WorldWideScience

Sample records for tectonic stress beneath

  1. PRESENTDAY STRESS STATE OF THE SHANXI TECTONIC BELT

    Directory of Open Access Journals (Sweden)

    Wang Kaiying

    2012-01-01

    Full Text Available The Shanxi tectonic belt is a historically earthquakeabundant area. For the majority of strong earthquakes in this area, the distribution of earthquake foci was controlled by the N–S oriented local structures on the tectonic belt. Studies of the present stress state of the Shanxi tectonic belt can contribute to the understanding of the relationship between strong earthquakes’ occurrence and their structural distribution and also facilitate assessments of regional seismic danger and determination of the regions wherein strong earthquakes may occur in future. Using the Cataclastic Analysis Method (CAM, we performed stress inversion based on the focal mechanism data of earthquakes which took place in the Shanxi tectonic belt from 1967 to 2010. Our results show that orientations of the maximum principal compressive stress axis of the Shanxi tectonic belt might have been variable before and after the 2001 Kunlun MS=8.1 strong earthquake, with two different superior trends of the NW–SE and NE–SW orientation in different periods. When the maximum principal compressive stress axis is oriented in the NE–SW direction, the pattern of the space distribution of the seismic events in the Shanxi tectonic belt shows a trend of their concentration in the N–S oriented tectonic segments. At the same time, the stress state is registered as horizontal shearing and horizontal extension in the N–S and NE–SW oriented local segments in turn. When the maximum principal compressive stress axis is NW–SE oriented, the stress state of the N–S and NE–SW oriented tectonic segments is primarily registered as horizontal shearing. Estimations of plunges of stress axes show that seismicity in the Shanxi belt  corresponds primarily to the activity of lowangle faults, and highangle stress sites are located in the NE–SW oriented extensional tectonic segments of the Shanxi belt. This indicates that the stress change of the Shanxi belt is

  2. Seismic characterization of a `compound tectonic wedge` beneath the Rocky Mountain foreland basin, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D. C.; Sukaramongkol, C.; Spratt, D. A. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1996-06-01

    The detailed internal geometry of a `compound tectonic wedge` beneath an eastward-dipping homocline in the Sundre area of southern Alberta was described. Data for the description was obtained by interpreting reflection seismic data. The wedge has been driven into the foreland succession beneath the gently dipping upper detachment which occurs within coal horizons of the Upper Brazeau Group. Shape of the upper detachment near its toe indicates that rocks in its hanging wall were decoupled from strain associated with forward emplacement of the wedge. Folding of the upper detachment occurs in the hinterland region of the wedge, with a new upper detachment developing above the fold. Emplacement of the wedge is suspected to be the result of excess pore fluid pressure, although proof of this happening awaits quantification of the mechanical model. 25 refs., 8 figs.

  3. Extensional Seismogenic Stress and Tectonic Movement on the Central Region of the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jiren Xu

    2009-01-01

    Full Text Available Various earthquake fault types, mechanism solutions and stress fields, as well as GPS and geothermal data are analyzed for the study of the crustal movements on the Tibetan plateau and their tectonic implications. The results show that a lot of the normal faulting type-event concentrated at altitudes greater than 4000 m on the central Tibetan plateau. The altitudes concentrating normal faulting type-events can be zoned two parts: the western part, the Lhasa block, and the eastern part, the Qiangtang-Changdu region. The azimuths of T-axes are in a general E-W direction in the Lhasa block and NW-SE or NNW-SSE in the Qiangtang-Changdu region at the altitudes of the Tibetan plateau. The tensional stresses in E-W direction and NW-SE direction predominate normal faulting earthquake occurrence in the Lhasa block and the Qiangtang-Changdu region, respectively. The slipping displacements of the normal-faulting-type events have great components in near E-W direction and NW-SE direction in the Lhasa block and the Qiangtang-Changdu region, respectively. The extensions are probably an eastward or southeastward extensional motion, being mainly tectonic activity phenomena in the plateau altitudes. The extensional motions due to normal-fault earthquakes are important tectonic activity regimes on the high altitudes of the plateau. The easterly crustal extensions on the plateau are attributable to the gravitational collapse of the high plateau and eastward extrusion of hotter mantle materials beneath the eastern boundary of the plateau. Numbers of thrust-fault and strike-slip-fault earthquakes with strong compressive stress in a general NNE-SSW direction occur on the edges of the plateau.

  4. End Late Paleozoic tectonic stress field in the southern edge of Junggar Basin

    Directory of Open Access Journals (Sweden)

    Wei Ju

    2012-09-01

    Full Text Available This paper presents the end Late Paleozoic tectonic stress field in the southern edge of Junggar Basin by interpreting stress-response structures (dykes, folds, faults with slickenside and conjugate joints. The direction of the maximum principal stress axes is interpreted to be NW–SE (about 325°, and the accommodated motion among plates is assigned as the driving force of this tectonic stress field. The average value of the stress index R′ is about 2.09, which indicates a variation from strike-slip to compressive tectonic stress regime in the study area during the end Late Paleozoic period. The reconstruction of the tectonic field in the southern edge of Junggar Basin provides insights into the tectonic deformation processes around the southern Junggar Basin and contributes to the further understanding of basin evolution and tectonic settings during the culmination of the Paleozoic.

  5. The effect of a tectonic stress field on coal and gas outbursts.

    Science.gov (United States)

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions.

  6. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable.

    Science.gov (United States)

    Huang, Yihe; Ellsworth, William L; Beroza, Gregory C

    2017-08-01

    Induced earthquakes currently pose a significant hazard in the central United States, but there is considerable uncertainty about the severity of their ground motions. We measure stress drops of 39 moderate-magnitude induced and tectonic earthquakes in the central United States and eastern North America. Induced earthquakes, more than half of which are shallower than 5 km, show a comparable median stress drop to tectonic earthquakes in the central United States that are dominantly strike-slip but a lower median stress drop than that of tectonic earthquakes in the eastern North America that are dominantly reverse-faulting. This suggests that ground motion prediction equations developed for tectonic earthquakes can be applied to induced earthquakes if the effects of depth and faulting style are properly considered. Our observation leads to the notion that, similar to tectonic earthquakes, induced earthquakes are driven by tectonic stresses.

  7. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic

    DEFF Research Database (Denmark)

    Døssing Andreasen, Arne; Japsen, Peter; Watts, Anthony B.

    2016-01-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to ...... by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.......Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses...... backstripping. We explain the thermo-mechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf...

  8. Mapping Tectonic Stress Using Earthquakes

    International Nuclear Information System (INIS)

    Arnold, Richard; Townend, John; Vignaux, Tony

    2005-01-01

    An earthquakes occurs when the forces acting on a fault overcome its intrinsic strength and cause it to slip abruptly. Understanding more specifically why earthquakes occur at particular locations and times is complicated because in many cases we do not know what these forces actually are, or indeed what processes ultimately trigger slip. The goal of this study is to develop, test, and implement a Bayesian method of reliably determining tectonic stresses using the most abundant stress gauges available - earthquakes themselves.Existing algorithms produce reasonable estimates of the principal stress directions, but yield unreliable error bounds as a consequence of the generally weak constraint on stress imposed by any single earthquake, observational errors, and an unavoidable ambiguity between the fault normal and the slip vector.A statistical treatment of the problem can take into account observational errors, combine data from multiple earthquakes in a consistent manner, and provide realistic error bounds on the estimated principal stress directions.We have developed a realistic physical framework for modelling multiple earthquakes and show how the strong physical and geometrical constraints present in this problem allow inference to be made about the orientation of the principal axes of stress in the earth's crust

  9. Crustal structure beneath the southern Korean Peninsula from local earthquakes

    Science.gov (United States)

    Kim, Kwang-Hee; Park, Jung-Ho; Park, Yongcheol; Hao, Tian-Yao; Kim, Han-Joon

    2017-05-01

    The 3-D subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a 3-D velocity model of the upper crust beneath the southern Korean Peninsula using 19 935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  10. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    Science.gov (United States)

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  11. Crustal structure beneath Beijing and its surrounding regions derived from gravity data

    Science.gov (United States)

    Jiang, Wenliang; Zhang, Jingfa; Lu, Xiaocui; Lu, Jing

    2011-06-01

    In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. Logarithmic power spectrum method is also used to calculate depth of gravity field source. The results show that the crustal structure is very complicated beneath Beijing and its surrounding areas. The crustal density exhibits laterally inhomogeneous. There are three large scale tectonic zones in North China, i.e., WNW-striking Zhangjiakou-Bohai tectonic zone (ZBTZ), NE-striking Taihang piedmont tectonic zone (TPTZ) and Cangxian tectonic zone (CTZ). ZBTZ and TPTZ intersect with each other beneath Beijing area and both of them cut through the lithosphere. The upper and middle crusts consist of many small-scale faults, uplifts and depressions. In the lower crust, these small-scale tectonic units disappear gradually, and they are replaced by large-scale tectonic units. In surrounding regions of Beijing, ZBTZ intersects with several other NE-striking tectonic units, such as Cangxian uplift, Jizhong depression and Shanxi Graben System (SGS). In west of Taihangshan uplift, gravity anomalies in upper and middle crusts are correlated with geological and topographic features on the surface. Compared with the crust, the structure is comparatively simple in uppermost mantle. Earthquakes mainly occurred in upper and middle crusts, especially in transitional regions between high gravity anomaly and low gravity anomaly. Occurrence of large earthquakes may be related to the upwelling of upper mantle and asthenosphere heat flow materials, such as Sanhe earthquake ( M S8.0) and Tangshan earthquake ( M S7.8).

  12. GEODYNAMIC ACTIVITY OF MODERN STRUCTURES AND TECTONIC STRESS FIELDS IN NORTHEAST ASIA

    Directory of Open Access Journals (Sweden)

    L. P. Imaeva

    2017-01-01

    Full Text Available Based on the analysis of changes in the stress-strain state of the crust at the boundary of the Eurasian and North American tectonic plates, we develop a dynamic model of the main seismogenerating structures inNortheast Asia. We have established a regularity in changes of geodynamic regimes within the interplate boundary between the Kolyma-Chukotka crustal plate and the Eurasian, North American and Pacific tectonic plates: spreading in the Gakkel Ridge area; rifting in the Laptev Sea shelf; a mixture of tectonic stress types in the Kharaulakh segment; transpression in the Chersky seismotectonic zone, in the segment from the Komandor to the Aleutian Islands, and in the Koryak segment; and crustal stretching in the Chukotka segment.

  13. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    Science.gov (United States)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  14. Numerical modeling of tectonic stress field and fault activity in North China

    Directory of Open Access Journals (Sweden)

    Li Yan

    2012-02-01

    Full Text Available On the basis of a 3-dimension visco-elastic finite element model of lithosphere in North China, we numerically simulate the recent mutative figures of tectonic stress field. Annual change characteristics of stress field are; 1 Maximum principal tensile stress is about 3–9 kPaa−1 and its azimuth lie in NNW-SSE. 2 Maximum principal compressive stress is about 1–6 kPaa−1 and its azimuth lie in NEE-SWW. 3 Maximum principal tensile stress is higher both in the west region and Liaoning Province. 4 Variation of tectonic stress field benefits fault movement in the west part and northeast part of North China. 5 Annual accumulative rates of Coulomb fracture stress in Tanlu fault belt have segmentation patterns: Jiashan-Guangji segment is the highest (6 kPaa−1, Anshan-Liaodongwan segment is the second (5 kPaa−1, and others are relatively lower (3–4 kPaa−1.

  15. Multilayer Densities Using a Wavelet-based Gravity Method and Their Tectonic Implications beneath the Tibetan Plateau

    Science.gov (United States)

    Xu, Chuang; Luo, Zhicai; Sun, Rong; Zhou, Hao; Wu, Yihao

    2018-03-01

    Determining density structure of the Tibetan Plateau is helpful in better understanding tectonic structure and development. Seismic method, as traditional approach obtaining a large number of achievements of density structure in the Tibetan Plateau except in the center and west, is primarily inhibited by the poor seismic station coverage. As the implementation of satellite gravity missions, gravity method is more competitive because of global homogeneous gravity coverage. In this paper, a novel wavelet-based gravity method with high computation efficiency and excellent local identification capability is developed to determine multilayer densities beneath the Tibetan Plateau. The inverted 6-layer densities from 0 km to 150 km depth can reveal rich tectonic structure and development of study area: (1) The densities present a clockwise pattern, nearly east-west high-low alternating pattern in the west and nearly south-north high-low alternating pattern in the east, which is almost perpendicular to surface movement direction relative to the stable Eurasia from the Global Positioning System velocity field; (2) Apparent fold structure approximately from 10 km to 110 km depth can be inferred from the multilayer densities, the deformational direction of which is nearly south-north in the west and east-west in the east; (3) Possible channel flows approximately from 30 km to 110 km depth can be also observed clearly during the multilayer densities. Moreover, the inverted multilayer densities are in agreement with previous studies, which verify the correctness and effectiveness of our method.

  16. Multilayer densities using a wavelet-based gravity method and their tectonic implications beneath the Tibetan Plateau

    Science.gov (United States)

    Xu, Chuang; Luo, Zhicai; Sun, Rong; Zhou, Hao; Wu, Yihao

    2018-06-01

    Determining density structure of the Tibetan Plateau is helpful in better understanding of tectonic structure and development. Seismic method, as traditional approach obtaining a large number of achievements of density structure in the Tibetan Plateau except in the centre and west, is primarily inhibited by the poor seismic station coverage. As the implementation of satellite gravity missions, gravity method is more competitive because of global homogeneous gravity coverage. In this paper, a novel wavelet-based gravity method with high computation efficiency and excellent local identification capability is developed to determine multilayer densities beneath the Tibetan Plateau. The inverted six-layer densities from 0 to 150 km depth can reveal rich tectonic structure and development of study area: (1) The densities present a clockwise pattern, nearly east-west high-low alternating pattern in the west and nearly south-north high-low alternating pattern in the east, which is almost perpendicular to surface movement direction relative to the stable Eurasia from the Global Positioning System velocity field; (2) Apparent fold structure approximately from 10 to 110 km depth can be inferred from the multilayer densities, the deformational direction of which is nearly south-north in the west and east-west in the east; (3) Possible channel flows approximately from 30 to 110 km depth can also be observed clearly during the multilayer densities. Moreover, the inverted multilayer densities are in agreement with previous studies, which verify the correctness and effectiveness of our method.

  17. The Subduction of an Exhumed and Serpentinized Magma-Poor Basement Beneath the Northern Lesser Antilles Reveals the Early Tectonic Fabric at Slow-Spreading Mid-Oceanic Ridges

    Science.gov (United States)

    Marcaillou, B.; Klingelhoefer, F.; Laurencin, M.; Biari, Y.; Graindorge, D.; Jean-Frederic, L.; Laigle, M.; Lallemand, S.

    2017-12-01

    Multichannel and wide-angle seismic data as well as heat-flow measurements (ANTITHESIS cruise, 2016) reveal a 200x200km patch of magma-poor oceanic basement in the trench and beneath the outer fore-arc offshore of Antigua to Saint Martin in the Northern Lesser Antilles. These data highlight an oceanic basement with the following features: 1/ Absence of any reflection at typical Moho depth and layer2/layer3 limit depths. 2/ High Velocity Vp at the top (>5.5 km/s), low velocity gradient with depth (serpentinized at the slow-spreading mid-Atlantic Ridge 80 Myr ago, is currently subducting beneath the Northern Lesser Antilles. During the exhumation, early extension triggers penetrative shear zones sub-parallel to the ridge and to the transform fault. Eventually, this early extension generates sliding along the so-called detachment fault, while the other proto-detachment abort. Approaching the trench, the plate bending reactivates these weak zones in normal faults and fluid pathways promoting deep serpentinisation and localizing tectonic deformation at the plate interface. These subducting fluid-rich mechanically weak mantle rocks rise questions about their relation to the faster slab deepening, the lower seismic activity and the pervasive tectonic partitioning in this margin segment.

  18. 3-D crustal structure beneath the southern Korean Peninsula from local earthquakes

    Science.gov (United States)

    Kim, K. H.; Park, J. H.; Park, Y.; Hao, T.; Kang, S. Y.; Kim, H. J.

    2017-12-01

    Located at the eastern margin of the Eurasian continent, the geology and tectonic evolution of the Korean Peninsula are closely related to the rest of the Asian continent. Although the widespread deformation of eastern Asia and its relation to the geology and tectonics of the Korean Peninsula have been extensively studied, the answers to many fundamental questions about the peninsula's history remain inconclusive. The three-dimensional subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a three-dimensional velocity model of the upper crust beneath the southern Korean Peninsula using 19,935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks maintained by Korea Meteorological Administration and Korea Institute of Geosciences and Mineral Resources. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North China and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  19. Tectonic stress history and the relationship with uranium mineralization in Shenchong mining area

    International Nuclear Information System (INIS)

    Zhu Mingqiang; Lin Yinshan; Kang Zili

    1996-01-01

    The rejection method of maximum statistical for principal stress axis is applied to complex granite body, this paper divide mining area tectonic process into six epochs. The relationship between the tectonic process and uranium mineralization is also discussed, and the later 3 times fracture process of Diwa epoch control the removing and gathering of Uranium in this area

  20. Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Mid-Lithosphere Discontinuity: A Hypothesis

    Science.gov (United States)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2017-09-01

    The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.

  1. Study On Aftershock Triggering In Consideration Of Tectonic Stress Field

    Science.gov (United States)

    Hu, C.; Cai, Y.

    2007-12-01

    : The occurrence of earthquake is related to the strength of rock and tectonic stress field. The seismic risk factor (SRF),D=\\left|{τn }\\right|/(μσn ) is proposed to describe the dangerous status of aftershock triggering in this paper. Dearthquakes, velocity field from GPS as well as geological survey. As one order of approximation, the magnitudes of the regional tectonic stress field can be estimated by the Coulomb failure criterion. Finite element method (FEM) and the concept of the factor D are used to study the aftershock triggering of the 1976 Tangshan Ms=7.8 earthquake. The results show that: (1) Most of the aftershocks triggered by the Tangshan earthquake occurred in the two-leaf-shaped regions of D≥ 1 near the north-east end of the main-shock fault. The largest leaf is about 100km long and 40km wide. (2) The areas of aftershock triggering predicted by the seismic risk factorD and Δ CFS (the changes in the Coulomb failure stress) are almost the same near the fault. The difference between them is that the aftershock area predicted by Δ CFS≥ 0 is too large and the area predicted by the factor D≥ 1 is limited. The areas of aftershock triggering predicted by Δ CFS≥ 0.04 MPa are nearly the same as those of D≥ 1 obtained by the study. (3) Sometimes Δ CFS =0.01MPa is taken as a low threshold of aftershock triggering. However, Δ CFS≥ 0 only means the probability increase of the earthquake triggering, not means the earthquake will occur. The earthquake occurrence is not only related to Δ CFS, but also to the tectonic stress field before the main-shock.

  2. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    Science.gov (United States)

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  3. Simulation of three-dimensional tectonic stress fields and quantitative prediction of tectonic fracture within the Damintun Depression, Liaohe Basin, northeast China

    Science.gov (United States)

    Guo, Peng; Yao, Leihua; Ren, Desheng

    2016-05-01

    Tectonic fractures are important factors that influence oil and natural gas migration and accumulation within "buried hill" reservoirs. To obtain a quantitative forecast of the development and distribution of reservoir fractures in the Damintun Depression, we analyzed the characteristics of regional structural evolution and paleotectonic stress field setting. A reasonable geological model of the research area was built based on an interpretation of the geological structure, a test for rock mechanics, and experiment on acoustic emission. Thereafter, a three-dimensional paleotectonic stress field during the Yanshan movement was simulated by the finite element method. Rock failure criterion and comprehensive evaluation coefficient of fractures were used to determine the quantitative development of fractures and predict zones that are prone to fracture development. Under an intense Yanshan movement, high stress strength is distributed in the south and northeast parts of the study area, where stress is extremely high. The fracture development zones are mainly controlled by the tectonic stress field and typically located in the same areas as those of high maximum principal and shear stresses. The predicted areas with developed fractures are consistent with the wells with high fracture linear density and in locations with high-producing oil and gas wells.

  4. Reducing risk where tectonic plates collide

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  5. Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting

    Science.gov (United States)

    Navabpour, Payman; Barrier, Eric

    2012-12-01

    The present-day Zagros fold-and-thrust belt of SW-Iran corresponds to the former Arabian passive continental margin of the southern Neo-Tethyan basin since the Permian-Triassic rifting, undergoing later collisional deformation in mid-late Cenozoic times. In this paper an overview of brittle tectonics and palaeostress reconstructions of the Zagros fold-and-thrust belt is presented, based on direct stress tensor inversion of fault slip data. The results indicate that, during the Neo-Tethyan oceanic opening, an extensional tectonic regime affectedthe sedimentary cover in Triassic-Jurassic times with an approximately N-S trend of the σ3 axis, oblique to the margin, which was followed by some local changes to a NE-SW trend during Jurassic-Cretaceous times. The stress state significantly changed to thrust setting, with a NE-SW trend of the σ1 axis, and a compressional tectonic regime prevailed during the continental collision and folding of the sedimentary cover in Oligocene-Miocene times. This compression was then followed by a strike-slip stress state with an approximately N-S trend of the σ1 axis, oblique to the belt, during inversion of the inherited extensional basement structures in Pliocene-Recent times. The brittle tectonic reconstructions, therefore, highlighted major changes of the stress state in conjunction with transitions between thin- and thick-skinned structures during different extensional and compressional stages of continental deformation within the oblique divergent and convergent settings, respectively.

  6. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    Science.gov (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  7. Geoprospective study of a nuclear waste repository. Prospective tectonics: convergent and divergent episodes, evolution of stress during the next 100,000 years

    International Nuclear Information System (INIS)

    Gros, Y.

    1985-01-01

    Within the frame of a contract with the CEC, dealing with storage and disposal of radioactive wastes in geological formations, the B.R.G.M. has been involved in a research on prospective tectonics. Within the Western European continental plate, since Mesozoic times, one sees the alternation or succession of convergent and divergent tectonic episodes. These tectonic episodes, although representing geologically discontinuous phenomena, still have time periods of between 4 to 40 millions years. These tectonic phenomena are the cause of the formation or reactivation, at all scales in the continental plate, of brittle, fault-like structures. Tectonic analysis and the in situ measures of stress and the earthquake focal phenomena show that, from the lower Quaternary to the present, the Western European continental plate has been subjected to NNW to SSE convergent stress. A study of the arrangement of European and African plates in the Western Mediterranean shows that the entire region, is undergoing a period of continental collision. The change in the process implies a westerly continental drift of the Spanish plate, a movement which would take several million years. On the Western European scale, the most likely hypothesis during the next 100,000 years is the persistance of the present stress trending approximately N-5. On the other hand, on a local scale, reorganisations of this stress are possible, owing to the presence of tectonic or lithological heterogeneities

  8. S-wave triggering of tremor beneath the Parkfield, California, section of the San Andreas fault by the 2011 Tohoku, Japan earthquake: observations and theory

    Science.gov (United States)

    Hill, David P.; Peng, Zhigang; Shelly, David R.; Aiken, Chastity

    2013-01-01

    The dynamic stresses that are associated with the energetic seismic waves generated by the Mw 9.0 Tohoku earthquake off the northeast coast of Japan triggered bursts of tectonic tremor beneath the Parkfield section of the San Andreas fault (SAF) at an epicentral distance of ∼8200  km. The onset of tremor begins midway through the ∼100‐s‐period S‐wave arrival, with a minor burst coinciding with the SHSH arrival, as recorded on the nearby broadband seismic station PKD. A more pronounced burst coincides with the Love arrival, followed by a series of impulsive tremor bursts apparently modulated by the 20‐ to 30‐s‐period Rayleigh wave. The triggered tremor was located at depths between 20 and 30 km beneath the surface trace of the fault, with the burst coincident with the S wave centered beneath the fault 30 km northwest of Parkfield. Most of the subsequent activity, including the tremor coincident with the SHSH arrival, was concentrated beneath a stretch of the fault extending from 10 to 40 km southeast of Parkfield. The seismic waves from the Tohoku epicenter form a horizontal incidence angle of ∼14°, with respect to the local strike of the SAF. Computed peak dynamic Coulomb stresses on the fault at tremor depths are in the 0.7–10 kPa range. The apparent modulation of tremor bursts by the small, strike‐parallel Rayleigh‐wave stresses (∼0.7  kPa) is likely enabled by pore pressure variations driven by the Rayleigh‐wave dilatational stress. These results are consistent with the strike‐parallel dynamic stresses (δτs) associated with the S, SHSH, and surface‐wave phases triggering small increments of dextral slip on the fault with a low friction (μ∼0.2). The vertical dynamic stresses δτd do not trigger tremor with vertical or oblique slip under this simple Coulomb failure model.

