szigfrid; Kragt, Jan; Lesman, Dirk; Kroes, Gabby; Mottram, Chris; Bates, Stuart; Rodriguez, Luis Fernando; Gribbin, Frank; Delgado, José Miguel; Herreros, José Miguel; Martin, Carlos; Cano, Diego; Navarro, Ramon; Irwin, Mike; Lewis, Jim; Gonzalez Solares, Eduardo; Murphy, David; Worley, Clare; Bassom, Richard; O'Mahoney, Neil; Bianco, Andrea; Zurita, Christina; ter Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Martin, Adrian; Vallenari, Antonella; Salasnich, Bernardo; Baruffolo, Andrea; Jin, Shoko; Hill, Vanessa; Smith, Dan; Drew, Janet; Poggianti, Bianca; Pieri, Mat; Dominquez Palmero, Lillian; Farina, Cecilia

    2016-01-01

    We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also

  10. Final design and progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; Middleton, Kevin; Benn, Chris; Dee, Kevin; Sayède, Frédéric; Lewis, Ian; Pragt, Johannes; Pico, Sergio; Walton, Nic; Rey, Jeurg; Allende Prieto, Carlos; Peñate, José; Lhome, Emilie; Agócs, Tibor; Alonso, José; Terrett, David; Brock, Matthew; Gilbert, James; Schallig, Ellen; Ridings, Andy; Guinouard, Isabelle; Verheijen, Marc; Tosh, Ian; Rogers, Kevin; Lee, Martin; Steele, Iain; Stuik, Remko; Tromp, Niels; Jaskó, Attila; Carrasco, Esperanza; Farcas, Szigfrid; Kragt, Jan; Lesman, Dirk; Kroes, Gabby; Mottram, Chris; Bates, Stuart; Rodriguez, Luis Fernando; Gribbin, Frank; Delgado, José Miguel; Herreros, José Miguel; Martin, Carlos; Cano, Diego; Navarro, Ramon; Irwin, Mike; Lewis, Jim; Gonzalez Solares, Eduardo; Murphy, David; Worley, Clare; Bassom, Richard; O'Mahoney, Neil; Bianco, Andrea; Zurita, Christina; ter Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Martin, Adrian; Vallenari, Antonella; Salasnich, Bernardo; Baruffolo, Andrea; Jin, Shoko; Hill, Vanessa; Smith, Dan; Drew, Janet; Poggianti, Bianca; Pieri, Mat; Dominquez Palmero, Lillian; Farina, Cecilia

    2016-01-01

    We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also

  11. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Science.gov (United States)

    Konno, Y.; Kubo, H.; Masuda, S.; Paoletti, R.; Poulios, S.; Rugliancich, A.; Saito, T.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards.

  12. Nuclear reactor spring strip grid spacer

    International Nuclear Information System (INIS)

    Patterson, J.F.; Flora, B.S.

    1980-01-01

    An improved and novel grid spacer for maintaining the fuel rods of a nuclear reactor fuel assembly in substantially parallel array is described. The invention provides for spring strips to maintain the fuel elements in their desired orientation which have more positive alignment than previous types while allowing greater flexibility to counterbalance the effects of differential thermal expansion. (UK)

  13. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance

    DEFF Research Database (Denmark)

    Singh, K; Stewart, G.; Westergaard, Niels Jørgen Stenfeldt

    2017-01-01

    The Soft X-ray focusing Telescope (SXT), India’s first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3–8.0 keV are focussed on to a cooled charge coupled device thus providing ...

  14. Conceptual Design Gamma-Ray Large Area Space Telescope (GLAST) Tower Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Chad

    2002-07-18

    The main objective of this work was to develop a conceptual design and engineering prototype for the Gamma-ray Large Area Space Telescope (GLAST) tower structure. This thesis describes the conceptual design of a GLAST tower and the fabrication and testing of a prototype tower tray. The requirements were that the structure had to support GLAST's delicate silicon strip detector array through ground handling, launch and in orbit operations as well as provide for thermal and electrical pathways. From the desired function and the given launch vehicle for the spacecraft that carries the GLAST detector, an efficient structure was designed which met the requirements. This thesis developed in three stages: design, fabrication, and testing. During the first stage, a general set of specifications was used to develop the initial design, which was then analyzed and shown to meet or exceed the requirements. The second stage called for the fabrication of prototypes to prove manufacturability and gauge cost and time estimates for the total project. The last step called for testing the prototypes to show that they performed as the analysis had shown and prove that the design met the requirements. As a spacecraft engineering exercise, this project required formulating a solution based on engineering judgment, analyzing the solution using advanced engineering techniques, then proving the validity of the design and analysis by the manufacturing and testing of prototypes. The design described here met all the requirements set out by the needs of the experiment and operating concerns. This strawman design is not intended to be the complete or final design for the GLAST instrument structure, but instead examines some of the main challenges involved and demonstrates that there are solutions to them. The purpose of these tests was to prove that there are solutions to the basic mechanical, electrical and thermal problems presented with the GLAST project.

  15. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires

    Directory of Open Access Journals (Sweden)

    Sukrit Silas

    2017-07-01

    Full Text Available Cas1 integrase is the key enzyme of the clustered regularly interspaced short palindromic repeat (CRISPR-Cas adaptation module that mediates acquisition of spacers derived from foreign DNA by CRISPR arrays. In diverse bacteria, the cas1 gene is fused (or adjacent to a gene encoding a reverse transcriptase (RT related to group II intron RTs. An RT-Cas1 fusion protein has been recently shown to enable acquisition of CRISPR spacers from RNA. Phylogenetic analysis of the CRISPR-associated RTs demonstrates monophyly of the RT-Cas1 fusion, and coevolution of the RT and Cas1 domains. Nearly all such RTs are present within type III CRISPR-Cas loci, but their phylogeny does not parallel the CRISPR-Cas type classification, indicating that RT-Cas1 is an autonomous functional module that is disseminated by horizontal gene transfer and can function with diverse type III systems. To compare the sequence pools sampled by RT-Cas1-associated and RT-lacking CRISPR-Cas systems, we obtained samples of a commercially grown cyanobacterium—Arthrospira platensis. Sequencing of the CRISPR arrays uncovered a highly diverse population of spacers. Spacer diversity was particularly striking for the RT-Cas1-containing type III-B system, where no saturation was evident even with millions of sequences analyzed. In contrast, analysis of the RT-lacking type III-D system yielded a highly diverse pool but reached a point where fewer novel spacers were recovered as sequencing depth was increased. Matches could be identified for a small fraction of the non-RT-Cas1-associated spacers, and for only a single RT-Cas1-associated spacer. Thus, the principal source(s of the spacers, particularly the hypervariable spacer repertoire of the RT-associated arrays, remains unknown.

  16. Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)

    Science.gov (United States)

    Lee, J. H.; Brooks, W. F.

    1984-01-01

    The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.

  17. Construction of the Advanced Technology Solar Telescope

    Science.gov (United States)

    Rimmele, T. R.; Keil, S.; McMullin, J.; Knölker, M.; Kuhn, J. R.; Goode, P. R.; Rosner, R.; Casini, R.; Lin, H.; Tritschler, A.; Wöger, F.; ATST Team

    2012-12-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has entered its construction phase. Major subsystems have been contracted. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4m aperture, ATST will resolve features at 0.″03 at visible wavelengths and obtain 0.″1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectro-polarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a four-meter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  18. USE OF ANTIBIOTIC CEMENT SPACERS/BEADS IN TREATMENT ...

    African Journals Online (AJOL)

    ABSTRACT. Background: Chronic musculoskeletal infection involving bone present a big challenge to orthopaedic surgeons. ... Current data has demonstrated that the use of .... Antibiotic spacers are effective and add value in the treament of ...

  19. Ion therapy of prostate cancer: daily rectal dose reduction by application of spacer gel

    International Nuclear Information System (INIS)

    Rucinski, Antoni; Brons, Stephan; Richter, Daniel; Habl, Gregor; Debus, Jürgen; Bert, Christoph; Haberer, Thomas; Jäkel, Oliver

    2015-01-01

    Ion beam therapy represents a promising approach to treat prostate cancer, mainly due to its high conformity and radiobiological effectiveness. However, the presence of prostate motion, patient positioning and range uncertainties may deteriorate target dose and increase exposure of organs at risk. Spacer gel injected between prostate and rectum may increase the safety of prostate cancer (PC) radiation therapy by separating the rectum from the target dose field. The dosimetric impact of the application of spacer gel for scanned carbon ion therapy of PC has been analyzed at Heidelberg Ion-Beam Therapy Center (HIT). The robustness of ion therapy treatment plans was investigated by comparison of two data sets of patients treated with and without spacer gel. A research treatment planning system for ion therapy was used for treatment plan optimization and calculation of daily dose distributions on 2 to 9 Computed Tomography (CT) studies available for each of the 19 patients. Planning and daily dose distributions were analyzed with respect to target coverage, maximal dose to the rectum (excluding 1 ml of the greatest dose; Dmax-1 ml) and the rectal volume receiving dose greater than 90% of prescribed target dose (V90 Rectum ), respectively. The application of spacer gel did substantially diminish rectum dose. Dmax-1 ml on the treatment planning CT was on average reduced from 100.0 ± 1.0% to 90.2 ± 4.8%, when spacer gel was applied. The robustness analysis performed with daily CT studies demonstrated for all analyzed patient cases that application of spacer gel results in a decrease of the daily V90 Rectum index, which calculated over all patient cases and CT studies was 10.2 ± 10.4 [ml] and 1.1 ± 2.1 [ml] for patients without and with spacer gel, respectively. The dosimetric benefit of increasing the distance between prostate and rectum using spacer gel for PC treatment with carbon ion beams has been quantified. Application of spacer gel substantially reduced rectal

  20. Advanced KSNP fuel, plus7 : grid-to-rod fretting wear resistance of the plus7 spacer grids

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Yong Hwan; Jang, Young Ki; Choi, Joon Hyung

    2003-01-01

    Vibration-induced grid-to-rod fretting wear initiates at a certain critical gap correlated with a critical work rate. A critical gap between grid and rod forms due to in-reactor performance of fuel, thermal relaxation of grid spring and irradiation growth of grid strap, etc. A critical work rate may be generated by three vibration mechanisms proposed in this paper. Three vibration mechanisms have been derived with various fretting wear experience in commercial reactors as well as various out-of-pile hydraulic test results. The first active vibration mechanism is high turbulence-induced excessive fuel rod vibration with the combination of excessive grid-to-rod gap. The second active vibration mechanism is self-excited fuel assembly vibration in a low frequency range caused by hydraulically unbalanced mixing vanes of the spacer grid assembly. The third active vibration mechanism is self-excited spacer grid strap vibration in quite a high frequency range caused by some spacer grid designs. In this study, each vibration mechanism on the grid-to-rod fretting wear damage is discussed. On the other hand, the effects of various grid designs on the fretting wear damage in the commercial reactors are predicted using the long-term fretting wear test results. It is found that the larger grid-to-rod initial contact area generates the less fretting wear damage. Consequently the conformal spring of PLUS7 is superior to typical convex shaped spring with regard to fretting wear resistance since the former generates relatively larger contact area than the latter

  1. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems

    KAUST Repository

    Siddiqui, Amber; Farhat, Nadia; Bucs, Szilard; Valladares Linares, Rodrigo; Picioreanu, Cristian; Kruithof, Joop C.; van Loosdrecht, Mark C.M.; Kidwell, James; Vrouwenvelder, Johannes S.

    2016-01-01

    suggested that the impact of spacers on hydraulics and biofouling can be improved. A good agreement was found for the modeled and measured relationship between linear flow velocity and pressure drop for feed spacers with the same geometry, indicating

  2. The first GCT camera for the Cherenkov Telescope Array

    CERN Document Server

    De Franco, A.; Allan, D.; Armstrong, T.; Ashton, T.; Balzer, A.; Berge, D.; Bose, R.; Brown, A.M.; Buckley, J.; Chadwick, P.M.; Cooke, P.; Cotter, G.; Daniel, M.K.; Funk, S.; Greenshaw, T.; Hinton, J.; Kraus, M.; Lapington, J.; Molyneux, P.; Moore, P.; Nolan, S.; Okumura, A.; Ross, D.; Rulten, C.; Schmoll, J.; Schoorlemmer, H.; Stephan, M.; Sutcliffe, P.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Varner, G.; Watson, J.; Zink, A.

    2015-01-01

    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\\deg} angular size, resulting in a field of view of ~9{\\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.

  3. Solar synoptic telescope. Characteristics, possibilities, and limits of design

    Czech Academy of Sciences Publication Activity Database

    Klvaňa, Miroslav; Sobotka, Michal; Švanda, Michal

    2011-01-01

    Roč. 41, č. 2 (2011), s. 92-98 ISSN 1335-1842 R&D Projects: GA AV ČR IAA300030808 Institutional research plan: CEZ:AV0Z10030501 Keywords : Sun * telescopes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.152, year: 2011

  4. Stray radiation and the Infrared Astronomical Satellite /IRAS/ telescope

    Science.gov (United States)

    Noll, R. J.; Harned, R.; Breault, R. P.; Malugin, R.

    1981-01-01

    Stray light control is a major consideration in the design of infrared cryogenically cooled telescopes such as the Infrared Astronomical Satellite (IRAS). The basic design of the baffle system, and the placement, shape, and coating of the secondary support struts for the telescope subsystem are described. The intent of this paper is to highlight the stray light problems encountered while designing the system, and to illustrate how computer analysis can be a useful design aid. Scattering measurements of the primary mirror, and a full system level scatter measurement are presented. Comparisons of predicted performance with the measured results are also presented.

  5. SAAO's new robotic telescope and WiNCam (Wide-field Nasmyth Camera)

    Science.gov (United States)

    Worters, Hannah L.; O'Connor, James E.; Carter, David B.; Loubser, Egan; Fourie, Pieter A.; Sickafoose, Amanda; Swanevelder, Pieter

    2016-08-01

    The South African Astronomical Observatory (SAAO) is designing and manufacturing a wide-field camera for use on two of its telescopes. The initial concept was of a Prime focus camera for the 74" telescope, an equatorial design made by Grubb Parsons, where it would employ a 61mmx61mm detector to cover a 23 arcmin diameter field of view. However, while in the design phase, SAAO embarked on the process of acquiring a bespoke 1-metre robotic alt-az telescope with a 43 arcmin field of view, which needs a homegrown instrument suite. The Prime focus camera design was thus adapted for use on either telescope, increasing the detector size to 92mmx92mm. Since the camera will be mounted on the Nasmyth port of the new telescope, it was dubbed WiNCam (Wide-field Nasmyth Camera). This paper describes both WiNCam and the new telescope. Producing an instrument that can be swapped between two very different telescopes poses some unique challenges. At the Nasmyth port of the alt-az telescope there is ample circumferential space, while on the 74 inch the available envelope is constrained by the optical footprint of the secondary, if further obscuration is to be avoided. This forces the design into a cylindrical volume of 600mm diameter x 250mm height. The back focal distance is tightly constrained on the new telescope, shoehorning the shutter, filter unit, guider mechanism, a 10mm thick window and a tip/tilt mechanism for the detector into 100mm depth. The iris shutter and filter wheel planned for prime focus could no longer be accommodated. Instead, a compact shutter with a thickness of less than 20mm has been designed in-house, using a sliding curtain mechanism to cover an aperture of 125mmx125mm, while the filter wheel has been replaced with 2 peripheral filter cartridges (6 filters each) and a gripper to move a filter into the beam. We intend using through-vacuum wall PCB technology across the cryostat vacuum interface, instead of traditional hermetic connector-based wiring. This

  6. Modernization of the Mayall Telescope control system: design, implementation, and performance

    Science.gov (United States)

    Sprayberry, David; Dunlop, Patrick; Evatt, Matthew; Reddell, Larry; Gott, Shelby; George, James R.; Donaldson, John; Stupak, Robert J.; Marshall, Robert; Abareshi, Behzad; Stover, Deanna; Warner, Michael; Cantarutti, Rolando E.; Probst, Ronald G.

    2016-08-01

    Motivated by a desire to improve the KPNO Mayall 4m telescope's pointing and tracking performance prior to the start of the DESI installation and by a need to improve the maintainability of its telescope control system (TCS), we recently completed a major modernization of that system based heavily on recent changes made at the CTIO Blanco 4m, as described by Warner et al (2012). We describe here the things we did differently from the Blanco upgrade. We also present results from the as-built performance of the new servo and pointing systems.

  7. Biofouling Control in Spiral-Wound Membrane Systems: Impact of Feed Spacer Modification and Biocides

    KAUST Repository

    Siddiqui, Amber

    2016-01-01

    was developed. The combination of modeling and experimental testing of 3D printed spacers is a promising strategy to develop advanced spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral

  8. Chromospheric telescope of Baikal Astrophysical Observatory. New light

    Directory of Open Access Journals (Sweden)

    Skomorovsky V.I.

    2016-06-01

    Full Text Available A chromospheric telescope is an important instrument for synoptic observations and solar research. After several decades of observations with the chromospheric telescope at the Baikal Astrophysical Observatory, a need arose to improve the characteristics of this telescope and filter. A new reimaging lens to produce full-disk solar images 18 mm in diameter at the CCD camera Hamamatsu C-124 with a 36×24 mm detector (4000×2672 pixels was designed and manufactured to replace the out-of-operation 50×50 mm Princeton Instruments camera. A contrast interference blocking filter and new calcite and quartz crystal plates were made and installed instead of damaged ones in the Hα birefringent filter (BF, manufactured by Bernhard Hallе Nachfl. The optical immersion in the filter was changed. All telescope optics was cleaned and adjusted. We describe for the first time the design features and their related BF passband tuning. The wavefront interferograms of optical elements and telescope as a whole show that the wavefront distortion of the optical path is within 0.25 λ. The BF and prefilter spectral parameters provide high-contrast monochromatic images. Besides, we give examples of solar chromospheric images in the Hα line core and wing.

  9. Stray light field dependence for large astronomical space telescopes

    Science.gov (United States)

    Lightsey, Paul A.; Bowers, Charles W.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the

  10. Microbiologic Evaluation of Cotton and Polytetrafluoroethylene (PTFE) Tape as Endodontic Spacer Materials in Primary Molars An in Vivo Study.

    Science.gov (United States)

    Prabhakar, Attiguppe Ramasetty; Dixit, Kratika; Raju, O S

    PTFE tape, which is commonly used as plumber's tape is an inorganic, non-fibrous, ribbon like material. The aim of this study was to evaluate PTFE tape as endodontic spacer material and to compare it with commonly used spacer material that is cotton, in primary teeth. Seventeen children undergoing pulpectomy of lower second primary molar bilaterally were included in the study. Cotton and PTFE tape were placed as spacers on each side randomly. Samples were taken from the access cavity at baseline and after seven days to check for microbial leakage. Spacer materials were also checked for microbial contamination. The results revealed that there was a significant increase in the bacterial colony count after seven days in cotton group. The access cavities were also positive for microbial leakage in the cotton group where the spacers showed positive growth. In PTFE group only two samples showed microbial contamination of spacer and out of two only one sample showed contamination of access cavity along with spacer. Within the limitations of this study, it can be concluded that PTFE tape performed better than cotton as endodontic spacer material. Thus, PTFE tape can be recommended as an endodontic spacer material as an alternative to cotton in primary teeth.

  11. The VTIE telescope resource management system

    Science.gov (United States)

    Busschots, B.; Keating, J. G.

    2005-06-01

    The VTIE Telescope Resource Management System (TRMS) provides a frame work for managing a distributed group of internet telescopes as a single "Virtual Observatory". The TRMS provides hooks which allow for it to be connected to any Java Based web portal and for a Java based scheduler to be added to it. The TRMS represents each telescope and observatory in the system with a software agent and then allows the scheduler and web portal to communicate with these distributed resources in a simple transparent way, hence allowing the scheduler and portal designers to concentrate only on what they wish to do with these resources rather than how to communicate with them. This paper outlines the structure and implementation of this frame work.

