WorldWideScience

Sample records for telepresence robotic system

  1. Telepresence.

    Science.gov (United States)

    Draper, J V; Kaber, D B; Usher, J M

    1998-09-01

    Telepresence, the perception of presence within a physically remote or simulated site, has been identified as a design ideal for synthetic environments. However, confusion exists within the literature about the precise definition of telepresence. Furthermore, there is a need for a plausible and parsimonious model of telepresence. This paper identifies three types of telepresence extant in the literature: simple telepresence, cybernetic telepresence, and experiential telepresence. The third definition is the most interesting. This paper reviews the origins of experiential telepresence and the theoretical approaches commonly used to explain it. One can term these technological approaches, which emphasize the role of control/display technology, and psychological approaches, which identify experiential telepresence with known psychological phenomena. Finally, the paper presents and discusses an integrative approach to telepresence featuring a structured attentional resource model. Actual or potential applications of this research include the design of future human-machine interfaces for teleoperated robots and virtual reality systems.

  2. A Review of Mobile Robotic Telepresence

    Directory of Open Access Journals (Sweden)

    Annica Kristoffersson

    2013-01-01

    Full Text Available Mobile robotic telepresence (MRP systems incorporate video conferencing equipment onto mobile robot devices which can be steered from remote locations. These systems, which are primarily used in the context of promoting social interaction between people, are becoming increasingly popular within certain application domains such as health care environments, independent living for the elderly, and office environments. In this paper, an overview of the various systems, application areas, and challenges found in the literature concerning mobile robotic telepresence is provided. The survey also proposes a set terminology for the field as there is currently a lack of standard terms for the different concepts related to MRP systems. Further, this paper provides an outlook on the various research directions for developing and enhancing mobile robotic telepresence systems per se, as well as evaluating the interaction in laboratory and field settings. Finally, the survey outlines a number of design implications for the future of mobile robotic telepresence systems for social interaction.

  3. Measuring Attitudes Towards Telepresence Robots

    OpenAIRE

    M Tsui, Katherine; Desai, Munjal; A. Yanco, Holly; Cramer, Henriette; Kemper, Nicander

    2011-01-01

    Studies using Nomura et al.’s “Negative Attitude toward Robots Scale” (NARS) [1] as an attitudinal measure have featured robots that were perceived to be autonomous, indepen- dent agents. State of the art telepresence robots require an explicit human-in-the-loop to drive the robot around. In this paper, we investigate if NARS can be used with telepresence robots. To this end, we conducted three studies in which people watched videos of telepresence robots (n=70), operated te...

  4. A Low-Cost Tele-Presence Wheelchair System

    OpenAIRE

    Shen, Jiajun; Xu, Bin; Pei, Mingtao; Jia, Yunde

    2016-01-01

    This paper presents the architecture and implementation of a tele-presence wheelchair system based on tele-presence robot, intelligent wheelchair, and touch screen technologies. The tele-presence wheelchair system consists of a commercial electric wheelchair, an add-on tele-presence interaction module, and a touchable live video image based user interface (called TIUI). The tele-presence interaction module is used to provide video-chatting for an elderly or disabled person with the family mem...

  5. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 1: Telepresence technology base development

    Science.gov (United States)

    Akin, D. L.; Minsky, M. L.; Thiel, E. D.; Kurtzman, C. R.

    1983-01-01

    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program is presented, leading to an operational telepresence servicer.

  6. Telepresence microsurgery system

    Science.gov (United States)

    Hill, John W.; Ploeger, Dale W.; Gorfu, Yonael

    1998-06-01

    In current practice, microsurgery involves dexterous manipulations on small tissues viewed through a stereo microscope. Surgeons hold special grasping and cutting instruments in a pencil-like grip, with their palms supported, to optimize fine motor control and minimize hand tremor and fatigue. Telepresence-based microsurgery has the potential to provide the surgeon with a magnified workspace in which he can comfortably work with his hands on full-size instrument handles, using normal hand motions and experiencing the feel he would expect from the magnified tissues that he sees. To address the needs for performing microsurgical procedures, the SRI telepresence surgery workstation has been combined with a pair of micromanipulator arms. The prototype microsurgery system has been tested with ex-vivo tasks similar to those required for surgical procedures, such as cutting, grasping, suturing, and knot tying. Initial animal testing has been done on a rat model in which end-to-end anastomosis of the femoral artery was completed with 10 rats, and 100% patency was obtained.

  7. Telepresence Robots in the Wide Wild World

    NARCIS (Netherlands)

    Bruijnes, Merijn; van Delden, Robby; Vroon, Jered Hendrik

    2017-01-01

    Mobile remote presence systems (MRPs) are the logical next step in telepresence, but what are the ethical, social, legal, and technical implications of such systems going into the wide wild world? We explored these potential issues by immersing ourselves in a range of possible applications by

  8. Telepresence Robots in Daily Life - Technical Report

    NARCIS (Netherlands)

    van Delden, Robertus Wilhelmus; Bruijnes, Merijn

    Mobile remote presence systems (MRPs) are the logical next step in telepresence, but what are the ethical, social, legal, and technical implications of such systems going into the wide wild world? We explored these potential issues by immersing ourselves in a range of possible applications by

  9. Adding navigation, artificial audition and vital sign monitoring capabilities to a telepresence mobile robot for remote home care applications.

    Science.gov (United States)

    Laniel, Sebastien; Letourneau, Dominic; Labbe, Mathieu; Grondin, Francois; Polgar, Janice; Michaud, Francois

    2017-07-01

    A telepresence mobile robot is a remote-controlled, wheeled device with wireless internet connectivity for bidirectional audio, video and data transmission. In health care, a telepresence robot could be used to have a clinician or a caregiver assist seniors in their homes without having to travel to these locations. Many mobile telepresence robotic platforms have recently been introduced on the market, bringing mobility to telecommunication and vital sign monitoring at reasonable costs. What is missing for making them effective remote telepresence systems for home care assistance are capabilities specifically needed to assist the remote operator in controlling the robot and perceiving the environment through the robot's sensors or, in other words, minimizing cognitive load and maximizing situation awareness. This paper describes our approach adding navigation, artificial audition and vital sign monitoring capabilities to a commercially available telepresence mobile robot. This requires the use of a robot control architecture to integrate the autonomous and teleoperation capabilities of the platform.

  10. Surgical telepresence: the usability of a robotic communication platform

    Directory of Open Access Journals (Sweden)

    Marttos Antonio

    2012-08-01

    Full Text Available Abstract Introduction The benefits of telepresence in trauma and acute surgical care exist, yet its use in a live, operating room (OR setting with real surgical cases remains limited. Methods We tested the use of a robotic telepresence system in the OR of a busy, level 1 trauma center. After each case, both the local and remote physicians completed questionnaires regarding the use of the system using a five point Likert scale. For trauma cases, physicians were asked to grade injury severity according to the American Association for the Surgery of Trauma (AAST Scaling System. Results We collected prospective, observational data on 50 emergent and elective cases. 64% of cases were emergency surgery on trauma patients, almost evenly distributed between penetrating (49% and blunt injuries (51%. 40% of non-trauma cases were hernia-related. A varied distribution of injuries was observed to the abdomen, chest, extremities, small bowel, kidneys, spleen, and colon. Physicians gave the system high ratings for its audio and visual capabilities, but identified internet connectivity and crowding in the operating room as potential challenges. The loccal clinician classified injuries according to the AAST injury grading system in 63% (n=22 of trauma cases, compared to 54% (n=19 of cases by the remote physicians. The remote physician cited obstruction of view as the main reason for the discrepancy. 94% of remote physicians and 74% of local physicians felt comfortable communicating via the telepresence system. For 90% of cases, both the remote and local physicians strongly agreed that a telepresence system for consultations in the OR is more effective than a telephone conversation. Conclusions A telepresence system was tested on a variety of surgical cases and demonstrated that it can be an appropriate solution for use in the operating room. Future research should determine its impact on processes of care and surgical outcomes.

  11. A remote telepresence robotic system for inspection and maintenance of a nuclear power plant

    International Nuclear Information System (INIS)

    Crane, C.D. III; Tulenko, J.S.

    1993-01-01

    Progress in reported in the areas of environmental hardening; database/world modeling; man-machine interface; development of the Advanced Liquid Metal Reactor (ALMR) maintenance inspection robot design; and Articulated Transporter/Manipulator System (ATMS) development

  12. Evaluation of an Assistive Telepresence Robot for Elderly Healthcare.

    Science.gov (United States)

    Koceski, Saso; Koceska, Natasa

    2016-05-01

    In this paper we described the telepresence robot system designed to improve the well-being of elderly by supporting them to do daily activities independently, to facilitate social interaction in order to overcome a sense of social isolation and loneliness as well as to support the professional caregivers in everyday care. In order to investigate the acceptance of the developed robot system, evaluation study involved elderly people and professional caregivers, as two potential user groups was conducted. The results of this study are also presented and discussed.

  13. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 2: Telepresence project applications

    Science.gov (United States)

    Akin, D. L.; Minsky, M. L.; Thiel, E. D.; Kurtzman, C. R.

    1983-01-01

    The field of telepresence is defined and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA' plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included.

  14. Virtual reality and telepresence control of robots used in hazardous environments

    International Nuclear Information System (INIS)

    Bronisz, L.E.; Pittman, P.C.

    1996-01-01

    The purpose of this project was to explore the application of teleoperation and telepresence control to robots in hazardous environments at Los Alamos. The primary use of this technology would be in a glove-box type operation potentially allowing operators to work on hazardous materials while being completely removed from the danger of exposure in situations that are difficult to completely automate due to the highly unstructured environments or off-normal conditions. This project focused on determining the most appropriate tools and methods that could be applied in the near future resulting in a reasonably inexpensive working teleoperation or telepresence control system for industrial robots used in the handling of hazardous materials. Several topics had to be addressed to perform this task including input devices, control systems, robot manipulators, and simulation techniques or packages. Much of the work is still in the developmental stage and hardware will follow -- providing a usable tool for glove box robot control

  15. Robotic Telepresence: Perception, Performance, and User Experience

    Science.gov (United States)

    2012-02-01

    Laptop Telepresence N Mean N Mean 1 Soda Can bomb (diet pepsi ) 8 1.00 8 1.00 2 Soda Can bomb (diet coke) 8 1.00 8 1.00 3 Soda Can bomb (diet pepsi ...IDENTIFICATIONS) Laptop Telepresence N Mean N Mean 1 Soda Can bomb (diet pepsi ) 8 1.00 8 1.00 2 Soda Can bomb (diet coke) 8 1.00 8 1.00 3 Soda Can...bomb (diet pepsi ) 8 1.00 8 1.00 4 Land mine Grey 8 .75 8 .63 5 Land mine green and tan 8 .25 8 .75 6 Land mine tan 8 .63 8 .63 7 cardboard box 8

  16. LOKI: a practical modelling and support system for telepresence systems

    International Nuclear Information System (INIS)

    Griffin, M.; Bridgewater, C.E.

    1993-01-01

    The use of Virtual Reality headset systems, in combination with a tele-presence ''head'' is discussed. The system is attached to a Unimate Puma robot arm and manipulated by the operator, using information gathered by the camera and auditory system, displayed via the Virtual Reality helmet. Operator commands are cross checked by using a modelling system, held on the Virtual Reality system. This system was found to supply a good sense of spacial awareness of the robot's domain. Actions which might move the robot outside its suitable operating envelope, or create a collision with the environment, were successfully blocked. This approach is seen as useful within the area of tele-operation. (author)

  17. Blame my telepresence robot Joint effect of proxemics and attribution on interpersonal attraction

    NARCIS (Netherlands)

    van Houwelingen-Snippe, Josca; Vroon, Jered Hendrik; Englebienne, Gwenn; Haselager, W.F.G.

    When remote users share autonomy with a telepresence robot, questions arise as to how the behaviour of the robot is interpreted by local users. We investigated how a robot's violations of social norms under shared autonomy influence the local user's evaluation of the robot's remote users.

  18. Utility and effectiveness of a remote telepresence robotic system in nursing education in a simulated care environment.

    Science.gov (United States)

    Sampsel, Debi; Vermeersch, Patricia; Doarn, Charles R

    2014-11-01

    There is a growing shortage of nursing graduates and faculty to prepare students for careers in nursing. One way to ameliorate this paradigm is to integrate technology such as a remote presence robot (RPR) in both clinical and educational settings. The InTouch Health (Santa Barbara, CA) RP-7, an RPR, was deployed in a simulated, multigenerational home where nursing students and faculty interact in a variety of activities. Seventy students and five faculty members were instructed by a remotely located instructor who controlled the RP-7 from a distant site. Students and faculty, using questionnaires, provided feedback on the didactic interaction. Of the 70 student participants, 56 (80%) responded, and faculty and clinical staff were 100% compliant, resulting in 69 total respondents. Using Krippendorf's themes of (1) usefulness, (2) acceptability, and (3) impact, the data indicated the following. The majority of the students (89%) had no previous experience with the RPR, but the majority (75%) felt that the RPR was a good faculty extender. The students were initially evenly split on first exposure in (a) a positive experience, (b) a negative experience, or (c) a mixed experience. Although there were some technical challenges in operations, these were not deemed significant; nevertheless, they must be addressed. The results of this study support the use of RPRs as faculty extenders to facilitate course quality assurance when the lead faculty is not on site. Both faculty and students perceive this type of technology as a potential faculty extender, but both faculty and students need preparation for the experience.

  19. Head-coupled remote stereoscopic camera system for telepresence applications

    Science.gov (United States)

    Bolas, Mark T.; Fisher, Scott S.

    1990-09-01

    The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.

  20. Potential of telepresence robots to enhance social connectedness in older adults with dementia: an integrative review of feasibility.

    Science.gov (United States)

    Moyle, Wendy; Arnautovska, Urska; Ownsworth, Tamara; Jones, Cindy

    2017-12-01

    Socially assistive robots are increasingly used as a therapeutic tool for people with dementia, as a means to improve quality of life through social connection. This paper presents a mixed-method integrative review of telepresence robots used to improve social connection of people with dementia by enabling real-time communication with their carers. A systematic search of Medline, ProQuest, PubMed, Scopus, Web of Science, CINAHL, EMBASE, and the Cochrane library was conducted to gather available evidence on the use of telepresence robots, specifically videoconferencing, to improve social connectedness, in people with dementia. A narrative synthesis was used to analyze the included studies. A review of 1,035 records, identified four eligible peer-reviewed publications, reporting findings about three different mobile telepresence robots. The study designs included qualitative and mixed-methods approaches, focusing primarily on examining the feasibility and acceptability of the telepresence robots within the context of dementia care. These studies reported both positive outcomes of using telepresence robots to connect people with dementia to others, as well as barriers, such as a lack of experience in using a robot and technological issues. Although limited, the current literature suggests that telepresence robots have potential utility for improving social connectedness of people with dementia and their carers. However, more systematic feasibility studies are needed to inform the development of telepresence robots followed by clinical trials to establish efficacy within dementia care.

  1. ROBIN, a Telepresence Robot to Support Older Users Monitoring and Social Inclusion: Development and Evaluation.

    Science.gov (United States)

    Cortellessa, Gabriella; Fracasso, Francesca; Sorrentino, Alessandra; Orlandini, Andrea; Bernardi, Giulio; Coraci, Luca; De Benedictis, Riccardo; Cesta, Amedeo

    2018-02-01

    This article describes an enhanced telepresence robot named ROBIN, part of a telecare system derived from the GIRAFFPLUS project for supporting and monitoring older adults at home. ROBIN is integrated in a sensor-rich environment that aims to continuously monitor physical and psychological wellbeing of older persons living alone. The caregivers (formal/informal) can communicate through it with their assisted persons. Long-term trials in real houses highlighted several user requirements that inspired improvements on the robotic platform. The enhanced telepresence robot was assessed by users to test its suitability to support social interaction and provide motivational feedback on health-related aspects. Twenty-five users (n = 25) assessed the new multimodal interaction capabilities and new communication services. A psychophysiological approach was adopted to investigate aspects like engagement, usability, and affective impact, as well as the possible role of individual differences on the quality of human-robot interaction. ROBIN was overall judged usable, the interaction with/through it resulted pleasant and the required workload was limited, thus supporting the idea of using it as a central component for remote assistance and social participation. Open-minded users tended to have a more positive interaction with it. This work describes an enabling technology for remote assistance and social communication. It highlights the importance of being compliant with users' needs to develop solutions easy to use and able to foster their social connections. The role of personality appeared to be relevant for the interaction, underscoring a clear role of the service personalization.

  2. A qualitative study of in-home robotic telepresence for home care of community-living elderly subjects.

    Science.gov (United States)

    Boissy, Patrick; Corriveau, Hélène; Michaud, François; Labonté, Daniel; Royer, Marie-Pier

    2007-01-01

    We examined the requirements for robots in home telecare using two focus groups. The first comprised six healthcare professionals involved in geriatric care and the second comprised six elderly people with disabilities living in the community. The concept of an in-home telepresence robot was illustrated using a photograph of a mobile robot, and participants were then asked to suggest potential health care applications. Interview data derived from the transcript of each group discussion were analyzed using qualitative induction based on content analysis. The analyses yielded statements that were categorized under three themes: potential applications, usability issues and user requirements. Teleoperated mobile robotic systems in the home were thought to be useful in assisting multidisciplinary patient care through improved communication between patients and healthcare professionals, and offering respite and support to caregivers under certain conditions. The shift from a traditional hospital-centred model of care in geriatrics to a home-based model creates opportunities for using telepresence with mobile robotic systems in home telecare.

  3. Latency in Distributed Acquisition and Rendering for Telepresence Systems.

    Science.gov (United States)

    Ohl, Stephan; Willert, Malte; Staadt, Oliver

    2015-12-01

    Telepresence systems use 3D techniques to create a more natural human-centered communication over long distances. This work concentrates on the analysis of latency in telepresence systems where acquisition and rendering are distributed. Keeping latency low is important to immerse users in the virtual environment. To better understand latency problems and to identify the source of such latency, we focus on the decomposition of system latency into sub-latencies. We contribute a model of latency and show how it can be used to estimate latencies in a complex telepresence dataflow network. To compare the estimates with real latencies in our prototype, we modify two common latency measurement methods. This presented methodology enables the developer to optimize the design, find implementation issues and gain deeper knowledge about specific sources of latency.

  4. Testbed for remote telepresence research

    Science.gov (United States)

    Adnan, Sarmad; Cheatham, John B., Jr.

    1992-11-01

    Teleoperated robots offer solutions to problems associated with operations in remote and unknown environments, such as space. Teleoperated robots can perform tasks related to inspection, maintenance, and retrieval. A video camera can be used to provide some assistance in teleoperations, but for fine manipulation and control, a telepresence system that gives the operator a sense of actually being at the remote location is more desirable. A telepresence system comprised of a head-tracking stereo camera system, a kinematically redundant arm, and an omnidirectional mobile robot has been developed at the mechanical engineering department at Rice University. This paper describes the design and implementation of this system, its control hardware, and software. The mobile omnidirectional robot has three independent degrees of freedom that permit independent control of translation and rotation, thereby simulating a free flying robot in a plane. The kinematically redundant robot arm has eight degrees of freedom that assist in obstacle and singularity avoidance. The on-board control computers permit control of the robot from the dual hand controllers via a radio modem system. A head-mounted display system provides the user with a stereo view from a pair of cameras attached to the mobile robotics system. The head tracking camera system moves stereo cameras mounted on a three degree of freedom platform to coordinate with the operator's head movements. This telepresence system provides a framework for research in remote telepresence, and teleoperations for space.

  5. TERESA: a socially intelligent semi-autonomous telepresence system

    NARCIS (Netherlands)

    Shiarlis, Kyriacos; Messias, Joao; van Someren, Maarten; Whiteson, Shimon; Kim, Jaebok; Vroon, Jered Hendrik; Englebienne, Gwenn; Truong, Khiet Phuong; Pérez-Higueras, Noé; Pérez-Hurtado, Ignacio; Ramon-Vigo, Rafael; Caballero, Fernando; Merino, Luis; Shen, Jie; Petridis, Stavros; Pantic, Maja; Hedman, Lasse; Scherlund, Marten; Koster, Raphaël; Michel, Hervé

    2015-01-01

    TERESA is a socially intelligent semi-autonomous telepresence system that is currently being developed as part of an FP7-STREP project funded by the European Union. The ultimate goal of the project is to deploy this system in an elderly day centre to allow elderly people to participate in social

  6. Telepresence master glove controller for dexterous robotic end-effectors

    Science.gov (United States)

    Fisher, Scott S.

    1987-01-01

    This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computer in real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.

  7. Responsive Social Positioning Behaviors for Semi-Autonomous Telepresence Robots

    NARCIS (Netherlands)

    Vroon, Jered Hendrik

    2017-01-01

    Social interaction with a mobile robot requires the establishment of appropriate social positioning behaviors. Previous work has focused mostly on general and static rules that can be applied to robotics, such as proxemics. How can we deal effectively and efficiently with the dynamic positioning

  8. Detection Thresholds for Rotation and Translation Gains in 360° Video-Based Telepresence Systems.

    Science.gov (United States)

    Zhang, Jingxin; Langbehn, Eike; Krupke, Dennis; Katzakis, Nicholas; Steinicke, Frank

    2018-04-01

    Telepresence systems have the potential to overcome limits and distance constraints of the real-world by enabling people to remotely visit and interact with each other. However, current telepresence systems usually lack natural ways of supporting interaction and exploration of remote environments (REs). In particular, single webcams for capturing the RE provide only a limited illusion of spatial presence, and movement control of mobile platforms in today's telepresence systems are often restricted to simple interaction devices. One of the main challenges of telepresence systems is to allow users to explore a RE in an immersive, intuitive and natural way, e.g., by real walking in the user's local environment (LE), and thus controlling motions of the robot platform in the RE. However, the LE in which the user's motions are tracked usually provides a much smaller interaction space than the RE. In this context, redirected walking (RDW) is a very suitable approach to solve this problem. However, so far there is no previous work, which explored if and how RDW can be used in video-based 360° telepresence systems. In this article, we conducted two psychophysical experiments in which we have quantified how much humans can be unknowingly redirected on virtual paths in the RE, which are different from the physical paths that they actually walk in the LE. Experiment 1 introduces a discrimination task between local and remote translations, and in Experiment 2 we analyzed the discrimination between local and remote rotations. In Experiment 1 participants performed straightforward translations in the LE that were mapped to straightforward translations in the RE shown as 360° videos, which were manipulated by different gains. Then, participants had to estimate if the remotely perceived translation was faster or slower than the actual physically performed translation. Similarly, in Experiment 2 participants performed rotations in the LE that were mapped to the virtual rotations

  9. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential- and P300-based models using Cerebot-a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz. Considering the operation safety, we set the classification accuracy of a model over 90.0% as the most important mandatory for the telepresence control of the humanoid robot. The open-loop experiments demonstrated that the SSVEP model with at most four stimulus targets achieved the average accurate rate about 90%, whereas the P300 model with the six or more stimulus targets under five repetitions per trial was able to achieve the accurate rates over 90.0%. Therefore, the four SSVEP stimuli were used to control four types of robot behavior; while the six P300 stimuli were chosen to control six types of robot behavior. Both of the 4-class SSVEP and 6-class P300 models achieved the average success rates of 90.3% and 91.3%, the average response times of 3.65 s and 6.6 s, and the average information transfer rates (ITR of 24.7 bits/min 18.8 bits/min, respectively. The closed-loop experiments addressed the telepresence control of the robot; the objective was to cause the robot to walk along a white lane marked in an office environment using live video feedback. Comparative studies reveal that the SSVEP model yielded faster response to the subject's mental activity with less reliance on channel selection, whereas the P300 model was found to be suitable for more classifiable targets and required less training. To conclude, we discuss the existing SSVEP and P300 models for the control of humanoid robots, including the models proposed in this paper.

  10. The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery.

    Science.gov (United States)

    Ballantyne, Garth H; Moll, Fred

    2003-12-01

    The United States Department of Defense developed the telepresence surgery concept to meet battlefield demands. The da Vinci telerobotic surgery system evolved from these efforts. In this article, the authors describe the components of the da Vinci system and explain how the surgeon sits at a computer console, views a three-dimensional virtual operative field, and performs the operation by controlling robotic arms that hold the stereoscopic video telescope and surgical instruments that simulate hand motions with seven degrees of freedom. The three-dimensional imaging and handlike motions of the system facilitate advanced minimally invasive thoracic, cardiac, and abdominal procedures. da Vinci has recently released a second generation of telerobots with four arms and will continue to meet the evolving challenges of surgery.

  11. Perception-Link Behavior Model: Supporting a Novel Operator Interface for a Customizable Anthropomorphic Telepresence Robot

    Directory of Open Access Journals (Sweden)

    William Gu

    2017-07-01

    Full Text Available A customizable anthropomorphic telepresence robot (CATR is an emerging medium that might have the highest degree of social presence among the existing mediated communication mediums. Unfortunately, there are problems with teleoperating a CATR, and these problems can deteriorate the gesture motion in a CATR. These problems are the disruption during decoupling, discontinuity due to the unstable transmission and jerkiness due to the reactive collision avoidance. From the review, none of the existing interfaces can simultaneously fix all of the problems. Hence, a novel framework with the perception-link behavior model (PLBM was proposed. The PLBM adopts the distributed spatiotemporal representation for all of its input signals. Equipping it with other components, the PLBM can solve the above problems with some limitations. For instance, the PLBM can retrieve missing modalities from its experience during decoupling. Next, the PLBM can handle up to a high level of drop rate in the network connection because it is dealing with gesture style and not pose. For collision prevention, the PLBM can tune the incoming gesture style so that the CATR can deliberately and smoothly avoid a collision. In summary, the framework consists of PLBM being able to increase the user’s presence on a CATR by synthesizing expressive user gestures.

  12. Telepresence and teleoperation

    International Nuclear Information System (INIS)

    Parsons, H.M.

    1990-01-01

    Some developers of mobile teleoperators for remote systems have been emphasizing telepresence as an important design consideration. This paper discusses what that term means and what it implies for human/machine interfaces from a human factors viewpoint. In general, telepresence means designing a control station's equipment so an operator has a sense of presence at the remote manipulator or vehicle being controlled

  13. Presence in a Pocket. Phantasms of Immediacy in Japanese Mobile Telepresence Robotics

    Directory of Open Access Journals (Sweden)

    Timo Kaerlein

    2012-08-01

    Full Text Available The paper addresses prospects of Japanese mobile telepresence robotics where small anthropomorphic devices are designed to act as intermediaries between remote interlocutors. First, an emic perspective of involved scientists and engineers is presented, focusing on example technologies being developed at the Hiroshi Ishiguro Lab in Kyoto (Japan, particularly a „cellphone-type tele-operated android [...] transmitting human presence“ called Elfoid. It represents an attempt to get “behind the veil of the machine” (Sekiguchi/Inami/Tachi 2001, about their RobotPHONE prototype which uses a similar concept in that it is supposed to act as a solid substitute for a dialog partner through evoking a feeling of presence (sonzaikan in Japanese philosophy, the feeling that someone is sharing the same physical space. In such undertakings, specific utopian ideals of communication become apparent. Paradoxically, the high-tech developments aim at constituting seemingly immediate interactions, preferably bypassing any potentially troublesome interface. The existence of a phantasm of immediacy (Bolter/Grusin 2000 can be traced back to decisive moments in media history and belongs to the central promises of new technological interfaces. Interestingly, the engineers’ statements reveal a latent technophobia, an ambition to overcome the limitations of physical devices altogether and to move on to more direct means of communicative exchange (including the mythical dimension of telepathy. Two questions are of particular concern: 1. On what different levels does the notion of immediacy operate? Not only does it refer to a spiritual ideal of unmediated communion, but it also influences practical decisions in interface design. “Natural” and “Tangible” User Interfaces are the result of a practice of disguise in that they mask their factual hypermediacy to allow for a seamless knotting up of real and mediated environments. 2. What is the relationship between

  14. JackIn Head: Immersive Visual Telepresence System with Omnidirectional Wearable Camera.

    Science.gov (United States)

    Kasahara, Shunichi; Nagai, Shohei; Rekimoto, Jun

    2017-03-01

    Sharing one's own immersive experience over the Internet is one of the ultimate goals of telepresence technology. In this paper, we present JackIn Head, a visual telepresence system featuring an omnidirectional wearable camera with image motion stabilization. Spherical omnidirectional video footage taken around the head of a local user is stabilized and then broadcast to others, allowing remote users to explore the immersive visual environment independently of the local user's head direction. We describe the system design of JackIn Head and report the evaluation results of real-time image stabilization and alleviation of cybersickness. Then, through an exploratory observation study, we investigate how individuals can remotely interact, communicate with, and assist each other with our system. We report our observation and analysis of inter-personal communication, demonstrating the effectiveness of our system in augmenting remote collaboration.

  15. Telepresence and virtual environment applications on the light duty utility arm system

    International Nuclear Information System (INIS)

    Pardini, A.F.; Rod, S.R.

    1995-01-01

    The Tri-Party Agreement was initiated in 1989 to provide a thirty-year clean-up plan for the United States Department of Energy's (DOE) Hanford Site. This plan addresses the remediation of hazardous chemical and radioactive wastes with a major emphasis on the characterization of Hanford's underground waste storage tanks. To assist in this task the DOE is funding the development of a light duty robotic arm capable of deploying various tools which can inspect and characterize the interior of DOE waste tanks. Current development includes two new technologies -- stereoscopic telepresence, which will allow three-dimensional viewing of the waste tank interior; and open-quotes virtual environmentsclose quotes (or open-quotes virtual realityclose quotes), which will provide computer-simulated world wherein operators can practice inspections and other activities prior to performing actual operations in real waste tanks

  16. Audio system using binaural synthesis for multimodal telepresence applications

    DEFF Research Database (Denmark)

    Madsen, Esben; Markovic, Milos; Olesen, Søren Krarup

    2013-01-01

    are implemented in a distributed manner. Body-tracking of all participants is provided through the system for the purpose of using binaural synthesis for directional sound. Head-worn microphones are used to capture sound, and the visitor is provided with directional sound through headphones. The visitor...

  17. A qualitative study of in-home robotic telepresence for home care of community-living elderly subjects

    DEFF Research Database (Denmark)

    Boissy, Patrice; Corriveau, Hélène; Michaud, François

    2007-01-01

    was illustrated using a photograph of a mobile robot, and participants were then asked to suggest potential health care applications. Interview data derived from the transcript of each group discussion were analyzed using qualitative induction based on content analysis. The analyses yielded statements that were...... categorized under three themes: potential applications, usability issues and user requirements. Teleoperated mobile robotic systems in the home were thought to be useful in assisting multidisciplinary patient care through improved communication between patients and healthcare professionals, and offering...

  18. An advanced rehabilitation robotic system for augmenting healthcare.

    Science.gov (United States)

    Hu, John; Lim, Yi-Je; Ding, Ye; Paluska, Daniel; Solochek, Aaron; Laffery, David; Bonato, Paolo; Marchessault, Ronald

    2011-01-01

    Emerging technologies such as rehabilitation robots (RehaBot) for retraining upper and lower limb functions have shown to carry tremendous potential to improve rehabilitation outcomes. Hstar Technologies is developing a revolutionary rehabilitation robot system enhancing healthcare quality for patients with neurological and muscular injuries or functional impairments. The design of RehaBot is a safe and robust system that can be run at a rehabilitation hospital under the direct monitoring and interactive supervision control and at a remote site via telepresence operation control. RehaBot has a wearable robotic structure design like exoskeleton, which employs a unique robotic actuation--Series Elastic Actuator. These electric actuators provide robotic structural compliance, safety, flexibility, and required strength for upper extremity dexterous manipulation rehabilitation training. RehaBot also features a novel non-treadmill paddle platform capable of haptics feedback locomotion rehabilitation training. In this paper, we concern mainly about the motor incomplete patient and rehabilitation applications.

  19. Get a head in telepresence: active vision for remote intervention

    International Nuclear Information System (INIS)

    Pretlove, J.

    1996-01-01

    Despite advances in robotic systems, many tasks needing to be undertaken in hazardous environments require human control. The risk to human life can be reduced or minimised using an integrated control system comprising an active controllable stereo vision system and a virtual reality head-mounted display. The human operator is then immersed in and can interact with the remote environment in complete safety. An overview is presented of the design and development of just such an advanced, dynamic telepresence system, developed at the Department of Mechanical Engineering at the University of Surrey. (UK)

  20. Robotics in General Surgery

    OpenAIRE

    Wall, James; Chandra, Venita; Krummel, Thomas

    2008-01-01

    In summary, robotics has made a significant contribution to General Surgery in the past 20 years. In its infancy, surgical robotics has seen a shift from early systems that assisted the surgeon to current teleoperator systems that can enhance surgical skills. Telepresence and augmented reality surgery are being realized, while research and development into miniaturization and automation is rapidly moving forward. The future of surgical robotics is bright. Researchers are working to address th...

  1. Robot-laser system

    International Nuclear Information System (INIS)

    Akeel, H.A.

    1987-01-01

    A robot-laser system is described for providing a laser beam at a desired location, the system comprising: a laser beam source; a robot including a plurality of movable parts including a hollow robot arm having a central axis along which the laser source directs the laser beam; at least one mirror for reflecting the laser beam from the source to the desired location, the mirror being mounted within the robot arm to move therewith and relative thereto to about a transverse axis that extends angularly to the central axis of the robot arm; and an automatic programmable control system for automatically moving the mirror about the transverse axis relative to and in synchronization with movement of the robot arm to thereby direct the laser beam to the desired location as the arm is moved

  2. Robotics and remote systems applications

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling

  3. Robot bicolor system

    Science.gov (United States)

    Yamaba, Kazuo

    1999-03-01

    In case of robot vision, most important problem is the processing speed of acquiring and analyzing images are less than the speed of execution of the robot. In an actual robot color vision system, it is considered that the system should be processed at real time. We guessed this problem might be solved using by the bicolor analysis technique. We have been testing a system which we hope will give us insight to the properties of bicolor vision. The experiment is used the red channel of a color CCD camera and an image from a monochromatic camera to duplicate McCann's theory. To mix the two signals together, the mono image is copied into each of the red, green and blue memory banks of the image processing board and then added the red image to the red bank. On the contrary, pure color images, red, green and blue components are obtained from the original bicolor images in the novel color system after the scaling factor is added to each RGB image. Our search for a bicolor robot vision system was entirely successful.

  4. The Development of Radiation hardened tele-robot system - Development of artificial force reflection control for teleoperated mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Jang; Hong, Sun Gi; Kang, Young Hoon; Kim, Min Soeng [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-04-01

    One of the most important issues in teleoperation is to provide the sense of telepresence so as to conduct the task more reliably. In particular, teleoperated mobile robots are needed to have some kinds of backup system when the operator is blind for remote situation owing to the failure of vision system. In the first year, the idea of artificial force reflection was researched to enhance the reliability of operation when the mobile robot travels on the plain ground. In the second year, we extend previous results to help the teleoperator even when the robot climbs stairs. Finally, we apply the developed control algorithms to real experiments. The artificial force reflection method has two modes; traveling on the plain ground and climbing stairs. When traveling on the plain ground, the force information is artificially generated by using the range data from the environment while generating the impulse force when climbing stairs. To verify the validity of our algorithm, we develop the simulator which consists of the joystick and the visual display system. Through some experiments using this system, we confirm the validity and effectiveness of our new idea of artificial force reflection in the teleoperated mobile robot. 11 refs., 30 figs. (Author)

  5. Robotic systems in spine surgery.

    Science.gov (United States)

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  6. Mergeable nervous systems for robots.

    Science.gov (United States)

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  7. Remote telepresence surgery: the Canadian experience.

    Science.gov (United States)

    Anvari, M

    2007-04-01

    On 28 February 2003, the world's first telerobotic surgical service was established between St. Joseph's Healthcare Hamilton, a teaching hospital affiliated with McMaster University, and North Bay General Hospital, a community hospital 400 km away. The service was designed to provide telerobotic surgery and assistance by expert surgeons to local surgeons in North Bay, and to improve the range and quality of advanced laparoscopic surgeries offered locally. The two surgeons have collaboratively performed 22 remote telepresence surgeries including laparoscopic fundoplications, laparoscopic colon resections, and laparoscopic inguinal hernia repairs. This article describes the important lessons learned, including the telecommunication requirements, the impact from lack of haptic feedback, surgeons' adaptation to latency, and ethical and medicolegal issues. This is currently the largest clinical experience with assisted robotic telepresence surgery (ARTS) in the world, and the lessons learned will help guide the future design and development of telesurgical robotic platforms. It also will guide the establishment of telesurgical networks connecting various centers in the world, allowing for rapid and safe dissemination of new surgical techniques.

  8. Assistive and Rehabilitation Robotic System

    Directory of Open Access Journals (Sweden)

    Adrian Abrudean

    2015-06-01

    Full Text Available A short introduction concerning the content of Assistive Technology and Rehabilitation Engineering is followed by a study of robotic systems which combine two or more assistive functions. Based on biomechanical aspects, a complex robotic system is presented, starting with the study of functionality and ending with the practical aspects of the prototype development.

  9. Telepresence for Deep Space Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Incorporating telepresence technologies into deep space mission operations can give the crew and ground personnel the impression that they are in a location at time...

  10. Robotics: The next step?

    Science.gov (United States)

    Broeders, Ivo A M J

    2014-02-01

    Robotic systems were introduced 15 years ago to support complex endoscopic procedures. The technology is increasingly used in gastro-intestinal surgery. In this article, literature on experimental- and clinical research is reviewed and ergonomic issues are discussed. literature review was based on Medline search using a large variety of search terms, including e.g. robot(ic), randomized, rectal, oesophageal, ergonomics. Review articles on relevant topics are discussed with preference. There is abundant evidence of supremacy in performing complex endoscopic surgery tasks when using the robot in an experimental setting. There is little high-level evidence so far on translation of these merits to clinical practice. Robotic systems may appear helpful in complex gastro-intestinal surgery. Moreover, dedicated computer based technology integrated in telepresence systems opens the way to integration of planning, diagnostics and therapy. The first high tech add-ons such as near infrared technology are under clinical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Expanding the Telepresence Paradigm to the UNOLS Fleet

    Science.gov (United States)

    Coleman, D.; Scowcroft, G.

    2014-12-01

    The Inner Space Center (ISC) at the University of Rhode Island Graduate School of Oceanography (URI-GSO) has been at the forefront of developing the tools, techniques, and protocols for telepresence-enabled ocean science exploration and education programs. Working primarily with the Ocean Exploration Trust's E/V Nautilus and the NOAA Ship Okeanos Explorer, the ISC facility and staff have supported dozens of research cruises with significant shore-based support, while delivering related educational programming across the globe. Through a partnership with the University National Oceanographic Laboratory System (UNOLS), the ISC is broadening its reach and capabilities to serve vessels in the U.S. academic research fleet, managed by UNOLS. The ISC has developed and used a portable shipboard "mobile telepresence unit" (MTU) on several UNOLS ships to support projects led by ocean scientists that employed the telepresence paradigm as part of their research and outreach programs. Utilizing the ISC facilities provides opportunities for effective, successful broader impact activities and shore-based remote science connectivity. With new UNOLS ships coming online, including the R/V Sikuliaq, the R/V Neil Armstrong, and the R/V Sally Ride, in addition to future Regional Class Research Vessels (RCRVs), telepresence capability has become a technical requirement for a variety of reasons. Older vessels are being retrofit with this forward-looking technology, and URI's research vessel, the R/V Endeavor, has been recently configured with technology to support telepresence operations. This presentation will provide an overview of the future of telepresence technology, its use in ocean science research and education, and advantages for using this capability to support broader impact activities. In addition, ISC successes, challenges, and lessons learned in employing telepresence technologies and methodologies onboard the academic research fleet will be discussed.

  12. Telepresence and remote communication through virtual reality

    OpenAIRE

    Rydenfors, Gabriella

    2017-01-01

    This Master Thesis concerns a telepresence implementation which utilizes state-of-the-art virtual reality combined with live 360 degree video. Navigation interfaces for telepresence with virtual reality headsets were developed and evaluated through a user study. An evaluation of telepresence as a communication media was performed, comparing it to video communication. The result showed that telepresence was a better communication media than video communication.

  13. Space applications of Automation, Robotics And Machine Intelligence Systems (ARAMIS). Volume 3, phase 2: Executive summary

    Science.gov (United States)

    Akin, D. L.; Minsky, M. L.; Thiel, E. D.; Kurtzman, C. R.

    1983-01-01

    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program leading to an operational telepresence servicer is presented.

  14. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  15. Novel robotic systems and future directions

    Directory of Open Access Journals (Sweden)

    Ki Don Chang

    2018-01-01

    Full Text Available Robot-assistance is increasingly used in surgical practice. We performed a nonsystematic literature review using PubMed/MEDLINE and Google for robotic surgical systems and compiled information on their current status. We also used this information to predict future about the direction of robotic systems based on various robotic systems currently being developed. Currently, various modifications are being made in the consoles, robotic arms, cameras, handles and instruments, and other specific functions (haptic feedback and eye tracking that make up the robotic surgery system. In addition, research for automated surgery is actively being carried out. The development of future robots will be directed to decrease the number of incisions and improve precision. With the advent of artificial intelligence, a more practical form of robotic surgery system can be introduced and will ultimately lead to the development of automated robotic surgery system.

  16. The Human-Robot Interaction Operating System

    Science.gov (United States)

    Fong, Terrence; Kunz, Clayton; Hiatt, Laura M.; Bugajska, Magda

    2006-01-01

    In order for humans and robots to work effectively together, they need to be able to converse about abilities, goals and achievements. Thus, we are developing an interaction infrastructure called the "Human-Robot Interaction Operating System" (HRI/OS). The HRI/OS provides a structured software framework for building human-robot teams, supports a variety of user interfaces, enables humans and robots to engage in task-oriented dialogue, and facilitates integration of robots through an extensible API.