  9. Receiver Function Imaging of Mantle Transition Zone Discontinuities Beneath Alaska

    Science.gov (United States)

    Dahm, Haider Hassan Faraj

    Subduction of tectonic plates is one of the most important tectonic processes, yet many aspects of subduction zone geodynamics remain unsolved and poorly understood, such as the depth extent of the subducted slab and its geometry. The Alaska subduction zone, which is associated with the subduction of the Pacific Plate beneath the North America plate, has a complex tectonic setting and carries a series of subduction episodes, and represents an excellent target to study such plate tectonic processes. Previous seismological studies in Alaska have proposed different depth estimations and geometry for the subducted slab. The Mantle transition zone discontinuities of the 410km and the 660 km provide independent constraints on the depth extent of the subducted slabs. We conducted a receiver function study to map the topography of the 410 km and the 660 km discontinuities beneath Alaska and its adjacent areas by taking advantage of the teleseismic data from the new USArray deployment in Alaska and northwestern Canada. Stacking over 75,000 high-quality radial receiver functions recorded in Alaska with more than 40 years of recording period, the topographies of the 410 km and 660 km are mapped. The depths of both d410 and d660 show systematic spatial variations, the mean depth of d410 and d660 are within 6 km and 6 km from the global average, respectively. The mean MTZ thickness of the entire study area is within -2 km from the global average of 250 km, suggesting normal MTZ conditions on average. Central and south-central Alaska are characterized by a larger than normal MTZ thickness, suggesting that the subducting Pacific slab is thermally interacted with the MTZ. This study shows that lateral upper mantle velocity variations contribute the bulk of the observed apparent undulations of the MTZ discontinuities.

  10. The feature of the focal mechanism solutions and tectonic stress field around the focus of Zaduo earthquake (Ms 6.3) in eastern Tibet

    Science.gov (United States)

    Yang, Y.; Zeng, Z.; Shuang, X.; Li, X.

    2017-12-01

    On 17th October, 2016, an earthquake of Ms6.3 occurred in Zaduo County, Qinghai Province (32.9°N, 95.0°E), 159 km away from the epicenter of Yushu Ms7.3 earthquake in 2011. The earthquake is located in the eastern Tibet Plateau and the north region of Eastern Himalayan Syntaxis. Using the broadband seismic waveform data form regional networks, we determined the focal mechanism solutions (FMSs) of 83 earthquakes (M>3.5) occurred in Zaduo and its adjacent areas from 2009 to 2017. We also collected another 63 published FMSs and then inversed the current tectonic stress field in study region using the damped linear inversion method. The results show that the Zaduo earthquake is a normal oblique earthquake. The FMSs in our study region are mainly in strike-slip and normal fault patterns. The strike-slip earthquakes are mainly distributed in Yushu-Ganzi, Zaduo and Yanshiping fault zones, and the normal faulting events occurred in Nu Jiang fault zone and Nierong County and its vicinity, the south and southwest of the study areas. The tectonic stress field results indicate that the stress distribution in the north and east of the study region changes homogeneously and slowly. From west to east, the σ1 gradually changes from NNE to NE direction, and the σ3 varies from NWW to NW direction. Both the maximum (σ1) and minimum (σ3) principal stress axes in the study area are nearly horizontal, except in the Nu Jiang fault zone and its vicinity, the south of the study area, which is in a normal faulting stress regime (σ1 is vertical and σ3 is horizontal). The localized normal faulting stress field in the south area, which is almost limited in a semicircle, indicates that a high pressure and low viscosity body with low S-wave velocity and high conductivity might exists beneath the anomaly area. And there may be another semicircle abnormal area beyond the south of the study region. Waveform data for this study are provided by Data Management Centre of China National Seismic

  11. Vertical movement in mare basins: relation to mare emplacement, basin tectonics, and lunar thermal history

    International Nuclear Information System (INIS)

    Solomon, S.C.

    1979-01-01

    The spatial and temporal relationships of linear rilles and mare ridges in the Serenitatis basin region of the moon are explained by a combination of lithospheric flexure in response to basin loading by basalt fill and a time-dependent global stress due to the thermal evolution of the lunar interior. The pertinent tectonic observations are the radial distance of basin concentric rilles or graben from the mare center; the location and orientation of mare ridges, interpreted as compressive features; and the restriction of graben formation to times older than 3.6 +- 0.2 b.y. ago, while ridge formation continued after emplacement of the youngest mare basalt unit (approx.3 b.y. ago). The locations of the graben are consistent with the geometry of the mare basalt load expected from the dimensions of multiring basins for values of the thickness of the elastic lithosphere beneath Serenitatis in the range 25--50 km at 3.6--3.8 b.y. ago. The locations and orientations of mare ridges are consistent with the load inferred from surface mapping and subsurface radar reflections for values of the elastic lithosphere thickness near 100 km at 3.0--3.4 b.y. ago. The thickening of the lithosphere beneath a major basin during the evolution of mare volcanism is thus clearly evident in the tectonics. The cessation of rille formation and the prolonged period of ridge formation are attributed to a change in the global horizontal thermal stress from extension to compression as the moon shifted from net expansion to overall cooling and contraction. Severe limits as placed on the range of possible lunar thermal histories. The zone of horizontal extensional stresses peripheral to mare loads favors the edge of mare basins as the preferred sites for mare basalt magma eruption in the later stages of mare fill, although subsidence may lead to accumulation of such young lavas in basin centers

  12. A detailed map of the 660-kilometer discontinuity beneath the izu-bonin subduction zone.

    Science.gov (United States)

    Wicks, C W; Richards, M A

    1993-09-10

    Dynamical processes in the Earth's mantle, such as cold downwelling at subduction zones, cause deformations of the solid-state phase change that produces a seismic discontinuity near a depth of 660 kilometers. Observations of short-period, shear-to-compressional wave conversions produced at the discontinuity yield a detailed map of deformation beneath the Izu-Bonin subduction zone. The discontinuity is depressed by about 60 kilometers beneath the coldest part of the subducted slab, with a deformation profile consistent with the expected thermal signature of the slab, the experimentally determined Clapeyron slope of the phase transition, and the regional tectonic history.

  13. Evidence of recent plutonic magmatism beneath Northeast Peloponnesus (Greece) and its relationship to regional tectonics

    Science.gov (United States)

    Tzanis, A.; Efstathiou, A.; Chailas, S.; Stamatakis, M.

    2018-03-01

    This work reports evidence of recent tectonically controlled plutonic magmatism related to Neogene volcanism in a broad area of Northeast Peloponnesus (Greece) that is straddled by the Hellenic Volcanic Arc and comprises the Argolid, the Argolic and Saronic gulfs and eastern Corinthia including the province of Crommyonia at the western half of Megaris peninsula (western Attica). We assess the contemporary stress field based on formal inversion of well-constrained crustal earthquake focal mechanisms and determine that it is principally extensional and NE-SW oriented, with σ1 strike and plunge being N64° and 77°, respectively and σ3 strikes and plunge N210° and 10°. This generates WNW-ESE and NW-SE faults, the former being dominant in the Saronic Gulf and the latter in the Argolic. In addition, the analysis predicts E-W and N330° faults with non-trivial right- and left-lateral heave, respectively, which are consistent with the R and R΄ directions of Riedel shear theory and explain a number of observed earthquake focal mechanisms and earthquake epicentre alignments. We also present a semi-quantitative analysis of observed aeromagnetic anomalies by performing numerical modelling of the radially averaged power spectrum with an efficient anomaly separation scheme based on a new type of 2-D Fourier domain filter introduced herein, the Radial Extended Meyer Window. This analysis identifies an extensive complex of magnetized rock formations buried at depths greater than 3 km which, given the geology and geotectonic setting of the area, can hardly be explained with anything other than calc-alkaline intrusions (plutons). At northeastern Corinthia and Crommyonia, this type of intrusive activity is unexceptional, mainly concentrated in the Gulf of Megara-Sousaki areas and consistent with the low-intensity, small-scale Pliocene dacitic volcanism observed therein. Conversely, large-scale elongate anomalies of E-W and N330° orientation have been identified in the Argolid

  14. Magmatism and underplating, a broadband seismic perspective on the Proterozoic tectonics of the Great Falls and Snowbird Tectonic Zones

    Science.gov (United States)

    Chen, Y.; Gu, Y. J.; Dokht, R.; Wang, R.

    2017-12-01

    The crustal and lithospheric structures beneath the Western Canada Sedimentary Basin (WCSB) and northern Montana contain vital records of the Precambrian tectonic development of Laurentia. In this study, we analyze the broadband seismic data recorded by the USArray and the most complete set of regional seismic networks to date near the WCSB. We adopt an integrated approach to investigate crustal structure and history, based primarily on P-to-S receiver functions but incorporate results from noise correlation functions, finite-frequency tomography and potential field measurements. In comparison with existing regional and global models, our stacked receiver functions show considerable improvements in the resolution of both Moho depth and Vp/Vs ratio. We identify major variations in Moho depth from the WCSB to the adjacent Cordillera. The Moho deepens steeply from 40 km in the Alberta basin to 50 km beneath the foothills, following Airy isostasy, but thermal buoyancy may be responsible for a flat, shallow ( 35 km) Moho to the west of the Rocky Mountain Trench. The Moho depth also increases sharply near the Snowbird Tectonic Zone (STZ), which is consistent with earlier findings from active-source data. Multiple lower crustal phases, a high velocity shallow mantle and elevated Vp/Vs ratios along the westernmost STZ jointly suggest major Proterozoic subduction and magmatism along this collisional boundary. In northern Montana, the Moho deepens along the Great Falls Tectonic Zone (GFTZ), a proposed Proterozoic suture between the Medicine Hat Block and Wyoming craton. This transition occurs near the Little Belt Mountain, which is located south of the Great Falls Shear Zone, an extensive northeast striking fault system characterized by strong potential field gradients. Similar to the STZ, our receiver functions offer new evidence for Proterozoic underplating in the vicinity of the GFTZ. In view of similar rock ages near the collisional boundaries in all parts of northern

  15. Preliminary analysis on the tectonic stress level in the source region of Tangshan earthquake

    Science.gov (United States)

    Jian-Tao, Zhao; Cui, Xiao-Feng; Xie, Fu-Ren

    2002-05-01

    The abundant data of focal mechanism solutions in Tangshan region, China, are inverted for the tectonic stress field. Combined with tectonophysical consideration, the magnitude of the three principal stresses, as well as their vertical variation under the average crustal rock property, in the source region of the 1976 Tangshan earthquake is estimated. The relationship between crustal stress and friction μ c, pore pressure P 0 and stress shape factor Φ is studied. The paper draws the conclusion that the vertical increasing rate of the maximum principal stress σ is directly proportional to friction, and inversely to pore pressure P 0 and stress shape factor Φ; while the vertical increasing rate of the minimum principal tress σ is directly proportional to pore pressure P 0, inversely to friction μ c and stress shape factor Φ. This study is a try to invert the data of focal mechanism solutions for the complete stress tensor.

  16. Prediction of tectonic stresses and fracture networks with geomechanical reservoir models

    International Nuclear Information System (INIS)

    Henk, A.; Fischer, K.

    2014-09-01

    This project evaluates the potential of geomechanical Finite Element (FE) models for the prediction of in situ stresses and fracture networks in faulted reservoirs. Modeling focuses on spatial variations of the in situ stress distribution resulting from faults and contrasts in mechanical rock properties. In a first methodological part, a workflow is developed for building such geomechanical reservoir models and calibrating them to field data. In the second part, this workflow was applied successfully to an intensively faulted gas reservoir in the North German Basin. A truly field-scale geomechanical model covering more than 400km 2 was built and calibrated. It includes a mechanical stratigraphy as well as a network of 86 faults. The latter are implemented as distinct planes of weakness and allow the fault-specific evaluation of shear and normal stresses. A so-called static model describes the recent state of the reservoir and, thus, after calibration its results reveal the present-day in situ stress distribution. Further geodynamic modeling work considers the major stages in the tectonic history of the reservoir and provides insights in the paleo stress distribution. These results are compared to fracture data and hydraulic fault behavior observed today. The outcome of this project confirms the potential of geomechanical FE models for robust stress and fracture predictions. The workflow is generally applicable and can be used for modeling of any stress-sensitive reservoir.

  17. Prediction of tectonic stresses and fracture networks with geomechanical reservoir models

    Energy Technology Data Exchange (ETDEWEB)

    Henk, A.; Fischer, K. [TU Darmstadt (Germany). Inst. fuer Angewandte Geowissenschaften

    2014-09-15

    This project evaluates the potential of geomechanical Finite Element (FE) models for the prediction of in situ stresses and fracture networks in faulted reservoirs. Modeling focuses on spatial variations of the in situ stress distribution resulting from faults and contrasts in mechanical rock properties. In a first methodological part, a workflow is developed for building such geomechanical reservoir models and calibrating them to field data. In the second part, this workflow was applied successfully to an intensively faulted gas reservoir in the North German Basin. A truly field-scale geomechanical model covering more than 400km{sup 2} was built and calibrated. It includes a mechanical stratigraphy as well as a network of 86 faults. The latter are implemented as distinct planes of weakness and allow the fault-specific evaluation of shear and normal stresses. A so-called static model describes the recent state of the reservoir and, thus, after calibration its results reveal the present-day in situ stress distribution. Further geodynamic modeling work considers the major stages in the tectonic history of the reservoir and provides insights in the paleo stress distribution. These results are compared to fracture data and hydraulic fault behavior observed today. The outcome of this project confirms the potential of geomechanical FE models for robust stress and fracture predictions. The workflow is generally applicable and can be used for modeling of any stress-sensitive reservoir.

  18. The Role of Tectonic Stress in Triggering Large Silicic Caldera Eruptions

    Science.gov (United States)

    Cabaniss, Haley E.; Gregg, Patricia M.; Grosfils, Eric B.

    2018-05-01

    We utilize 3-D temperature-dependent viscoelastic finite element models to investigate the mechanical response of the host rock supporting large caldera-size magma reservoirs (volumes >102 km3) to local tectonic stresses. The mechanical stability of the host rock is used to determine the maximum predicted repose intervals and magma flux rates that systems may experience before successive eruption is triggered. Numerical results indicate that regional extension decreases the stability of the roof rock overlying a magma reservoir, thereby promoting early-onset caldera collapse. Alternatively, moderate amounts of compression (≤10 mm/year) on relatively short timescales (stresses on reservoir stability, our models indicate that the process of rejuvenation and mechanical failure is likely to take place over short time periods of hundreds to thousands of years. These findings support the short preeruption melt accumulation timescales indicated by U series disequilibrium studies.

  19. The lithosphere-asthenosphere boundary beneath the Korean Peninsula from S receiver functions

    Science.gov (United States)

    Lee, S. H.; Rhie, J.

    2017-12-01

    The shallow lithosphere in the Eastern Asia at the east of the North-South Gravity Lineament is well published. The reactivation of the upper asthenosphere induced by the subducting plates is regarded as a dominant source of the lithosphere thinning. Additionally, assemblage of various tectonic blocks resulted in complex variation of the lithosphere thickness in the Eastern Asia. Because, the Korean Peninsula located at the margin of the Erasian Plate in close vicinity to the trench of subducting oceanic plate, significant reactivation of the upper asthenosphere is expected. For the study of the tectonic history surrounding the Korean Peninsula, we determined the lithosphere-asthenosphere boundary (LAB) beneath the Korean Peninsula using common conversion point stacking method with S receiver functions. The depth of the LAB beneath the Korean Peninsula ranges from 60 km to 100 km and confirmed to be shallower than that expected for Cambrian blocks as previous global studies. The depth of the LAB is getting shallower to the south, 95 km at the north and 60 km at the south. And rapid change of the LAB depth is observed between 36°N and 37°N. The depth change of the LAB getting shallower to the south implies that the source of the lithosphere thinning is a hot mantle upwelling induced by the northward subduction of the oceanic plates since Mesozoic. Unfortunately, existing tectonic models can hardly explain the different LAB depth in the north and in the south as well as the rapid change of the LAB depth.

  20. Seismogenic Structure Beneath Décollement Inferred from 2009/11/5 ML 6.2 Mingjian Earthquake in Central Taiwan

    Directory of Open Access Journals (Sweden)

    Che-Min Lin

    2014-01-01

    Full Text Available One decade after the 1999 Chi-Chi earthquake, central Taiwan experienced more strong ground shaking [Central Weather Bureau (CWB, intensity VII] induced by a ML 6.2 earthquake on 5th November 2009. This earthquake occurred in the Mingjian Township of Nantou County, only 12 km southwest of the Chi-Chi earthquake epicenter. The broadband microearthquake monitoring network operated by the National Center for Research on Earthquake Engineering (NCREE observed numerous aftershocks in the five days following the mainshock. The relocated aftershocks and the mainshock focal mechanism indicated a NE-SW striking fault dipping 60¢X toward the northwest. This fault plane is inside the pre-Miocene basement and the rupture extends from the lower crust to 10 km depth just beneath the basal décollement of the thin-skinned model that is generally used to explain the regional tectonics in Taiwan. The fault plane is vertically symmetrical with the Chelungpu fault by the basal décollement. The NW-SE compressive stress of plate collision in Taiwan, as well as the deep tectonic background, resulted in the seismogenic structure of the Mingjian earthquake at this location.

  1. Scheme of fault tectonic and tectonic activity manifestation in the region of the Crimea nuclear power plant construction

    International Nuclear Information System (INIS)

    Pasynkov, A.L.

    1989-01-01

    Characteristic of fault tectonics and tectonic activity manifestation in the region of the Crimea nuclear power plant construction is presented. Mosaic-block structure of the area, predetermined by the development of diagonal systems of activated tectonic dislocations with different displacement amplitudes and different stratigraphic ranges of manifestation, was established. Strained-stressed state of the region is determined by the presence of the South-Azov zone of deep fault and Krasnogorsk-Samarlinks fault system. The presented scheme can be used as tectonic basis of seismogenic activity of the region

  2. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    Science.gov (United States)

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  3. Late-Variscan Tectonic Inheritance and Salt Tectonics Interplay in the Central Lusitanian Basin

    Science.gov (United States)

    Nogueira, Carlos R.; Marques, Fernando O.

    2017-04-01

    Tectonic inheritance and salt structures can play an important role in the tectono-sedimentary evolution of basins. The Alpine regional stress field in west Iberia had a horizontal maximum compressive stress striking approximately NNW-SSE, related to the Late Miocene inversion event. However, this stress field cannot produce a great deal of the observed and mapped structures in the Lusitanian Basin. Moreover, many observed structures show a trend similar to well-known basement fault systems. The Central Lusitanian basin shows an interesting tectonic structure, the Montejunto structure, generally assigned to this inversion event. Therefore, special attention was paid to: (1) basement control of important observed structures; and (2) diapir tectonics (vertical maximum compressive stress), which can be responsible for significant vertical movements. Based on fieldwork, tectonic analysis and interpretation of geological maps (Portuguese Geological Survey, 1:50000 scale) and geophysical data, our work shows: (1) the Montejunto structure is a composite structure comprising an antiform with a curved hinge and middle Jurassic core, and bounding main faults; (2) the antiform can be divided into three main segments: (i) a northern segment with NNE-SSW trend showing W-dipping bedding bounded at the eastern border by a NNE-SSW striking fault, (ii) a curved central segment, showing the highest topography, with a middle Jurassic core and radial dipping bedding, (iii) a western segment with ENE-WSW trend comprising an antiform with a steeper northern limb and periclinal termination towards WSW, bounded to the south by ENE-WSW reverse faulting, (3) both fold and fault trends at the northern and western segments are parallel to well-known basement faults related to late-Variscan strike-slip systems with NNE-SSW and ENE-WSW trends; (4) given the orientation of Alpine maximum compressive stress, the northern segment border fault should be mostly sinistral strike-slip and the western

  4. Spreading continents kick-started plate tectonics.

    Science.gov (United States)

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.

  5. Coulomb stress transfer and tectonic loading preceding the 2002 Denali fault earthquake

    Science.gov (United States)

    Bufe, Charles G.

    2006-01-01

    Pre-2002 tectonic loading and Coulomb stress transfer are modeled along the rupture zone of the M 7.9 Denali fault earthquake (DFE) and on adjacent segments of the right-lateral Denali–Totschunda fault system in central Alaska, using a three-dimensional boundary-element program. The segments modeled closely follow, for about 95°, the arc of a circle of radius 375 km centered on an inferred asperity near the northeastern end of the intersection of the Patton Bay fault with the Alaskan megathrust under Prince William Sound. The loading model includes slip of 6 mm/yr below 12 km along the fault system, consistent with rotation of the Wrangell block about the asperity at a rate of about 1°/m.y. as well as slip of the Pacific plate at 5 cm/yr at depth along the Fairweather–Queen Charlotte transform fault system and on the Alaska megathrust. The model is consistent with most available pre-2002 Global Positioning System (GPS) displacement rate data. Coulomb stresses induced on the Denali–Totschunda fault system (locked above 12 km) by slip at depth and by transfer from the M 9.2 Prince William Sound earthquake of 1964 dominated the changing Coulomb stress distribution along the fault. The combination of loading (∼70–85%) and coseismic stress transfer from the great 1964 earthquake (∼15–30%) were the principal post-1900 stress factors building toward strike-slip failure of the northern Denali and Totschunda segments in the M 7.9 earthquake of November 2002. Postseismic stresses transferred from the 1964 earthquake may also have been a significant factor. The M 7.2–7.4 Delta River earthquake of 1912 (Carver et al., 2004) may have delayed or advanced the timing of the DFE, depending on the details and location of its rupture. The initial subevent of the 2002 DFE earthquake was on the 40-km Susitna Glacier thrust fault at the western end of the Denali fault rupture. The Coulomb stress transferred from the 1964 earthquake moved the Susitna Glacier thrust

  6. Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress

    Science.gov (United States)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2017-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture

  7. Seismic Structure of Mantle Transition Zone beneath Northwest Pacific Subduction Zone and its Dynamic Implication

    Science.gov (United States)

    Li, J.; Guo, G.; WANG, X.; Chen, Q.