  12. Spacers for fuel rod clusters

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    The proposition deals with the fixing of nuclear fuel element rods in a grid which consists of a number of crossed Zy-plates which form cells. The rectangular cells have projections which serve as spacers for the fuel rods. According to the invention there are additional butt straps which can be moved in such a way that insertion and extraction of the fuel rods can be done without obstruction and they can be spring-loaded hold in their final position. (UWI) [de

  13. Organic light-emitting diodes with a spacer enhanced exciplex emission

    Science.gov (United States)

    Yan, Fei; Chen, Rui; Sun, Handong; Wei Sun, Xiao

    2014-04-01

    By introducing a spacer molecule into the blended exciplex emissive layer, the performance of the bulk heterojunction exciplex organic light-emitting diodes (OLEDs) was improved dramatically; the maximum luminous efficiency was enhanced by about 22% from 7.9 cd/A to 9.7 cd/A, and the luminous efficiency drop was reduced by 28% at 400 mA/cm2. Besides the suppressed annihilation of exciton, the time-resolved photoluminescence measurements indicated that the spacer enhanced the delayed fluorescence through increasing the backward intersystem crossing rate from the triplet to singlet exciplex state. This method is useful for developing high performance exciplex OLEDs.

  14. Mechanical Properties Of 3D-Structure Composites Based On Warp-Knitted Spacer Fabrics

    Directory of Open Access Journals (Sweden)

    Chen Si

    2015-06-01

    Full Text Available In this paper, the mechanical properties (compression and impact behaviours of three-dimension structure (3D-structure composites based on warp-knitted spacer fabrics have been thoroughly investigated. In order to discuss the effect of fabric structural parameters on the mechanical performance of composites, six different types of warp-knitted spacer fabrics having different structural parameters (such as outer layer structure, diameter of spacer yarn, spacer yarn inclination angle and thickness were involved for comparison study. The 3D-structure composites were fabricated based on a flexible polyurethane foam. The produced composites were characterised for compression and impact properties. The findings obtained indicate that the fabric structural parameters have strong influence on the compression and impact responses of 3D-structure composites. Additionally, the impact test carried out on the 3D-structure composites shows that the impact loads do not affect the integrity of composite structure. All the results reveal that the product exhibits promising mechanical performance and its service life can be sustained.

  15. Pre-selecting muon events in the camera server of the ASTRI telescopes for the Cherenkov Telescope Array

    Science.gov (United States)

    Maccarone, Maria C.; Mineo, Teresa; Capalbi, Milvia; Conforti, Vito; Coffaro, Martina

    2016-08-01

    The Cherenkov Telescope Array (CTA) represents the next generation of ground based observatories for very high energy gamma ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium, and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The telescopes will be equipped with cameras composed either of photomultipliers or silicon photomultipliers, and with different trigger and read-out electronics. In such a scenario, several different methods will be used for the telescopes' calibration. Nevertheless, the optical throughput of any CTA telescope, independently of its type, can be calibrated analyzing the characteristic image produced by local atmospheric highly energetic muons that induce the emission of Cherenkov light which is imaged as a ring onto the focal plane if their impact point is relatively close to the telescope optical axis. Large sized telescopes would be able to detect useful muon events under stereo coincidence and such stereo muon events will be directly addressed to the central CTA array data acquisition pipeline to be analyzed. For the medium and small sized telescopes, due to their smaller mirror area and large inter-telescope distance, the stereo coincidence rate will tend to zero; nevertheless, muon events will be detected by single telescopes that must therefore be able to identify them as possible useful calibration candidates, even if no stereo coincidence is available. This is the case for the ASTRI telescopes, proposed as pre-production units of the small size array of the CTA, which are able to detect muon events during regular data taking without requiring any dedicated trigger. We present two fast

  16. Effect of Weld Properties on the Crush Strength of the PWR Spacer Grid

    Directory of Open Access Journals (Sweden)

    Kee-nam Song

    2012-01-01

    Full Text Available Mechanical properties in a weld zone are different from those in the base material because of different microstructures. A spacer grid in PWR fuel is a structural component with an interconnected and welded array of slotted grid straps. Previous research on the strength analyses of the spacer grid was performed using base material properties owing to a lack of mechanical properties in the weld zone. In this study, based on the mechanical properties in the weld zone of the spacer grid recently obtained by an instrumented indentation technique, the strength analyses considering the mechanical properties in the weld zone were performed, and the analysis results were compared with the previous research.

  17. Revisiting the Effectiveness of Large Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available To create large-size optical telescopes, various design concepts have been used. Each concept inevitably faced the challenge to optimize technical characteristics and parameters of the telescope. There was always a question: what concept to choose, how to estimate efficiency of such telescopes and by what criteria and how to estimate expediency of this or that project of the large-size telescope. It is, obviously, insufficient to make a resolution-based estimation. An estimate by the angular field size is inappropriate too. Well, it may be also an estimate by the stellar magnitude. All these criteria are related to each other. Improvement of one of these parameters inevitably leads to deterioration of the others. Obviously, the certain generalized criterion considering all parameters and features of the design concept of the large-size telescope is necessary here. As such can serve the criterion of informational content of the telescope.The article offers a complex criterion allowing not only to estimate efficiency of large-size optical telescopes, but also to compare their conceptual and technological level among themselves in terms of obtaining information.The article suggests a new term, i.e. the informational content invariant to characterize informative capacities of the chosen concept and of the realizing technology. It will allow us to avoid unjustified complications of technical solutions, wrong accents in designing and excess material inputs when developing the project.The informational content criterion-based analysis of the existing projects of large-size telescopes has been convincingly shown that, conceptually, there are three best telescopes, namely: GSMT, CELT, and ACT-25. And, in terms of informational content, the АCТ-25 is 10 times more than GSMT and CELT, and the existing Keck-telescope exceeds by 30 times. Hence, it is hard to escape a conclusion that it is more favourable to implement one ACT-25, than to do 10 GSMT or CELT

  18. The design of a proton recoil telescope for 14 MeV neutron spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P.; Bond, D.S.; Croft, S.; Jarvis, O.N. E-mail: onj@jet.uk; Sherwood, A.C

    2002-01-01

    As part of the design effort for a 14 MeV neutron spectrometer for the Joint European Torus (JET), computer codes were developed to calculate the response of a proton recoil telescope comprising a proton radiator film mounted in front of a proton detector. The codes were used to optimise the geometrical configuration in terms of efficiency and resolution, bearing in mind the constraints imposed by the proposed application as a JET neutron diagnostic for the Deuterium-Tritium phase. A prototype instrument was built according to the optimised design, and tested with monoenergetic 14 MeV neutrons from the Harwell 500 keV Van de Graaff accelerator. The measured energy resolution and absolute efficiency were found to be in acceptable agreement with the calculations. Based on this work, a multi-radiator production version of the spectrometer has now been constructed and successfully deployed at JET.

  19. The design of a proton recoil telescope for 14 MeV neutron spectrometry

    International Nuclear Information System (INIS)

    Hawkes, N.P.; Bond, D.S.; Croft, S.; Jarvis, O.N.; Sherwood, A.C.

    2002-01-01

    As part of the design effort for a 14 MeV neutron spectrometer for the Joint European Torus (JET), computer codes were developed to calculate the response of a proton recoil telescope comprising a proton radiator film mounted in front of a proton detector. The codes were used to optimise the geometrical configuration in terms of efficiency and resolution, bearing in mind the constraints imposed by the proposed application as a JET neutron diagnostic for the Deuterium-Tritium phase. A prototype instrument was built according to the optimised design, and tested with monoenergetic 14 MeV neutrons from the Harwell 500 keV Van de Graaff accelerator. The measured energy resolution and absolute efficiency were found to be in acceptable agreement with the calculations. Based on this work, a multi-radiator production version of the spectrometer has now been constructed and successfully deployed at JET

  20. CTF/STAR-CD off-line coupling for simulation of crossflow caused by mixing vane spacers in rod bundles

    International Nuclear Information System (INIS)

    Avramova, Maria

    2011-01-01

    Understanding the impact of the spacer grids on the reactor core thermal-hydraulics involves experimental mockup tests, numerical simulations, and development of reliable empirical or semi-empirical models. The state-of-the-art in modeling spacer effects on the thermal-hydraulic performance of the flow in Light Water Reactor (LWR) rod bundles employs numerical experiments by means of Computational Fluid Dynamics (CFD) calculations. The capabilities of the CFD codes are usually being validated against mock-up tests. Once validated, the CFD predictions can be used for improvement and development of more sophisticated models of the subchannel codes. Because of the involved computational cost, CFD codes can not be yet efficiently utilized for full bundle predictions, while advanced subchannel codes are a powerful tool for LWR safety and design analyses. Subchannel analyses are used for whole LWR core evaluations with relatively short CPU times and reasonable computer resources. The objectives of the presented work were to develop, implement, and qualify an innovative spacer grid model utilizing the Computational Fluid Dynamics within a framework of an efficient subchannel analysis tool. A methodology was developed for off-line coupling between the CFD code STAR-CD and the subchannel code CTF. The developed coupling scheme is flexible in axial mesh overlays. It was developed to be easily adapted to any pair of a CFD and a subchannel code. Separate modeling of the spacer grid effects on the diffusive and on the convective processes was implemented and successfully validated against experimental data. (author)

  1. SALTICAM: $0.5M acquisition camera: every big telescope should have one

    Science.gov (United States)

    O'Donoghue, Darragh; Bauermeister, Etienne; Carter, David B.; Evans, Geoffrey P.; Koorts, Willie P.; O'Connor, James; Osman, Faranah; van der Merwe, Stan; Bigelow, Bruce C.

    2003-03-01

    The Southern African Large Telescope (SALT) is a 10-m class telescope presently under construction at Sutherland in South Africa. It is designed along the lines of the Hobby-Eberly Telescope (HET) at McDonald Observatory in West Texas. SALTICAM will be the Acquisition Camera and simple Science Imager (ACSI) for this telescope. It will also function as the Verification Instrument (VI) to check the performance of the telescope during commissioning. In VI mode, SALTICAM will comprise a filter unit, shutter and cryostat with a 2x1 mosaic of 2k x 4k x 15 micron pixel CCDs. It will be mounted at the f/4.2 corrected prime focus of the telescope. In ACSI mode it will be fed by a folding flat located close to the exit pupil of the telescope. ACSI mode will have the same functional components as VI mode but it will in addition be garnished with focal conversion lenses to re-image the corrected prime focal plane at f/2. The lenses will be made from UV transmitting crystals as the wavelength range for which the instrument is designed will span 320 to 950 nm. In addition to acting as Verification Instrument and Acquisition Camera, SALTICAM will perform simple science imaging in support of other instruments, but will also have a high time resolution capability which is not widely available on large telescopes. This paper will describe the design of the instrument, emphasizing features of particular interest.

  2. The Green Bank Telescope: A radio telescope for the twenty-first century: Final proposal June 1989

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The scientific goals, design, and projected performance of a 100-m-aperture steerable radio telescope to be built at Green Bank, WV are discussed in a proposal to the NSF. The goals considered include observations of pulsars, stars and the solar system; studies of Galactic and extragalactic H I, spectroscopic studies, measurements of continuum radiation; and VLBI observations. Detailed attention is given to the antenna, electronics, control and monitor system, data processing, operational factors, the telescope site, and cost estimates. Drawings, diagrams, sample images, and tables of numerical data are provided

  3. New technologies and new performances of the JCMT radio-telescope: a preliminary design study

    Science.gov (United States)

    Mian, S.; De Lorenzi, S.; Ghedin, L.; Rampini, F.; Marchiori, G.; Craig, S.

    2012-09-01

    With a diameter of 15m the James Clerk Maxwell Telescope (JCMT) is the largest astronomical telescope in the world designed specifically to operate in the submillimeter wavelength region of the spectrum. It is situated close to the summit of Mauna Kea, Hawaii, at an altitude of 4092m. Its primary reflector currently consists of a steel geodesic supporting structure and pressed aluminium panels on a passive mount. The major issues of the present reflector are its thermal stability and its panels deterioration. A preliminary design study for the replacement of the JCMT antenna dish is here presented. The requested shape error for the new reflector is <20μm RMS. The proposed solution is based on a semi-monocoque backing structure made of CFRP and on high precision electroformed panels. The choice of CFRP for the backing structure allows indeed to improve the antenna performance in terms of both stiffness and thermal stability, so that the required surface accuracy of the primary can be achieved even by adopting a passive panels system. Moreover thanks to CFRP, a considerable weight reduction of the elevation structure can be attained. The performance of the proposed solution for the JCMT antenna has been investigated through FE analyses and the assessed deformation of the structure under different loading cases has been taken into account for subsequent error budgeting. Results show that the proposed solution is in line with the requested performance. With this new backing structure, the JCMT would have the largest CFRP reflector ever built.

  4. Prediction of droplet deposition around BWR fuel spacer by FEM flow analysis

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shinichi

    1997-01-01

    The critical power of the BWR fuel assembly has been remarkably increased. That increase mainly depends on the improvement of the spacer which keeps fixed gaps between fuel rods. So far, these improvements have been carried out on the basis of what developers consider to be appropriate and the results of mockup tests of the BWR fuel assembly. However, continued reliance on these approaches for the development of a higher performance fuel assembly will prove time-consuming and costly. Therefore, it is hoped that the spacer effects for the critical power can be investigated by computer simulation, and it is significantly important to develop the critical power prediction method. Direct calculation of the two-phase flow in a BWR fuel channel s still difficult. Accordingly, a new method for predicting the critical power was proposed. Our method consists of CFD (computer fluid dynamics) code based on the single-phase flow analysis method and the subchannel analysis code. To verify our method, the critical power predictions for various spacer geometries were performed. The predicted results of the critical power were compared with the experimental data. The result of the comparison showed a good agreement and the applicability of our method for various spacer geometries. (author)

  5. Aplanatic telescopes based on Schwarzschild optical configuration: from grazing incidence Wolter-like x-ray optics to Cherenkov two-mirror normal incidence telescopes

    Science.gov (United States)

    Sironi, Giorgia

    2017-09-01

    At the beginning of XX century Karl Schwarzschild defined a method to design large-field aplanatic telescopes based on the use of two aspheric mirrors. The approach was then refined by Couder (1926) who, in order to correct for the astigmatic aberration, introduced a curvature of the focal plane. By the way, the realization of normal-incidence telescopes implementing the Schwarzschild aplanatic configuration has been historically limited by the lack of technological solutions to manufacture and test aspheric mirrors. On the other hand, the Schwarzschild solution was recovered for the realization of coma-free X-ray grazing incidence optics. Wolter-like grazing incidence systems are indeed free of spherical aberration, but still suffer from coma and higher order aberrations degrading the imaging capability for off-axis sources. The application of the Schwarzschild's solution to X-ray optics allowed Wolter to define an optical system that exactly obeys the Abbe sine condition, eliminating coma completely. Therefore these systems are named Wolter-Schwarzschild telescopes and have been used to implement wide-field X-ray telescopes like the ROSAT WFC and the SOHO X-ray telescope. Starting from this approach, a new class of X-ray optical system was proposed by Burrows, Burg and Giacconi assuming polynomials numerically optimized to get a flat field of view response and applied by Conconi to the wide field x-ray telescope (WFXT) design. The Schwarzschild-Couder solution has been recently re-discovered for the application to normal-incidence Cherenkov telescopes, thanks to the suggestion by Vassiliev and collaborators. The Italian Institute for Astrophysics (INAF) realized the first Cherenkov telescope based on the polynomial variation of the Schwarzschild configuration (the so-called ASTRI telescope). Its optical qualification was successfully completed in 2016, demonstrating the suitability of the Schwarzschild-like configuration for the Cherenkov astronomy requirements

  6. Fine-tuning the CAR spacer improves T-cell potency

    Science.gov (United States)

    Watanabe, Norihiro; Bajgain, Pradip; Sukumaran, Sujita; Ansari, Salma; Heslop, Helen E.; Rooney, Cliona M.; Brenner, Malcolm K.; Leen, Ann M.; Vera, Juan F.

    2016-01-01

    ABSTRACT The adoptive transfer of genetically engineered T cells expressing chimeric antigen receptors (CARs) has emerged as a transformative cancer therapy with curative potential, precipitating a wave of preclinical and clinical studies in academic centers and the private sector. Indeed, significant effort has been devoted to improving clinical benefit by incorporating accessory genes/CAR endodomains designed to enhance cellular migration, promote in vivo expansion/persistence or enhance safety by genetic programming to enable the recognition of a tumor signature. However, our efforts centered on exploring whether CAR T-cell potency could be enhanced by modifying pre-existing CAR components. We now demonstrate how molecular refinements to the CAR spacer can impact multiple biological processes including tonic signaling, cell aging, tumor localization, and antigen recognition, culminating in superior in vivo antitumor activity. PMID:28180032

  7. CsI Calorimeter for a Compton-Pair Telescope

    Science.gov (United States)

    Grove, Eric J.

    We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk

  8. Software framework for automatic learning of telescope operation

    Science.gov (United States)

    Rodríguez, Jose A.; Molgó, Jordi; Guerra, Dailos

    2016-07-01

    The "Gran Telescopio de Canarias" (GTC) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC Control System (GCS) is a distributed object and component oriented system based on RT-CORBA and it is responsible for the operation of the telescope, including its instrumentation. The current development state of GCS is mature and fully operational. On the one hand telescope users as PI's implement the sequences of observing modes of future scientific instruments that will be installed in the telescope and operators, in turn, design their own sequences for maintenance. On the other hand engineers develop new components that provide new functionality required by the system. This great work effort is possible to minimize so that costs are reduced, especially if one considers that software maintenance is the most expensive phase of the software life cycle. Could we design a system that allows the progressive assimilation of sequences of operation and maintenance of the telescope, through an automatic self-programming system, so that it can evolve from one Component oriented organization to a Service oriented organization? One possible way to achieve this is to use mechanisms of learning and knowledge consolidation to reduce to the minimum expression the effort to transform the specifications of the different telescope users to the operational deployments. This article proposes a framework for solving this problem based on the combination of the following tools: data mining, self-Adaptive software, code generation, refactoring based on metrics, Hierarchical Agglomerative Clustering and Service Oriented Architectures.

  9. Space telescopes capturing the rays of the electromagnetic spectrum

    CERN Document Server

    English, Neil

    2017-01-01

    Space telescopes are among humankind’s greatest scientific achievements of the last fifty years. This book describes the instruments themselves and what they were designed to discover about the Solar System and distant stars. Exactly how these telescopes were built and launched and the data they provided is explored. Only certain kinds of radiation can penetrate our planet's atmosphere, which limits what we can observe. But with space telescopes all this changed. We now have the means to "see" beyond Earth using ultraviolet, microwave, and infrared rays, X-rays and gamma rays. In this book we meet the pioneers and the telescopes that were built around their ideas. This book looks at space telescopes not simply chronologically but also in order of the electromagnetic spectrum, making it possible to understand better why they were made.

  10. In Silico Study of Spacer Arm Length Influence on Drug Vectorization by Fullerene C60

    Directory of Open Access Journals (Sweden)

    Haifa Khemir

    2015-01-01

    Full Text Available This work studies theoretically the effect of spacer arm lengths on the characteristics of a fullerene C60-based nanovector. The spacer arm is constituted of a carbon chain including a variable number of methylene groups (n = 2–11. To improve the ability of the fullerene carriage, two arms are presented simultaneously through a malonyl bridge. Then the evolution of selected physicochemical parameters is monitored as a function of the spacer arm length and the angle between the two arms. We show here that while the studied characteristics are almost independent of the spacer arm length or vary monotonically with it, the dipole moment and its orientation vary periodically with the parity of the number of carbon atoms. This periodicity is related to both modules and orientations of dipole moments of the spacer arms. In the field of chemical synthesis, these results highlight the importance of theoretical calculations for the optimization of operating conditions. In the field of drug discovery, they show that theoretical calculations of the chemical properties of a drug candidate can help predict its in vivo behaviour, notably its bioavailability and biodistribution, which are known to be tightly dependent of its polarity.

  11. Wide Field Infra-Red Survey Telescope (WFIRST) 2.4-Meter Mission Study

    Science.gov (United States)

    Content, D.; Aaron, K.; Alplanalp, L.; Anderson, K.; Capps, R.; Chang, Z.; Dooley, J.; Egerman, R.; Goullioud, R.; Klein, D.; hide

    2013-01-01

    The most recent study of the Wide Field Infrared Survey Telescope (WFIRST) mission is based on reuse of an existing 2.4m telescope. This study was commissioned by NASA to examine the potential science return and cost effectiveness of WFIRST by using this significantly larger aperture telescope. We review the science program envisioned by the WFIRST 2012-2013 Science Definition Team (SDT), an overview of the mission concept, and the telescope design and status. Comparisons against the previous 1.3m and reduced cost 1.1m WFIRST design concepts are discussed. A significant departure from past point designs is the option for serviceability and the geostationary orbit location which enables servicing and replacement instrument insertion later during mission life. Other papers at this conference provide more in depth discussion of the wide field instrument and the optional exoplanet imaging coronagraph instrument.