  17. Multibody system dynamics, robotics and control

    CERN Document Server

    Gerstmayr, Johannes

    2013-01-01

    The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.

  18. Medical Robots: Current Systems and Research Directions

    Directory of Open Access Journals (Sweden)

    Ryan A. Beasley

    2012-01-01

    Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.

  19. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  20. Telemedicine and robotics: paving the way to the globalization of surgery.

    Science.gov (United States)

    Senapati, S; Advincula, A P

    2005-12-01

    The concept of delivering health services at a distance, or telemedicine is becoming an emerging tool for the field of surgery. For the surgical services, telepresence surgery through robotics is gradually being incorporated into health care practices. This article will provide a brief overview of the principles surrounding telemedicine and telepresence surgery as they specifically relate to robotics. Where limitations have been reached in laparoscopy, robotics has allowed further steps forward. The development of robotics in medicine has been a progression from passive to immersive technology. In gynecology, the utilization of robotics has evolved from the use of Aesop, a robotic arm for camera manipulation, to full robotic systems such as Zeus, and the daVinci surgical system. These systems have not only been used directly for a variety of procedures but have also become a useful tool for conferencing and the mentoring of surgeons from afar. As this mode of technology becomes assimilated into the culture of surgery and medicine globally, caution must be taken to carefully navigate the economic, legal and ethical implications of telemedicine. Despite the challenges faced, telepresence surgery holds promise for more widespread applications.

  1. Workload, flow, and telepresence during teleoperation

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V. [Oak Ridge National Lab., TN (United States); Blair, L.M. [Human Machine Interfaces, Inc., Knoxville, TN (United States)

    1996-04-01

    There is much speculation about the relations among workload, flow, telepresence, and performance during teleoperation, but few data that provide evidence concerning them. This paper presents results an investigation conducted during completion of a pipe cutting task using a teleoperator at ORNL. Results show support for the hypothesis that telepresence is related to expenditure of attentional resources, and some support for the hypothesis that telepresence is related to flow. The discussion examines the results from an attentional resources perspective on teleoperation.

  2. Workload, flow, and telepresence during teleoperation

    International Nuclear Information System (INIS)

    Draper, J.V.; Blair, L.M.

    1996-01-01

    There is much speculation about the relations among workload, flow, telepresence, and performance during teleoperation, but few data that provide evidence concerning them. This paper presents results an investigation conducted during completion of a pipe cutting task using a teleoperator at ORNL. Results show support for the hypothesis that telepresence is related to expenditure of attentional resources, and some support for the hypothesis that telepresence is related to flow. The discussion examines the results from an attentional resources perspective on teleoperation

  3. Robotics/Automated Systems Technicians.

    Science.gov (United States)

    Doty, Charles R.

    Major resources exist that can be used to develop or upgrade programs in community colleges and technical institutes that educate robotics/automated systems technicians. The first category of resources is Economic, Social, and Education Issues. The Office of Technology Assessment (OTA) report, "Automation and the Workplace," presents analyses of…

  4. Automatic control system generation for robot design validation

    Science.gov (United States)

    Bacon, James A. (Inventor); English, James D. (Inventor)

    2012-01-01

    The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.

  5. Teleoperated robotic sorting system

    Science.gov (United States)

    Roos, Charles E.; Sommer, Edward J.; Parrish, Robert H.; Russell, James R.

    2000-01-01

    A method and apparatus are disclosed for classifying materials utilizing a computerized touch sensitive screen or other computerized pointing device for operator identification and electronic marking of spatial coordinates of materials to be extracted. An operator positioned at a computerized touch sensitive screen views electronic images of the mixture of materials to be sorted as they are conveyed past a sensor array which transmits sequences of images of the mixture either directly or through a computer to the touch sensitive display screen. The operator manually "touches" objects displayed on the screen to be extracted from the mixture thereby registering the spatial coordinates of the objects within the computer. The computer then tracks the registered objects as they are conveyed and directs automated devices including mechanical means such as air jets, robotic arms, or other mechanical diverters to extract the registered objects.

  6. Human Robotic Systems (HRS): Robotic ISRU Acquisition Element

    Data.gov (United States)

    National Aeronautics and Space Administration — During 2014, the Robotic ISRU Resource Acquisition project element will develop two technologies:Exploration Ground Data Systems (xGDS)Sample Acquisition on...

  7. Robots and Cultural Heritage: New Museum Experiences

    Directory of Open Access Journals (Sweden)

    Claudio Germak

    2015-12-01

    Full Text Available The introduction of new technologies to enhance the visiting museum experience is not a novelty. A large variety of interactive systems are nowadays available, including virtual tours, which makes cultural heritage accessible remotely. The theme of increase in accessibility and attractiveness has lately been faced with the employment of the service robotics, covering various types of applications. Regrettably, many of robotics solutions appear less successful in terms of utility and usability. On the basis of this awareness, a design for a new robotic solution for cultural heritage has been proposed. The project, developed at the royal residence of Racconigi Castle, consists of a telepresence robot designed as a tool to explore inaccessible areas of the heritage. The employed robot, called Virgil, was expressly designed for the project. The control of the robot is entrusted to the museum guides in order to enhance their work and enrich the cultural storytelling.

  8. Functional Modeling for Monitoring of Robotic System

    DEFF Research Database (Denmark)

    Wu, Haiyan; Bateman, Rikke R.; Zhang, Xinxin

    2018-01-01

    With the expansion of robotic applications in the industrial domain, it is important that the robots can execute their tasks in a safe and reliable way. A monitoring system can be implemented to ensure the detection of abnormal situations of the robots and report the abnormality to their human su...

  9. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  10. High precision detector robot arm system

    Science.gov (United States)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  11. Modular Track System For Positioning Mobile Robots

    Science.gov (United States)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  12. Robotic assisted minimally invasive surgery

    Directory of Open Access Journals (Sweden)

    Palep Jaydeep

    2009-01-01

    Full Text Available The term "robot" was coined by the Czech playright Karel Capek in 1921 in his play Rossom′s Universal Robots. The word "robot" is from the check word robota which means forced labor.The era of robots in surgery commenced in 1994 when the first AESOP (voice controlled camera holder prototype robot was used clinically in 1993 and then marketed as the first surgical robot ever in 1994 by the US FDA. Since then many robot prototypes like the Endoassist (Armstrong Healthcare Ltd., High Wycombe, Buck, UK, FIPS endoarm (Karlsruhe Research Center, Karlsruhe, Germany have been developed to add to the functions of the robot and try and increase its utility. Integrated Surgical Systems (now Intuitive Surgery, Inc. redesigned the SRI Green Telepresence Surgery system and created the daVinci Surgical System ® classified as a master-slave surgical system. It uses true 3-D visualization and EndoWrist ® . It was approved by FDA in July 2000 for general laparoscopic surgery, in November 2002 for mitral valve repair surgery. The da Vinci robot is currently being used in various fields such as urology, general surgery, gynecology, cardio-thoracic, pediatric and ENT surgery. It provides several advantages to conventional laparoscopy such as 3D vision, motion scaling, intuitive movements, visual immersion and tremor filtration. The advent of robotics has increased the use of minimally invasive surgery among laparoscopically naοve surgeons and expanded the repertoire of experienced surgeons to include more advanced and complex reconstructions.

  13. Supervisory control for a complex robotic system

    International Nuclear Information System (INIS)

    Miller, D.J.

    1988-01-01

    The Robotic Radiation Survey and Analysis System investigates the use of advanced robotic technology for performing remote radiation surveys on nuclear waste shipping casks. Robotic systems have the potential for reducing personnel exposure to radiation and providing fast reliable throughput at future repository sites. A primary technology issue is the integrated control of distributed specialized hardware through a modular supervisory software system. Automated programming of robot trajectories based upon mathematical models of the cask and robot coupled with sensory feedback enables flexible operation of a commercial gantry robot with the reliability needed to perform autonomous operations in a hazardous environment. Complexity is managed using structured software engineering techniques resulting in the generation of reusable command primitives which contribute to a software parts catalog for a generalized robot programming language

  14. Augmented Reality Telepresence for Robotic Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — State of the art virtual reality requires low latency, on the order of single-digit milliseconds to present a scene to an operator using immersive tracking devices....

  15. Multi-arm multilateral haptics-based immersive tele-robotic system (HITS) for improvised explosive device disposal

    Science.gov (United States)

    Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir

    2014-06-01

    This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.

  16. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  17. Task oriented evaluation system for maintenance robots

    International Nuclear Information System (INIS)

    Asame, Hajime; Endo, Isao; Kotosaka, Shin-ya; Takata, Shozo; Hiraoka, Hiroyuki; Kohda, Takehisa; Matsumoto, Akihiro; Yamagishi, Kiichiro.

    1994-01-01

    The adaptability evaluation of maintenance robots to autonomous plants has been discussed. In this paper, a new concept of autonomous plant with maintenance robots are introduced, and a framework of autonomous maintenance system is proposed. Then, task-oriented evaluation of robot arms is discussed for evaluating their adaptability to maintenance tasks, and a new criterion called operability is proposed for adaptability evaluation. The task-oriented evaluation system is implemented and applied to structural design of robot arms. Using genetic algorithm, an optimal structure adaptable to a pump disassembly task is obtained. (author)

  18. [Robotics in general surgery: personal experience, critical analysis and prospectives].

    Science.gov (United States)

    Fracastoro, Gerolamo; Borzellino, Giuseppe; Castelli, Annalisa; Fiorini, Paolo

    2005-01-01

    Today mini invasive surgery has the chance to be enhanced with sophisticated informative systems (Computer Assisted Surgery, CAS) like robotics, tele-mentoring and tele-presence. ZEUS and da Vinci, present in more than 120 Centres in the world, have been used in many fields of surgery and have been tested in some general surgical procedures. Since the end of 2003, we have performed 70 experimental procedures and 24 operations of general surgery with ZEUS robotic system, after having properly trained 3 surgeons and the operating room staff. Apart from the robot set-up, the mean operative time of the robotic operations was similar to the laparoscopic ones; no complications due to robotic technique occurred. The Authors report benefits and disadvantages related to robots' utilization, problems still to be solved and the possibility to make use of them with tele-surgery, training and virtual surgery.

  19. Robotic system for process sampling

    International Nuclear Information System (INIS)

    Dyches, G.M.

    1985-01-01

    A three-axis cartesian geometry robot for process sampling was developed at the Savannah River Laboratory (SRL) and implemented in one of the site radioisotope separations facilities. Use of the robot reduces personnel radiation exposure and contamination potential by routinely handling sample containers under operator control in a low-level radiation area. This robot represents the initial phase of a longer term development program to use robotics for further sample automation. Preliminary design of a second generation robot with additional capabilities is also described. 8 figs

  20. Usability testing of a mobile robotic system for in-home telerehabilitation.

    Science.gov (United States)

    Boissy, Patrick; Brière, Simon; Corriveau, Hélène; Grant, Andrew; Lauria, Michel; Michaud, François

    2011-01-01

    Mobile robots designed to enhance telepresence in the support of telehealth services are being considered for numerous applications. TELEROBOT is a teleoperated mobile robotic platform equipped with videoconferencingcapabilities and designed to be used in a home environment to. In this study, learnability of the system's teleoperation interface and controls was evaluated with ten rehabilitation professionals during four training sessions in a laboratory environment and in an unknown home environment while performing the execution of a standardized evaluation protocol typically used in home care. Results show that the novice teleoperators' performances on two of the four metrics used (number of command and total time) improved significantly across training sessions (ANOVAS, phome environment during navigation tasks (r=0,77 and 0,60). With only 4 hours of training, rehabilitation professionals were able learn to teleoperate successfully TELEROBOT. However teleoperation performances remained significantly less efficient then those of an expert. Under the home task condition (navigating the home environment from one point to the other as fast as possible) this translated to completion time between 350 seconds (best performance) and 850 seconds (worse performance). Improvements in other usability aspects of the system will be needed to meet the requirements of in-home telerehabilitation.

  1. Robotic system for glovebox size reduction

    International Nuclear Information System (INIS)

    KWOK, KWAN S.; MCDONALD, MICHAEL J.

    2000-01-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction

  2. Robot Skills for Transformable Manufacturing Systems

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath

    Efficient, transformable production systems need robots that are flexible and effortlessly repurposed or reconfigured. The present dissertation argues that this can be achieved through the implementation and use of general, object-centered robot skills. In this dissertation, we focus on the design...... autonomously, exactly when it is needed. It is the firm belief of this researcher that industrial robotics need to go in a direction towards what is outlined in this dissertation, both in academia and in the industry. In order for manufacturing companies to remain competitive, robotics is the definite way...

  3. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human`s eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. 203 figs, 12 tabs, 72 refs. (Author).

  4. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human's eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. It has been looking for these techniques to expand the working area of human, raise the working efficiencies of remote task to the highest degree, and enhance the industrial

  5. Utilizing Robot Operating System (ROS) in Robot Vision and Control

    Science.gov (United States)

    2015-09-01

    Palmer, “Development of a navigation system for semi-autonomous operation of wheelchairs,” in Proc. of the 8th IEEE/ASME Int. Conf. on Mechatronic ...and Embedded Systems and Applications, Suzhou, China, 2012, pp. 257-262. [30] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based SLAM...OPERATING SYSTEM (ROS) IN ROBOT VISION AND CONTROL by Joshua S. Lum September 2015 Thesis Advisor: Xiaoping Yun Co-Advisor: Zac Staples

  6. The development of advanced robotics technology in high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs.

  7. The development of advanced robotics technology in high radiation environment

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo.

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs

  8. Integrated Robotic systems for Humanitarian Demining

    Directory of Open Access Journals (Sweden)

    E. Colon

    2007-06-01

    Full Text Available This paper summarises the main results of 10 years of research and development in Humanitarian Demining. The Hudem project focuses on mine detection systems and aims at provided different solutions to support the mine detection operations. Robots using different kind of locomotion systems have been designed and tested on dummy minefields. In order to control these robots, software interfaces, control algorithms, visual positioning and terrain following systems have also been developed. Typical data acquisition results obtained during trial campaigns with robots and data acquisition systems are reported. Lessons learned during the project and future work conclude this paper.

  9. 3D printing of soft robotic systems

    Science.gov (United States)

    Wallin, T. J.; Pikul, J.; Shepherd, R. F.

    2018-06-01

    Soft robots are capable of mimicking the complex motion of animals. Soft robotic systems are defined by their compliance, which allows for continuous and often responsive localized deformation. These features make soft robots especially interesting for integration with human tissues, for example, the implementation of biomedical devices, and for robotic performance in harsh or uncertain environments, for example, exploration in confined spaces or locomotion on uneven terrain. Advances in soft materials and additive manufacturing technologies have enabled the design of soft robots with sophisticated capabilities, such as jumping, complex 3D movements, gripping and releasing. In this Review, we examine the essential soft material properties for different elements of soft robots, highlighting the most relevant polymer systems. Advantages and limitations of different additive manufacturing processes, including 3D printing, fused deposition modelling, direct ink writing, selective laser sintering, inkjet printing and stereolithography, are discussed, and the different techniques are investigated for their application in soft robotic fabrication. Finally, we explore integrated robotic systems and give an outlook for the future of the field and remaining challenges.

  10. Robotic guarded motion system and method

    Science.gov (United States)

    Bruemmer, David J.

    2010-02-23

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for repeating, on each iteration through an event timing loop, the acts of defining an event horizon, detecting a range to obstacles around the robot, and testing for an event horizon intrusion. Defining the event horizon includes determining a distance from the robot that is proportional to a current velocity of the robot and testing for the event horizon intrusion includes determining if any range to the obstacles is within the event horizon. Finally, on each iteration through the event timing loop, the method includes reducing the current velocity of the robot in proportion to a loop period of the event timing loop if the event horizon intrusion occurs.

  11. Augmented Robotics Dialog System for Enhancing Human–Robot Interaction

    Science.gov (United States)

    Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel

    2015-01-01

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202

  12. Implementation and Reconfiguration of Robot Operating System on Human Follower Transporter Robot

    Directory of Open Access Journals (Sweden)

    Addythia Saphala

    2015-10-01

    Full Text Available Robotic Operation System (ROS is an im- portant platform to develop robot applications. One area of applications is for development of a Human Follower Transporter Robot (HFTR, which  can  be  considered  as a custom mobile robot utilizing differential driver steering method and equipped with Kinect sensor. This study discusses the development of the robot navigation system by implementing Simultaneous Localization and Mapping (SLAM.

  13. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  14. Integrated Robotic Systems for Humanitarian Demining

    OpenAIRE

    Colon, E.; Cubber, G. De; Ping, H.; Habumuremyi, J-C; Sahli, H.; Baudoin, Y.

    2007-01-01

    This paper summarises the main results of 10 years of research and development in Humanitarian Demining. The Hudem project focuses on mine detection systems and aims at provided different solutions to support the mine detection operations. Robots using different kind of locomotion systems have been designed and tested on dummy minefields. In order to control these robots, software interfaces, control algorithms, visual positioning and terrain following systems have also been developed. Typica...

  15. Knowledge based systems for intelligent robotics

    Science.gov (United States)

    Rajaram, N. S.

    1982-01-01

    It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.

  16. ROBOSIM, a simulator for robotic systems

    Science.gov (United States)

    Hinman, Elaine M.; Fernandez, Ken; Cook, George E.

    1991-01-01

    ROBOSIM, a simulator for robotic systems, was developed by NASA to aid in the rapid prototyping of automation. ROBOSIM has allowed the development of improved robotic systems concepts for both earth-based and proposed on-orbit applications while significantly reducing development costs. In a cooperative effort with an area university, ROBOSIM was further developed for use in the classroom as a safe and cost-effective way of allowing students to study robotic systems. Students have used ROBOSIM to study existing robotic systems and systems which they have designed in the classroom. Since an advanced simulator/trainer of this type is beneficial not only to NASA projects and programs but industry and academia as well, NASA is in the process of developing this technology for wider public use. An update on the simulators's new application areas, the improvements made to the simulator's design, and current efforts to ensure the timely transfer of this technology are presented.

  17. Development of haptic system for surgical robot

    Science.gov (United States)

    Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo

    2017-04-01

    In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.

  18. Robotic system construction with mechatronic components inverted pendulum: humanoid robot

    Science.gov (United States)

    Sandru, Lucian Alexandru; Crainic, Marius Florin; Savu, Diana; Moldovan, Cristian; Dolga, Valer; Preitl, Stefan

    2017-03-01

    Mechatronics is a new methodology used to achieve an optimal design of an electromechanical product. This methodology is collection of practices, procedures and rules used by those who work in particular branch of knowledge or discipline. Education in mechatronics at the Polytechnic University Timisoara is organized on three levels: bachelor, master and PhD studies. These activities refer and to design the mechatronics systems. In this context the design, implementation and experimental study of a family of mechatronic demonstrator occupy an important place. In this paper, a variant for a mechatronic demonstrator based on the combination of the electrical and mechanical components is proposed. The demonstrator, named humanoid robot, is equivalent with an inverted pendulum. Is presented the analyze of components for associated functions of the humanoid robot. This type of development the mechatronic systems by the combination of hardware and software, offers the opportunity to build the optimal solutions.

  19. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off-line recharging and on-line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm-sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  20. Safety assessment of high consequence robotics system

    International Nuclear Information System (INIS)

    Robinson, D.G.; Atcitty, C.B.

    1996-01-01

    This paper outlines the use of a failure modes and effects analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, the weigh and leak check system, is to replace a manual process for weight and leakage of nuclear materials at the DOE Pantex facility. Failure modes and effects analyses were completed for the robotics process to ensure that safety goals for the systems have been met. Due to the flexible nature of the robot configuration, traditional failure modes and effects analysis (FMEA) were not applicable. In addition, the primary focus of safety assessments of robotics systems has been the protection of personnel in the immediate area. In this application, the safety analysis must account for the sensitivities of the payload as well as traditional issues. A unique variation on the classical FMEA was developed that permits an organized and quite effective tool to be used to assure that safety was adequately considered during the development of the robotic system. The fundamental aspects of the approach are outlined in the paper

  1. Cask system design guidance for robotic handling

    International Nuclear Information System (INIS)

    Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

    1990-10-01

    Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs

  2. Ubiquitous Robotic Technology for Smart Manufacturing System.

    Science.gov (United States)

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  3. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  4. An automated miniature robotic vehicle inspection system

    International Nuclear Information System (INIS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-01-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software

  5. A Fast Vision System for Soccer Robot

    Directory of Open Access Journals (Sweden)

    Tianwu Yang

    2012-01-01

    Full Text Available This paper proposes a fast colour-based object recognition and localization for soccer robots. The traditional HSL colour model is modified for better colour segmentation and edge detection in a colour coded environment. The object recognition is based on only the edge pixels to speed up the computation. The edge pixels are detected by intelligently scanning a small part of whole image pixels which is distributed over the image. A fast method for line and circle centre detection is also discussed. For object localization, 26 key points are defined on the soccer field. While two or more key points can be seen from the robot camera view, the three rotation angles are adjusted to achieve a precise localization of robots and other objects. If no key point is detected, the robot position is estimated according to the history of robot movement and the feedback from the motors and sensors. The experiments on NAO and RoboErectus teen-size humanoid robots show that the proposed vision system is robust and accurate under different lighting conditions and can effectively and precisely locate robots and other objects.

  6. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.

    Science.gov (United States)

    Brookes, Jack; Kuznecovs, Maksims; Kanakis, Menelaos; Grigals, Arturs; Narvidas, Mazvydas; Gallagher, Justin; Levesley, Martin

    2017-07-01

    Robotics is increasing in popularity as a method of providing rich, personalized and cost-effective physiotherapy to individuals with some degree of upper limb paralysis, such as those who have suffered a stroke. These robotic rehabilitation systems are often high powered, and exoskeletal systems can attach to the person in a restrictive manner. Therefore, ensuring the mechanical safety of these devices before they come in contact with individuals is a priority. Additionally, rehabilitation systems may use novel sensor systems to measure current arm position. Used to capture and assess patient movements, these first need to be verified for accuracy by an external system. We present the ALAN-Arm, a humanoid robotic arm designed to be used for both accuracy benchmarking and safety testing of robotic rehabilitation systems. The system can be attached to a rehabilitation device and then replay generated or human movement trajectories, as well as autonomously play rehabilitation games or activities. Tests of the ALAN-Arm indicated it could recreate the path of a generated slow movement path with a maximum error of 14.2mm (mean = 5.8mm) and perform cyclic movements up to 0.6Hz with low gain (<1.5dB). Replaying human data trajectories showed the ability to largely preserve human movement characteristics with slightly higher path length and lower normalised jerk.

  7. Siroco, a configurable robot control system

    International Nuclear Information System (INIS)

    Tejedor, B.G.; Maraggi, G.J.B.

    1988-01-01

    The SIROCO (Configurable Robot Control System) is an electronic system designed to work in applications where mechanized remote control equipment and robots are necessary especially in Nuclear Power Plants. The structure of the system (hardware and software) determines the following user characteristics: a) Reduction in the time spent in NDT and in radiation doses absorbed, due to remote control operation; b) possibility for full automation in NDT, c) the system can simultaneously control up to six axes and can generate movements in remote areas; and d) possibility for equipment unification, due to SIROCO being a configurable system. (author)

  8. Smart mobile robot system for rubbish collection

    Science.gov (United States)

    Ali, Mohammed A. H.; Sien Siang, Tan

    2018-03-01

    This paper records the research and procedures of developing a smart mobility robot with detection system to collect rubbish. The objective of this paper is to design a mobile robot that can detect and recognize medium-size rubbish such as drinking cans. Besides that, the objective is also to design a mobile robot with the ability to estimate the position of rubbish from the robot. In addition, the mobile robot is also able to approach the rubbish based on position of rubbish. This paper explained about the types of image processing, detection and recognition methods and image filters. This project implements RGB subtraction method as the prior system. Other than that, algorithm for distance measurement based on image plane is implemented in this project. This project is limited to use computer webcam as the sensor. Secondly, the robot is only able to approach the nearest rubbish in the same views of camera vision and any rubbish that contain RGB colour components on its body.

  9. Human Robot Interaction for Hybrid Collision Avoidance System for Indoor Mobile Robots

    Directory of Open Access Journals (Sweden)

    Mazen Ghandour

    2017-06-01

    Full Text Available In this paper, a novel approach for collision avoidance for indoor mobile robots based on human-robot interaction is realized. The main contribution of this work is a new technique for collision avoidance by engaging the human and the robot in generating new collision-free paths. In mobile robotics, collision avoidance is critical for the success of the robots in implementing their tasks, especially when the robots navigate in crowded and dynamic environments, which include humans. Traditional collision avoidance methods deal with the human as a dynamic obstacle, without taking into consideration that the human will also try to avoid the robot, and this causes the people and the robot to get confused, especially in crowded social places such as restaurants, hospitals, and laboratories. To avoid such scenarios, a reactive-supervised collision avoidance system for mobile robots based on human-robot interaction is implemented. In this method, both the robot and the human will collaborate in generating the collision avoidance via interaction. The person will notify the robot about the avoidance direction via interaction, and the robot will search for the optimal collision-free path on the selected direction. In case that no people interacted with the robot, it will select the navigation path autonomously and select the path that is closest to the goal location. The humans will interact with the robot using gesture recognition and Kinect sensor. To build the gesture recognition system, two models were used to classify these gestures, the first model is Back-Propagation Neural Network (BPNN, and the second model is Support Vector Machine (SVM. Furthermore, a novel collision avoidance system for avoiding the obstacles is implemented and integrated with the HRI system. The system is tested on H20 robot from DrRobot Company (Canada and a set of experiments were implemented to report the performance of the system in interacting with the human and avoiding

  10. System for exchanging tools and end effectors on a robot

    International Nuclear Information System (INIS)

    Burry, D.B.; Williams, P.M.

    1991-01-01

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot. 12 figures

  11. Human Robotic Systems (HRS): Controlling Robots over Time Delay Element

    Data.gov (United States)

    National Aeronautics and Space Administration — This element involves the development of software that enables easier commanding of a wide range of NASA relevant robots through the Robot Application Programming...

  12. Robotics and remote systems for hazardous environments

    International Nuclear Information System (INIS)

    Jamshidi, M.; Eicker, P.

    1993-01-01

    This is the first volume in a series of books to be published by Prentice Hall on Environmental and Intelligent Manufacturing Systems. The editors have assembled an interdisciplinary collection of authors from industry, government, and academia, that provide a broad range of expertise on robotics and remote systems. Readily accessible to practicing engineers, the book provides case studies and introduces new technology applicable to remote operations in unstructured and/or hazardous environments. Chapter 1 gives an overview of the US Environmental Protection Agency's efforts to apply robotic technology to assist in the operations at hazardous waste sites. The next chapter focuses on the theory and implementation of robust impedance control for robotic manipulators. Chapter 3 presents a discussion on the integration of failure tolerance into robotic systems. The next two chapters address the issue of sensory feedback and its indispensable role in remote and/or hazardous environments. Chapter 6 presents numerous examples of robots and telemanipulators that have been applied for various tasks at the DOE's Savannah River Site. The following chapter picks up on this theme and discusses the fundamental paradigm shifts that are required in artificial intelligence for robots to deal with hazardous, unstructured, and dynamic environments. Chapter 8 returns to the issue of impedance control first raised in Chapter 2. While the majority of the applications discussed in this book are related to the nuclear industry, chapter 9 considers applying telerobotics for the control of traditional heavy machinery that is widely used in forestry, mining, and construction. The final chapter of the book returns to the topic of artificial intelligence's role in producing increased autonomy for robotic systems and provides an interesting counterpoint to the philosophy of reactive control discussed earlier

  13. Artificial intelligence in robot control systems

    Science.gov (United States)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  14. Robotic vision system for random bin picking with dual-arm robots

    Directory of Open Access Journals (Sweden)

    Kang Sangseung

    2016-01-01

    Full Text Available Random bin picking is one of the most challenging industrial robotics applications available. It constitutes a complicated interaction between the vision system, robot, and control system. For a packaging operation requiring a pick-and-place task, the robot system utilized should be able to perform certain functions for recognizing the applicable target object from randomized objects in a bin. In this paper, we introduce a robotic vision system for bin picking using industrial dual-arm robots. The proposed system recognizes the best object from randomized target candidates based on stereo vision, and estimates the position and orientation of the object. It then sends the result to the robot control system. The system was developed for use in the packaging process of cell phone accessories using dual-arm robots.

  15. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out

  16. Development of a robot system for converter relining; Tenro chikuro robot system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y; Kurahashi, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1995-09-12

    In steelmaking plants, the relining work of converters requires plenty of manpower and time. Recently, the number of expert brick workers has decreased, and it has been difficult to get together the necessary number of workers for the converter relining. To solve these problems, a robot system has been developed and realized for the converter relining. The system consists of two intelligent robots and an automatic brick conveying machine. With visual function and flexibly controlled hands, the robot enables to heap up bricks in the same manner as expert workers do. The automatic brick conveying machine consists of roller conveyers and a cage lifter that convey bricks on palettes to the suitable position for the robot to easily handle. This robot system has enabled to save much labor for the converter relining. 8 figs.

  17. Defining Virtual Reality: Dimensions Determining Telepresence.

    Science.gov (United States)

    Steuer, Jonathan

    1992-01-01

    Defines virtual reality as a particular type of experience (in terms of "presence" and "telepresence") rather than as a collection of hardware. Maintains that media technologies can be classified and studied in terms of vividness and interactivity, two attributes on which virtual reality ranks very high. (SR)

  18. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  19. Robot operating system (ROS) the complete reference

    CERN Document Server

    The objective of this book is to provide the reader with a comprehensive coverage on the Robot Operating Systems (ROS) and latest related systems, which is currently considered as the main development framework for robotics applications. The book includes twenty-seven chapters organized into eight parts. Part 1 presents the basics and foundations of ROS. In Part 2, four chapters deal with navigation, motion and planning. Part 3 provides four examples of service and experimental robots. Part 4 deals with real-world deployment of applications. Part 5 presents signal-processing tools for perception and sensing. Part 6 provides software engineering methodologies to design complex software with ROS. Simulations frameworks are presented in Part 7. Finally, Part 8 presents advanced tools and frameworks for ROS including multi-master extension, network introspection, controllers and cognitive systems. This book will be a valuable companion for ROS users and developers to learn more ROS capabilities and features.   ...

  20. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Master-slave robotic system for needle indentation and insertion.

    Science.gov (United States)

    Shin, Jaehyun; Zhong, Yongmin; Gu, Chengfan

    2017-12-01

    Bilateral control of a master-slave robotic system is a challenging issue in robotic-assisted minimally invasive surgery. It requires the knowledge on contact interaction between a surgical (slave) robot and soft tissues. This paper presents a master-slave robotic system for needle indentation and insertion. This master-slave robotic system is able to characterize the contact interaction between the robotic needle and soft tissues. A bilateral controller is implemented using a linear motor for robotic needle indentation and insertion. A new nonlinear state observer is developed to online monitor the contact interaction with soft tissues. Experimental results demonstrate the efficacy of the proposed master-slave robotic system for robotic needle indentation and needle insertion.

  2. Robotized production systems observed in modern plants

    Science.gov (United States)

    Saverina, A. N.

    1985-09-01

    Robots, robotized lines and sectors are no longer innovations in shops at automotive plants. The widespread robotization of automobile assembly operations is described in general terms. Robot use for machining operation is also discussed.

  3. Application of robotics to distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramsbottom, W

    1986-06-01

    Robotic technology has been recognized as having potential application in lifeline maintenance and repair. A study was conducted to investigate the feasibility of utilizing robotics for this purpose, and to prepare a general design of appropriate equipment. Four lifeline tasks were selected as representative of the majority of work. Based on a detailed task decomposition, subtasks were rated on amenability to robot completion. All tasks are feasible, but in some cases special tooling is required. Based on today's robotics, it is concluded that a force reflecting master/slave telemanipulator, augmented by automatic robot tasks under a supervisory control system, provides the optimal approach. No commercially available products are currently adequate for lifeline work. A general design of the telemanipulator, which has been named the SKYARM has been developed, addressing all subsystems such as the manipulator, video, control power and insulation. The baseline system is attainable using today's technology. Improved performance and lower cost will be achieved through developments in artificial intelligence, machine vision, supervisory control and dielectrics. Immediate benefits to utilities include increased safety, better service and savings on a subset of maintenance tasks. In 3-5 years, the SKYARM will prove cost effective as a general purpose lifeline tool. 7 refs., 26 figs., 3 tabs.

  4. A novel teaching system for industrial robots.

    Science.gov (United States)

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-03-27

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  5. Biological Immune System Applications on Mobile Robot for Disabled People

    Directory of Open Access Journals (Sweden)

    Songmin Jia

    2014-01-01

    Full Text Available To improve the service quality of service robots for the disabled, immune system is applied on robot for its advantages such as diversity, dynamic, parallel management, self-organization, and self-adaptation. According to the immune system theory, local environment condition sensed by robot is considered an antigen while robot is regarded as B-cell and possible node as antibody, respectively. Antibody-antigen affinity is employed to choose the optimal possible node to ensure the service robot can pass through the optimal path. The paper details the immune system applications on service robot and gives experimental results.

  6. Multi-sensor measurement system for robotic drilling

    OpenAIRE

    Frommknecht, Andreas; Kühnle, Jens; Pidan, Sergej; Effenberger, Ira

    2015-01-01

    A multi-sensor measurement system for robotic drilling is presented. The system enables a robot to measure its 6D pose with respect to the work piece and to establish a reference coordinate system for drilling. The robot approaches the drill point and performs an orthogonal alignment with the work piece. Although the measurement systems are readily capable of achieving high position accuracy and low deviation to perpendicularity, experiments show that inaccuracies in the robot's 6D-pose and e...

  7. Foraging behavior analysis of swarm robotics system

    Directory of Open Access Journals (Sweden)

    Sakthivelmurugan E.

    2018-01-01

    Full Text Available Swarm robotics is a number of small robots that are synchronically works together to accomplish a given task. Swarm robotics faces many problems in performing a given task. The problems are pattern formation, aggregation, Chain formation, self-assembly, coordinated movement, hole avoidance, foraging and self-deployment. Foraging is most essential part in swarm robotics. Foraging is the task to discover the item and get back into the shell. The researchers conducted foraging experiments with random-movement of robots and they have end up with unique solutions. Most of the researchers have conducted experiments using the circular arena. The shell is placed at the centre of the arena and environment boundary is well known. In this study, an attempt is made to different strategic movements like straight line approach, parallel line approach, divider approach, expanding square approach, and parallel sweep approach. All these approaches are to be simulated by using player/stage open-source simulation software based on C and C++ programming language in Linux operating system. Finally statistical comparison will be done with task completion time of all these strategies using ANOVA to identify the significant searching strategy.

  8. A concept of distributed architecture for maintenance robot systems

    International Nuclear Information System (INIS)

    Asama, Hajime

    1990-01-01

    Aiming at development of a robot system for maintenance tasks in nuclear power plants, a concept of distributed architecture for autonomous robot systems is discussed. At first, based on investigation of maintenance tasks, requirements for maintenance robots are introduced, and structures to realize multi-functions are discussed. Then, as a new design strategy of maintenance robot system, an autonomous and decentralized robot systems is proposed, which is composed of multiple robots, computers, and equipments, and concept of ACTRESS (ACTor-based Robots and Equipments Synthetic System) including communication framework between robotic components is designed. Finally, as a model of ACTRESS, a experimental system is developed, which deals with object-pushing tasks by two micromice and an environment modeler with communicating with each other. Both of parallel independent motion and cooperative motion based on communication is reconciled, and the efficiency of the distributed architecture is verified. (author)

  9. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  10. Development of an advanced robot manipulator system

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Higuchi, Masaru; Shimizu, Yujiro; Ohnishi, Ken

    1991-01-01

    A sophisticated manipulator system for an advanced robot was developed under the 'Advanced Robot Technology Development' Program promoted and supported by the Agency of Industrial Science and Technology of MITI. The authors have participated in the development of a fingered manipulator with force and tactile sensors applicable to a masterslave robot system. Our slave manipulator is equipped with four fingers. Though the finger needs many degrees of freedom so as to be suitable for skilful handing of an object, our fingers are designed to have minimum degree of freedom in order to reduce weight. Each finger tip was designed to be similar to a human finger which has flexibility, softness and contact feeling. The shape of the master finger manipulator was so designed that the movement of the fingers is smoother and that the constraint feeling of the operator is smaller. We were adopted to a pneumatic pressure system for transmitting the tactile feeling of the slave fingers to the master fingers. A multiple sensory bilateral control system which gives an operator a feeling of force and tactile reduces his feeling of constraint in carrying out work with a robot system. (author)

  11. Robotics virtual rail system and method

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-07-05

    A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.

  12. Intelligent monitoring-based safety system of massage robot

    Institute of Scientific and Technical Information of China (English)

    胡宁; 李长胜; 王利峰; 胡磊; 徐晓军; 邹雲鹏; 胡玥; 沈晨

    2016-01-01

    As an important attribute of robots, safety is involved in each link of the full life cycle of robots, including the design, manufacturing, operation and maintenance. The present study on robot safety is a systematic project. Traditionally, robot safety is defined as follows: robots should not collide with humans, or robots should not harm humans when they collide. Based on this definition of robot safety, researchers have proposed ex ante and ex post safety standards and safety strategies and used the risk index and risk level as the evaluation indexes for safety methods. A massage robot realizes its massage therapy function through applying a rhythmic force on the massage object. Therefore, the traditional definition of safety, safety strategies, and safety realization methods cannot satisfy the function and safety requirements of massage robots. Based on the descriptions of the environment of massage robots and the tasks of massage robots, the present study analyzes the safety requirements of massage robots; analyzes the potential safety dangers of massage robots using the fault tree tool; proposes an error monitoring-based intelligent safety system for massage robots through monitoring and evaluating potential safety danger states, as well as decision making based on potential safety danger states; and verifies the feasibility of the intelligent safety system through an experiment.

  13. Modeling and Control of Collaborative Robot System using Haptic Feedback

    Directory of Open Access Journals (Sweden)

    Vivekananda Shanmuganatha

    2017-08-01

    Full Text Available When two robot systems can share understanding using any agreed knowledge, within the constraints of the system’s communication protocol, the approach may lead to a common improvement. This has persuaded numerous new research inquiries in human-robot collaboration. We have built up a framework prepared to do independent following and performing table-best protest object manipulation with humans and we have actualized two different activity models to trigger robot activities. The idea here is to explore collaborative systems and to build up a plan for them to work in a collaborative environment which has many benefits to a single more complex system. In the paper, two robots that cooperate among themselves are constructed. The participation linking the two robotic arms, the torque required and parameters are analyzed. Thus the purpose of this paper is to demonstrate a modular robot system which can serve as a base on aspects of robotics in collaborative robots using haptics.

  14. Dynamic analysis of space robot remote control system

    Science.gov (United States)

    Kulakov, Felix; Alferov, Gennady; Sokolov, Boris; Gorovenko, Polina; Sharlay, Artem

    2018-05-01

    The article presents analysis on construction of two-stage remote control for space robots. This control ensures efficiency of the robot control system at large delays in transmission of control signals from the ground control center to the local control system of the space robot. The conditions for control stability of and high transparency are found.

  15. A robotic vision system to measure tree traits

    Science.gov (United States)

    The autonomous measurement of tree traits, such as branching structure, branch diameters, branch lengths, and branch angles, is required for tasks such as robotic pruning of trees as well as structural phenotyping. We propose a robotic vision system called the Robotic System for Tree Shape Estimati...

  16. Robots, systems, and methods for hazard evaluation and visualization

    Science.gov (United States)

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  17. Robots for Astrobiology!

    Science.gov (United States)

    Boston, Penelope J.

    2016-01-01

    The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.

  18. An expert system for automated robotic grasping

    International Nuclear Information System (INIS)

    Stansfield, S.A.

    1990-01-01

    Many US Department of Energy sites and facilities will be environmentally remediated during the next several decades. A number of the restoration activities (e.g., decontamination and decommissioning of inactive nuclear facilities) can only be carried out by remote means and will be manipulation-intensive tasks. Experience has shown that manipulation tasks are especially slow and fatiguing for the human operator of a remote manipulator. In this paper, the authors present a rule-based expert system for automated, dextrous robotic grasping. This system interprets the features of an object to generate hand shaping and wrist orientation for a robot hand and arm. The system can be used in several different ways to lessen the demands on the human operator of a remote manipulation system - either as a fully autonomous grasping system or one that generates grasping options for a human operator and then automatically carries out the selected option

  19. SRAO: the first southern robotic AO system

    Science.gov (United States)

    Law, Nicholas M.; Ziegler, Carl; Tokovinin, Andrei

    2016-08-01

    We present plans for SRAO, the first Southern Robotic AO system. SRAO will use AO-assisted speckle imaging and Robo-AO-heritage high efficiency observing to confirm and characterize thousands of planet candidates produced by major new transit surveys like TESS, and is the first AO system to be capable of building a comprehensive several-thousand-target multiplicity survey at sub-AU scales across the main sequence. We will also describe results from Robo-AO, the first robotic LGS-AO system. Robo-AO has observed tens of thousands of Northern targets, often using a similar speckle or Lucky-Imaging assisted mode. SRAO will be a moderate-order natural-guide-star adaptive optics system which uses an innovative photoncounting wavefront sensor and EMCCD speckle-imaging camera to guide on faint stars with the 4.1m SOAR telescope. The system will produce diffraction-limited imaging in the NIR on targets as faint as mν = 16. In AO-assisted speckle imaging mode the system will attain the 30-mas visible diffraction limit on targets at least as faint as mν = 17. The system will be the first Southern hemisphere robotic adaptive optics system, with overheads an order of magnitude smaller than comparable systems. Using Robo-AO's proven robotic AO software, SRAO will be capable of observing overheads on sub-minute scales, allowing the observation of at least 200 targets per night. SRAO will attain three times the angular resolution of the Palomar Robo-AO system in the visible.