    2017-12-01

    The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Various and complex geometry of the Pacific subducting slab can be well traced downward from the Kuril, Japan and Izu-Bonin trench using seismicity and tomography images (Fukao and Obayashi, 2013). Due to the sparse distribution of seismic stations in the sea, investigation of the deep mantle structure beneath the broad sea regions is very limited. In this study, we applied the well- developed multiple-ScS reverberations method (Wang et al., 2017) to analyze waveforms recorded by the Chinese Regional Seismic Network, the densely distributed temporary seismic array stations installed in east Asia. A map of the topography of the upper mantle discontinuities beneath the broad oceanic regions in northwest Pacific subduction zone is imaged. We also applied the receiver function analysis to waveforms recorded by stations in northeast China and obtain the detailed topography map beneath east Asia continental regions. We then combine the two kinds of topography of upper mantle discontinuities beneath oceanic and continental regions respectively, which are obtained from totally different methods. A careful image matching and spatial correlation is made in the overlapping study regions to calibrate results with different resolution. This is the first time to show systematically a complete view of the topography of the 410-km and 660-km discontinuities beneath the east Asia "Big mantle wedge" (Zhao and Ohtani, 2009) covering the broad oceanic and continental regions in the Northwestern Pacific Subduction zone. Topography pattern of the 660 and 410 is obtained and discussed. Especially we discovered a broad depression of the 410-km discontinuity covering more than 1000 km in lateral, which seems abnormal in the cold subducting tectonic environment. Based on plate tectonic reconstruction studies and HTHP mineral experiments, we

  8. Spatial variations of current tectonic stress field and its relationship to the structure and rheology of lithosphere around the Bohai Sea, North China

    Science.gov (United States)

    Li, Xianrui; Wang, Jie; Zeng, Zuoxun; Dai, Qingqin

    2017-05-01

    The tectonic stress field in the middle-upper crust is closely related to the structure and rheology of the lithosphere. To determine the stress field in the deep crust, we inversed the focal mechanism solutions (FMSs) of 62 earthquakes that occurred between 2009 and 2015 in the Bohai Sea and its surrounding areas using broadband seismic waveforms collected from 140 stations. We then derived the tectonic stress field using the software SATSI (Spatial And Temporal Stress Inversion) based on the damped linear inversion method. The inversion results show that both the maximum (σ1) and minimum (σ3) principle stress axes throughout the entire region are nearly horizontal except in the Tangshan and Haicheng areas, suggesting that the study area is predominantly under a strike-slip faulting stress regime. The σ1 and σ3 axes are found to be oriented in the NEE-SWW or nearly E-W and NNW-SSE or nearly S-N directions, respectively. These results indicate that the stress field in the North China Craton is controlled by the combined effects of the Pacific Plate westward subduction and the India-Eurasia Plate collision. However, localized normal faulting stress regimes (where the vertical stress σv ≈ σ1) are observed in the Tangshan and Haicheng areas, where low viscosity bodies (LVBs) were identified using geophysical data. Based on the analysis of focal mechanism solutions, active faults and lithosphere rheology characteristics in the Tangshan and Haicheng areas, we speculate that the anomalous stress regime is caused by the local extension resulting from the movement of strike-slip faults under the action of the regional stress field. The existence of LVB may indicate weakness in the crust that favors the accumulation of tectonic stress and triggers large earthquakes.

  9. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain

    Science.gov (United States)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine

    2015-12-01

    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  10. X-ray fractography by using synchrotron radiation source. Residual stress distribution just beneath fatigue fracture surface

    International Nuclear Information System (INIS)

    Akita, Koichi; Yoshioka, Yasuo; Suzuki, Hiroshi; Sasaki, Toshihiko

    2000-01-01

    The residual stress distributions just beneath the fatigue fracture surface were measured using synchrotron radiation with three different wavelengths, i.e., three different penetration depths. The residual stress distributions were estimated from three kinds of diffraction data by the following process. First, a temporary residual stress distribution in the depth direction is assumed. Theoretical 2θ-sin 2 ψ diagrams for each wavelength, where each has a different penetration depth, are calculated by the cosψ method developed by one of the authors. The sum total of the differences between the theoretical and experimental values of the diffraction angle in 2θ-sin 2 ψ diagrams is calculated. This total value is minimized by changing the assumed stress distribution by the quasi-Newton optimization method. Finally, optimized 2θ-sin 2 ψ diagrams for each penetration depth and detailed stress distribution are determined. The true surface residual stress is obtained from this stress distribution. No effect of load ratio R (= P min /P max ) on the residual stresses of the fatigue fracture surfaces in low-carbon steels was observed when the sin 2 ψ method was used for stress measurement. However, the residual stresses became higher with increasing R when these were measured by the proposed method. On the basis of this, the stress intensity factor range, ΔK, can be estimated from the residual stress on the fatigue fracture surface. (author)

  11. Probability of a surface rupture offset beneath a nuclear test reactor

    International Nuclear Information System (INIS)

    Reed, J.W.; Meehan, R.L.; Crellin, G.L.

    1981-01-01

    A probabilistic analysis was conducted to determine the likelihood of a surface rupture offset of any size beneath the 50 megawatt General Electric Test Reactor (GETR), which is located at the Vallecitos Nuclear Center near Pleasanton, California. Geologic faults have been observed at the GETR site. These faults may be due to surface folds, landslides, or deep tectonic movement. They are referred to in the paper as 'existing faults;' however, use of this term does not imply that they are tectonic in origin. The objective of the analysis was to evaluate whether a conservative estimate of the probability of occurrence of a future fault movement is sufficiently low so that movement beneath the reactor building need not be considered as a design basis event. The reactor building is located between two existing faults which are approximately 1320 feet apart. If a fault movement occurs in the future, it is conservatively assumed to occur either on the existing faults or between the faults, or on a fault(s) and between the two faults at the same time. The probabilistic model included the possibility of movements occurring due to unknown, undiscovered faults in the region. For this part, movements were assumed to occur according to a Poisson process. For the possibility of new faults occurring due to the two existing faults, a hazard function was used which increases with time since the last offset. (orig./RW)

  12. Geodynamic Constraints on the Sources of Seismic Anisotropy Beneath Madagascar

    Science.gov (United States)

    Rajaonarison, T. A.; Stamps, D. S.; Fishwick, S.

    2017-12-01

    The rheological structure of the lithosphere-asthenosphere system controls the degree in which the mantle drives surface motions. Seismic anisotropy is a proxy to infer information about previous tectonic events imprinted in lithospheric structures and/or asthenospheric flow pattern in regions absent of active volcanism, however, distinguishing between the shallow and deeper sources, respectively, remains ambiguous. Madagascar is an ideal natural laboratory to study the sources of anisotropy and the rheological implications for lithosphere-asthenosphere system because 1) active volcanism is minimal or absent, 2) there are well-exposed tectonic fabrics for comparison, and 3) numerous geological and geophysical observations provides evidence of present-day tectonic activities. Recent studies suggest new seismic anisotropy observations in southern Madagascar are sourced from both fossilized lithospheric structure and asthenospheric flow driven by rigid lithospheric plate motion. In this work we compare geodynamic simulations of the lithosphere-asthenosphere system with seismic anisotropy data set that includes all of Madagascar. We use the numerical code Advanced Solver for Problems in Earth's ConvecTion (ASPECT) to calculate instantaneous deformation in the lithosphere and edge-driven convective flow in the asthenosphere accounting for variations in buoyancy forces and temperature dependent viscosity. The initial temperature conditions are based on interpretations from high resolution regional surface wave tomography. We assume visco-plastic rheology for a uniform crust, dislocation creep for a laterally varying mantle lithospheric structure, and diffusion creep for the asthenosphere. To test for the source of anisotropy we compare our velocity solution azimuths with azimuths of anisotropy at 25 km depth intervals. Calculated asthenospheric flow aligns with measured seismic anisotropy with a 15° WRMS at 175 km depth and possibly down to 250 km suggesting the

  13. Focal mechanisms and tidal modulation for tectonic tremors in Taiwan

    Science.gov (United States)

    Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.

    2015-12-01

    Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.

  14. Lithospheric stresses due to radiogenic heating of an ice-silicate planetary body - Implications for Ganymede's tectonic evolution

    Science.gov (United States)

    Zuber, M. T.; Parmentier, E. M.

    1984-01-01

    Thermal evolution models of differentiated and undifferentiated ice-silicate bodies containing long-lived radiogenic heat sources are examined. Lithospheric sresses arise due to volume change of the interior and temperature change in the lithosphere. For an undifferentiated body, the surface stress peaks early in the evolution, while in the differentiated case, stresses peak later and continue to accumulate for longer periods of time. The variation of near-surface stress with depth shows that stresses for the undifferentiated body initially penetrate to great depths, but rapidly concentrate within a few kilometers of the surface. For the differentiated body, elastic stresses never accumulate at a depth greater than a few kilometers. These models are applied to consider long-term rdioactive heating as a possible mechanism of tectonic activity and bright terrain formation on Ganymede.

  15. Crustal structure beneath two seismic stations in the Sunda-Banda arc transition zone derived from receiver function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, E-mail: hadda9@gmail.com [Graduate Research on Earthquake and Active Tectonics (GREAT), Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132 (Indonesia); Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia); Hananto, Nugroho D.; Handayani, Lina [Research Centre for Geotechnology - Indonesian Institute of Sciences (LIPI), Jl. Sangkuriang (Kompleks LIPI) Bandung 40135 (Indonesia); Puspito, Nanang T; Yudistira, Tedi [Faculty of Mining and Petroleum Engineering ITB, Jalan Ganesha 10, Bandung 40132 (Indonesia); Anggono, Titi [Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia)

    2015-04-24

    We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stations by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.

  16. A Bed-Deformation Experiment Beneath Engabreen, Norway

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2001-12-01

    Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a

  17. Crustal Structure beneath Alaska from Receiver Functions

    Science.gov (United States)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  18. Off-axis volcano-tectonic activity during continental rifting: Insights from the transversal Goba-Bonga lineament, Main Ethiopian Rift (East Africa)

    Science.gov (United States)

    Corti, Giacomo; Sani, Federico; Agostini, Samuele; Philippon, Melody; Sokoutis, Dimitrios; Willingshofer, Ernst

    2018-03-01

    The Main Ethiopian Rift, East Africa, is characterized by the presence of major, enigmatic structures which strike approximately orthogonal to the trend of the rift valley. These structures are marked by important deformation and magmatic activity in an off-axis position in the plateaus surrounding the rift. In this study, we present new structural data based on a remote and field analysis, complemented with analogue modelling experiments, and new geochemical analysis of volcanic rocks sampled in different portions of one of these transversal structures: the Goba-Bonga volcano-tectonic lineament (GBVL). This integrated analysis shows that the GBVL is associated with roughly E-W-trending prominent volcano-tectonic activity affecting the western plateau. Within the rift floor, the approximately E-W alignment of Awasa and Corbetti calderas likely represent expressions of the GBVL. Conversely, no tectonic or volcanic features of similar (E-W) orientation have been recognized on the eastern plateau. Analogue modelling suggests that the volcano-tectonic features of the GBVL have probably been controlled by the presence of a roughly E-W striking pre-existing discontinuity beneath the western plateau, which did not extend beneath the eastern plateau. Geochemical analysis supports this interpretation and indicates that, although magmas have the same sub-lithospheric mantle source, limited differences in magma evolution displayed by products found along the GBVL may be ascribed to the different tectonic framework to the west, to the east, and in the axial zone of the rift. These results support the importance of the heterogeneous nature of the lithosphere and the spatial variations of its structure in controlling the architecture of continental rifts and the distribution of the related volcano-tectonic activity.

  19. WAVE TECTONICS OF THE EARTH

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova

    2010-01-01

    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  20. Sub-crustal seismic activity beneath Klyuchevskoy Volcano

    Science.gov (United States)

    Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.

    2013-12-01

    Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep

  1. Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone

    Science.gov (United States)

    Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.

    2018-06-01

    In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.

  2. Seismic Constraints on the Lithosphere-Asthenosphere Boundary Beneath the Izu-Bonin Area: Implications for the Oceanic Lithospheric Thinning

    Science.gov (United States)

    Cui, Qinghui; Wei, Rongqiang; Zhou, Yuanze; Gao, Yajian; Li, Wenlan

    2018-01-01

    The lithosphere-asthenosphere boundary (LAB) is the seismic discontinuity with negative velocity contrasts in the upper mantle. Seismic detections on the LAB are of great significance in understanding the plate tectonics, mantle convection and lithospheric evolution. In this paper, we study the LAB in the Izu-Bonin subduction zone using four deep earthquakes recorded by the permanent and temporary seismic networks of the USArray. The LAB is clearly revealed with sP precursors (sdP) through the linear slant stacking. As illustrated by reflected points of the identified sdP phases, the depth of LAB beneath the Izu-Bonin Arc (IBA) is about 65 km with a range of 60-68 km. The identified sdP phases with opposite polarities relative to sP phases have the average relative amplitude of 0.21, which means a 3.7% velocity drop and implies partial melting in the asthenosphere. On the basis of the crustal age data, the lithosphere beneath the IBA is located at the 1100 °C isotherm calculated with the GDH1 model. Compared to tectonically stable areas, such as the West Philippine Basin (WPB) and Parece Vela Basin (PVB) in the Philippine Sea, the lithosphere beneath the Izu-Bonin area shows the obvious lithospheric thinning. According to the geodynamic and petrological studies, the oceanic lithospheric thinning phenomenon can be attributed to the strong erosion of the small-scale convection in the mantle wedge enriched in volatiles and melts.

  3. THE FIELD OF RECENT TECTONIC STRESSES IN CENTRAL AND SOUTH-EASTERN ASIA

    Directory of Open Access Journals (Sweden)

    Yu. L. Rebetsky

    2014-01-01

    Global CMT Database, reconstructions based on the first catalog are mapped. In the maps showing consolidated patterns of the state of stresses, spacious areas of horizontal extension of the crust in Tibet are clearly identified. In the south, such areas are bordered by regions of horizontal compression of the crust in Himalaya; in the north and north-east, they are bordered by regions of horizontal shear of the crust in East Kunlun. According to results of calculations at stage 2 of the method of cataclastic analyses, the crust in the central part of Tibet is subject to intensive confining pressure and lateral compression that is reduced in the neighboring regions. The crust in the southern and northern parts of Pamir is also subject to horizontal extension and shear. Regions of horizontal compression are located to the north, west and south of Pamir. Regulations of the field of recent tectonic stresses of Tibet and Pamir, which are revealed in this study, can be explained by the concept of ‘tectonic spreading’ of these regions due to gravity, which causes intensive horizontal spreading of the crust in Himalaya when the southern boundary of Tibet bends outwards and spreads over the Indian ‘indenter’ moving in the north–north-eastern direction. It is suggested by the data on horizontal extension of the crust in Tibet and underthrusting shear stresses over the horizontal zones that the impact Indian ‘indenter’ does not go beyond the crust of Pamir and the crust of the central parts of Tibet which is located above the long-term active mantle plume.  

  4. New Crustal Boundary Revealed Beneath the Ross Ice Shelf, Antarctica, through ROSETTA-Ice Integrated Aerogeophysics, Geology, and Ocean Research

    Science.gov (United States)

    Tinto, K. J.; Siddoway, C. S.; Bell, R. E.; Lockett, A.; Wilner, J.

    2017-12-01

    Now submerged within marine plateaus and rises bordering Antarctica, Australia and Zealandia, the East Gondwana accretionary margin was a belt of terranes and stitched by magmatic arcs, later stretched into continental ribbons separated by narrow elongate rifts. This crustal architecture is known from marine geophysical exploration and ocean drilling of the mid-latitude coastal plateaus and rises. A concealed sector of the former East Gondwana margin that underlies the Ross Ice Shelf (RIS), Antarctica, is the focus of ROSETTA-ICE, a new airborne data acquisition campaign that explores the crustal makeup, tectonic boundaries and seafloor bathymetry beneath RIS. Gravimeters and a magnetometer are deployed by LC130 aircraft surveying along E-W lines spaced at 10 km, and N-S tie lines at 55 km, connect 1970s points (RIGGS) for controls on ocean depth and gravity. The ROSETTA-ICE survey, 2/3 completed thus far, provides magnetic anomalies, Werner depth-to-basement solutions, a new gravity-based bathymetric model at 20-km resolution, and a new crustal density map tied to the 1970s data. Surprisingly, the data reveal that the major lithospheric boundary separating East and West Antarctica lies 300 km east of the Transantarctic Mountains, beneath the floating RIS. The East and West regions have contrasting geophysical characteristics and bathymetry, with relatively dense lithosphere, low amplitude magnetic anomalies, and deep bathymetry on the East Antarctica side, and high amplitude magnetic anomalies, lower overall density and shallower water depths on the West Antarctic side. The Central High, a basement structure cored at DSDP Site 270 and seismically imaged in the Ross Sea, continues beneath RIS as a faulted but coherent crustal ribbon coincident with the tectonic boundary. The continuity of Gondwana margin crustal architecture discovered beneath the West Antarctic Ice Sheet requires a revision of the existing tectonic framework. The sub-RIS narrow rift basins and

  5. Stress state reconstruction and tectonic evolution of the northern slope of the Baikit anteclise, Siberian Craton, based on 3D seismic data

    Science.gov (United States)

    Moskalenko, A. N.; Khudoley, A. K.; Khusnitdinov, R. R.

    2017-05-01

    In this work, we consider application of an original method for determining the indicators of the tectonic stress fields in the northern Baikit anteclise based on 3D seismic data for further reconstruction of the stress state parameters when analyzing structural maps of seismic horizons and corresponded faults. The stress state parameters are determined by the orientations of the main stress axes and shape of the stress ellipsoid. To calculate the stress state parameters from data on the spatial orientations of faults and slip vectors, we used the algorithms from quasiprimary stress computation methods and cataclastic analysis, implemented in the software products FaultKinWin and StressGeol, respectively. The results of this work show that kinematic characteristics of faults regularly change toward the top of succession and that the stress state parameters are characterized by different values of the Lode-Nadai coefficient. Faults are presented as strike-slip faults with normal or reverse component of displacement. Three stages of formation of the faults are revealed: (1) partial inversion of ancient normal faults, (2) the most intense stage with the predominance of thrust and strike-slip faults at north-northeast orientation of an axis of the main compression, and (3) strike-slip faults at the west-northwest orientation of an axis of the main compression. The second and third stages are pre-Vendian in age and correlate to tectonic events that took place during the evolution of the active southwestern margin of the Siberian Craton.

  6. Active tectonics and earthquake potential of the Myanmar region

    Science.gov (United States)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  7. Preliminary result of P-wave speed tomography beneath North Sumatera region

    Energy Technology Data Exchange (ETDEWEB)

    Jatnika, Jajat [Earth Science Study Program, Institute of Technology Bandung (Indonesia); Indonesian Meteorological, Climatological and Geophysical Agency (MCGA), Jakarta (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Insitute of Technology Bandung (Indonesia); Wandono [Indonesian Meteorological, Climatological and Geophysical Agency (MCGA), Jakarta (Indonesia)

    2015-04-24

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 30×30 km2 for inside the study area and 80×80 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5 km down to 100 km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80 km down to 100 km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  8. LOWLID FORMATION AND PLATE TECTONICS ON EXOPLANETS

    Science.gov (United States)

    Stamenkovic, V.; Noack, L.; Breuer, D.

    2009-12-01

    dynamic process changing with time. By combining 1D thermal time evolution models and 2D/3D steady state models we are able to conclude that planetary mass does influence the propensity of plate tectonics on planets. The pressure dependence changes the scaling laws for parameterized models and influences the scaling of stresses associated with breaking of plates and thus the initiation of plate tectonics. The results indicate that for planets with masses larger than Earth lithospheric plates are either becoming thicker or remain similar in thickness and yield stresses to break the plates increase - making it harder to assume that plate tectonics is more likely on Super-Earths. Moreover, convective stresses decrease more than yield stresses do for planets smaller than Earth, leading to the fact that planets with masses close to one Earth mass seem to have better chances to exhibit plate tectonics than larger or smaller planets with similar composition and structure. References [1] Noack, L. Stamenkovic, V., and Breuer, D. (2009) ESLAB 09, P1.04. [2] Valencia, D., O’Connell, R.J., and Sasselov, D.D. (2007) Astroph. J., 670, 45-48. [3] O’Neill, C. and Lenardic, A. (2007) GRL, 34, L19204

  9. Stress field models from Maxwell stress functions: southern California

    Science.gov (United States)

    Bird, Peter

    2017-08-01

    The lithospheric stress field is formally divided into three components: a standard pressure which is a function of elevation (only), a topographic stress anomaly (3-D tensor field) and a tectonic stress anomaly (3-D tensor field). The boundary between topographic and tectonic stress anomalies is somewhat arbitrary, and here is based on the modeling tools available. The topographic stress anomaly is computed by numerical convolution of density anomalies with three tensor Green's functions provided by Boussinesq, Cerruti and Mindlin. By assuming either a seismically estimated or isostatic Moho depth, and by using Poisson ratio of either 0.25 or 0.5, I obtain four alternative topographic stress models. The tectonic stress field, which satisfies the homogeneous quasi-static momentum equation, is obtained from particular second derivatives of Maxwell vector potential fields which are weighted sums of basis functions representing constant tectonic stress components, linearly varying tectonic stress components and tectonic stress components that vary harmonically in one, two and three dimensions. Boundary conditions include zero traction due to tectonic stress anomaly at sea level, and zero traction due to the total stress anomaly on model boundaries at depths within the asthenosphere. The total stress anomaly is fit by least squares to both World Stress Map data and to a previous faulted-lithosphere, realistic-rheology dynamic model of the region computed with finite-element program Shells. No conflict is seen between the two target data sets, and the best-fitting model (using an isostatic Moho and Poisson ratio 0.5) gives minimum directional misfits relative to both targets. Constraints of computer memory, execution time and ill-conditioning of the linear system (which requires damping) limit harmonically varying tectonic stress to no more than six cycles along each axis of the model. The primary limitation on close fitting is that the Shells model predicts very sharp

  10. Elysium region, mars: Tests of lithospheric loading models for the formation of tectonic features

    International Nuclear Information System (INIS)

    Hall, J.L.; Solomon, S.C.; Head, J.W.

    1986-01-01

    The second largest volcanic province on Mars lies in the Elysium region. Like the larger Tharsis province, Elysium is marked by a topographic rise and a broad free air gravity anomaly and also exhibits a complex assortment of tectonic and volcanic features. We test the hypothesis that the tectonic features in the Elysium region are the product of stresses produced by loading of the Martian lithosphere. We consider loading at three different scales: local loading by individual volcanoes, regional loading of the lithosphere from above or below, and quasi-global loading by Tharsis. A comparison of flexural stresses with lithospheric strength and with the inferred maximum depth of faulting confirms that concentric graben around Elysium Mons can be explained as resulting from local flexure of an elastic lithosphere about 50 km thick in response to the volcano load. Volcanic loading on a regional scale, however, leads to predicted stresses inconsistent with all observed tectonic features, suggesting that loading by widespread emplacement of thick plains deposits was not an important factor in the tectonic evolution of the Elysium region. A number of linear extensional features oriented generally NW-SE may have been the result of flexural uplift of the lithosphere on the scale of the Elysium rise. The global stress field associated with the support of the Tharsis rise appears to have influenced the development of many of the tectonic features in the Elysium region, including Cerberus Rupes and the systems of ridges in eastern and western Elysium. The comparisons of stress models for Elysium with the preserved tectonic features support a succession of stress fields operating at different times in the region

  11. Reconciliation of stress and structural histories of the Tharsis region of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Golombek, Matthew P.; Banerdt, W. B.