  12. A high-performance channel engineered charge-plasma-based MOSFET with high-κ spacer

    Science.gov (United States)

    Shan, Chan; Wang, Ying; Luo, Xin; Bao, Meng-tian; Yu, Cheng-hao; Cao, Fei

    2017-12-01

    In this paper, the performance of graded channel double-gate MOSFET (GC-DGFET) that utilizes the charge-plasma concept and a high-κ spacer is investigated through 2-D device simulations. The results demonstrate that GC-DGFET with high-κ spacer can effectively improve the ON-state driving current (ION) and reduce the OFF-leakage current (IOFF). We find that reduction of the initial energy barrier between the source and channel is the origin of this ION enhancement. The reason for the IOFF reduction is identified to be the extension of the effective channel length owing to the fringing field via high-κ spacers. Consequently, these devices offer enhanced performance by reducing the total gate-to-gate capacitance (Cgg) and decreasing the intrinsic delay (τ).

  13. Geometric effects of spacer grid in an annulus flow channel during reflooding period

    International Nuclear Information System (INIS)

    Cho, S.; Chun, S. Y.; Kim, B. D.; Park, J. K.; Yun, Y. J.; Baek, W. P.

    2004-01-01

    A number of studies on the reflooding phase were actively carried out from the early 70's due to its importance for the safety of the nuclear reactor. (Martini et al., 1973; Henry, 1974; Chung, 1978;) However, few studies have presented the spacer grid effect during the reflooding period. Since the grid is an obstruction in the flow passage, it causes an increased pressure drop due to form and skin friction losses. On the other hand, the spacer grid tends to increase the local wall heat transfer. The present work has been performed in a vertical annulus flow channel with various flow conditions. The objective of this paper is to evaluate the effects of a swirl-vane spacer grid on the rewetting phenomena during the reflooding phase

  14. Lower end fitting debris collector and end cap spacer grid

    International Nuclear Information System (INIS)

    Bryan, W.J.

    1990-01-01

    This patent describes a nuclear reactor having fuel assemblies including an upper end fitting and spaced nuclear fuel rod spacer grids for supporting and spacing a plurality of elongated nuclear fuel rods. Each includes a hollow active portion of nuclear fuel filled cladding intermediate the rod ends and tapering end cap of solid material with a circumferential groove on the rod end which first encounters reactor coolant flow, a lower end filtering debris collector and end cap spacer grid for capturing and retaining deleterious debris carried by reactor coolant before it enters the active region of a fuel assembly and creates fuel rod cladding damage

  15. Investigating the thermal hydraulic performance of spacer grid with mixing vanes using STAR-CCM+ and MATRA

    International Nuclear Information System (INIS)

    Agbodemegbe, V. Y.

    2014-07-01

    Enhancement of heat transfer for flow through rod bundles is linked to the extent and sustainability of mixing in the flow geometry. Spacer grids used as support for rod bundles in nuclear reactors, when attached with ditferent designs of mixing vanes promote turbulent mixing by inducing swirl or forced lateral convection that improves mixing within or between sub-channels. The improved turbulent mixing raises the margin of the onset of critical heat flux in light water reactors (LWR) and also ensures a higher fuel cycle economy. To optimize design of mixing vanes and performance of spacer grids with mixing vanes, computational fluid dynamic simulations arc carried out on new designs and validated experimentally prior to industrial application. In the present study, computational fluid dynamic simulation using STAR-CCM+ and sub-channel analysis with MATRA were performed for flow of water through a 5 X 5 rod bundle geometry for which the rod to rod pitch to diameter ratio was 1.33 and the wall to rod pitch to diameter ratio was 0.74. The two layer k-epsilon turbulence model with an all- y + automatic wall treatment function in STAR-CCM+ were adopted for an isothermal single phase flow through the geometry with imposed cyclic periodic and non-cyclic periodic interface boundary conditions. The objective was to primarily investigate the detail flow behavior in rod bundle in the presence of spacer grids with and without attached mixing vanes. Furthermore, the present study also investigated the extent of turbulent mixing and lateral mass flux induced by the mixing vanes through comparative analysis of parametric trends for spacer grid with and without mixing vanes. New models and empirical correlations for describing the mixing vanes effects were also developed. These semi-empirical correlations improved the prediction for lateral mass flux due to turbulence, fraction of flow diverted through gaps and cross-flow resistance coefficients. Validation of simulation results

  16. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Y.; Kubo, H.; Masuda, S. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan); Paoletti, R.; Poulios, S. [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Rugliancich, A., E-mail: andrea.rugliancich@pi.infn.it [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Saito, T. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan)

    2016-07-11

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards. - Highlights: • The Dragon Board is part of the DAQ of the LST Cherenkov telescope prototype. • We developed an automated quality control system for the Dragon Board. • We check pedestal, linearity, pulse shape and crosstalk values. • The quality control test can be performed on the production line.

  17. NST: Thermal Modeling for a Large Aperture Solar Telescope

    Science.gov (United States)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  18. Design of a nuclear fuel rod support grid using axiomatic design

    International Nuclear Information System (INIS)

    Song, Kee Nam; Yoon, Kyung Ho; Kang, Byung Soo; Park, Gyung Jin; Choi, Sung Kyoo

    2002-01-01

    Recently, much attention is imposed on the design of the fuel assemblies in the Pressurized Light Water Reactor (PWR). Spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains a coolable geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence axiom is utilized for the design. For conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detail design is carried out based on the result of the axiomatic design. For the detail design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design

  19. Modeling and control of antennas and telescopes

    CERN Document Server

    Gawronski, Wodek

    2008-01-01

    The book shows, step-by-step, the design, implementation, and testing of the antenna/telescope control system, from the design stage (analytical model) to fine tuning of the RF beam pointing (monopulse and conscan). It includes wide use of Matlab and Simulink..

  20. Effect of electrostatic charge in plastic spacers on the lung delivery of HFA-salbutamol in children

    DEFF Research Database (Denmark)

    Anhøj, J; Bisgaard, H; Lipworth, B J

    1999-01-01

    delivered a significantly (Pplastic spacers reduces lung dose in children by more than two-fold. This is clinically significant and the use of potentially electrostatically charged......AIMS: The effect of the electrostatic charge in plastic spacers in vivo on drug delivery to the lung of hydrofluoroalkane (HFA) salbutamol spray was studied in children. METHODS: Five children, aged 7-12 years, were included in a 3-way crossover randomised single-blind trial. Salbutamol HFA spray...... was delivered on 3 different study days from plastic spacers with mouthpiece. Pre-treatment of the spacers differed between study days: (a) Non-electrostatic 350 ml Babyhaler (coated with benzalkonium chloride) (b) New 350 ml Babyhaler (rinsed in water), and (c) New 145 ml AeroChamber (rinsed in water). Plasma...

  1. Spacer Thickness-Dependent Electron Transport Performance of Titanium Dioxide Thick Film for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Reda E. El-Shater

    2015-01-01

    Full Text Available A titanium dioxide (P25 film was deposited by cast coating as conductive photoelectrode and subsequently immersed in dye solution (N719 to fabricate the photoanode of dye-sensitized solar cells (DSSCs. A plastic spacer was used as a separation and sealant layer between the photoanode and the counter electrode. The effect of the thickness of this spacer on the transfer of electrons in the liquid electrolyte of the DSSCs was studied by means of both IV curves and electrochemical impedance. Using a spacer thickness range of 20 μm to 50 μm, efficiency ranges from 3.73% to 7.22%. The highest efficiency of 7.22% was obtained with an optimal spacer thickness of 40 μm.

  2. Choosing and Using a Refracting Telescope

    CERN Document Server

    English, Neil

    2011-01-01

    The refracting telescope has a long and illustrious past. Here’s what the author says about early telescopes and today’s refractors: “Four centuries ago, a hitherto obscure Italian scientist turned a home-made spyglass towards the heavens. The lenses he used were awful by modern standards, inaccurately figured and filled with the scars of their perilous journey from the furnace to the finishing workshop. Yet, despite these imperfections, they allowed him to see what no one had ever seen before – a universe far more complex and dynamic than anyone had dared imagine. But they also proved endlessly useful in the humdrum of human affairs. For the first time ever, you could spy on your neighbor from a distance, or monitor the approach of a war-mongering army, thus deciding the fate of nations. “The refractor is without doubt the prince of telescopes. Compared with all other telescopic designs, the unobstructed view of the refractor enables it to capture the sharpest, highest contrast images and the wides...

  3. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    Science.gov (United States)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  4. Update on Multi-Variable Parametric Cost Models for Ground and Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2012-01-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper reports on recent revisions and improvements to our ground telescope cost model and refinements of our understanding of space telescope cost models. One interesting observation is that while space telescopes are 50X to 100X more expensive than ground telescopes, their respective scaling relationships are similar. Another interesting speculation is that the role of technology development may be different between ground and space telescopes. For ground telescopes, the data indicates that technology development tends to reduce cost by approximately 50% every 20 years. But for space telescopes, there appears to be no such cost reduction because we do not tend to re-fly similar systems. Thus, instead of reducing cost, 20 years of technology development may be required to enable a doubling of space telescope capability. Other findings include: mass should not be used to estimate cost; spacecraft and science instrument costs account for approximately 50% of total mission cost; and, integration and testing accounts for only about 10% of total mission cost.

  5. Reentrainment of droplet from grid spacer in mist flow portion of LOCA reflood of PWR

    International Nuclear Information System (INIS)

    Lee, S.L.; Cho, S.K.; Sheen, H.J.

    1983-01-01

    An investigation is made on the influence of a quenched grid spacer on the greatly enhanced heat transfer from heated fuel rods during the mist flow phase of emergency reflood of loss of coolant accident (LOCA) of a pressurized water reactor (PWR). The situation for the case of a dry grid spacer before its quenching has not been covered in this study. The experimental technique used is a relatively simple optical scheme which combines the reference-mode laser-Doppler anemometry making use of the scattering of a light beam from a droplet. The results reveal that the large droplets in the mist flow, which are intercepted by the grid spacer, are responsible for the creation of a large number of smaller droplets. These small droplets, due to their large surface area to mass ratios, can serve as superb evaporative cooling agents to heat transfer downstream of the grid spacer

  6. Efficient and colour-stable hybrid white organic light-emitting diodes utilizing electron-hole balanced spacers

    International Nuclear Information System (INIS)

    Leem, Dong-Seok; Kim, Ji Whan; Kim, Jang-Joo; Jung, Sung Ouk; Kim, Seul-Ong; Kwon, Soon-Ki; Kim, Se Hoon; Kim, Kee Young; Kim, Yun-Hi

    2010-01-01

    High-efficiency two-colour white organic light-emitting diodes (WOLEDs) comprising a newly synthesized iridium complex orange phosphor ((impy) 2 Ir(acac)) and a blue fluorophor (BD012) have been realized by placing several kinds of thin spacers between two emitters. Hybrid WOLEDs with a spacer composed of a hole-transporting N,N-dicarbazolyl-3,5-benzene (mCP) and an electron-transporting 4,7-diphenyl-1,10-phenanthroline (Bphen) exhibit a high external quantum efficiency (EQE) of up to 8.4% and a negligible colour change (the colour coordinate of (0.39, 0.41) at 1000 cd m -2 ) with increasing brightness, whereas the device using a hole-transporting mCP spacer shows a relatively low EQE of 6.2% and a large shift of emitting colour with increasing brightness. Device performance is further characterized based on the charge transport behaviour of the spacers inserted between the two emitters.

  7. Similar Results in Children with Asthma for Steady State Pharmacokinetic Parameters of Ciclesonide Inhaled with or without Spacer

    Directory of Open Access Journals (Sweden)

    H. Boss

    2010-01-01

    Full Text Available Background Ciclesonide is an inhaled corticosteroid administered by a metered dose inhaler (MDI to treat bronchial asthma. After inhalation, the inactive ciclesonide is converted by esterases in the airways to active metabolite desisobutyryl-ciclesonide (des-CIC. Aim To compare the pharmacokinetic (PK parameters of des-CIC in children after administration of therapeutic dose of ciclesonide with and without spacer (AeroChamber Plus™. Methods Open-label, 3 period, cross over, repeated dose, PK study in 37 children with mild to moderate stable asthma (age: 6–11 y; body weight: 20–53 kg. During each 7-day treatment period, ciclesonide was inhaled once in the morning: A 160 μg MDI with spacer, B 80 μg MDI with spacer, and C 160 μg MDI without spacer. Serum PK parameters of ciclesonide and des-CIC were determined on Day 7 of each period. The primary PK parameters were the AUC τ and C max for des-CIC. Results Inhaling ciclesonide with spacer led to a dose proportional systemic exposure (AUC τ of des-CIC (0.316 μg*h/L for 80 μg and 0.663 μg*h/L for 160 μg. The dose-normalized systemic exposure for des-CIC (based on AUC τ was 27% higher after inhalation of ciclesonide 80 μg or 160 μg with spacer than without spacer; the corresponding C max values for des-CIC were, respectively, 63% and 55% higher with spacer. No clinically relevant abnormalities or adverse drug reactions were observed. Conclusions Inhalation of therapeutic ciclesonide dose with spacer led to a slight increase in the systemic exposure of des-CIC, which does not warrant dose adjustment.

  8. Experimental benchmark data for PWR rod bundle with spacer-grids

    International Nuclear Information System (INIS)

    Dominguez-Ontiveros, Elvis E.; Hassan, Yassin A.; Conner, Michael E.; Karoutas, Zeses

    2012-01-01

    In numerical simulations of fuel rod bundle flow fields, the unsteady Navier–Stokes equations have to be solved in order to determine the time (phase) dependent characteristics of the flow. In order to validate the simulations results, detailed comparison with experimental data must be done. Experiments investigating complex flows in rod bundles with spacer grids that have mixing devices (such as flow mixing vanes) have mostly been performed using single-point measurements. In order to obtain more details and insight on the discrepancies between experimental and numerical data as well as to obtain a global understanding of the causes of these discrepancies, comparisons of the distributions of complete phase-averaged velocity and turbulence fields for various locations near spacer-grids should be performed. The experimental technique Particle Image Velocimetry (PIV) is capable of providing such benchmark data. This paper describes an experimental database obtained using two-dimensional Time Resolved Particle Image Velocimetry (TR-PIV) measurements within a 5 × 5 PWR rod bundle with spacer-grids that have flow mixing vanes. One of the unique characteristic of this set-up is the use of the Matched Index of Refraction technique employed in this investigation to allow complete optical access to the rod bundle. This unique feature allows flow visualization and measurement within the bundle without rod obstruction. This approach also allows the use of high temporal and spatial non-intrusive dynamic measurement techniques namely TR-PIV to investigate the flow evolution below and immediately above the spacer. The experimental data presented in this paper includes explanation of the various cases tested such as test rig dimensions, measurement zones, the test equipment and the boundary conditions in order to provide appropriate data for comparison with Computational Fluid Dynamics (CFD) simulations. Turbulence parameters of the obtained data are presented in order to gain

  9. LOBSTER - New Space X-Ray telescopes

    International Nuclear Information System (INIS)

    Hudec, R.; Pina, L.; Simon, V.; Sveda, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2007-01-01

    We discuss the technological and scientific aspects of fully innovative very wide-field X-ray telescopes with high sensitivity. The prototypes of Lobster telescopes designed, developed and tested are very promising, allowing the proposals for space projects with very wide-field Lobster Eye X-ray optics to be considered for the first time. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. For example, the Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  10. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model.

    Science.gov (United States)

    Zoulinakis, Georgios; Ferrer-Blasco, Teresa

    2017-01-01

    Purpose. To design an intraocular telescopic system (ITS) for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses' placement in the eye model and their powers. Ray tracing in both centered and decentered situations was carried out for both ITS while visual Strehl ratio (VSOTF) was computed using custom-made MATLAB code. Results. The results show that between 0.4 and 0.8 mm of decentration, the VSOTF does not change much either for far or near target distances. The image projection for these decentrations is in the parafoveal zone, and the quality of the image projected is quite similar. Conclusion. Both systems display similar quality while they differ in size; therefore, the choice between them would need to take into account specific parameters from the patient's eye. Quality does not change too much between 0.4 and 0.8 mm of decentration for either system which gives flexibility to the clinician to adjust decentration to avoid areas of retinal damage.

  11. Possible GRB Observation with the MAGIC Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Mariotti, M.; Peruzzo, L.; Saggion, A.

    2001-08-01

    The MAGIC Telescope, with its reflecting parabolic dish of 17 m of diameter and its careful design of a robust, lightweight, alto-azimuthal mount, is an ideal detector for GRB phenomena. The telescope is an air Cherenkov telescope that, even in the first phase, equipped with standard PMTs, can reach an energy threshold below 30 GeV. The threshold is going to drop well below 10 GeV in the envisaged second phase, when chamber PMTs will be substituted by high quantum efficiency APDs. The telescope can promptly respond to GRB alerts coming, for instance, from GCN, and can reposition itself in less than 30 seconds, 20 seconds being the time to turn half a round for the azimuth bearing. In this report, the effective area of the detector as a function of energy and zenith angle is taken into account, in order to evaluate the expected yearly occurrence and the response to different kinds of GRBs.

  12. Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989

    Science.gov (United States)

    Roddier, Francois J.

    1989-09-01

    The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.

  13. Diagnosis Of Persistent Infection In Prosthetic Two-Stage Exchange: PCR analysis of Sonication fluid From Bone Cement Spacers.

    Science.gov (United States)

    Mariaux, Sandrine; Tafin, Ulrika Furustrand; Borens, Olivier

    2017-01-01

    Introduction: When treating periprosthetic joint infections with a two-stage procedure, antibiotic-impregnated spacers are used in the interval between removal of prosthesis and reimplantation. According to our experience, cultures of sonicated spacers are most often negative. The objective of our study was to investigate whether PCR analysis would improve the detection of bacteria in the spacer sonication fluid. Methods: A prospective monocentric study was performed from September 2014 to January 2016. Inclusion criteria were two-stage procedure for prosthetic infection and agreement of the patient to participate in the study. Beside tissues samples and sonication, broad range bacterial PCRs, specific S. aureus PCRs and Unyvero-multiplex PCRs were performed on the sonicated spacer fluid. Results: 30 patients were identified (15 hip, 14 knee and 1 ankle replacements). At reimplantation, cultures of tissue samples and spacer sonication fluid were all negative. Broad range PCRs were all negative. Specific S. aureus PCRs were positive in 5 cases. We had two persistent infections and four cases of infection recurrence were observed, with bacteria different than for the initial infection in three cases. Conclusion: The three different types of PCRs did not detect any bacteria in spacer sonication fluid that was culture-negative. In our study, PCR did not improve the bacterial detection and did not help to predict whether the patient will present a persistent or recurrent infection. Prosthetic 2-stage exchange with short interval and antibiotic-impregnated spacer is an efficient treatment to eradicate infection as both culture- and molecular-based methods were unable to detect bacteria in spacer sonication fluid after reimplantation.

  14. Progress on the New York State Observatory: a new 12-meter astronomical telescope

    Science.gov (United States)

    Sebring, T.; O'Dea, C.; Baum, S.; Teran, J.; Loewen, N.; Stutzki, C.; Egerman, R.; Bonomi, G.

    2014-07-01

    Over the past two years, the New York Astronomical Corporation (NYAC), the business arm of the Astronomical Society of New York (ASNY), has continued planning and technical studies toward construction of a 12-meter class optical telescope for the use of all New York universities and research institutions. Four significant technical studies have been performed investigating design opportunities for the facility, the dome, the telescope optics, and the telescope mount. The studies were funded by NYAC and performed by companies who have provided these subsystems for large astronomical telescopes in the past. In each case, innovative and cost effective approaches were identified, developed, analyzed, and initial cost estimates developed. As a group, the studies show promise that this telescope could be built at historically low prices. As the project continues forward, NYAC intends to broaden the collaboration, pursue funding, to continue to develop the telescope and instrument designs, and to further define the scientific mission. The vision of a historically large telescope dedicated to all New York institutions continues to grow and find new adherents.

  15. Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control

    KAUST Repository

    Araú jo, Paula A.; Miller, Daniel J.; Correia, Patrí cia B.; van Loosdrecht, Mark C.M.; Kruithof, Joop C.; Freeman, Benny Dean; Paul, Donald; Vrouwenvelder, Johannes S.