  20. Robotically assisted MRgFUS system

    Science.gov (United States)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Rauschenberg, Jaane; Semmler, Wolfhard; Huber, Peter E.; Bock, Michael

    2010-03-01

    Magnetic resonance imaging guided focus ultrasound surgery (MRgFUS) is a highly precise method to ablate tissue non-invasively. The objective of this ongoing work is to establish an MRgFUS therapy unit consisting of a specially designed FUS applicator as an add-on to a commercial robotic assistance system originally designed for percutaneous needle interventions in whole-body MRI systems. The fully MR compatible robotic assistance system InnoMotion™ (Synthes Inc., West Chester, USA; formerly InnoMedic GmbH, Herxheim, Germany) offers six degrees of freedom. The developed add-on FUS treatment applicator features a fixed focus ultrasound transducer (f = 1.7 MHz; f' = 68 mm, NA = 0.44, elliptical shaped -6-dB-focus: 8.1 mm length; O/ = 1.1 mm) embedded in a water-filled flexible bellow. A Mylar® foil is used as acoustic window encompassed by a dedicated MRI loop coil. For FUS application, the therapy unit is directly connected to the head of the robotic system, and the treatment region is targeted from above. A newly in-house developed software tool allowed for complete remote control of the MRgFUS-robot system and online analysis of MRI thermometry data. The system's ability for therapeutic relevant focal spot scanning was tested in a closed-bore clinical 1.5 T MR scanner (Magnetom Symphony, Siemens AG, Erlangen, Germany) in animal experiments with pigs. The FUS therapy procedure was performed entirely under MRI guidance including initial therapy planning, online MR-thermometry, and final contrast enhanced imaging for lesion detection. In vivo trials proved the MRgFUS-robot system as highly MR compatible. MR-guided focal spot scanning experiments were performed and a well-defined pattern of thermal tissue lesions was created. A total in vivo positioning accuracy of the US focus better than 2 mm was estimated which is comparable to existing MRgFUS systems. The newly developed FUS-robotic system offers an accurate, highly flexible focus positioning. With its access

  1. Navigation of robotic system using cricket motes

    Science.gov (United States)

    Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.

    2011-06-01

    This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.

  2. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  3. Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators

    Science.gov (United States)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2013-08-01

    Operators of a pair of robotic hands report ownership for those hands when they hold image of a grasp motion and watch the robot perform it. We present a novel body ownership illusion that is induced by merely watching and controlling robot's motions through a brain machine interface. In past studies, body ownership illusions were induced by correlation of such sensory inputs as vision, touch and proprioception. However, in the presented illusion none of the mentioned sensations are integrated except vision. Our results show that during BMI-operation of robotic hands, the interaction between motor commands and visual feedback of the intended motions is adequate to incorporate the non-body limbs into one's own body. Our discussion focuses on the role of proprioceptive information in the mechanism of agency-driven illusions. We believe that our findings will contribute to improvement of tele-presence systems in which operators incorporate BMI-operated robots into their body representations.

  4. Virtual tutor systems for robot-assisted instruction

    Science.gov (United States)

    Zhao, Zhijing; Zhao, Deyu; Zhang, Zizhen; Wei, Yongji; Qi, Bingchen; Okawa, Yoshikuni

    2004-03-01

    Virtual Reality technology belongs to advanced computer technology, it has been applied in instruction field and gains obvious effect. At the same time, robot assisted instruction comes true with the continuous development of Robot technology and artificial intelligence technology. This paper introduces a virtual tutor system for robot assisted instruction.

  5. Model-based systems engineering to design collaborative robotics applications

    NARCIS (Netherlands)

    Hernandez Corbato, Carlos; Fernandez-Sanchez, Jose Luis; Rassa, Bob; Carbone, Paolo

    2017-01-01

    Novel robot technologies are becoming available to automate more complex tasks, more flexibly, and collaborating with humans. Methods and tools are needed in the automation and robotics industry to develop and integrate this new breed of robotic systems. In this paper, the ISE&PPOOA

  6. Laboratory robotics systems at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Dyches, G.M.; Burkett, S.D.

    1983-01-01

    Many analytical chemistry methods normally used at the Savannah River site require repetitive procedures and handling of radioactive and other hazardous solutions. Robotics is being investigated as a method of reducing personnel fatigue and radiation exposure and also increasing product quality. Several applications of various commercially available robot systems are discussed involving cold (nonradioactive) and hot (radioactive) sample preparations and glovebox waste removal. Problems encountered in robot programming, parts fixturing, design of special robot hands and other support equipment, glovebox operation, and operator-system interaction are discussed. A typical robot system cost analysis for one application is given

  7. Analysis of remote operating systems for space-based servicing operations. Volume 2: Study results

    Science.gov (United States)

    1985-01-01

    The developments in automation and robotics have increased the importance of applications for space based servicing using remotely operated systems. A study on three basic remote operating systems (teleoperation, telepresence and robotics) was performed in two phases. In phase one, requirements development, which consisted of one three-month task, a group of ten missions were selected. These included the servicing of user equipment on the station and the servicing of the station itself. In phase two, concepts development, which consisted of three tasks, overall system concepts were developed for the selected missions. These concepts, which include worksite servicing equipment, a carrier system, and payload handling equipment, were evaluated relative to the configurations of the overall worksite. It is found that the robotic/teleoperator concepts are appropriate for relatively simple structured tasks, while the telepresence/teleoperator concepts are applicable for missions that are complex, unstructured tasks.

  8. A volumetric data system for environmental robotics

    International Nuclear Information System (INIS)

    Tourtellott, J.

    1994-01-01

    A three-dimensional, spatially organized or volumetric data system provides an effective means for integrating and presenting environmental sensor data to robotic systems and operators. Because of the unstructed nature of environmental restoration applications, new robotic control strategies are being developed that include environmental sensors and interactive data interpretation. The volumetric data system provides key features to facilitate these new control strategies including: integrated representation of surface, subsurface and above-surface data; differentiation of mapped and unmapped regions in space; sculpting of regions in space to best exploit data from line-of-sight sensors; integration of diverse sensor data (for example, dimensional, physical/geophysical, chemical, and radiological); incorporation of data provided at different spatial resolutions; efficient access for high-speed visualization and analysis; and geometric modeling tools to update a open-quotes world modelclose quotes of an environment. The applicability to underground storage tank remediation and buried waste site remediation are demonstrated in several examples. By integrating environmental sensor data into robotic control, the volumetric data system will lead to safer, faster, and more cost-effective environmental cleanup

  9. Robotic neurorehabilitation system design for stroke patients

    Directory of Open Access Journals (Sweden)

    Baoguo Xu

    2015-03-01

    Full Text Available In this article, a neurorehabilitation system combining robot-aided rehabilitation with motor imagery–based brain–computer interface is presented. Feature extraction and classification algorithm for the motor imagery electroencephalography is implemented under our brain–computer interface research platform. The main hardware platform for functional recovery therapy is the Barrett Whole-Arm Manipulator. The mental imagination of upper limb movements is translated to trigger the Barrett Whole-Arm Manipulator Arm to stretch the affected upper limb to move along the predefined trajectory. A fuzzy proportional–derivative position controller is proposed to control the Whole-Arm Manipulator Arm to perform passive rehabilitation training effectively. A preliminary experiment aimed at testing the proposed system and gaining insight into the potential of motor imagery electroencephalography-triggered robotic therapy is reported.

  10. Scenario-Based Assessment of User Needs for Point-of-Care Robots.

    Science.gov (United States)

    Lee, Hyeong Suk; Kim, Jeongeun

    2018-01-01

    This study aimed to derive specific user requirements and barriers in a real medical environment to define the essential elements and functions of two types of point-of-care (POC) robot: a telepresence robot as a tool for teleconsultation, and a bedside robot to provide emotional care for patients. An analysis of user requirements was conducted; user needs were gathered and identified, and detailed, realistic scenarios were created. The prototype robots were demonstrated in physical environments for envisioning and evaluation. In all, three nurses and three clinicians participated as evaluators to observe the demonstrations and evaluate the robot systems. The evaluators were given a brief explanation of each scene and the robots' functionality. Four major functions of the teleconsultation robot were defined and tested in the demonstration. In addition, four major functions of the bedside robot were evaluated. Among the desired functions for a teleconsultation robot, medical information delivery and communication had high priority. For a bedside robot, patient support, patient monitoring, and healthcare provider support were the desired functions. The evaluators reported that the teleconsultation robot can increase support from and access to specialists and resources. They mentioned that the bedside robot can improve the quality of hospital life. Problems identified in the demonstration were those of space conflict, communication errors, and safety issues. Incorporating this technology into healthcare services will enhance communication and teamwork skills across distances and thereby facilitate teamwork. However, repeated tests will be needed to evaluate and ensure improved performance.

  11. Science experiments via telepresence at a synchrotron radiation source facility

    International Nuclear Information System (INIS)

    Warren, J. E.; Diakun, G.; Bushnell-Wye, G.; Fisher, S.; Thalal, A.; Helliwell, M.; Helliwell, J. R.

    2008-01-01

    The application of a turnkey communication system for telepresence at station 9.8 of the Synchrotron Radiation Source, Daresbury, is described and demonstrated, including its use for inter-continental classroom instruction and user training. Station 9.8 is one of the most oversubscribed and high-throughput stations at the Synchrotron Radiation Source, Daresbury, whereby awarded experimental time is limited, data collections last normally no longer than an hour, user changeover is normally every 24 h, and familiarity with the station systems can be low. Therefore time lost owing to technical failures on the station has a dramatic impact on productivity. To provide 24 h support, the application of a turnkey communication system has been implemented, and is described along with additional applications including its use for inter-continental classroom instruction, user training and remote participation

  12. Message Encryption in Robot Operating System: Collateral Effects of Hardening Mobile Robots

    Directory of Open Access Journals (Sweden)

    Francisco J. Rodríguez-Lera

    2018-03-01

    Full Text Available In human–robot interaction situations, robot sensors collect huge amounts of data from the environment in order to characterize the situation. Some of the gathered data ought to be treated as private, such as medical data (i.e., medication guidelines, personal, and safety information (i.e., images of children, home habits, alarm codes, etc.. However, most robotic software development frameworks are not designed for securely managing this information. This paper analyzes the scenario of hardening one of the most widely used robotic middlewares, Robot Operating System (ROS. The study investigates a robot’s performance when ciphering the messages interchanged between ROS nodes under the publish/subscribe paradigm. In particular, this research focuses on the nodes that manage cameras and LIDAR sensors, which are two of the most extended sensing solutions in mobile robotics, and analyzes the collateral effects on the robot’s achievement under different computing capabilities and encryption algorithms (3DES, AES, and Blowfish to robot performance. The findings present empirical evidence that simple encryption algorithms are lightweight enough to provide cyber-security even in low-powered robots when carefully designed and implemented. Nevertheless, these techniques come with a number of serious drawbacks regarding robot autonomy and performance if they are applied randomly. To avoid these issues, we define a taxonomy that links the type of ROS message, computational units, and the encryption methods. As a result, we present a model to select the optimal options for hardening a mobile robot using ROS.

  13. Emprego de sistemas robóticos na cirurgia cardiovascular Robotic systems in cardiovascular surgery

    Directory of Open Access Journals (Sweden)

    Roberto T. Sant'Anna

    2004-06-01

    field hospitals with surgeons in a distant location (tele-presence. But the first human application of robotic surgery occurred years later in a transurethral resection for benign prostatic hyperplasia. Cardiac surgeons were attracted to the robotic techniques because of the potential reduction in the invasive character of the procedures. This results in reduced trauma, a reduction of pain and morbidity, a faster recovery and lower cost of surgery. Robotic systems were developed, allowing totally thoracoscopic cardiac surgery for myocardial revascularization and multi-site pacemaker implantation in selected cases. Video-thoracoscopic support systems for internal thoracic artery harvesting, mitral valve reconstruction and correction of congenital heart defects also exist. We used the AESOP® system with HERMES® voice control to harvest the internal thoracic artery, trans-thoracic implantation of the left ventricular electrode and as an approach to congenital heart defects for surgical repair. In spite of scientific enthusiasm related to robotic surgery, there is no clear evidence of superiority of this technique when compared to conventional procedures in terms of results. The same is true with the cost of the procedures, and even if a single robotic surgery is less expensive, the initial investment for a complete robotic system (console, video control, instruments can be compensated only with many procedures over the long term. But there is no doubt that robotic surgery will have a place in the future of surgery, providing tele-presence of the surgeon, enabling teaching and training and performing less invasive surgical procedures.

  14. An Intuitive Robot Teleoperation System for Nuclear Power Plant Decommissioning

    International Nuclear Information System (INIS)

    Lee, Chang-hyuk; Gu, Taehyeong; Lee, Kyung-min; Ye, Sung-Joon; Bang, Young-bong

    2017-01-01

    A robot teleoperation system consists of a master device and a slave robot. The master device senses human intention and delivers it to the salve robot. A haptic device and an exoskeletal robot are widely used as the master device. The slave robot carries out operations delivered by the master device. It should guarantee enough degree of freedom (DOF) to perform the instructed operation and mobility in the environment inside the nuclear plant, such as flat surfaces and stairs. A 7-DOF robotic arm is commonly used as the slave device. This paper proposed a robot teleoperation system for nuclear power plant decommissioning. It discussed an experiment that was performed to validate the system's usability. The operator wearing the exoskeletal master device at the master site controlled the slave robot enabling it to move on a flat surface, climb/descend stairs, and move obstacles. The proposed robot teleoperation system can also be used in hazardous working environments where the use of such robots would be beneficial to human health and safety. In the future, research studies on the protection against radiation that damages the slave robot should be conducted.

  15. Automatic code generation for distributed robotic systems

    International Nuclear Information System (INIS)

    Jones, J.P.

    1993-01-01

    Hetero Helix is a software environment which supports relatively large robotic system development projects. The environment supports a heterogeneous set of message-passing LAN-connected common-bus multiprocessors, but the programming model seen by software developers is a simple shared memory. The conceptual simplicity of shared memory makes it an extremely attractive programming model, especially in large projects where coordinating a large number of people can itself become a significant source of complexity. We present results from three system development efforts conducted at Oak Ridge National Laboratory over the past several years. Each of these efforts used automatic software generation to create 10 to 20 percent of the system

  16. Modeling and Control of Underwater Robotic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schjoelberg, I:

    1996-12-31

    This doctoral thesis describes modeling and control of underwater vehicle-manipulator systems. The thesis also presents a model and a control scheme for a system consisting of a surface vessel connected to an underwater robotic system by means of a slender marine structure. The equations of motion of the underwater vehicle and manipulator are described and the system kinematics and properties presented. Feedback linearization technique is applied to the system and evaluated through a simulation study. Passivity-based controllers for vehicle and manipulator control are presented. Stability of the closed loop system is proved and simulation results are given. The equation of motion for lateral motion of a cable/riser system connected to a surface vessel at the top end and to a thruster at the bottom end is described and stability analysis and simulations are presented. The equations of motion in 3 degrees of freedom of the cable/riser, surface vessel and robotic system are given. Stability analysis of the total system with PD-controllers is presented. 47 refs., 32 figs., 7 tabs.

  17. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  18. Towards Coordination and Control of Multi-robot Systems

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt

    This thesis focuses on control and coordination of mobile multi-robot systems (MRS). MRS can often deal with tasks that are difficult to be accomplished by a single robot. One of the challenges is the need to control, coordinate and synchronize the operation of several robots to perform some...... specified task. This calls for new strategies and methods which allow the desired system behavior to be specified in a formal and succinct way. Two different frameworks for the coordination and control of MRS have been investigated. Framework I - A network of robots is modeled as a network of multi...... a requirement specification in Computational Tree Logic (CTL) for a network of robots. The result is a set of motion plans for the robots which satisfy the specification. Framework II - A framework for controller synthesis for a single robot with respect to requirement specification in Linear-time Temporal...

  19. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  20. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Lee, Nam Ho; Lee, Byung Chul; Jeung, Kyung Min; Lee, Seong Uk; Bae, Yeong Geol; Na, Hyun Seok

    2013-01-01

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  1. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Lee, Nam Ho; Lee, Byung Chul; Jeung, Kyung Min; Lee, Seong Uk; Bae, Yeong Geol; Na, Hyun Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  2. Immersed in media telepresence theory, measurement & technology

    CERN Document Server

    Lombard, Matthew; Freeman, Jonathan; IJsselsteijn, Wijnand; Schaevitz, Rachel J

    2015-01-01

    Highlights key research currently being undertaken within the field of telepresence, providing the most detailed account of the field to date, advancing our understanding of a fundamental property of all media - the illusion of presence; the sense of "being there" inside a virtual environment, with actual or virtual others. This collection has been put together by leading international scholars from America, Europe, and Asia. Together, they describe the state-of-the-art in presence theory, research and technology design for an advanced academic audience. Immersed in Media provides research t

  3. Towards Safe Robotic Surgical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    a controller for motion compensation in beating-heart surgery, and prove that it is safe, i.e., the surgical tool is kept within an allowable distance and orientation of the heart. We solve the problem by simultaneously finding a control law and a barrier function. The motion compensation system is simulated...... from several initial conditions to demonstrate that the designed control system is safe for every admissible initial condition....

  4. The SEP "Robot": A Valid Virtual Reality Robotic Simulator for the Da Vinci Surgical System?

    NARCIS (Netherlands)

    van der Meijden, O. A. J.; Broeders, I. A. M. J.; Schijven, M. P.

    2010-01-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's

  5. 11th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Chirikjian, Gregory

    2014-01-01

    Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot com...

  6. Interactive animated displayed of man-controlled and autonomous robots

    International Nuclear Information System (INIS)

    Crane, C.D. III; Duffy, J.

    1986-01-01

    An interactive computer graphics program has been developed which allows an operator to more readily control robot motions in two distinct modes; viz., man-controlled and autonomous. In man-controlled mode, the robot is guided by a joystick or similar device. As the robot moves, actual joint angle information is measured and supplied to a graphics system which accurately duplicates the robot motion. Obstacles are placed in the actual and animated workspace and the operator is warned of imminent collisions by sight and sound via the graphics system. Operation of the system in man-controlled mode is shown. In autonomous mode, a collision-free path between specified points is obtained by previewing robot motions on the graphics system. Once a satisfactory path is selected, the path characteristics are transmitted to the actual robot and the motion is executed. The telepresence system developed at the University of Florida has been successful in demonstrating that the concept of controlling a robot manipulator with the aid of an interactive computer graphics system is feasible and practical. The clarity of images coupled with real-time interaction and real-time determination of imminent collision with obstacles has resulted in improved operator performance. Furthermore, the ability for an operator to preview and supervise autonomous operations is a significant attribute when operating in a hazardous environment

  7. Intelligent manipulation technique for multi-branch robotic systems

    Science.gov (United States)

    Chen, Alexander Y. K.; Chen, Eugene Y. S.

    1990-01-01

    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.

  8. Robot system for preparing lymphocyte chromosome

    International Nuclear Information System (INIS)

    Hayata, Isamu; Furukawa, Akira; Yamamoto, Mikio; Sato, Koki; Tabuchi, Hiroyoshi; Okabe, Nobuo.

    1992-01-01

    Towards the automatization of the scoring of chromosome aberrations in radiation dosimetry with the emphasis on the improvement of biological preparations, the conventional culture and harvesting method was modified. Based on this modified method, a culture and harvest robotic system (CHROSY) for preparing lymphocyte chromosome was developed. The targeted points of the modification are as in the preparing lymphocyte chromosome was developed. The targeted points of the modification are as in the following. 1) Starting culture with purified lymphocytes in a fixed cell number. 2) Avoiding the loss of cells in changing the liquids following centrifugalization. 3) Keeping the quantity of the liquids to be applied to the treatments of cells fixed. 4) Building a system even a beginner can handle. System features are as follows. 1) Operation system: Handling robot having 5 degrees of freedom; a rotator incubator with an automatic sliding door; units for setting and removing pipette tips; a centrifuge equipped with a position adjuster and an automatic sliding door; two aluminium block baths; two nozzles as pipettes and aspirators connected to air pumps; a capping unit with a nozzle for CO 2 gas; a compressor; and an air manipulated syringe. 2) Control system; NEC PC-9801RX21 with CRT; and program written in Basic and Assembly languages on MS-DOS. It took this system 2 hours and 25 minutes to harvest 2 cultures. A fairly good chromosome slide was made from the sample harvested by CHROSY automatically. (author)

  9. A Vision-Based Wireless Charging System for Robot Trophallaxis

    Directory of Open Access Journals (Sweden)

    Jae-O Kim

    2015-12-01

    Full Text Available The need to recharge the batteries of a mobile robot has presented an important challenge for a long time. In this paper, a vision-based wireless charging method for robot energy trophallaxis between two robots is presented. Even though wireless power transmission allows more positional error between receiver-transmitter coils than with a contact-type charging system, both coils have to be aligned as accurately as possible for efficient power transfer. To align the coils, a transmitter robot recognizes the coarse pose of a receiver robot via a camera image and the ambiguity of the estimated pose is removed with a Bayesian estimator. The precise pose of the receiver coil is calculated using a marker image attached to a receiver robot. Experiments with several types of receiver robots have been conducted to verify the proposed method.

  10. RoboSmith: Wireless Networked Architecture for Multiagent Robotic System

    Directory of Open Access Journals (Sweden)

    Florin Moldoveanu

    2010-11-01

    Full Text Available In this paper is presented an architecture for a flexible mini robot for a multiagent robotic system. In a multiagent system the value of an individual agent is negligible since the goal of the system is essential. Thus, the agents (robots need to be small, low cost and cooperative. RoboSmith are designed based on these conditions. The proposed architecture divide a robot into functional modules such as locomotion, control, sensors, communication, and actuation. Any mobile robot can be constructed by combining these functional modules for a specific application. An embedded software with dynamic task uploading and multi-tasking abilities is developed in order to create better interface between robots and the command center and among the robots. The dynamic task uploading allows the robots change their behaviors in runtime. The flexibility of the robots is given by facts that the robots can work in multiagent system, as master-slave, or hybrid mode, can be equipped with different modules and possibly be used in other applications such as mobile sensor networks remote sensing, and plant monitoring.

  11. Aerial robotic data acquisition system

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.

    1995-01-01

    A small unmanned aerial vehicle (UAV) equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology. (author) 10 refs

  12. Research on wheelchair robot control system based on EOG

    Science.gov (United States)

    Xu, Wang; Chen, Naijian; Han, Xiangdong; Sun, Jianbo

    2018-04-01

    The paper describes an intelligent wheelchair control system based on EOG. It can help disabled people improve their living ability. The system can acquire EOG signal from the user, detect the number of blink and the direction of glancing, and then send commands to the wheelchair robot via RS-232 to achieve the control of wheelchair robot. Wheelchair robot control system based on EOG is composed of processing EOG signal and human-computer interactive technology, which achieves a purpose of using conscious eye movement to control wheelchair robot.

  13. A remote maintenance robot system for a pulsed nuclear reactor

    International Nuclear Information System (INIS)

    Thunborg, S.

    1987-01-01

    This paper presents a remote maintenance robot system for use in a hazardous environment. The system consists of turntable, robot and hoist subsystems which operate under the control of a supervisory computer to perform coordinated programmed maintenance operations on a pulsed nuclear reactor. The system is operational

  14. BOA: Pipe asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  15. International Conference on Intelligent Robots and Systems - IROS 2011

    CERN Document Server

    Rosen, Jacob; Redundancy in Robot Manipulators and Multi-Robot Systems

    2013-01-01

    The trend in the evolution of robotic systems is that the number of degrees of freedom increases. This is visible both in robot manipulator design and in the shift of focus from single to multi-robot systems. Following the principles of evolution in nature, one may infer that adding degrees of freedom to robot systems design is beneficial. However, since nature did not select snake-like bodies for all creatures, it is reasonable to expect the presence of a certain selection pressure on the number of degrees of freedom. Thus, understanding costs and benefits of multiple degrees of freedom, especially those that create redundancy, is a fundamental problem in the field of robotics. This volume is mostly based on the works presented at the workshop on Redundancy in Robot Manipulators and Multi-Robot Systems at the IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS 2011. The workshopwas envisioned as a dialog between researchers from two separate, but obviously relatedfields of robotics: on...

  16. Calibration of robotic drilling systems with a moving rail

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2014-12-01

    Full Text Available Industrial robots are widely used in aircraft assembly systems such as robotic drilling systems. It is necessary to expand a robot’s working range with a moving rail. A method for improving the position accuracy of an automated assembly system with an industrial robot mounted on a moving rail is proposed. A multi-station method is used to control the robot in this study. The robot only works at stations which are certain positions defined on the moving rail. The calibration of the robot system is composed by the calibration of the robot and the calibration of the stations. The calibration of the robot is based on error similarity and inverse distance weighted interpolation. The calibration of the stations is based on a magnetic strip and a magnetic sensor. Validation tests were performed in this study, which showed that the accuracy of the robot system gained significant improvement using the proposed method. The absolute position errors were reduced by about 85% to less than 0.3 mm compared with the maximum nearly 2 mm before calibration.

  17. A flexible, computer-integrated robotic transfer system

    International Nuclear Information System (INIS)

    Lewis, W.I. III; Taylor, R.M.

    1987-01-01

    This paper reviews a robotic system used to transport materials across a radiation control zone and into a row of shielded cells. The robot used is a five-axis GCA 600 industrial robot mounted on a 50-ft ESAB welding track. Custom software incorporates the track as the sixth axis of motion. An IBM-PC integrates robot control, force sensing, and the operator interface. Multiple end-effectors and a quick exchange mechanism are used to handle a variety of materials and tasks. Automatic error detection and recovery is a key aspect of this system

  18. Biologically Inspired Object Localization for a Modular Mobile Robotic System

    Directory of Open Access Journals (Sweden)

    Zlatogor Minchev

    2005-12-01

    Full Text Available The paper considers a general model of real biological creatures' antennae, which is practically implemented and tested, over a real element of a mobile modular robotic system - the robot MR1. The last could be utilized in solving of the most classical problem in Robotics - Object Localization. The functionality of the represented sensor system is described in a new and original manner by utilizing the tool of Generalized Nets - a new likelihood for description, modelling and simulation of different objects from the Artificial Intelligence area including Robotics.

  19. Advanced robot vision system for nuclear power plants

    International Nuclear Information System (INIS)

    Onoguchi, Kazunori; Kawamura, Atsuro; Nakayama, Ryoichi.

    1991-01-01

    We have developed a robot vision system for advanced robots used in nuclear power plants, under a contract with the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. This work is part of the large-scale 'advanced robot technology' project. The robot vision system consists of self-location measurement, obstacle detection, and object recognition subsystems, which are activated by a total control subsystem. This paper presents details of these subsystems and the experimental results obtained. (author)

  20. Transformers: Shape-Changing Space Systems Built with Robotic Textiles

    Science.gov (United States)

    Stoica, Adrian

    2013-01-01

    Prior approaches to transformer-like robots had only very limited success. They suffer from lack of reliability, ability to integrate large surfaces, and very modest change in overall shape. Robots can now be built from two-dimensional (2D) layers of robotic fabric. These transformers, a new kind of robotic space system, are dramatically different from current systems in at least two ways. First, the entire transformer is built from a single, thin sheet; a flexible layer of a robotic fabric (ro-fabric); or robotic textile (ro-textile). Second, the ro-textile layer is foldable to small volume and self-unfolding to adapt shape and function to mission phases.

  1. TelePresence in Rural Medical Education: A Mixed Methods Evaluation

    Directory of Open Access Journals (Sweden)

    Katherine Gray

    2014-01-01

    Full Text Available In response to rural health workforce shortages, universities and training providers offer rural and remote clinical placements. This has led to development of educational methods to counter the barriers of distance. In this emerging field, recent improvements in technology have provided solutions including the use of sophisticated videoconferencing systems such as the Cisco TelePresence model CTS-500. This paper evaluates the use of TelePresence in diverse medical education activities using a mixed methods design—questionnaires n=60, individual interviews n=33, and observed practice of activities n=22. TelePresence was found to be beneficial to learning and teaching and superior to other systems participants had used. In particular, the audiovisual quality, resulting intimacy, convenience, and ease of use facilitated teaching and learning, while the fixed camera and poorly arranged physical environment were found to be limitations. The system is best suited for small group activities. Clinical skills-based activities are viable. It is recommended that technical support be available during setup and use and a picture-in-picture mode be included and improved integration of office suite software to provide a joint workspace for display of presentations, images, editing or annotation of documents, and file sharing.

  2. Service Robotics in Healthcare: A Perspective for Information Systems Researchers?

    OpenAIRE

    Garmann-Johnsen, Niels Frederik; Mettler, Tobias; Sprenger, Michaela

    2014-01-01

    Recent advances in electronics and telecommunication have paved the way for service robots to enter the clinical world. While service robotics has long been a core research theme in computer science and other engineering-related fields, it has attracted little interest of Information Systems (IS) researchers so far. We argue that service robotics represents an interesting area of investigation, especially for healthcare, since current research lacks a thorough examination of socio-technical p...

  3. Exoskeletons, Robots and System Software: Tools for the Warfighter

    Science.gov (United States)

    2012-04-24

    Exoskeletons , Robots and System Software: Tools for the Warfighter? Paul Flanagan, Tuesday, April 24, 2012 11:15 am– 12:00 pm 1 “The views...Emerging technologies such as exoskeletons , robots , drones, and the underlying software are and will change the face of the battlefield. Warfighters will...global hub for educating, informing, and connecting Information Age leaders.” What is an exoskeleton ? An exoskeleton is a wearable robot suit that

  4. Development of robotic mobile platform with the universal chassis system

    Science.gov (United States)

    Ryadchikov, I.; Nikulchev, E.; Sechenev, S.; Drobotenko, M.; Svidlov, A.; Volkodav, P.; Feshin, A.

    2018-02-01

    The problem of stabilizing the position of mobile devices is extremely relevant at the modern level of technology development. This includes the problem of stabilizing aircraft and stabilizing the pitching of ships. In the laboratory of robotics and mechatronics of the Kuban State University, a robot is developed. The robot has additional internal degrees of freedom, responsible for compensating for deflections - the dynamic stabilization system.

  5. An Autonomous Robotic System for Mapping Weeds in Fields

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær; Garcia Ruiz, Francisco Jose; Kazmi, Wajahat

    2013-01-01

    The ASETA project develops theory and methods for robotic agricultural systems. In ASETA, unmanned aircraft and unmanned ground vehicles are used to automate the task of identifying and removing weeds in sugar beet fields. The framework for a working automatic robotic weeding system is presented...

  6. Network Support for Social 3-D Immersive Tele-Presence with Highly Realistic Natural and Synthetic Avatar Users

    NARCIS (Netherlands)

    R.N. Mekuria (Rufael); A. Frisiello (Antonella); M Pasin (Marco); P.S. Cesar Garcia (Pablo Santiago)

    2015-01-01

    htmlabstractThe next generation in 3D tele-presence is based on modular systems that combine live captured object based 3D video and synthetically authored 3D graphics content. This paper presents the design, implementation and evaluation of a network solution for multi-party real-time communication

  7. SGCS : Stereo Gaze Contingent Steering for Immersive Telepresence

    OpenAIRE

    Cambuzat , Rémi; Elisei , Frédéric; Bailly , Gérard

    2017-01-01

    International audience; Telepresence refers to a set of tools that allows a person to be “present” in a distant environment, by a sufficiently realistic representation of it through a set of multimodal stimuli experienced by the distant devices via its sensors. Immersive Telepresence follows this trend and, thanks to the capabilities given by virtual reality devices, replicates distant sight and sound perception in a more “immersive” way. The use of coherent stereoscopic images displayed in a...

  8. EMBEDDED CONTROL SYSTEM FOR MOBILE ROBOTS WITH DIFFERENTIAL DRIVE

    Directory of Open Access Journals (Sweden)

    Michal KOPČÍK

    2017-09-01

    Full Text Available This article deals with design and implementation of control system for mobile robots with differential drive using embedded system. This designed embedded system consists of single control board featuring ARM based microcontroller which control the peripherals in real time and perform all low-level motion control. Designed embedded system can be easily expanded with additional sensors, actuators or control units to enhance applicability of mobile robot. Designed embedded system also features build-in communication module, which can be used for data for data acquisition and control of the mobile robot. Control board was implemented on two different types of mobile robots with differential drive, one of which was wheeled and other was tracked. These mobile robots serve as testing platform for Fault Detection and Isolation using hardware and analytical redundancy using Multisensor Data Fusion based on Kalman filters.

  9. Intelligent Vision System for Door Sensing Mobile Robot

    Directory of Open Access Journals (Sweden)

    Jharna Majumdar

    2012-08-01

    Full Text Available Wheeled Mobile Robots find numerous applications in the Indoor man made structured environments. In order to operate effectively, the robots must be capable of sensing its surroundings. Computer Vision is one of the prime research areas directed towards achieving these sensing capabilities. In this paper, we present a Door Sensing Mobile Robot capable of navigating in the indoor environment. A robust and inexpensive approach for recognition and classification of the door, based on monocular vision system helps the mobile robot in decision making. To prove the efficacy of the algorithm we have designed and developed a ‘Differentially’ Driven Mobile Robot. A wall following behavior using Ultra Sonic range sensors is employed by the mobile robot for navigation in the corridors.  Field Programmable Gate Arrays (FPGA have been used for the implementation of PD Controller for wall following and PID Controller to control the speed of the Geared DC Motor.

  10. Computer Vision for Artificially Intelligent Robotic Systems

    Science.gov (United States)

    Ma, Chialo; Ma, Yung-Lung

    1987-04-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main

  11. Integrating Soft Robotics with the Robot Operating System: A Hybrid Pick and Place Arm

    Directory of Open Access Journals (Sweden)

    Ross M. McKenzie

    2017-08-01

    Full Text Available Soft robotic systems present a variety of new opportunities for solving complex problems. The use of soft robotic grippers, for example, can simplify the complexity in tasks such as the grasping of irregular and delicate objects. Adoption of soft robotics by the informatics community and industry, however, has been slow and this is, in-part, due to the amount of hardware and software that must be developed from scratch for each use of soft system components. In this paper, we detail the design, fabrication, and validation of an open-source framework that we designed to lower the barrier to entry for integrating soft robotic subsystems. This framework is built on the robot operating system (ROS, and we use it to demonstrate a modular, soft–hard hybrid system, which is capable of completing pick and place tasks. By lowering this barrier to entry through our open sourced hardware and software, we hope that system designers and Informatics researchers will find it easy to integrate soft components into their existing ROS-enabled robotic systems.

  12. RASSOR - Regolith Advanced Surface Systems Operations Robot

    Science.gov (United States)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  13. Controlling Underwater Robots with Electronic Nervous Systems

    Directory of Open Access Journals (Sweden)

    Joseph Ayers

    2010-01-01

    Full Text Available We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration electronic neuron (aVLSI networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs based on Hindmarsh–Rose (HR dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.

  14. A Haptic Guided Robotic System for Endoscope Positioning and Holding.

    Science.gov (United States)

    Cabuk, Burak; Ceylan, Savas; Anik, Ihsan; Tugasaygi, Mehtap; Kizir, Selcuk

    2015-01-01

    To determine the feasibility, advantages, and disadvantages of using a robot for holding and maneuvering the endoscope in transnasal transsphenoidal surgery. The system used in this study was a Stewart Platform based robotic system that was developed by Kocaeli University Department of Mechatronics Engineering for positioning and holding of endoscope. After the first use on an artificial head model, the system was used on six fresh postmortem bodies that were provided by the Morgue Specialization Department of the Forensic Medicine Institute (Istanbul, Turkey). The setup required for robotic system was easy, the time for registration procedure and setup of the robot takes 15 minutes. The resistance was felt on haptic arm in case of contact or friction with adjacent tissues. The adaptation process was shorter with the mouse to manipulate the endoscope. The endoscopic transsphenoidal approach was achieved with the robotic system. The endoscope was guided to the sphenoid ostium with the help of the robotic arm. This robotic system can be used in endoscopic transsphenoidal surgery as an endoscope positioner and holder. The robot is able to change the position easily with the help of an assistant and prevents tremor, and provides a better field of vision for work.

  15. Folding System for the Clothes by a Robot and Tools

    OpenAIRE

    大澤, 文明; 関, 啓明; 神谷, 好承

    2004-01-01

    The works of a home robot has the laundering. The purpose of this study is to find a means of folding of the clothes and store the clothes in a drawer by a home robot. Because the shape of cloth tends to change in various ways depending on the situation, it is difficult for robot hands to fold the clothes. In this paper, we propose a realistic folding system for the clothes by a robot and tools. The function of a tool is folding the clothes in half by inserting the clothes using two plates. T...

  16. Laparoscopy-assisted Robotic Myomectomy Using the DA Vinci System

    Directory of Open Access Journals (Sweden)

    Shih-Peng Mao

    2007-06-01

    Conclusion: Minimally invasive surgery is the trend of the future. Robot-assisted laparoscopic surgery is a new technique for myomectomy. This robotic system provides a three-dimensional operative field and an easy-to-use control panel, which may be of great help when applying the suturing techniques and may shorten the learning curve. More experience with and long-term follow-up of robotic surgery may be warranted to further validate the role the robot-assisted approach in gynecologic surgery.

  17. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.

    Science.gov (United States)

    Ando, Noriyasu; Kanzaki, Ryohei

    2017-09-01

    The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Implementation of a robotic flexible assembly system

    Science.gov (United States)

    Benton, Ronald C.

    1987-01-01

    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.

  19. Toward robotic socially believable behaving systems

    CERN Document Server

    Jain, Lakhmi

    2016-01-01

    This volume is a collection of research studies on the modeling of emotions in complex autonomous systems. Several experts in the field are reporting their efforts and reviewing the literature in order to shed lights on how the processes of coding and decoding emotional states took place in humans, which are the physiological, physical, and psychological variables involved, invent new mathematical models and algorithms to describe them, and motivate these investigations in the light of observable societal changes and needs, such as the aging population and the cost of health care services. The consequences are the implementation of emotionally and socially believable machines, acting as helpers into domestic spheres, where emotions drive behaviors and actions. The contents of the book are highly multidisciplinary since the modeling of emotions in robotic socially believable systems requires a holistic perspective on topics coming from different research domains such as computer science, engineering, sociology...

  20. Learning through telepresence with iPads

    DEFF Research Database (Denmark)

    Meyer, Bente Tobiesen

    2015-01-01

    This study aims to present findings from an ongoing study in three rural schools in Denmark where videoconferences are used as part of the teaching at lower secondary level. The research focuses on how students learn from videoconferences that are both one-to-many and peer-to-peer. Videoconferenc......This study aims to present findings from an ongoing study in three rural schools in Denmark where videoconferences are used as part of the teaching at lower secondary level. The research focuses on how students learn from videoconferences that are both one-to-many and peer......-to-peer. Videoconferencing, conceptualized by the schools in question as telepresence, is performed in a unique combination of desktop interaction through mobile devices (iPads) and studio-based large screen lectures and interaction....

  1. Virtual reality and stereoscopic telepresence

    International Nuclear Information System (INIS)

    Mertens, E.P.

    1994-12-01

    Virtual reality technology is commonly thought to have few, if any, applications beyond the national research laboratories, the aerospace industry, and the entertainment world. A team at Westinghouse Hanford Company (WHC) is developing applications for virtual reality technology that make it a practical, viable, portable, and cost-effective business and training tool. The technology transfer is particularly applicable to the waste management industry and has become a tool that can serve the entire work force spectrum, from industrial sites to business offices. For three and a half years, a small team of WHC personnel has been developing an effective and practical method of bringing virtual reality technology to the job site. The applications are practical, the results are repeatable, and the equipment costs are within the range of present-day office machines. That combination can evolve into a competitive advantage for commercial business interests. The WHC team has contained system costs by using commercially available equipment and personal computers to create effective virtual reality work stations for less than $20,000

  2. From Edwardian Selfie to Telepresent Comic

    Directory of Open Access Journals (Sweden)

    Paul Sermon

    2018-04-01

    Full Text Available Drawing on the media archaeology accounts of "Illusions in Motion" by Erkki Huhtamo (2013, this paper will compare and discuss audience participation in three specific self-view artworks involving interacting public audiences captured and presented in live telepresent film and video performances since 1900. This comparative study will draw out an underlying cultural fixation and amusement with the self-image, analogous to Henri Bergson's understanding of laughter in meaning of the comic (1900. These case studies will include my own artistic practice that focuses on telematic encounters and shared visual dialogues between public audiences linked via Internet videoconferencing in "Peoples Screen", in collaboration with Charlotte Gould for the Guangzhou Light Festival in 2015. The seminal live satellite public performance "Hole-in-Space" by Kit Galloway and Sherrie Rabinowitz in 1980, providing the passing public in New York and Los Angeles with opportunity to converse, co-create and play in the first live public connection of its kind. Lastly, they include Mitchell and Kenyon's historic films of Edwardian public crowds in the 1900s, allowing audiences the opportunity to play and perform in front of the film camera in the knowledge they could watch their spectacle in its screening at the local traveling fairground. In all these cultural events the audiences become both performers and viewers by creating an improvised response to the camera and screen. The striking similarity with the way audiences react and perform comical narratives from these early self-view film screenings to telematic performances possess all the unique traits of telepresent interaction and the selfie phenomenon.

  3. Artificial intelligence and information-control systems of robots - 87

    International Nuclear Information System (INIS)

    Plander, I.