    1991-01-01

    New information is presented on the structural and stratigraphic evolution of the Tharsis region of Mars, along with a lithospheric deformation model that can account for the observations. According to this model, the lithosphere beneath Tharsis consists of a thin elastic crustal cap on the rise, which is mechanically detached from the strong upper mantle by a volcanically thickened, hot, weak lower crust; these layers merge into a single cooler strong lithospheric layer around the edges of the rise. It is suggested that the nonuniform distribution of tectonic features and strain around Tharsis is due to the concentration of regional stresses near weaker volcanotectonic centers.

  12. Crustal thickness and Vp/Vs beneath the southeastern United States: Constraints from receiver function stacking

    Science.gov (United States)

    Yang, Q.; Gao, S. S.; Liu, K. H.

    2017-12-01

    To provide new constraints on crustal structure and evolution models beneath a collage of tectonic provinces in the southeastern United States, a total of 10,753 teleseismic receiver functions recorded by 125 USArray and other seismic stations are used to compute crustal thickness and Vp/Vs values. The resulting crustal thicknesses range from 25 km at the coast to 51 km beneath the peak of the southern Appalachians with an average of 36.2 km ± 5.5 km. The resulting crustal thicknesses correlate well with surface elevation and Bouguer gravity anomalies. Beneath the Atlantic Coastal Plain, the crustal thicknesses show a clear eastward thinning with a magnitude of 10 km, from about 40 km beneath the western margin to 30 km beneath the coast. The Vp/Vs values for the entire study area range from 1.71 to 1.90 with a mean value of 1.80 ± 0.04. The mean Vp/Vs value is 1.82±0.035 in the southern Appalachian Mountain. The slightly larger than normal crustal Vp/Vs for this area might be the result of significant erosion of the felsic upper crust over the past 300 million years. Alternatively, it could also suggest the existence of pervasive magmatic intrusion into the Appalachian crust. The Vp/Vs measurements in the Atlantic Coastal Plain increase toward the east, ranging from 1.75 to 1.82, probably indicating a gradual increase of mafic magmatic intrusion into thinner crust during the development of the passive continental margin.

  13. Gravity modeling of the Muertos Trough and tectonic implications (north-eastern Caribbean)

    Science.gov (United States)

    Granja, Bruna J.L.; Muñoz-Martín, A.; ten Brink, Uri S.; Carbó-Gorosabel, Andrés; Llanes, Estrada P.; Martín-Dávila, J.; Cordoba-Barba, D.; Catalan, Morollon M.

    2010-01-01

    The Muertos Trough in the northeast Caribbean has been interpreted as a subduction zone from seismicity, leading to infer a possible reversal subduction polarity. However, the distribution of the seismicity is very diffuse and makes definition of the plate geometry difficult. In addition, the compressive deformational features observed in the upper crust and sandbox kinematic modeling do not necessarily suggest a subduction process. We tested the hypothesized subduction of the Caribbean plate's interior beneath the eastern Greater Antilles island arc using gravity modeling. Gravity models simulating a subduction process yield a regional mass deficit beneath the island arc independently of the geometry and depth of the subducted slab used in the models. This mass deficit results from sinking of the less dense Caribbean slab beneath the lithospheric mantle replacing denser mantle materials and suggests that there is not a subducted Caribbean plateau beneath the island arc. The geologically more realistic gravity model which would explain the N-S shortening observed in the upper crust requires an overthrusted Caribbean slab extending at least 60 km northward from the deformation front, a progressive increase in the thrusting angle from 8?? to 30?? reaching a maximum depth of 22 km beneath the insular slope. This new tectonic model for the Muertos Margin, defined as a retroarc thrusting, will help to assess the seismic and tsunami hazard in the region. The use of gravity modeling has provided targets for future wide-angle seismic surveys in the Muertos Margin. ?? 2010 Springer Science+Business Media B.V.

  14. The rotation and fracture history of Europa from modeling of tidal-tectonic processes

    Science.gov (United States)

    Rhoden, Alyssa Rose

    Europa's surface displays a complex history of tectonic activity, much of which has been linked to tidal stress caused by Europa's eccentric orbit and possibly non-synchronous rotation of the ice shell. Cycloids are arcuate features thought to have formed in response to tidal normal stress while strike-slip motion along preexisting faults has been attributed to tidal shear stress. Tectonic features thus provide constraints on the rotational parameters that govern tidal stress, and can help us develop an understanding of the tidal-tectonic processes operating on ice covered ocean moons. In the first part of this work (Chapter 3), I test tidal models that include obliquity, fast precession, stress due to non-synchronous rotation (NSR), and physical libration by comparing how well each model reproduces observed cycloids. To do this, I have designed and implemented an automated parameter-searching algorithm that relies on a quantitative measure of fit quality to identify the best fits to observed cycloids. I apply statistical techniques to determine the tidal model best supported by the data and constrain the values of Europa's rotational parameters. Cycloids indicate a time-varying obliquity of about 1° and a physical libration in phase with the eccentricity libration, with amplitude >1°. To obtain good fits, cycloids must be translated in longitude, which implies non-synchronous rotation of the icy shell. However, stress from NSR is not well-supported, indicating that the rotation rate is slow enough that these stresses relax. I build upon the results of cycloid modeling in the second section by applying calculations of tidal stress that include obliquity to the formation of strike-slip faults. I predict the slip directions of faults with the standard formation model---tidal walking (Chapter 5)---and with a new mechanical model I have developed, called shell tectonics (Chapter 6). The shell tectonics model incorporates linear elasticity to determine slip and stress

  15. Breaking rocks made easy: subcritical processes and tectonic predesign

    Science.gov (United States)

    Voigtlaender, Anne; Krautblatter, Michael

    2017-04-01

    In geomorphic studies, to change in landforms, e.g. by rock slope failure, fluvial or glacial erosion, a threshold is commonly assumed, which is crossed either by an increase in external driving or a decrease of internal resisting forces, respectively. If the threshold is crossed, bedrock breaks and slope fails, rivers incise and glaciers plug and sew their bed. Here we put forward a focus on the decrease of the resisting forces, as an increase in the driving forces, to match the strength of bedrock, is not that likely. We suggest that the degradation of resisting forces of bedrock can be better explained by subcritical processes like creep, fatigue and stress corrosion interplaying with tectonic predesign. Both concepts, subcritical processes and tectonic predesign have been issued in the last century, but have not been widely accepted nor have their assumptions been explicitly stressed in recent case studies. Moreover both concepts profit especially on scale issues if merged. Subcritical crack growth, includes different mechanisms promoting fractures well below the ultimate strength. Single infinitesimal but irreversible damage and deformations are induced in the material over time. They interact with inherent microstructural flaws and low applied stresses, limiting local strength and macroscopic behavior of bedrock. This reissues the concept of tectonic predesigned, as proposed by A.E. Scheidegger, which not only encompasses structural features that determine the routing of drainage patterns and shear planes, e.g. joints, faults and foliations, but also the (neo)tectonic stress-field and the (in-situ) strain state of bedrocks and mountains. Combining subcritical processes and tectonic predesign we can better explain, why and where we see a dissected, eroded and geomorphic divers' landscape. In this conceptual framework actual magnitudes of the driving forces are accounted for and so is the nature of the bedrock material, to better understand the trajectories of

  16. Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history

    NARCIS (Netherlands)

    Ren, Y.; Stutzmann, E.; Hilst, R.D. van der; Besse, J.

    2007-01-01

    We combine results from seismic tomography and plate motion history to investigate slabs of subducted lithosphere in the lower mantle beneath the Americas. Using broadband waveform cross correlation, we measured 37,000 differential P and S traveltimes, 2000 PcP-P and ScS-S times along a wide

  17. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    Science.gov (United States)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  18. Estimates of fluid pressure and tectonic stress in hydrothermal/volcanic areas:a methodological approach

    Directory of Open Access Journals (Sweden)

    G. Vilardo

    2005-06-01

    Full Text Available An analytical approach to estimate the relative contribution of the fluid pressure and tectonic stress in hydrothermal/ volcanic areas is proposed assuming a Coulomb criterion of failure. The analytical procedure requires the coefficient of internal friction, cohesion, rock density, and thickness of overburden to be known from geological data. In addition, the orientation of the principal stress axes and the stress ratio must be determined from the inversion of fault-slip or seismic data (focal mechanisms. At first, the stress magnitude is calculated assuming that faulting occurs in 'dry' conditions (fluid pressure=0. In a second step, the fluid pressure is introduced performing a grid search over the orientation of 1 fault planes that slip by shear failure or 2 cracks that open under different values of fluid pressure and calculating the consistency with the observed fault planes (i.e. strike and dip of faults, cracks, nodal planes from focal mechanisms. The analytical method is applied using fault-slip data from the Solfatara volcano (Campi Flegrei, Italy and seismic data (focal mechanisms from the Vesuvius volcano (Italy. In these areas, the fluid pressure required to activate faults (shear fractures and cracks (open fractures is calculated. At Solfatara, the ratio between the fluid pressure and the vertical stress ?is very low for faults ( ?=0.16 and relatively high for cracks ( ?=0.5. At Vesuvius, ?=0.6. Limits and uncertainties of the method are also discussed.

  19. Study of Tectonic Tremor in Depth: Triggering Stress Observation and Model of the Triggering Mechanism

    Science.gov (United States)

    Wang, Tien-Huei

    Non-volcanic tremor (NVT) has been discovered in recent years due to advances in seismic instruments and increased density of seismic networks. The NVT is a special kind of seismic signal indicative of the physical conditions and the failure mechanism on the source on the fault where NVT occurs. The detection methods used and the sensitivity of them relies on the density, distance and instrumentation of the station network available. How accurately the tremor is identified in different regions varies greatly among different studies. Therefore, there has not been study that rigorously documents tectonic tremors in different regions under limited methods and data. Meanwhile, many incidences of NVTs are observed during or after small but significant strain change induced by teleseismic, regional or local earthquake. The understanding of the triggering mechanisms critical for tremor remains unclear. In addition, characteristics of the triggering of NVT in different regions are rarely compared because of the short time frame after the discovery of the triggered NVTs. We first explore tectonic tremor based on observations to learn about its triggering, frequency of occurrence, location and spectral characteristics. Then, we numerically model the triggering of instability on the estimated tremor-source, under assumptions fine-tuned according to previous studies (Thomas et al., 2009; Miyazawa et al., 2005; Hill, 2008; Ito, 2009; Rubinstein et al., 2007; Peng and Chao, 2008). The onset of the slip reveals that how and when the external loading triggers tremor. It also holds the information to the background stress conditions under which tremor source starts with. We observe and detect tremor in two regions: Anza and Cholame, along San Jacinto Fault (SJF) and San Andreas Fault (SAF) respectively. These two sections of the faults, relative to general fault zone on which general earthquakes occur, are considered transition zones where slip of slow rates occurs. Slip events

  20. Lithospheric Layering beneath the Contiguous United States Constrained by S-to-P Receiver Functions

    Science.gov (United States)

    Liu, L.; Liu, K. H.; Kong, F.; Gao, S. S.

    2017-12-01

    The greatly-improved spatial coverage of broadband seismic stations as a result of the deployment of the EarthScope Transportable Array (TA) stations and the diversity of tectonic environments in the contiguous United States provide a unique opportunity to investigate the depth variation and nature of intra-lithospheric interfaces in different tectonic regimes. A total of 284,121 high-quality S-to-P receiver functions (SRFs) are obtained from 3,809 broadband seismic stations in the TA and other permanent and temporary deployments in the contiguous United States. The SRFs are computed using frequency domain deconvolution, and are stacked in consecutive circles with a radius of 2°. They are converted to depth series after move-out corrections using the IASP91 Earth model. Similar to previous SRF studies, a robust negative arrival, representing a sharp discontinuity of velocity reduction with depth, is visible in virtually all the stacked traces in the depth range of 30-110 km. Beneath the western US, the depth of this discontinuity is 69±17 km, and beneath the eastern US, it ranges from 75 to 90 km, both of which are comparable to the depth of the tomographically-determined lithosphere-asthenosphere boundary (LAB). In contrast, the depth of the discontinuity beneath the central US is 83±10 km which is significantly smaller than the 250 km LAB depth determined by seismic surface wave tomography. Based on previous seismic tomography, shear-wave splitting and mantle xenolith studies, we interpret this discontinuity as the top of a frozen-in layer of volatile-rich melt beneath the central US. The observations and the discrepancy between the SRF and seismic tomography results for the central US as well as the amplitude of the corresponding arrival on the SRFs may be explained by spatial variations of the thickness of the transitional layer between the "pure" lithosphere and the "pure" asthenosphere. Under this hypothesis, the consistency between the results from the

  1. The Mid-Hungarian line: a zone of repeated tectonic inversions

    Science.gov (United States)

    Csontos, László; Nagymarosy, András

    1998-11-01

    The Mid-Hungarian line is a major tectonic feature of the Intra-Carpathian area separating two terranes of different origin and tectonic structure. Although this tectonic line was known from borehole records, it has not been described in seismic sections. The study presents interpreted seismic lines crossing the supposed trace of the Mid-Hungarian line. These seismic sections show north-dipping normal faults and thrust faults as well as cross-cutting young strike-slip faults. A complex tectonic history is deduced, including intra-Oligocene-Early Miocene thrusting, Middle Miocene extension, local Late Miocene inversion and Late Miocene-Pliocene normal faulting and left-lateral wrenching. In the light of our seismic study we think that the best candidate for the Mid-Hungarian line is a north-dipping detachment fault beneath large masses of Neogene volcanics. The auxiliary structures to the north seen on seismic sections suggest that it moved as a south-vergent thrust fault during the Palaeogene-Early Miocene which later was reactivated as a set of normal faults. The northern Alcapa unit overrode the southern Tisza-Dacia unit along this fault zone. The same relative positions are observed in the northern termination of the line. Other structures along the supposed trace of the line are north-dipping normal- or strike-slip faults which frequently were reactivated as smaller thrust faults during the late Neogene. Palaeogene-Early Miocene thrusting along the line might be the result of the opposite Tertiary rotations of the two major units, as suggested by palaeomagnetic measurements and earlier models.

  2. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles

    Science.gov (United States)

    Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike

    2018-02-01

    Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below

  3. 3D upper crustal seismic structure across Santorini volcanic field: Constraints on magmatic and tectonic interactions

    Science.gov (United States)

    Heath, B.; Hooft, E. E. E.; Toomey, D. R.; Papazachos, C. V.; Walls, K.; Paulatto, M.; Morgan, J. V.; Nomikou, P.; Warner, M.

    2017-12-01

    To investigate magmatic-tectonic interactions at an arc volcano, we collected a dense, active-source, seismic dataset across the Santorini Volcano, Greece, with 90 ocean bottom seismometers, 65 land seismometers, and 14,300 marine sound sources. We use over 140,000 travel-time picks to obtain a P-wave tomography model of the upper crustal structure of the Santorini volcano and surrounding tectonically extended region. Regionally, the shallow (Bouguer gravity anomalies and preliminary shallow attenuation results (using waveform amplitudes and t* values). We find regional Pliocene and younger faults bounding basement grabens and horsts to be predominately oriented in a NE-SW direction with Santorini itself located in a graben bounded by faults striking in this direction. In contrast, volcanic vents and dikes expressed at the surface seem to strike about 20° clockwise relative to these regional faults. In the northern caldera of Santorini, a 4-km wide region of anomalously low velocities and high attenuation directly overlies an inferred source of 2011-2012 inflation (4-4.5 km depth), however it is located at shallower depths ( 1-2km). The imaged low-velocity anomaly may correspond to hydrothermal activity (due to increased porosity and alteration) and/or brecciation from a prior episode of caldera collapse. It is bounded by anomalously fast velocities (at 1-2 km depth) that parallel the regional fault orientation and are correspondingly rotated 20° to surface dikes. At 4-5 km depth beneath the northern caldera basin, low-velocity anomalies and attenuated seismic arrivals provide preliminary evidence for a magma body; the low-velocity anomaly is elongated in the same direction as regional volcanic vents. The difference in strike of volcanic and tectonic features indicates oblique extension and potential time-variation in the minimum stress direction.

  4. Seismic studies of crustal structure and tectonic evolution across the central California margin and the Colorado Plateau margin

    Science.gov (United States)

    Howie, John Mark

    This thesis presents results from two integrated deep-crustal seismic-reflection and wide-angle-reflection/refraction studies that improve our understanding of crustal structure and tectonic evolution in two tectonically active areas of the western United States. A multi-faceted approach to the study of crustal structure includes the use of compressional and shear wave seismic data. Supplementing the controlled source seismic observations with seismicity, gravity, heat flow, laboratory measurements and available geologic information allows a much improved understanding of crustal structure and tectonic evolution than would be available from the seismic data alone. Chapter 1 introduces the data integration strategy applied to the studies completed. In Chapter 2, an integrated crustal-velocity model across the south-central California margin west of the San Adreas fault is presented. The crustal structure defines tectonostratigraphic terranes 15 to 20 km thick underlain by a 6-km-thick high-velocity layer (6.8-7.0 km/s) interpreted as tectonically underplated oceanic crust. Structures defined in the oceanic crust indicate significant compressional and strike-slip deformation within the oceanic crust that probably formed during the final stages of subduction from 24-16 Ma. In Chapter 3, the crustal model from Chapter 2 is used as a constraint for models of the tectonic evolution of the Pacific-North American transform plate boundary. By combining the crustal structure with thermal models for asthenospheric upwelling associated with a slab-free window, I find that the mantle lithosphere east of the coast beneath south-central California probably delaminated from the oceanic crust, stranding the oceanic crust beneath the margin. In Chapter 4, results from a high-resolution reflection experiment in central Arizona across the southwestern edge of the Colorado Plateau address the relationship between strength of the crust and localization of extensional tectonism. A low

  5. Upper mantle seismic velocity anomaly beneath southern Taiwan as revealed by teleseismic relative arrival times

    Science.gov (United States)

    Chen, Po-Fei; Huang, Bor-Shouh; Chiao, Ling-Yun

    2011-01-01

    Probing the lateral heterogeneity of the upper mantle seismic velocity structure beneath southern and central Taiwan is critical to understanding the local tectonics and orogeny. A linear broadband array that transects southern Taiwan, together with carefully selected teleseismic sources with the right azimuth provides useful constraints. They are capable of differentiating the lateral heterogeneity along the profile with systematic coverage of ray paths. We implement a scheme based on the genetic algorithm to simultaneously determine the relative delayed times of the teleseismic first arrivals of array data. The resulting patterns of the delayed times systematically vary as a function of the incident angle. Ray tracing attributes the observed variations to a high velocity anomaly dipping east in the mantle beneath the southeast of Taiwan. Combining the ray tracing analysis and a pseudo-spectral method to solve the 2-D wave propagations, we determine the extent of the anomaly that best fits the observations via the forward grid search. The east-dipping fast anomaly in the upper mantle beneath the southeast of Taiwan agrees with the results from several previous studies and indicates that the nature of the local ongoing arc-continent collision is likely characterized by the thin-skinned style.

  6. The revised tectonic history of Tharsis

    Science.gov (United States)

    Bouley, Sylvain; Baratoux, David; Paulien, Nicolas; Missenard, Yves; Saint-Bézar, Bertrand

    2018-04-01

    Constraining the timing of the emplacement of the volcano-tectonic province of Tharsis is critical to understanding the evolution of mantle, surface environment and climate of Mars. The growth of Tharsis had exerted stresses on the lithosphere, which were responsible for tectonic deformation, previously mapped as radial or concentric faults. Insights into the emplacement history of Tharsis may be gained from an analysis of the characteristics and ages of these tectonic features. The number, total length, linear density of extensional or compressional faults in the Tharsis region and deformation rates are reported for each of the following 6 stages: Early and Middle Noachian (stage 1); Late Noachian (stage 2); Early Hesperian (stage 3); Late Hesperian (stage 4), Early Amazonian (stage 5) and Middle Amazonian to Late Amazonian (stage 6). 8571 Tharsis-related tectonic features (radial or concentric to the center of Tharsis) were assigned to one of these periods of time based on their relationship with stratigraphic units defined in the most recent geological map. Intense faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. However, we report a peak in both compressive and extensive rates of deformation during the Early Hesperian whereas the quantitative indicators for compressional and extensional tectonics vary within less than one order of magnitude from the Late Noachian to the Late Hesperian. These observations indicate a protracted growth of Tharsis during the first quarter of Mars evolution and declining from 3 Gyrs ago.

  7. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling

    Science.gov (United States)

    Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley

    2017-09-01

    Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented

  8. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 2: Lithospheric structure, seismicity, and contemporary deformation of the United States Cordillera

    Science.gov (United States)

    Smith, R. B.

    1986-01-01

    The structural evolution of the U.S. Cordillera has been influenced by a variety of tectonic mechanisms including passive margin rifting and sedimentation; arc volcanism; accretion of exotic terranes; intraplate magmatism; and folding and faulting associated with compression and extension processes that have profoundly influenced the lithospheric structure. As a result the Cordilleran crust is laterally inhomogeneous across its 2000 km east-west breadth. It is thin along the West Coast where it has close oceanic affinities. The crust thickens eastward beneath the Sierra Nevada, then thins beneath the Basin-Range. Crustal thickening continues eastward beneath the Colorado Plateau, the Rocky Mountains, and the Great Plains. The total lithospheric thickness attains 65 km in the Basin-Range and increases eastward beneath the Colorado Plateau. The upper-crust, including the crystalline basement of the Cordillera, has P sub G velocities of 6 km/s in the Basin-Range and Rio Grande Rift. Lower P sub G velocities of 5.4 to 5.7 km/s are associated with the youthful Yellowstone, Valles and Long Valley calderas and the Franciscan assemblage of the western coastal margin. Averaged crustal velocity reflects integrated tectonic evolution of the crust-thick silicic bodies, velocity reversals, and a thin crust produce low averaged velocities that are characteristic of a highly attenuated and thermally deformed crust.