    2012-01-01

    surface modification agents expected to resist protein and bacterial adhesion, while copper feed spacer coatings and biocides infused in feed spacers are expected to restrict biological growth. Our studies showed that polydopamine and polydopamine-. g

  16. Cervical interfacet spacers and maintenance of cervical lordosis.

    Science.gov (United States)

    Tan, Lee A; Straus, David C; Traynelis, Vincent C

    2015-05-01

    OBJECT The cervical interfacet spacer (CIS) is a relatively new technology that can increase foraminal height and area by facet distraction. These offer the potential to provide indirect neuroforaminal decompression while simultaneously enhancing fusion potential due to the relatively large osteoconductive surface area and compressive forces exerted on the grafts. These potential benefits, along with the relative ease of implantation during posterior cervical fusion procedures, make the CIS an attractive adjuvant in the management of cervical pathology. One concern with the use of interfacet spacers is the theoretical risk of inducing iatrogenic kyphosis. This work tests the hypothesis that interfacet spacers are associated with loss of cervical lordosis. METHODS Records from patients undergoing posterior cervical fusion at Rush University Medical Center between March 2011 and December 2012 were reviewed. The FacetLift CISs were used in all patients. Preoperative and postoperative radiographic data were reviewed and the Ishihara indices and cervical lordotic angles were measured and recorded. Statistical analyses were performed using STATA software. RESULTS A total of 64 patients were identified in whom 154 cervical levels were implanted with machined allograft interfacet spacers. Of these, 15 patients underwent anterior-posterior fusions, 4 underwent anterior-posterior-anterior fusions, and the remaining 45 patients underwent posterior-only fusions. In the 45 patients with posterior-only fusions, a total of 110 levels were treated with spacers. There were 14 patients (31%) with a single level treated, 16 patients (36%) with two levels treated, 5 patients (11%) with three levels treated, 5 patients (11%) with four levels treated, 1 patient (2%) with five levels treated, and 4 patients (9%) with six levels treated. Complete radiographic data were available in 38 of 45 patients (84%). On average, radiographic follow-up was obtained at 256.9 days (range 48-524 days

  17. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2010-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the important discoveries of the last decade, from dwarf planets in the outer Solar System to the mysterious dark energy that overcomes gravity to accelerate the expansion of the Universe. The next decade will be equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. An infrared-optimized 6.5m space telescope, Webb is designed to find the first galaxies that formed in the early universe and to peer into the dusty gas clouds where stars and planets are born. With MEMS technology, a deployed primary mirror and a tennis-court sized sunshield, the mission presents many technical challenges. I will describe Webb's scientific goals, its design and recent progress in constructing the observatory. Webb is scheduled for launch in 2014.

  18. Development and Performances of the Magic Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Dazzi, F.; Mariotti, M.; Moralejo, A.; Peruzzo, L.; Saggion, A.; Tonello, N.

    2002-11-01

    The MAGIC Collaboration is building an imaging Čerenkov telescope at La Palma site (2200 m a.s.l.), in the Canary Islands, to observe gamma rays in the hundred-GeV region. The MAGIC telescope, with its reflecting parabolic dish, 17 m in diameter, and a two-level pattern trigger designed to cope with severe trigger rates, is the Čerenkov telescope with the lowest envisaged energy threshold. Due to its lightweight alto-azimuthal mounting, MAGIC can be repositioned in less than 30 seconds, becoming the only detector, with an adequate effective area, capable to observe GRB phenomena above 30 GeV. MAGIC telescope is characterised by a 30 GeV energy threshold and a sensitivity of 6×l0-11 cm-2s-1 for a 5σ-detection in 50-hours of observation. In this report, some future scientific goals for MAGIC will be highlighted and the technical development for the main elements of the telescope will be detailed. Special emphasis will be given to the construction of the individual metallic mirrors which form the reflecting surface and the development of the fast pattern-recognition trigger.

  19. Design and Initial Tests of the Tracker-Converter ofthe Gamma-ray Large Area Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W.B.; Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; De; Drell, P.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Germani, S.; Giannitrapani, R.; Giglietto, N.; /UC, Santa Cruz /INFN, Pisa /Pisa U. /INFN, Trieste /INFN,

    2007-04-16

    The Tracker subsystem of the Large Area Telescope (LAT) science instrument of the Gamma-ray Large Area Space Telescope (GLAST) mission has been completed and tested. It is the central detector subsystem of the LAT and serves both to convert an incident gamma-ray into an electron-positron pair and to track the pair in order to measure the gamma-ray direction. It also provides the principal trigger for the LAT. The Tracker uses silicon strip detectors, read out by custom electronics, to detect charged particles. The detectors and electronics are packaged, along with tungsten converter foils, in 16 modular, high-precision carbon-composite structures. It is the largest silicon-strip detector system ever built for launch into space, and its aggressive design emphasizes very low power consumption, passive cooling, low noise, high efficiency, minimal dead area, and a structure that is highly transparent to charged particles. The test program has demonstrated that the system meets or surpasses all of its performance specifications as well as environmental requirements. It is now installed in the completed LAT, which is being prepared for launch in early 2008.

  20. Analysis of US patents on spacer grids

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Song, Kee Nam; Yoon, Kyung Ho; Kang, Hong Seok; Kim, Hyung Kyu; Jeon, Tae Hyun; Oh, Dong Seok; In, Wang Ki; Bang, Jae Keun; Oh, Seung Eun; Seo, Jeong Min; Lee, Jin Seok; Park, Seong Keun

    1997-06-01

    The total of 137 US patents on spacer grids patented from 1968 through 1993 are analyzed and summarized. Database is constituted with designing the appropriate fields by which each patent can be identified. The fields consist of patent number, inventor, assignee, date of patent, title and major foci of the patent. The major foci are again classified by detailed subjects such as the fretting failure and fuel rod support-related, the strength-related, the fabrication-related as for mechanical subjects, while the cooling performance-related and the pressure drop-related as for thermal-hydraulic one. The 92% of the patents analyzed were issued form nuclear companies of USA, France and Germany. Among the patents dealing with mechanical subjects, the fretting failure and fuel rod support-related is more than the pressure drop-related among the patents of thermal-hydraulic subjects. The number of patents issued from Japan ranks just after Germany i.e., the 4th country. It is thought that much concern as well as investment should be increased in this field, the patent of nuclear components. (author). 2 tabs., 5 figs

  1. Analysis of US patents on spacer grids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kyu; Song, Kee Nam; Yoon, Kyung Ho; Kang, Hong Seok; Kim, Hyung Kyu; Jeon, Tae Hyun; Oh, Dong Seok; In, Wang Ki; Bang, Jae Keun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Oh, Seung Eun; Seo, Jeong Min; Lee, Jin Seok; Park, Seong Keun [Korea Nuclear Fuel Company, Taejon (Korea, Republic of)

    1997-06-01

    The total of 137 US patents on spacer grids patented from 1968 through 1993 are analyzed and summarized. Database is constituted with designing the appropriate fields by which each patent can be identified. The fields consist of patent number, inventor, assignee, date of patent, title and major foci of the patent. The major foci are again classified by detailed subjects such as the fretting failure and fuel rod support-related, the strength-related, the fabrication-related as for mechanical subjects, while the cooling performance-related and the pressure drop-related as for thermal-hydraulic one. The 92% of the patents analyzed were issued form nuclear companies of USA, France and Germany. Among the patents dealing with mechanical subjects, the fretting failure and fuel rod support-related is more than the pressure drop-related among the patents of thermal-hydraulic subjects. The number of patents issued from Japan ranks just after Germany i.e., the 4th country. It is thought that much concern as well as investment should be increased in this field, the patent of nuclear components. (author). 2 tabs., 5 figs.

  2. Efficient and colour-stable hybrid white organic light-emitting diodes utilizing electron-hole balanced spacers

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Dong-Seok; Kim, Ji Whan; Kim, Jang-Joo [Department of Materials Science and Engineering, and OLED Center, Seoul National University, Seoul 151-744 (Korea, Republic of); Jung, Sung Ouk; Kim, Seul-Ong; Kwon, Soon-Ki [School of Materials Science and Engineering, and Engineering Research Institute (ERI), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Se Hoon; Kim, Kee Young [Dongwoo Fine-Chem Co., Ltd, Pyeongtaek 451-822 (Korea, Republic of); Kim, Yun-Hi, E-mail: jjkim@snu.ac.k, E-mail: skwon@gnu.ac.k [Department of Chemistry and RINS, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2010-10-13

    High-efficiency two-colour white organic light-emitting diodes (WOLEDs) comprising a newly synthesized iridium complex orange phosphor ((impy){sub 2}Ir(acac)) and a blue fluorophor (BD012) have been realized by placing several kinds of thin spacers between two emitters. Hybrid WOLEDs with a spacer composed of a hole-transporting N,N-dicarbazolyl-3,5-benzene (mCP) and an electron-transporting 4,7-diphenyl-1,10-phenanthroline (Bphen) exhibit a high external quantum efficiency (EQE) of up to 8.4% and a negligible colour change (the colour coordinate of (0.39, 0.41) at 1000 cd m{sup -2}) with increasing brightness, whereas the device using a hole-transporting mCP spacer shows a relatively low EQE of 6.2% and a large shift of emitting colour with increasing brightness. Device performance is further characterized based on the charge transport behaviour of the spacers inserted between the two emitters.

  3. The Atacama Cosmology Telescope: The Receiver and Instrumentation

    Science.gov (United States)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.; hide

    2010-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  4. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes

    KAUST Repository

    Bucs, Szilard; Valladares Linares, Rodrigo; Marston, Jeremy O.; Radu, Andrea I.; Vrouwenvelder, Johannes S.; Picioreanu, Cristian

    2015-01-01

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water

  5. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.

    Science.gov (United States)

    Xiao, Yibei; Ng, Sherwin; Nam, Ki Hyun; Ke, Ailong

    2017-10-05

    CRISPR (clustered regularly interspaced short palindromic repeats) and the nearby Cas (CRISPR-associated) operon establish an RNA-based adaptive immunity system in prokaryotes. Molecular memory is created when a short foreign DNA-derived prespacer is integrated into the CRISPR array as a new spacer. Whereas the RNA-guided CRISPR interference mechanism varies widely among CRISPR-Cas systems, the spacer integration mechanism is essentially identical. The conserved Cas1 and Cas2 proteins form an integrase complex consisting of two distal Cas1 dimers bridged by a Cas2 dimer. The prespacer is bound by Cas1-Cas2 as a dual-forked DNA, and the terminal 3'-OH of each 3' overhang serves as an attacking nucleophile during integration. The prespacer is preferentially integrated into the leader-proximal region of the CRISPR array, guided by the leader sequence and a pair of inverted repeats inside the CRISPR repeat. Spacer integration in the well-studied Escherichia coli type I-E CRISPR system also relies on the bacterial integration host factor. In type II-A CRISPR, however, Cas1-Cas2 alone integrates spacers efficiently in vitro; other Cas proteins (such as Cas9 and Csn2) have accessory roles in the biogenesis phase of prespacers. Here we present four structural snapshots from the type II-A system of Enterococcus faecalis Cas1 and Cas2 during spacer integration. Enterococcus faecalis Cas1-Cas2 selectively binds to a splayed 30-base-pair prespacer bearing 4-nucleotide 3' overhangs. Three molecular events take place upon encountering a target: first, the Cas1-Cas2-prespacer complex searches for half-sites stochastically, then it preferentially interacts with the leader-side CRISPR repeat, and finally, it catalyses a nucleophilic attack that connects one strand of the leader-proximal repeat to the prespacer 3' overhang. Recognition of the spacer half-site requires DNA bending and leads to full integration. We derive a mechanistic framework to explain the stepwise spacer

  6. A New Observing Tool for the James Clerk Maxwell Telescope

    Science.gov (United States)

    Folger, Martin; Bridger, Alan; Dent, Bill; Kelly, Dennis; Adamson, Andy; Economou, Frossie; Hirst, Paul; Jenness, Tim

    A new Observing Tool (OT) has been developed at the UK Astronomy Technology Centre, Edinburgh, UK and the Joint Astronomy Centre, Hilo, Hawaii, USA. It is based on the Gemini Observing Tool and provides the first graphical observation preparation tool for the James Clerk Maxwell Telescope (JCMT) as well as being the first use of the OT for a non-optical/IR telescope. The OT allows the observer to assemble high level Science Programs using graphical representations of observation components such as instrument, target, and filter. This is later translated into low level control sequences for telescope and instruments. The new OT is designed to work on multiple telescopes: currently the UK Infrared Telescope (UKIRT) and JCMT. Object-oriented design makes the inclusion of telescope and instrument specific packages easy. The OT is written in Java using GUI packages such as Swing and JSky. A new component for the JCMT OT is the graphical Frequency Editor for Heterodyne instruments. It can be used to specify parameters such as frequencies, bandwidths, and sidebands of multiple subsystems, while graphically displaying the front-end frequency, emission lines and atmospheric transmission. In addition, Flexible Scheduling support has been added to the OT. The observer can define scheduling constraints by arranging observations graphically. Science Programs can be saved as XML or sent directly from the OT to a database (via SOAP).

  7. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    Science.gov (United States)

    Alvarez-Muñiz, J.; Amaral Soares, E.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W. R.; de Mello Neto, J. R. T.; Facal San Luis, P.; Genat, J. F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.; Ramos de Castro, A.; Reyes, L. C.; Richardson, M.; Rouille d'Orfeuil, B.; Santos, E. M.; Wayne, S.; Williams, C.; Zas, E.; Zhou, J.

    2013-08-01

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4-4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope - to validate the telescope design, and to demonstrate a large detector duty cycle - were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory.

  8. CRISPR Primer Designer: Design primers for knockout and chromosome imaging CRISPR-Cas system.

    Science.gov (United States)

    Yan, Meng; Zhou, Shi-Rong; Xue, Hong-Wei

    2015-07-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated system enables biologists to edit genomes precisely and provides a powerful tool for perturbing endogenous gene regulation, modulation of epigenetic markers, and genome architecture. However, there are concerns about the specificity of the system, especially the usages of knocking out a gene. Previous designing tools either were mostly built-in websites or ran as command-line programs, and none of them ran locally and acquired a user-friendly interface. In addition, with the development of CRISPR-derived systems, such as chromosome imaging, there were still no tools helping users to generate specific end-user spacers. We herein present CRISPR Primer Designer for researchers to design primers for CRISPR applications. The program has a user-friendly interface, can analyze the BLAST results by using multiple parameters, score for each candidate spacer, and generate the primers when using a certain plasmid. In addition, CRISPR Primer Designer runs locally and can be used to search spacer clusters, and exports primers for the CRISPR-Cas system-based chromosome imaging system. © 2014 Institute of Botany, Chinese Academy of Sciences.

  9. Custom-made hinged spacers in revision knee surgery for patients with infection, bone loss and instability.

    Science.gov (United States)

    Macmull, S; Bartlett, W; Miles, J; Blunn, G W; Pollock, R C; Carrington, R W J; Skinner, J A; Cannon, S R; Briggs, T W R

    2010-12-01

    Polymethyl methacrylate spacers are commonly used during staged revision knee arthroplasty for infection. In cases with extensive bone loss and ligament instability, such spacers may not preserve limb length, joint stability and motion. We report a retrospective case series of 19 consecutive patients using a custom-made cobalt chrome hinged spacer with antibiotic-loaded cement. The "SMILES spacer" was used at first-stage revision knee arthroplasty for chronic infection associated with a significant bone loss due to failed revision total knee replacement in 11 patients (58%), tumour endoprosthesis in four patients (21%), primary knee replacement in two patients (11%) and infected metalwork following fracture or osteotomy in a further two patients (11%). Mean follow-up was 38 months (range 24-70). In 12 (63%) patients, infection was eradicated, three patients (16%) had persistent infection and four (21%) developed further infection after initially successful second-stage surgery. Above knee amputation for persistent infection was performed in two patients. In this particularly difficult to treat population, the SMILES spacer two-stage technique has demonstrated encouraging results and presents an attractive alternative to arthrodesis or amputation. Copyright © 2009 Elsevier B.V. All rights reserved.

  10. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure

    Science.gov (United States)

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-05-01

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.

  11. Spacer Facial Artery Musculomucosal Flap: Simultaneous Closure of Oronasal Fistulas and Palatal Lengthening.

    Science.gov (United States)

    Lee, Jonathan Y; Alizadeh, Kaveh

    2016-01-01

    In this series, the authors describe a modification of the facial artery musculomucosal flap for oronasal fistula repair. The spacer facial artery musculomucosal flap technique is characterized by a pedicle inset into the retromolar trigone and palate, obviating a second operative stage. This was performed in 14 patients with a 5.2-cm mean fistula size. Average follow-up was 4.3 years, with one partial flap necrosis but no recurrent oronasal fistula. There was a mean decrease of 18 percent in the distance between the velum and the posterior pharyngeal wall. The spacer facial artery musculomucosal flap provides a single-stage reconstruction of oronasal fistula while lengthening the palate through a pushback mechanism. Although further study of velopharyngeal function is needed, the spacer facial artery musculomucosal flap may be beneficial for patients with a short velum and an oronasal fistula. Therapeutic, IV.

  12. AA stacking, tribological and electronic properties of double-layer graphene with krypton spacer.

    Science.gov (United States)

    Popov, Andrey M; Lebedeva, Irina V; Knizhnik, Andrey A; Lozovik, Yurii E; Potapkin, Boris V; Poklonski, Nikolai A; Siahlo, Andrei I; Vyrko, Sergey A

    2013-10-21

    Structural, energetic, and tribological characteristics of double-layer graphene with commensurate and incommensurate krypton spacers of nearly monolayer coverage are studied within the van der Waals-corrected density functional theory. It is shown that when the spacer is in the commensurate phase, the graphene layers have the AA stacking. For this phase, the barriers to relative in-plane translational and rotational motion and the shear mode frequency of the graphene layers are calculated. For the incommensurate phase, both of the barriers are found to be negligibly small. A considerable change of tunneling conductance between the graphene layers separated by the commensurate krypton spacer at their relative subangstrom displacement is revealed by the use of the Bardeen method. The possibility of nanoelectromechanical systems based on the studied tribological and electronic properties of the considered heterostructures is discussed.

  13. The readout and control system of the mid-size telescope prototype of the Cherenkov telescope array

    International Nuclear Information System (INIS)

    Oya, I; Anguner, O; Birsin, E; Schwanke, U; Behera, B; Melkumyan, D; Schmidt, T; Sternberger, R; Wegner, P; Wiesand, S; Fuessling, M

    2014-01-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  14. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    Science.gov (United States)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  15. Two pion correlation from SPACER

    International Nuclear Information System (INIS)

    Csoergoe, T.; Zimanyi, J.; Pratt, S.

    1989-12-01

    The correlation function for neutral and negative pions produced in ultrarelativistic heavy ion collisions was calculated without free parameters based on a space-time version of the LUND model, called SPACER: Simulation of Phase space distribution of Atomic nuclear Collisions in Energetic Reactions. This method includes the effect of Bose correlations for the emitted pion pair. Effects arising from correlations between space-time and momentum space distributions are investigated. The results are compared to the data of two different experiments. The role and interpretation of the chaocity parameter are discussed. (D.G.) 14 refs.; 4 figs

  16. The evolutionary divergence of Shiga toxin-producing Escherichia coli is reflected in clustered regularly interspaced short palindromic repeat (CRISPR) spacer composition.

    Science.gov (United States)

    Yin, Shuang; Jensen, Mark A; Bai, Jiawei; Debroy, Chitrita; Barrangou, Rodolphe; Dudley, Edward G

    2013-09-01

    The Shiga toxin-producing Escherichia coli (STEC) strains, including those of O157:H7 and the "big six" serogroups (i.e., serogroups O26, O45, O103, O111, O121, and O145), are a group of pathogens designated food adulterants in the United States. The relatively conserved nature of clustered regularly interspaced short palindromic repeats (CRISPRs) in phylogenetically related E. coli strains makes them potential subtyping markers for STEC detection, and a quantitative PCR (qPCR)-based assay was previously developed for O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 isolates. To better evaluate the sensitivity and specificity of this qPCR method, the CRISPR loci of 252 O157 and big-six STEC isolates were sequenced and analyzed along with 563 CRISPR1 and 624 CRISPR2 sequences available in GenBank. General conservation of spacer content and order was observed within each O157 and big-six serogroup, validating the qPCR method. Meanwhile, it was found that spacer deletion, the presence of an insertion sequence, and distinct alleles within a serogroup are sources of false-negative reactions. Conservation of CRISPR arrays among isolates expressing the same flagellar antigen, specifically, H7, H2, and H11, suggested that these isolates share an ancestor and provided an explanation for the false positives previously observed in the qPCR results. An analysis of spacer distribution across E. coli strains provided limited evidence for temporal spacer acquisition. Conversely, comparison of CRISPR sequences between strains along the stepwise evolution of O157:H7 from its O55:H7 ancestor revealed that, over this ∼7,000-year span, spacer deletion was the primary force generating CRISPR diversity.