    1987-01-01

    Independent research areas of artificial intelligence represent the following problems: automatic problem solving and new knowledge discovering, automatic program synthesis, natural language, picture and scene recognition and understanding, intelligent control systems of robots equipped with sensoric subsystems, dialogue of two knowledge systems, as well as studying and modelling higher artificial intelligence attributes, such as emotionality and personality. The 4th Conference draws on the problems treated at the preceding Conferences, and presents the most recent knowledge on the following topics: theoretical problems of artificial intelligence, knowledge-based systems, expert systems, perception and pattern recognition, robotics, intelligent computer-aided design, special-purpose computer systems for artificial intelligence and robotics

  4. Mobile Robot Designed with Autonomous Navigation System

    Science.gov (United States)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  5. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized

  6. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    Science.gov (United States)

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551

  7. Application of da Vinci surgical robotic system in hepatobiliary surgery

    Directory of Open Access Journals (Sweden)

    Chen Jiahai

    2018-01-01

    Full Text Available The development of minimally invasive surgery has brought a revolutionary change to surgery techniques, and endoscopic surgical robots, especially Da Vinci robotic surgical system, has further broaden the scope of minimally invasive surgery, which has been applied in a variety of surgical fields including hepatobiliary surgery. Today, the application of Da Vinci surgical robot can cover most of the operations in hepatobiliary surgery which has proved to be safe and practical. What’s more, many clinical studies in recent years have showed that Da Vinci surgical system is superior to traditional laparoscopy. This paper summarize the advantage and disadvantage of Da Vinci surgical system, and outlines the current status of and future perspectives on the robot-assisted hepatobiliary surgery based on the cases reports in recent years of the application of Da Vinci surgical robot.

  8. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    In Robotic Exploration of the Solar System, Paolo Ulivi and David Harland provide a comprehensive account of the design and managment of deep-space missions, the spacecraft involved - some flown, others not - their instruments, and their scientific results. This third volume in the series covers launches in the period 1997 to 2003 and features: - a chapter entirely devoted to the Cassini-Huygens mission to Saturn; - coverage of planetary missions of the period, including the Deep Space 1 mission and the Stardust and Hayabusa sample returns from comets and asteroids; - extensive coverage of Mars exploration, the failed 1999 missions, Mars Odyssey, Mars Express, and the twin rovers Spirit and Opportunity. The story will continue in Part 4.

  9. Behaviour based Mobile Robot Navigation Technique using AI System: Experimental Investigation on Active Media Pioneer Robot

    Directory of Open Access Journals (Sweden)

    S. Parasuraman, V.Ganapathy

    2012-10-01

    Full Text Available A key issue in the research of an autonomous robot is the design and development of the navigation technique that enables the robot to navigate in a real world environment. In this research, the issues investigated and methodologies established include (a Designing of the individual behavior and behavior rule selection using Alpha level fuzzy logic system  (b Designing of the controller, which maps the sensors input to the motor output through model based Fuzzy Logic Inference System and (c Formulation of the decision-making process by using Alpha-level fuzzy logic system. The proposed method is applied to Active Media Pioneer Robot and the results are discussed and compared with most accepted methods. This approach provides a formal methodology for representing and implementing the human expert heuristic knowledge and perception-based action in mobile robot navigation. In this approach, the operational strategies of the human expert driver are transferred via fuzzy logic to the robot navigation in the form of a set of simple conditional statements composed of linguistic variables.Keywards: Mobile robot, behavior based control, fuzzy logic, alpha level fuzzy logic, obstacle avoidance behavior and goal seek behavior

  10. Towards an automated checked baggage inspection system augmented with robots

    Science.gov (United States)

    DeDonato, Matthew P.; Dimitrov, Velin; Padır, Taskin

    2014-05-01

    We present a novel system for enhancing the efficiency and accuracy of checked baggage screening process at airports. The system requirements address the identification and retrieval of objects of interest that are prohibited in a checked luggage. The automated testbed is comprised of a Baxter research robot designed by Rethink Robotics for luggage and object manipulation, and a down-looking overhead RGB-D sensor for inspection and detection. We discuss an overview of current system implementations, areas of opportunity for improvements, robot system integration challenges, details of the proposed software architecture and experimental results from a case study for identifying various kinds of lighters in checked bags.

  11. Integrating Robot Task Planning into Off-Line Programming Systems

    DEFF Research Database (Denmark)

    Sun, Hongyan; Kroszynski, Uri

    1988-01-01

    a system architecture for integrated robot task planning. It identifies and describes the components considered necessary for implementation. The focus is on functionality of these elements as well as on the information flow. A pilot implementation of such an integrated system architecture for a robot......The addition of robot task planning in off-line programming systems aims at improving the capability of current state-of-the-art commercially available off-line programming systems, by integrating modeling, task planning, programming and simulation together under one platform. This article proposes...... assembly task is discussed....

  12. Safety assessment of a robotic system handling nuclear material

    International Nuclear Information System (INIS)

    Atcitty, C.B.; Robinson, D.G.

    1996-01-01

    This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable

  13. A Motion System for Social and Animated Robots

    Directory of Open Access Journals (Sweden)

    Jelle Saldien

    2014-05-01

    Full Text Available This paper presents an innovative motion system that is used to control the motions and animations of a social robot. The social robot Probo is used to study Human-Robot Interactions (HRI, with a special focus on Robot Assisted Therapy (RAT. When used for therapy it is important that a social robot is able to create an “illusion of life” so as to become a believable character that can communicate with humans. The design of the motion system in this paper is based on insights from the animation industry. It combines operator-controlled animations with low-level autonomous reactions such as attention and emotional state. The motion system has a Combination Engine, which combines motion commands that are triggered by a human operator with motions that originate from different units of the cognitive control architecture of the robot. This results in an interactive robot that seems alive and has a certain degree of “likeability”. The Godspeed Questionnaire Series is used to evaluate the animacy and likeability of the robot in China, Romania and Belgium.

  14. Calibration technology in application of robot-laser scanning system

    Science.gov (United States)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  15. An approach to software quality assurance for robotic inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1993-10-01

    Software quality assurance (SQA) for robotic systems used in nuclear waste applications is vital to ensure that the systems operate safely and reliably and pose a minimum risk to humans and the environment. This paper describes the SQA approach for the control and data acquisition system for a robotic system being developed for remote surveillance and inspection of underground storage tanks (UST) at the Hanford Site

  16. Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Lorino, P; Altwegg, J M

    1985-05-01

    This article, which is aimed at the general reader, examines latest developments in, and the role of, modern robotics. The 7 main sections are sub-divided into 27 papers presented by 30 authors. The sections are as follows: 1) The role of robotics, 2) Robotics in the business world and what it can offer, 3) Study and development, 4) Utilisation, 5) Wages, 6) Conditions for success, and 7) Technological dynamics.

  17. An architecture for robotic system integration

    International Nuclear Information System (INIS)

    Butler, P.L.; Reister, D.B.; Gourley, C.S.; Thayer, S.M.

    1993-01-01

    An architecture has been developed to provide an object-oriented framework for the integration of multiple robotic subsystems into a single integrated system. By using an object-oriented approach, all subsystems can interface with each other, and still be able to be customized for specific subsystem interface needs. The object-oriented framework allows the communications between subsystems to be hidden from the interface specification itself. Thus, system designers can concentrate on what the subsystems are to do, not how to communicate. This system has been developed for the Environmental Restoration and Waste Management Decontamination and Decommissioning Project at Oak Ridge National Laboratory. In this system, multiple subsystems are defined to separate the functional units of the integrated system. For example, a Human-Machine Interface (HMI) subsystem handles the high-level machine coordination and subsystem status display. The HMI also provides status-logging facilities and safety facilities for use by the remaining subsystems. Other subsystems have been developed to provide specific functionality, and many of these can be reused by other projects

  18. Design, implementation and testing of master slave robotic surgical system

    International Nuclear Information System (INIS)

    Ali, S.A.

    2015-01-01

    The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom) haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system. (author)

  19. Design, Implementation and Testing of Master Slave Robotic Surgical System

    Directory of Open Access Journals (Sweden)

    Syed Amjad Ali

    2015-01-01

    Full Text Available The autonomous manipulation of the medical robotics is needed to draw up a complete surgical plan in development. The autonomy of the robot comes from the fact that once the plan is drawn up off-line, it is the servo loops, and only these, that control the actions of the robot online, based on instantaneous control signals and measurements provided by the vision or force sensors. Using only these autonomous techniques in medical and surgical robotics remain relatively limited for two main reasons: Predicting complexity of the gestures, and human Safety. Therefore, Modern research in haptic force feedback in medical robotics is aimed to develop medical robots capable of performing remotely, what a surgeon does by himself. These medical robots are supposed to work exactly in the manner that a surgeon does in daily routine. In this paper the master slave tele-robotic system is designed and implemented with accuracy and stability by using 6DOF (Six Degree of Freedom haptic force feedback devices. The master slave control strategy, haptic devices integration, application software designing using Visual C++ and experimental setup are considered. Finally, results are presented the stability, accuracy and repeatability of the system

  20. Essential technologies for developing human and robot collaborative system

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Suzuki, Katsuo

    1997-10-01

    In this study, we aim to develop a concept of new robot system, i.e., 'human and robot collaborative system', for the patrol of nuclear power plants. This paper deals with the two essential technologies developed for the system. One is the autonomous navigation program with human intervention function which is indispensable for human and robot collaboration. The other is the position estimation method by using gyroscope and TV image to make the estimation accuracy much higher for safe navigation. Feasibility of the position estimation method is evaluated by experiment and numerical simulation. (author)

  1. An off-line programming system for palletizing robot

    Directory of Open Access Journals (Sweden)

    Youdong Chen

    2016-09-01

    Full Text Available Off-line programming systems are essential tools for the effective use of palletizing robots. This article presents a dedicated off-line programming system for palletizing robots. According to the user practical requirements, there are many user-defined patterns that can’t be easily generated by commercial off-line robot programming systems. This study suggests a pattern generation method that users can easily define their patterns. The proposed method has been simulation and experiment. The results have attested the effectiveness of the proposed pattern generation method.

  2. Development of a remote tank inspection robotic system

    International Nuclear Information System (INIS)

    Knape, B.P.; Bares, L.C.

    1990-01-01

    RedZone Robotics is currently developing a remote tank inspection (RTI) robotic system for Westinghouse Idaho Nuclear Company (WINCO). WINCO intends to use the RTI robotic system at the Idaho Chemical Processing Plant, a facility that contains a tank farm of several 1,135,500-ell (300,000-gal), 15.2-m (50-ft)-diam, high-level liquid waste storage tanks. The primary purpose of the RTI robotic system is to inspect the interior of these tanks for corrosion that may have been caused by the combined effects of radiation, high temperature, and caustic by the combined effects of radiation, high temperature, and caustic chemicals present inside the tanks. The RTI robotic system features a vertical deployment unit, a robotic arm, and a remote control console and computer [located up to 30.5 m (100 ft) away from the tank site]. All actuators are high torque, electric dc brush motors that are servocontrolled with absolute position feedback. The control system uses RedZone's standardized intelligent controller for enhanced telerobotics, which provides a high speed, multitasking environment on a VME bus. Currently, the robot is controlled in a manual, job-button, control mode; however, control capability is available to develop preprogrammed, automated modes of operation

  3. A bio-inspired electrocommunication system for small underwater robots.

    Science.gov (United States)

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  4. System and method for seamless task-directed autonomy for robots

    Science.gov (United States)

    Nielsen, Curtis; Bruemmer, David; Few, Douglas; Walton, Miles

    2012-09-18

    Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates target achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.

  5. Autonomous mobile robotic system for supporting counterterrorist and surveillance operations

    Science.gov (United States)

    Adamczyk, Marek; Bulandra, Kazimierz; Moczulski, Wojciech

    2017-10-01

    Contemporary research on mobile robots concerns applications to counterterrorist and surveillance operations. The goal is to develop systems that are capable of supporting the police and special forces by carrying out such operations. The paper deals with a dedicated robotic system for surveillance of large objects such as airports, factories, military bases, and many others. The goal is to trace unauthorised persons who try to enter to the guarded area, document the intrusion and report it to the surveillance centre, and then warn the intruder by sound messages and eventually subdue him/her by stunning through acoustic effect of great power. The system consists of several parts. An armoured four-wheeled robot assures required mobility of the system. The robot is equipped with a set of sensors including 3D mapping system, IR and video cameras, and microphones. It communicates with the central control station (CCS) by means of a wideband wireless encrypted system. A control system of the robot can operate autonomously, and under remote control. In the autonomous mode the robot follows the path planned by the CCS. Once an intruder has been detected, the robot can adopt its plan to allow tracking him/her. Furthermore, special procedures of treatment of the intruder are applied including warning about the breach of the border of the protected area, and incapacitation of an appropriately selected very loud sound until a patrol of guards arrives. Once getting stuck the robot can contact the operator who can remotely solve the problem the robot is faced with.

  6. Distributed Autonomous Robotic Systems : the 12th International Symposium

    CERN Document Server

    Cho, Young-Jo

    2016-01-01

    This volume of proceedings includes 32 original contributions presented at the 12th International Symposium on Distributed Autonomous Robotic Systems (DARS 2014), held in November 2014. The selected papers in this volume are authored by leading researchers from Asia, Europe, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. .

  7. Design on a Composite Mobile System for Exploration Robot

    OpenAIRE

    Shang, Weiyan; Yang, Canjun; Liu, Yunping; Wang, Junming

    2016-01-01

    In order to accomplish exploration missions in complex environments, a new type of robot has been designed. By analyzing the characteristics of typical moving systems, a new mobile system which is named wheel-tracked moving system (WTMS) has been presented. Then by virtual prototype simulation, the new system’s ability to adapt complex environments has been verified. As the curve of centroid acceleration changes in large amplitude in this simulation, ride performance of this robot has been st...

  8. Visual perception system and method for a humanoid robot

    Science.gov (United States)

    Wells, James W. (Inventor); Mc Kay, Neil David (Inventor); Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  9. System Design and Locomotion of Superball, an Untethered Tensegrity Robot

    Science.gov (United States)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Manovi, Pavlo; Firoozi, Roya Fallah; Dobi, Sarah; Agogino, Alice M.; Sunspiral, Vytas

    2015-01-01

    The Spherical Underactuated Planetary Exploration Robot ball (SUPERball) is an ongoing project within NASA Ames Research Center's Intelligent Robotics Group and the Dynamic Tensegrity Robotics Lab (DTRL). The current SUPERball is the first full prototype of this tensegrity robot platform, eventually destined for space exploration missions. This work, building on prior published discussions of individual components, presents the fully-constructed robot. Various design improvements are discussed, as well as testing results of the sensors and actuators that illustrate system performance. Basic low-level motor position controls are implemented and validated against sensor data, which show SUPERball to be uniquely suited for highly dynamic state trajectory tracking. Finally, SUPERball is shown in a simple example of locomotion. This implementation of a basic motion primitive shows SUPERball in untethered control.

  10. Interactive robot control system and method of use

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Reiland, Matthew J. (Inventor); Abdallah, Muhammad E. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor)

    2012-01-01

    A robotic system includes a robot having joints, actuators, and sensors, and a distributed controller. The controller includes command-level controller, embedded joint-level controllers each controlling a respective joint, and a joint coordination-level controller coordinating motion of the joints. A central data library (CDL) centralizes all control and feedback data, and a user interface displays a status of each joint, actuator, and sensor using the CDL. A parameterized action sequence has a hierarchy of linked events, and allows the control data to be modified in real time. A method of controlling the robot includes transmitting control data through the various levels of the controller, routing all control and feedback data to the CDL, and displaying status and operation of the robot using the CDL. The parameterized action sequences are generated for execution by the robot, and a hierarchy of linked events is created within the sequence.

  11. Vision-based robotic system for object agnostic placing operations

    DEFF Research Database (Denmark)

    Rofalis, Nikolaos; Nalpantidis, Lazaros; Andersen, Nils Axel

    2016-01-01

    Industrial robots are part of almost all modern factories. Even though, industrial robots nowadays manipulate objects of a huge variety in different environments, exact knowledge about both of them is generally assumed. The aim of this work is to investigate the ability of a robotic system to ope...... to the system, neither for the objects nor for the placing box. The experimental evaluation of the developed robotic system shows that a combination of seemingly simple modules and strategies can provide effective solution to the targeted problem....... to operate within an unknown environment manipulating unknown objects. The developed system detects objects, finds matching compartments in a placing box, and ultimately grasps and places the objects there. The developed system exploits 3D sensing and visual feature extraction. No prior knowledge is provided...

  12. A Novel Docking System for Modular Self-Reconfigurable Robots

    Directory of Open Access Journals (Sweden)

    Tan Zhang

    2017-10-01

    Full Text Available Existing self-reconfigurable robots achieve connections and disconnections by a separate drive of the docking system. In this paper, we present a new docking system with which the connections and disconnections are driven by locomotion actuators, without the need for a separate drive, which reduces the weight and the complexity of the modules. This self-reconfigurable robot consists of two types of fundamental modules, i.e., active and passive modules. By the docking system, two types of connections are formed with the fundamental modules, and the docking and undocking actions are achieved through simple control with less sensory feedback. This paper describes the design of the robotic modules, the docking system, the docking process, and the docking force analysis. An experiment is performed to demonstrate the self-reconfigurable robot with the docking system.

  13. Modular robotic system for forensic investigation support

    Science.gov (United States)

    Kowalski, Grzegorz; Główka, Jakub; Maciaś, Mateusz; Puchalski, Sławomir

    2017-10-01

    Forensic investigation on the crime scene is an activity that requires not only knowledge about the ways of searching for evidence, collecting and processing them. In some cases the area of operation might not be properly secured and poses threat to human health or life. Some devices or materials may be left intentionally or not to injure potential investigators. Besides conventional explosives, threats can be in form of CBRN materials, which have not only immediate effect on the exposed personnel, but can contaminate further people, when being transferred for example on clothes or unsecured equipment. In this case a risk evaluation should be performed, that can lead to conclusions that it is too dangerous for investigators to work. In that kind of situation remote devices, which are able to examine the crime scene and secure samples, can be used. In the course of R&D activities PIAP developed a system, which is based on small UGV capable of carrying out inspection of suspicious places and securing evidence, when needed. The system consists of remotely controlled mobile robot, its control console and a set of various inspection and support tools, that enable detection of CBRN threats as well as revelation, documentation and securing of the evidence. This paper will present main features of the system, like mission adjustment possibilities and communication aspects, and also examples of the forensic accessories.

  14. Ideas on a system design for end-user robots

    Science.gov (United States)

    Bonasso, R. P.; Slack, Marc G.

    1992-11-01

    Robots are being used successfully in factory automation; however, recently there has been some success in building robots which can operate in field environments, where the domain is less predictable. New perception and control techniques have been developed which allow a robot to accomplish its mission while dealing with natural changes in both land and underwater environments. Unfortunately, efforts in this area have resulted in many one-of-a-kind robots, limited to research laboratories or carefully delimited field task arenas. A user who would like to apply robotic technology to a particular field problem must basically start from scratch. The problem is that the robotic technology (i.e., the hardware and software) which might apply to the user's domain exists in a diverse array of formats and configurations. For end-user robots to become a reality, an effort to standardize some aspects of the robotic technology must be made, in much the same way that personal computer technology is becoming standardized. Presently, a person can buy a computer and then acquire hardware and software extensions which simply `plug in' and provide the user with the required utility without the user having to understand the inner workings of the pieces of the system. This technology even employs standardized interface specifications so the user is presented with a familiar interaction paradigm. This paper outlines some system requirements (hardware and software) and a preliminary design for end-user robots for field environments, drawing parallels to the trends in the personal computer market. The general conclusion is that the appropriate components as well as an integrating architecture are already available, making development of out-of-the- box, turnkey robots for a certain range of commonly required tasks a potential reality.

  15. Development of a medical robot system for minimally invasive surgery.

    Science.gov (United States)

    Feng, Mei; Fu, Yili; Pan, Bo; Liu, Chang

    2012-03-01

    Robot-assisted systems have been widely used in minimally invasive surgery (MIS) practice, and with them the precision and accuracy of surgical procedures can be significantly improved. Promoting the development of robot technology in MIS will improve robot performance and help in tackling problems from complex surgical procedures. A medical robot system with a new mechanism for MIS was proposed to achieve a two-dimensional (2D) remote centre of motion (RCM). An improved surgical instrument was designed to enhance manipulability and eliminate the coupling motion between the wrist and the grippers. The control subsystem adopted a master-slave control mode, upon which a new method with error compensation of repetitive feedback can be based for the inverse kinematics solution. A unique solution with less computation and higher satisfactory accuracy was also obtained. Tremor filtration and trajectory planning were also addressed with regard to the smoothness of the surgical instrument movement. The robot system was tested on pigs weighing 30-45 kg. The experimental results show that the robot can successfully complete a cholecystectomy and meet the demands of MIS. The results of the animal experiments were excellent, indicating a promising clinical application of the robot with high manipulability. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Progress in EEG-Based Brain Robot Interaction Systems

    Directory of Open Access Journals (Sweden)

    Xiaoqian Mao

    2017-01-01

    Full Text Available The most popular noninvasive Brain Robot Interaction (BRI technology uses the electroencephalogram- (EEG- based Brain Computer Interface (BCI, to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques.

  17. Walking Robots Dynamic Control Systems on an Uneven Terrain

    Directory of Open Access Journals (Sweden)

    MUNTEANU, M. S.

    2010-05-01

    Full Text Available The paper presents ZPM dynamic control of walking robots, developing an open architecture real time control multiprocessor system, in view of obtaining new capabilities for walking robots. The complexity of the movement mechanism of a walking robot was taken into account, being a repetitive tilting process with numerous instable movements and which can lead to its turnover on an uneven terrain. The control system architecture for the dynamic robot walking is presented in correlation with the control strategy which contains three main real time control loops: balance robot control using sensorial feedback, walking diagram control with periodic changes depending on the sensorial information during each walk cycle, predictable movement control based on a quick decision from the previous experimental data. The results obtained through simulation and experiments show an increase in mobility, stability in real conditions and obtaining of high performances related to the possibility of moving walking robots on terrains with a configuration as close as possible to real situations, respectively developing new technological capabilities of the walking robot control systems for slope movement and walking by overtaking or going around obstacles.

  18. Application of Telepresence Technologies to Nuclear Material Safeguards

    International Nuclear Information System (INIS)

    Wright, M.C.; Rome, J.A.

    1999-01-01

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications

  19. ROS (Robot Operating System) für Automotive

    OpenAIRE

    Bubeck, Alexander

    2014-01-01

    - Introduction into the Robot Operating System - Open Source in the automotive industries - Application of ROS in the automotive industry - ROS navigation - ROS with real time control - ROS in the embedded world - Outlook: ROS 2.0 - Summary

  20. Human Robotic Systems (HRS): Robonaut 2 Technologies Element

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the Robonaut 2 (R2) Technology Project Element within Human Robotic Systems (HRS) is to developed advanced technologies for infusion into the Robonaut 2...

  1. Systems and Algorithms for Automated Collaborative Observation Using Networked Robotic Cameras

    Science.gov (United States)

    Xu, Yiliang

    2011-01-01

    The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. …

  2. Physics Based Vision Systems for Robotic Manipulation

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increase of robotic manipulation tasks (TA4.3), specifically dexterous manipulation tasks (TA4.3.2), more advanced computer vision algorithms will be...

  3. The SEP "robot": a valid virtual reality robotic simulator for the Da Vinci Surgical System?

    Science.gov (United States)

    van der Meijden, O A J; Broeders, I A M J; Schijven, M P

    2010-04-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's face validity, two questionnaires were constructed. First, a questionnaire was sent to users of the Da Vinci system (reference group) to determine a focused user-group opinion and their recommendations concerning VR-based training applications for robotic surgery. Next, clinical specialists were requested to complete a pre-tested face validity questionnaire after performing a suturing task on the SEP robot simulator. To determine the SEP's construct validity, outcome parameters of the suturing task were compared, for example, relative to participants' endoscopic experience. Correlations between endoscopic experience and outcome parameters of the performed suturing task were tested for significance. On an ordinal five-point, scale the average score for the quality of the simulator software was 3.4; for its hardware, 3.0. Over 80% agreed that it is important to train surgeons and surgical trainees to use the Da Vinci. There was a significant but marginal difference in tool tip trajectory (p = 0.050) and a nonsignificant difference in total procedure time (p = 0.138) in favor of the experienced group. In conclusion, the results of this study reflect a uniform positive opinion using VR training in robotic surgery. Concepts of face and construct validity of the SEP robotic simulator are present; however, these are not strong and need to be improved before implementation of the SEP robotic simulator in its present state for a validated training curriculum to be successful .

  4. Dynamic electronic institutions in agent oriented cloud robotic systems.

    Science.gov (United States)

    Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice

    2015-01-01

    The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.

  5. A lightweight, inexpensive robotic system for insect vision.

    Science.gov (United States)

    Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex

    2017-09-01

    Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Motion and operation planning of robotic systems background and practical approaches

    CERN Document Server

    Gomez-Barvo, Fernando

    2015-01-01

    This book addresses the broad multi-disciplinary topic of robotics, and presents the basic techniques for motion and operation planning in robotics systems. Gathering contributions from experts in diverse and wide ranging fields, it offers an overview of the most recent and cutting-edge practical applications of these methodologies. It covers both theoretical and practical approaches, and elucidates the transition from theory to implementation. An extensive analysis is provided, including humanoids, manipulators, aerial robots and ground mobile robots. ‘Motion and Operation Planning of Robotic Systems’ addresses the following topics: *The theoretical background of robotics. *Application of motion planning techniques to manipulators, such as serial and parallel manipulators. *Mobile robots planning, including robotic applications related to aerial robots, large scale robots and traditional wheeled robots. *Motion planning for humanoid robots. An invaluable reference text for graduate students and researche...

  7. Mobile robots and remote systems in nuclear applications; Robots moviles y sistemas remotos en aplicaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los Rios, J. A.; Benitez R, J. S., E-mail: armando.segovia@inin.gob.m [ININ, Departamento de Automatizacion e Instrumentacion, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    Traditionally, the robots have been used in the industry for the colored to the spray, welding, schemed, assemble and handling of materials. However, these devices have had a deep impact in the nuclear industry where the first objective has been to reduce the exhibition and the personnel contact with radioactive materials. Knowing the utility of the mobile robots and remote systems in nuclear facilities in the world, the Department of Automation and Instrumentation of the Instituto Nacional de Investigaciones Nucleares (ININ) has carried out some researches and applications that they have facilitated the work of the researches and professionals of the ININ involved in the handling of radioactive materials, as the system with monorail for the introduction of irradiated materials in a production cell of Iodine-131 and the robot vehicle for the radioactive materials transport TRASMAR (contraction of Transportacion Asistida de Materiales Radiactivos). (Author)

  8. Effective programming of energy consuming industrial robot systems

    International Nuclear Information System (INIS)

    Trnka, K.; Pinter, T.; Knazik, M.; Bozek, P.

    2012-01-01

    This paper discusses the problem of effective motion planning for industrial robots. The first part dealt with current method for off-line motion planning. In the second part is presented the work done with one of the simulation system with automatic trajectory generation and off-line programming capability [4]. An spot welding process is involved. The practical application of this step strongly depends on the method for robot path optimization with high accuracy, thus, transform the path into a time and energy optimal robot program for the real world, which is discussed in the third step. (Authors)

  9. Robot and Human Surface Operations on Solar System Bodies

    Science.gov (United States)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  10. Automation and Robotics for Space-Based Systems, 1991

    Science.gov (United States)

    Williams, Robert L., II (Editor)

    1992-01-01

    The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.

  11. A new CT-aided robotic stereotaxis system

    International Nuclear Information System (INIS)

    Shao, H.M.; Chen, J.Y.; Truong, T.K.; Reed, I.S.

    1985-01-01

    In this paper, it is shown that a robot arm may be programmed to replace the stereotaxic frame for trajectory guidance. Since the robot is driven by a computer, it offers substantial flexibility, speed and accuracy advantages over the frame. It allows a surgeon to conveniently manipulate the probe trajectory in a variety of possible directions. As a consequence, even more sophisticated stereotaxic procedures are now possible. An experimental robotic stereotaxic system is now in operation. It is described in detail in this paper

  12. Visual Detection and Tracking System for a Spherical Amphibious Robot.

    Science.gov (United States)

    Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun

    2017-04-15

    With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.

  13. Development of 6-DOF painting robot control system

    Science.gov (United States)

    Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang

    2017-01-01

    With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.

  14. Visual Detection and Tracking System for a Spherical Amphibious Robot

    Science.gov (United States)

    Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun

    2017-01-01

    With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation. PMID:28420134

  15. A robotic system for researching social integration in honeybees.

    Directory of Open Access Journals (Sweden)

    Karlo Griparić

    Full Text Available In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera, are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  16. A robotic system for researching social integration in honeybees.

    Science.gov (United States)

    Griparić, Karlo; Haus, Tomislav; Miklić, Damjan; Polić, Marsela; Bogdan, Stjepan

    2017-01-01

    In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera), are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  17. Development of a remote controlled robot system for monitoring nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Song, Myung Jae; Shin, Hyun Bum; Oh, Gil Hwan; Maeng, Sung Jun; Choi, Byung Jae; Chang, Tae Woo [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, Bum Hee; Yoo, Jun; Choi, Myung Hwan; Go, Nak Yong; Lee, Kee Dong; Lee, Young Dae; Cho, Hae Kyeng; Nam, Yoon Suk [Electric and Science Research Center, (Korea, Republic of)

    1996-12-31

    It`s a final report of the development of remote controlled robot system for monitoring the facilities in nuclear power plant and contains as follows, -Studying the technologies in robot developments and analysing the requirements and working environments - Development of the test mobile robot system - Development of the mobile-robot - Development of the Mounted system on the Mobile robot - Development of the Monitoring system - Mobil-robot applications and future study. In this study we built the basic technologies and schemes for future robot developments and applications. (author). 20 refs., figs.

  18. Soviet Robots in the Solar System Mission Technologies and Discoveries

    CERN Document Server

    Huntress, JR , Wesley T

    2011-01-01

    The Soviet robotic space exploration program began in a spirit of bold adventure and technical genius. It ended after the fall of the Soviet Union and the failure of its last mission to Mars in 1996. Soviet Robots in the Solar System chronicles the scientific and engineering accomplishments of this enterprise from its infancy to its demise. Each flight campaign is set into context of national politics and international competition with the United States. Together with its many detailed illustrations and images, Soviet Robots in the Solar System presents the most detailed technical description of Soviet robotic space flights provides a unique insight into programmatic, engineering, and scientific issues covers mission objectives, spacecraft engineering, flight details, scientific payload and results describes in technical depth Soviet lunar and planetary probes

  19. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  20. BellBot - A Hotel Assistant System Using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Joaquín López

    2013-01-01

    Full Text Available There is a growing interest in applying intelligent technologies to assistant robots. These robots should have a number of characteristics such as autonomy, easy reconfiguration, robust perception systems and they should be oriented towards close interaction with humans. In this paper we present an automatic hotel assistant system based on a series of mobile platforms that interact with guests and service personnel to help them in different tasks. These tasks include bringing small items to customers, showing them different points of interest in the hotel, accompanying the guests to their rooms and providing them with general information. Each robot can also autonomously handle some daily scheduled tasks. Apart from user-initiated and scheduled tasks, the robots can also perform tasks based on events triggered by the building's automation system (BAS. The robots and the BAS are connected to a central server via a local area network. The system was developed with the Robotics Integrated Development Environment (RIDE and was tested intensively in different environments.

  1. Audio-Visual Perception System for a Humanoid Robotic Head

    Directory of Open Access Journals (Sweden)

    Raquel Viciana-Abad

    2014-05-01

    Full Text Available One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework.

  2. System design for safe robotic handling of nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability

  3. An Intelligent Inference System for Robot Hand Optimal Grasp Preshaping

    Directory of Open Access Journals (Sweden)

    Cabbar Veysel Baysal

    2010-11-01

    Full Text Available This paper presents a novel Intelligent Inference System (IIS for the determination of an optimum preshape for multifingered robot hand grasping, given object under a manipulation task. The IIS is formed as hybrid agent architecture, by the synthesis of object properties, manipulation task characteristics, grasp space partitioning, lowlevel kinematical analysis, evaluation of contact wrench patterns via fuzzy approximate reasoning and ANN structure for incremental learning. The IIS is implemented in software with a robot hand simulation.

  4. A robotic system to characterize soft tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Lipsett, M.G.; Dwyer, S.C. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2009-07-01

    A robotic system for characterizing soft tailings deposits was discussed in this presentation. The system was developed to reduce variability in feedstocks and process performance as well as to improve the trafficability of composite tailings (CT). The method was designed to reliably sample different locations of a soft deposit. Sensors were used to determine water content, clay content, organic matter, and strength. The system included an autonomous rover with a sensor package and teleoperation capability. The system was also designed to be used without automatic controls. The wheeled mobile robot was used to conduct ground contact and soil measurements. The gas-powered robot included on-board microcontrollers and a host computer. The system also featured traction control and fault recovery sub-systems. Wheel contact was used to estimate soil parameters. It was concluded that further research is needed to improve traction control and soil parameter estimation testing capabilities. Overall system block diagrams were included. tabs., figs.

  5. Task Analysis and Descriptions of Required Job Competencies of Robotics/Automated Systems Technicians. Outlines for New Courses and Modules.

    Science.gov (United States)

    Hull, Daniel M.; Lovett, James E.

    The six new robotics and automated systems specialty courses developed by the Robotics/Automated Systems Technician (RAST) project are described in this publication. Course titles are Fundamentals of Robotics and Automated Systems, Automated Systems and Support Components, Controllers for Robots and Automated Systems, Robotics and Automated…

  6. A Multimodal Emotion Detection System during Human-Robot Interaction

    Science.gov (United States)

    Alonso-Martín, Fernando; Malfaz, María; Sequeira, João; Gorostiza, Javier F.; Salichs, Miguel A.

    2013-01-01

    In this paper, a multimodal user-emotion detection system for social robots is presented. This system is intended to be used during human–robot interaction, and it is integrated as part of the overall interaction system of the robot: the Robotics Dialog System (RDS). Two modes are used to detect emotions: the voice and face expression analysis. In order to analyze the voice of the user, a new component has been developed: Gender and Emotion Voice Analysis (GEVA), which is written using the Chuck language. For emotion detection in facial expressions, the system, Gender and Emotion Facial Analysis (GEFA), has been also developed. This last system integrates two third-party solutions: Sophisticated High-speed Object Recognition Engine (SHORE) and Computer Expression Recognition Toolbox (CERT). Once these new components (GEVA and GEFA) give their results, a decision rule is applied in order to combine the information given by both of them. The result of this rule, the detected emotion, is integrated into the dialog system through communicative acts. Hence, each communicative act gives, among other things, the detected emotion of the user to the RDS so it can adapt its strategy in order to get a greater satisfaction degree during the human–robot dialog. Each of the new components, GEVA and GEFA, can also be used individually. Moreover, they are integrated with the robotic control platform ROS (Robot Operating System). Several experiments with real users were performed to determine the accuracy of each component and to set the final decision rule. The results obtained from applying this decision rule in these experiments show a high success rate in automatic user emotion recognition, improving the results given by the two information channels (audio and visual) separately. PMID:24240598

  7. Robotic radiation survey and analysis system for radiation waste casks

    International Nuclear Information System (INIS)

    Thunborg, S.

    1987-01-01

    Sandia National Laboratories (SNL) and the Hanford Engineering Development Laboratories have been involved in the development of remote systems technology concepts for handling defense high-level waste (DHLW) shipping casks at the waste repository. This effort was demonstrated the feasibility of using this technology for handling DHLW casks. These investigations have also shown that cask design can have a major effect on the feasibility of remote cask handling. Consequently, SNL has initiated a program to determine cask features necessary for robotic remote handling at the waste repository. The initial cask handling task selected for detailed investigation was the robotic radiation survey and analysis (RRSAS) task. In addition to determining the design features required for robotic cask handling, the RRSAS project contributes to the definition of techniques for random selection of swipe locations, the definition of robotic swipe parameters, force control techniques for robotic swipes, machine vision techniques for the location of objects in 3-D, repository robotic systems requirements, and repository data management system needs

  8. The development of robot system for pressurizer maintenance in NPPs

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Chang Hoi; Jung, Seung Ho; Seo, Yong Chil; Lee, Young Kwang; Go, Byung Yung; Lee, Kwang Won; Lee, Sang Ill; Yun, Jong Yeon; Lee, Hyung Soon; Park, Mig Non; Park, Chang Woo; Cheol, Kwon

    1999-12-01

    The pressurizer that controls the pressure variation of primary coolant system, consists of a vessel, electric heaters and a spray, is one of the safety related equipment in nuclear power plants. Therefore it is required to inspect and maintain it regularly. Because the inside of pressurizer os contaminated by radioactivity, when inspection and repairing it, the radiation exposure of workers is inevitable. In this research two robot system has been developed for inspection and maintenance of the pressurizer for the water filled case and the water sunken case. The one robot system for the water filled case consists of two links, movable gripper using wire string, and support frame for the attachment of robot. The other robot is equipped propeller in order to navigate on the water. It also equipped high performance water resistance camera to make inspection possible. The developed robots are designed under several constraints such as its weight and collision with pressurizer wall. To verify the collision free robot link length and accessibility to the any desired rod heater it is simulated by 3-dimensional graphic simulation software(RobCard). For evaluation stress of the support frame finite element analysis is performed by using the ANSYS code. (author)

  9. Development of a Cognitive Robotic System for Simple Surgical Tasks

    Directory of Open Access Journals (Sweden)

    Riccardo Muradore

    2015-04-01

    Full Text Available The introduction of robotic surgery within the operating rooms has significantly improved the quality of many surgical procedures. Recently, the research on medical robotic systems focused on increasing the level of autonomy in order to give them the possibility to carry out simple surgical actions autonomously. This paper reports on the development of technologies for introducing automation within the surgical workflow. The results have been obtained during the ongoing FP7 European funded project Intelligent Surgical Robotics (I-SUR. The main goal of the project is to demonstrate that autonomous robotic surgical systems can carry out simple surgical tasks effectively and without major intervention by surgeons. To fulfil this goal, we have developed innovative solutions (both in terms of technologies and algorithms for the following aspects: fabrication of soft organ models starting from CT images, surgical planning and execution of movement of robot arms in contact with a deformable environment, designing a surgical interface minimizing the cognitive load of the surgeon supervising the actions, intra-operative sensing and reasoning to detect normal transitions and unexpected events. All these technologies have been integrated using a component-based software architecture to control a novel robot designed to perform the surgical actions under study. In this work we provide an overview of our system and report on preliminary results of the automatic execution of needle insertion for the cryoablation of kidney tumours.

  10. A new method to evaluate human-robot system performance

    Science.gov (United States)

    Rodriguez, G.; Weisbin, C. R.

    2003-01-01

    One of the key issues in space exploration is that of deciding what space tasks are best done with humans, with robots, or a suitable combination of each. In general, human and robot skills are complementary. Humans provide as yet unmatched capabilities to perceive, think, and act when faced with anomalies and unforeseen events, but there can be huge potential risks to human safety in getting these benefits. Robots provide complementary skills in being able to work in extremely risky environments, but their ability to perceive, think, and act by themselves is currently not error-free, although these capabilities are continually improving with the emergence of new technologies. Substantial past experience validates these generally qualitative notions. However, there is a need for more rigorously systematic evaluation of human and robot roles, in order to optimize the design and performance of human-robot system architectures using well-defined performance evaluation metrics. This article summarizes a new analytical method to conduct such quantitative evaluations. While the article focuses on evaluating human-robot systems, the method is generally applicable to a much broader class of systems whose performance needs to be evaluated.

  11. POLICE OFFICE MODEL IMPROVEMENT FOR SECURITY OF SWARM ROBOTIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2014-09-01

    Full Text Available This paper focuses on aspects of information security for group of mobile robotic systems with swarm intellect. The ways for hidden attacks realization by the opposing party on swarm algorithm are discussed. We have fulfilled numerical modeling of potentially destructive information influence on the ant shortest path algorithm. We have demonstrated the consequences of attacks on the ant algorithm with different concentration in a swarm of subversive robots. Approaches are suggested for information security mechanisms in swarm robotic systems, based on the principles of centralized security management for mobile agents. We have developed the method of forming a self-organizing information security management system for robotic agents in swarm groups implementing POM (Police Office Model – a security model based on police offices, to provide information security in multi-agent systems. The method is based on the usage of police station network in the graph nodes, which have functions of identification and authentication of agents, identifying subversive robots by both their formal characteristics and their behavior in the swarm. We have suggested a list of software and hardware components for police stations, consisting of: communication channels between the robots in police office, nodes register, a database of robotic agents, a database of encryption and decryption module. We have suggested the variants of logic for the mechanism of information security in swarm systems with different temporary diagrams of data communication between police stations. We present comparative analysis of implementation of protected swarm systems depending on the functioning logic of police offices, integrated in swarm system. It is shown that the security model saves the ability to operate in noisy environments, when the duration of the interference is comparable to the time necessary for the agent to overcome the path between police stations.

  12. Declarative Rule-based Safety for Robotic Perception Systems

    DEFF Research Database (Denmark)

    Mogensen, Johann Thor Ingibergsson; Kraft, Dirk; Schultz, Ulrik Pagh

    2017-01-01

    Mobile robots are used across many domains from personal care to agriculture. Working in dynamic open-ended environments puts high constraints on the robot perception system, which is critical for the safety of the system as a whole. To achieve the required safety levels the perception system needs...... to be certified, but no specific standards exist for computer vision systems, and the concept of safe vision systems remains largely unexplored. In this paper we present a novel domain-specific language that allows the programmer to express image quality detection rules for enforcing safety constraints...

  13. Motion Planning in Multi-robot Systems using Timed Automata

    DEFF Research Database (Denmark)

    Andersen, Michael. S.; Jensen, Rune S.; Bak, Thomas

    This paper dscribes how interacting timed automata can be used to model, analyze, and verify motion planning problems for systems with multiple mobile robots. The method assumes an infra-structure of simple unicycle type robots, moving om a planar grid. The motion of the robots, including simple...... kinematics, is captured in an automata formalism that allows formal composition and symbolic reasoning. The verification software UppAal is used to verify specification requirements formulated in computational tree logic (CTL), generating all feasible trajectories that satisfy specifications. The results...... of the planning are demonstrateted in a testbed that allows execution of the planned paths and motion primitives by synchronizing the planning results from UppAal with actual robotic vehicles. The planning problem may be modified online by moving obstacles in the physical environment, which causes a re...