  9. Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone

    Science.gov (United States)

    Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav

    2009-12-01

    A detailed spatio-temporal analysis of teleseismic earthquake occurrence (mb > 4.0) along the convergent margin of the Izu-Bonin-Mariana arc system reveals an anomalously high concentration of events between 27° and 30.5°N, beneath a chain of seamounts between Tori-shima and Nishino-shima volcanoes. This seismicity is dominated by the 1985/1986 earthquake swarm represented in the Engdahl-van der Hilst-Buland database by 146 earthquakes in the body wave magnitude range 4.3-5.8 and focal depth range 1-100 km. The epicentral cluster of the swarm is elongated parallel to the volcanic chain. Available focal mechanisms are consistent with an extensional tectonic regime and reveal nodal planes with azimuths close to that of the epicentral cluster. Earthquakes of the 1985/1986 swarm occurred in seven time phases. Seismic activity migrated in space from one phase to the other. Earthquake foci belonging to individual phases of the swarm aligned in vertically disposed seismically active columns. The epicentral zones of the columns are located in the immediate vicinity of seamounts Suiyo and Mokuyo, recently reported by the Japanese Meteorological Agency as volcanically active. The three observations-episodic character of earthquake occurrence, column-like vertically arranged seismicity pattern, and existence of volcanic seamounts at the seafloor above the earthquake foci-led us to interpret the 1985/1986 swarm as a consequence of subduction-related magmatic and/or fluid activity. A modification of the shallow earthquake swarm magmatic model of D. Hill fits earthquake foci distribution, tectonic stress orientation and fault plane solutions. The 1985/1986 deep-rooted earthquake swarm in the Izu-Bonin region represents an uncommon phenomenon of plate tectonics. The portion of the lithospheric wedge that was affected by the swarm should be composed of fractured rigid, brittle material so that the source of magma and/or fluids which might induce the swarm should be situated at a

  10. The role of farfield tectonic stress in oceanic intraplate deformation, Gulf of Alaska

    Science.gov (United States)

    Reece, Robert S.; Gulick, Sean P. S.; Christesen, Gail L.; Horton, Brian K.; VanAvendonk, Harm J.; Barth, Ginger

    2013-01-01

    An integration of geophysical data from the Pacific Plate reveals plate bending anomalies, massive intraplate shearing and deformation, and a lack of oceanic crust magnetic lineaments in different regions across the Gulf of Alaska. We argue that farfield stress from the Yakutat Terrane collision with North America is the major driver for these unusual features. Similar plate motion vectors indicate that the Pacific plate and Yakutat Terrane are largely coupled along their boundary, the Transition Fault, with minimal translation. Our study shows that the Pacific Plate subduction angle shallows toward the Yakutat Terrane and supports the theory that the Pacific Plate and Yakutat Terranemaintain coupling along the subducted region of the Transition Fault. We argue that the outboard transfer of collisional stress to the Pacific Plate could have resulted in significant strain in the NE corner of the Pacific Plate, which created pathways for igneous sill formation just above the Pacific Plate crust in the Surveyor Fan. A shift in Pacific Plate motion during the late Miocene altered the Yakutat collision with North America, changing the stress transfer regime and potentially terminating associated strain in the NE corner of the Pacific Plate. The collision further intensified as the thickest portion of the Yakutat Terrane began to subduct during the Pleistocene, possibly providing the impetus for the creation of the Gulf of Alaska Shear Zone, a>200 km zone of intraplate strike-slip faults that extend from the Transition Fault out into the Pacific Plate. This study highlights the importance of farfield stress from complex tectonic regimes in consideration of large-scale oceanic intraplate deformation.

  11. Self-potential anomalies preceding tectonic and volcanic crises

    International Nuclear Information System (INIS)

    Patella, D.

    1993-01-01

    In this paper I consider a possible physical mechanism capable of explaining self-potential anomalies, which are currently observed on the ground surface prior to tectonic and volcanic activities. A rock cracking-fluid diffusion-charge polarization model is described. The electrical charge polarization is assumed to be the electrokinetic effect due to invasion of fluid into new fissures, which open inside a stressed rock material because of dilatancy, in the case of tectonic activity, and of the rising of a magma intrusion in the case of volcanic activity. (author). 10 refs, 2 figs

  12. Mantle structure and tectonic history of SE Asia

    Science.gov (United States)

    Hall, Robert; Spakman, Wim

    2015-09-01

    Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs

  13. Pn-waves Travel-time Anomaly beneath Taiwan from Dense Seismic Array Observations and its Possible Tectonic Implications

    Science.gov (United States)

    Lin, Y. Y.; Huang, B. S.; Ma, K. F.; Hsieh, M. C.

    2015-12-01

    We investigated travel times of Pn waves, which are of great important for understanding the Moho structure in Taiwan region. Although several high quality tomographic studies had been carried out, observations of Pn waves are still the most comprehensive way to elucidate the Moho structure. Mapping the Moho structure of Taiwan had been a challenging due to the small spatial dimension of Taiwan island with two subduction systems. To decipher the tectonic structure and understanding of earthquake hazard, the island of Taiwan have been implemented by several high density seismic stations, including 71 short-period stations of Central Weather Bureau Seismic Network (CWBSN) and 42 broardband stations of Broadband Array in Taiwan for Seismology (BATS). High quality seismic records of these stations would be used to identify precise Pn-wave arrival times. After station-elevation correction, we measure the difference between the observed and theoretical Pn arrivals from the IASPI 91 model for each station. For correcting uncertainties of earthquake location and origin time, we estimate relative Pn anomaly, ΔtPn , between each station and a reference station. The pattern of ΔtPn reflects the depth anomaly of Moho beneath Taiwan. In general, Pn waves are commonly observed from shallow earthquake at epicentral distance larger than 120 km. We search the global catalog since 2005 and the criteria are M > 5.5, focal depth 150 km. The 12 medium earthquakes from north Luzon are considered for analysis. We choose a station, TWKB, in the most southern point of Taiwan as the reference station due to that all events are from the south. The results indicate obvious different patterns of ΔtPn from different back-azimuths. The ΔtPn pattern of the events in the first group from the south south-east indicates that the Pn arrivals delay suddenly when the Pn waves pass through the Central Range, suggesting the Moho becomes deep rapidly. However, we cannot recognize the same pattern when

  14. Stress development in heterogenetic lithosphere: Insights into earthquake processes in the New Madrid Seismic Zone

    Science.gov (United States)

    Zhan, Yan; Hou, Guiting; Kusky, Timothy; Gregg, Patricia M.

    2016-03-01

    The New Madrid Seismic Zone (NMSZ) in the Midwestern United States was the site of several major M 6.8-8 earthquakes in 1811-1812, and remains seismically active. Although this region has been investigated extensively, the ultimate controls on earthquake initiation and the duration of the seismicity remain unclear. In this study, we develop a finite element model for the Central United States to conduct a series of numerical experiments with the goal of determining the impact of heterogeneity in the upper crust, the lower crust, and the mantle on earthquake nucleation and rupture processes. Regional seismic tomography data (CITE) are utilized to infer the viscosity structure of the lithosphere which provide an important input to the numerical models. Results indicate that when differential stresses build in the Central United States, the stresses accumulating beneath the Reelfoot Rift in the NMSZ are highly concentrated, whereas the stresses below the geologically similar Midcontinent Rift System are comparatively low. The numerical observations coincide with the observed distribution of seismicity throughout the region. By comparing the numerical results with three reference models, we argue that an extensive mantle low velocity zone beneath the NMSZ produces differential stress localization in the layers above. Furthermore, the relatively strong crust in this region, exhibited by high seismic velocities, enables the elevated stress to extend to the base of the ancient rift system, reactivating fossil rifting faults and therefore triggering earthquakes. These results show that, if boundary displacements are significant, the NMSZ is able to localize tectonic stresses, which may be released when faults close to failure are triggered by external processes such as melting of the Laurentide ice sheet or rapid river incision.

  15. Structure of the Crust Beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    International Nuclear Information System (INIS)

    Tokam, Alain-Pierre K.; Tabod, Charles T.; Nyblade, Andrew A.; Jordi Julia; Wiens, Douglas A.; Pasyanos, Michael E.

    2009-09-01

    The joint inversion of Rayleigh wave group velocities and receiver functions was carried out to investigate the crustal and uppermost mantle structures beneath Cameroon. This was achieved using data from 32 broadband seismic stations installed for 2 years across Cameroon. The Moho depth estimates reveal that the Precambrian crust is variable across the country and shows some significant differences compared to other similar geologic units in East and South Africa. These differences suggest that the setting of the Cameroon Volcanic Line (CVL) and the eastward extension of the Benue Trough have modified the crust of the Panafrican mobile belt in Cameroon by thinning beneath the Rift area and CVL. The velocity models obtained from the joint inversion show at most stations, a layer with shear wave velocities ≥ 4.0 km/s, indicating the presence of a mafic component in the lower crust, predominant beneath the Congo Craton. The lack of this layer at stations within the Panafrican mobile belt may partly explain the crustal thinning observed beneath the CVL and rift area. The significant presence of this layer beneath the Craton, results from the 2100 Ma magmatic events at the origin of the emplacement of swarms of mafic dykes in the region. The CVL stations are underlain by a crust of 35 km on average except near Mt-Cameroon where it is about 25 km. The crustal thinning observed beneath Mt. Cameroon supported by the observed positive gravity anomalies here, suggests the presence of dense astenospheric material within the lithosphere. Shear wave velocities are found to be slower in the crust and uppermost mantle beneath the CVL than the nearby tectonic terrains, suggesting that the origin of the line may be an entirely mantle process through the edge-flow convection process. (author)

  16. P-wave anisotropic velocity tomography beneath the Japan islands: Large-scale images and details in the Kanto district

    Science.gov (United States)

    Ishise, M.; Koketsu, K.; Miyake, H.; Oda, H.

    2006-12-01

    The Japan islands arc is located in the convergence zone of the North American (NA), Amurian (AM), Pacific (PAC) and Philippine Sea (PHS) plates, and its parts are exposed to various tectonic settings. For example, at the Kanto district in its central part, these four plates directly interact with each, so that disastrous future earthquakes are expected along the plate boundaries and within the inland areas. In order to understand this sort of complex tectonic setting, it is necessary to know the seismological structure in various perspectives. We investigate the seismic velocity structure beneath the Japan islands in view of P-wave anisotropy. We improved a hitherto-known P-wave tomography technique so that the 3-D structure of isotropic and anisotropic velocities and earthquake hypocenter locations are determined from P-wave arrival times of local earthquakes [Ishise and Oda, 2005]. In the tomography technique, P-wave anisotropy is assumed to hold hexagonal symmetry with horizontal symmetry axis. The P-wave arrival times used in this study are complied in the Japan University Network Earthquake Catalog. The results obtained are summarized as follows; (1) the upper crust anisotropy is governed by the present-day stress field arising from the interaction between the plates surrounding the Japan islands arc, (2) the mantle anisotropy is caused by the present-day mantle flow induced by slab subduction and continental plate motion, (3) the old PAC slab keeps its original slab anisotropy which was captured when the plate was formed, while the youngest part of the PHS slab has lost the original anisotropy during its subduction and has gained new anisotropy which is controlled by the present-day stress field. We also carried out a further study on high-resolution seismic tomography for understanding the specific characteristics of the Kanto district. We mostly focused on the elucidation of the dual subduction formed by the PHS and PAC slabs using seismological data

  17. Seismic Evidence for the North China Plate Underthrusting Beneath Northeastern Tibet and its Implications for Plateau Growth

    Science.gov (United States)

    Ye, Z.; Gao, R.; Li, Q.; Zhang, H.

    2016-12-01

    The effects of India-Asia collision and the subsequent interaction between the two continents on northeastern Tibet (NE Tibet), i.e., the tectonic transition zone between the Tibetan plateau and the North China craton (NCC) for example, remain uncertain due to inadequate geophysical data coverage in NE Tibet. Here in this research, based on new dataset collected from a dense linear array of 38 broadband seismograph stations, we applied seismic receiver functions (Sp and Ps converted waves) to imaging the lithospheric structure and shear wave splitting (XKS waves) to inspecting the anisotropy in the lithosphere and upper mantle beneath NE Tibet. The seismic array traverses NE Tibet to the westernmost NCC (Alxa block) in an SSW-NNE direction. The lithosphere-asthenosphere boundary (LAB) is clearly defined and appears as a south-dipping interface that runs continuously from the Alxa interior to the Qilian orogen on the S-wave receiver function images. Shear wave splitting measurements show significant lateral variations of seismic anisotropy across NE Tibet. Under joint constraints from both the lithospheric structure imaging and the regional anisotropic regime, combined with previous studies and through a thorough analysis/comparison/integration, we finally constructed a comprehensive lithospheric model of NE Tibet. The model tells that the NCC lithospheric mantle has been persistently underthrust beneath the Qilian orogen in response to on-going convergence/compression between the interior Tibetan plateau and the NCC. This process forms the syntectonic crustal thrust. The regional anisotropic regime can be well accommodated in our interpretation. The lithospheric model summarized here can be well accommodated in a scenario of northeastward migration of stepwise/multiple Aisan mantle lithosphere underthrusting beneath the Tibetan plateau. The multiple Aisan lithospheric blocks underthrust the plateau stepwise in small scale. Our results provide a new section from

  18. Driving Forces of Plate Tectonics and Evolution of the Oceanic Lithosphere and Asthenosphere

    Science.gov (United States)

    Forsyth, D. W.

    2017-12-01

    As plate tectonics became established as an excellent kinematic description of the relative motions of different blocks of the Earth's lithosphere, many investigators also began exploring the forces involved in driving the plate motions. Because the plates move at nearly constant velocities over long periods of time and inertial terms are unimportant, driving forces must always be balanced by resisting forces in a way that regulates the velocities. Forsyth and Uyeda (1975) incorporated the balancing of torques on the individual plates to help constrain the relative importance of the driving and resisting forces, as parameterized in a way based on prior model investigations of individual parts of the convecting system. We found that the primary driving force was sinking of subducting lithosphere at trenches, balanced largely by viscous resisting forces in the sub-asthenospheric mantle; that viscous drag beneath the oceanic plates was negligible; and that mid-ocean ridges provided a relatively small push. One of the early questions was whether there was buoyant upwelling on a large scale beneath mid-ocean ridges as part of a whole mantle convection system with subduction of the plates representing the downwelling limb. If so, then it would be likely that the plates were just riding on top of large convection cells. Seismic tomography has demonstrated that, on average, there are no deep roots beneath mid-ocean ridges, so that active, buoyant upwelling from the deep mantle does not exist beneath spreading centers. However, more recent tomographic studies have found asymmetry of the shear velocity structure beneath ridges in some areas, pointing to a smaller scale of active convection in the shallow mantle perhaps induced by melt retention buoyancy or the local effects of ridge/hotspot interaction.

  19. The structure of the crust and uppermost mantle beneath Madagascar

    Science.gov (United States)

    Andriampenomanana, Fenitra; Nyblade, Andrew A.; Wysession, Michael E.; Durrheim, Raymond J.; Tilmann, Frederik; Julià, Jordi; Pratt, Martin J.; Rambolamanana, Gérard; Aleqabi, Ghassan; Shore, Patrick J.; Rakotondraibe, Tsiriandrimanana

    2017-09-01

    The lithosphere of Madagascar was initially amalgamated during the Pan-African events in the Neoproterozoic. It has subsequently been reshaped by extensional processes associated with the separation from Africa and India in the Jurassic and Cretaceous, respectively, and been subjected to several magmatic events in the late Cretaceous and the Cenozoic. In this study, the crust and uppermost mantle have been investigated to gain insights into the present-day structure and tectonic evolution of Madagascar. We analysed receiver functions, computed from data recorded on 37 broad-band seismic stations, using the H-κ stacking method and a joint inversion with Rayleigh-wave phase-velocity measurements. The thickness of the Malagasy crust ranges between 18 and 46 km. It is generally thick beneath the spine of mountains in the centre part (up to 46 km thick) and decreases in thickness towards the edges of the island. The shallowest Moho is found beneath the western sedimentary basins (18 km thick), which formed during both the Permo-Triassic Karro rifting in Gondwana and the Jurassic rifting of Madagascar from eastern Africa. The crust below the sedimentary basin thickens towards the north and east, reflecting the progressive development of the basins. In contrast, in the east there was no major rifting episode. Instead, the slight thinning of the crust along the east coast (31-36 km thick) may have been caused by crustal uplift and erosion when Madagascar moved over the Marion hotspot and India broke away from it. The parameters describing the crustal structure of Archean and Proterozoic terranes, including average thickness (40 km versus 35 km), Poisson's ratio (0.25 versus 0.26), average shear-wave velocity (both 3.7 km s-1), and thickness of mafic lower crust (7 km versus 4 km), show weak evidence of secular variation. The uppermost mantle beneath Madagascar is generally characterized by shear-wave velocities typical of stable lithosphere (∼4.5 km s-1). However

  20. The Deep Electrical Structure of Southern Taiwan and Its Tectonic Implications

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chiang

    2010-01-01

    Full Text Available The Taiwan orogen has formed as a result of the arc-continent collision between the Eurasian continental margin and the Luzon volcanic arc over the last 5 million years and is the type example of an arc-continent collision. The tectonic processes at work beneath Taiwan are still debated; the available data have been interpreted with both thin-skinned and lithospheric collision models. In 2004, the Taiwan Integrated Geodynamical Research (TAIGER project began a systematic investigation of the crustal and upper mantle structure beneath Taiwan. TAIGER magnetotelluric (MT data from central Taiwan favor a thick-skinned model for that region. The Taiwan orogen becomes younger to the south, so the earlier stages of collision were investigated with a 100-km-long MT profile in southern Taiwan at latitude of 23.3¢XN. Data were recorded at 15 MT sites and tensor decomposition and two-dimensional inversion were applied to the MT data. The shallow electrical resistivity structure is in good agreement with surface geology. The deeper structure shows a major conductor in the mid-crust that can be explained by fluid content of 0.4 - 1.4%. A similar feature was observed in central Taiwan, but with a higher fluid content. The conductor in southern Taiwan extends to lower crustal depths and is likely caused by fluids generated by metamorphic reactions in a thickened crust. Together the central and southern Taiwan MT profiles show a crustal root beneath the Central Range.

  1. Tectonic evolution of Mars

    International Nuclear Information System (INIS)

    Wise, D.U.; Golombek, M.P.; McGill, G.E.

    1979-01-01

    Any model for the tectonic evolution of Mars must account for two major crustal elements: the Tharsis bulge and the topographically low and lightly crated northern third of the planet. Ages determined by crater density indicate that both of these elements came into existence very early in Martian history, a conclusion that holds no matter which of the current crater density versus age curves is used. The size of these two major crustal elements and their sequential development suggest that both may be related to a global-scale internal process. It is proposed that the resurfacing of the northern third of Mars is related to subcrustal erosion and isostatic foundering during the life of a first-order convection cell. With the demise of the cell, denser segregations of metallic materials began to coalesce as a gravitatively unstable layer which finally overturned to form the core. In the overturn, lighter crustal materials was shifted laterally and underplated beneath Tharsis to cause rapid and permanent isostatic rise. This was followed by a long-lived thermal phase produced by the hot underplate and by the gravitative energy of core formation slowly making its way to the surface to produce the Tharsis volcanics

  2. Tectonics on Iapetus: Despinning, respinning, or something completely different?

    Science.gov (United States)

    Singer, Kelsi N.; McKinnon, William B.

    2011-11-01

    Saturn's moon Iapetus is unique in that it has apparently despun while retaining a substantial equatorial bulge. Stresses arising from such a non-hydrostatic shape should in principle cause surface deformation (tectonics). As part of a search for such a tectonic signature, lineaments (linear surface features) on Iapetus were mapped on both its bright and dark hemispheres. Lineament orientations were then compared to model stress patterns predicted for spin-down from a rotation period of 16.5 h (or less) to its present synchronous period, and for a range of lithospheric thicknesses. Many lineaments are straight segments of crater rimwalls, which may be faults or joints reactivated during complex crater collapse. Most striking are several large troughs on the bright, trailing hemisphere. These troughs appear to be extensional and are distinctive on that hemisphere, because the interior floors and walls of the troughs contain dark material. Globally, no specific evidence of strike slip or thrust offsets are seen, but this could be due to the age and degraded nature of any such features. We find that observed lineament orientations do not correlate with predicted patterns due to despinning on either hemisphere (the equatorial ridge was specifically excluded from this analysis, and is considered separately). Modest evidence for preferred orientations ±40° from north could be construed as consistent with respinning, which is not necessarily far-fetched. Assuming the rigidity of unfractured ice, predicted maximum lithospheric differential stresses from despinning range from ˜1 MPa to ˜160 MPa for the elastic spheroid and thin lithosphere limits, respectively (although it is only for thicker elastic lithospheres that we expect a nonhydrostatic state to be maintained over geologic time against lithospheric failure). The tectonic signature of despinning may have been obscured over time because the surface of Iapetus is very ancient, Iapetus' thick lithosphere may have

  3. Tectonics of Lakshmi Planum, Venus: Tests for Magellan

    International Nuclear Information System (INIS)

    Grimm, R.E.; Phillips, R.J.

    1990-01-01

    The origin of Lakshmi Planum and its surrounding mountain belts remains an important unresolved element in the global tectonic framework of Venus. From the perspective of gravity signature and potential driving forces, the mantle upwelling model is the simplest and its principal failure, that it cannot produce radial shortening on the uplift periphery, may be resolved if the lithosphere is laterally heterogeneous. The preferred model consists of a hot mantle plume rising beneath a pre-existing block of tessera. The lithosphere is weakened at this hotter and presumably thicker crust, and the outward near-surface flow is attenuated at the peripheral discontinuity in lithospheric strength. Crustal thickening and mountain belt formation occur there. The authors propose several criteria to test this tessera-plume model together with its competitors at the higher resolution in both imaging and gravity afforded by the Magellan mission

  4. Extrusive and Intrusive Magmatism Greatly Influence the Tectonic Mode of Earth-Like Planets

    Science.gov (United States)

    Lourenco, D.; Tackley, P. J.; Rozel, A.; Ballmer, M.

    2017-09-01

    Plate tectonics on Earth-like planets is typically modelling using a strongly temperature-dependent visco-plastic rheology. Previous analyses have generally focussed on purely thermal convection. However, we have shown that the influence of compositional heterogeneity in the form of continental or oceanic crust can greatly influence plate tectonics by making it easier (i.e. it occurs at a lower yield stress or friction coefficient). Here we present detailed results on this topic, in particular focussing on the influence of intrusive vs. extrusive magmatism on the tectonic mode.

  5. Cenozoic sedimentation in the Mumbai Offshore Basin: Implications for tectonic evolution of the western continental margin of India

    Science.gov (United States)

    Nair, Nisha; Pandey, Dhananjai K.

    2018-02-01

    Interpretation of multichannel seismic reflection data along the Mumbai Offshore Basin (MOB) revealed the tectonic processes that led to the development of sedimentary basins during Cenozoic evolution. Structural interpretation along three selected MCS profiles from MOB revealed seven major sedimentary sequences (∼3.0 s TWT, thick) and the associated complex fault patterns. These stratigraphic sequences are interpreted to host detritus of syn- to post rift events during rift-drift process. The acoustic basement appeared to be faulted with interspaced intrusive bodies. The sections also depicted the presence of slumping of sediments, subsidence, marginal basins, rollover anticlines, mud diapirs etc accompanied by normal to thrust faults related to recent tectonics. Presence of upthrusts in the slope region marks the locations of local compression during collision. Forward gravity modeling constrained with results from seismic and drill results, revealed that the crustal structure beneath the MOB has undergone an extensional type tectonics intruded with intrusive bodies. Results from the seismo-gravity modeling in association with litholog data from drilled wells from the western continental margin of India (WCMI) are presented here.

  6. Pennsylvania seismic monitoring network and related tectonic studies

    International Nuclear Information System (INIS)

    Alexander, S.S.

    1991-06-01

    This report summarizes the results of the operation of the Pennsylvania Seismic Monitoring Network during the interval May 1, 1983--March 31, 1985 to monitor seismic activity in Pennsylvania and surrounding areas, to characterize the earthquake activity in terms of controlling tectonic structures and related tectonic stress conditions in the crust, and to obtain improved crustal velocity models for hypocentral determinations. Most of the earthquake activity was concentrated in the Lancaster, PA area. The magnitude 4.2 mainshock that occurred there on April 23, 1984 was the largest ever recorded instrumentally and its intensity of VI places it among the largest in the historic record for that area. Other activity during the monitoring interval of this report was confined to eastern Pennsylvania. The very large number of quarry explosions that occur regularly in Pennsylvania account for most of the seismic events recorded and they provide important crustal velocity data that are needed to obtain accurate hypocenter estimates. In general the earthquakes that occurred are located in areas of past historic seismicity. Block-tectonic structures resulting from pre-Ordovician tectonic displacements appear to influence the distribution of contemporary seismicity in Pennsylvania and surrounding areas. 17 refs., 5 figs

  7. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  8. Current deformation in the Tibetan Plateau: a stress gauge in the large-scale India-Asia collision tectonics

    Science.gov (United States)

    Capitanio, F. A.