  17. Thermal Performance Testing of Cryogenic Multilayer Insulation with Silk Net Spacers

    International Nuclear Information System (INIS)

    Johnson, W L; Frank, D J; Nast, T C; Fesmire, J E

    2015-01-01

    Early comprehensive testing of cryogenic multilayer insulation focused on the use of silk netting as a spacer material. Silk netting was used for multiple test campaigns that were designed to provide baseline thermal performance estimates for cryogenic insulation systems. As more focus was put on larger systems, the cost of silk netting became a deterrent and most aerospace insulation firms were using Dacron (or polyester) netting spacers by the early 1970s. In the midst of the switch away from silk netting there was no attempt to understand the difference between silk and polyester netting, though it was widely believed that the silk netting provided slightly better performance. Without any better reference for thermal performance data, the silk netting performance correlations continued to be used. In order to attempt to quantify the difference between the silk netting and polyester netting, a brief test program was developed. The silk netting material was obtained from Lockheed Martin and was tested on the Cryostat-100 instrument in three different configurations, 20 layers with both single and double netting and 10 layers with single netting only. The data show agreement within 15 - 30% with the historical silk netting based correlations and show a substantial performance improvement when compared to previous testing performed using polyester netting and aluminum foil/fiberglass paper multilayer insulation. Additionally, the data further reinforce a recently observed trend that the heat flux is not directly proportional to the number of layers installed on a system. (paper)

  18. Effects of spacers on blockage of coolant channels in clad melting accidents

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, D. T.; Scale, T.; Hsieh, S. [Northwestern Univ., Evanston, IL (United States). The Technological Inst.

    1977-07-01

    The elements and configuration of these assemblies are representative of the current design for a GCFR. The fuel elements are stainless-steel clad, mixed-oxide spaced by a grid structure on 250 mm centers with a pitch of 9.5 mm, diameter, 7.2 mm, and cladding thickness, 0.5 m. Three series of experiments have been conducted to study the flow and disposition of molten cladding metal into a lower powered blanket region of the reactor following a loss of flow situation. The first two series used a simulant fuel-element bundle to simplify the experimental procedure and make visual observation possible. The 'fuel' was simulated by mullite rods 6.4 mm in diameter and 610 mm long. These were clad with a 50 Pb/50 Sn alloy tubing which was drawn onto the 'fuel'. The first series used cast spacers with webs of about 0.5-0.55 mm thickness placed 175 and 425 mm from the top end of the assembly. The second series used grid spacers fabricated of 0.25 mm alloy strips. This provided a more accurate representation of the hydraulic diameter. The bundle was encased in a hexagonal glass tube. The bundle was at 22/sup 0/C and the molten alloy was poured at a temperature of 260/sup 0/C (35/sup 0/C superheat). Motion pictures recorded the experiments and the bundle was sectioned for observation. The third set of experiments was done with a stainless steel bundle of 37 elements fabricated of mullite rods, 7.14 mm diameter. The stainless steel cladding had an O.D. of 8.41 mm. The element pitch was 11.1 mm. The grid spacers were prototypic. The experiment was conducted in an inert-gas tube furnace. The 'core fuel' cladding was melted in an induction furnace and the molten liquid flowed through the center seven element channels. X-ray pictures were taken after the tests and the bundle was sectioned for further study.

  19. Ribosomal DNA internal transcribed spacer 1 and internal ...

    African Journals Online (AJOL)

    USER

    2010-07-26

    Jul 26, 2010 ... in some East Asian countries such as China, Korea and. *Corresponding author. E-mail: soonkwan@kangwon.ac.kr. Tel: +82 33 250 6476. Fax: +82 33 250 6470. Abbreviations: nrDNA, Nuclear ribosomal DNA; ITS, internal transcribed spacer; PCR, polymerase chain reaction; BLAST, basic local alignment ...

  20. Preclinical investigations towards the first spacer gel application in prostate cancer treatment during particle therapy at HIT

    International Nuclear Information System (INIS)

    Ruciński, Antoni; Parodi, Katia; Jäkel, Oliver; Haberer, Thomas; Bauer, Julia; Campbell, Patrick; Brons, Stephan; Unholtz, Daniel; Habl, Gregor; Herfarth, Klaus; Debus, Jürgen; Bert, Christoph

    2013-01-01

    The application of spacer gel represents a promising approach to reliably spare the rectal frontal wall during particle therapy (IJROBP 76:1251-1258, 2010). In order to qualify the spacer gel for the clinical use in particle therapy, a variety of measurements were performed in order to ensure the biological compatibility of the gel, its physical stability during and after the irradiation, and a proper definition of the gel in terms of the Hounsfield Unit (HU) values for the treatment planning system. The potential for the use of the spacer gel for particle therapy monitoring with off-line Positron Emission Tomography (PET) was also investigated. The spacer gel implanted to the prostate patient in direct neighbourhood to the clinical target volume does not interfere with the particle therapy treatment planning procedure applied at Heidelberg Ion Beam Therapy Centre (HIT). The performed measurements show that Bragg-peak position of the particles can be properly predicted on the basis of computed tomography imaging with the treatment planning system used at HIT (measured water equivalent path length of 1.011 ±0.011 (2σ), measured Hounsfield Unit of 28.9 ±6.1 (2σ)). The spacer gel samples remain physically unchanged after irradiation with a dose exceeding the therapeutic dose level. The independently measured Bragg-Peak position does not change within the time interval of 10 weeks. As a result of the presented experiments, the first clinical application of spacer gel implant during prostate cancer treatment with carbon ions and protons was possible at HIT in 2012. The reported pre-clinical investigations demonstrate that use of spacer gel is safe in particle therapy in presence of therapy target motion and patient positioning induced particle range variations. The spacer gel injected between prostate and rectum enlarge the distance between both organs, which is expected to clinically significantly decrease the undesirable exposure of the most critical organ at risk

  1. A coded mask telescope for the Spacelab 2 mission

    International Nuclear Information System (INIS)

    Willmore, A.P.; Skinner, G.K.; Eyles, C.J.; Ramsey, B.

    1984-01-01

    A dual coded mask telescope for the Spacelab 2 mission is now in the final stages of preparation at Birmingham University. It is due for launch in late 1984/early 1985 and will be by far the largest and most sophisticated such instrument to be flown in this time-frame. The design and capabilities of the telescope will be described. (orig.)

  2. CFD analysis of pressure drop across grid spacers in rod bundles compared to correlations and heavy liquid metal experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Batta, A., E-mail: batta@kit.edu; Class, A.G., E-mail: class@kit.edu

    2017-02-15

    Early studies of the flow in rod bundles with spacer grids suggest that the pressure drop can be decomposed in contributions due to flow area variations by spacer grids and frictional losses along the rods. For these shape and frictional losses simple correlations based on theoretical and experimental data have been proposed. In the OECD benchmark study LACANES it was observed that correlations could well describe the flow behavior of the heavy liquid metal loop including a rod bundle with the exception of the core region, where different experts chose different pressure-loss correlations for the losses due to spacer grids. Here, RANS–CFD simulations provided very good data compared to the experimental data. It was observed that the most commonly applied Rehme correlation underestimated the shape losses. The available correlations relate the pressure drop across a grid spacer to the relative plugging of the spacer i.e. solidity e{sub max}. More sophisticated correlations distinct between spacer grids with round or sharp leading edge shape. The purpose of this study is to (i) show that CFD is suitable to predict pressure drop across spacer grids and (ii) to access the generality of pressure drop correlations. By verification and validation of CFD results against experimental data obtained in KALLA we show (i). The generality (ii) is challenged by considering three cases which yield identical pressure drop in the correlations. First we test the effect of surface roughness, a parameter not present in the correlations. Here we compare a simulation assuming a typical surface roughness representing the experimental situation to a perfectly smooth spacer surface. Second we reverse the flow direction for the spacer grid employed in the experiments which is asymmetric. The flow direction reversal is chosen for convenience, since an asymmetric spacer grid with given blockage ratio, may result in different flow situations depending on flow direction. Obviously blockage

  3. Time spans and spacers : Molecular phylogenetic explorations in the Cladophora complex (Chlorophyta) from the perspective of rDNA gene and spacer sequences

    NARCIS (Netherlands)

    Bakker, Frederik Theodoor

    1995-01-01

    In this study, phylogenetic relationships among genera, species and biogeographic representatives of single Cladophora species within the Cladophorales were analyzed using rDNA gene and spacer sequences. Based on phylogenetic analysis of 18S rRNA gene sequences, the Cladophora complex is shown to be

  4. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires.

    Science.gov (United States)

    Silas, Sukrit; Makarova, Kira S; Shmakov, Sergey; Páez-Espino, David; Mohr, Georg; Liu, Yi; Davison, Michelle; Roux, Simon; Krishnamurthy, Siddharth R; Fu, Becky Xu Hua; Hansen, Loren L; Wang, David; Sullivan, Matthew B; Millard, Andrew; Clokie, Martha R; Bhaya, Devaki; Lambowitz, Alan M; Kyrpides, Nikos C; Koonin, Eugene V; Fire, Andrew Z

    2017-07-11

    Cas1 integrase is the key enzyme of the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas adaptation module that mediates acquisition of spacers derived from foreign DNA by CRISPR arrays. In diverse bacteria, the cas1 gene is fused (or adjacent) to a gene encoding a reverse transcriptase (RT) related to group II intron RTs. An RT-Cas1 fusion protein has been recently shown to enable acquisition of CRISPR spacers from RNA. Phylogenetic analysis of the CRISPR-associated RTs demonstrates monophyly of the RT-Cas1 fusion, and coevolution of the RT and Cas1 domains. Nearly all such RTs are present within type III CRISPR-Cas loci, but their phylogeny does not parallel the CRISPR-Cas type classification, indicating that RT-Cas1 is an autonomous functional module that is disseminated by horizontal gene transfer and can function with diverse type III systems. To compare the sequence pools sampled by RT-Cas1-associated and RT-lacking CRISPR-Cas systems, we obtained samples of a commercially grown cyanobacterium- Arthrospira platensis Sequencing of the CRISPR arrays uncovered a highly diverse population of spacers. Spacer diversity was particularly striking for the RT-Cas1-containing type III-B system, where no saturation was evident even with millions of sequences analyzed. In contrast, analysis of the RT-lacking type III-D system yielded a highly diverse pool but reached a point where fewer novel spacers were recovered as sequencing depth was increased. Matches could be identified for a small fraction of the non-RT-Cas1-associated spacers, and for only a single RT-Cas1-associated spacer. Thus, the principal source(s) of the spacers, particularly the hypervariable spacer repertoire of the RT-associated arrays, remains unknown. IMPORTANCE While the majority of CRISPR-Cas immune systems adapt to foreign genetic elements by capturing segments of invasive DNA, some systems carry reverse transcriptases (RTs) that enable adaptation to RNA molecules. From

  5. Single-Stage Treatment of Osteomyelitis for Digital Salvage by Using an Antibiotic-Eluting, Methylmethacrylate Joint-Spanning Spacer.

    Science.gov (United States)

    Aimé, Victoria L; Kidwell, John T; Webb, Leland H

    2017-06-01

    Osteomyelitis of the digit is a challenging problem that can result in amputation. We describe 13 cases of osteomyelitis involving bones of the hand managed with a novel technique. We reviewed records of 12 patients (13 digits) who had joint-spanning, antibiotic-eluting (tobramycin or vancomycin), methylmethacrylate spacers placed as definitive, single-stage treatment for digital osteomyelitis. The primary outcome was digit salvage. Secondary outcomes were infection eradication (no recurrence at 3 months) and spacer removal. Patients were followed up until the infection resolved (ie, no cutaneous signs of infection, including pain, erythema, or swelling). At a mean of 24 months, 10 of 13 infections had successful one-stage treatment. One patient required a second operation to revise a soft tissue flap but the spacer remained in place. Two spacers were removed because of malalignment. An antibiotic-eluting methylmethacrylate spacer is an innovative treatment for digital osteomyelitis. In 12 consecutive patients (13 digits), we successfully salvaged the digit. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  6. CFD analysis on mixing effects of spacer grids with different dimples and sizes for advanced fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.W.; Zhang, H.; Han, B.; Zha, Y.D.; Shan, J.Q. [Xi' an Jiaotong Univ. (China). School of Nuclear Science and Technology

    2016-07-15

    The thermal hydraulic characteristics of a mixing vane grid are largely dependent on the structure of key components, such as strip, spring, dimple, weld nugget, as well as the mixing vane configuration. In this paper, several types of spacer grids with different dimple shapes are modeled under subcooled boiling conditions. Prior to the application of CFD on the dimple shape analysis, the mixing effects of spacer grids were studied. After the dimple shape analysis, the side channel effect is discussed by comparing the simulation results of a 3 x 3 and a 5 x 5 spacer grid. The two phase flow CFD models in this study are validated through simple geometry showing that the calculated void fraction is in good agreement with the experimental data. The dimple comparison result shows that varying dimple structures can result in different temperatures, lateral velocities and void fraction distributions downstream of the spacer grids. Comparison of two sizes of spacer grids demonstrate that the side channel generates different flow distribution pattern in the center channel.

  7. The NASA Spitzer Space Telescope.

    Science.gov (United States)

    Gehrz, R D; Roellig, T L; Werner, M W; Fazio, G G; Houck, J R; Low, F J; Rieke, G H; Soifer, B T; Levine, D A; Romana, E A

    2007-01-01

    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991-2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/.

  8. Optical and mechanical design and characterization of the new baffle for the 2.4-m Thai National Telescope

    Science.gov (United States)

    Buisset, Christophe; Prasit, Apirat; Lépine, Thierry; Poshyajinda, Saran

    2015-09-01

    The first astronomical images obtained at the 2.4 m Thai National Telescope (TNT) during observations in bright moon conditions were contaminated by high levels of light scattered by the telescope structure. We identified that the origins of this scattered light were the M3 folding mirror baffle and the tube placed inside the fork between the M3 and the M4 mirrors. We thus decided to design and install a new baffle. In a first step, we calculated the optical and mechanical inputs needed to define the baffle optical design. These inputs were: the maximum length of the baffle, the maximum dimensions of the vanes and the incident beam diameter between M3 and M4 mirrors. In a second step, we defined the number, the position and the diameter of the vanes to remove the critical objects from the detector's FOV by using a targeted method. Then, we verified that the critical objects were moved away from the detector's view. In a third step, we designed and manufactured the baffle. The mechanical design is made of 21 sections (1 section for each vane) and comprises an innovative mechanism for the adjustment of the baffle position. The baffle installation and adjustment is performed in less than 20 minutes by 2 operators. In a fourth step, we installed and characterized the baffle by using a pinhole camera. We quantified the performance improvement and we identified the baffle areas at the origin of the residual stray light signal. Finally, we performed targeted on-sky observations to test the baffle in real conditions.

  9. Confirming Sterility of an Autoclaved Infected Femoral Component for Use in an Articulated Antibiotic Knee Spacer: A Pilot Study.

    Science.gov (United States)

    Lyons, Steven T; Wright, Coy A; Krute, Christina N; Rivera, Frances E; Carroll, Ronan K; Shaw, Lindsey N

    2016-01-01

    Antibiotic spacer designs have proven effective at eradicating infection during a two-stage revision arthroplasty. Temporary reuse of the steam-sterilized femoral component and a new all poly tibia component has been described as an effective articulating antibiotic spacer, but sterility concerns persist. Six explanted cobalt chrome femurs from patients with grossly infected TKA's and six stock femurs inoculated with different bacterial species were confirmed to be bacteria-free after autoclaving under a standard gravity-displacement cycle. The effect of steam sterilization on cobalt chrome fragments contaminated with MRSA biofilm was analyzed microscopically to quantify remaining biofilm. The autoclave significantly reduced the biofilm burden on the cobalt chrome fragments. This study confirmed sterility of the femur after a standard gravity-displacement cycle (132°C, 27 PSIG, 10 minutes). Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  11. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Perrey, Hanno

    2013-01-01

    A high resolution ($\\sigma 2 \\sim \\mu$) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six sensor planes using Mimosa26 MAPS with a pixel pitch of $18.4 \\mu$ and thinned down to $50 \\mu$. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the new European detector infrastructure project AIDA the test beam telescope will be further extended in terms of cooling infrastructure, readout speed and precision. In order to provide a system optimized for the different requirements by the user community, a combination of various pixel technologies is foreseen. In this report the design of this even more flexible telescope with three different pixel technologies (TimePix, Mimosa, ATLAS FE-I4) will be presented. First test beam results with the HitOR signal provided by the FE-I4 integrated into the trigger...

  12. Opto-mechanical design of ShaneAO: the adaptive optics system for the 3-meter Shane Telescope

    Science.gov (United States)

    Ratliff, C.; Cabak, J.; Gavel, D.; Kupke, R.; Dillon, D.; Gates, E.; Deich, W.; Ward, J.; Cowley, D.; Pfister, T.; Saylor, M.

    2014-07-01

    A Cassegrain mounted adaptive optics instrument presents unique challenges for opto-mechanical design. The flexure and temperature tolerances for stability are tighter than those of seeing limited instruments. This criteria requires particular attention to material properties and mounting techniques. This paper addresses the mechanical designs developed to meet the optical functional requirements. One of the key considerations was to have gravitational deformations, which vary with telescope orientation, stay within the optical error budget, or ensure that we can compensate with a steering mirror by maintaining predictable elastic behavior. Here we look at several cases where deformation is predicted with finite element analysis and Hertzian deformation analysis and also tested. Techniques used to address thermal deformation compensation without the use of low CTE materials will also be discussed.

  13. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model

    Directory of Open Access Journals (Sweden)

    Georgios Zoulinakis

    2017-01-01

    Full Text Available Purpose. To design an intraocular telescopic system (ITS for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses’ placement in the eye model and their powers. Ray tracing in both centered and decentered situations was carried out for both ITS while visual Strehl ratio (VSOTF was computed using custom-made MATLAB code. Results. The results show that between 0.4 and 0.8 mm of decentration, the VSOTF does not change much either for far or near target distances. The image projection for these decentrations is in the parafoveal zone, and the quality of the image projected is quite similar. Conclusion. Both systems display similar quality while they differ in size; therefore, the choice between them would need to take into account specific parameters from the patient’s eye. Quality does not change too much between 0.4 and 0.8 mm of decentration for either system which gives flexibility to the clinician to adjust decentration to avoid areas of retinal damage.

  14. Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors.

    Science.gov (United States)

    Ha, Minjeong; Lim, Seongdong; Cho, Soowon; Lee, Youngoh; Na, Sangyun; Baig, Chunggi; Ko, Hyunhyub

    2018-04-24

    The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 μW/cm 2 ), pressure (0.55 V/kPa), and bending (∼0.1 V/°) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics.

  15. Space astronomical telescopes and instruments; Proceedings of the Meeting, Orlando, FL, Apr. 1-4, 1991

    Science.gov (United States)

    Bely, Pierre Y.; Breckinridge, James B.

    The present volume on space astronomical telescopes and instruments discusses lessons from the HST, telescopes on the moon, future space missions, and mirror fabrication and active control. Attention is given to the in-flight performance of the Goddard high-resolution spectrograph of the HST, the initial performance of the high-speed photometer, results from HST fine-guidance sensors, and reconstruction of the HST mirror figure from out-of-focus stellar images. Topics addressed include system concepts for a large UV/optical/IR telescope on the moon, optical design considerations for next-generation space and lunar telescopes, the implications of lunar dust for astronomical observatories, and lunar liquid-mirror telescopes. Also discussed are space design considerations for the Space Infrared Telescope Facility, the Hubble extrasolar planet interferometer, Si:Ga focal-plane arrays for satellite and ground-based telescopes, microchannel-plate detectors for space-based astronomy, and a method for making ultralight primary mirrors.

  16. Optical design and performance analysis of a 25 m class telescope with a segmented spherical primary

    DEFF Research Database (Denmark)

    Owner-Petersen, Mette

    1996-01-01

    The basic design and an analysis of the performance possibilities of a 25 m class optical telescope are presented here. The configuration consists of a 28 m segmented spherical primary M1 followed by three highly aspherical corrective mirrors M2, M3 and M4 which also deviate from cartesian shape...... sag and windbuffeting. Several types of aspherical figuring of M2, M3 and M4 all resulting in a field performance better than characterized by a RMS spotradius smaller than 0.1 arcseconds within a full FOV of 21 arcminutes are presented....