  14. Robot path planning using expert systems and machine vision

    Science.gov (United States)

    Malone, Denis E.; Friedrich, Werner E.

    1992-02-01

    This paper describes a system developed for the robotic processing of naturally variable products. In order to plan the robot motion path it was necessary to use a sensor system, in this case a machine vision system, to observe the variations occurring in workpieces and interpret this with a knowledge based expert system. The knowledge base was acquired by carrying out an in-depth study of the product using examination procedures not available in the robotic workplace and relates the nature of the required path to the information obtainable from the machine vision system. The practical application of this system to the processing of fish fillets is described and used to illustrate the techniques.

  15. Virtual Reality Simulator Systems in Robotic Surgical Training.

    Science.gov (United States)

    Mangano, Alberto; Gheza, Federico; Giulianotti, Pier Cristoforo

    2018-06-01

    The number of robotic surgical procedures has been increasing worldwide. It is important to maximize the cost-effectiveness of robotic surgical training and safely reduce the time needed for trainees to reach proficiency. The use of preliminary lab training in robotic skills is a good strategy for the rapid acquisition of further, standardized robotic skills. Such training can be done either by using a simulator or by exercises in a dry or wet lab. While the use of an actual robotic surgical system for training may be problematic (high cost, lack of availability), virtual reality (VR) simulators can overcome many of these obstacles. However, there is still a lack of standardization. Although VR training systems have improved, they cannot yet replace experience in a wet lab. In particular, simulated scenarios are not yet close enough to a real operative experience. Indeed, there is a difference between technical skills (i.e., mechanical ability to perform a simulated task) and surgical competence (i.e., ability to perform a real surgical operation). Thus, while a VR simulator can replace a dry lab, it cannot yet replace training in a wet lab or operative training in actual patients. However, in the near future, it is expected that VR surgical simulators will be able to provide total reality simulation and replace training in a wet lab. More research is needed to produce more wide-ranging, trans-specialty robotic curricula.

  16. Distributed consensus with visual perception in multi-robot systems

    CERN Document Server

    Montijano, Eduardo

    2015-01-01

    This monograph introduces novel responses to the different problems that arise when multiple robots need to execute a task in cooperation, each robot in the team having a monocular camera as its primary input sensor. Its central proposition is that a consistent perception of the world is crucial for the good development of any multi-robot application. The text focuses on the high-level problem of cooperative perception by a multi-robot system: the idea that, depending on what each robot sees and its current situation, it will need to communicate these things to its fellows whenever possible to share what it has found and keep updated by them in its turn. However, in any realistic scenario, distributed solutions to this problem are not trivial and need to be addressed from as many angles as possible. Distributed Consensus with Visual Perception in Multi-Robot Systems covers a variety of related topics such as: ·         distributed consensus algorithms; ·         data association and robustne...

  17. Intelligent robotics and remote systems for the nuclear industry

    International Nuclear Information System (INIS)

    Wehe, D.K.; Lee, J.C.; Martin, W.R.; Tulenko, J.

    1989-01-01

    The nuclear industry has a recognized need for intelligent, multitask robots to carry out tasks in harsh environments. From 1986 to the present, the number of robotic systems available or under development for use in the nuclear industry has more than doubled. Presently, artificial intelligence (AI) plays a relatively small role in existing robots used in the nuclear industry. Indeed, the lack of intelligence has been labeled the ''Achilles heel'' of all current robotic technology. However, larger-scale efforts are underway to make the multitask robot more sensitive to its environment, more capable to move and perform useful work, and more fully autonomous via the use of AI. In this paper, we review the terminology, the history, and the factors which are motivating the development of robotics and remove systems; discuss the applications related to the nuclear industry; and, finally, examine the state of the art of the technologies being applied to introduce more autonomous capabilities. Much of this latter work can be classified as within the artificial intelligence framework. (orig.)

  18. Cloud-Enhanced Robotic System for Smart City Crowd Control

    Directory of Open Access Journals (Sweden)

    Akhlaqur Rahman

    2016-12-01

    Full Text Available Cloud robotics in smart cities is an emerging paradigm that enables autonomous robotic agents to communicate and collaborate with a cloud computing infrastructure. It complements the Internet of Things (IoT by creating an expanded network where robots offload data-intensive computation to the ubiquitous cloud to ensure quality of service (QoS. However, offloading for robots is significantly complex due to their unique characteristics of mobility, skill-learning, data collection, and decision-making capabilities. In this paper, a generic cloud robotics framework is proposed to realize smart city vision while taking into consideration its various complexities. Specifically, we present an integrated framework for a crowd control system where cloud-enhanced robots are deployed to perform necessary tasks. The task offloading is formulated as a constrained optimization problem capable of handling any task flow that can be characterized by a Direct Acyclic Graph (DAG. We consider two scenarios of minimizing energy and time, respectively, and develop a genetic algorithm (GA-based approach to identify the optimal task offloading decisions. The performance comparison with two benchmarks shows that our GA scheme achieves desired energy and time performance. We also show the adaptability of our algorithm by varying the values for bandwidth and movement. The results suggest their impact on offloading. Finally, we present a multi-task flow optimal path sequence problem that highlights how the robot can plan its task completion via movements that expend the minimum energy. This integrates path planning with offloading for robotics. To the best of our knowledge, this is the first attempt to evaluate cloud-based task offloading for a smart city crowd control system.

  19. Virtual Reality Robotic Operation Simulations Using MEMICA Haptic System

    Science.gov (United States)

    Bar-Cohen, Y.; Mavroidis, C.; Bouzit, M.; Dolgin, B.; Harm, D. L.; Kopchok, G. E.; White, R.

    2000-01-01

    There is an increasing realization that some tasks can be performed significantly better by humans than robots but, due to associated hazards, distance, etc., only a robot can be employed. Telemedicine is one area where remotely controlled robots can have a major impact by providing urgent care at remote sites. In recent years, remotely controlled robotics has been greatly advanced. The robotic astronaut, "Robonaut," at NASA Johnson Space Center is one such example. Unfortunately, due to the unavailability of force and tactile feedback capability the operator must determine the required action using only visual feedback from the remote site, which limits the tasks that Robonaut can perform. There is a great need for dexterous, fast, accurate teleoperated robots with the operator?s ability to "feel" the environment at the robot's field. Recently, we conceived a haptic mechanism called MEMICA (Remote MEchanical MIrroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace system. Our team is developing novel MEMICA gloves and virtual reality models to allow the simulation of telesurgery and other applications. The MEMICA gloves are designed to have a high dexterity, rapid response, and large workspace and intuitively mirror the conditions at a virtual site where a robot is simulating the presence of the human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and Electrically Controlled Force and Stiffness (ECFS) actuators that are based on the sue of Electro-Rheological Fluids (ERF). In this paper the design of the MEMICA system and initial experimental results are presented.

  20. Safeguards and security considerations for automated and robotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S.E.; Jaeger, C.D.

    1994-09-01

    Within the reconfigured Nuclear Weapons Complex there will be a large number of automated and robotic (A&R) systems because of the many benefits derived from their use. To meet the overall security requirements of a facility, consideration must be given to those systems that handle and process nuclear material. Since automation and robotics is a relatively new technology, not widely applied to the Nuclear Weapons Complex, safeguards and security (S&S) issues related to these systems have not been extensively explored, and no guidance presently exists. The goal of this effort is to help integrate S&S into the design of future A&R systems. Towards this, the authors first examined existing A and R systems from a security perspective to identify areas of concern and possible solutions of these problems. They then were able to develop generalized S&S guidance and design considerations for automation and robotics.

  1. Safeguards and security considerations for automated and robotic systems

    International Nuclear Information System (INIS)

    Jordan, S.E.; Jaeger, C.D.

    1994-01-01

    Within the reconfigured Nuclear Weapons Complex there will be a large number of automated and robotic (A ampersand R) systems because of the many benefits derived from their use. To meet the overall security requirements of a facility, consideration must be given to those systems that handle and process nuclear material. Since automation and robotics is a relatively new technology, not widely applied to the Nuclear Weapons Complex, safeguards and security (S ampersand S) issues related to these systems have not been extensively explored, and no guidance presently exists. The goal of this effort is to help integrate S ampersand S into the design of future A ampersand R systems. Towards this, the authors first examined existing A and R systems from a security perspective to identify areas of concern and possible solutions of these problems. They then were able to develop generalized S ampersand S guidance and design considerations for automation and robotics

  2. Safeguards and security considerations for automated and robotic systems

    International Nuclear Information System (INIS)

    Jordan, S.E.; Jaeger, C.D.

    1994-01-01

    Within the reconfigured Nuclear Weapons Complex there will be a large number of automated and robotic (A ampersand R) systems because of the many benefits derived from their use. To meet the overall security requirements of a facility, consideration must be given to those systems that handle and process nuclear material. Since automation and robotics is a relatively new technology, not widely applied to the Nuclear Weapons Complex, safeguards and security (S ampersand S) issues related to these systems have not been extensively explored, and no guidance presently exists. The goal of this effort is to help integrate S ampersand S into the design of future A ampersand R systems. Towards this, we first examined existing A ampersand R systems from a security perspective to identify areas of concern and possible solutions to these problems. We then were able to develop generalized S ampersand S guidance and design considerations for automation and robotics

  3. SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    Science.gov (United States)

    Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth

    2015-01-01

    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.

  4. A Voice Operated Tour Planning System for Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Charles V. Smith Iii

    2010-06-01

    Full Text Available Control systems driven by voice recognition software have been implemented before but lacked the context driven approach to generate relevant responses and actions. A partially voice activated control system for mobile robotics is presented that allows an autonomous robot to interact with people and the environment in a meaningful way, while dynamically creating customized tours. Many existing control systems also require substantial training for voice application. The system proposed requires little to no training and is adaptable to chaotic environments. The traversable area is mapped once and from that map a fully customized route is generated to the user

  5. Robotic digital subtraction angiography systems within the hybrid operating room.

    Science.gov (United States)

    Murayama, Yuichi; Irie, Koreaki; Saguchi, Takayuki; Ishibashi, Toshihiro; Ebara, Masaki; Nagashima, Hiroyasu; Isoshima, Akira; Arakawa, Hideki; Takao, Hiroyuki; Ohashi, Hiroki; Joki, Tatsuhiro; Kato, Masataka; Tani, Satoshi; Ikeuchi, Satoshi; Abe, Toshiaki

    2011-05-01

    Fully equipped high-end digital subtraction angiography (DSA) within the operating room (OR) environment has emerged as a new trend in the fields of neurosurgery and vascular surgery. To describe initial clinical experience with a robotic DSA system in the hybrid OR. A newly designed robotic DSA system (Artis zeego; Siemens AG, Forchheim, Germany) was installed in the hybrid OR. The system consists of a multiaxis robotic C arm and surgical OR table. In addition to conventional neuroendovascular procedures, the system was used as an intraoperative imaging tool for various neurosurgical procedures such as aneurysm clipping and spine instrumentation. Five hundred one neurosurgical procedures were successfully conducted in the hybrid OR with the robotic DSA. During surgical procedures such as aneurysm clipping and arteriovenous fistula treatment, intraoperative 2-/3-dimensional angiography and C-arm-based computed tomographic images (DynaCT) were easily performed without moving the OR table. Newly developed virtual navigation software (syngo iGuide; Siemens AG) can be used in frameless navigation and in access to deep-seated intracranial lesions or needle placement. This newly developed robotic DSA system provides safe and precise treatment in the fields of endovascular treatment and neurosurgery.

  6. Automation and robotics technology for intelligent mining systems

    Science.gov (United States)

    Welsh, Jeffrey H.

    1989-01-01

    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.

  7. 3D vision system for intelligent milking robot automation

    Science.gov (United States)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  8. Evaluation of robotic inspection systems at nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.; Eversole, R.E.; Farnstrom, K.A.; Harvey, H.W.; Martin, H.L.

    1984-03-01

    This report presents and demonstrates a cost-effective approach for robotics application (CARA) to surveillance and inspection work in existing nuclear power plants. The CARA was developed by the Remote Technology Corporation to systematically determine the specific surveillance/inspection tasks, worker hazards, and access or equipment placement restraints in each of the many individual rooms or areas at a power plant. Guidelines for designing inspection robotics are included and are based upon the modular arrangement of commercially-available sensors and other components. Techniques for maximizing the cost effectiveness of robotics are emphasized in the report including: selection of low-cost robotic components, minimal installation work in plant areas, portable systems for common use in different areas, and standardized robotic modules. Factors considered as benefits are reduced radiation exposure, lower man-hours, shorter power outage, less waste material, and improved worker safety concerns. A partial demonstration of the CARA methodology to the Sequoyah (PWR) and Browns Ferry (BWR) Plants is provided in the report along with specific examples of robotic installations in high potential areas

  9. Sensor-guided parking system for a carlike robot

    Science.gov (United States)

    Jiang, Kaichum; Seneviratne, L. D.

    1998-07-01

    This paper presents an automated parking strategy for a car- like mobile robot. The study considers general parking manoeuvre cases for a rectangular robot, including parallel parking. The robot is constructed simulating a conventional car, which is subject to non-holonomic constraints and thus only has two degrees of freedom. The parking space is considered as rectangular, and detected by ultrasonic sensors mounted on the robot. A motion planning algorithm develops a collision-free path for parking, taking into account the non- holonomic constraints acting on the car-like robot. A research into general car maneuvers has been conducted and useful results have been achieved. The motion planning algorithm uses these results, combined with configuration space method, to produce a collision-free path for parallel parking, depending on the parking space detected. A control program in the form of a graphical user interface has been developed for users to operate the system with ease. The strategy is implemented on a modified B12 mobile robot. The strategy presented has the potential for application in automobiles.

  10. Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Platt, Robert J., Jr. (Inventor); Quillin, Nathaniel (Inventor); Permenter, Frank Noble (Inventor); Pfeiffer, Joseph (Inventor)

    2014-01-01

    A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.

  11. Remote measurements of radioactivity distribution with BROKK robotic system - 16147

    International Nuclear Information System (INIS)

    Ivanov, Oleg; Danilovich, Alexey; Stepanov, Vyacheslav; Smirnov, Sergey; Potapov, Victor

    2009-01-01

    Robotic system for the remote measurement of radioactivity in the reactor areas was developed. The BROKK robotic system replaces hand-held radiation measuring tools. The system consists of a collimated gamma detector, a standard gamma detector, color CCD video camera and searchlights, all mounted on a robotic platform (BROKK). The signals from the detectors are coupled with the video signals and are transferred to an operator's console via a radio channel or a cable. Operator works at a safe position. The video image of the object with imposed exposure dose rate from the detectors generates an image on the monitor screen, and the images are recorded for subsequent analysis. Preliminary work has started for the decommissioning of a research reactor at the RRC 'Kurchatov Institute'. Results of the remote radioactivity measurements with new system during radiation inspection waste storage of this reactor are presented and discussed. (authors)

  12. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    Science.gov (United States)

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  13. IMPERA: Integrated Mission Planning for Multi-Robot Systems

    Directory of Open Access Journals (Sweden)

    Daniel Saur

    2015-10-01

    Full Text Available This paper presents the results of the project IMPERA (Integrated Mission Planning for Distributed Robot Systems. The goal of IMPERA was to realize an extraterrestrial exploration scenario using a heterogeneous multi-robot system. The main challenge was the development of a multi-robot planning and plan execution architecture. The robot team consists of three heterogeneous robots, which have to explore an unknown environment and collect lunar drill samples. The team activities are described using the language ALICA (A Language for Interactive Agents. Furthermore, we use the mission planning system pRoPhEt MAS (Reactive Planning Engine for Multi-Agent Systems to provide an intuitive interface to generate team activities. Therefore, we define the basic skills of our team with ALICA and define the desired goal states by using a logic description. Based on the skills, pRoPhEt MAS creates a valid ALICA plan, which will be executed by the team. The paper describes the basic components for communication, coordinated exploration, perception and object transportation. Finally, we evaluate the planning engine pRoPhEt MAS in the IMPERA scenario. In addition, we present further evaluation of pRoPhEt MAS in more dynamic environments.

  14. Robotics

    Indian Academy of Sciences (India)

    netic induction to detect an object. The development of ... end effector, inclination of object, magnetic and electric fields, etc. The sensors described ... In the case of a robot, the various actuators and motors have to be modelled. The major ...

  15. Application of Robotic System for Emergency Response in NPP

    International Nuclear Information System (INIS)

    Jeong, Kyung Min; Seo, Yong Chil; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Chang Hoi; Kim, Seung Ho

    2010-01-01

    Increasing energy demand and concerns over climate change make increasing use of nuclear power plant in worldwide. Even though the probability of accident is greatly reduced, safety is the highest priority issue in the nuclear energy industry. Applying highly reliable and conservative 'defense in depth' concepts with the design and construction of NPP, there are very little possibilities with which accidents are occur and radioactive materials are released to environments in NPP. But NPP have prepared with the emergency response procedures and conduct exercises for post-accident circumstance according to the procedures. The application of robots for emergency response task for post-accident in nuclear facilities is not a new concept. Robots have been sent to recover the damaged reactor at Chernobyl where human workers could receive a lifetime dose of radiation in minutes. Based on NRC's TMI-2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. The first robot was lowered into the basement through a hatch and human operators monitoring in a control room drove it through mud, water and debris, capturing the initial post-accident images of the reactor's basement. It was used for several years equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. A second version carried a core sampler to determine the intensity and depth of the radiation that had permeated into the walls. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extendable to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and obtaining remote

  16. Application of Robotic System for Emergency Response in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Min; Seo, Yong Chil; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Chang Hoi; Kim, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Increasing energy demand and concerns over climate change make increasing use of nuclear power plant in worldwide. Even though the probability of accident is greatly reduced, safety is the highest priority issue in the nuclear energy industry. Applying highly reliable and conservative 'defense in depth' concepts with the design and construction of NPP, there are very little possibilities with which accidents are occur and radioactive materials are released to environments in NPP. But NPP have prepared with the emergency response procedures and conduct exercises for post-accident circumstance according to the procedures. The application of robots for emergency response task for post-accident in nuclear facilities is not a new concept. Robots have been sent to recover the damaged reactor at Chernobyl where human workers could receive a lifetime dose of radiation in minutes. Based on NRC's TMI-2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. The first robot was lowered into the basement through a hatch and human operators monitoring in a control room drove it through mud, water and debris, capturing the initial post-accident images of the reactor's basement. It was used for several years equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. A second version carried a core sampler to determine the intensity and depth of the radiation that had permeated into the walls. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extendable to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and

  17. Robotic Services at Home: An Initialization System Based on Robots' Information and User Preferences in Unknown Environments

    Directory of Open Access Journals (Sweden)

    Nor Nur Safwati Mohd

    2014-07-01

    Full Text Available One important issue in robotic services is the construction of the robotic system in the actual environment. In other words, robots must perform environment sensing or have information on real objects, such as location and 3D dimensions, in order to live together with humans. It is crucial to have a mechanism to create an actual robotic system (intelligent space such that there is no initialization framework for the objects in the environment, or we have to perform SLAM and object recognition as well as mapping to generate a useful environmental database. In intelligent space research, normally the objects are attached to various sensors in order to extract the necessary information. However, that approach will highly depend on sensor accuracy and the robotic system will be burdened if there are too many sensors in an environment. Therefore, in this paper we present a system in which a robot can obtain information about an object and even create the furniture layout map for an unknown environment. Our approach is intended to improve home-based robotic services by taking into account the user or individual preferences for the Intelligent Space (IS. With this information, we can create an informational map of the home-based environment for the realization of robot assistance of humans in their daily activities at home, especially for disabled people. The result shows the system design and development in our approach by using model-based system engineering.

  18. An intention driven hand functions task training robotic system.

    Science.gov (United States)

    Tong, K Y; Ho, S K; Pang, P K; Hu, X L; Tam, W K; Fung, K L; Wei, X J; Chen, P N; Chen, M

    2010-01-01

    A novel design of a hand functions task training robotic system was developed for the stroke rehabilitation. It detects the intention of hand opening or hand closing from the stroke person using the electromyography (EMG) signals measured from the hemiplegic side. This training system consists of an embedded controller and a robotic hand module. Each hand robot has 5 individual finger assemblies capable to drive 2 degrees of freedom (DOFs) of each finger at the same time. Powered by the linear actuator, the finger assembly achieves 55 degree range of motion (ROM) at the metacarpophalangeal (MCP) joint and 65 degree range of motion (ROM) at the proximal interphalangeal (PIP) joint. Each finger assembly can also be adjusted to fit for different finger length. With this task training system, stroke subject can open and close their impaired hand using their own intention to carry out some of the daily living tasks.

  19. Implementing real-time robotic systems using CHIMERA II

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1990-01-01

    A description is given of the CHIMERA II programming environment and operating system, which was developed for implementing real-time robotic systems. Sensor-based robotic systems contain both general- and special-purpose hardware, and thus the development of applications tends to be a time-consuming task. The CHIMERA II environment is designed to reduce the development time by providing a convenient software interface between the hardware and the user. CHIMERA II supports flexible hardware configurations which are based on one or more VME-backplanes. All communication across multiple processors is transparent to the user through an extensive set of interprocessor communication primitives. CHIMERA II also provides a high-performance real-time kernel which supports both deadline and highest-priority-first scheduling. The flexibility of CHIMERA II allows hierarchical models for robot control, such as NASREM, to be implemented with minimal programming time and effort.

  20. A study on dynamically reconfigurable robotic systems, 3

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Kawauchi, Yoshio; Buss, M.; Asama, Hajime.

    1990-01-01

    The dynamically reconfigurable robotic system (DRRS) is a new kind of robotic system which is able to reconfigurate itself to an optimal structure depending on the purpose and exvironment. To realize this concept, we proposed the CEBOT (cell-structured robot). Communication is needed in the CEBOT system as follows. When cells are separated, a communication master cell needs to know the other cell's function and position and determine the target cell for docking. Mobile cells should be able to coordinate with other mobile cell. When cells are docked, forming a cell structure/module, a master cell should control the bending joint cell and know which cells the construction is composed of. In this paper, we propose a communication protocol for both cases with optical sensor applicable to CEBOT. Some experimental results are shown by realizing the proposed communication method between cells. (author)

  1. The Remotely Controlled Robot System for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Koh, Kwangill; Lee, Gwangnam; Lim, Kyeyoung

    1993-01-01

    The problem of radioactivity has been our major concern. So, it makes the needs of remotely controlled robot system necessary for maintenance and repair services. Up to now, several foreign companies have been contracted for the maintenance of the steam generators of nuclear power plants in Korea, to acquire its own capability of maintaining the steam generators of it impossible for Korea to acquire its own capability of maintaining the steam generators. In case of emergency, it is difficult to take appropriate steps on its own. In order to resolve the above problems, it seems inevitable to develop the robot system for the inspection and repair of steam generator. This project intends to acquire domestic capabilities of maintaining steam generators, so that this advanced skills could be applied to the related areas. As a result, it will save immense money in the future. the purposes of development of the remotely controlled robot system are : to perform the desired tasks at the polluted area without requiring entry of personnel. to closely inspect the steam generator U-tubes at high speed. to inspect the steam generator intelligently and efficiently under the extreme circumstances where radioactivity problem is very severe. to use for the repair of steam generator tube. Considering from the social and technical standpoint, we can say that the development of the remotely controlled robot system for nuclear power plants resulted in great achievements. From the social standpoint, it should be recognized that domestic robot for nuclear power plant was successfully developed and operator was protected against radioactivity. Also, we advanced our skills in the area of mechanical and control system design for an articulated robot. Using the robot controller in hierarchical structure, it was possible to control the robot remotely. In addition, resolver feedback typed A C servo drive was proven to be sturdy in hazardous environment. Now we are confident that our robot will

  2. Classification of robotic battery service systems for unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    Ngo Tien

    2018-01-01

    Full Text Available Existing examples of prototypes of ground-based robotic platforms used as a landing site for unmanned aerial vehicles are considered. In some cases, they are equipped with a maintenance mechanism for the power supply module. The main requirements for robotic multi-copter battery maintenance systems depending on operating conditions, required processing speed, operator experience and other parameters are analyzed. The key issues remain questions of the autonomous landing of the unmanned aerial vehicles on the platform and approach to servicing battery. The existing prototypes of service robotic platforms are differed in the complexity of internal mechanisms, speed of service, algorithms of joint work of the platform and unmanned aerial vehicles during the landing and maintenance of the battery. The classification of robotic systems for servicing the power supply of multi-copter batteries criteria is presented using the following: the type of basing, the method of navigation during landing, the shape of the landing pad, the method of restoring the power supply module. The proposed algorithmic model of the operation of battery power maintenance system of the multi-copter on ground-based robotic platform during solving the target agrarian problem is described. Wireless methods of battery recovery are most promising, so further development and prototyping of a wireless charging station for multi-copter batteries will be developed.

  3. Design on a Composite Mobile System for Exploration Robot

    Directory of Open Access Journals (Sweden)

    Weiyan Shang

    2016-01-01

    Full Text Available In order to accomplish exploration missions in complex environments, a new type of robot has been designed. By analyzing the characteristics of typical moving systems, a new mobile system which is named wheel-tracked moving system (WTMS has been presented. Then by virtual prototype simulation, the new system’s ability to adapt complex environments has been verified. As the curve of centroid acceleration changes in large amplitude in this simulation, ride performance of this robot has been studied. Firstly, a simplified dynamic model has been established, and then by affecting factors analysis on ride performance, an optimization model for suspension parameters has been presented. Using NSGA-II method, a set of nondominated solutions for suspension parameters has been gotten, and by weighing the importance of the objective function, an optimal solution has been selected to be applied on suspension design. As the wheel-tracked exploration robot has been designed and manufactured, the property test has been conducted. By testing on physical prototype, the robot’s ability to surmount complex terrain has been verified. Design of the wheel-tracked robot will provide a stable platform for field exploration tasks, and in addition, the certain configuration and suspension parameters optimization method will provide reference to other robot designs.

  4. Intelligent Robot-assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Henry Y. K. Lau

    2009-11-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  5. Intelligent Robot-Assisted Humanitarian Search and Rescue System

    Directory of Open Access Journals (Sweden)

    Albert W. Y. Ko

    2009-06-01

    Full Text Available The unprecedented scale and number of natural and man-made disasters in the past decade has urged international emergency search and rescue communities to seek for novel technology to enhance operation efficiency. Tele-operated search and rescue robots that can navigate deep into rubble to search for victims and to transfer critical field data back to the control console has gained much interest among emergency response institutions. In response to this need, a low-cost autonomous mini robot equipped with thermal sensor, accelerometer, sonar, pin-hole camera, microphone, ultra-bright LED and wireless communication module is developed to study the control of a group of decentralized mini search and rescue robots. The robot can navigate autonomously between voids to look for living body heat and can send back audio and video information to allow the operator to determine if the found object is a living human. This paper introduces the design and control of a low-cost robotic search and rescue system based on an immuno control framework developed for controlling decentralized systems. Design and development of the physical prototype and the immunity-based control system are described in this paper.

  6. Robotic Tactile Sensing Technologies and System

    CERN Document Server

    Dahiya, Ravinder S

    2013-01-01

    Future robots are expected to work closely and interact safely with real-world objects and humans alike. Sense of touch is important in this context, as it helps estimate properties such as shape, texture, hardness, material type and many more; provides action related information, such as slip detection; and helps carrying out actions such as rolling an object between fingers without dropping it. This book presents an in-depth description of the solutions available for gathering tactile data, obtaining aforementioned tactile information from the data and effectively using the same in various robotic tasks. Better integration of tactile sensors on a robot’s body is prerequisite for the effective utilization of tactile data. For this reason, the hardware, software and application related issues (and resulting trade-offs) that must be considered to make tactile sensing an effective component of robotic platforms are discussed in-depth.To this end, human touch sensing has also been explored. The design hints co...

  7. Future role of AI/Robotics in physical security

    International Nuclear Information System (INIS)

    Jacobs, J.

    1986-06-01

    Manpower requirements for physical security systems place a heavy burden on operating security budgets. Technology innovations which free personnel or which make security personnel more efficient in carrying out their tasks is an important means of dealing with budget and manpower constraints. It is believed that AI/Robotics will be important technologies to alleviate these problems in the future. There are three types of applications for AI and Robotics technology that may: (1) help security personnel perform their tasks more effectively or efficiently, (2) perform tasks that security personnel would otherwise perform (free up people), and (3) perform tasks that cannot be performed by security personnel at this time. This paper will discuss the various types of security applications that are presently being considered for the above areas and will briefly describe a few examples of the application of this technology. Examples will include ground mobile platforms carrying alarm assessment and/or surveillance sensors and operating either autonomously or with telepresence by a remote operator. An airborne platform performing similar functions will also be discussed. An application of a type of robot sentry that would be fixed and incorporate very simple portable displays will also be described. A third type of robot, an interior robot, that could be used in sensitive or hazardous areas to do detection and assessment functions will be reviewed

  8. Cooperative Three-Robot System for Traversing Steep Slopes

    Science.gov (United States)

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data

  9. Physical Embodiment can Produce Robot Operator’s Pseudo Presence

    Directory of Open Access Journals (Sweden)

    Kazuaki eTanaka

    2015-05-01

    Full Text Available Recent studies have focused on humanoid robots for improving distant communication. When a user talks with a remote conversation partner through a humanoid robot, the user can see the remote partner’s body motions with physical embodiment but not the partner’s current appearance. The physical embodiment existing in the same room with the user is the main feature of humanoid robots, but the effects on social telepresence, i.e. the sense of resembling face-to-face interaction, had not yet been well demonstrated. To find the effects, we conducted an experiment in which subjects talked with a partner through robots and various existing communication media (e.g. voice, avatar and video chats. As a result, we found that the physical embodiment enhances social telepresence. However, in terms of the degree of social telepresence, the humanoid robot remained at the same level as the partner’s live-video, since presenting partner’s appearance also enhances social telepresence. To utilize the anonymity of a humanoid robot, we proposed the way that produces pseudo presence that is the sense of interacting with a remote partner when they are actually interacting with an autonomous robot. Through the second experiment, we discovered that the subjects tended to evaluate the degree of pseudo presence of a remote partner based on their prior experience of watching the partner’s body motions reproduced by a robot. When a subject interacted with an autonomous robot after interacting with a teleoperated robot (i.e., a remote operator that is identical with the autonomous robot, the subjects tended to feel as if they were talking with a remote operator.

  10. System approach to automation and robotization of drivage

    Science.gov (United States)

    Zinov’ev, VV; Mayorov, AE; Starodubov, AN; Nikolaev, PI

    2018-03-01

    The authors consider the system approach to finding ways of no-man drilling and blasting in the face area by means of automation and robotization of operations with a view to reducing injuries in mines. The analysis is carried out in terms of the drilling and blasting technology applied in Makarevskoe Coal Field, Kuznetsk Coal Basin. Within the system-functional approach and using INDEFO procedure, the processes of drilling and blasthole charging are decomposed into related elementary operations. The automation and robotization methods to avoid the presence of miners in the face are found for each operation.

  11. Permanent Magnetic System Design for the Wall-Climbing Robot

    Directory of Open Access Journals (Sweden)

    W. Shen

    2006-01-01

    Full Text Available This paper presents the design and analysis of the permanent magnetic system for a wall-climbing robot with permanent magnetic tracks. Based on the behaviour of gecko lizards, the architecture of the robot was designed and built, including the structure of the adhesion mechanism, the mechanical architecture and the anti-toppling mechanism. The permanent magnetic adhesion mechanism and the tracked locomotion mechanism were employed in this kind of wall-climbing robot. Through static and dynamic force analysis of the robot under different situations, design requirements for the adhesion mechanism were derived. Two different types of structures were put forward for the permanent magnetic units and are further discussed in this paper. These two types of structures are also analysed in detail. In addition, a finite-element method was used to verify the results of magnetic units. Finally, two wall-climbing robots, equipped with different magnetic systems described previously, are explained and their applications are discussed in this paper.

  12. Autonomous navigation system for mobile robots of inspection

    International Nuclear Information System (INIS)

    Angulo S, P.; Segovia de los Rios, A.

    2005-01-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  13. Mobile robots and remote systems in nuclear applications

    International Nuclear Information System (INIS)

    Segovia de los Rios, J. A.; Benitez R, J. S.

    2010-01-01

    Traditionally, the robots have been used in the industry for the colored to the spray, welding, schemed, assemble and handling of materials. However, these devices have had a deep impact in the nuclear industry where the first objective has been to reduce the exhibition and the personnel contact with radioactive materials. Knowing the utility of the mobile robots and remote systems in nuclear facilities in the world, the Department of Automation and Instrumentation of the Instituto Nacional de Investigaciones Nucleares (ININ) has carried out some researches and applications that they have facilitated the work of the researches and professionals of the ININ involved in the handling of radioactive materials, as the system with monorail for the introduction of irradiated materials in a production cell of Iodine-131 and the robot vehicle for the radioactive materials transport TRASMAR (contraction of Transportacion Asistida de Materiales Radiactivos). (Author)

  14. Construction Tele-Robotics System with AR Presentation

    International Nuclear Information System (INIS)

    Ootsubo, K; Kawamura, T; Yamada, H

    2013-01-01

    Tele-Robotics system using bilateral control is an effective tool for task in disaster scenes, and also in extreme environments. The conventional systems are equipped with a few color video cameras captures view of the task field, and their video images are sent to the operator via some network. Usually, the images are captured only from some fixed angles. So the operator cannot obtain intuitively 3D-sense of the task field. In our previous study, we proposed a construction tele-robotics system based on VR presentation. The operator intuits the geometrical states of the robot presented by CG, but the information of the surrounding environment is not included like a video image. So we thought that the task efficiency could be improved by appending the CG image to the video image. In this study, we developed a new presentation system based on augmented reality (AR). In this system, the CG image, which represents 3D geometric information for the task, is overlaid on the video image. In this study, we confirmed the effectiveness of the system experimentally. Additionally, we verified its usefulness to reduction of the communication delay associated with a tele-robotics system.

  15. Towards an Explanation Generation System for Robots: Analysis and Recommendations

    Directory of Open Access Journals (Sweden)

    Ben Meadows

    2016-10-01

    Full Text Available A fundamental challenge in robotics is to reason with incomplete domain knowledge to explain unexpected observations and partial descriptions extracted from sensor observations. Existing explanation generation systems draw on ideas that can be mapped to a multidimensional space of system characteristics, defined by distinctions, such as how they represent knowledge and if and how they reason with heuristic guidance. Instances in this multidimensional space corresponding to existing systems do not support all of the desired explanation generation capabilities for robots. We seek to address this limitation by thoroughly understanding the range of explanation generation capabilities and the interplay between the distinctions that characterize them. Towards this objective, this paper first specifies three fundamental distinctions that can be used to characterize many existing explanation generation systems. We explore and understand the effects of these distinctions by comparing the capabilities of two systems that differ substantially along these axes, using execution scenarios involving a robot waiter assisting in seating people and delivering orders in a restaurant. The second part of the paper uses this study to argue that the desired explanation generation capabilities corresponding to these three distinctions can mostly be achieved by exploiting the complementary strengths of the two systems that were explored. This is followed by a discussion of the capabilities related to other major distinctions to provide detailed recommendations for developing an explanation generation system for robots.

  16. Remote-controlled vision-guided mobile robot system

    Science.gov (United States)

    Ande, Raymond; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of the remote controlled emergency stop and vision systems for an autonomous mobile robot. The remote control provides human supervision and emergency stop capabilities for the autonomous vehicle. The vision guidance provides automatic operation. A mobile robot test-bed has been constructed using a golf cart base. The mobile robot (Bearcat) was built for the Association for Unmanned Vehicle Systems (AUVS) 1997 competition. The mobile robot has full speed control with guidance provided by a vision system and an obstacle avoidance system using ultrasonic sensors systems. Vision guidance is accomplished using two CCD cameras with zoom lenses. The vision data is processed by a high speed tracking device, communicating with the computer the X, Y coordinates of blobs along the lane markers. The system also has three emergency stop switches and a remote controlled emergency stop switch that can disable the traction motor and set the brake. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles.

  17. Development of an advanced intelligent robot navigation system

    International Nuclear Information System (INIS)

    Hai Quan Dai; Dalton, G.R.; Tulenko, J.; Crane, C.C. III

    1992-01-01

    As part of the US Department of Energy's Robotics for Advanced Reactors Project, the authors are in the process of assembling an advanced intelligent robotic navigation and control system based on previous work performed on this project in the areas of computer control, database access, graphical interfaces, shared data and computations, computer vision for positions determination, and sonar-based computer navigation systems. The system will feature three levels of goals: (1) high-level system for management of lower level functions to achieve specific functional goals; (2) intermediate level of goals such as position determination, obstacle avoidance, and discovering unexpected objects; and (3) other supplementary low-level functions such as reading and recording sonar or video camera data. In its current phase, the Cybermotion K2A mobile robot is not equipped with an onboard computer system, which will be included in the final phase. By that time, the onboard system will play important roles in vision processing and in robotic control communication

  18. Coordinated robotic system for civil structural health monitoring

    Directory of Open Access Journals (Sweden)

    Qidwai Uvais

    2017-01-01

    Full Text Available With the recent advances in sensors, robotics, unmanned aerial vehicles, communication, and information technologies, it is now feasible to move towards the vision of ubiquitous cities, where virtually everything throughout the city is linked to an information system through technologies such as wireless networking and radio-frequency identification (RFID tags, to provide systematic and more efficient management of urban systems, including civil and mechanical infrastructure monitoring, to achieve the goal of resilient and sustainable societies. In this proposed system, unmanned aerial vehicle (UAVs is used to ascertain the coarse defect signature using panoramic imaging. This involves image stitching and registration so that a complete view of the surface is seen with reference to a common reference or origin point. Thereafter, crack verification and localization has been done using the magnetic flux leakage (MFL approach which has been performed with the help of a coordinated robotic system. In which the first robot is placed at the top of the structure whereas the second robot is equipped with the designed MFL sensory system. With the initial findings, the proposed system identifies and localize the crack in the given structure.

  19. Robotic Materials Handling in Space: Mechanical Design of the Robot Operated Materials Processing System HitchHiker Experiment

    Science.gov (United States)

    Voellmer, George

    1997-01-01

    The Goddard Space Flight Center has developed the Robot Operated Materials Processing System (ROMPS) that flew aboard STS-64 in September, 1994. The ROMPS robot transported pallets containing wafers of different materials from their storage racks to a furnace for thermal processing. A system of tapered guides and compliant springs was designed to deal with the potential misalignments. The robot and all the sample pallets were locked down for launch and landing. The design of the passive lockdown system, and the interplay between it and the alignment system are presented.

  20. Remote Robotic Cleaning System for Contaminated Hot-Cell Floor

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Park, Jang Jin; Yang, Myung S.; Kwon, Hyo Kjo

    2005-01-01

    The M6 hot-cell of the Irradiated Material Examination Facility at the Korea Atomic Energy Research Institute (KAERI) has been contaminated with spent fuel debris and other radioactive waste due to the DUPIC nuclear fuel development processes. As the hot-cell is active, direct human workers' access, even with protection, to the in-cell is not possible because of the nature of the high radiation level of the spent PWR fuel. A remote robotic cleaning system has been developed for use in a highly radioactive environment of the M6 hot-cell. The remote robotic cleaning system was designed to completely eliminate human interaction with hazardous radioactive contaminants. This robotic cleaning system was also designed to remove contaminants or contaminated smears placed or fixed on the floor of the M6 hot-cell by mopping it in a remote manner. The environmental, functional and mechanical design considerations, control system and capabilities of the developed remote robotic cleaning system are presented

  1. Space station automation and robotics study. Operator-systems interface

    Science.gov (United States)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  2. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs.

  3. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok.

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs

  4. Robotic system for the servicing of the orbiter thermal protection system

    Science.gov (United States)

    Graham, Todd; Bennett, Richard; Dowling, Kevin; Manouchehri, Davoud; Cooper, Eric; Cowan, Cregg

    1994-01-01

    This paper describes the design and development of a mobile robotic system to process orbiter thermal protection system (TPS) tiles. This work was justified by a TPS automation study which identified tile rewaterproofing and visual inspection as excellent applications for robotic automation.

  5. Organizational System for the LEGO WeDo 2.0 Robotics System

    Science.gov (United States)

    Dolecheck, Suzann Hagan; Ewers, Timothy

    2017-01-01

    In this article, we explain an organizational system for the new LEGO Education WeDo 2.0 Core Set used in 4-H robotics; in school enrichment, afterschool, and other youth robotics programs; and by hobbyists. The system presented is for organizing WeDo parts into a translucent parts tray that includes part names and numbers. The article provides…

  6. Task path planning, scheduling and learning for free-ranging robot systems

    Science.gov (United States)

    Wakefield, G. Steve

    1987-01-01

    The development of robotics applications for space operations is often restricted by the limited movement available to guided robots. Free ranging robots can offer greater flexibility than physically guided robots in these applications. Presented here is an object oriented approach to path planning and task scheduling for free-ranging robots that allows the dynamic determination of paths based on the current environment. The system also provides task learning for repetitive jobs. This approach provides a basis for the design of free-ranging robot systems which are adaptable to various environments and tasks.

  7. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Bartos, R.J.