    2017-12-01

    The quantification of the exact tectonic forces budget on Earth has remained thus far elusive. Geodetic velocities provide relevant constraints on the current dynamics of the coupling between collision and continental tectonics, however in the Tibetan plateau these support contrasting, non-unique models. Here, we compare numerical models of coupled India-Asia plate convergence, collision and continent interiors tectonics to the geodetically-constrained motions in the Tibetan Plateau to provide a quantitative assessment of the driving forces of plate tectonics in the area. The models develop a range of long-term evolutions remarkably similar to the Asian tectonics in the Cenozoic, reproducing the current large-scale motions pattern under a range of conditions. Balancing the convergent margin forces, following subduction, and the far-field forcing along the trail of the subducting continent, the geodetic rates in the Tibetan Plateau can be matched. The comparisons support the discussion on the likely processes at work, allowing inferences on the drivers of plateau formation and its role on the plate margin-interiors tectonics. More in general, the outcomes highlight the unique role of the Tibetan Plateau as a pressure gauge for the tectonic forces on Earth.

  9. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    Science.gov (United States)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    faults often reactivate older fault systems that were formed under E-W to NW-SE horizontal compression, compatible with late Pan-African tectonics. The present-day stress inverted from earthquake focal mechanisms shows that the Manyara-Dodoma Rift segment is presently subjected to an extensional stress field with a N080°E direction of horizontal principal extension. Under this stress field, the rift develops by: (1) reactivation of the pre-existing tectonic planes of weakness, and (2) progressive development of a new fault system in a more N-S trend by the linkage of existing rift faults. This process started about 1.2 Ma ago and is still ongoing.

  10. Mapping the mantle transition zone beneath the central Mid-Atlantic Ridge using Ps receiver functions.

    Science.gov (United States)

    Agius, M. R.; Rychert, C.; Harmon, N.; Kendall, J. M.

    2017-12-01

    Determining the mechanisms taking place beneath ridges is important in order to understand how tectonic plates form and interact. Of particular interest is establishing the depth at which these processes originate. Anomalies such as higher temperature within the mantle transition zone may be inferred seismically if present. However, most ridges are found in remote locations beneath the oceans restricting seismologists to use far away land-based seismometers, which in turn limits the imaging resolution. In 2016, 39 broadband ocean-bottom seismometers were deployed across the Mid-Atlantic Ridge, along the Romanche and Chain fracture zones as part of the PI-LAB research project (Passive Imaging of the Lithosphere and Asthenosphere Boundary). The one-year long seismic data is now retrieved and analysed to image the mantle transition zone beneath the ridge. We determine P-to-s (Ps) receiver functions to illuminate the 410- and 660-km depth mantle discontinuities using the extended multitaper deconvolution. The data from ocean-bottom seismometers have tilt and compliance noise corrections and is filtered between 0.05-0.2 Hz to enhance the signal. 51 teleseismic earthquakes generated hundreds of good quality waveforms, which are then migrated to depth in 3-D. The topography at the d410 deepens towards the west of the Romanche and Chain fracture zone by 15 km, whereas the topography of d660 shallows beneath the ridge between the two zones. Transition zone thickness thins from 5 to 20 km. Thermal anomalies determined from temperature relationships with transition zone thickness and depth variations of the d410 and d660 suggests hotter temperatures of about 200 K. Overall, the result suggests mid-ocean ridges may have associated thermal signatures as deep as the transition zone.

  11. Heterogeneous subduction structure within the Pacific plate beneath the Izu-Bonin arc

    Science.gov (United States)

    Gong, Wei; Xing, Junhui; Jiang, Xiaodian

    2018-05-01

    trench strike, which may be caused by the viscous coupling to the subducting plate and along-trench N-S shearing. The NE splitting direction oblique or perpendicular to the NW-NNW movement of the Pacific plate beneath the transition segment results from the "tearing" of the slab, which is also confirmed by the slab-related velocity anomalies, a sharp change in the dip angle of the Wadati-Benioff zone, the tectonic stress characteristics and along-arc variations of Sr-Nd-Pb isotope ratios in the transition segment.

  12. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    Science.gov (United States)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ Technological Research Council of Turkey (TUBITAK Project No: ÇAYDAG-114Y066), and EU-HORIZON-2020: COST Actions: Earth System Science and Environmental Management: ES1401 - Time Dependent Seismology (TIDES).

  13. Tectonic stress regime in the 2003-2004 and 2012-2015 earthquake swarms in the Ubaye Valley, French Alps

    Science.gov (United States)

    Fojtíková, Lucia; Vavryčuk, Václav

    2018-02-01

    We study two earthquake swarms that occurred in the Ubaye Valley, French Alps within the past decade: the 2003-2004 earthquake swarm with the strongest shock of magnitude ML = 2.7, and the 2012-2015 earthquake swarm with the strongest shock of magnitude ML = 4.8. The 2003-2004 seismic activity clustered along a 9-km-long rupture zone at depth between 3 and 8 km. The 2012-2015 activity occurred a few kilometres to the northwest from the previous one. We applied the iterative joint inversion for stress and fault orientations developed by Vavryčuk (2014) to focal mechanisms of 74 events of the 2003-2004 swarm and of 13 strongest events of the 2012-2015 swarm. The retrieved stress regime is consistent for both seismic activities. The σ 3 principal axis is nearly horizontal with azimuth of 103°. The σ 1 and σ 2 principal axes are inclined and their stress magnitudes are similar. The active faults are optimally oriented for shear faulting with respect to tectonic stress and differ from major fault systems known from geological mapping in the region. The estimated low value of friction coefficient at the faults 0.2-0.3 supports an idea of seismic activity triggered or strongly affected by presence of fluids.

  14. Magnetotelluric investigations of the lithosphere beneath the central Rae craton, mainland Nunavut, Canada

    Science.gov (United States)

    Spratt, Jessica E.; Skulski, Thomas; Craven, James A.; Jones, Alan G.; Snyder, David B.; Kiyan, Duygu

    2014-03-01

    New magnetotelluric soundings at 64 locations throughout the central Rae craton on mainland Nunavut constrain 2-D resistivity models of the crust and lithospheric mantle beneath three regional transects. Responses determined from colocated broadband and long-period magnetotelluric recording instruments enabled resistivity imaging to depths of > 300 km. Strike analysis and distortion decomposition on all data reveal a regional trend of 45-53°, but locally the geoelectric strike angle varies laterally and with depth. The 2-D models reveal a resistive upper crust to depths of 15-35 km that is underlain by a conductive layer that appears to be discontinuous at or near major mapped geological boundaries. Surface projections of the conductive layer coincide with areas of high grade, Archean metasedimentary rocks. Tectonic burial of these rocks and thickening of the crust occurred during the Paleoproterozoic Arrowsmith (2.3 Ga) and Trans-Hudson orogenies (1.85 Ga). Overall, the uppermost mantle of the Rae craton shows resistivity values that range from 3000 Ω m in the northeast (beneath Baffin Island and the Melville Peninsula) to 10,000 Ω m beneath the central Rae craton, to >50,000 Ω m in the south near the Hearne Domain. Near-vertical zones of reduced resistivity are identified within the uppermost mantle lithosphere that may be related to areas affected by mantle melt or metasomatism associated with emplacement of Hudsonian granites. A regional decrease in resistivities to values of 500 Ω m at depths of 180-220 km, increasing to 300 km near the southern margin of the Rae craton, is interpreted as the lithosphere-asthenosphere boundary.

  15. Tomographic Imaging of the Seismic Structure Beneath the East Anatolian Plateau, Eastern Turkey

    Science.gov (United States)

    Gökalp, Hüseyin

    2012-10-01

    The high level of seismic activity in eastern Turkey is thought to be mainly associated with the continuing collision of the Arabian and Eurasian tectonic plates. The determination of a detailed three-dimensional (3D) structure is crucial for a better understanding of this on-going collision or subduction process; therefore, a body wave tomographic inversion technique was performed on the region. The tomographic inversion used high quality arrival times from earthquakes occurring in the region from 1999 to 2001 recorded by a temporary 29 station broadband IRIS-PASSCAL array operated by research groups from the Universities of Boğaziçi (Turkey) and Cornell (USA). The data was inverted and consisted of 3,114 P- and 2,298 S-wave arrival times from 252 local events with magnitudes ( M D) ranging from 2.5 to 4.8. The stability and resolution of the results were qualitatively assessed by two synthetic tests: a spike test and checkerboard resolution test and it was found that the models were well resolved for most parts of the imaged domain. The tomographic inversion results reveal significant lateral heterogeneities in the study area to a depth of ~20 km. The P- and S-wave velocity models are consistent with each other and provide evidence for marked heterogeneities in the upper crustal structure beneath eastern Turkey. One of the most important features in the acquired tomographic images is the high velocity anomalies, which are generally parallel to the main tectonic units in the region, existing at shallow depths. This may relate to the existence of ophiolitic units at shallow depths. The other feature is that low velocities are widely dispersed through the 3D structure beneath the region at deeper crustal depths. This feature can be an indicator of the mantle upwelling or support the hypothesis that the Anatolian Plateau is underlain by a partially molten uppermost mantle.

  16. Digital Tectonic Tools

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    2005-01-01

    Tectonics has been an inherent part of the architectural field since the Greek temples while the digital media is new to the field. This paper is built on the assumption that in the intermediate zone between the two there is a lot to be learned about architecture in general and the digital media...... in particular. A model of the aspects in the term tectonics – epresentation, ontology and culture – will be presented and used to discuss the current digital tools’ ability in tectonics. Furthermore it will be discussed what a digital tectonic tool is and could be and how a connection between the digital...... and tectonic could become a part of the architectural education....

  17. The crustal structure and tectonic development of the continental margin of the Amundsen Sea Embayment, West Antarctica: implications from geophysical data

    Science.gov (United States)

    Kalberg, Thomas; Gohl, Karsten

    2014-07-01

    The Amundsen Sea Embayment of West Antarctica represents a key component in the tectonic history of Antarctic-New Zealand continental breakup. The region played a major role in the plate-kinematic development of the southern Pacific from the inferred collision of the Hikurangi Plateau with the Gondwana subduction margin at approximately 110-100 Ma to the evolution of the West Antarctic Rift System. However, little is known about the crustal architecture and the tectonic processes creating the embayment. During two `RV Polarstern' expeditions in 2006 and 2010 a large geophysical data set was collected consisting of seismic-refraction and reflection data, ship-borne gravity and helicopter-borne magnetic measurements. Two P-wave velocity-depth models based on forward traveltime modelling of nine ocean bottom hydrophone recordings provide an insight into the lithospheric structure beneath the Amundsen Sea Embayment. Seismic-reflection data image the sedimentary architecture and the top-of-basement. The seismic data provide constraints for 2-D gravity modelling, which supports and complements P-wave modelling. Our final model shows 10-14-km-thick stretched continental crust at the continental rise that thickens to as much as 28 km beneath the inner shelf. The homogenous crustal architecture of the continental rise, including horst and graben structures are interpreted as indicating that wide-mode rifting affected the entire region. We observe a high-velocity layer of variable thickness beneath the margin and related it, contrary to other `normal volcanic type margins', to a proposed magma flow along the base of the crust from beneath eastern Marie Byrd Land-West Antarctica to the Marie Byrd Seamount province. Furthermore, we discuss the possibility of upper mantle serpentinization by seawater penetration at the Marie Byrd Seamount province. Hints of seaward-dipping reflectors indicate some degree of volcanism in the area after break-up. A set of gravity anomaly data

  18. Anisotropy tomography beneath east-central China and its geodynamic implications

    Science.gov (United States)

    Jiang, G.; Zhang, G.

    2017-12-01

    The east-central China primary consists of the southeastern part of the North China Block (NCB), the Middle-Lower Yangtze Block (MLYB), the northern part of Cathaysia Block (CB) and the Qinling-Dabie-Sulu Orogen (QDSO) (Fig. 1). Previous studies have suggested that both the rich mineralization in MLYB and the ultra-high pressure metamorphic belts in QDSO are closely to the Cretaceous magmatism in the east-central China. For discussing the geodynamic process, we have used the teleseismic tomography to study the 3D P-wave velocity structure down to 800 km deep and proposed a double-slab subduction model. In the present study, we introduce another two parameters representing the azimuthal anisotropy based on the isotropy tomography. Compared with the SKS method, the anisotropy tomography can provide the velocity anisotropy structure in different depths. The new anisotropy results show that (1) high-velocity (high-V) anomalies exist beneath the Middle Yangtze Block (MYB) from 200 km to 700 km depths and beneath the Lower Yangtze Block from 500 km to 700 km depths, and (2) low-velocity (low-V) anomalies exist beneath the Lower Yangtze Block from 50 km to 200 km depths and beneath the CB from 300 km to 700 km depths, respectively, and (3) the fast directions of P-wave velocity at 50-100 km depths are chaotic, however they show some regular changes from 200 km to 600 km depths. At 200-km deep, the fast direction of the low-V beneath the LYB is nearly E-W-trending. With the depth increasing, the fast directions of the low-V beneath the CB from 300 km to 600 km depths change to NEE-trending. In other side, the fast directions of eastern part of the high-V beneath the MYB, close to the low-V beneath the CB, denote NW-trending from 300 km to 600 depths. Combing with previous studies, we explain the high-V and the low-V, mentioned above, as the ancient Yangtze Craton and the upwelling asthenospheric materials, respectively. In addition, the NE-trending fast directions in the

  19. Mechanism of the 1996-97 non-eruptive volcano-tectonic earthquake swarm at Iliamna Volcano, Alaska

    Science.gov (United States)

    Roman, D.C.; Power, J.A.

    2011-01-01

    A significant number of volcano-tectonic(VT) earthquake swarms, some of which are accompanied by ground deformation and/or volcanic gas emissions, do not culminate in an eruption.These swarms are often thought to represent stalled intrusions of magma into the mid- or shallow-level crust.Real-time assessment of the likelihood that a VTswarm will culminate in an eruption is one of the key challenges of volcano monitoring, and retrospective analysis of non-eruptive swarms provides an important framework for future assessments. Here we explore models for a non-eruptive VT earthquake swarm located beneath Iliamna Volcano, Alaska, in May 1996-June 1997 through calculation and inversion of fault-plane solutions for swarm and background periods, and through Coulomb stress modeling of faulting types and hypocenter locations observed during the swarm. Through a comparison of models of deep and shallow intrusions to swarm observations,we aim to test the hypothesis that the 1996-97 swarm represented a shallow intrusion, or "failed" eruption.Observations of the 1996-97 swarm are found to be consistent with several scenarios including both shallow and deep intrusion, most likely involving a relatively small volume of intruded magma and/or a low degree of magma pressurization corresponding to a relatively low likelihood of eruption. ?? 2011 Springer-Verlag.

  20. The stress field and transient stress generation at shallow depths in the Canadian shield

    International Nuclear Information System (INIS)

    Hasegawa, H.S.

    1984-01-01

    A prominent feature of the stress field in eastern Canada is the high horizontal stress at shallow depths. Possible causative factors to this shallow stress field are remanent stresses from a previous tectonic orogeny, plate tectonic stresses and glacial-related stresses (glacial drag and flexual stress). The inherent difficulty in differentiating residual from current stress is one of the reasons why the relative contributions to the stress field from the phenomena described above are not properly understood. Maximum stress-strain changes an underground vault is likely to encounter from natural phenomena should occur when the periphery of the advancing or retreating glacier is near the vault. Theoretical calculations indicate that lithospheric flexure, differential postglacial uplift and possibly glacial drag may be able to generate significant horizontal stresses around a vault. In order to calculate the earthquake potential of these induced stress changes, the ambient tectonic stress field should also be included and a suitable failure criterion (e.g. Coulomb-Mohr) used. For earthquakes to generate appreciable stress-strain concentrations near a vault; the seismic signal must contain appreciable energy at appropriate frequencies (wavelengths comparable to vault dimensions) and be of appreciable duration; the particle velocity must be high (> 10 cm/s), induced strain is a function of particle velocity; and, the hypocentre must be less than half a fault length from the vault for residual deformation (strain and tilt) to be significant. The most severe case is when the causative fault intersects the vault

  1. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault.

    Science.gov (United States)

    Shelly, David R

    2010-02-04

    The San Andreas fault is one of the most extensively studied faults in the world, yet its physical character and deformation mode beneath the relatively shallow earthquake-generating portion remain largely unconstrained. Tectonic 'non-volcanic' tremor, a recently discovered seismic signal probably generated by shear slip on the deep extension of some major faults, can provide new insight into the deep fate of such faults, including that of the San Andreas fault near Parkfield, California. Here I examine continuous seismic data from mid-2001 to 2008, identifying tremor and decomposing the signal into different families of activity based on the shape and timing of the waveforms at multiple stations. This approach allows differentiation between activities from nearby patches of the deep fault and begins to unveil rich and complex patterns of tremor occurrence. I find that tremor exhibits nearly continuous migration, with the most extensive episodes propagating more than 20 kilometres along fault strike at rates of 15-80 kilometres per hour. This suggests that the San Andreas fault remains a localized through-going structure, at least to the base of the crust, in this area. Tremor rates and recurrence behaviour changed markedly in the wake of the 2004 magnitude-6.0 Parkfield earthquake, but these changes were far from uniform within the tremor zone, probably reflecting heterogeneous fault properties and static and dynamic stresses decaying away from the rupture. The systematic recurrence of tremor demonstrated here suggests the potential to monitor detailed time-varying deformation on this portion of the deep San Andreas fault, deformation which unsteadily loads the shallower zone that last ruptured in the 1857 magnitude-7.9 Fort Tejon earthquake.

  2. Tectonic Geomorphology.

    Science.gov (United States)

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  3. Predicting scour beneath subsea pipelines from existing small free span depths under steady currents

    Directory of Open Access Journals (Sweden)

    Jun Y. Lee

    2017-06-01

    Full Text Available An equation was developed to predict current-induced scour beneath subsea pipelines in areas with small span depths, S. Current equations for scour prediction are only applicable to partially buried pipelines. The existence of small span depths (i.e. S/D < 0.3 are of concern because the capacity for scour is higher at smaller span depths. Furthermore, it is impractical to perform rectification works, such as installing grout bags, under a pipeline with a small S/D. Full-scale two-dimensional computational fluid dynamics (CFD simulations were performed using the Reynolds-averaged Navier–Stokes approach and the Shear stress transport k–ω turbulence model. To predict the occurrence of scour, the computed maximum bed shear stress beneath the pipe was converted to the dimensionless Shields parameter, and compared with the critical Shields parameter based on the mean sediment grain size. The numerical setup was verified, and a good agreement was found between model-scale CFD data and experimental data. Field data were obtained to determine the mean grain size, far field current velocity and to measure the span depths along the surveyed pipe length. A trend line equation was fitted to the full-scale CFD data, whereby the maximum Shields parameter beneath the pipe can be calculated based on the undisturbed Shields parameter and S/D.

  4. Unraveling the tectonic history of northwest Africa: Insights from shear-wave splitting, receiver functions, and geodynamic modeling

    Science.gov (United States)

    Miller, M. S.; Becker, T. W.; Allam, A. A.; Alpert, L. A.; Di Leo, J. F.; Wookey, J. M.

    2013-12-01

    The complex tectonic history and orogenesis in the westernmost Mediterranean are primarily due to Cenozoic convergence of Africa with Eurasia. The Gibraltar system, which includes the Rif Mountains of Morocco and the Betics in Spain, forms a tight arc around the Alboran Basin. Further to the south the Atlas Mountains of Morocco, an example of an intracontinental fold and thrust belt, display only modest tectonic shortening, yet have unusually high topography. To the south of the Atlas, the anti-Atlas is the oldest mountain range in the region, has the lowest relief, and extends toward the northern extent of the West African Craton. To help unravel the regional tectonics, we use new broadband seismic data from 105 stations across the Gibraltar arc into southern Morocco. We use shear wave splitting analysis for a deep (617 km) local S event and over 230 SKS events to infer azimuthal seismic anisotropy and we image the lithospheric structure with receiver functions. One of the most striking discoveries from these methods is evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that were reactivated during the Cenozoic. This suggests that these lithospheric-scale discontinuities were involved in the formation of the Atlas and are still active. Shear wave splitting results show that the inferred stretching axes are aligned with the highest topography in the Atlas, suggesting asthenospheric shearing in mantle flow guided by lithospheric topography. Geodynamic modeling shows that the inferred seismic anisotropy may be produced by the interaction of mantle flow with the subducted slab beneath the Alboran, the West African Craton, and the thinned lithosphere beneath the Atlas. Isostatic modeling based on these lithospheric structure estimates indicates that lithospheric thinning alone does not explain the

  5. Temporal Variation of Tectonic Tremor Activity Associated with Nearby Earthquakes

    Science.gov (United States)

    Chao, K.; Van der Lee, S.; Hsu, Y. J.; Pu, H. C.

    2017-12-01

    Tectonic tremor and slow slip events, located downdip from the seismogenic zone, hold the key to recurring patterns of typical earthquakes. Several findings of slow aseismic slip during the prenucletion processes of nearby earthquakes have provided new insight into the study of stress transform of slow earthquakes in fault zones prior to megathrust earthquakes. However, how tectonic tremor is associated with the occurrence of nearby earthquakes remains unclear. To enhance our understanding of the stress interaction between tremor and earthquakes, we developed an algorithm for the automatic detection and location of tectonic tremor in the collisional tectonic environment in Taiwan. Our analysis of a three-year data set indicates a short-term increase in the tremor rate starting at 19 days before the 2010 ML6.4 Jiashian main shock (Chao et al., JGR, 2017). Around the time when the tremor rate began to rise, one GPS station recorded a flip in its direction of motion. We hypothesize that tremor is driven by a slow-slip event that preceded the occurrence of the shallower nearby main shock, even though the inferred slip is too small to be observed by all GPS stations. To better quantify what the necessary condition for tremor to response to nearby earthquakes is, we obtained a 13-year ambient tremor catalog from 2004 to 2016 in the same region. We examine the spatiotemporal relationship between tremor and 37 ML>=5.0 (seven events with ML>=6.0) nearby earthquakes located within 0.5 degrees to the active tremor sources. The findings from this study can enhance our understanding of the interaction among tremor, slow slip, and nearby earthquakes in the high seismic hazard regions.

  6. Nuclear wastes beneath the deep sea floor

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hollister, C.D.

    1974-01-01

    Projections of energy demands for the year 2000 show that nuclear power will likely be one of our energy sources. But the benefits of nuclear power must be balanced against the drawbacks of its by-product: high-level wastes. While it may become possible to completely destroy or eliminate these wastes, it is at least equally possible that we may have to dispose of them on earth in such a way as to assure their isolation from man for periods of the order of a million years. Undersea regions in the middle of tectonic plates and in the approximate center of major current gyres offer some conceptual promise for waste disposal because of their geologic stability and comparatively low organic productivity. The advantages of this concept and the types of detailed information needed for its accurate assessment are discussed. The technical feasibility of permanent disposal beneath the deep sea floor cannot be accurately assessed with present knowledge, and there is a need for a thorough study of the types and rates of processes that affect this part of the earth's surface. Basic oceanographic research aimed at understanding these processes is yielding answers that apply to this societal need. (U.S.)