  17. A numerical approach to the simulation of one-phase and two phase reactor coolant flow around nuclear fuel spacers

    International Nuclear Information System (INIS)

    Stosic, Z.V.; Stevanovic, V.D.

    2001-01-01

    A methodology for the simulation and analysis of one-phase and two-phase coolant flows around one or a row of spacers is presented. It is based on the multidimensional two-fluid mass, momentum and energy balance equations and application of adequate turbulence models. Necessary closure laws for interfacial transfer processes are presented. The stated general approach enables simulation and analyses of reactor coolant flow around spacers on different scale levels of the rod bundle geometry: detailed modelling of coolant flow around spacers and investigation of the influence of spacer's geometry on the coolant thermal-hydraulics, as well as prediction of global thermal-hydraulic parameters within the whole rod bundle with the investigation of the influence of rows of spacers on the bulk thermal-hydraulic processes. Sample problems are included illustrating these different modelling approaches. (author)

  18. Impact of underlap spacer region variation on electrostatic and analog performance of symmetrical high-k SOI FinFET at 20 nm channel length

    Science.gov (United States)

    Jain, Neeraj; Raj, Balwinder

    2017-12-01

    Continued scaling of CMOS technology to achieve high performance and low power consumption of semiconductor devices in the complex integrated circuits faces the degradation in terms of electrostatic integrity, short channel effects (SCEs), leakage currents, device variability and reliability etc. Nowadays, multigate structure has become the promising candidate to overcome these problems. SOI FinFET is one of the best multigate structures that has gained importance in all electronic design automation (EDA) industries due to its improved short channel effects (SCEs), because of its more effective gate-controlling capabilities. In this paper, our aim is to explore the sensitivity of underlap spacer region variation on the performance of SOI FinFET at 20 nm channel length. Electric field modulation is analyzed with spacer length variation and electrostatic performance is evaluated in terms of performance parameter like electron mobility, electric field, electric potential, sub-threshold slope (SS), ON current (I on), OFF current (I off) and I on/I off ratio. The potential benefits of SOI FinFET at drain-to-source voltage, V DS = 0.05 V and V DS = 0.7 V towards analog and RF design is also evaluated in terms of intrinsic gain (A V), output conductance (g d), trans-conductance (g m), gate capacitance (C gg), and cut-off frequency (f T = g m/2πC gg) with spacer region variations.

  19. Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study

    KAUST Repository

    Bucs, Szilard

    2014-06-01

    Feed spacers and hydrodynamics have been found relevant for the impact of biofouling on performance in reverse osmosis (RO) and nanofiltration (NF) membrane systems.The objectives of this study on biofouling development were to determine the impact of (i) linear flow velocity and bacterial cell load, (ii) biomass location and (iii) various feed spacer geometries as applied in practice as well as a modified geometry spacer.A three-dimensional mathematical model for biofouling of feed spacer channels including hydrodynamics, solute mass transport and biofilm formation was developed in COMSOL Multiphysics and MATLAB software.Results of this study indicate that the feed channel pressure drop increase caused by biofilm formation can be reduced by using thicker and/or modified feed spacer geometry and/or a lower flow rate in the feed channel. The increase of feed channel pressure drop by biomass accumulation is shown to be strongly influenced by the location of biomass. Results of numerical simulations are in satisfactory agreement with experimental data, indicating that this micro-scale mechanistic model is representative for practice. The developed model can help to understand better the biofouling process of spiral-wound RO and NF membrane systems and to develop strategies to reduce and control biofouling. © 2013 Elsevier B.V.

  20. Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study

    KAUST Repository

    Bucs, Szilard; Radu, Andrea I.; Lavric, Vasile; Vrouwenvelder, Johannes S.; Picioreanu, Cristian

    2014-01-01

    Feed spacers and hydrodynamics have been found relevant for the impact of biofouling on performance in reverse osmosis (RO) and nanofiltration (NF) membrane systems.The objectives of this study on biofouling development were to determine the impact of (i) linear flow velocity and bacterial cell load, (ii) biomass location and (iii) various feed spacer geometries as applied in practice as well as a modified geometry spacer.A three-dimensional mathematical model for biofouling of feed spacer channels including hydrodynamics, solute mass transport and biofilm formation was developed in COMSOL Multiphysics and MATLAB software.Results of this study indicate that the feed channel pressure drop increase caused by biofilm formation can be reduced by using thicker and/or modified feed spacer geometry and/or a lower flow rate in the feed channel. The increase of feed channel pressure drop by biomass accumulation is shown to be strongly influenced by the location of biomass. Results of numerical simulations are in satisfactory agreement with experimental data, indicating that this micro-scale mechanistic model is representative for practice. The developed model can help to understand better the biofouling process of spiral-wound RO and NF membrane systems and to develop strategies to reduce and control biofouling. © 2013 Elsevier B.V.

  1. Single-electron transistors fabricated with sidewall spacer patterning

    Science.gov (United States)

    Park, Byung-Gook; Kim, Dae Hwan; Kim, Kyung Rok; Song, Ki-Whan; Lee, Jong Duk

    2003-09-01

    We have implemented a sidewall spacer patterning method for novel dual-gate single-electron transistor (DGSET) and metal-oxide-semiconductor-based SET (MOSET) based on the uniform SOI wire, using conventional lithography and processing technology. A 30 nm wide silicon quantum wire is defined by a sidewall spacer patterning method, and depletion gates for two tunnel junctions of the DGSET are formed by the doped polycrystalline silicon sidewall. The fabricated DGSET and MOSET show clear single-electron tunneling phenomena at liquid nitrogen temperature and insensitivity of the Coulomb oscillation period to gate bias conditions. On the basis of the phase control capability of the sidewall depletion gates, we have proposed a complementary self-biasing method, which enables the SET/CMOS hybrid multi-valued logic (MVL) to operate perfectly well at high temperature, where the peak-to-valley current ratio of Coulomb oscillation severely decreases. The suggested scheme is evaluated by SPICE simulation with an analytical DGSET model, and it is confirmed that even DGSETs with a large Si island can be utilized efficiently in the multi-valued logic.

  2. Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N.

    2012-12-01

    We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments.

  3. Observatories and Telescopes of Modern Times

    Science.gov (United States)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  4. Deployable reflector configurations. [for space telescope

    Science.gov (United States)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  5. Position measurement of the direct drive motor of Large Aperture Telescope

    Science.gov (United States)

    Li, Ying; Wang, Daxing

    2010-07-01

    Along with the development of space and astronomy science, production of large aperture telescope and super large aperture telescope will definitely become the trend. It's one of methods to solve precise drive of large aperture telescope using direct drive technology unified designed of electricity and magnetism structure. A direct drive precise rotary table with diameter of 2.5 meters researched and produced by us is a typical mechanical & electrical integration design. This paper mainly introduces position measurement control system of direct drive motor. In design of this motor, position measurement control system requires having high resolution, and precisely aligning the position of rotor shaft and making measurement, meanwhile transferring position information to position reversing information corresponding to needed motor pole number. This system has chosen high precision metal band coder and absolute type coder, processing information of coders, and has sent 32-bit RISC CPU making software processing, and gained high resolution composite coder. The paper gives relevant laboratory test results at the end, indicating the position measurement can apply to large aperture telescope control system. This project is subsidized by Chinese National Natural Science Funds (10833004).

  6. The Atacama Cosmology Telescope: Instrument

    Science.gov (United States)

    Thornton, Robert J.; Atacama Cosmology Telescope Team

    2010-01-01

    The 6-meter Atacama Cosmology Telescope (ACT) is making detailed maps of the Cosmic Microwave Background at Cerro Toco in northern Chile. In this talk, I focus on the design and operation of the telescope and its commissioning instrument, the Millimeter Bolometer Array Camera. The camera contains three independent sets of optics that operate at 148 GHz, 217 GHz, and 277 GHz with arcminute resolution, each of which couples to a 1024-element array of Transition Edge Sensor (TES) bolometers. I will report on the camera performance, including the beam patterns, optical efficiencies, and detector sensitivities. Under development for ACT is a new polarimeter based on feedhorn-coupled TES devices that have improved sensitivity and are planned to operate at 0.1 K.

  7. LOBSTER: new space x-ray telescopes

    Science.gov (United States)

    Hudec, R.; Sveda, L.; Pína, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2017-11-01

    The LOBSTER telescopes are based on the optical arrangement of the lobster eye. The main difference from classical X-ray space telescopes in wide use is the very large field of view while the use of optics results in higher efficiency if compared with detectors without optics. Recent innovative technologies have enabled to design, to develop and to test first prototypes. They will provide deep sensitive survey of the sky in X-rays for the first time which is essential for both long-term monitoring of celestial high-energy sources as well as in understanding transient phenomena. The technology is now ready for applications in space.

  8. Preliminary Investigation on Turbulent Flow in Tight-lattice Rod Bundle with Twist-mixing Vane Spacer Grid

    International Nuclear Information System (INIS)

    Lee, Chiyoung; Kwack, Youngkyun; Park, Juyong; Shin, Changhwan; In, Wangkee

    2013-01-01

    Our research group has investigated the effect of P/D difference on the behavior of turbulent rod bundle flow without the mixing vane spacer grid, using PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques for tight lattice fuel rod bundle application. In this work, using the tight-lattice rod bundle with a twist-mixing vane spacer grid, the turbulent rod bundle flow is preliminarily examined to validate the PIV measurement and CFD (Computational Fluid Dynamics) simulation. The turbulent flow in the tight-lattice rod bundle with a twist-mixing vane spacer grid was preliminarily examined to validate the PIV measurement and CFD simulation. Both were in agreement with each other within a reasonable degree of accuracy. Using PIV measurement and CFD simulation tested in this work, the detailed investigations on the behavior of turbulent rod bundle flow with the twist-mixing vane spacer grid will be performed at various conditions, and reported in the near future

  9. Structural mechanics of the solar-A Soft X-ray Telescope

    Science.gov (United States)

    Jurcevich, B. K.; Bruner, M. E.; Gowen, K. F.

    1992-01-01

    The Soft X-ray Telescope (SXT) is one of four major instruments that constitute the payload of the NASA-Japanese mission YOHKOH (formerly known as Solar-A), scheduled to be launched in August, 1991. This paper describes the design of the SXT, the key system requirements, and the SXT optical and structural systems. Particular attention is given to the design considerations for stiffness and dimensional stability, temperature compensation, and moisture sensitivyty control. Consideration is also given to the X-ray mirror, the aspect telescope, the entrance filters, the mechanical structure design, the aft support plate and mount, the SXT finite element model, and other subsystems.

  10. WE-FG-BRA-02: Docetaxel Eluting Brachytherapy Spacers for Local Chemo-Radiation Therapy in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Belz, J [Northeastern University, Boston, MA (United States); Kumar, R; Sridhar, S [Northeastern University & Dana Farber Cancer Institute, Boston, MA (United States); Makrigiorgos, G; Nguyen, P [Dana Farber Cancer Institute, Boston, MA (United States); D’Amico, A [Brigham & Women’s Hospital, Boston, MA (United States); Cormack, R [Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: We propose an innovative combinatorial treatment strategy of Local ChemoRadiation Therapy (LCRT) using a sustained drug delivery platform in the form of a spacer to locally radio-sensitize the prostate with Docetaxel (DTX) enabling a synergistic cure with the use of lower radiation doses. These biodegradable spacers are physically similar to the inert spacers routinely used in prostate brachytherapy but are now loaded with formulations of DTX. Methods: Spacers were loaded with ∼500µg Docetaxel (DTX) for prostate cancer studies. The implants were characterized in vitro using SEM and HPLC. The release kinetic studies were carried out in buffer (pH 6.0) at 37°C. Subcutaneous PC3 tumors were xenografted in nude mice. Prostate cancer studies were done with and without radiation using SARRP at 5Gy, 10Gy, and 15Gy. Drug-loaded implants were injected once intratumorally using an 18G brachytherapy needle. Results: The release study in vitro showed a highly sustained release for multiple weeks at therapeutically relevant doses. The monotherapy with local DTX spacer showed sustained tumor inhibition compared to empty implants and an equivalent DTX dose given systemically. At 40 days, 89% survival was observed for mice treated with DTX implants compared with 0% in all other treatment groups. The combined treatment with local DTX spacer and radiation (10Gy) showed the highest degree of tumor suppression (significant tumor growth inhibition by day 90). The control mice showed continuous tumor growth and were scarified by day 56. Groups of mice treated with DTX-spacer or radiation alone showed initial tumor suppression but growth continued after day 60. A larger experiment is ongoing. Conclusion: This approach provides localized delivery of the chemotherapeutic sensitizer directly to the tumor and avoids the toxicities associated with both brachytherapy and current systemic delivery of docetaxel. Sustained release of DTX is an effective chemotherapy option alone or

  11. Space telescope phase B definition study. Volume 2A: Science instruments, f48/96 planetary camera

    Science.gov (United States)

    Grosso, R. P.; Mccarthy, D. J.

    1976-01-01

    The analysis and preliminary design of the f48/96 planetary camera for the space telescope are discussed. The camera design is for application to the axial module position of the optical telescope assembly.

  12. Spacer grid corner gusset

    International Nuclear Information System (INIS)

    Larson, J.G.

    1984-01-01

    There is provided a spacer grid for a bundle of longitudinally extending rods in spaced generally parallel relationship comprising spacing means for holding the rods in spaced generally parallel relationship; the spacing means includes at least one exterior grid strip circumscribing the bundle of rods along the periphery thereof; with at least one exterior grid strip having a first edge defining the boundary of the strip in one longitudinal direction and a second edge defining the boundary of the strip in the other longitudinal direction; with at least one exterior grid strip having at least one band formed therein parallel to the longitudinal direction; a plurality of corner gussets truncating each of a plurality of corners formed by at least one band and the first edge and the second edge

  13. Spacers for use in nuclear fuel assembly

    International Nuclear Information System (INIS)

    Shiohata, Hironori; Nakamura, Shozo; Hasegawa, Kunio; Higuchi, Shigeo; Nagashima, Hideaki; Kawada, Yoshishige.

    1987-01-01

    Purpose: To prevent liquid film breakage at the surface of a fuel rod due to swirlings of steam flow generated at the upstream of a contact portion between the fuel rod and a spacer leaf spring, that is, below the contact portion. Constitution: Steam-hot water 2-phase streams flowing from the lower to the upper portions of a fuel assembly is hindered by leaf springs, thereby forming swirlings in the steam flow at the upstream of a contact portion between the fuel rod and the leaf springs, that is, below the contact portion. The horseshoe-like swirlings shed the liquid films at the surface of the fuel rod to remarkably decrease the heat cooling performance, by which the surface temperature of a fuel can is temporarily increased thereby possibly causing failures due to so-called burnout in view of the above, steps are formed to the spacer leaf spring for use in the fuel assembly, to reduce the pressure difference between the leaf spring and the fuel rod at the upstream of the springs relative to the 2-phase coolant stream. In this way, formation of the swirlings is moderated to prevent the liquid film breakage and improve the critical heat power. (Kamimura, M.)

  14. The Soft X-ray Telescope for Solar-A - Design evolution and lessons learned

    Science.gov (United States)

    Bruner, Marilyn E.

    1992-01-01

    The Japanese Solar-A satellite mission's Soft X-ray Telescope uses grazing-incidence optics, a CCD detector, and a pair of filter wheels for wavelength selection. A coaxially-mounted visible-light lens furnished sunspot and magnetic plage images, together with aspect information which aids in aligning the soft X-ray images with those from the satellite's Hard X-ray Telescope. Instrument electronics are microprocessor-based, and imbedded in a tightly integrated distributed system. Control software is divided between the instrument microprocessor and the spacecraft control computer.

  15. Active remote observing system for the 1-m telescope at Tonantzintla Observatory

    Science.gov (United States)

    Bernal, Abel; Martínez, Luis A.; Hernández, Héctor; Garfias, Fernando; Ángeles, Fernando

    2006-06-01

    We have designed and installed a new active remote observing system for the 1-m, f/15 telescope at the Tonantzintla Observatory. This remote system is operated in real-time through the Internet, allowing an observer to control the building, the telescope (pointing, guiding and focusing) and the CCD image acquisition at the main and finder telescopes from the Instituto de Astronomia headquarters in Mexico City (150 KM away). The whole system was modeled within the Unified Modeling Language (UML) and the design has proved to be versatile enough for a variety of astronomical instruments. We describe the system architecture and how different subsystems (telescope control, main telescope and finder image acquisition, weather station, videoconference, etc.) that are based on different operative system platforms (Linux, Windows, uIP) have been integrated. We present the first results of an IPv6 over IPv4 tunnel. Recent remote direct imaging and spectroscopic observations have been used to test the astronomical site. We conclude that this remote system is an excellent tool for supporting research and graduated observational astronomy programs.

  16. An examination of the influence of spacers on burnout in an annulus cooled by the upflow of Freon-12

    International Nuclear Information System (INIS)

    Ilic, V.

    1975-04-01

    To evaluate the spacer influence on burnout, tests were carried out in Freon-12 at 1.04 MPa (abs.) test section inlet pressure with an internally heated annulus 2743 mm long by 14.4 mm heater diameter, the outer tube (shroud) having a bore of 22.1 mm. The inner rod (heater) was located centrally to the shroud by spacers and their configuration was changed for each test. Comparison of the results with those obtained with a test section having no spacers indicated that spacers can increase burnout power up to 75 per cent, decrease it, or show no effect at all, depending on the combination of the inlet temperature and mass velocity. If the spacers were streamlined, removed from the upstream portion of the heater or relocated farther upstream from the downstream end of the heater, there was a considerably reduced effect on the test section performance. (author)

  17. The use of ZnO as optical spacer in polymer solar cells : theoretical and experimental study

    NARCIS (Netherlands)

    Gilot, J.; Barbu, I.; Wienk, M.M.; Janssen, R.A.J.

    2007-01-01

    For org. solar cells, insertion of an optical spacer between the active layer and the reflective electrode results in a redistribution of the optical elec. field. In this paper, theor. calcns. using optical modeling are compared with exptl. results for devices with ZnO as optical spacer. An

  18. Development of an Efficient G-Quadruplex-Stabilised Thrombin-Binding Aptamer Containing a Three-Carbon Spacer Molecule

    DEFF Research Database (Denmark)

    Aaldering, Lukas J.; Poongavanam, Vasanthanathan; Langkjær, Niels

    2017-01-01

    The thrombin-binding aptamer (TBA), which shows anticoagulant properties, is one of the most studied G-quadruplex-forming aptamers. In this study, we investigated the impact of different chemical modifications such as a three-carbon spacer (spacer-C3), unlocked nucleic acid (UNA) and 3′-amino-mod...

  19. The ultraviolet telescope on the Astron satellite

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1987-01-01

    On 23 March 1983 in the USSR, the Astron astrophysical satellite, with the largest ultraviolet telescope (the UVT) in the world (main mirror diameter 80 cm) and a set of X-ray instruments on board was placed in a high-apogee orbit. The design of the ultraviolet telescope and the results of some of the observations carried out with it are described here. The X-ray instruments are discussed in a separate article. The ultraviolet telescope on the Astron astrophysical satellite is a result of the joint efforts of scientists and engineers at the Crimean Astrophysical Observatory (Academy of Sciences of the USSR), the Byurakan Astrophysical Observatory (Academy of Sciences of the Armenian USSR), and several industrial enterprises in our country. The Laboratoire d'Astronomie Spatiale (CNRS, Marseille, France) played a large role in building the spectrometer for the UVT

  20. Investigation on effect of methylene spacer in holographic grating formation in eosin containing polymethacrylates

    Energy Technology Data Exchange (ETDEWEB)

    Manickasundaram, S. [Department of Chemistry, Anna University, Sardar Vallabai Patel Road, Chennai 600025 (India); Kannan, P. [Department of Chemistry, Anna University, Sardar Vallabai Patel Road, Chennai 600025 (India)]. E-mail: pakannan@annauniv.edu; Deepa, S. [Centre for Laser Technology, Department of Physics, Anna University, Chennai 600025 (India); Palanisamy, P.K. [Centre for Laser Technology, Department of Physics, Anna University, Chennai 600025 (India)

    2007-01-15

    A new series of eosin dye based poly(alkyloxymethacrylate)s was synthesized with an even number of side-chain methylene spacers by a free radical addition polymerization method for holographic optical data storage applications. These polymers were characterized by UV, IR and {sup 1}H NMR spectroscopy. The glass transition temperature and thermal stability of the polymers were investigated by DSC and TGA, respectively. As the spacer length increases in the side-chain, Tg, Tm and thermal stability of the polymers decrease, while a reverse trend was observed with film forming ability of the polymers. The optical characterization of the polymers was investigated by forming holographic grating using an Argon ion laser. The grating diffraction efficiency was found to depend not only on the concentration of polymeric film but also on the spacer length of the polymers.