    1994-01-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  8. Robotics and Its Effects on the Educational System of Montenegro

    Science.gov (United States)

    Andic, Branko; Grujicic, Rade; Markuš, Marina Mijanovic

    2015-01-01

    The paper presents the results of research conducted among students of primary and secondary schools in Montenegro about robotics and its place in Montenegrin educational system. Survey was used as a data collecting method in the study and the results were obtained using theoretical analysis. Attitudes of Montenegrin students were compared with…

  9. Interacting with Multi-Robot Systems Using BML

    Science.gov (United States)

    2013-06-01

    presented to the operator. 1. Introduction There are many operations in which a multi-robot system (MRS) can be deployed to support the human forces...within the MRS easily. © Fraunhofer FKIE Communication Architecture ~ ~ Fraunhofer FKIE © Fraunhofer FKIE Battle Mangement Language BML...Fraunhofer FKIE Battle Mangement Language Orders Orders move patrol observe distribute guard recce imagery intelligence gathering

  10. Advanced robotic remote handling system for reactor dismantlement

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Usui, Hozumi; Fujii, Yoshio

    1991-01-01

    An advanced robotic remote handling system equipped with a multi-functional amphibious manipulator has been developed and used to dismantle a portion of radioactive reactor internals of an experimental boiling water reactor in the program of reactor decommissioning technology development carried out by the Japan Atomic Energy Research Institute. (author)

  11. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-02-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  12. An Autonomous Mobile Robotic System for Surveillance of Indoor Environments

    Directory of Open Access Journals (Sweden)

    Donato Di Paola

    2010-03-01

    Full Text Available The development of intelligent surveillance systems is an active research area. In this context, mobile and multi-functional robots are generally adopted as means to reduce the environment structuring and the number of devices needed to cover a given area. Nevertheless, the number of different sensors mounted on the robot, and the number of complex tasks related to exploration, monitoring, and surveillance make the design of the overall system extremely challenging. In this paper, we present our autonomous mobile robot for surveillance of indoor environments. We propose a system able to handle autonomously general-purpose tasks and complex surveillance issues simultaneously. It is shown that the proposed robotic surveillance scheme successfully addresses a number of basic problems related to environment mapping, localization and autonomous navigation, as well as surveillance tasks, like scene processing to detect abandoned or removed objects and people detection and following. The feasibility of the approach is demonstrated through experimental tests using a multisensor platform equipped with a monocular camera, a laser scanner, and an RFID device. Real world applications of the proposed system include surveillance of wide areas (e.g. airports and museums and buildings, and monitoring of safety equipment.

  13. Stormram 4: An MR Safe Robotic System for Breast Biopsy

    NARCIS (Netherlands)

    Groenhuis, Vincent; Siepel, Françoise Jeanette; Veltman, Jeroen; van Zandwijk, Jordy Kristian; Stramigioli, Stefano

    2018-01-01

    Suspicious lesions in the breast that are only visible on magnetic resonance imaging (MRI) need to be biopsied under MR guidance with high accuracy and efficiency for accurate diagnosis. The aim of this study is to present a novel robotic system, the Stormram 4, and to perform preclinical tests in

  14. SVM-Based Control System for a Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Foudil Abdessemed

    2012-12-01

    Full Text Available Real systems are usually non-linear, ill-defined, have variable parameters and are subject to external disturbances. Modelling these systems is often an approximation of the physical phenomena involved. However, it is from this approximate system of representation that we propose - in this paper - to build a robust control, in the sense that it must ensure low sensitivity towards parameters, uncertainties, variations and external disturbances. The computed torque method is a well-established robot control technique which takes account of the dynamic coupling between the robot links. However, its main disadvantage lies on the assumption of an exactly known dynamic model which is not realizable in practice. To overcome this issue, we propose the estimation of the dynamics model of the nonlinear system with a machine learning regression method. The output of this regressor is used in conjunction with a PD controller to achieve the tracking trajectory task of a robot manipulator. In cases where some of the parameters of the plant undergo a change in their values, poor performance may result. To cope with this drawback, a fuzzy precompensator is inserted to reinforce the SVM computed torque-based controller and avoid any deterioration. The theory is developed and the simulation results are carried out on a two-degree of freedom robot manipulator to demonstrate the validity of the proposed approach.

  15. From Leonardo to da Vinci: the history of robot-assisted surgery in urology.

    Science.gov (United States)

    Yates, David R; Vaessen, Christophe; Roupret, Morgan

    2011-12-01

    What's known on the subject? and What does the study add? Numerous urological procedures can now be performed with robotic assistance. Though not definitely proven to be superior to conventional laparoscopy or traditional open surgery in the setting of a randomised trial, in experienced centres robot-assisted surgery allows for excellent surgical outcomes and is a valuable tool to augment modern surgical practice. Our review highlights the depth of history that underpins the robotic surgical platform we utilise today, whilst also detailing the current place of robot-assisted surgery in urology in 2011. The evolution of robots in general and as platforms to augment surgical practice is an intriguing story that spans cultures, continents and centuries. A timeline from Yan Shi (1023-957 bc), Archytas of Tarentum (400 bc), Aristotle (322 bc), Heron of Alexandria (10-70 ad), Leonardo da Vinci (1495), the Industrial Revolution (1790), 'telepresence' (1950) and to the da Vinci(®) Surgical System (1999), shows the incredible depth of history and development that underpins the modern surgical robot we use to treat our patients. Robot-assisted surgery is now well-established in Urology and although not currently regarded as a 'gold standard' approach for any urological procedure, it is being increasingly used for index operations of the prostate, kidney and bladder. We perceive that robotic evolution will continue infinitely, securing the place of robots in the history of Urological surgery. Herein, we detail the history of robots in general, in surgery and in Urology, highlighting the current place of robot-assisted surgery in radical prostatectomy, partial nephrectomy, pyeloplasty and radical cystectomy. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  16. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  17. Control system design for robotic underground storage tank inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  18. Developing and modeling of voice control system for prosthetic robot arm in medical systems

    Directory of Open Access Journals (Sweden)

    Koksal Gundogdu

    2018-04-01

    Full Text Available In parallel with the development of technology, various control methods are also developed. Voice control system is one of these control methods. In this study, an effective modelling upon mathematical models used in the literature is performed, and a voice control system is developed in order to control prosthetic robot arms. The developed control system has been applied on four-jointed RRRR robot arm. Implementation tests were performed on the designed system. As a result of the tests; it has been observed that the technique utilized in our system achieves about 11% more efficient voice recognition than currently used techniques in the literature. With the improved mathematical modelling, it has been shown that voice commands could be effectively used for controlling the prosthetic robot arm. Keywords: Voice recognition model, Voice control, Prosthetic robot arm, Robotic control, Forward kinematic

  19. Control system for a multi-joint inspection robot

    International Nuclear Information System (INIS)

    Asano, K.

    1984-01-01

    Remote systems, in which a human operator in a safe zone determines pertinent circumstances and makes decisions on work procedures, while a robot does direct work in hazardous environments, have been becoming more and more important in accordance with the increase in nuclear facilities. In such remote systems, to perform tasks which are merely ambiguously defined beforehand, it is very important that the systems have the ability to execute desired tasks easily and immediately without any programming or teaching work on the spot. A control system, named Self Approach System (SAS), for a multi-joint inspection robot has been developed as a key component in a remote inspection system for use in physically difficult or dangerous environments. It has 8 joints and 17 degrees-of-freedom and was designed taking many of the above points into account. This paper describes SAS details

  20. Industrial robots with sensors and object recognition systems

    International Nuclear Information System (INIS)

    Koehler, G.W.

    1978-01-01

    The previous development and the present status of industrial robots equipped with sensors and object recognition systems are described. This type of equipment allows flexible automation of many work stations in which industrial robots of the first generation, which are unable to react to changes in their respective environments automatically, apart from their being linked to other machines, could not be used because of the prevailing boundary conditions. A classification system facilitates an overview of the large number of technical solutions now available. The manifold possibilities of application of this equipment are demonstrated by a number of examples. As a result of the present state of development of the components required, and in view also of economic reasons, there is a trend towards special designs for a small number of specific purposes and towards stripped-down object recognition. systems with limited applications. A fitting description is offered of the term 'robot', which is now being used in various contexts, and an indication is made of the capabilities and components a machine to be called robot should have as a minimum. Finally, reference is made to some potential lines of development serving to reduce expediture and accelerate recognition processes. (orig.) [de

  1. An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems.

    Science.gov (United States)

    Timmis, J; Ismail, A R; Bjerknes, J D; Winfield, A F T

    2016-08-01

    Swarm robotics is concerned with the decentralised coordination of multiple robots having only limited communication and interaction abilities. Although fault tolerance and robustness to individual robot failures have often been used to justify the use of swarm robotic systems, recent studies have shown that swarm robotic systems are susceptible to certain types of failure. In this paper we propose an approach to self-healing swarm robotic systems and take inspiration from the process of granuloma formation, a process of containment and repair found in the immune system. We use a case study of a swarm performing team work where previous works have demonstrated that partially failed robots have the most detrimental effect on overall swarm behaviour. We have developed an immune inspired approach that permits the recovery from certain failure modes during operation of the swarm, overcoming issues that effect swarm behaviour associated with partially failed robots. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. "Excuse me, where's the registration desk?" Report on Integrating Systems for the Robot Challenge AAAI 2002

    National Research Council Canada - National Science Library

    Perzanowski, Dennis; Schultz, Alan C; Adams, William; Bugajska, Magda; Abramson, M; MacMahon, M; Atrash, A; Coblenz, M

    2002-01-01

    ...., and the Naval Research Laboratory -- collaborated and integrated their various robotic systems and interfaces to attempt The Robot Challenge held at the AAAI 2002 annual conference in Edmonton, Alberta...

  3. Design and Evaluation of a DIY Construction System for Educational Robot Kits

    Science.gov (United States)

    Vandevelde, Cesar; Wyffels, Francis; Ciocci, Maria-Cristina; Vanderborght, Bram; Saldien, Jelle

    2016-01-01

    Building a robot from scratch in an educational context can be a challenging prospect. While a multitude of projects exist that simplify the electronics and software aspects of a robot, the same cannot be said for construction systems for robotics. In this paper, we present our efforts to create a low-cost do-it-yourself construction system for…

  4. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens

    This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport...

  5. Robotic radical perineal cystectomy and extended pelvic lymphadenectomy: initial investigation using a purpose-built single-port robotic system.

    Science.gov (United States)

    Maurice, Matthew J; Kaouk, Jihad H

    2017-12-01

    To assess the feasibility of radical perineal cystoprostatectomy using the latest generation purpose-built single-port robotic surgical system. In two male cadavers the da Vinci ® SP1098 Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) was used to perform radical perineal cystoprostatectomy and bilateral extended pelvic lymph node dissection (ePLND). New features in this model include enhanced high-definition three-dimensional optics, improved instrument manoeuvrability, and a real-time instrument tracking and guidance system. The surgery was accomplished through a 3-cm perineal incision via a novel robotic single-port system, which accommodates three double-jointed articulating robotic instruments, an articulating camera, and an accessory laparoscopic instrument. The primary outcomes were technical feasibility, intraoperative complications, and total robotic operative time. The cases were completed successfully without conversion. There were no accidental punctures or lacerations. The robotic operative times were 197 and 202 min. In this preclinical model, robotic radical perineal cystoprostatectomy and ePLND was feasible using the SP1098 robotic platform. Further investigation is needed to assess the feasibility of urinary diversion using this novel approach and new technology. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  6. A Robotic System for Inspection and Repair of Small Diameter Pipelines

    Directory of Open Access Journals (Sweden)

    S. A. Vorotnikov

    2015-01-01

    Full Text Available This paper deals with the construction and control system of miniature robotic system that is designed to move and make inspection inside small diameter pipelines. It gives an overview of ways to move a microsize robotic system inside the small diameter pipe. The proposed design consists of information module and three traction modules, including modules for fixing, linear moving and angular positioning. This paper describes the design and operation of a robotic system and its different modules. Also are shown the structure of the robot control system, the basic calculations of construct and some simulation results of the individual modules of the robot.

  7. Intelligent control system for nuclear power plant mobile robot

    International Nuclear Information System (INIS)

    Koenig, A.; Lecoeur-Taibi, I.; Crochon, E.; Vacherand, F.

    1991-01-01

    In order to fully optimize the efficiency of the perception and navigation components available on a mobile robot, the upper level of a mobile robot control requires intelligence support to unload the work of the teleoperator. This knowledge-based system has to manage a priori data such as the map of the workspace, the mission, the characteristics of sensors and robot, but also, the current environment state and the running mission. It has to issue a plan to drive the sensors to focus on relevant objects or to scan the environment and to select the best algorithms depending on the current situation. The environment workspace is a nuclear power plant building. The teleoperated robot is a mobile wheeled or legged vehicle that moves inside the different floors of the building. There are three types of mission: radio-activity survey, inspection and intervention. To perform these goals the robot must avoid obstacles, pass through doors, possibly climb stairs and recognize valves and pipes. The perception control system has to provide the operator with a synthetic view of the surroundings. It manages background tasks such as obstacle detection and free space map building, and specific tasks such as beacon recognition for odometry relocalization and valve detection for maintenance. To do this, the system solves perception resources conflicts, taking into account the current states of the sensors and the current conditions such as lightness or darkness, cluttered scenes, sensor failure. A perception plan is issued from the mission goals, planned path, relocalization requirements and available perception resources. Basically, the knowledge-based system is implemented on a blackboard architecture which includes two parts: a top-down planning part and a bottom-up perception part. The results of the perception are continuously sent to the operator who can trigger new perception actions. (author)

  8. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2006-09-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  9. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2008-11-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  10. A remote assessment system with a vision robot and wearable sensors.

    Science.gov (United States)

    Zhang, Tong; Wang, Jue; Ren, Yumiao; Li, Jianjun

    2004-01-01

    This paper describes an ongoing researched remote rehabilitation assessment system that has a 6-freedom double-eyes vision robot to catch vision information, and a group of wearable sensors to acquire biomechanical signals. A server computer is fixed on the robot, to provide services to the robot's controller and all the sensors. The robot is connected to Internet by wireless channel, and so do the sensors to the robot. Rehabilitation professionals can semi-automatically practise an assessment program via Internet. The preliminary results show that the smart device, including the robot and the sensors, can improve the quality of remote assessment, and reduce the complexity of operation at a distance.

  11. DEVELOPMENT OF TRAJECTORY CONTROL SYSTEM FOR THE OMNIDIRECTIONAL MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    Y. A. Kapitanyuk

    2014-03-01

    Full Text Available The article deals with a trajectory control system development for the omnidirectional mobile robot. This kind of robots gives the possibility to control separately each degree of freedom due to special design of the wheels, which greatly facilitates the solution of the spatial control tasks and makes it possible to focus directly on the development of algorithms. Control law synthesis is based on kinematic model of a solid body on a plane. Desired trajectory is defined as a smooth implicit function in a fixed coordinate system. Procedure of control design is represented by using a differential-geometric method of nonlinear transformation of the original model to the task-oriented form, which describes the longitudinal motion along a trajectory and orthogonal deviation. Proportional controllers with direct compensation of nonlinear terms are synthesized for the transformed model. Main results are represented by nonlinear control algorithms and experimental data. Practical implementation of considered control laws for the Robotino mobile robot by Festo Didactics Company is done for illustration of this approach workability. The cases of straight line motion and movement along a circle are represented as desirable trajectories, and the majority of practical tasks for mobile robots control can be implemented by their combination.

  12. Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 and Smart Autonomous Sand-Swimming Excavator

    Science.gov (United States)

    Sandy, Michael

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.

  13. Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model

    International Nuclear Information System (INIS)

    Choi, Seong Hoon; Park, Tae Won; Lee, Soo Ho; Jung, Sung Pil; Jun, Kab Jin; Yoon, J. W.

    2010-01-01

    Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components

  14. Research on Kinematic Trajectory Simulation System of KUKA Arc Welding Robot System

    Science.gov (United States)

    Hu, Min

    2017-10-01

    In this paper, the simulation trajectory simulation of KUKA arc welding robot system is realized by means of VC platform. It is used to realize the teaching of professional training of welding robot in middle school. It provides teaching resources for the combination of work and study and integration teaching, which enriches the content of course teaching.

  15. Development of Advanced Robotic Hand System for space application

    Science.gov (United States)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  16. Robotic system and method for manufacturing of objects

    DEFF Research Database (Denmark)

    2017-01-01

    The present disclosure relates to a method and a system for manufacturing a mould (17) for creation of complex objects, such as concrete objects, by controlling and moving two end effectors (1) of a robotic system, the two end effectors (1) having a flexible cutting element (3) attached to and ex......The present disclosure relates to a method and a system for manufacturing a mould (17) for creation of complex objects, such as concrete objects, by controlling and moving two end effectors (1) of a robotic system, the two end effectors (1) having a flexible cutting element (3) attached...... to and extending between the two end effectors (1), the method comprising the steps of: defining at least one surface (8) representing the inner surface of the mould (17); dividing the surface (8) into a number of segments represented by planar curves (9, 11, 12) on the surface (8); for each planar curve...

  17. Interactive Rhythm Learning System by Combining Tablet Computers and Robots

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chou

    2017-03-01

    Full Text Available This study proposes a percussion learning device that combines tablet computers and robots. This device comprises two systems: a rhythm teaching system, in which users can compose and practice rhythms by using a tablet computer, and a robot performance system. First, teachers compose the rhythm training contents on the tablet computer. Then, the learners practice these percussion exercises by using the tablet computer and a small drum set. The teaching system provides a new and user-friendly score editing interface for composing a rhythm exercise. It also provides a rhythm rating function to facilitate percussion training for children and improve the stability of rhythmic beating. To encourage children to practice percussion exercises, a robotic performance system is used to interact with the children; this system can perform percussion exercises for students to listen to and then help them practice the exercise. This interaction enhances children’s interest and motivation to learn and practice rhythm exercises. The results of experimental course and field trials reveal that the proposed system not only increases students’ interest and efficiency in learning but also helps them in understanding musical rhythms through interaction and composing simple rhythms.

  18. The Oak Ridge National Laboratory's Robotics and Intelligent Systems Program

    International Nuclear Information System (INIS)

    Meacham, S.A.

    1987-01-01

    The goals of the newly formed Robotics and Intelligent Systems Program are discussed. The application of the remote systems technology developed by the Consolidated Fuel Reprocessing Program for the Department of Energy is presented. The activities (satellite refueling and space station truss assembly) with the National Aeronautics and Space Administration are presented in a videotape format with narration by the presenter. The goals of technology transfer to the private sector and the potential positive impact on the community conclude the oral presentation

  19. Application of Robotic and Mechatronic Systems to Neurorehabilitation

    OpenAIRE

    Mazzoleni, Stefano; Dario, Paolo; Carrozza, Maria Chiara; Guglielmelli, Eugenio

    2010-01-01

    Robotic and mechatronic systems presented in this chapter are increasingly used in hospitals and rehabilitation centres as technological tools for the clinical practice. These systems are used to administer intensive and prolonged treatments aimed at achieving the functional recovery of people affected by neurological impairments, in sub-acute and chronic stage, with a potential improvement of the cost/effectiveness ratio. They can evaluate the effects of rehabilitation treatments in a quanti...

  20. Robotic control architecture development for automated nuclear material handling systems

    International Nuclear Information System (INIS)

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies

  1. The development of robotic systems for hazardous environments

    International Nuclear Information System (INIS)

    Collis-Smith, J.A.; Schilling, R.

    1996-01-01

    The need for teleoperated and robotic systems is growing. This growth is driven by several factors such as - statutory requirements; risk reduction and economic pressures. Robotic Systems are needed to provide reliable, economic means to perform surveillance, quantitative inspection, repairs, upgrading and eventual dismantling for decommissioning tasks. The range of potential applications has widened and there is now significant technical cross-fertilisation between developments in diverse environments. The typical robotic system consists of the emplacement equipment, the dextrous arm, the tool and the controls. The control system provides the operator with an integrated interface between the principal components, so that the operator can concentrate fully at the high level on the specific task in hand, while the control system and its software performs all the detail functions within the subparts of the integrated system. This paper develops this underlying logic, and is illustrated by experience drawn from a variety of examples in different environments to show the present state of the art in GEC Alsthom and suggest the way ahead in the near-term future. (Author)

  2. Designing and implementing nervous system simulations on LEGO robots.

    Science.gov (United States)

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  3. Development of an integrated closed loop control system with virtual reality monitoring for Prototype Robotic Articulated System (PRAS)

    International Nuclear Information System (INIS)

    Rastogi, Naveen; Dutta, Pramit; Gotewal, K.K.

    2015-01-01

    The Prototype Robotic Articulated System (PRAS) is a servo driven 4 degrees of freedom robotic arm capable of handling of upto 5 kg payload. A virtual reality based monitoring application has been developed in blender and was intergrated with the control system to read the joint values of the robotic arm at 10Hz and update the CAD model to visualize the robotic operations remotely. This paper presents the design details and implementation results of the integrated control system for PRAS

  4. A cognitive robotics system: the symbolic and sub-symbolic robotic intelligence control system (SS-RICS)

    Science.gov (United States)

    Kelley, Troy D.; Avery, Eric

    2010-04-01

    This paper will detail the progress on the development of the Symbolic and Subsymbolic Robotics Intelligence Control System (SS-RICS). The system is a goal oriented production system, based loosely on the cognitive architecture, the Adaptive Control of Thought-Rational (ACT-R) some additions and changes. We have found that in order to simulate complex cognition on a robot, many aspects of cognition (long term memory (LTM), perception) needed to be in place before any generalized intelligent behavior can be produced. In working with ACT-R, we found that it was a good instantiation of working memory, but that we needed to add other aspects of cognition including LTM and perception to have a complete cognitive system. Our progress to date will be noted and the challenges that remain will be addressed.

  5. Development and validation of a composite scoring system for robot-assisted surgical training--the Robotic Skills Assessment Score.

    Science.gov (United States)

    Chowriappa, Ashirwad J; Shi, Yi; Raza, Syed Johar; Ahmed, Kamran; Stegemann, Andrew; Wilding, Gregory; Kaouk, Jihad; Peabody, James O; Menon, Mani; Hassett, James M; Kesavadas, Thenkurussi; Guru, Khurshid A

    2013-12-01

    A standardized scoring system does not exist in virtual reality-based assessment metrics to describe safe and crucial surgical skills in robot-assisted surgery. This study aims to develop an assessment score along with its construct validation. All subjects performed key tasks on previously validated Fundamental Skills of Robotic Surgery curriculum, which were recorded, and metrics were stored. After an expert consensus for the purpose of content validation (Delphi), critical safety determining procedural steps were identified from the Fundamental Skills of Robotic Surgery curriculum and a hierarchical task decomposition of multiple parameters using a variety of metrics was used to develop Robotic Skills Assessment Score (RSA-Score). Robotic Skills Assessment mainly focuses on safety in operative field, critical error, economy, bimanual dexterity, and time. Following, the RSA-Score was further evaluated for construct validation and feasibility. Spearman correlation tests performed between tasks using the RSA-Scores indicate no cross correlation. Wilcoxon rank sum tests were performed between the two groups. The proposed RSA-Score was evaluated on non-robotic surgeons (n = 15) and on expert-robotic surgeons (n = 12). The expert group demonstrated significantly better performance on all four tasks in comparison to the novice group. Validation of the RSA-Score in this study was carried out on the Robotic Surgical Simulator. The RSA-Score is a valid scoring system that could be incorporated in any virtual reality-based surgical simulator to achieve standardized assessment of fundamental surgical tents during robot-assisted surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Design and Development of Mechanical Structure and Control System for Tracked Trailing Mobile Robot

    OpenAIRE

    Hongchuan Xu; Jianxing Ren; Rui Zhu; Zhiwei Chen

    2013-01-01

    Along with the science and technology unceasing progress, the uses of tracing robots become more and more widely. Tracked tracing robot was adopted as the research object in this paper, mechanical structure and control system of robot was designed and developmented. In mechanical structure design part, structure designed and positioned  were completed, including design of robot body, wheel, underpan, transmission structure and the positioning of batteries, control panel, sensors, etc, and the...

  7. The da vinci robot system eliminates multispecialty surgical trainees' hand dominance in open and robotic surgical settings.

    Science.gov (United States)

    Badalato, Gina M; Shapiro, Edan; Rothberg, Michael B; Bergman, Ari; RoyChoudhury, Arindam; Korets, Ruslan; Patel, Trushar; Badani, Ketan K

    2014-01-01

    Handedness, or the inherent dominance of one hand's dexterity over the other's, is a factor in open surgery but has an unknown importance in robot-assisted surgery. We sought to examine whether the robotic surgery platform could eliminate the effect of inherent hand preference. Residents from the Urology and Obstetrics/Gynecology departments were enrolled. Ambidextrous and left-handed subjects were excluded. After completing a questionnaire, subjects performed three tasks modified from the Fundamentals of Laparoscopic Surgery curriculum. Tasks were performed by hand and then with the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, California). Participants were randomized to begin with using either the left or the right hand, and then switch. Left:right ratios were calculated from scores based on time to task completion. Linear regression analysis was used to determine the significance of the impact of surgical technique on hand dominance. Ten subjects were enrolled. The mean difference in raw score performance between the right and left hands was 12.5 seconds for open tasks and 8 seconds for robotic tasks (Probot tasks, respectively (Probotic and open approaches for raw time scores (Phand, prior robotic experience, and comfort level. These findings remain to be validated in larger cohorts. The robotic technique reduces hand dominance in surgical trainees across all task domains. This finding contributes to the known advantages of robotic surgery.

  8. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Science.gov (United States)

    Yap, Hwa Jen; Taha, Zahari; Dawal, Siti Zawiah Md; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  9. Application of GPS systems on a mobile robot

    Science.gov (United States)

    Cao, Peter; Saxena, Mayank; Tedder, Maurice; Mischalske, Steve; Hall, Ernest L.

    2001-10-01

    The purpose of this paper is to describe the use of Global Positioning Systems (GPS) as geographic information and navigational system for a ground based mobile robot. Several low cost wireless systems are now available for a variety of innovative automobile applications including location, messaging and tracking and security. Experiments were conducted with a test bed mobile robot, Bearcat II, for point-to-point motion using a Motorola GPS in June 2001. The Motorola M12 Oncore GPS system is connected to the Bearcat II main control computer through a RS232 interface. A mapping program is used to define a desired route. Then GPS information may be displayed for verification. However, the GPS information is also used to update the control points of the mobile robot using a reinforcement learning method. Local position updates are also used when found in the environment. The significance of the method is in extending the use of GPS to local vehicle control that requires more resolution that is available from the raw data using the adaptive control method.

  10. Automating the control of robotic systems in unstructured environments

    International Nuclear Information System (INIS)

    Harrigan, R.W.

    1993-01-01

    The US Department Energy's Office of Technology Development has sponsored the development of generic robotics technologies for application to a wide range of remote systems. Of primary interest is the development of technologies which enable faster, safer, and cheaper cleanup of hazardous waste sites than is possible using conventional human contact or remote manual approaches. The development of model-based sensor-directed robot control approaches supports these goals by developing modular control technologies which reduce the time and cost of development by allowing reuse of control system software. In addition, the use of computer models improves the safety of remote site cleanup by allowing automated errors detection and recovery while reducing the time for technology development

  11. THE ARCHITECTURE OF THE REMOTE CONTROL SYSTEM OF ROBOTICS OBJECTS

    Directory of Open Access Journals (Sweden)

    S.V. Shavetov

    2014-03-01

    Full Text Available The paper deals with the architecture for the universal remote control system of robotics objects over the Internet global network. Control objects are assumed to be located at a considerable distance from a reference device or end-users. An overview of studies on the subject matter of remote control of technical objects is given. A structure chart of the architecture demonstrating the system usage in practice is suggested. Server software is considered that makes it possible to work with technical objects connected to the server as with a serial port and organize a stable tunnel connection between the controlled object and the end-user. The proposed architecture has been successfully tested on mobile robots Parallax Boe-Bot and Lego Mindstorms NXT. Experimental data about values of time delays are given demonstrating the effectiveness of the considered architecture.

  12. The Effects O Artificial Intelligence And Robotic Systems On Librarianship

    Directory of Open Access Journals (Sweden)

    Müslüm Yıldız

    2018-03-01

    Full Text Available With Industry 4.0, smart robots will be involved in all areas of our lives, and systems using technology control instead of work force will dominate. In this way, there will be a more qualified workforce with a high level of education, rather than workers with low-skilled jobs. According to recent studies, librarianship has been identified as one of the professions that could disappear in the near future due to this rapidly advancing technology. In this study, the possible effects of artificial intelligence and robotic systems on the profession of librarianship/information and document management were evaluated considering the findings of research conducted at Oxford University in 2017 and it was emphasized that in the near future, the only way to continue in this profession would be to keep the professional knowledge up to date as well as to follow the technological developments in areas such as computers, communication, and the internet.

  13. Robot calibration with a photogrammetric on-line system using reseau scanning cameras

    Science.gov (United States)

    Diewald, Bernd; Godding, Robert; Henrich, Andreas

    1994-03-01

    The possibility for testing and calibration of industrial robots becomes more and more important for manufacturers and users of such systems. Exacting applications in connection with the off-line programming techniques or the use of robots as measuring machines are impossible without a preceding robot calibration. At the LPA an efficient calibration technique has been developed. Instead of modeling the kinematic behavior of a robot, the new method describes the pose deviations within a user-defined section of the robot's working space. High- precision determination of 3D coordinates of defined path positions is necessary for calibration and can be done by digital photogrammetric systems. For the calibration of a robot at the LPA a digital photogrammetric system with three Rollei Reseau Scanning Cameras was used. This system allows an automatic measurement of a large number of robot poses with high accuracy.

  14. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  15. Artefact: the division of artificial intelligence, robotics and expert systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferber, J

    1983-06-01

    The history of artificial intelligence is traced from its beginnings in 1956 to its current coverage of the areas of problem-solving, expert systems and games, natural-language processing, robotics, picture and speech recognition, automatic programming, and computer-aided design and instruction. Each area is reviewed in turn, programming languages and techniques are discussed, and both apocalyptic forecasts and underestimates of future developments are criticised.

  16. Wet chemical analysis with a laboratory robotic system

    International Nuclear Information System (INIS)

    Burkett, S.D.; Dyches, G.M.; Spencer, W.A.

    1984-01-01

    Emphasis on laboratory automation has increased in recent years. The desire to improve analytical reliability, increase productivity, and reduce exposure of personnel to hazardous materials has been fundamental to this increase. The Savannah River Laboratory (SRL) performs research and development on nuclear materials. Development of methods to increase efficiency and safety and to reduce exposure of personnel to radioactive materials is an ongoing process at our site. Robotic systems offer a potentially attractive way to achieve these goals

  17. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    Science.gov (United States)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  18. A real time tracking vision system and its application to robotics

    International Nuclear Information System (INIS)

    Inoue, Hirochika

    1994-01-01

    Among various sensing channels the vision is most important for making robot intelligent. If provided with a high speed visual tracking capability, the robot-environment interaction becomes dynamic instead of static, and thus the potential repertoire of robot behavior becomes very rich. For this purpose we developed a real-time tracking vision system. The fundamental operation on which our system based is the calculation of correlation between local images. Use of special chip for correlation and the multi-processor configuration enable the robot to track more than hundreds cues in full video rate. In addition to the fundamental visual performance, applications for robot behavior control are also introduced. (author)

  19. Graphical analysis of power systems for mobile robotics

    Science.gov (United States)

    Raade, Justin William

    The field of mobile robotics places stringent demands on the power system. Energetic autonomy, or the ability to function for a useful operation time independent of any tether, refueling, or recharging, is a driving force in a robot designed for a field application. The focus of this dissertation is the development of two graphical analysis tools, namely Ragone plots and optimal hybridization plots, for the design of human scale mobile robotic power systems. These tools contribute to the intuitive understanding of the performance of a power system and expand the toolbox of the design engineer. Ragone plots are useful for graphically comparing the merits of different power systems for a wide range of operation times. They plot the specific power versus the specific energy of a system on logarithmic scales. The driving equations in the creation of a Ragone plot are derived in terms of several important system parameters. Trends at extreme operation times (both very short and very long) are examined. Ragone plot analysis is applied to the design of several power systems for high-power human exoskeletons. Power systems examined include a monopropellant-powered free piston hydraulic pump, a gasoline-powered internal combustion engine with hydraulic actuators, and a fuel cell with electric actuators. Hybrid power systems consist of two or more distinct energy sources that are used together to meet a single load. They can often outperform non-hybrid power systems in low duty-cycle applications or those with widely varying load profiles and long operation times. Two types of energy sources are defined: engine-like and capacitive. The hybridization rules for different combinations of energy sources are derived using graphical plots of hybrid power system mass versus the primary system power. Optimal hybridization analysis is applied to several power systems for low-power human exoskeletons. Hybrid power systems examined include a fuel cell and a solar panel coupled with

  20. Embedded Visual System and its Applications on Robots

    CERN Document Server

    Xu, De

    2010-01-01

    Embedded vision systems such as smart cameras have been rapidly developed recently. Vision systems have become smaller and lighter, but their performance has improved. The algorithms in embedded vision systems have their specifications limited by frequency of CPU, memory size, and architecture. The goal of this e-book is to provide a an advanced reference work for engineers, researchers and scholars in the field of robotics, machine vision, and automation and to facilitate the exchange of their ideas, experiences and views on embedded vision system models. The effectiveness for all methods is

  1. NUClear: A Loosely Coupled Software Architecture for Humanoid Robot Systems

    Directory of Open Access Journals (Sweden)

    Trent eHouliston

    2016-04-01

    Full Text Available This paper discusses the design and interface of NUClear, a new hybrid message-passing architecture for embodied humanoid robotics. NUClear is modular, low latency and promotes functional and expandable software design. It greatly reduces the latency for messages passed between modules as the messages routes are established at compile time. It also reduces the number of functions that must be written using a system called co-messages which aids in dealing with multiple simultaneous data. NUClear has primarily been evaluated on a humanoid robotic soccer platform and on a robotic boat platform, with evaluations showing that NUClear requires fewer callbacks and cache variables over existing message-passing architectures. NUClear does have limitations when applying these techniques on multi-processed systems. It performs best in lower power systems where computational resources are limited. Future work will focus on applying the architecture to new platforms, including a larger form humanoid platform and a virtual reality platform and further evaluating the impact of the novel techniques introduced.

  2. Optimizing a mobile robot control system using GPU acceleration

    Science.gov (United States)

    Tuck, Nat; McGuinness, Michael; Martin, Fred

    2012-01-01

    This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.

  3. Autonomous Monitoring Aerial Robot System for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji H.; Gu, Beom W; Thai, Van X.; Rim, C. T. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, autonomous monitoring aerial robot system (AMARS), which includes omnidirectional wireless charging platform, aerial robot, landing coils and a battery management board, is proposed to guarantee automatic monitoring of NPPs. The prototype of the system is fabricated, and omnidirectional charging of the system is experimentally validated with 1 C charging state. AR(Aerial Robots)s are essential for NPP accident management because human cannot access to the accident site due to the risks of unexpected explosions, collapses, and high level of radioactive contaminants. Moreover, ARs can support operators to manage normal operation of NPPs built in harsh environment of high temperature and humidity such as UAE Barakah NPP. Because these ARs usually have very low energy capacity, however, the operation time of ARs is less than 30 minutes and should be recharged regularly by human powers, which makes it impossible to monitor NPPs by ARs automatically. In this paper, the concept of AMARS has been proposed and its performance was successfully verified with a fabricated prototype. The charging state of the on board battery in AR was measured as 0.5 C with the induced voltage of 18.6 V, which is well matched to the designed induced voltage when the AR was placed on the edge of the wireless charging platform.

  4. Surgical bedside master console for neurosurgical robotic system.

    Science.gov (United States)

    Arata, Jumpei; Kenmotsu, Hajime; Takagi, Motoki; Hori, Tatsuya; Miyagi, Takahiro; Fujimoto, Hideo; Kajita, Yasukazu; Hayashi, Yuichiro; Chinzei, Kiyoyuki; Hashizume, Makoto

    2013-01-01

    We are currently developing a neurosurgical robotic system that facilitates access to residual tumors and improves brain tumor removal surgical outcomes. The system combines conventional and robotic surgery allowing for a quick conversion between the procedures. This concept requires a new master console that can be positioned at the surgical bedside and be sterilized. The master console was developed using new technologies, such as a parallel mechanism and pneumatic sensors. The parallel mechanism is a purely passive 5-DOF (degrees of freedom) joystick based on the author's haptic research. The parallel mechanism enables motion input of conventional brain tumor removal surgery with a compact, intuitive interface that can be used in a conventional surgical environment. In addition, the pneumatic sensors implemented on the mechanism provide an intuitive interface and electrically isolate the tool parts from the mechanism so they can be easily sterilized. The 5-DOF parallel mechanism is compact (17 cm width, 19cm depth, and 15cm height), provides a 505,050 mm and 90° workspace and is highly backdrivable (0.27N of resistance force representing the surgical motion). The evaluation tests revealed that the pneumatic sensors can properly measure the suction strength, grasping force, and hand contact. In addition, an installability test showed that the master console can be used in a conventional surgical environment. The proposed master console design was shown to be feasible for operative neurosurgery based on comprehensive testing. This master console is currently being tested for master-slave control with a surgical robotic system.

  5. Adaptive Robotic Systems Design in University of Applied Sciences

    Directory of Open Access Journals (Sweden)

    Gunsing Jos

    2016-01-01

    Full Text Available In the industry for highly specialized machine building (small series with high variety and high complexity and in healthcare a demand for adaptive robotics is rapidly coming up. Technically skilled people are not always available in sufficient numbers. A lot of know how with respect to the required technologies is available but successful adaptive robotic system designs are still rare. In our research at the university of applied sciences we incorporate new available technologies in our education courses by way of research projects; in these projects students will investigate the application possibilities of new technologies together with companies and teachers. Thus we are able to transfer knowledge to the students including an innovation oriented attitude and skills. Last years we developed several industrial binpicking applications for logistics and machining-factories with different types of 3D vision. Also force feedback gripping has been developed including slip sensing. Especially for healthcare robotics we developed a so-called twisted wire actuator, which is very compact in combination with an underactuated gripper, manufactured in one piece in polyurethane. We work both on modeling and testing the functions of these designs but we work also on complete demonstrator systems. Since the amount of disciplines involved in complex product and machine design increases rapidly we pay a lot of attention with respect to systems engineering methods. Apart from the classical engineering disciplines like mechanical, electrical, software and mechatronics engineering, especially for adaptive robotics more and more disciplines like industrial product design, communication … multimedia design and of course physics and even art are to be involved depending on the specific application to be designed. Design tools like V-model, agile/scrum and design-approaches to obtain the best set of requirements are being implemented in the engineering studies from

  6. Analyses of robot systems using fault and event trees: case studies

    International Nuclear Information System (INIS)

    Khodabandehloo, Koorosh

    1996-01-01

    Safety in the use of robotics outside factories or processing plants has become a matter of great international concern. Domestic robots and those intended to assist nurses and surgeons in hospitals are examples of cases where safety and reliability are considered critical. The safe performance of robot systems depends on many factors, including the integrity of the robot's hardware and software, the way it communicates with sensory and other production equipment, the reliable function of the safety features present and the way the robot interacts with its environment. The use of systematic techniques such as Fault and Event Tree analysis to examine the safety and reliability of a given robotic system is presented. Considerable knowledge is needed before the application of such analysis techniques can be translated into safety specifications or indeed 'fail-safe' design features of robotic systems. The skill and understanding required for the formulation of such specifications is demonstrated here based on a number of case studies

  7. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: preclinical tests in animals.

    Science.gov (United States)

    Wang, Hesheng; Zhang, Runxi; Chen, Weidong; Wang, Xiaozhou; Pfeifer, Rolf

    2017-08-01

    Minimally invasive surgery attracts more and more attention because of the advantages of minimal trauma, less bleeding and pain and low complication rate. However, minimally invasive surgery for beating hearts is still a challenge. Our goal is to develop a soft robot surgical system for single-port minimally invasive surgery on a beating heart. The soft robot described in this paper is inspired by the octopus arm. Although the octopus arm is soft and has more degrees of freedom (DOFs), it can be controlled flexibly. The soft robot is driven by cables that are embedded into the soft robot manipulator and can control the direction of the end and middle of the soft robot manipulator. The forward, backward and rotation movement of the soft robot is driven by a propulsion plant. The soft robot can move freely by properly controlling the cables and the propulsion plant. The soft surgical robot system can perform different thoracic operations by changing surgical instruments. To evaluate the flexibility, controllability and reachability of the designed soft robot surgical system, some testing experiments have been conducted in vivo on a swine. Through the subxiphoid, the soft robot manipulator could enter into the thoracic cavity and pericardial cavity smoothly and perform some operations such as biopsy, ligation and ablation. The operations were performed successfully and did not cause any damage to the surrounding soft tissues. From the experiments, the flexibility, controllability and reachability of the soft robot surgical system have been verified. Also, it has been shown that this system can be used in the thoracic and pericardial cavity for different operations. Compared with other endoscopy robots, the soft robot surgical system is safer, has more DOFs and is more flexible for control. When performing operations in a beating heart, this system maybe more suitable than traditional endoscopy robots.