  7. Grabens on Io: Evidence for Extensional Tectonics

    Science.gov (United States)

    Hoogenboom, T.; Schenk, P.

    2012-12-01

    Io may well be the most geologically active body in the solar system. A variety of volcanic features have been identified, including a few fissure eruptions, but tectonism is generally assumed to be limited to compression driven mountain formation (Schenk et al., 2001). A wide range of structural features can also be identified including scarps, lineaments, faults, and circular depressions (pits and patera rims). Narrow curvilinear graben (elongated, relatively depressed crustal unit or block that is bounded by faults on its sides) are also scattered across Io's volcanic plains. These features are dwarfed by the more prominent neighboring volcanoes and mountains, and have been largely ignored in the literature. Although they are likely to be extensional in origin, their relationship to local or global stress fields is unknown. We have mapped the locations, length and width of graben on Io using all available Voyager and Galileo images with a resolution better than 5 km. We compare the locations of graben with existing volcanic centers, paterae and mountain data to determine the degree of correlation between these geologic features and major topographic variations (basins/swells) in our global topographic map of Io (White et al., 2011). Graben are best observed in > 1-2 km low-sun angle images. Approximately 300 images were converted from ISIS to ArcMap format to allow easy comparison with the geological map of Io (Williams et al., 2012) along with previous higher resolution structural mapping of local areas (e.g. Crown et al., 1992). We have located >45 graben to date. Typically 1-3 kilometers across, some of these features can stretch for over 500 kilometers in length. Their formation may be related to global tidal stresses or local deformation. Io's orbit is eccentric and its solid surface experiences daily tides of up to ˜0.1 km, leading to repetitive surface strains of 10-4 or greater. These tides flex and stress the lithosphere and can cause it to fracture

  8. The 2007 Nazko, British Columbia, earthquake sequence: Injection of magma deep in the crust beneath the Anahim volcanic belt

    Science.gov (United States)

    Cassidy, J.F.; Balfour, N.; Hickson, C.; Kao, H.; White, Rickie; Caplan-Auerbach, J.; Mazzotti, S.; Rogers, Gary C.; Al-Khoubbi, I.; Bird, A.L.; Esteban, L.; Kelman, M.; Hutchinson, J.; McCormack, D.

    2011-01-01

    On 9 October 2007, an unusual sequence of earthquakes began in central British Columbia about 20 km west of the Nazko cone, the most recent (circa 7200 yr) volcanic center in the Anahim volcanic belt. Within 25 hr, eight earthquakes of magnitude 2.3-2.9 occurred in a region where no earthquakes had previously been recorded. During the next three weeks, more than 800 microearthquakes were located (and many more detected), most at a depth of 25-31 km and within a radius of about 5 km. After about two months, almost all activity ceased. The clear P- and S-wave arrivals indicated that these were high-frequency (volcanic-tectonic) earthquakes and the b value of 1.9 that we calculated is anomalous for crustal earthquakes but consistent with volcanic-related events. Analysis of receiver functions at a station immediately above the seismicity indicated a Moho near 30 km depth. Precise relocation of the seismicity using a double-difference method suggested a horizontal migration at the rate of about 0:5 km=d, with almost all events within the lowermost crust. Neither harmonic tremor nor long-period events were observed; however, some spasmodic bursts were recorded and determined to be colocated with the earthquake hypocenters. These observations are all very similar to a deep earthquake sequence recorded beneath Lake Tahoe, California, in 2003-2004. Based on these remarkable similarities, we interpret the Nazko sequence as an indication of an injection of magma into the lower crust beneath the Anahim volcanic belt. This magma injection fractures rock, producing high-frequency, volcanic-tectonic earthquakes and spasmodic bursts.

  9. Imaging paleoslabs in the D″ layer beneath Central America and the Caribbean using seismic waveform inversion.

    Science.gov (United States)

    Borgeaud, Anselme F E; Kawai, Kenji; Konishi, Kensuke; Geller, Robert J

    2017-11-01

    D″ (Dee double prime), the lowermost layer of the Earth's mantle, is the thermal boundary layer (TBL) of mantle convection immediately above the Earth's liquid outer core. As the origin of upwelling of hot material and the destination of paleoslabs (downwelling cold slab remnants), D″ plays a major role in the Earth's evolution. D″ beneath Central America and the Caribbean is of particular geodynamical interest, because the paleo- and present Pacific plates have been subducting beneath the western margin of Pangaea since ~250 million years ago, which implies that paleoslabs could have reached the lowermost mantle. We conduct waveform inversion using a data set of ~7700 transverse component records to infer the detailed three-dimensional S-velocity structure in the lowermost 400 km of the mantle in the study region so that we can investigate how cold paleoslabs interact with the hot TBL above the core-mantle boundary (CMB). We can obtain high-resolution images because the lowermost mantle here is densely sampled by seismic waves due to the full deployment of the USArray broadband seismic stations during 2004-2015. We find two distinct strong high-velocity anomalies, which we interpret as paleoslabs, just above the CMB beneath Central America and Venezuela, respectively, surrounded by low-velocity regions. Strong low-velocity anomalies concentrated in the lowermost 100 km of the mantle suggest the existence of chemically distinct denser material connected to low-velocity anomalies in the lower mantle inferred by previous studies, suggesting that plate tectonics on the Earth's surface might control the modality of convection in the lower mantle.

  10. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    Science.gov (United States)

    Prejean, Stephanie; Ellsworth, William L.; Zoback, Mark; Waldhauser, Felix

    2002-01-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  11. Structure and tectonics of the northwestern United States from EarthScope USArray magnetotelluric data

    Science.gov (United States)

    Bedrosian, Paul A.; Feucht, Daniel W.

    2014-01-01

    The magnetotelluric component of the EarthScope USArray program has covered over 35% of the continental United States. Resistivity tomography models derived from these data image lithospheric structure and provide constraints on the distribution of fluids and melt within the lithosphere. We present a three-dimensional resistivity model of the northwestern United States which provides new insight into the tectonic assembly of western North America from the Archean to present. Comparison with seismic tomography models reveals regions of correlated and anti-correlated resistivity and velocity that help identify thermal and compositional variations within the lithosphere. Recent (Neogene) tectonic features reflected in the model include the subducting Juan de Fuca–Gorda plate which can be traced beneath the forearc to more than 100 km depth, high lithospheric conductivity along the Snake River Plain, and pronounced lower-crustal and upper-mantle conductivity beneath the Basin and Range. The latter is abruptly terminated to the northwest by the Klamath–Blue Mountains Lineament, which we interpret as an important structure during and since the Mesozoic assembly of the region. This boundary is interpreted to separate hot extended lithosphere from colder, less extended lithosphere. The western edge of Proterozoic North America, as indicated by the Cretaceous initial 87Sr/86Sr = 0.706 contour, is clearly reflected in the resistivity model. We further image an Archean crustal block (“Pend Oreille block”) straddling the Washington/Idaho border, which we speculate separated from the Archean Medicine Hat block in the Proterozoic. Finally, in the modern Cascades forearc, the geometry and internal structure of the Eocene Siletz terrane is reflected in the resistivity model. The apparent eastern edge of the Siletz terrane under the Cascades arc suggests that pre-Tertiary rocks fill the Washington and Oregon back-arc.

  12. Textile Tectonics

    DEFF Research Database (Denmark)

    Mossé, Aurélie

    2008-01-01

    of the discipline. Inspiring time gathering some of the most exciting architects of the moment, Lars Spuybroeck, Mark Burry, Evan Douglis, Michael Hensel and Cecil Balmond were invited to discuss their understanding of tectonics. Full text available at http://textilefutures.co.uk/exchange/bin/view/TextileFutures/TextileTectonics...

  13. The tectonics of Mercury

    International Nuclear Information System (INIS)

    Melosh, H.J.; Mckinnon, W.B.

    1988-01-01

    The probable tectonic history of Mercury and the relative sequence of events are discussed on the basis of data collected by the Mariner-10 spacecraft. Results indicate that Mercury's tectonic activity was confined to its early history; its endogenic activity was principally due to a small change in the shape of its lithosphere, caused by tidal despinning, and a small change in area caused by shrinkage due to cooling. Exogenic processes, in particular the impact activity, have produced more abundant tectonic features. Many features associated with the Caloris basin are due to loading of Mercury's thick lithosphere by extrusive lavas or subsidence due to magma withdrawal. It is emphasized that tectonic features observed on Mercury yield insight into the earliest tectonic events on planets like Mars and, perhaps, the earth, where subsequent events obscured or erased the most ancient tectonic records

  14. The Potential for Volcanism and Tectonics on Extrasolar Terrestrial Planets

    Science.gov (United States)

    Quick, Lynnae C.; Roberge, Aki

    2018-01-01

    JWST and other next-generation space telescopes (e.g., LUVOIR, HabEx, & OST) will usher in a new era of exoplanet characterization that may lead to the identification of habitable, Earth-like worlds. Like the planets and moons in our solar system, the surfaces and interiors of terrestrial exoplanets may be shaped by volcanism and tectonics (Fu et al., 2010; van Summeren et al., 2011; Henning and Hurford, 2014). The magnitude and rate of occurrence of these dynamic processes can either facilitate or preclude the existence of habitable environments. Likewise, it has been suggested that detections of cryovolcanism on icy exoplanets, in the form of geyser-like plumes, could indicate the presence of subsurface oceans (Quick et al., 2017).The presence of volcanic and tectonic activity on solid exoplanets will be intimately linked to planet size and heat output in the form of radiogenic and/or tidal heating. In order to place bounds on the potential for such activity, we estimated the heat output of a variety of exoplanets observed by Kepler. We considered planets whose masses and radii range from 0.067 ME (super-Ganymede) to 8 ME (super-Earth), and 0.5 to 1.8 RE, respectively. These heat output estimates were then compared to those of planets, moons, and dwarf planets in our solar system for which we have direct evidence for the presence/absence of volcanic and tectonic activity. After exoplanet heating rates were estimated, depths to putative molten layers in their interiors were also calculated. For planets such as TRAPPIST-1h, whose densities, orbital parameters, and effective temperatures are consistent with the presence of significant amounts of H2O (Luger et al., 2017), these calculations reveal the depths to internal oceans which may serve as habitable niches beneath surface ice layers.

  15. The 2015 Gorkha earthquake investigated from radar satellites: Slip and stress modeling along the MHT

    Directory of Open Access Journals (Sweden)

    Faqi eDiao

    2015-10-01

    Full Text Available The active collision at the Himalayas combines crustal shortening and thickening, associated with the development of hazardous seismogenic faults. The 2015 Kathmandu earthquake largely affected Kathmandu city and partially ruptured a previously identified seismic gap. With a magnitude of Mw 7.8 as determined by the GEOFON seismic network, the 25 April 2015 earthquake displays uplift of the Kathmandu basin constrained by interferometrically processed ALOS-2, RADARSAT-2 and Sentinel-1 satellite radar data. An area of about 7,000 km² in the basin showed ground uplift locally exceeding 2 m, and a similarly large area (approx. 9000 km2 showed subsidence in the north, both of which could be simulated with a fault that is localized beneath the Kathmandu basin at a shallow depth of 5-15 km. Coulomb stress calculations reveal that the same fault adjacent to the Kathmandu basin experienced stress increase, similar as at sub-parallel faults of the thin skinned nappes, exactly at the location where the largest aftershock occurred (Mw 7.3 on 12. May, 2015. Therefore this study provides insights into the shortening and uplift tectonics of the Himalayas and shows the stress redistribution associated with the earthquake.

  16. Tectonic stress orientations and magnitudes, and friction of faults, deduced from earthquake focal mechanism inversions over the Korean Peninsula

    Science.gov (United States)

    Soh, Inho; Chang, Chandong; Lee, Junhyung; Hong, Tae-Kyung; Park, Eui-Seob

    2018-05-01

    We characterize the present-day stress state in and around the Korean Peninsula using formal inversions of earthquake focal mechanisms. Two different methods are used to select preferred fault planes in the double-couple focal mechanism solutions: one that minimizes average misfit angle and the other choosing faults with higher instability. We invert selected sets of fault planes for estimating the principal stresses at regularly spaced grid points, using a circular-area data-binning method, where the bin radius is optimized to yield the best possible stress inversion results based on the World Stress Map quality ranking scheme. The inversions using the two methods yield well constrained and fairly comparable results, which indicate that the prevailing stress regime is strike-slip, and the maximum horizontal principal stress (SHmax) is oriented ENE-WSW throughout the study region. Although the orientation of the stresses is consistent across the peninsula, the relative stress magnitude parameter (R-value) varies significantly, from 0.22 in the northwest to 0.89 in the southeast. Based on our knowledge of the R-values and stress regime, and using a value for vertical stress (Sv) estimated from the overburden weight of rock, together with a value for the maximum differential stress (based on the Coulomb friction of faults optimally oriented for slip), we estimate the magnitudes of the two horizontal principal stresses. The horizontal stress magnitudes increase from west to east such that SHmax/Sv ratio rises from 1.5 to 2.4, and the Shmin/Sv ratio from 0.6 to 0.8. The variation in the magnitudes of the tectonic stresses appears to be related to differences in the rigidity of crustal rocks. Using the complete stress tensors, including both orientations and magnitudes, we assess the possible ranges of frictional coefficients for different types of faults. We show that normal and reverse faults have lower frictional coefficients than strike-slip faults, suggesting that

  17. New seismic observation on the lithosphere and slab subduction beneath the Indo-Myanmar block: Implications for continent oblique subduction and transition to oceanic slab subduction

    Science.gov (United States)

    Jiang, M.; He, Y.; Zheng, T.; Mon, C. T.; Thant, M.; Hou, G.; Ai, Y.; Chen, Q. F.; Sein, K.

    2017-12-01

    The Indo-Myanmar block locates to the southern and southeastern of the Eastern Himalayan Syntax (EHS) and marks a torsional boundary of the collision between the Indian and Eurasian plates. There are two fundamental questions concerned on the tectonics of Indo-Myanmar block since the Cenozoic time. One is whether and how the oblique subduction is active in the deep; the other is where and how the transition from oceanic subduction and continental subduction operates. However, the two problems are still under heated debate mainly because the image of deep structure beneath this region is still blurring. Since June, 2016, we have executed the China-Myanmar Geophysical Survey in the Myanmar Orogen (CMGSMO) and deployed the first portable seismic array in Myanmar in cooperation with Myanmar Geosciences Society (MGS). This array contains 70 stations with a dense-deployed main profile across the Indo-Myanmar Range, Central Basin and Shan State Plateau along latitude of 22° and a 2-D network covering the Indo-Myanmar Range and the western part of the Central Basin. Based on the seismic data collected by the new array, we conducted the studies on the lithospheric structure using the routine surface wave tomography and receiver function CCP stacking. The preliminary results of surface wave tomography displayed a remarkable high seismic velocity fabric in the uppermost of mantle beneath the Indo-Myanmar Range and Central Basin, which was interpreted as the subducted slab eastward. Particularly, we found a low velocity bulk within the high-velocity slab, which was likely to be a slab window due to the slab tearing. The preliminary results of receiver function CCP stacking showed the obvious variations of the lithospheric structures from the Indo-Myanmar Range to the Central Basin and Shan State Plateau. The lithospheric structure beneath the Indo-Myanmar Range is more complex than that beneath the Central Basin and Shan State Plateau. Our resultant high-resolution images

  18. The January 2006 Volcanic-Tectonic Earthquake Swarm at Mount Martin, Alaska

    Science.gov (United States)

    Dixon, James P.; Power, John A.

    2009-01-01

    On January 8, 2006, a swarm of volcanic-tectonic earthquakes began beneath Mount Martin at the southern end of the Katmai volcanic cluster. This was the first recorded swarm at Mount Martin since continuous seismic monitoring began in 1996. The number of located earthquakes increased during the next four days, reaching a peak on January 11. For the next two days, the seismic activity decreased, and on January 14, the number of events increased to twice the previous day's total. Following this increase in activity, seismicity declined, returning to background levels by the end of the month. The Alaska Volcano Observatory located 860 earthquakes near Mount Martin during January 2006. No additional signs of volcanic unrest were noted in association with this earthquake swarm. The earthquakes in the Mount Martin swarm, relocated using the double difference technique, formed an elongated cluster dipping to the southwest. Focal mechanisms beneath Mount Martin show a mix of normal, thrust, and strike-slip solutions, with normal focal mechanisms dominating. For earthquakes more than 1 km from Mount Martin, all focal mechanisms showed normal faulting. The calculated b-value for the Mount Martin swarm is 0.98 and showed no significant change before, during, or after the swarm. The triggering mechanism for the Mount Martin swarm is unknown. The time-history of earthquake occurrence is indicative of a volcanic cause; however, there were no low-frequency events or observations, such as increased steaming associated with the swarm. During the swarm, there was no change in the b-value, and the distribution and type of focal mechanisms were similar to those in the period before the anomalous activity. The short duration of the swarm, the similarity in observed focal mechanisms, and the lack of additional signs of unrest suggest this swarm did not result from a large influx of magma within the shallow crust beneath Mount Martin.

  19. The Tectonic Practice

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    has the consequence that it is difficult to create architecture where the technical concerns are an inherent part of the architectural expression. The aim of the thesis is to discuss the role of digital tools in overcoming the distance between the professional specializations and thereby support...... a tectonic practice. The project develops a framework to understand the role of digital tools in the tectonic practice from and discusses how and in which areas the tectonic practice could become supported by digital tools....

  20. Volcano-tectonic interaction at Soufriere Hills volcano, Montserrat (W.I.), constrained by dynamic gravity data

    International Nuclear Information System (INIS)

    Hautmann, Stefanie; Gottsmann, Joachim; Sparks, R Stephen J; Camacho, Antonio; Fournier, Nicolas

    2008-01-01

    We report on a joint gravimetric and ground deformation study on Montserrat, with the aim of quantifying mass and/or density changes beneath the island related to the volcanic activity at Soufrire Hills Volcano (SHV). Our observations coupled with 3-D data inversion indicate the existence of a previously unrecognised NNW-SSE trending zone of structural weakness (i.e. fault) that is located at shallow depths beneath the Centre Hills of Montserrat, along which active fluid migration is coupled to magmatic stressing at SHV.

  1. Volcano-tectonic interaction at Soufriere Hills volcano, Montserrat (W.I.), constrained by dynamic gravity data

    Energy Technology Data Exchange (ETDEWEB)

    Hautmann, Stefanie; Gottsmann, Joachim; Sparks, R Stephen J [Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ (United Kingdom); Camacho, Antonio [Instituto de AstronomIa y Geodesia (CSIC-UCM), Facultad CC Matematicas, Universidad Complutense Madrid, 28040 Madrid (Spain); Fournier, Nicolas [Seismic Research Unit, University of the West Indies, St Augustine (Trinidad and Tobago)], E-mail: stefanie.hautmann@googlemail.com

    2008-10-01

    We report on a joint gravimetric and ground deformation study on Montserrat, with the aim of quantifying mass and/or density changes beneath the island related to the volcanic activity at Soufrire Hills Volcano (SHV). Our observations coupled with 3-D data inversion indicate the existence of a previously unrecognised NNW-SSE trending zone of structural weakness (i.e. fault) that is located at shallow depths beneath the Centre Hills of Montserrat, along which active fluid migration is coupled to magmatic stressing at SHV.

  2. Analysis of the Tectonic Lineaments in the Ganiki Planitia (V14) Quadrangle, Venus

    Science.gov (United States)

    Venechuk, E. M.; Hurwitz, D. M.; Drury, D. E.; Long, S. M.; Grosfils, E. B.

    2005-01-01

    The Ganiki Planitia quadrangle, located between the Atla Regio highland to the south and the Atalanta Planitia lowland to the north, is deformed by many tectonic lineaments which have been mapped previously but have not yet been assessed in detail. As a result, neither the characteristics of these lineaments nor their relationship to material unit stratigraphy is well constrained. In this study we analyze the orientation of extensional and compressional lineaments in all non-tessera areas in order to begin characterizing the dominant tectonic stresses that have affected the region.

  3. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    Energy Technology Data Exchange (ETDEWEB)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    The Cameroon Volcanic Line (CVL) is a major geologic feature that cuts across Cameroon from the south west to the north east. It is a unique volcanic lineament which has both an oceanic and a continental sector and consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. The oceanic sector includes the islands of Bioko (formerly Fernando Po) and Sao Tome and Principe while the continental sector includes the Etinde, Cameroon, Manengouba, Bamboutos, Oku and Mandara mountains, as well as the Adamawa and Biu Plateaus. In addition to the CVL, three other major tectonic features characterize the region: the Benue Trough located northwest of the CVL, the Central African Shear Zone (CASZ), trending N70 degrees E, roughly parallel to the CVL, and the Congo Craton in southern Cameroon. The origin of the CVL is still the subject of considerable debate, with both plume and non-plume models invoked by many authors (e.g., Deruelle et al., 2007; Ngako et al, 2006; Ritsema and Allen, 2003; Burke, 2001; Ebinger and Sleep, 1998; Lee et al, 1994; Dorbath et al., 1986; Fairhead and Binks, 1991; King and Ritsema, 2000; Reusch et al., 2010). Crustal structure beneath Cameroon has been investigated previously using active (Stuart et al, 1985) and passive (Dorbath et al., 1986; Tabod, 1991; Tabod et al, 1992; Plomerova et al, 1993) source seismic data, revealing a crust about 33 km thick at the south-western end of the continental portion of the CVL (Tabod, 1991) and the Adamawa Plateau, and thinner crust (23 km thick) beneath the Garoua Rift in the north (Stuart et al, 1985) (Figure 1). Estimates of crustal thickness obtained using gravity data show similar variations between the Garoua rift, Adamawa Plateau, and southern part of the CVL (Poudjom et al., 1995; Nnange et al., 2000). In this study, we investigate further crustal structure beneath the CVL and the adjacent regions in

  4. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc

    Science.gov (United States)

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.; Blair, James Luke

    2016-01-01

    The ratio between helium isotopes (3He/4He) provides an excellent geochemical tracer for investigating the sources of fluids sampled at the Earth's surface. 3He/4He values observed in 25 mineral springs and wells above the Cascadia forearc document a significant component of mantle-derived helium above Juan de Fuca lithosphere, as well as variability in 3He enrichment across the forearc. Sample sites arcward of the forearc mantle corner (FMC) generally yield significantly higher ratios (1.2-4.0 RA) than those seaward of the corner (0.03-0.7 RA). The highest ratios in the Cascadia forearc coincide with slab depths (40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (25-30 km) beneath sites seaward of the corner.Tremor (considered a marker for high fluid pressure) and high RA values in the forearc are spatially correlated. The Cascadia tremor band is centered on its FMC, and we tentatively postulate that hydrated forearc mantle beneath Cascadia deflects a significant portion of slab-derived fluids updip along the subduction interface, to vent in the vicinity of its corner. Furthermore, high RA values within the tremor band just arcward of the FMC, suggest that the innermost mantle wedge is relatively permeable.Conceptual models require: (1) a deep fluid source as a medium to transport primordial 3He; (2) conduits through the lithosphere which serve to speed fluid ascent to the surface before significant dilution from radiogenic 4He can occur; and (3) near lithostatic fluid pressure to keep conduits open. Our spatial correlation between high RA values and tectonic tremor provides independent evidence that tremor is associated with deep fluids, and it further suggests that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through ductile upper mantle and lower crust.