  1. Investigation on effect of methylene spacer in holographic grating formation in eosin containing polymethacrylates

    International Nuclear Information System (INIS)

    Manickasundaram, S.; Kannan, P.; Deepa, S.; Palanisamy, P.K.

    2007-01-01

    A new series of eosin dye based poly(alkyloxymethacrylate)s was synthesized with an even number of side-chain methylene spacers by a free radical addition polymerization method for holographic optical data storage applications. These polymers were characterized by UV, IR and 1 H NMR spectroscopy. The glass transition temperature and thermal stability of the polymers were investigated by DSC and TGA, respectively. As the spacer length increases in the side-chain, Tg, Tm and thermal stability of the polymers decrease, while a reverse trend was observed with film forming ability of the polymers. The optical characterization of the polymers was investigated by forming holographic grating using an Argon ion laser. The grating diffraction efficiency was found to depend not only on the concentration of polymeric film but also on the spacer length of the polymers

  2. Interaction between zircaloy tube and inconel spacer grid at high temperature

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Otomo, Takashi; Uetsuka, Hiroshi; Furuta, Teruo

    1990-09-01

    In order to investigate the interaction between fuel cladding and spacer grid of the pressurized water reactor during a severe accident, isothermal reaction tests were performed at the temperature range from 1248 to 1673K. A specimen consisted of a short Zircaloy-4 cladding tube and a piece of spacer grid of Inconel-718. In the tests in an argon atmosphere, eutectic reaction between Zircaloy and Inconel was observed at the contact points at 1248K. Rapid reaction was observed at higher test temperatures. For example, in the test at 1373K for 300s, Zircaloy reacted with Inconel over the entire thickness (0.62mm) of the tube in the vicinity of the contact point. In the present tests, Zircaloy which has higher melting point than Inconel was dissolved preferentially due to eutectic formation. In the tests in an oxygen atmosphere, no eutectic reaction was observed at temperatures below 1437K. A trace of interaction was found at the contact point of specimen heated at 1573 and 1623K. However, decrease in Zircaloy thickness was not measured. The possibility of eutectic reaction between Zircaloy cladding and Inconel spacer grid seems to be quite limited when sufficient oxygen is supplied. (author)

  3. Telescope Construction: A Hands-On Approach to Astronomy Education

    Science.gov (United States)

    Sarrazine, Angela R.; Albin, E.

    2009-01-01

    We report on a popular semester-long telescope making course offered at Fernbank Science Center in Atlanta, GA. The program is tailored for junior / senior level high school students and incorporates the current educational performance standards for the state of Georgia. This course steps out of the traditional classroom environment and allows students to explore optics and astronomical concepts by constructing their own telescopes. Student telescopes follow the classic six-inch f/8 Newtonian reflector design, which has proven to be a good compromise between portability and aperture. Participants meet for a few hours, twice weekly, to build their telescopes. Over the course of the semester, raw one-inch thick Pyrex mirror blanks are ground, polished, and figured by hand into precision telescope objectives. Along the way, students are introduced to the Ronchi and Foucault methods for testing optics and once figured, completed mirrors are then chemically silvered. A plywood Dobsonian-style base is built and eventually mated with an optical tube made from a standard eight-inch concrete form tube or sonotube. An evening of star testing the optics and observation is planned at the end of the semester to insure the proper operation of each telescope. In summary, we believe that a hands-on approach to the understanding and use of optical telescopes is a great way not only to instill enthusiasm among students for the night sky, but may perhaps inspire the next generation of professional telescope makers.

  4. The Mechanical Design of a Kinematic Mount for the Mid Infrared Instrument Focal Plane Module on the James Webb Space Telescope

    Science.gov (United States)

    Thelen, Michael P.; Moore, Donald M.

    2009-01-01

    The detector assembly for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is mechanically supported in the Focal Plane Module (FPM) Assembly with an efficient hexapod design. The kinematic mount design allows for precision adjustment of the detector boresight to assembly alignment fiducials and maintains optical alignment requirements during flight conditions of launch and cryogenic operations below 7 Kelvin. This kinematic mounting technique is able to be implemented in a variety of optical-mechanical designs and is capable of micron level adjustment control and stability over wide dynamic and temperature ranges.

  5. [Cervical adaptation of complete cast crowns of various metal alloys, with and without die spacers].

    Science.gov (United States)

    Stephano, C B; Roselino, R F; Roselino, R B; Campos, G M

    1989-01-01

    A metallic replica from a dental preparation for crown was used to make 8 class-IV stone dies. The wax patterns for the casting of the crowns were obtained in two conditions: a) from the stone die with no spacer; and b) from the stone die with an acrylic spacer. Thus, 64 metallic crowns were casted, using 4 different alloys: DURACAST (Cu-Al), NICROCAST (Ni-Cr) and DURABOND (Ni-Cr), and gold. The casted crowns were fitted in the metallic replica and measured as to the cervical discrepance of fitting. The results showed that the use of die spacers decreases the clinical discrepancies of fitting of the casted crowns (in a statistically significant level), no matter the metallic alloy employed.

  6. The 3.5-Meter Telescope Enclosure

    Science.gov (United States)

    1994-04-01

    and acoustic vibrations, and the enclosure cannot be stopped quickly in an emergency. Also, the work of Zago indicates that open-air operation of the...enclosure. This capability is useful during operational testing and maintenance of the telescope. ’ Zago , L., "Design and Performance of Large

  7. Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization

    KAUST Repository

    Siddiqui, Amber

    2017-04-13

    The porosity of spacer-filled feed channels influences the hydrodynamics of spiral-wound membrane systems and impacts the overall performance of the system. Therefore, an exact measurement and a detailed understanding of the impact of the feed channel porosity is required to understand and improve the hydrodynamics of spiral-wound membrane systems applied for desalination and wastewater reuse. The objectives of this study were to assess the accuracy of porosity measurement techniques for feed spacers differing in geometry and thickness and the consequences of using an inaccurate method on hydrodynamic predictions, which may affect permeate production. Six techniques were applied to measure the porosity namely, three volumetric calculations based on spacer strand count together with cuboidal (SC), cylindrical (VCC) and ellipsoidal volume calculation (VCE) and three independent techniques based on volume displacement (VD), weight and density (WD) and computed tomography scanning (CT). The CT method was introduced as an alternative for the other five already existing and applied methods in practice.Six feed spacers used for the porosity measurement differed in filament thickness, angle between the filaments and mesh-size. The results of the studies showed differences between the porosities, measured by the six methods. The results of the microscopic techniques SC, VCC and VCE deviated significantly from measurements by VD, WD and CT, which showed similar porosity values for all spacer types.Depending on the maximum deviation of the porosity measurement techniques from –6% to +6%, (i) the linear velocity deviations were −5.6% and +6.4% respectively and (ii) the pressure drop deviations were –31% and +43% respectively, illustrating the importance of an accurate porosity measurement. Because of the accuracy and standard deviation, the VD and WD method should be applied for the porosity determination of spacer-filled channels, while the CT method is recommended for

  8. Paraboloidal X-ray telescope mirror for solar coronal spectroscopy

    Science.gov (United States)

    Brown, W. A.; Bruner, E. C., Jr.; Acton, L. W.; Franks, A.; Stedman, M.; Speer, R. J.

    1979-01-01

    The telescope mirror for the X-ray Spectrograph Spectrometer Telescope System is a sixty degree sector of an extreme off-axis paraboloid of revolution. It was designed to focus a coronal region 1 by 10 arc seconds in size on the entrance slit of the spectrometer after reflection from the gold surface. This paper discusses the design, manufacture, and metrology of the mirror, the methods of precision mechanical metrology used to focus the system, and the mounting system which locates the mirror and has proven itself through vibration tests. In addition, the results of reflection efficiency measurements, alignment tolerances, and ray trace analysis of the effects of misalignment are considered.

  9. The Planck Telescope reflectors

    Science.gov (United States)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  10. Peri-Prosthetic Knee Infection Management: Spacers Loaded with Two or Three Antibiotic Agents.

    Science.gov (United States)

    Ortola, David Joaquin; Fenga, Domenico; Marcellino, Sandra; Rosi, Massimiliano; Centofanti, Francesco; Rosa, Michele Attilio

    2017-07-01

    The purpose of this work was to compare pre-made antibiotic-loaded spacers with two commercially available antibiotic agents and custom-made cements with three antibiotic agents added. We evaluated: (a) the validity of our procedures, (b) the control of the rate of infection in the long term, (c) complications, and (d) quality of life and patient satisfaction. A retrospective cohort study was performed on 112 consecutively treated patients between January 2010 and December 2013; 56 patients were treated with a pre-formed cement spacer (clindamycin + gentamicin), and 56 patients were treated with a spacer loaded with three antibiotic agents (clindamycin + gentamicin + vancomycin). Demographic data were collected: Classification of infection according to criteria of Cierny-Mader; microbiologic results; number of previous operations; and years of disease. Infection control or relapse after at least 18 months of follow-up was evaluated. Complications were recorded. Every patient completed the SF-36 test and Oxford Knee Score. With a follow-up of 32.87 months (standard deviation 12.04), at the end of treatment, amputation occurred in three of 112 patients because of recurrence of infection, and one patient died from other causes not related to the infection. The study population presented a rate of recurrence of infection of 2.70%. Our results suggest that a two stage re-implant with three antibiotic agents added to the spacer should be considered to avoid rescue procedures, especially in patients with multi-resistant micro-organism infections.

  11. The TOTEM GEM Telescope (T2) at the LHC

    International Nuclear Information System (INIS)

    Quinto, M.; Berretti, M.; David, E.; Garcia, F.; Greco, V.; Heino, J.; Hilden, T.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Oliveri, E.; Ropelewski, L.; Scribano, A.; Turini, N.; Stenis, M. van

    2011-01-01

    The TOTEM T2 telescope will measure inelastically produced charged particles in the forward region of the LHC Interaction Point 5. Each arm of the telescope consists in a set of 20 triple-GEM (Gas Electron Multiplier) detectors with tracking and trigger capabilities. The GEM technology has been considered for the design of TOTEM very forward T2 telescopes thanks to its characteristics: large active areas, good position and timing resolution, excellent rate capability and radiation hardness. Each of the four T2 half arms has been fully assembled and equipped with electronics at CERN and systematically tested in the SPS beam line H8 in 2008/09. After some optimization, the operation of the GEM chambers was fully satisfactory and the T2 telescopes were installed and commissioned in their final positions at the LHC interaction point. During the first LHC run (December 2009) the T2 telescopes have collected data, at 900 GeV and 2.36 TeV. We will present here the performances of the detector and the preliminary results obtained using the data collected.

  12. The TOTEM GEM Telescope (T2) at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, M. [INFN Sezione di Bari, Via E.Orabona n 4, 70126 Bari (Italy); Berretti, M. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); David, E. [CERN, PH Department, 1211 Geneva 23, Geneva (Switzerland); Garcia, F. [University of Helsinki, Institute of Physics and Department of Physical Sciences, Helsinki (Finland); Greco, V. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Heino, J.; Hilden, T.; Kurvinen, K. [University of Helsinki, Institute of Physics and Department of Physical Sciences, Helsinki (Finland); Lami, S. [INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Latino, G. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Lauhakangas, R. [University of Helsinki, Institute of Physics and Department of Physical Sciences, Helsinki (Finland); Oliveri, E. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Ropelewski, L. [CERN, PH Department, 1211 Geneva 23, Geneva (Switzerland); Scribano, A.; Turini, N. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Stenis, M. van [CERN, PH Department, 1211 Geneva 23, Geneva (Switzerland)

    2011-06-15

    The TOTEM T2 telescope will measure inelastically produced charged particles in the forward region of the LHC Interaction Point 5. Each arm of the telescope consists in a set of 20 triple-GEM (Gas Electron Multiplier) detectors with tracking and trigger capabilities. The GEM technology has been considered for the design of TOTEM very forward T2 telescopes thanks to its characteristics: large active areas, good position and timing resolution, excellent rate capability and radiation hardness. Each of the four T2 half arms has been fully assembled and equipped with electronics at CERN and systematically tested in the SPS beam line H8 in 2008/09. After some optimization, the operation of the GEM chambers was fully satisfactory and the T2 telescopes were installed and commissioned in their final positions at the LHC interaction point. During the first LHC run (December 2009) the T2 telescopes have collected data, at 900 GeV and 2.36 TeV. We will present here the performances of the detector and the preliminary results obtained using the data collected.

  13. Decision Announced in Green Bank Telescope Arbitration Case

    Science.gov (United States)

    2001-02-01

    A decision has been reached by the arbitrator in the dispute between COMSAT Corporation, now part of Lockheed-Martin Global Telecommunications, and Associated Universities, Inc. (AUI) regarding additional costs on the contract to design and construct the Robert C. Byrd Green Bank Telescope (GBT). The GBT, in West Virginia, is the world's largest fully steerable radio telescope, the newest facility in the National Radio Astronomy Observatory's (NRAO) suite of astronomical instruments. The decision, released by the American Arbitration Association (AAA), calls for AUI, which operates the NRAO, to pay COMSAT 4.07 million over the fixed-price contract amount. The contract had standard provisions for disputes, which specify binding arbitration through the AAA for matters that could not be resolved in negotiation. The Robert C. Byrd Green Bank Telescope The contract to design and construct the GBT had an agreed fixed price of 55 million, with work to begin on December 19, 1990 and to be completed by the end of 1994. The contract terms required the telescope to be designed and built to performance specifications, placing most of the performance risks associated with the project on the contractor. The telescope was accepted from the contractor on October 13, 2000, nearly six years later than the original contract delivery date. During the entire period of contract work the only agreed change in scope was a single change order for 150,000 executed in August of 1993. In 1998, COMSAT sought an additional payment of approximately 29 million above the contracted amount, alleging that AUI/NRAO had forced it to conduct unnecessary work on the telescope design and to build the telescope to an unreasonable life cycle (fatigue) specification. COMSAT also claimed that AUI/NRAO was obligated to pay the costs of accommodating what it claimed to be additional wind loads. COMSAT blamed these circumstances for its delay in completing the project on time and within the contract price. AUI

  14. Hubble Space Telescope, Faint Object Camera

    Science.gov (United States)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  15. Diffraction-based overlay for spacer patterning and double patterning technology

    Science.gov (United States)

    Lee, Byoung Hoon; Park, JeongSu; Lee, Jongsu; Park, Sarohan; Lim, ChangMoon; Yim, Dong-Gyu; Park, Sungki; Ryu, Chan-Ho; Morgan, Stephen; van de Schaar, Maurits; Fuchs, Andreas; Bhattacharyya, Kaustuve

    2011-03-01

    Overlay performance will be increasingly important for Spacer Patterning Technology (SPT) and Double Patterning Technology (DPT) as various Resolution Enhancement Techniques are employed to extend the resolution limits of lithography. Continuous shrinkage of devices makes overlay accuracy one of the most critical issues while overlay performance is completely dependent on exposure tool. Image Based Overlay (IBO) has been used as the mainstream metrology for overlay by the main memory IC companies, but IBO is not suitable for some critical layers due to the poor Tool Induced Shift (TIS) values. Hence new overlay metrology is required to improve the overlay measurement accuracy. Diffraction Based Overlay (DBO) is regarded to be an alternative metrology to IBO for more accurate measurements and reduction of reading errors. Good overlay performances of DBO have been reported in many articles. However applying DBO for SPT and DPT layers poses extra challenges for target design. New vernier designs are considered for different DPT and SPT schemes to meet overlay target in DBO system. In this paper, we optimize the design of the DBO target and the performance of DBO to meet the overlay specification of sub-3x nm devices which are using SPT and DPT processes. We show that the appropriate vernier design yields excellent overlay performance in residual and TIS. The paper also demonstrated the effects of vernier structure on overlay accuracy from SEM analysis.

  16. Space telescope phase B definition study. Volume 2A: Science instruments, f24 field camera

    Science.gov (United States)

    Grosso, R. P.; Mccarthy, D. J.

    1976-01-01

    The analysis and design of the F/24 field camera for the space telescope are discussed. The camera was designed for application to the radial bay of the optical telescope assembly and has an on axis field of view of 3 arc-minutes by 3 arc-minutes.

  17. The MAGIC gamma-ray telescope: status and first results

    International Nuclear Information System (INIS)

    Fernandez, Enrique

    2006-01-01

    MAGIC, a 17 m diameter Cherenkov telescope for gamma ray astronomy, has recently been commissioned at the Roque de los Muchachos site in the Island of La Palma, of the Canary Islands. The telescope was proposed in 1998 with the goal of lowering the threshold of observation of gamma rays by ground detectors to 20-30 GeV energies. This paper describes its main design features, its physics objectives and its first operations

  18. Space Telescope Pointing Control System software

    Science.gov (United States)

    Dougherty, H.; Rodoni, C.; Rossini, R.; Tompetrini, K.; Nakashima, A.; Bradley, A.

    1982-01-01

    The Space Telescope Pointing Control System software is in the advanced development stage, having been tested on both the airbearing and the static simulator. The overall structure of the software is discussed, along with timing and sizing evaluations. The interaction between the controls analysts and software designer is described.

  19. Comparative study of the contribution of various PWR spacer grid components to hydrodynamic and wall pressure characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Saptarshi, E-mail: saptarshi.bhattacharjee@outlook.com [Alternative Energies and Atomic Energy Commission (CEA) – Cadarache, DEN/DTN/STCP/LHC, 13108 Saint Paul lez Durance Cedex (France); Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), UMR7340 CNRS, Aix-Marseille Université, Centrale Marseille, 13451 Marseille Cedex (France); Ricciardi, Guillaume [Alternative Energies and Atomic Energy Commission (CEA) – Cadarache, DEN/DTN/STCP/LHC, 13108 Saint Paul lez Durance Cedex (France); Viazzo, Stéphane [Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), UMR7340 CNRS, Aix-Marseille Université, Centrale Marseille, 13451 Marseille Cedex (France)

    2017-06-15

    Highlights: • Complex geometry inside a PWR fuel assembly is simulated using simplified 3D models. • Structured meshes are generated as far as possible. • Fluctuating hydrodynamic and wall pressure field are analyzed using LES. • Comparative studies between square spacer grid, circular spacer grid and mixing vanes are presented. • Simulations are compared with experimental data. - Abstract: Flow-induced vibrations in a pressurized water reactor (PWR) core can cause fretting wear in fuel rods. These vibrations can compromise safety of a nuclear reactor. So, it is necessary to know the random fluctuating forces acting on the rods which cause these vibrations. In this paper, simplified 3D models like square spacer grid, circular spacer grid and symmetric mixing vanes have been used inside an annular pipe. Hydrodynamic and wall pressure characteristics are evaluated using large eddy simulations (LES). Structured meshes are generated as far as possible. Simulations are compared with an experiment. Results show that the grid and vanes have a combined effect: grid accelerates the flow whereas the vanes contribute to the swirl structures. Spectral analysis of the simulations illustrate vortex shedding phenomenon in the wake of spacer grids. This initial study opens up interesting perspectives towards improving the modeling strategy and understanding the complex phenomenon inside a PWR core.

  20. Comparative study of the contribution of various PWR spacer grid components to hydrodynamic and wall pressure characteristics

    International Nuclear Information System (INIS)

    Bhattacharjee, Saptarshi; Ricciardi, Guillaume; Viazzo, Stéphane

    2017-01-01

    Highlights: • Complex geometry inside a PWR fuel assembly is simulated using simplified 3D models. • Structured meshes are generated as far as possible. • Fluctuating hydrodynamic and wall pressure field are analyzed using LES. • Comparative studies between square spacer grid, circular spacer grid and mixing vanes are presented. • Simulations are compared with experimental data. - Abstract: Flow-induced vibrations in a pressurized water reactor (PWR) core can cause fretting wear in fuel rods. These vibrations can compromise safety of a nuclear reactor. So, it is necessary to know the random fluctuating forces acting on the rods which cause these vibrations. In this paper, simplified 3D models like square spacer grid, circular spacer grid and symmetric mixing vanes have been used inside an annular pipe. Hydrodynamic and wall pressure characteristics are evaluated using large eddy simulations (LES). Structured meshes are generated as far as possible. Simulations are compared with an experiment. Results show that the grid and vanes have a combined effect: grid accelerates the flow whereas the vanes contribute to the swirl structures. Spectral analysis of the simulations illustrate vortex shedding phenomenon in the wake of spacer grids. This initial study opens up interesting perspectives towards improving the modeling strategy and understanding the complex phenomenon inside a PWR core.