  8. Study on system integration of robots operated in nuclear fusion facility and nuclear power plant facilities

    International Nuclear Information System (INIS)

    Oka, Kiyoshi

    2004-07-01

    A present robot is required to apply to many fields such as amusement, welfare and protection against disasters. The are however only limited numbers of the robots, which can work under the actual conditions as a robot system. It is caused by the following reasons: (1) the robot system cannot be realized by the only collection of the elemental technologies, (2) the performance of the robot is determined by that of the integrated system composed of the complicated elements with many functions, and (3) the respective elements have to be optimized in the integrated robot system with a well balance among them, through their examination, adjustment and improvement. Therefore, the system integration of the robot composed of a large number of elements is the most critical issue to realize the robot system for actual use. In the present paper, I describe the necessary approaches and elemental technologies to solve the issues on the system integration of the typical robot systems for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. These robots work under the intense radiation condition and restricted space in place of human. In particular, I propose a new approach to realize the system integration of the robot for actual use from the viewpoints of not only the environment and working conditions but also the restructure and optimization of the required elemental technologies with a well balance in the robot system. Based on the above approach, I have a contribution to realize the robot systems working under the actual conditions for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. (author)

  9. Development of Pneumatic Robot Hand and Construction of Master-Slave System

    Science.gov (United States)

    Tsujiuchi, Nobutaka; Koizumi, Takayuki; Nishino, Shinya; Komatsubara, Hiroyuki; Kudawara, Tatsuwo; Hirano, Masanori

    Recently, research and development has focused on robots that work in place of people. It is necessary for robots to perform the same flexible motions as people. Additionally, such robots need to incorporate high-level safety features in order not to injure people. For creation of such robots, we need to develop a robot hand that functions like a human hand. At the same time, this type of robot hand can be used as an artificial hand. Here, we present artificial muscle-type pneumatic actuators as the driving source of a robot hand that is both safe and flexible. Some development of robot hands using pneumatic actuators has already taken place. But, until now, when a pneumatic actuator is used, a big compressor is needed. So, the driving system also needs to be big; enlargement of the driving system is a major problem. Consequently, in this research, we develop a low-pressure, low-volume pneumatic actuator for driving a robot hand that works flexibly and safely on the assumption that it will be in contact with people. We develop a five-fingered robot hand with pneumatic actuators. And, we construct a master-slave system to enable the robot hand to perform the same operations as a human hand. We make a 1-link arm that has one degree of freedom using a pneumatic actuator, and construct a control system for the 1-link arm and verify its control performance.

  10. The development of advanced robotic technology - A study on the development of Motion capturing system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Kim, Ki Ho; Lee, Yong Woo; Park, Soo Il; Choi, Jin Sung; Kim, Hae Dong; Park, Chan Yong [System Engineering Research Institute, Taejon= (Korea, Republic of)

    1996-07-01

    Robots are used to perform jobs where the performer are exposed to the radioactivity. Good human-robot-interface is required to operate the robots easily and smoothly. It is believed that virtual reality and 3D graphics technology will be the beat solution for the good human-robot-interface. Using 3D computer graphics, complex human motions can be captured and displayed on the screen. The captured motion data can be used as the input to= control the remote robots using virtual reality technologies. Thus good human-robot-interface can be constructed. The motion capturing system developed in this study are very convenient and easy to be used to operate the robot. And the required time to operate the robot with the developed system is much shorter than to operate the robots without our motion capturing system. Therefore, efficient usage of the robot and related facilities will prolong the life time of them and reduce the manpower of the operators. The 3D data produced by our system will be used to generate commands to control the robot. 6 refs., 60 figs. (author)

  11. Human likeness: cognitive and affective factors affecting adoption of robot-assisted learning systems

    Science.gov (United States)

    Yoo, Hosun; Kwon, Ohbyung; Lee, Namyeon

    2016-07-01

    With advances in robot technology, interest in robotic e-learning systems has increased. In some laboratories, experiments are being conducted with humanoid robots as artificial tutors because of their likeness to humans, the rich possibilities of using this type of media, and the multimodal interaction capabilities of these robots. The robot-assisted learning system, a special type of e-learning system, aims to increase the learner's concentration, pleasure, and learning performance dramatically. However, very few empirical studies have examined the effect on learning performance of incorporating humanoid robot technology into e-learning systems or people's willingness to accept or adopt robot-assisted learning systems. In particular, human likeness, the essential characteristic of humanoid robots as compared with conventional e-learning systems, has not been discussed in a theoretical context. Hence, the purpose of this study is to propose a theoretical model to explain the process of adoption of robot-assisted learning systems. In the proposed model, human likeness is conceptualized as a combination of media richness, multimodal interaction capabilities, and para-social relationships; these factors are considered as possible determinants of the degree to which human cognition and affection are related to the adoption of robot-assisted learning systems.

  12. Mobile robot teleoperation system for plant inspection based on collecting and utilizing environment data

    International Nuclear Information System (INIS)

    Kawabata, Kuniaki; Watanabe, Nobuyasu; Asama, Hajime; Kita, Nobuyuki; Yang, Hai-quan

    2004-01-01

    This paper describes about development of a mobile robot teleoperation system for plant inspection. In our system, the robot is an agent for collecting the environment data and is also teleoperated by the operator utilizing such accumulated environment data which is displayed on the operation interface. The robot equips many sensors for detecting the state of the robot and the environment. Such redundant sensory system can be also utilized to collect the working environment data on-site while the robot is patrolling. Here, proposed system introduces the framework of collecting and utilizing environment data for adaptive plant inspection using the teleoperated robot. A view simulator is primarily aiming to facilitate evaluation of the visual sensors and algorithms and is also extended as the Environment Server, which is the core technology of the digital maintenance field for the plant inspection. In order to construct detailed seamless digital maintenance field mobile robotic technology is utilized to supply environment data to the server. The sensory system on the robot collect the environment data on-site and such collected data is uploaded to the Environment Server for compiling accurate digital environment data base. The robot operator also can utilize accumulated environment data by referring to the Environment Server. In this paper, we explain the concept of our teleoperation system based on collecting and utilizing environment data. Using developed system, inspection patrol experiments were attempted in the plant mock-up. Experimental results are shown by using an omnidirectional mobile robot with sensory system and the Environment Server. (author)

  13. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  14. A Hybrid Robotic Control System Using Neuroblastoma Cultures

    Science.gov (United States)

    Ferrández, J. M.; Lorente, V.; Cuadra, J. M.; Delapaz, F.; Álvarez-Sánchez, José Ramón; Fernández, E.

    The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define connection schemes for controlling a robot behavior. Multielectrode Array (MEA) setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper describes the process of growing human neuroblastoma cells over MEA substrates and tries to modulate the natural physiologic responses of these cells by tetanic stimulation of the culture. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: establishing numerous and dynamic connections, with modifiability induced by external stimuli and we propose an hybrid system for controlling a robot to avoid obstacles.

  15. A survey on inspecting structures using robotic systems

    Directory of Open Access Journals (Sweden)

    Randa Almadhoun

    2016-11-01

    Full Text Available Advancements in robotics and autonomous systems are being deployed nowadays in many application domains such as search and rescue, industrial automation, domestic services and healthcare. These systems are developed to tackle tasks in some of the most challenging, labour intensive and dangerous environments. Inspecting structures (e.g. bridges, buildings, ships, wind turbines and aircrafts is considered a hard task for humans to perform and of critical importance since missing any details could affect the structure’s performance and integrity. Additionally, structure inspection is time and resource intensive and should be performed as efficiently and accurately as possible. Inspecting various structures has been reported in the literature using different robotic platforms to: inspect difficult to reach areas and detect various types of faults and anomalies. Typically, inspection missions involve performing three main tasks: coverage path planning, shape, model or surface reconstruction and the actual inspection of the structure. Coverage path planning ensures the generation of an optimized path that guarantees the complete coverage of the structure of interest in order to gather highly accurate information to be used for shape/model reconstruction. This article aims to provide an overview of the recent work and breakthroughs in the field of coverage path planning and model reconstruction, with focus on 3D reconstruction, for the purpose of robotic inspection.

  16. Multi-agent robotic systems and applications for satellite missions

    Science.gov (United States)

    Nunes, Miguel A.

    A revolution in the space sector is happening. It is expected that in the next decade there will be more satellites launched than in the previous sixty years of space exploration. Major challenges are associated with this growth of space assets such as the autonomy and management of large groups of satellites, in particular with small satellites. There are two main objectives for this work. First, a flexible and distributed software architecture is presented to expand the possibilities of spacecraft autonomy and in particular autonomous motion in attitude and position. The approach taken is based on the concept of distributed software agents, also referred to as multi-agent robotic system. Agents are defined as software programs that are social, reactive and proactive to autonomously maximize the chances of achieving the set goals. Part of the work is to demonstrate that a multi-agent robotic system is a feasible approach for different problems of autonomy such as satellite attitude determination and control and autonomous rendezvous and docking. The second main objective is to develop a method to optimize multi-satellite configurations in space, also known as satellite constellations. This automated method generates new optimal mega-constellations designs for Earth observations and fast revisit times on large ground areas. The optimal satellite constellation can be used by researchers as the baseline for new missions. The first contribution of this work is the development of a new multi-agent robotic system for distributing the attitude determination and control subsystem for HiakaSat. The multi-agent robotic system is implemented and tested on the satellite hardware-in-the-loop testbed that simulates a representative space environment. The results show that the newly proposed system for this particular case achieves an equivalent control performance when compared to the monolithic implementation. In terms on computational efficiency it is found that the multi

  17. Supervision and atuomatic control of robotics systems in nuclear environments

    International Nuclear Information System (INIS)

    Benner, J.; Leinemann, K.

    1992-01-01

    The paper describes new developments in controlling remote handling systems for nuclear applications. The main emphasis is to use robotic equipment and methods for reaching a high degree of system autonomy. A remote handling workstation concept is described, supporting various stages of mission planning and supervision by means of suited geometrical, procedural and functional models. The presented control system enables easy switching between semi-autonomous and manual task execution and sensor data integration. Some experimental results of a prototypic implementation are also described

  18. Supervision and automatic control of robotic systems in nuclear environments

    International Nuclear Information System (INIS)

    Benner, J.; Leinemann, K.

    1992-01-01

    This paper describes new developments in controlling remote handling systems for nuclear applications. The main emphasis is to use robotic equipment and methods for reaching a high degree of system autonomy. A remote handling workstation concept is described, supporting various stages of mission planning and supervision by means of suited geometrical, procedural and functional models. The presented control system enables easy switching between semi-autonomous and manual task execution and sensor data integration. Some experimental results of a prototypic implementation are also described

  19. Intelligent automated control of robotic systems for environmental restoration

    International Nuclear Information System (INIS)

    Harrigan, R.W.

    1992-01-01

    The US Department of Energy's Office of Technology Development (OTD) has sponsored the development of the Generic Intelligent System Controller (GISC) for application to remote system control. Of primary interest to the OTD is the development of technologies which result in faster, safer, and cheaper cleanup of hazardous waste sites than possible using conventional approaches. The objective of the GISC development project is to support these goals by developing a modular robotics control approach which reduces the time and cost of development by allowing reuse of control system software and uses computer models to improve the safety of remote site cleanup while reducing the time and life cycle costs

  20. Multiple Ships and Multiple Media: A Flexible Telepresence Program

    Science.gov (United States)

    Pelz, M.; Hoeberechts, M.; Riddell, D. J.; Ewing, N.

    2016-02-01

    Ocean Networks Canada (ONC) uses a number of research and exploration vessels equipped with remotely operated vehicles (ROVs) to maintain the NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia, Canada. Maintenance expeditions range from several days to multiple weeks and encompass a range of activities including deploying new instruments, laying cable, recovering platforms, scientific sampling and conducting multibeam and visual surveys. In order to engage the widest possible participation in at-sea work, ONC uses telepresence technology to communicate from ship to shore and back with scientists, students, teachers and online viewers. In this presentation, we explore the challenge of designing a sustainable and flexible telepresence program which can be supported across multiple ship and ROV platforms, sometimes simultaneously. To meet outreach and education objectives, onboard educators conduct presentations to K-12 and post-secondary classrooms, museums and science centres on a daily basis. Online commentary by the educators, dive chief and ROV pilots accompanies the ROV dive footage and is streamed online 24/7 during underwater operations. Sharing the sights and sounds of the expeditions with students and educators ashore, including those in remote and inland communities, creates a unique learning environment for both formal and informal education audiences. As space is always a limiting factor on expeditions, the use of telepresence and other communication media enables ONC to simultaneously achieve engineering and science priorities at sea while communicating the successes and challenges of the expedition back to shore. Scientists and engineers provide guidance for operations from shore using a variety of communication technologies. We give examples from Ocean Networks Canada's most recent expedition, Fall 2015, which involved co-ordinated operations with three vessels - the R/V Thompson, the E/V Nautilus and the C/S Wave

  1. Multidisciplinary approach for developing a new robotic system for domiciliary assistance to elderly people.

    Science.gov (United States)

    Cavallo, F; Aquilano, M; Bonaccorsi, M; Mannari, I; Carrozza, M C; Dario, P

    2011-01-01

    This paper aims to show the effectiveness of a (inter / multi)disciplinary team, based on the technology developers, elderly care organizations, and designers, in developing the ASTRO robotic system for domiciliary assistance to elderly people. The main issues presented in this work concern the improvement of robot's behavior by means of a smart sensor network able to share information with the robot for localization and navigation, and the design of the robot's appearance and functionalities by means of a substantial analysis of users' requirements and attitude to robotic technology to improve acceptability and usability.

  2. Robotic influence in the conceptual design of mechanical systems in space and vice versa - A survey

    Science.gov (United States)

    Sanger, George F.

    1988-01-01

    A survey of methods using robotic devices to construct structural elements in space is presented. Two approaches to robotic construction are considered: one in which the structural elements are designed using conventional aerospace techniques which tend to constrain the function aspects of robotics and one in which the structural elements are designed from the conceptual stage with built-in robotic features. Examples are presented of structural building concepts using robotics, including the construction of the SP-100 nuclear reactor power system, a multimirror large aperture IR space telescope concept, retrieval and repair in space, and the Flight Telerobotic Servicer.

  3. Development of the robot system to assist CT-guided brain surgery

    International Nuclear Information System (INIS)

    Koyama, H.; Funakubo, H.; Komeda, T.; Uchida, T.; Takakura, K.

    1999-01-01

    The robot technology was introduced into the stereotactic neurosurgery for application to biopsy, blind surgery, and functional neurosurgery. The authors have developed a newly designed the robot system to assist CT-guided brain surgery, designed to allow a biopsy needle to reach the targget such as a cerebral tumor within a brain automatically on the basis of the X,Y, and Z coordinates obtained by CT scanner. In this paper we describe construction of the robot, the control of the robot by CT image, robot simulation, and investigated a phantom experiment using CT image. (author)

  4. CONTROL SYSTEM FOR UNMANNED AIRCRAFT EQUIPPED WITH ROBOTICS ARM

    Directory of Open Access Journals (Sweden)

    Alexei A. Margun

    2014-11-01

    Full Text Available The paper deals with the problem of control system synthesis for multi rotational UAV equipped with robotics arm. Control algorithm is proposed based on the method of feedback linearization and synthesis of proportional-differential controller with the real time computation of the inertia tensor and center of mass changes and compensation of the reactive torque generated by the dynamics of the manipulator. Quadrocopter with attached articulated manipulator is selected as a model of the control object. Systems of equations describing the behavior of considered dynamical system are obtained according to the Newton and Euler-Lagrange laws. Expressions are offered, defining the inertia tensor and the position of the system center of mass depending on the current position of the manipulator, and the torque acting on the quadrocopter from the manipulator. Feedback linearization with arm influence compensation on quadrocopter is applied for the resulting nonlinear coupled system. As a result, robot dynamics equations have been converted to a linear stationary system. Converted system control is achieved by a proportional-differential controller. Examined system simulation is done with control method described in the paper and the classical method based on a proportional-differential controller. Simulation results confirm the effectiveness of the proposed approach and demonstrate that the proposed approach provides higher accuracy of the tracking error, than control method by means of proportional-differential regulator.

  5. WARRIOR II, a high performance modular electric robot system

    International Nuclear Information System (INIS)

    Downton, G.C.

    1996-01-01

    A high performance electric robot, WARRIOR, was built for in-reactor welding at the Oldbury nuclear power plant in the United Kingdom in the mid 1980s. WARRIOR II has been developed as a lighter, smaller diameter articulated welding robot which can be deployed on its umbilical down a stand pipe for remote docking with the manipulator system which delivers it to its work site. A key feature of WARRIOR II has been the development of a prototype spherical modular joint. The module provides the drive torque necessary to motivate the robot arm, acts as the joint bearing, has standard mechanical interfaces for the limb sections, accurately measures the joint angle and has cable services running through the centre. It can act either as a bend or rotate joint and the interconnecting limb sections need only to be simple tubular sections. A wide range of manipulator configurations to suit the access constraints of particular problems can be achieved with a set of joint modules and limb sections. A general purpose motion controller has also been developed which is capable of kinematically controlling any configuration of WARRIOR II thus contributing to the realisation of the concept of a general purpose tool which can be used over and over again, at short notice, in any situation where a high precision, light weight, versatile manipulator is required. (UK)

  6. Stormram 4: An MR Safe Robotic System for Breast Biopsy.

    Science.gov (United States)

    Groenhuis, Vincent; Siepel, Françoise J; Veltman, Jeroen; van Zandwijk, Jordy K; Stramigioli, Stefano

    2018-05-21

    Suspicious lesions in the breast that are only visible on magnetic resonance imaging (MRI) need to be biopsied under MR guidance with high accuracy and efficiency for accurate diagnosis. The aim of this study is to present a novel robotic system, the Stormram 4, and to perform preclinical tests in an MRI environment. Excluding racks and needle, its dimensions are 72 × 51 × 40 mm. The Stormram 4 is driven by two linear and two curved pneumatic stepper motors. The linear motor is capable of exerting 63 N of force at a pressure of 0.65 MPa. In an MRI environment the maximum observed stepping frequency is 30 Hz (unloaded), or 8 Hz when full force is needed. The Stormram 4's mean positioning error is 0.73 ± 0.47 mm in free air, and 1.29 ± 0.59 mm when targeting breast phantoms in MRI. Excluding the off-the-shelf needle, the robot is inherently MR safe. The robot is able to accurately target lesions under MRI guidance, reducing tissue damage and risk of false negatives. These results are promising for clinical experiments, improving the quality of healthcare in the field of MRI-guided breast biopsies.

  7. Predictive Maintenance and Robotic System Design

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... Business objectives include: reduce equipment maintenance time, reduce ... Data Acquisition: Proprietary machine diagnostic systems and sensors .... and Logistics, Volume #IPart# http://www.ifac-papersonline.net,. Identifier ...

  8. A robot-assisted synthesis system applied to 11C-alkylations

    International Nuclear Information System (INIS)

    Appelquist, G.; Bohm, C.; Eriksson, H.; Halldin, C.; Stone-Elander, S.

    1990-01-01

    A robot-based system for the production of radiopharmaceuticals has been developed, which consists of a 7-axis SCARA robot, supporting equipment, a synthesis module, and a PC-AT personal computer for system control. A Multifunction Editor (MFE) acts as the system controller and is a development tool as well. Robot movement can be controlled via keyboard, mouse, or remote control box, and procedures can be saved and edited for future use

  9. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    Science.gov (United States)

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962

  10. WARRIOR II, a high performance modular electric robot system

    International Nuclear Information System (INIS)

    Downton, G.C.

    1996-01-01

    Initially designed for in-reactor welding by the Central Electricity Generating Board, WARRIOR has been developed using the concept of modular technology to become a light-weight, high performance robotic system. Research work on existing machines for in-reactor inspection and repair and heavy duty hydraulic manipulators was progressed in order to develop WARRIOR II, a versatile in-reactor welding system usable at any nuclear power station light enough to be deployed by existing remote handling equipment. WARRIOR II can be significantly reconfigured quickly to pursue different ends. (UK)

  11. Control system software, simulation, and robotic applications

    Science.gov (United States)

    Frisch, Harold P.

    1991-01-01

    All essential existing capabilities needed to create a man-machine interaction dynamics and performance (MMIDAP) capability are reviewed. The multibody system dynamics software program Order N DISCOS will be used for machine and musculo-skeletal dynamics modeling. The program JACK will be used for estimating and animating whole body human response to given loading situations and motion constraints. The basic elements of performance (BEP) task decomposition methodologies associated with the Human Performance Institute database will be used for performance assessment. Techniques for resolving the statically indeterminant muscular load sharing problem will be used for a detailed understanding of potential musculotendon or ligamentous fatigue, pain, discomfort, and trauma. The envisioned capacity is to be used for mechanical system design, human performance assessment, extrapolation of man/machine interaction test data, biomedical engineering, and soft prototyping within a concurrent engineering (CE) system.

  12. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  13. Robotic Transnasal Endoscopic Skull Base Surgery: Systematic Review of the Literature and Report of a Novel Prototype for a Hybrid System (Brescia Endoscope Assistant Robotic Holder).

    Science.gov (United States)

    Bolzoni Villaret, Andrea; Doglietto, Francesco; Carobbio, Andrea; Schreiber, Alberto; Panni, Camilla; Piantoni, Enrico; Guida, Giovanni; Fontanella, Marco Maria; Nicolai, Piero; Cassinis, Riccardo

    2017-09-01

    Although robotics has already been applied to several surgical fields, available systems are not designed for endoscopic skull base surgery (ESBS). New conception prototypes have been recently described for ESBS. The aim of this study was to provide a systematic literature review of robotics for ESBS and describe a novel prototype developed at the University of Brescia. PubMed and Scopus databases were searched using a combination of terms, including Robotics OR Robot and Surgery OR Otolaryngology OR Skull Base OR Holder. The retrieved papers were analyzed, recording the following features: interface, tools under robotic control, force feedback, safety systems, setup time, and operative time. A novel hybrid robotic system has been developed and tested in a preclinical setting at the University of Brescia, using an industrial manipulator and readily available off-the-shelf components. A total of 11 robotic prototypes for ESBS were identified. Almost all prototypes present a difficult emergency management as one of the main limits. The Brescia Endoscope Assistant Robotic holder has proven the feasibility of an intuitive robotic movement, using the surgeon's head position: a 6 degree of freedom sensor was used and 2 light sources were added to glasses that were therefore recognized by a commercially available sensor. Robotic system prototypes designed for ESBS and reported in the literature still present significant technical limitations. Hybrid robot assistance has a huge potential and might soon be feasible in ESBS. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Modelling cooperation of industrial robots as multi-agent systems

    Science.gov (United States)

    Hryniewicz, P.; Banas, W.; Foit, K.; Gwiazda, A.; Sekala, A.

    2017-08-01

    Nowadays, more and more often in a cell is more than one robot, there is also a dual arm robots, because of this cooperation of two robots in the same space becomes more and more important. Programming robotic cell consisting of two or more robots are currently performed separately for each element of the robot and the cell. It is performed only synchronization programs, but no robot movements. In such situations often placed industrial robots so they do not have common space so the robots are operated separately. When industrial robots are a common space this space can occupy only one robot the other one must be outside the common space. It is very difficult to find applications where two robots are in the same workspace. It was tested but one robot did not do of movement when moving the second and waited for permission to move from the second when it sent a permit - stop the move. Such programs are very difficult and require a lot of experience from the programmer and must be tested separately at the beginning and then very slowly under control. Ideally, the operator takes care of exactly one robot during the test and it is very important to take special care.

  15. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    2008-01-01

    Presents a history of unmanned missions of exploration of our Solar System. This book provides technical descriptions of the spacecraft, of their mission designs and of instrumentations. It discusses scientific results together with details of mission management. It covers missions from the 1950s and some of the other missions and their results.

  16. Hierarchical control system of advanced robot manipulator

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Okino, Akihisa; Nishihara, Masatoshi; Sakamoto, Taizou; Matsuda, Koichi; Ohnishi, Ken

    1990-01-01

    We introduce a double arm with 4-finger's manipulator system which process the large volume of information at high speed. This is under research/development many type of works in the harsh condition. Namely, hierarchization of instruction unit in which motion control system as real time processing unit, and task planning unit as non-real time processing unit, interface with operation through the task planning unit has been made. Also, high speed processing of large volume information has been realized by decentralizing the motion control unit by function, hierarchizing the high speed processing unit, and developing high speed transmission, IC which does not depend on computer OS to avoid the delay in transmission. (author)

  17. Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center

    Science.gov (United States)

    Zia, Omar

    1989-01-01

    The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.

  18. Enhancing the effectiveness of human-robot teaming with a closed-loop system.

    Science.gov (United States)

    Teo, Grace; Reinerman-Jones, Lauren; Matthews, Gerald; Szalma, James; Jentsch, Florian; Hancock, Peter

    2018-02-01

    With technological developments in robotics and their increasing deployment, human-robot teams are set to be a mainstay in the future. To develop robots that possess teaming capabilities, such as being able to communicate implicitly, the present study implemented a closed-loop system. This system enabled the robot to provide adaptive aid without the need for explicit commands from the human teammate, through the use of multiple physiological workload measures. Such measures of workload vary in sensitivity and there is large inter-individual variability in physiological responses to imposed taskload. Workload models enacted via closed-loop system should accommodate such individual variability. The present research investigated the effects of the adaptive robot aid vs. imposed aid on performance and workload. Results showed that adaptive robot aid driven by an individualized workload model for physiological response resulted in greater improvements in performance compared to aid that was simply imposed by the system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, I [University of Luebeck, Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck (Germany); Jauer, P; Schweikard, A; Ernst, F [University of Luebeck, Luebeck (Germany)

    2016-06-15

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  20. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    International Nuclear Information System (INIS)

    Kuhlemann, I; Jauer, P; Schweikard, A; Ernst, F

    2016-01-01

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  1. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    OpenAIRE

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian...

  2. A Sliding Mode Control-based on a RBF Neural Network for Deburring Industry Robotic Systems

    OpenAIRE

    Tao, Yong; Zheng, Jiaqi; Lin, Yuanchang

    2016-01-01

    A sliding mode control method based on radial basis function (RBF) neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC) has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network par...

  3. Robot-Assisted Fracture Surgery: Surgical Requirements and System Design.

    Science.gov (United States)

    Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2018-03-09

    The design of medical devices is a complex and crucial process to ensure patient safety. It has been shown that improperly designed devices lead to errors and associated accidents and costs. A key element for a successful design is incorporating the views of the primary and secondary stakeholders early in the development process. They provide insights into current practice and point out specific issues with the current processes and equipment in use. This work presents how information from a user-study conducted in the early stages of the RAFS (Robot Assisted Fracture Surgery) project informed the subsequent development and testing of the system. The user needs were captured using qualitative methods and converted to operational, functional, and non-functional requirements based on the methods derived from product design and development. This work presents how the requirements inform a new workflow for intra-articular joint fracture reduction using a robotic system. It is also shown how the various elements of the system are developed to explicitly address one or more of the requirements identified, and how intermediate verification tests are conducted to ensure conformity. Finally, a validation test in the form of a cadaveric trial confirms the ability of the designed system to satisfy the aims set by the original research question and the needs of the users.

  4. Trends in control and decision-making for human-robot collaboration systems

    CERN Document Server

    Zhang, Fumin

    2017-01-01

    This book provides an overview of recent research developments in the automation and control of robotic systems that collaborate with humans. A measure of human collaboration being necessary for the optimal operation of any robotic system, the contributors exploit a broad selection of such systems to demonstrate the importance of the subject, particularly where the environment is prone to uncertainty or complexity. They show how such human strengths as high-level decision-making, flexibility, and dexterity can be combined with robotic precision, and ability to perform task repetitively or in a dangerous environment. The book focuses on quantitative methods and control design for guaranteed robot performance and balanced human experience. Its contributions develop and expand upon material presented at various international conferences. They are organized into three parts covering: one-human–one-robot collaboration; one-human–multiple-robot collaboration; and human–swarm collaboration. Individual topic ar...

  5. Aspects Regarding Evaluation of Friction Effects in Robotic Systems

    Directory of Open Access Journals (Sweden)

    Florina-Carmen Ciornei

    2016-06-01

    Full Text Available The paper reveals both experimentally and by numerical simulation that modelling the dynamic behaviour of a robotic system that contains pairs where spin motion exists, finally leads towards nonlinear dynamical models. Despite the fact that academic monographs upon rigid mechanics use the hypothesis that spinning torque depends linearly on the normal force, a simple experiment contradicts this assumption. To this end, the motion of an axi-symmetric body making two contacts with dry friction is analyzed. The qualitative non-linearity of spinning torque on loading force dependence is validated in the end by the modelling of the test using dynamical simulation software.

  6. BOA: Asbestos Pipe-Insulation Abatement Robot System

    International Nuclear Information System (INIS)

    Schempf, H.

    1996-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  7. Modifying Directionality through Auditory System Scaling in a Robotic Lizard

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    2010-01-01

    The peripheral auditory system of a lizard is strongly directional. This directionality is created by acoustical coupling of the two eardrums and is strongly dependent on characteristics of the middle ear, such as interaural distance, resonance frequency of the middle ear cavity and of the tympanum....... Therefore, directionality should be strongly influenced by their scaling. In the present study, we have exploited an FPGA–based mobile robot based on a model of the lizard ear to investigate the influence of scaling on the directional response, in terms of the robot’s performance in a phonotaxis task...

  8. BOA: Pipe-asbestos insulation removal robot system

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.; Schnorr, W. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  9. Robotic Mobile System's Performance-Based MIMO-OFDM Technology

    Directory of Open Access Journals (Sweden)

    Omar Alani

    2009-10-01

    Full Text Available In this paper, a predistortion neural network (PDNN architecture has been imposed to the Sniffer Mobile Robot (SNFRbot that is based on spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM transmission technology. This proposal is used to improve the system performance by combating one of the main drawbacks that is encountered by OFDM technology; Peak-to-Average Power Ratio (PAPR. Simulation results show that using PDNN resulted in better PAPR performance than the previously published work that is based on linear coding, such as Low Density Parity Check (LDPC codes and turbo encoding whether using flat fading channel or a Doppler spread channel.

  10. BOA: Pipe-asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  11. The Effects O Artificial Intelligence And Robotic Systems On Librarianship

    OpenAIRE

    Müslüm Yıldız; Banu Fulya Yıldırım

    2018-01-01

    With Industry 4.0, smart robots will be involved in all areas of our lives, and systems using technology control instead of work force will dominate. In this way, there will be a more qualified workforce with a high level of education, rather than workers with low-skilled jobs. According to recent studies, librarianship has been identified as one of the professions that could disappear in the near future due to this rapidly advancing technology. In this study, the possible effects of artifici...

  12. Optimal Trajectories Generation in Robotic Fiber Placement Systems

    Science.gov (United States)

    Gao, Jiuchun; Pashkevich, Anatol; Caro, Stéphane

    2017-06-01

    The paper proposes a methodology for optimal trajectories generation in robotic fiber placement systems. A strategy to tune the parameters of the optimization algorithm at hand is also introduced. The presented technique transforms the original continuous problem into a discrete one where the time-optimal motions are generated by using dynamic programming. The developed strategy for the optimization algorithm tuning allows essentially reducing the computing time and obtaining trajectories satisfying industrial constraints. Feasibilities and advantages of the proposed methodology are confirmed by an application example.

  13. Cryogenic and LOX Based Propulsion Systems for Robotic Planetary Missions

    National Research Council Canada - National Science Library

    Valentian, Dominique

    2005-01-01

    Robotic planetary missions use almost exclusively storable propellants. However, it is clear that the use LOX/LH2 and LOX/HC combinations will offer a tremendous payload gain for most robotic missions...

  14. Mobile Robotic Systems Of The Near Future

    Science.gov (United States)

    Wolfe, William J.

    1987-02-01

    Imagine, if you will, that all human beings suddenly disappeared: Literally: Needless to say, some catastrophic events would occur. Automobiles and airplanes would crash, machinery would grind to a halt, meals would burn, etc. Some things, however, would continue in their present state for a while. Automatic devices would operate on their own for a while and power supplies would continue to provide energy for lights and other devices. At some point, maybe years down the road, all man-made devices and systems would halt. Now, one may argue that some low-power devices such as a microchip in a hand calculator somewhere or a space probe may continue for many years, but in an engineering sense there will be point when manmade activity is essentially zero. Now, imagine that instead of performing this "thought experiment' at the present time, it were to take place 100 years in the future. This stretches the imagination a bit because now we must conjure up a picture of two things: (1) the instant disappearance of humans, plus (2) what technology will be like one hundred years from now. It is likely that things would not grind to a halt as quickly as they would today. In fact, one might imagine that the degree of automation would be such that many things would continue unaltered in the slightest and might possibly be improved by the removal of humans. It is quite possible that mail would continue to be delivered, "read", and responded to; business meetings held, decisions made, actions taken; products manufactured, commercialized, sold, and brought in for repair; etc. Is this perhaps the subconscious goal of mankind? To build a "world" where humans are expendable?

  15. Multi-robot system using low-cost infrared sensors

    Directory of Open Access Journals (Sweden)

    Anubhav Kakkar

    2013-03-01

    Full Text Available This paper presents a proposed set of the novel technique, methods, and algorithm for simultaneous path planning, area exploration, area retrieval, obstacle avoidance, object detection, and object retrieval   autonomously by a multi-robot system. The proposed methods and algorithms are built considering the use of low cost infrared sensors with the ultimate function of efficiently exploring the given unknown area and simultaneously identifying desired objects by analyzing the physical characteristics of several of the objects that come across during exploration. In this paper, we have explained the scenario by building a coordinative multi-robot system consisting of two autonomously operated robots equipped with low-cost and low-range infrared sensors to perform the assigned task by analyzing some of the sudden changes in their environment. Along with identifying and retrieving the desired object, the proposed methodology also provide an inclusive analysis of the area being explored. The novelties presented in the paper may significantly provide a cost-effective solution to the problem of area exploration and finding a known object in an unknown environment by demonstrating an innovative approach of using the infrared sensors instead of high cost long range sensors and cameras. Additionally, the methodology provides a speedy and uncomplicated method of traversing a complicated arena while performing all the necessary and inter-related tasks of avoiding the obstacles, analyzing the area as well as objects, and reconstructing the area using all these information collected and interpreted for an unknown environment. The methods and algorithms proposed are simulated over a complex arena to depict the operations and manually tested over a physical environment which provided 78% correct results with respect to various complex parameters set randomly.

  16. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.

    Science.gov (United States)

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae; Kim, Tae Il; Yi, Byung Ju

    2017-01-01

    Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site.

  17. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm

    Science.gov (United States)

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae

    2017-01-01

    Purpose Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. Materials and Methods The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. Results A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. Conclusion This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site. PMID:27873506

  18. Mechanical deployment system on aries an autonomous mobile robot

    International Nuclear Information System (INIS)

    Rocheleau, D.N.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is under development for the Department of Energy (DOE) to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. This paper focuses on the mechanical deployment system-referred to as the camera positioning system (CPS)-used in the project. The CPS is used for positioning four identical but separate camera packages consisting of vision cameras and other required sensors such as bar-code readers and light stripe projectors. The CPS is attached to the top of a mobile robot and consists of two mechanisms. The first is a lift mechanism composed of 5 interlocking rail-elements which starts from a retracted position and extends upward to simultaneously position 3 separate camera packages to inspect the top three drums of a column of four drums. The second is a parallelogram special case Grashof four-bar mechanism which is used for positioning a camera package on drums on the floor. Both mechanisms are the subject of this paper, where the lift mechanism is discussed in detail

  19. The use of automation and robotic systems to establish and maintain lunar base operations

    Science.gov (United States)

    Petrosky, Lyman J.

    1992-01-01

    Robotic systems provide a means of performing many of the operations required to establish and maintain a lunar base. They form a synergistic system when properly used in concert with human activities. This paper discusses the various areas where robotics and automation may be used to enhance lunar base operations. Robots are particularly well suited for surface operations (exterior to the base habitat modules) because they can be designed to operate in the extreme temperatures and vacuum conditions of the Moon (or Mars). In this environment, the capabilities of semi-autonomous robots would surpass that of humans in all but the most complex tasks. Robotic surface operations include such activities as long range geological and mineralogical surveys with sample return, materials movement in and around the base, construction of radiation barriers around habitats, transfer of materials over large distances, and construction of outposts. Most of the above operations could be performed with minor modifications to a single basic robotic rover. Within the lunar base habitats there are a few areas where robotic operations would be preferable to human operations. Such areas include routine inspections for leakage in the habitat and its systems, underground transfer of materials between habitats, and replacement of consumables. In these and many other activities, robotic systems will greatly enhance lunar base operations. The robotic systems described in this paper are based on what is realistically achievable with relatively near term technology. A lunar base can be built and maintained if we are willing.

  20. Pushing the Envelope: Ship to Shore Events and High-Bandwidth Telepresence Engages Scientists and the Public

    Science.gov (United States)

    Cooper, S. K.; Coleman, D. F.; Fisher, A. T.; Livelybrooks, D.; Mulder, G.

    2013-12-01

    Since 2009, the drillship JOIDES Resolution has engaged in an extensive program of live ship-to-shore events during its two-month scientific expeditions using a range of software applications and formats. The University of Rhode Island's Inner Space Center has utilized a high bandwidth 'telepresence' from ships such as the Ocean Exploration Trust's E/V Nautilus and the NOAA Ship Okeanos Explorer, to bring live feeds from underwater exploration vehicles directly into museums, aquaria, science centers, boys and girls clubs, and K-16 classrooms. Both of these strategies have employed close partnerships between scientists and educators to bring cutting edge research and the excitement of exploration and discovery directly to the public in close to real time, but telepresence provides unique opportunities. Participants have been able to experience, live, launches of remotely operated vehicle systems including Jason/Medea on R/V Atlantis and Hercules/Argus on Nautilus, see scientific samples come up on deck for the very first time, observe previously-undiscovered shipwrecks at the same time as those on ship, and watch amazing deep sea creatures swim past deep water cameras. There are many benefits from high-bandwidth telepresence, including improved quality of images, video, and sound; the ability to move large data sets and files between ship and shore, allowing collaboration among individuals who are not on the ship; the ability to stage spontaneous "web events" among scientific, educational, and technical personnel at essentially any time; and more intensive interactions through use of social media, such as blogging, posting of multimedia products, and frequent question/answer sessions. These telepresence-enhanced activities assist the public in understanding the significance and excitement of these discoveries, the challenges of working in the deep sea, and the true nature of scientific processes. These interactions have significant impacts on their audiences, and

  1. Okeanos Explorer (EX1704): American Samoa and Cook Islands (Telepresence Mapping)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations for this cruise will include 24 hour mapping, and continuous telepresence-based remote participation in mapping operations. Multibeam and splitbeam...

  2. A highly articulated robotic surgical system for minimally invasive surgery.

    Science.gov (United States)

    Ota, Takeyoshi; Degani, Amir; Schwartzman, David; Zubiate, Brett; McGarvey, Jeremy; Choset, Howie; Zenati, Marco A

    2009-04-01

    We developed a novel, highly articulated robotic surgical system (CardioARM) to enable minimally invasive intrapericardial therapeutic delivery through a subxiphoid approach. We performed preliminary proof of concept studies in a porcine preparation by performing epicardial ablation. CardioARM is a robotic surgical system having an articulated design to provide unlimited but controllable flexibility. The CardioARM consists of serially connected, rigid cyclindrical links housing flexible working ports through which catheter-based tools for therapy and imaging can be advanced. The CardioARM is controlled by a computer-driven, user interface, which is operated outside the operative field. In six experimental subjects, the CardioARM was introduced percutaneously through a subxiphoid access. A commercial 5-French radiofrequency ablation catheter was introduced through the working port, which was then used to guide deployment. In all subjects, regional ("linear") left atrial ablation was successfully achieved without complications. Based on these preliminary studies, we believe that the CardioARM promises to enable deployment of a number of epicardium-based therapies. Improvements in imaging techniques will likely facilitate increasingly complex procedures.

  3. Distributed Circumnavigation Control with Dynamic Spacings for a Heterogeneous Multi-robot System

    OpenAIRE

    Yao, Weijia; Luo, Sha; Lu, Huimin; Xiao, Junhao

    2018-01-01

    Circumnavigation control is useful in real-world applications such as entrapping a hostile target. In this paper, we consider a heterogeneous multi-robot system where robots have different physical properties, such as maximum movement speeds. Instead of equal-spacings, dynamic spacings according to robots' properties, which are termed utilities in this paper, will be more desirable in a scenario such as target entrapment. A distributed circumnavigation control algorithm based on utilities is ...

  4. Fiscal 1997 report on the results of the international standardization R and D. Robot control system; 1997 nendo seika hokokusho kokusai hyojun soseigata kenkyu kaihatsu. Robot seigyo system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    R and D of the robot control system was conducted in the following items: 1) integrated open control system, 2) remote control robot manipulation language, 3) human factor robot use built-in LAN system, 4) built-in actuator driver. In 1), there were some problems to be pointed out around the system, but the effectiveness was confirmed as system architecture of each verification item. In 2), development/design were made of RCML(R-Cube Manipulation Language) as a remote robot manipulation language, telecommunication protocol, and the experimental system, and the international standardization was targeted. In 3), the R and D was conducted of the realtime telecommunication protocol which clears the standards for the distributed control required for construction of human factor robot and the advanced realtime micro-controller, ULSI, which is the one that the protocol was made IC. In 4), an intelligent connector for built-in actuator was developed which enables saving of wiring in robot system and plug-in connection. 13 refs., 186 figs., 53 tabs.

  5. Exploring gender differences in perceptions of 3D telepresence collaboration technology

    DEFF Research Database (Denmark)

    Maurin, Hanna; Sonnenwald, Diane H.; Cairns, Bruce

    2006-01-01

    Previous research on gender differences and collaboration technology illustrate the need to investigate gender issues as early as possible in the development cycle in order to avoid any negative consequences the technology may impose. Therefore we are investigating the potential of 3D telepresence....... The results show several gender differences that imply male paramedics may inherently receive more benefits from use of the 3D telepresence technology than female paramedics....

  6. Telemanipulation, telepresence, and virtual reality for surgery in the year 2000

    Science.gov (United States)

    Satava, Richard M.

    1995-12-01

    The new technologic revolution in medicine is based upon information technologies, and telemanipulation, telepresence and virtual reality are essential components. Telepresence surgery returns the look and feel of `open surgery' to the surgeon and promises enhancement of physical capabilities above normal human performance. Virtual reality provides basic medical education, simulation of surgical procedures, medical forces and disaster medicine practice, and virtual prototyping of medical equipment.

  7. System and method for controlling a vision guided robot assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yhu-Tin; Daro, Timothy; Abell, Jeffrey A.; Turner, III, Raymond D.; Casoli, Daniel J.