  1. Proposed National Large Solar Telescope Jagdev Singh

    Indian Academy of Sciences (India)

    proposed to design, fabricate and install a 2-meter class solar telescope at a suitable site in India to ... which can facilitate simultaneous measurements of the solar atmospheric parameters and of the vector ... Intensity variation of. 1% or less.

  2. Measurement of droplet dynamics across grid spacer in mist cooling of subchannel of PWR

    International Nuclear Information System (INIS)

    Lee, S.L.; Sheen, H.J.; Cho, S.K.; Issapour, I.

    1984-01-01

    An experiment was conducted of the dynamics and heat transfer of a droplet-vapor mist flow across a test grid spacer in a flow channel of 2 x 2 electrically heated simulation fuel rods. Embedded thermocouples were used to measure the rod cladding temperature and an unshielded Chromel-Alumel thermocouple was transversed in the center of the subchannel to measure the temperature of the water and steam coolant phases at various axial locations. Thermocouples were also embedded in the test grid spacer. Optical measurements of the size and velocity distributions of droplets and the velocity distribution of the superheated steam were made by special laser-Doppler anemometry techniques through quartz glass windows immediately upstream and downstream of the test grid spacer. Experiments over a range of steam and injected water flow rates and rod heat flux have been performed and some representative results and discussions are presented

  3. Heterogeneous Diversity of Spacers within CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)

    Science.gov (United States)

    He, Jiankui; Deem, Michael W.

    2010-09-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial and archaeal DNA have recently been shown to be a new type of antiviral immune system in these organisms. We here study the diversity of spacers in CRISPR under selective pressure. We propose a population dynamics model that explains the biological observation that the leader-proximal end of CRISPR is more diversified and the leader-distal end of CRISPR is more conserved. This result is shown to be in agreement with recent experiments. Our results show that the CRISPR spacer structure is influenced by and provides a record of the viral challenges that bacteria face.

  4. Response of an electrostatic probe for a right cylindrical spacer

    DEFF Research Database (Denmark)

    Rerup, T; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    During the last decade many experimental studies of surface charge phenomena have been undertaken employing right cylindrical spacers. Measurement of the surface charge was performed using small electrostatic field probes to scan across the dielectric surface. Charges are electrostatically induced...

  5. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muñiz, J. [Universidad de Santiago de Compostela, Departamento de Física de Partículas, Campus Sur, Universidad, E-15782 Santiago de Compostela (Spain); Amaral Soares, E. [Universidade Federal do Rio de Janeiro, Instituto de Física, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Berlin, A.; Bogdan, M. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Boháčová, M. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Institute of Physics of the Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic); Bonifazi, C. [Universidade Federal do Rio de Janeiro, Instituto de Física, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Carvalho, W.R. [Universidad de Santiago de Compostela, Departamento de Física de Partículas, Campus Sur, Universidad, E-15782 Santiago de Compostela (Spain); Mello Neto, J.R.T. de [Universidade Federal do Rio de Janeiro, Instituto de Física, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Facal San Luis, P., E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P. [University of Chicago, Enrico Fermi Institute and Kavli Institute for Cosmological Physics, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); and others

    2013-08-11

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4–4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope – to validate the telescope design, and to demonstrate a large detector duty cycle – were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory. -- Highlights: • The MIDAS objective is to detect ultra high energy cosmic rays using microwaves. • GHz radiation could provide a powerful alternative to current detection methods. • The MIDAS prototype explores the potential of the microwave technique.

  6. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    Alvarez-Muñiz, J.; Amaral Soares, E.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Facal San Luis, P.; Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.

    2013-01-01

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4–4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope – to validate the telescope design, and to demonstrate a large detector duty cycle – were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory. -- Highlights: • The MIDAS objective is to detect ultra high energy cosmic rays using microwaves. • GHz radiation could provide a powerful alternative to current detection methods. • The MIDAS prototype explores the potential of the microwave technique

  7. Enhanced current-perpendicular-to-plane giant magnetoresistance effect in half-metallic NiMnSb based nanojunctions with multiple Ag spacers

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenchao; Yamamoto, Tatsuya [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Kubota, Takahide; Takanashi, Koki [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Center for Spintronics Research Network (CSRN), Tohoku University, Sendai 980-8577 (Japan)

    2016-06-06

    Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) heterostructure devices using half-metallic NiMnSb Heusler alloy electrodes with single, dual, and triple Ag spacers were fabricated. The NiMnSb alloy films and Ag spacers show (001) epitaxial growth in all CPP-GMR multilayer structures. The dual-spacer CPP-GMR nanojunction exhibited an enhanced CPP-GMR ratio of 11% (a change in the resistance-area product, ΔRA, of 3.9 mΩ μm{sup 2}) at room temperature, which is approximately twice (thrice) of 6% (1.3 mΩ μm{sup 2}) in the single-spacer device. The enhancement of the CPP-GMR effects in the dual-spacer devices could be attributed to improved interfacial spin asymmetry. Moreover, it was observed that the CPP-GMR ratios increased monotonically as the temperatures decreased. At 4.2 K, a CPP-GMR ratio of 41% (ΔRA = 10.5 mΩ μm{sup 2}) was achieved in the dual-spacer CPP-GMR device. This work indicates that multispacer structures provide an efficient enhancement of CPP-GMR effects in half-metallic material-based CPP-GMR systems.

  8. Large Synoptic Survey Telescope: From Science Drivers to Reference Design

    Energy Technology Data Exchange (ETDEWEB)

    Ivezic, Z.; Axelrod, T.; Brandt, W.N.; Burke, D.L.; Claver, C.F.; Connolly, A.; Cook, K.H.; Gee, P.; Gilmore, D.K.; Jacoby, S.H.; Jones, R.L.; Kahn, S.M.; Kantor, J.P.; Krabbendam, V.; Lupton, R.H.; Monet, D.G.; Pinto, P.A.; Saha, A.; Schalk, T.L.; Schneider, D.P.; Strauss, Michael A.; /Washington U., Seattle, Astron. Dept. /LSST Corp. /Penn State U., Astron. Astrophys. /KIPAC, Menlo Park /NOAO, Tucson /LLNL, Livermore /UC, Davis /Princeton U., Astrophys. Sci. Dept. /Naval Observ., Flagstaff /Arizona U., Astron. Dept. - Steward Observ. /UC, Santa Cruz /Harvard U. /Johns Hopkins U. /Illinois U., Urbana

    2011-10-14

    In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next-generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST). LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pachon in Northern Chile. The current baseline design, with an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg{sup 2} field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image quality, as well as superb astrometric and photometric accuracy. The survey area will include 30,000 deg{sup 2} with {delta} < +34.5{sup o}, and will be imaged multiple times in six bands, ugrizy, covering the wavelength range 320-1050 nm. About 90% of the observing time will be devoted to a deep-wide-fast survey mode which will observe a 20,000 deg{sup 2} region about 1000 times in the six bands during the anticipated 10 years of operation. These data will result in databases including 10 billion galaxies and a similar number of stars, and will serve the majority of science programs. The remaining 10% of the observing time will be allocated to special programs such as Very Deep and Very Fast time domain surveys. We describe how the

  9. Large Synoptic Survey Telescope: From science drivers to reference design

    Directory of Open Access Journals (Sweden)

    Ivezić Ž.

    2008-01-01

    Full Text Available In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next- generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST. LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pachon in Northern Chile. The current baseline design, with an 8.4 m (6.5 m effective primary mirror, a 9.6 deg2 field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image quality, as well as superb astrometric and photometric accuracy. The survey area will include 30,000 deg2 with δ < +34.5◦ , and will be imaged multiple times in six bands, ugrizy, covering the wavelength range 320-1050 nm. About 90% of the observing time will be devoted to a deep- wide-fast survey mode which will observe a 20,000 deg2 region about 1000 times in the six bands during the anticipated 10 years of operation. These data will result in databases including 10 billion galaxies and a similar number of stars, and will serve the majority of science programs. The remaining 10% of the observing time will be allocated to special programs such as Very Deep and Very Fast time domain surveys. We describe how the LSST

  10. Large Synoptic Survey Telescope: From Science Drivers To Reference Design

    Directory of Open Access Journals (Sweden)

    Ivezić, Ž.

    2008-06-01

    Full Text Available In the history of astronomy, major advances in our understanding of the Universe have come from dramatic improvements in our ability to accurately measure astronomical quantities. Aided by rapid progress in information technology, current sky surveys are changing the way we view and study the Universe. Next-generation surveys will maintain this revolutionary progress. We focus here on the most ambitious survey currently planned in the visible band, the Large Synoptic Survey Telescope (LSST. LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. It will be a large, wide-field ground-based system designed to obtain multiple images covering the sky that is visible from Cerro Pach'{o}n in Northern Chile. The current baseline design, with an 8.4, m (6.5, m effective primary mirror, a 9.6 deg$^2$ field of view, and a 3,200 Megapixel camera, will allow about 10,000 square degrees of sky to be covered using pairs of 15-second exposures in two photometric bands every three nights on average. The system is designed to yield high image quality, as well as superb astrometric and photometric accuracy. The survey area will include 30,000 deg$^2$ with $delta<+34.5^circ$, and will be imaged multiple times in six bands, $ugrizy$, covering the wavelength range 320--1050 nm. About 90\\% of the observing time will be devoted to a deep-wide-fast survey mode which will observe a 20,000 deg$^2$ region about 1000 times in the six bands during the anticipated 10 years of operation. These data will result in databases including 10 billion galaxies and a similar number of stars, and will serve the majority of science programs. The remaining 10\\% of the observing time will be allocated to special programs such as Very Deep and Very Fast time domain surveys. We

  11. UV/Visible Telescope with Hubble Disposal

    Science.gov (United States)

    Benford, Dominic J.

    2013-01-01

    Submission Overview: Our primary objective is to convey a sense of the significant advances possible in astrophysics investigations for major Cosmic Origins COR program goals with a 2.4m telescope asset outfitted with one or more advanced UV visible instruments. Several compelling science objectives were identified based on community meetings these science objectives drove the conceptual design of instruments studied by the COR Program Office during July September 2012. This RFI submission encapsulates the results of that study, and suggests that a more detailed look into the instrument suite should be conducted to prove viability and affordability to support the demonstrated scientific value. This study was conducted in the context of a larger effort to consider the options available for a mission to dispose safely of Hubble hence, the overall architecture considered for the mission we studied for the 2.4m telescope asset included resource sharing. This mitigates combined cost and risk and provides naturally for a continued US leadership role in astrophysics with an advanced, general-purpose UV visible space telescope.

  12. The GCT camera for the Cherenkov Telescope Array

    Science.gov (United States)

    Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-12-01

    The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.

  13. Nuclear reactor fuel assembly spacer grid

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1977-01-01

    A spacer grid for a nuclear fuel assembly is comprised of a lattice of grid plates forming multiple cells that are penetrated by fuel elements. Resilient protrusions and rigid protrusions projecting into the cells from the plates bear against the fuel element to effect proper support and spacing. Pairs of intersecting grid plates, disposed in a longitudinally spaced relationship, cooperate with other plates to form a lattice wherein each cell contains adjacent panels having resilient protrusions arranged opposite adjacent panels having rigid protrusions. The peripheral band bounding the lattice is provided solely with rigid protrusions projecting into the peripheral cells. (Auth.)

  14. Completion of the Southern African Large Telescope

    Science.gov (United States)

    Buckley, D. A. H.; Charles, P. A.; O'Donoghue, D.; Nordsieck, K. H.

    2006-08-01

    The Southern African Large Telescope (SALT) is a low cost (19.7M), innovative, 10-m class optical telescope, which was inaugurated on 10 November 2005, just 5 years after ground-breaking. SALT and its first-light instruments are currently being commissioned, and full science operations are expected to begin later this year. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous Systems Engineering approach was adopted to ensure that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array in a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable and capable 10-m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900nm) and featuring some unique observational capabilities, SALT will have an ability to conduct a wide range of science programs. These will include high time resolution studies, for which some initial results have already been obtained and are presented here. Many of the versatile modes available with the RSS will provide unparalleled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (using laser cut graphite slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot etalons and interference filters, will extend the multiplex advantage over resolutions from R = 300 to 9000 over fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (possibly to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror

  15. Experimental investigations of the post-CHF heat transfer of R-134a flow-boiling in an annulus with spacer grids

    International Nuclear Information System (INIS)

    Lee, Kwi Lim; Chang, Soon Heung

    2009-01-01

    An experimental study was performed in the post-CHF condition using R-134a to investigate the effect of spacer grids on post-CHF heat transfer in an annulus channel. The experiments were conducted under the outlet pressures of 1.1 - 2.0 MPa, the mass fluxes of 100 - 400 kg/m 2 s and the inlet temperatures of 25 - 51degC. About 300 data of post-CHF data were obtained in the annular geometry without spacer grids and compared with several post-CHF correlations. The results showed the large prediction uncertainty mainly caused by the cold wall effect, so the empirical correlation for an annulus geometry without spacer grids was developed with the present experimental results. The heat transfer coefficient was calculated based on the heater rod temperature and the saturated vapor property. The average and root-mean-square(RMS) errors of the predictions were 0.17 % and 3.4 %, respectively. The experiments related to the spacer grid effects were performed with an I-type spacer grid and split-swirl mixing vane (with blockage-area ratios of 4.0 and 5.8 %). The spacer grid and mixing vane test results showed the enhancing effect on the heat transfer at the downstream location of the spacers. The experimental results from the spilt-swirl-type grid tests were more effective than the I-type grid tests. This was attributed to enhance the turbulence and increase the heat transfer caused by the mixing vane. (author)

  16. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer.

    Science.gov (United States)

    Richter, Corinna; Dy, Ron L; McKenzie, Rebecca E; Watson, Bridget N J; Taylor, Corinda; Chang, James T; McNeil, Matthew B; Staals, Raymond H J; Fineran, Peter C

    2014-07-01

    Clustered regularly interspaced short palindromic repeats (CRISPR), in combination with CRISPR associated (cas) genes, constitute CRISPR-Cas bacterial adaptive immune systems. To generate immunity, these systems acquire short sequences of nucleic acids from foreign invaders and incorporate these into their CRISPR arrays as spacers. This adaptation process is the least characterized step in CRISPR-Cas immunity. Here, we used Pectobacterium atrosepticum to investigate adaptation in Type I-F CRISPR-Cas systems. Pre-existing spacers that matched plasmids stimulated hyperactive primed acquisition and resulted in the incorporation of up to nine new spacers across all three native CRISPR arrays. Endogenous expression of the cas genes was sufficient, yet required, for priming. The new spacers inhibited conjugation and transformation, and interference was enhanced with increasing numbers of new spacers. We analyzed ∼ 350 new spacers acquired in priming events and identified a 5'-protospacer-GG-3' protospacer adjacent motif. In contrast to priming in Type I-E systems, new spacers matched either plasmid strand and a biased distribution, including clustering near the primed protospacer, suggested a bi-directional translocation model for the Cas1:Cas2-3 adaptation machinery. Taken together these results indicate priming adaptation occurs in different CRISPR-Cas systems, that it can be highly active in wild-type strains and that the underlying mechanisms vary. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Sub-15 nm nano-pattern generation by spacer width control for high density precisely positioned self-assembled device nanomanufacturing

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2012-01-01

    We present a conventional micro-fabrication based thin film vertical sidewall (spacer) width controlled nano-gap fabrication process to create arrays of nanopatterns for high density precisely positioned self-assembled nanoelectronics device integration. We have used conventional optical lithography to create base structures and then silicon nitride (Si 3N4) based spacer formation via reactive ion etching. Control of Si3N4 thickness provides accurate control of vertical sidewall (spacer) besides the base structures. Nano-gaps are fabricated between two adjacent spacers whereas the width of the gap depends on the gap between two adjacent base structures minus width of adjacent spacers. We demonstrate the process using a 32 nm node complementary metal oxide semiconductor (CMOS) platform to show its compatibility for very large scale heterogeneous integration of top-down and bottom-up fabrication as well as conventional and selfassembled nanodevices. This process opens up clear opportunity to overcome the decade long challenge of high density integration of self-assembled devices with precise position control. © 2012 IEEE.

  18. Sub-15 nm nano-pattern generation by spacer width control for high density precisely positioned self-assembled device nanomanufacturing

    KAUST Repository

    Rojas, Jhonathan Prieto

    2012-08-01

    We present a conventional micro-fabrication based thin film vertical sidewall (spacer) width controlled nano-gap fabrication process to create arrays of nanopatterns for high density precisely positioned self-assembled nanoelectronics device integration. We have used conventional optical lithography to create base structures and then silicon nitride (Si 3N4) based spacer formation via reactive ion etching. Control of Si3N4 thickness provides accurate control of vertical sidewall (spacer) besides the base structures. Nano-gaps are fabricated between two adjacent spacers whereas the width of the gap depends on the gap between two adjacent base structures minus width of adjacent spacers. We demonstrate the process using a 32 nm node complementary metal oxide semiconductor (CMOS) platform to show its compatibility for very large scale heterogeneous integration of top-down and bottom-up fabrication as well as conventional and selfassembled nanodevices. This process opens up clear opportunity to overcome the decade long challenge of high density integration of self-assembled devices with precise position control. © 2012 IEEE.

  19. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: Effects of crossflow velocity, feed spacer and biodegradable nutrient

    KAUST Repository

    Dreszer, C.

    2014-03-01

    Biofilm formation causes performance loss in spiral-wound membrane systems. In this study a microfiltration membrane was used in experiments to simulate fouling in spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules without the influence of concentration polarization. The resistance of a microfiltration membrane is much lower than the intrinsic biofilm resistance, enabling the detection of biofilm accumulation in an early stage. The impact of biofilm accumulation on the transmembrane (biofilm) resistance and feed channel pressure drop as a function of the crossflow velocity (0.05 and 0.20ms-1) and feed spacer presence was studied in transparent membrane biofouling monitors operated at a permeate flux of 20Lm-2h-1. As biodegradable nutrient, acetate was dosed to the feed water (1.0 and 0.25mgL-1 carbon) to enhance biofilm accumulation in the monitors. The studies showed that biofilm formation caused an increased transmembrane resistance and feed channel pressure drop. The effect was strongest at the highest crossflow velocity (0.2ms-1) and in the presence of a feed spacer. Simulating conditions as currently applied in nanofiltration and reverse osmosis installations (crossflow velocity 0.2ms-1 and standard feed spacer) showed that the impact of biofilm formation on performance, in terms of transmembrane and feed channel pressure drop, was strong. This emphasized the importance of hydrodynamics and feed spacer design. Biomass accumulation was related to the nutrient load (nutrient concentration and linear flow velocity). Reducing the nutrient concentration of the feed water enabled the application of higher crossflow velocities. Pretreatment to remove biodegradable nutrient and removal of biomass from the membrane elements played an important part to prevent or restrict biofouling. © 2013 Elsevier Ltd.

  20. PairWise Neighbours database: overlaps and spacers among prokaryote genomes

    Directory of Open Access Journals (Sweden)

    Garcia-Vallvé Santiago

    2009-06-01

    Full Text Available Abstract Background Although prokaryotes live in a variety of habitats and possess different metabolic and genomic complexity, they have several genomic architectural features in common. The overlapping genes are a common feature of the prokaryote genomes. The overlapping lengths tend to be short because as the overlaps become longer they have more risk of deleterious mutations. The spacers between genes tend to be short too because of the tendency to reduce the non coding DNA among prokaryotes. However they must be long enough to maintain essential regulatory signals such as the Shine-Dalgarno (SD sequence, which is responsible of an efficient translation. Description PairWise Neighbours is an interactive and intuitive database used for retrieving information about the spacers and overlapping genes among bacterial and archaeal genomes. It contains 1,956,294 gene pairs from 678 fully sequenced prokaryote genomes and is freely available at the URL http://genomes.urv.cat/pwneigh. This database provides information about the overlaps and their conservation across species. Furthermore, it allows the wide analysis of the intergenic regions providing useful information such as the location and strength of the SD sequence. Conclusion There are experiments and bioinformatic analysis that rely on correct annotations of the initiation site. Therefore, a database that studies the overlaps and spacers among prokaryotes appears to be desirable. PairWise Neighbours database permits the reliability analysis of the overlapping structures and the study of the SD presence and location among the adjacent genes, which may help to check the annotation of the initiation sites.