    2017-03-07

    A method includes the following steps: actuating a robotic arm to perform an action at a start position; moving the robotic arm from the start position toward a first position; determining from a vision process method if a first part from the first position will be ready to be subjected to a first action by the robotic arm once the robotic arm reaches the first position; commencing the execution of the visual processing method for determining the position deviation of the second part from the second position and the readiness of the second part to be subjected to a second action by the robotic arm once the robotic arm reaches the second position; and performing a first action on the first part using the robotic arm with the position deviation of the first part from the first position predetermined by the vision process method.

  8. CESAR robotics and intelligent systems research for nuclear environments

    International Nuclear Information System (INIS)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developing highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs

  9. micROS: a morphable, intelligent and collective robot operating system.

    Science.gov (United States)

    Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng

    2016-01-01

    Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.

  10. A Novel Bioinspired Vision System: A Step toward Real-Time Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Hafiz

    2011-01-01

    Full Text Available Building a human-like robot that could be involved in our daily lives is a dream of many scientists. Achieving a sophisticated robot's vision system, which can enhance the robot's real-time interaction ability with the human, is one of the main keys toward realizing such an autonomous robot. In this work, we are suggesting a bioinspired vision system that helps to develop an advanced human-robot interaction in an autonomous humanoid robot. First, we enhance the robot's vision accuracy online by applying a novel dynamic edge detection algorithm abstracted from the rules that the horizontal cells play in the mammalian retina. Second, in order to support the first algorithm, we improve the robot's tracking ability by designing a variant photoreceptors distribution corresponding to what exists in the human vision system. The experimental results verified the validity of the model. The robot could have a clear vision in real time and build a mental map that assisted it to be aware of the frontal users and to develop a positive interaction with them.

  11. Virtual reality based support system for layout planning and programming of an industrial robotic work cell.

    Directory of Open Access Journals (Sweden)

    Hwa Jen Yap

    Full Text Available Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell, consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL and VR-based Robot Teaching System (VR-RoT. VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell.

  12. Virtual Reality Based Support System for Layout Planning and Programming of an Industrial Robotic Work Cell

    Science.gov (United States)

    Yap, Hwa Jen; Taha, Zahari; Md Dawal, Siti Zawiah; Chang, Siow-Wee

    2014-01-01

    Traditional robotic work cell design and programming are considered inefficient and outdated in current industrial and market demands. In this research, virtual reality (VR) technology is used to improve human-robot interface, whereby complicated commands or programming knowledge is not required. The proposed solution, known as VR-based Programming of a Robotic Work Cell (VR-Rocell), consists of two sub-programmes, which are VR-Robotic Work Cell Layout (VR-RoWL) and VR-based Robot Teaching System (VR-RoT). VR-RoWL is developed to assign the layout design for an industrial robotic work cell, whereby VR-RoT is developed to overcome safety issues and lack of trained personnel in robot programming. Simple and user-friendly interfaces are designed for inexperienced users to generate robot commands without damaging the robot or interrupting the production line. The user is able to attempt numerous times to attain an optimum solution. A case study is conducted in the Robotics Laboratory to assemble an electronics casing and it is found that the output models are compatible with commercial software without loss of information. Furthermore, the generated KUKA commands are workable when loaded into a commercial simulator. The operation of the actual robotic work cell shows that the errors may be due to the dynamics of the KUKA robot rather than the accuracy of the generated programme. Therefore, it is concluded that the virtual reality based solution approach can be implemented in an industrial robotic work cell. PMID:25360663

  13. Modelling of cooperating robotized systems with the use of object-based approach

    Science.gov (United States)

    Foit, K.; Gwiazda, A.; Banas, W.; Sekala, A.; Hryniewicz, P.

    2015-11-01

    Today's robotized manufacturing systems are characterized by high efficiency. The emphasis is placed mainly on the simultaneous work of machines. It could manifest in many ways, where the most spectacular one is the cooperation of several robots, during work on the same detail. What's more, recently a dual-arm robots are used that could mimic the manipulative skills of human hands. As a result, it is often hard to deal with the situation, when it is necessary not only to maintain sufficient precision, but also the coordination and proper sequence of movements of individual robots’ arms. The successful completion of this task depends on the individual robot control systems and their respective programmed, but also on the well-functioning communication between robot controllers. A major problem in case of cooperating robots is the possibility of collision between particular links of robots’ kinematic chains. This is not a simple case, because the manufacturers of robotic systems do not disclose the details of the control algorithms, then it is hard to determine such situation. Another problem with cooperation of robots is how to inform the other units about start or completion of part of the task, so that other robots can take further actions. This paper focuses on communication between cooperating robotic units, assuming that every robot is represented by object-based model. This problem requires developing a form of communication protocol that the objects can use for collecting the information about its environment. The approach presented in the paper is not limited to the robots and could be used in a wider range, for example during modelling of the complete workcell or production line.

  14. Framework and Method for Controlling a Robotic System Using a Distributed Computer Network

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor); Strawser, Philip A. (Inventor)

    2015-01-01

    A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.

  15. Robot vision system R and D for ITER blanket remote-handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Tesini, Alessandro

    2014-01-01

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system

  16. Robot vision system R and D for ITER blanket remote-handling system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Takahito, E-mail: maruyama.takahito@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system.

  17. A Study on the Education Assistant System Using Smartphones and Service Robots for Children

    Directory of Open Access Journals (Sweden)

    Gu-Min Jeong

    2014-04-01

    Full Text Available In this paper, we propose a new education assistant system model using both smartphones and service robots for children's learning. Through the interaction between a smartphone and a robot, various use cases can be derived. For example, we can control the movement of the robot remotely, watch the status of the children using real-time streaming, or read the answer on the smartphone while only the question is displayed on the robot. Considering these facts, we present three use cases, namely ‘remote control’, ‘streaming’ and ‘N-screen’ for robot-based learning with smartphones. The proposed learning model is implemented in Android-based smartphones and a service robot using the OPRoS platform, and we show that the proposed model works well.1

  18. Conduction Electrohydrodynamics with Mobile Electrodes: A Novel Actuation System for Untethered Robots

    Science.gov (United States)

    Shigemune, Hiroki; Cianchetti, Matteo; Laschi, Cecilia

    2017-01-01

    Electrohydrodynamics (EHD) refers to the direct conversion of electrical energy into mechanical energy of a fluid. Through the use of mobile electrodes, this principle is exploited in a novel fashion for designing and testing a millimeter‐scale untethered robot, which is powered harvesting the energy from an external electric field. The robot is designed as an inverted sail‐boat, with the thrust generated on the sail submerged in the liquid. The diffusion constant of the robot is experimentally computed, proving that its movement is not driven by thermal fluctuations, and then its kinematic and dynamic responses are characterized for different applied voltages. The results show the feasibility of using EHD with mobile electrodes for powering untethered robots and provide new evidences for the further development of this actuation system for both mobile robots and compliant actuators in soft robotics. PMID:28932659

  19. Research of the master-slave robot surgical system with the function of force feedback.

    Science.gov (United States)

    Shi, Yunyong; Zhou, Chaozheng; Xie, Le; Chen, Yongjun; Jiang, Jun; Zhang, Zhenfeng; Deng, Ze

    2017-12-01

    Surgical robots lack force feedback, which may lead to operation errors. In order to improve surgical outcomes, this research developed a new master-slave surgical robot, which was designed with an integrated force sensor. The new structure designed for the master-slave robot employs a force feedback mechanism. A six-dimensional force sensor was mounted on the tip of the slave robot's actuator. Sliding model control was adopted to control the slave robot. According to the movement of the master system manipulated by the surgeon, the slave's movement and the force feedback function were validated. The motion was completed, the standard deviation was calculated, and the force data were detected. Hence, force feedback was realized in the experiment. The surgical robot can help surgeons to complete trajectory motions with haptic sensation. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Conduction Electrohydrodynamics with Mobile Electrodes: A Novel Actuation System for Untethered Robots.

    Science.gov (United States)

    Cacucciolo, Vito; Shigemune, Hiroki; Cianchetti, Matteo; Laschi, Cecilia; Maeda, Shingo

    2017-09-01

    Electrohydrodynamics (EHD) refers to the direct conversion of electrical energy into mechanical energy of a fluid. Through the use of mobile electrodes, this principle is exploited in a novel fashion for designing and testing a millimeter-scale untethered robot, which is powered harvesting the energy from an external electric field. The robot is designed as an inverted sail-boat, with the thrust generated on the sail submerged in the liquid. The diffusion constant of the robot is experimentally computed, proving that its movement is not driven by thermal fluctuations, and then its kinematic and dynamic responses are characterized for different applied voltages. The results show the feasibility of using EHD with mobile electrodes for powering untethered robots and provide new evidences for the further development of this actuation system for both mobile robots and compliant actuators in soft robotics.

  1. Sprint: The first flight demonstration of the external work system robots

    Science.gov (United States)

    Price, Charles R.; Grimm, Keith

    1995-01-01

    The External Works Systems (EWS) 'X Program' is a new NASA initiative that will, in the next ten years, develop a new generation of space robots for active and participative support of zero g external operations. The robotic development will center on three areas: the assistant robot, the associate robot, and the surrogate robot that will support external vehicular activities (EVA) prior to and after, during, and instead of space-suited human external activities respectively. The EWS robotics program will be a combination of technology developments and flight demonstrations for operational proof of concept. The first EWS flight will be a flying camera called 'Sprint' that will seek to demonstrate operationally flexible, remote viewing capability for EVA operations, inspections, and contingencies for the space shuttle and space station. This paper describes the need for Sprint and its characteristics.

  2. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  3. A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System

    Science.gov (United States)

    Denny, Robert

    2011-03-01

    Traditionally, remote/robotic observatory operating systems have been custom made for each observatory. While data reduction pipelines need to be tailored for each investigation, the data acquisition process (especially for stare-mode optical images) is often quite similar across investigations. Since 1999, DC-3 Dreams has focused on providing and supporting a remote/robotic observatory operating system which can be adapted to a wide variety of physical hardware and optics while achieving the highest practical observing efficiency and safe/secure web browser user controls. ACP Expert consists of three main subsystems: (1) a robotic list-driven data acquisition engine which controls all aspects of the observatory, (2) a constraint-driven dispatch scheduler with a long-term database of requests, and (3) a built-in "zero admin" web server and dynamic web pages which provide a remote capability for immediate execution and monitoring as well as entry and monitoring of dispatch-scheduled observing requests. No remote desktop login is necessary for observing, thus keeping the system safe and consistent. All routine operation is via the web browser. A wide variety of telescope mounts, CCD imagers, guiding sensors, filter selectors, focusers, instrument-package rotators, weather sensors, and dome control systems are supported via the ASCOM standardized device driver architecture. The system is most commonly employed on commercial 1-meter and smaller observatories used by universities and advanced amateurs for both science and art. One current project, the AAVSO Photometric All-Sky Survey (APASS), uses ACP Expert to acquire large volumes of data in dispatch-scheduled mode. In its first 18 months of operation (North then South), 40,307 sky images were acquired in 117 photometric nights, resulting in 12,107,135 stars detected two or more times. These stars had measures in 5 filters. The northern station covered 754 fields (6446 square degrees) at least twice, the southern

  4. Vision-aided inertial navigation system for robotic mobile mapping

    Science.gov (United States)

    Bayoud, Fadi; Skaloud, Jan

    2008-04-01

    A mapping system by vision-aided inertial navigation was developed for areas where GNSS signals are unreachable. In this framework, a methodology on the integration of vision and inertial sensors is presented, analysed and tested. The system employs the method of “SLAM: Simultaneous Localisation And Mapping” where the only external input available to the system at the beginning of the mapping mission is a number of features with known coordinates. SLAM is a term used in the robotics community to describe the problem of mapping the environment and at the same time using this map to determine the location of the mapping device. Differing from the robotics approach, the presented development stems from the frameworks of photogrammetry and kinematic geodesy that are merged in two filters that run in parallel: the Least-Squares Adjustment (LSA) for features coordinates determination and the Kalman filter (KF) for navigation correction. To test this approach, a mapping system-prototype comprising two CCD cameras and one Inertial Measurement Unit (IMU) is introduced. Conceptually, the outputs of the LSA photogrammetric resection are used as the external measurements for the KF that corrects the inertial navigation. The filtered position and orientation are subsequently employed in the photogrammetric intersection to map the surrounding features that are used as control points for the resection in the next epoch. We confirm empirically the dependency of navigation performance on the quality of the images and the number of tracked features, as well as on the geometry of the stereo-pair. Due to its autonomous nature, the SLAM's performance is further affected by the quality of IMU initialisation and the a-priory assumptions on error distribution. Using the example of the presented system we show that centimetre accuracy can be achieved in both navigation and mapping when the image geometry is optimal.

  5. Telepresence as Educational Practice in the Third Teaching-Room

    DEFF Research Database (Denmark)

    Levinsen, Karin; Ørngreen, Rikke; Buhl, Mie

    2013-01-01

    in useful and meaningful ways. During 2011 and 2012 we have conducted a research and development project: Telepresence as educational practice in the Royal Danish Music Academy (RDAM) educations in collaboration with RDAM and their international partners within VC-based teaching and learning in the domain...... of higher music education. The presented study draws on specially designed teaching scenarios with experienced teachers who are novices to VC-based learning. The instruments involved are piano, cello and vocalist singers. The scenarios include iteration of a series of designed activities, which allows...... experiments with interventions in order to develop VC-based designs for learning in collaboration with teachers and technicians at the RDAM-end. We used various data collecting methods such as: written reports from students, MindTape sessions, and Skype interviews, focus group interviews via video conference...

  6. 3D sound in the telepresence project BEAMING

    DEFF Research Database (Denmark)

    Olesen, Søren Krarup; Markovic, Milos; Madsen, Esben

    2012-01-01

    three applications: A general purpose theatrical scene, a teaching situation and a medical patient-visiting-doctor scenario. The March 2012 project review deals with the teaching situation. This involves a single microphone recording followed by signal processing that reconstructs the spatial content......The involvement of Aalborg University in the EU project BEAMING will be presented. BEAMING deals with telepresence including multiple modalities; vision, haptics and audio, of which the latter is of main interest here. The setup consists of two types of locations: The Destination, where the Locals...... for the Visitor, 3D audio is provided through headphones. It is rendered based on the Locals' coordinates via a common Internet database including local positional tracking to ensure that information on the Visitor's head rotation has a minimum delay through the network. The BEAMING project currently addresses...

  7. Interactive multimedia and tele-presence in production

    International Nuclear Information System (INIS)

    Kovacs, G L; Haidegger, G

    2011-01-01

    The authors of this paper give a short summary on the research and development actions carried out and on results achieved in the CIM Research Laboratory in the past years, partly during a Hungarian National Research and Development Program addressed as 'Digital Factory'. This paper outlines some tasks solved in relation to interactive multimedia and telepresence based industrial applications. These solutions may be helpful for test, diagnoses and quality control of the production, or sometimes they just help the operator's work. The basic research phase of the work was followed by applied research and development, while the concluding phase enabled industrial applications and test scenarios. The authors explain some details of their achievements including aspects of virtual reality as well.

  8. An ultrasonic sensor controller for mapping and servo control in robotic systems

    International Nuclear Information System (INIS)

    Drotning, W.D.; Garcia, P. Jr.

    1993-03-01

    An ultrasonic sensor controller has been developed and applied in a variety of robotic systems for operation in hazardous environments. The controller consists of hardware and software that control multiple ultrasonic range sensors and provide workspace information to robot controllers for rapid, safe, and reliable operation in hazardous and remote environments. The hardware consists of a programmable multichannel controller that resides on a VMEbus for high speed communication to a multiprocessor architecture. The sensor controller has been used in a number of applications, which include providing high precision range information for proximity servo control of robots, and performing surface and obstacle mapping functions for safe path planning of robots in unstructured environments

  9. Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors.

    Science.gov (United States)

    Quinn, Matt; Smith, Lincoln; Mayley, Giles; Husbands, Phil

    2003-10-15

    We report on recent work in which we employed artificial evolution to design neural network controllers for small, homogeneous teams of mobile autonomous robots. The robots were evolved to perform a formation-movement task from random starting positions, equipped only with infrared sensors. The dual constraints of homogeneity and minimal sensors make this a non-trivial task. We describe the behaviour of a successful system in which robots adopt and maintain functionally distinct roles in order to achieve the task. We believe this to be the first example of the use of artificial evolution to design coordinated, cooperative behaviour for real robots.

  10. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    OpenAIRE

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  11. SAFIRE - a robotic inspection system for CANDU feeders

    International Nuclear Information System (INIS)

    Buckingham, R.

    2011-01-01

    The condition of primary circuit feeder pipes in CANDU reactors is relevant to the commercial viability and plant life. One known wear mechanism is external fretting between feeder pipes and adjacent services or support structures, particularly within the Upper Feeder Cabinet (UFC). Fretting leads to wall thinning which must not exceed certain agreed limits. Chafe shields have been added to protect the feeder pipes. Regular inspections are required of the chafe shields, feeder pipes and other structures that may cause feeder damage. Historically, the dose received by inspectors conducting this work has been significant. For this reason Ontario Power Generation has invested in a remotely operated robot system to conduct visual inspections within the UFC. This system, called SAFIRE for 'Snake-Arm Feeder Inspection Robot Equipment' has been deployed at Pickering during 2010 and 2011 and has been used to inspect areas that are extremely difficult to inspect with existing manual techniques. The 2011 scope of work included inspection of a total of 660 feeder pipes in three UFC quadrants, in two reactors. The full scope was completed over a one-month period in Autumn 2011 in which SAFIRE was used during 23, twelve hour shifts. This included two periods each of 72 hours of continuous operation using multiple teams of operators. SAFIRE is remote controlled delivery system for multiple cameras to record still images and video. The main system elements include a snake-arm robot mounted on a mobile vehicle. It can be controlled from up to 500m away using a fibre/copper connection. The snake-arm is 2.2m long, 25mm wide and has 18 degrees of freedom. It is designed to snake between the rows of feeder pipes to inspect feeder/hanger interfaces, both above and below the feeder cabinet catwalks. Future upgrades offer the potential to add additional tools to increase functionality. This paper describes the SAFIRE development process from inception to operational experience gained

  12. SAFIRE - a robotic inspection system for CANDU feeders

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, R. [OC Robotics, Bristol (United Kingdom)

    2011-07-01

    The condition of primary circuit feeder pipes in CANDU reactors is relevant to the commercial viability and plant life. One known wear mechanism is external fretting between feeder pipes and adjacent services or support structures, particularly within the Upper Feeder Cabinet (UFC). Fretting leads to wall thinning which must not exceed certain agreed limits. Chafe shields have been added to protect the feeder pipes. Regular inspections are required of the chafe shields, feeder pipes and other structures that may cause feeder damage. Historically, the dose received by inspectors conducting this work has been significant. For this reason Ontario Power Generation has invested in a remotely operated robot system to conduct visual inspections within the UFC. This system, called SAFIRE for 'Snake-Arm Feeder Inspection Robot Equipment' has been deployed at Pickering during 2010 and 2011 and has been used to inspect areas that are extremely difficult to inspect with existing manual techniques. The 2011 scope of work included inspection of a total of 660 feeder pipes in three UFC quadrants, in two reactors. The full scope was completed over a one-month period in Autumn 2011 in which SAFIRE was used during 23, twelve hour shifts. This included two periods each of 72 hours of continuous operation using multiple teams of operators. SAFIRE is remote controlled delivery system for multiple cameras to record still images and video. The main system elements include a snake-arm robot mounted on a mobile vehicle. It can be controlled from up to 500m away using a fibre/copper connection. The snake-arm is 2.2m long, 25mm wide and has 18 degrees of freedom. It is designed to snake between the rows of feeder pipes to inspect feeder/hanger interfaces, both above and below the feeder cabinet catwalks. Future upgrades offer the potential to add additional tools to increase functionality. This paper describes the SAFIRE development process from inception to operational experience

  13. Experiments on mobile robot stereo vision system calibration under hardware imperfection

    Directory of Open Access Journals (Sweden)

    Safin Ramil

    2018-01-01

    Full Text Available Calibration is essential for any robot vision system for achieving high accuracy in deriving objects metric information. One of typical requirements for a stereo vison system in order to obtain better calibration results is to guarantee that both cameras keep the same vertical level. However, cameras may be displaced due to severe conditions of a robot operating or some other circumstances. This paper presents our experimental approach to the problem of a mobile robot stereo vision system calibration under a hardware imperfection. In our experiments, we used crawler-type mobile robot «Servosila Engineer». Stereo system cameras of the robot were displaced relative to each other, causing loss of surrounding environment information. We implemented and verified checkerboard and circle grid based calibration methods. The two methods comparison demonstrated that a circle grid based calibration should be preferred over a classical checkerboard calibration approach.

  14. Robot-arm-based mobile HTS SQUID system for NDE of structures

    Energy Technology Data Exchange (ETDEWEB)

    Yotsugi, K; Hatsukade, Y; Tanaka, S [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp

    2008-02-01

    A robot-arm-based mobile HTS SQUID system was developed for NDE of fixed targets. To realize the system, active magnetic shielding technique using fluxgate as reference sensor for ambient field was applied to a cryocooler-based HTS SQUID gradiometer that was mounted on commercial robot-arm. In this technique, ambient field noise and pulse noise of 550 nT from robot were measured by the fluxgate near the SQUID, and then the fluxgate output was negatively fed back to generate compensation field around the SQUID and fluxgate. The noise from robot was reduced by a factor of about 20 and the shielding technique enabled the HTS SQUID to move in unshielded environment by the robot-arm without flux-trapping or unlocking at 10 mm/s. System noise measurement and inspection of hidden cracks in multi-layer composite-metal structure were demonstrated using the mobile SQUID-NDE system.

  15. [RESEARCH PROGRESS OF PERIPHERAL NERVE SURGERY ASSISTED BY Da Vinci ROBOTIC SYSTEM].

    Science.gov (United States)

    Shen, Jie; Song, Diyu; Wang, Xiaoyu; Wang, Changjiang; Zhang, Shuming

    2016-02-01

    To summarize the research progress of peripheral nerve surgery assisted by Da Vinci robotic system. The recent domestic and international articles about peripheral nerve surgery assisted by Da Vinci robotic system were reviewed and summarized. Compared with conventional microsurgery, peripheral nerve surgery assisted by Da Vinci robotic system has distinctive advantages, such as elimination of physiological tremors and three-dimensional high-resolution vision. It is possible to perform robot assisted limb nerve surgery using either the traditional brachial plexus approach or the mini-invasive approach. The development of Da Vinci robotic system has revealed new perspectives in peripheral nerve surgery. But it has still been at the initial stage, more basic and clinical researches are still needed.

  16. A direct methanol fuel cell system to power a humanoid robot

    Science.gov (United States)

    Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.

  17. 30 Years of Robotic Surgery.

    Science.gov (United States)

    Leal Ghezzi, Tiago; Campos Corleta, Oly

    2016-10-01

    The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.

  18. BOA: Asbestos pipe insulation removal robot system. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.E.

    1995-02-01

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  19. Robotic System for MRI-Guided Stereotactic Neurosurgery

    Science.gov (United States)

    Li, Gang; Cole, Gregory A.; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Pilitsis, Julie G.; Fischer, Gregory S.

    2015-01-01

    Stereotaxy is a neurosurgical technique that can take several hours to reach a specific target, typically utilizing a mechanical frame and guided by preoperative imaging. An error in any one of the numerous steps or deviations of the target anatomy from the preoperative plan such as brain shift (up to 20 mm), may affect the targeting accuracy and thus the treatment effectiveness. Moreover, because the procedure is typically performed through a small burr hole opening in the skull that prevents tissue visualization, the intervention is basically “blind” for the operator with limited means of intraoperative confirmation that may result in reduced accuracy and safety. The presented system is intended to address the clinical needs for enhanced efficiency, accuracy, and safety of image-guided stereotactic neurosurgery for Deep Brain Stimulation (DBS) lead placement. The work describes a magnetic resonance imaging (MRI)-guided, robotically actuated stereotactic neural intervention system for deep brain stimulation procedure, which offers the potential of reducing procedure duration while improving targeting accuracy and enhancing safety. This is achieved through simultaneous robotic manipulation of the instrument and interactively updated in situ MRI guidance that enables visualization of the anatomy and interventional instrument. During simultaneous actuation and imaging, the system has demonstrated less than 15% signal-to-noise ratio (SNR) variation and less than 0.20% geometric distortion artifact without affecting the imaging usability to visualize and guide the procedure. Optical tracking and MRI phantom experiments streamline the clinical workflow of the prototype system, corroborating targeting accuracy with 3-axis root mean square error 1.38 ± 0.45 mm in tip position and 2.03 ± 0.58° in insertion angle. PMID:25376035

  20. An Aerial-Ground Robotic System for Navigation and Obstacle Mapping in Large Outdoor Areas

    Directory of Open Access Journals (Sweden)

    David Zapata

    2013-01-01

    Full Text Available There are many outdoor robotic applications where a robot must reach a goal position or explore an area without previous knowledge of the environment around it. Additionally, other applications (like path planning require the use of known maps or previous information of the environment. This work presents a system composed by a terrestrial and an aerial robot that cooperate and share sensor information in order to address those requirements. The ground robot is able to navigate in an unknown large environment aided by visual feedback from a camera on board the aerial robot. At the same time, the obstacles are mapped in real-time by putting together the information from the camera and the positioning system of the ground robot. A set of experiments were carried out with the purpose of verifying the system applicability. The experiments were performed in a simulation environment and outdoor with a medium-sized ground robot and a mini quad-rotor. The proposed robotic system shows outstanding results in simultaneous navigation and mapping applications in large outdoor environments.

  1. Basic research on intelligent robotic systems operating in hostile environments: New developments at ORNL

    International Nuclear Information System (INIS)

    Barhen, J.; Babcock, S.M.; Hamel, W.R.; Oblow, E.M.; Saridis, G.N.; deSaussure, G.; Solomon, A.D.; Weisbin, C.R.

    1984-01-01

    Robotics and artificial intelligence research carried out within the Center for Engineering Systems Advanced Research (CESAR) is presented. Activities focus on the development and demonstration of a comprehensive methodological framework for intelligent machines operating in unstructured hostile environments. Areas currently being addressed include mathematical modeling of robot dynamics, real-time control, ''world'' modeling, machine perception and strategy planning

  2. Evaluation of modular robot system for maintenance tasks in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Pagala, Prithvi Sekhar, E-mail: ps.pagala@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Ferre, Manuel, E-mail: m.ferre@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Orona, Luis, E-mail: l.orona@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung (Germany)

    2014-10-15

    Highlights: •Modular robot deployment inside hot cell for remote manipulation evaluated. •Flexible and adaptable system for variety of tasks presented. •Uses in large workspaces and evolving requirements shown. -- Abstract: This work assesses the use of a modular robot system to perform maintenance and inspection tasks such as, remote flexible inspection, manipulation and cooperation with deployed systems inside the hot cell. A flexible modular solution for the inclusion in maintenance operations is presented. The proposed heterogeneous modular robotic system is evaluated using simulations of the prototype across selected robot configuration to perform tasks. Results obtained show the advantages and ability of the modular robot to perform the necessary tasks as well as its ability to adapt and evolve depending on the need. The simulation test case inside hot cell shows modular robot configuration, a two modular arm to perform tele-operation tasks in the workspace and a wheeled platform for inspection collaborating to perform tasks. The advantage of using re-configurable modular robot over conventional robot platforms is shown.

  3. Exact Linearization of Nonholonomic System Dynamics Applied to Control of Differentially Driven Soccer Robot

    Czech Academy of Sciences Publication Activity Database

    Grepl, Robert; Lee, B.; Kratochvíl, Ctirad; Šolc, F.; Hrabec, J.

    2008-01-01

    Roč. 15, č. 5 (2008), s. 311-318 ISSN 1802-1484 R&D Projects: GA ČR GA101/06/0063 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonholonomic system dynamics * soccer robot Subject RIV: JD - Computer Applications, Robotics

  4. Stormram 3: A Magnetic Resonance Imaging-Compatible Robotic System for Breast Biopsy

    NARCIS (Netherlands)

    Groenhuis, Vincent; Veltman, Jeroen; Siepel, Françoise Jeanette; Stramigioli, Stefano

    2017-01-01

    Stormram 3 is an MRI-compatible robotic system that can perform MR guided breast biopsies of suspicious lesions. The base of the robot measures 160x180x90 mm and it is actuated by five custom pneumatic linear stepper motors, driven by a valve manifold outside the Faraday cage of the MRI scanner. All

  5. Task Analysis and Job Descriptions for Robotics/Automated Systems Technicians. Final Report. Volume 1.

    Science.gov (United States)

    Hull, Daniel M.; Lovett, James E.

    The Robotics/Automated Systems Technician (RAST) project developed a robotics technician model curriculum for the use of state directors of vocational education and two-year college vocational/technical educators. A baseline management plan was developed to guide the project. To provide awareness, project staff developed a dissemination plan…

  6. Designing, developing, and deploying systems to support human-robot teams in disaster response

    NARCIS (Netherlands)

    Kruijff, G.J.M.; Kruijff-Korbayová, I.; Keshavdas, S.; Larochelle, B.; Janíček, M.; Colas, F.; Liu, M.; Pomerleau, F.; Siegwart, R.; Neerincx, M.A.; Looije, R.; Smets, N.J.J.M.; Mioch, T.; Diggelen, J. van; Pirri, F.; Gianni, M.; Ferri, F.; Menna, M.; Worst, R.; Linder, T.; Tretyakov, V.; Surmann, H.; Svoboda, T.; Reinštein, M.; Zimmermann, K.; Petříček, T.; Hlaváč, V.

    2014-01-01

    This paper describes our experience in designing, developing and deploying systems for supporting human-robot teams during disaster response. It is based on R&D performed in the EU-funded project NIFTi. NIFTi aimed at building intelligent, collaborative robots that could work together with humans in

  7. TRUST MODEL FOR INFORMATION SECURITY OF MULTI-AGENT ROBOTIC SYSTEMS WITH A DECENTRALIZED MANAGEMENT

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2014-03-01

    Full Text Available The paper deals with the issues on protection of multi-agent robotic systems against attacks by robots-saboteurs. The operation analysis of such systems with decentralized control is carried out. Concept of harmful information impact (attack from a robot-saboteur to the multi-agent robotic system is given. The class of attacks is considered using interception of messages, formation and transfer of misinformation to group of robots, and also carrying out other actions with vulnerabilities of multiagent algorithms without obviously identified signs of invasion of robots-saboteurs. The model of information security is developed, in which robots-agents work out trust levels to each other analyzing the events occurring in the system. The idea of trust model consists in the analysis of transferred information by each robot and the executed actions of other members in a group, comparison of chosen decision on iteration step k with objective function of the group. Distinctive feature of the trust model in comparison with the closest analogue - Buddy Security Model in which the exchange between the agents security tokens is done — is involvement of the time factor during which agents have to "prove" by their actions the usefulness in achievement of a common goal to members of the group. Variants of this model realization and ways of an assessment of trust levels for agents in view of the security policy accepted in the group are proposed.

  8. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    International Nuclear Information System (INIS)

    Kim, Hyo-gon; Han, Changsoo; Lee, Jong-won; Park, Sangdeok

    2015-01-01

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  9. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  10. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H J [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Gao, B T [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Zhang, X H [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Deng, Z Q [School of Mechanical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China)

    2006-10-15

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.

  11. Building and Programming a Smart Robotic System for Distinguishing Objects Based on their Shape and Colour

    Science.gov (United States)

    Sharari, T. M.

    2015-03-01

    This paper presents a robotic system designed for holding and placing objects based on their colour and shape. The presented robot is given a complete set of instructions of positions and orientation angles for each manipulation motion. The main feature in this paper is that the developed robot used a combination of vision and motion systems for holding and placing the work-objects, mounted on the flat work-plane, based on their shapes and colors. This combination improves the flexibility of manipulation which may help eliminate the use of some expensive manipulation tasks in a variety of industrial applications. The robotic system presented in this paper is designed as an educational robot that possesses the ability for holding-and-placing operations with limited load. To process the various instructions for holding and placing the work objects, a main control unit - Manipulation Control Unit (MCU) is used as well as a slave unit that performed the actual instructions from the MCU.

  12. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    International Nuclear Information System (INIS)

    Chen, H J; Gao, B T; Zhang, X H; Deng, Z Q

    2006-01-01

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot

  13. State of the art on construction automation and robotic system in domestic and foreign construction industry

    International Nuclear Information System (INIS)

    Lee, Sung Uk; Seo, Yong Chil; Jung, Seung Ho; Cho, Jai Wan; Choi, Young Soo

    2007-08-01

    In this report, we review the existing concept of construction automation and also survey the state of the art on construction automation and robotic system in domestic and foreign construction industry. On the basis of the result of review and survey, we want to suggest an applicable robotic technology to construction industry and points to be duly considered for activating construction automation. We investigate the state of the art on construction automation and robotic system in domestic and foreign construction industry and also applicable area and direction of domestic construction automation and robotic system. We hope that construction automation and robotic technology, which are improved rapidly nowadays, can contribute to the growth of construction industry

  14. Fuzzy System of Distribution of Braking Forces on the Engines of a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Bobyr Maxim

    2016-01-01

    Full Text Available The article presents a fuzzy system of distribution of braking forces on the engines of a mobile robot during its lifting and going down.The block diagram of the system of distribution of braking forces and location of sensors on a mobile robot is given in the paper. Also, fuzzy mathematical model of redistribution of braking forces depending on the conditions of the movement a mobile robot is shown in the article. The result of the simulation of control parameters are presented in the article. The control system of a mobile robot is demonstrated on the example of an autonomous mini-robot on platform Pirate under the control of microprocessor Arduino Mega 2560.

  15. Wireless Power System Design for Mobile Robots used in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. Y.; Yoo, S. J.; Lee, Kun J.; Rim, C. T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    The robots used in nuclear power plants (NPP) have received much attention in recent years due to the Fukushima nuclear accident, which is considered as one of the worst nuclear disasters. In general, the NPP robots can play important roles in fuel exchange, repair work, radiation monitoring, rescue, and scouting out NPP. Under these conditions, human access to NPP during normal and emergency operations is strictly restricted due to the risks of high level radiation and contamination. However, in practice, robots have not been widely used in NPP because of the following limitations. First, the NPP robots cannot be of multi-purpose use because of their mission complexity and uniqueness. Second, the demand of the NPP robots is low due to the limited number of NPP over the world. Third, the NPP robots developed so far have no enough confidence in spite of the improvement of robot technology. Lastly, the NPP robots cannot carry on their mission continuously due to the limited energy capacity of the battery: mobile robots should stop working every two hours to recharge their batteries and spend least twenty minutes. As the solutions for this 'energy hungry' problem, high capacity batteries, quick battery chargers, power cables, and internal combustion engines were proposed; however, they still have the problems such as limited mission time and range, frequent recharging, or exhausting emission and noise. In this paper, the wireless power transfer systems (WPTS) for NPP robots are proposed. This technology can let NPP robots free from mission time and range limits, and exhausting emission. The requirements for the NPP robots are newly proposed, and two types of WPTS, roaming and railway, are suggested in this paper

  16. Wireless Power System Design for Mobile Robots used in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, S. Y.; Yoo, S. J.; Lee, Kun J.; Rim, C. T.

    2012-01-01

    The robots used in nuclear power plants (NPP) have received much attention in recent years due to the Fukushima nuclear accident, which is considered as one of the worst nuclear disasters. In general, the NPP robots can play important roles in fuel exchange, repair work, radiation monitoring, rescue, and scouting out NPP. Under these conditions, human access to NPP during normal and emergency operations is strictly restricted due to the risks of high level radiation and contamination. However, in practice, robots have not been widely used in NPP because of the following limitations. First, the NPP robots cannot be of multi-purpose use because of their mission complexity and uniqueness. Second, the demand of the NPP robots is low due to the limited number of NPP over the world. Third, the NPP robots developed so far have no enough confidence in spite of the improvement of robot technology. Lastly, the NPP robots cannot carry on their mission continuously due to the limited energy capacity of the battery: mobile robots should stop working every two hours to recharge their batteries and spend least twenty minutes. As the solutions for this 'energy hungry' problem, high capacity batteries, quick battery chargers, power cables, and internal combustion engines were proposed; however, they still have the problems such as limited mission time and range, frequent recharging, or exhausting emission and noise. In this paper, the wireless power transfer systems (WPTS) for NPP robots are proposed. This technology can let NPP robots free from mission time and range limits, and exhausting emission. The requirements for the NPP robots are newly proposed, and two types of WPTS, roaming and railway, are suggested in this paper

  17. Total robotic radical rectal resection with da Vinci Xi system: single docking, single phase technique.

    Science.gov (United States)

    Tamhankar, Anup Sunil; Jatal, Sudhir; Saklani, Avanish

    2016-12-01

    This study aims to assess the advantages of Da Vinci Xi system in rectal cancer surgery. It also assesses the initial oncological outcomes after rectal resection with this system from a tertiary cancer center in India. Robotic rectal surgery has distinct advantages over laparoscopy. Total robotic resection is increasing following the evolution of hybrid technology. The latest Da Vinci Xi system (Intuitive Surgical, Sunnyvale, USA) is enabled with newer features to make total robotic resection possible with single docking and single phase. Thirty-six patients underwent total robotic resection in a single phase and single docking. We used newer port positions in a straight line. Median distance from the anal verge was 4.5 cm. Median robotic docking time and robotic procedure time were 9 and 280 min, respectively. Median blood loss was 100 mL. One patient needed conversion to an open approach due to advanced disease. Circumferential resection margin and longitudinal resection margins were uninvolved in all other patients. Median lymph node yield was 10. Median post-operative stay was 7 days. There were no intra-operative adverse events. The latest Da Vinci Xi system has made total robotic rectal surgery feasible in single docking and single phase. With the new system, four arm total robotic rectal surgery may replace the hybrid technique of laparoscopic and robotic surgery for rectal malignancies. The learning curve for the new system appears to be shorter than anticipated. Early perioperative and oncological outcomes of total robotic rectal surgery with the new system are promising. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Multiple-Robot Systems for USAR: Key Design Attributes and Deployment Issues

    Directory of Open Access Journals (Sweden)

    Choon Yue Wong

    2011-03-01

    Full Text Available The interaction between humans and robots is undergoing an evolution. Progress in this evolution means that humans are close to robustly deploying multiple robots. Urban search and rescue (USAR can benefit greatly from such capability. The review shows that with state of the art artificial intelligence, robots can work autonomously but still require human supervision. It also shows that multiple robot deployment (MRD is more economical, shortens mission durations, adds reliability as well as addresses missions impossible with one robot and payload constraints. By combining robot autonomy and human supervision, the benefits of MRD can be applied to USAR while at the same time minimizing human exposure to danger. This is achieved with a single-human multiple-robot system (SHMRS. However, designers of the SHMRS must consider key attributes such as the size, composition and organizational structure of the robot collective. Variations in these attributes also induce fluctuations in issues within SHMRS deployment such as robot communication and computational load as well as human cognitive workload and situation awareness (SA. Research is essential to determine how the attributes can be manipulated to mitigate these issues while meeting the requirements of the USAR mission.

  19. Multiple-Robot Systems for USAR: Key Design Attributes and Deployment Issues

    Directory of Open Access Journals (Sweden)

    Choon Yue Wong

    2011-03-01

    Full Text Available The interaction between humans and robots is undergoing an evolution. Progress in this evolution means that humans are close to robustly deploying multiple robots. Urban search and rescue (USAR can benefit greatly from such capability. The review shows that with state of the art artificial intelligence, robots can work autonomously but still require human supervision. It also shows that multiple robot deployment (MRD is more economical, shortens mission durations, adds reliability as well as addresses missions impossible with one robot and payload constraints. By combining robot autonomy and human supervision, the benefits of MRD can be applied to USAR while at the same time minimizing human exposure to danger. This is achieved with a single-human multiple-robot system (SHMRS. However, designers of the SHMRS must consider key attributes such as the size, composition and organizational structure of the robot collective. Variations in these attributes also induce fluctuations in issues within SHMRS deployment such as robot communication and computational load as well as human cognitive workload and situation awareness (SA.Research is essential to determine how the attributes can be manipulated to mitigate these issues while meeting the requirements of the USAR mission.

  20. The role of robotic surgical system in the management of vascular disease.

    Science.gov (United States)

    Lin, Judith C

    2013-10-01

    The evolution of minimally invasive treatment for aneurysms and occlusive disease has led to the development of endovascular, laparoscopic, and robot-assisted techniques. This article reviews the current literature on the clinical use of robotic surgical systems in the treatment of patients with aneurysms and occlusive disease. A MEDLINE search was performed using the keywords "robotic, vascular, AND surgery." All pertinent articles concerning the use of the robotic surgical system on aneurysms and occlusive disease were reviewed. The author's personal experience consisted of a retrospective review of a prospectively maintained confidential database on all procedures performed with the da Vinci(®) surgical system. Several robot-assisted laparoscopic series on the treatment of aortic disease were identified, including review articles of potential clinical applications in hybrid, laparoscopic vascular, and endovascular treatments for vascular patients using robotic technology. The use of computer-enhanced or robotic technology as a sole modality for bypass of occlusive disease and repair of abdominal aortic, splenic, and renal aneurysms was described in case series with satisfactory patient outcomes. Current robotic endovascular technology was also described. Minimally invasive techniques using endovascular, laparoscopic, or robot-assisted technology have revolutionized the treatment of aortoiliac, splanchnic, and renal aneurysms and occlusive disease. However, robot-assisted techniques for aortic disease may involve a learning curve and increased operating times. Although endovascular therapy is preferred because of faster recovery, this preference for improved short-term outcomes will be balanced with the superiority and durability of robot-assisted endoscopic methods as comparable to open surgery. Copyright © 2013 Elsevier Inc. All rights reserved.