  5. Pan African Collisional Tectonics Along the Moroccan West African Craton Continued to Ediacaran-Cambrian Boundary

    Science.gov (United States)

    Hefferan, K. P.; Samson, S. D.; Rice, K.; Soulaimani, A.

    2016-12-01

    Precision geochronologic dating and field mapping in the Anti-Atlas Mountains of Morocco document a Neoproterozoic Pan African orogenic cycle consisting of three distinct orogenic events: Iriri-Tichibanine orogeny (760-700 Ma), Bou Azzer orogeny (680-640 Ma) and the WACadomian orogeny (620 Ma to either 555 or 544 Ma). The Iriri-Tichibanine and Bou Azzer orogenies involved northward directed subduction beneath island arc volcanic terranes. These orogenic events generated calc-alkaline magmatism and supra-subduction zone ophiolites exposed in the Bou Azzer and Siroua erosional inliers. The WACadomian orogeny involved subduction and collision of the Cadomia arc complex with the West African Craton and generation of clastic sedimentary basins. The termination of the WACadomian orogeny has been the subject of debate as calc-alkaline to high K magmatism and folding continued to 544 Ma: Was 620-544 Ma calc-alkaline to high K magmatism and clastic basin development due to a) continental rift basin tectonics or b) southward directed subduction and collisional tectonics with associated back arc basin tectonism? We present field and geochemical data supporting the continuation of subduction-collisional tectonics to the Ediacaran-Cambrian boundary 544 Ma. Field mapping in the Central Anti-Atlas (Agadir Melloul) clearly documents an angular unconformity between Ouarzazate Group and Adoudounian limestones (N 30°31'28.91", W07°48'29.12"). Volcaniclastic rocks of Ouarzazate Group (615-545 Ma) are clearly folded and unconformably overlain by Adoudou Formation (541-529 Ma) limestones to the north. Geochemical discrimination diagrams on Latest Neoproterozoic calc-alkaline to high K igneous rocks throughout the Anti-Atlas plot in subduction and collisional arc magma domains. Back arc basin tectonism is likely responsible for localized extensional basins but continental rift tectonics and passive margin sedimentation did not begin in the Anti-Atlas Mountains until Early

  6. 3-D velocity structures, seismicity patterns, and their tectonic implications across the Andean Foreland of San Juan Argentina

    Science.gov (United States)

    Asmerom, Biniam Beyene

    Three-dimensional velocity structures and seismicity patterns have been studied across the Andean Foreland of San Juan Argentina using data acquired by PANDA deployment. Distinct velocity variations are revealed between Precordillera in the west and Pie de Palo in the east. The low velocity anomaly beneath Precordillera is associated with the presence of thick sedimentary rocks and thick sediment cover of Matagusanos valley. Similarly, the high velocity anomaly east of Eastern Precordillera is correlated with the presence of basement rocks. These anomalies are observed from the station corrections of Joint Hypocentral Determination (JHD) analysis. A northeast trending west dipping high velocity anomaly is imaged beneath the southern half of Pie de Palo. This anomaly represents a Grenvillian suture zone formed when Pie de Palo collided with the Precordillera. Relocated seismicity using 3-D Vp and Vs models obtained in this study revealed crustal scale buried faults beneath the Eastern Precordillera and Sierra Pie de Palo. The fault defined by the seismicity extend down to a depth of ˜ 40 km and ~35 km beneath Precordillera and Pie de Palo, respectively, defining the lower bound of the brittle to ductile transition of the crust. These results confirm that present day active crustal thickening involves the entire crust in the tectonic process and results in thick-skinned deformation beneath both the Eastern Precordillera and Pie de Palo. Based on the seismicity pattern, geomorphology, and velocity structures, Sierra Pie de Palo, a basement uplift block, can be divided into two separate semi-blocks separated by a northeast trending fracture zone. The northern block is characterized by a well-defined west dipping fault and low Vp/Vs ratio particularly at a depth of 12 to 16 km, while the southern block shows a poorly-defined east dipping fault with high Vp/Vs ratio at a depth of 20 to 26 km. Spatial distribution of the well-relocated crustal earthquakes along these

  7. Understanding the Tectonic Features in the South China Sea By Analyzing Magnetic Anomalies

    Science.gov (United States)

    Guo, L.; Meng, X.; Shi, L.; Yao, C.

    2011-12-01

    The South China Sea (SCS) is surrounded by the Eurasia, Pacific and India-Australia plates. It formed during Late Oligocene-Early Miocene, and is one of the largest marginal seas in the Western Pacific. The collision of Indian subcontinent and Eurasian plate in the northwest, back-arc spreading in the centre and subduction beneath the Philippine plate along Manila trench in the east and along Palawan trough in the south had produced the complex tectonic features in the SCS that we can see today. In the past few decades, a variety of geophysical methods were conducted to study geological tectonics and evolution of the SCS. Here, we analyzed the magnetic data of this area using new data enhancement techniques to understand the regional tectonic features. We assembled the magnetic anomalies data with a resolution of two arc-minute from the World Digital Magnetic Anomaly Map, and then gridded the data on a regular grid. Then we used the method of reduction to the pole at low latitude with varying magnetic inclinations to stably reduce the magnetic anomalies. Then we used the preferential continuation method based on Wiener filtering and Green's equivalence principle to separate the reduced-to-pole (RTP) magnetic anomalies, and subsequently analyze the regional and residual anomalies. We also calculated the directional horizontal derivatives and the tilt-angle derivative of the data to derive clearer geological structures with more details. Then we calculated the depth of the magnetic basement surface in the area by 3D interface inversion. From the results of the preliminary processing, we analyzed the main faults, geological structures, magma distribution and tectonic features in the SCS. In the future, the integrated interpretation of the RTP magnetic anomalies, Bouguer gravity anomalies and other geophysical methods will be performed for better understanding the deep structure , the tectonic features and evolution of the South China Sea. Acknowledgment: We

  8. Trench motion-controlled slab morphology and stress variations: Implications for the isolated 2015 Bonin Islands deep earthquake

    Science.gov (United States)

    Yang, Ting; Gurnis, Michael; Zhan, Zhongwen

    2017-07-01

    The subducted old and cold Pacific Plate beneath the young Philippine Sea Plate at the Izu-Bonin trench over the Cenozoic hosts regional deep earthquakes. We investigate slab morphology and stress regimes under different trench motion histories with mantle convection models. Viscosity, temperature, and deviatoric stress are inherently heterogeneous within the slab, which we link to the occurrence of isolated earthquakes. Models expand on previous suggestions that observed slab morphology variations along the Izu-Bonin subduction zone, exhibited as shallow slab dip angles in the north and steeper dip angles in the south, are mainly due to variations in the rate of trench retreat from the north (where it is fast) to the south (where it is slow). Geodynamic models consistent with the regional plate tectonics, including oceanic plate age, plate convergence rate, and trench motion history, reproduce the seismologically observed principal stress direction and slab morphology. We suggest that the isolated 680 km deep, 30 May 2015 Mw 7.9 Bonin Islands earthquake, which lies east of the well-defined Benioff zone and has its principal compressional stress direction oriented toward the tip of the previously defined Benioff zone, can be explained by Pacific slab buckling in response to the slow trench retreat.

  9. Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan

    Science.gov (United States)

    Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.

    2017-12-01

    The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface

  10. Seismic evidence of the lithosphere-asthenosphere boundary beneath Izu-Bonin area

    Science.gov (United States)

    Cui, H.; Gao, Y.; Zhou, Y.

    2016-12-01

    The lithosphere-asthenosphere boundary (LAB), separating the rigid lithosphere and the ductile asthenosphere layers, is the seismic discontinuity with the negative velocity contrast of the Earth's interior [Fischer et al., 2010]. The LAB has been also termed the Gutenberg (G) discontinuity that defines the top of the low velocity zone in the upper mantle [Gutenberg, 1959; Revenaugh and Jordan, 1991]. The seismic velocity, viscosity, resistivity and other physical parameters change rapidly with the depths across the boundary [Eaton et al., 2009]. Seismic detections on the LAB in subduction zone regions are of great help to understand the interactions between the lithosphere and asthenosphere layers and the geodynamic processes related with the slab subductions. In this study, the vertical broadband waveforms are collected from three deep earthquake events occurring from 2000 to 2014 with the focal depths of 400 600 km beneath the Izu-Bonin area. The waveform data is processed with the linear slant stack method [Zang and Zhou, 2002] to obtain the vespagrams in the relative travel-time to slowness domain and the stacked waveforms. The sP precursors reflected on the LAB (sLABP), which have the negative polarities with the amplitude ratios of 0.17 0.21 relative to the sP phases, are successfully extracted. Based on the one-dimensional modified velocity model (IASP91-IB), we obtain the distributions for six reflected points of the sLABP phases near the source region. Our results reveal that the LAB depths range between 58 and 65 km beneath the Izu-Bonin Arc, with the average depth of 62 km and the small topography of 7 km. Compared with the results of the tectonic stable areas in Philippine Sea [Kawakatsu et al., 2009; Kumar and Kawakatsu, 2011], the oceanic lithosphere beneath the Izu-Bonin Arc shows the obvious thinning phenomena. We infer that the lithospheric thinning is closely related with the partial melting, which is caused by the volatiles continuously released

  11. Stress rotation along pre-Cenozoic basement structures

    Science.gov (United States)

    Reiter, K.; Heidbach, O.; Henk, A.

    2017-12-01

    The in-situ stress state of the Earth's crust is under investigation since decades for both, scientific and economic purposes. Several methods have been established to indicate the contemporary orientation of the maximum compressive horizontal stress (SHmax). It is assumed that the same forces that drive plate motion are the first order stress sources and one could presume that SHmax is always parallel to plate motion, which is the case for some regions. However, deviations from this general trend occur in many regions. Therefore, second and third order sources of stress have been identified that potentially cause regional and local stress rotation with respect to the long wave-length trend imposed by plate tectonic forces. One group of such subordinate stress sources are lateral heterogeneities based on structures, petrothermal or petrophysical properties. The World Stress Map (WSM) project compiles systematically data records of the present day SHmax orientation. The increasing amount of stress orientation data allows to investigate areas with consistent stress rotation, divergent to the regional stress pattern. In our work we analyse the stress pattern variability and its causes beneath Germany. In the Molasse Basin in the Alpine foreland the SHmax orientation is perpendicular to the Alpine front as a consequence of gravitational potential energy of the orogen. SHmax is oriented in N-S direction in the central Alpine foreland and within the North German Basin. Between both, within the Mid-German Crystalline High, SHmax is divergent oriented in SE-NW direction. Neither gravitational potential energy nor petrothermal effects can be indicated as stress source. But when comparing the stress pattern with the Variscan basement structures it is obvious that SHmax is perpendicular oriented to this Palaeozoic basement structures. Therefore, petrophysical heterogeneities can be expected as reason for the observed stress rotation. Two assumptions can be made for the Mid

  12. The state of stress in British rocks

    International Nuclear Information System (INIS)

    Klein, R.J.; Brown, E.T.

    1983-03-01

    When designing underground works, it is necessary to take account of not only the vertical stresses arising predictably from the weight of the rock overhead, but also horizontal stresses which may vary from one direction to another as a result of past tectonic action. This report discussed the techniques that have been used to measure such stresses. Few determinations have been made in Great Britain, so it has been necessary to augment what little is known by reference to fault systems, relying on correlations between the measured magnitude and direction of maximum horizontal stress with local tectonic history. This has enabled general conclusions to be reached for Great Britain. (author)

  13. Easy handling of tectonic data: the programs TectonicVB for Mac and TectonicsFP for Windows™

    Science.gov (United States)

    Ortner, Hugo; Reiter, Franz; Acs, Peter

    2002-12-01

    TectonicVB for Macintosh and TectonicsFP for Windows TM operating systems are two menu-driven computer programs which allow the shared use of data on these environments. The programs can produce stereographic plots of orientation data (great circles, poles, lineations). Frequently used statistical procedures like calculation of eigenvalues and eigenvectors, calculation of mean vector with concentration parameters and confidence cone can be easily performed. Fault data can be plotted in stereographic projection (Angelier and Hoeppener plots). Sorting of datasets into homogeneous subsets and rotation of tectonic data can be performed in interactive two-diagram windows. The paleostress tensor can be calculated from fault data sets using graphical (calculation of kinematic axes and right dihedra method) or mathematical methods (direct inversion or numerical dynamical analysis). The calculations can be checked in dimensionless Mohr diagrams and fluctuation histograms.

  14. Digital Tectonics

    DEFF Research Database (Denmark)

    Christiansen, Karl; Borup, Ruben; Søndergaard, Asbjørn

    2014-01-01

    Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated.......Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated....

  15. Piecewise delamination of Moroccan lithosphere from beneath the Atlas Mountains

    Science.gov (United States)

    Bezada, M. J.; Humphreys, E. D.; Davila, J. M.; Carbonell, R.; Harnafi, M.; Palomeras, I.; Levander, A.

    2014-04-01

    The elevation of the intracontinental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco. Our imaging resolves the location and shape of lithospheric cavities and of delaminated lithosphere ˜400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle sourced from regional upwellings in northern Africa or the Canary Islands enhanced the instability of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, which we infer to be the site of the most recent delamination. The Atlas Mountains of Morocco stand as an example of large-scale lithospheric loss in a mildly contractional orogen.

  16. Dinosaur tectonics

    DEFF Research Database (Denmark)

    Graversen, Ole; Milàn, Jesper; B. Loope, David

    2007-01-01

    A dinosaur trackway in the Middle Jurassic eolian Entrada Sandstone of southern Utah, USA, exposes three undertracks that we have modeled as isolated tectonic regimes showing the development of fold-thrust ramp systems induced by the dinosaur's feet. The faulted and folded sequence is comparable...... to crustal scale tectonics associated with plate tectonics and foreland fold-thrust belts. A structural analysis of the dinosaur tracks shows the timing and direction of the forces exercised on the substrate by the animal's foot during the stride. Based on the structural analysis, we establish a scenario...... the back. As the body accelerated, the foot was forced backward. The rotated disc was forced backward along a detachment fault that was bounded by lateral ramps. The interramp segment matches the width of the dinosaur's foot which created an imbricate fan thrust system that extended to the far end...

  17. Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany)

    Science.gov (United States)

    Nivière, B.; Bruestle, A.; Bertrand, G.; Carretier, S.; Behrmann, J.; Gourry, J.-C.

    2008-03-01

    The Upper Rhine Graben has two Plio-Quaternary depocentres usually interpreted as resulting from tectonic reactivation. The southern basin, near Freiburg im Breisgau (Germany), contains up to 250 m of sediments. Beneath the younger alluvial deposits related to the current drainage system, a former river network deeply entrenched in the substratum reveals a very low regional base level of early Pleistocene age. The offset of channels at faults allows us to infer a Pleistocene reactivation of the syn-rift fault pattern and the estimation of slip rates. Maximum vertical movements along the faults have not exceeded 0.1 mm/yr since the middle Pleistocene. Current activity is concentrated along the westernmost faults. Morphologic markers indicate late Pleistocene reactivation of the Rhine River fault, and geophysical prospecting suggests a near-surface offset of young sedimentary deposits. The size of the fault segments potentially reactivated suggests that earthquakes with magnitude larger than Mw=6.3 could be expected in the area with a return interval of about 8000 years. Extrapolated to the duration of the Plio-Pleistocene, the strain rate estimates reveal that the tectonic forcing may account for only one-third to one-half of the whole thickness of the Plio-Pleistocene sediments of the basin fill. Thus other processes must be invoked to understand the growth of the Plio-Pleistocene basin. Especially the piracy of the Rhine River to the north during the early Pleistocene could explain these effects.

  18. Estimates of elastic plate thicknesses beneath large volcanos on Venus

    Science.gov (United States)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1992-01-01

    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  19. Geomorphology, tectonics, and exploration

    Science.gov (United States)

    Sabins, F. F., Jr.

    1985-01-01

    Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?

  20. Study of the metamorphic belts and tectonics; Henseitai kenkyu to tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Hokkaido University, Sapporo (Japan)

    1997-10-25

    Study of metamorphic belts and tectonics is introduced. Minerals supposedly originating in the transitional zone and the lower mantle, that is, inclusions in diamond in kimberlite, are deemed to carry information about the depth level of 670km and lower. The place of origin of peridotite, Alpe Arami of Switzerland, is again estimated at a level of 300km or deeper. In the tectonic cross section in this region, the oceanic crust is bent and folded, and such a structure enables the supposition that fragments off the transitional zone may be carried upward to the ground surface. This region is now being limelighted, with plume tectonics enjoying popularity. The split of Pangaea is related with the ascent of plume. In the eastern part of Australia, there are alkali rocks attributable to the plume that was supposedly active at the end of the Proterozoic. Zircon U-Pb dating by SHRIMP offers a new approach to the tectonics of metamorphic rocks, and is reinforcing the position of metamorphic petrology relative to the study of collision and split of continents. 64 refs., 10 figs.

  1. Tectonic geomorphology and volcano-tectonic interaction in the eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA

    Directory of Open Access Journals (Sweden)

    Engielle Mae Raot-raot Paguican

    2016-07-01

    Full Text Available The eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA, is an extensively faulted volcanic corridor between the Cascade Range and Modoc Plateau. The east-west extending region is in the transition zone between the convergence and subduction of the Gorda Plate underneath the North American Plate; north-south shortening within the Klamath Mountain region; and transcurrent movement in the Walker Lane. We describe the geomorphological and tectonic features, their alignment and distribution, in order to understand the tectonic geomorphology and volcano-tectonic relationships. One outcome of the work is a more refined morpho-structural description that will affect future hazard assessment in the area.A database of volcanic centers and structures was created from interpretations of topographic models generated from satellite images. Volcanic centers in the region were classified by morphological type into cones, sub-cones, shields and massifs. A second classification by height separated the bigger and smaller edifices and revealed an evolutionary trend. Poisson Nearest Neighbor analysis shows that bigger volcanoes are spatially dispersed while smaller ones are clustered. Using volcano centroid locations, about 90 lineaments consisting of at least three centers within 6km of one another were found, revealing that preferential north-northwest directed pathways control the transport of magma from the source to the surface, consistent with the strikes of the major fault systems. Most of the volcano crater openings are perpendicular to the maximum horizontal stress, expected for extensional environments with dominant normal regional faults. These results imply that the extension of the Hat Creek Graben region and impingement of the Walker Lane is accommodated mostly by extensional faults and partly by the intrusions that formed the volcanoes. Early in the history of a volcano or volcano cluster, melt produced at depth in the

  2. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    Science.gov (United States)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  3. Applicability of dinoflagellate cyst stratigraphy to the analyses of passive and active tectonic settings

    NARCIS (Netherlands)

    Wilpshaar, M.

    1995-01-01

    The notion that fluctuating tectonic stress patterns within or between continental plates directly influence the development of a given sedimentary basin is a well-established concept in geotectonics. In recent years it has become increasingly understood that notably the phase of relative

  4. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    's continental drift theory was later disproved, it was one of the first times that the idea of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. In the early... of the structure of the atom was to physical sciences and the theory of evolution was to the life sciences. Tectonics is the study of the forces within the Earth that give rise to continents, ocean basins, mountain ranges, earthquake belts and other large-scale...

  5. Connection between tectonic stresses and well fracturing data

    Energy Technology Data Exchange (ETDEWEB)

    Scheidegger, A E [Imperial Oil Res. Lab., Calgary, CA

    1961-01-01

    Theoretical considerations of hydraulic well fracturing normally utilize a model in which the borehole is assumed to be a cylinder of infinite length. This leads to treatment of the induced stress state in two dimensions. The two-dimensional model is obviously an oversimplification. Therefore, a three-dimensional model is proposed in which the well pressure is assumed to be equivalent to a spherical pressure center. The bottom hole pressure during fracturing is determined by 4 variables; i.e., the 3 principal geological stresses and the rock strength. The response to fracturing is determined primarily by the prevailing stress state and to a lesser degree by the rock strength. The fracture condition is formulated and the model is used in the calculation of geological stresses from well data.

  6. Towards a Tectonic Approach

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Kirkegaard, Poul Henning; Mortensen, Sophie Bondgaard

    2015-01-01

    through this transformation is inevitably a tectonic question. By analyzing three historical examples, Adolf Loos’ Villa Moller, Le Corbusier’s Unité d’Habitation, and Frank Lloyd Wright’s Johnson Wax Administration Building, chosen for their tectonic ability to exploit the technical ‘principle’ defining...

  7. On to what extent stresses resulting from the earth's surface trigger earthquakes

    Science.gov (United States)

    Klose, C. D.

    2009-12-01

    The debate on static versus dynamic earthquake triggering mainly concentrates on endogenous crustal forces, including fault-fault interactions or seismic wave transients of remote earthquakes. Incomprehensibly, earthquake triggering due to surface processes, however, still receives little scientific attention. This presentation continues a discussion on the hypothesis of how “tiny” stresses stemming from the earth's surface can trigger major earthquakes, such as for example, China's M7.9 Wenchuan earthquake of May 2008. This seismic event is thought to be triggered by up to 1.1 billion metric tons of water (~130m) that accumulated in the Minjiang River Valley at the eastern margin of the Longmen Shan. Specifically, the water level rose by ~80m (static), with additional seasonal water level changes of ~50m (dynamic). Two and a half years prior to mainshock, static and dynamic Coulomb failure stresses were induced on the nearby Beichuan thrust fault system at <17km depth. Triggering stresses were equivalent to levels of daily tides and perturbed a fault area measuring 416+/-96km^2. The mainshock ruptured after 2.5 years when only the static stressing regime was predominant and the transient stressing (seasonal water level) was infinitesimal small. The short triggering delay of about 2 years suggests that the Beichuan fault might have been near the end of its seismic cycle, which may also confirm what previous geological findings have indicated. This presentation shows on to what extend the static and 1-year periodic triggering stress perturbations a) accounted for equivalent tectonic loading, given a 4-10kyr earthquake cycle and b) altered the background seismicity beneath the valley, i.e., daily event rate and earthquake size distribution.

  8. Tectonic controlled submarine slidings and dewatering structures

    Science.gov (United States)

    Yamamoto, Y.; Hirono, T.; Takahashi, M.

    2003-04-01

    dewatering under shear stress regime by using X-ray CT and X-ray microscope shows similar arrays of dewatering paths. Water escapes through the foliation which might be a tension fracture caused by direct shear strain. The foliation has vertical trends to the applied shear stress and has high angle dippings with approximately 65 to 75 degrees to the direct shear plane. These field-based study and experiment indicate that well regulated flame structures and convolute laminations were formed by dewatering or mud liquidization by which water escapes through the tension fractures associated with shear stress corresponding to the paleo-slope instability. These structures are very important because we can identify easily the paleo-slope directions, direction of synsedimentary shear and also macro-scopic geologic constraints on tectonics around a study area.

  9. Tectonic forward modelling of positive inversion structures

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, C. [Leibniz Univ. Hannover (Germany). Inst. fuer Geologie; Schmidt, C. [Landesamt fuer Bergbau, Energie und Geologie (LBEG), Hannover (Germany)

    2013-08-01

    Positive tectonic inversion structures are common features that were recognized in many deformed sedimentary basins (Lowell, 1995). They are characterized by a two phase fault evolution, where initial normal faulting was followed by reverse faulting along the same fault, accompanied by the development of hanging wall deformation. Analysing the evolution of such inversion structures is important for understanding the tectonics of sedimentary basins and the formation of hydrocarbon traps. We used a 2D tectonic forward modelling approach to simulate the stepwise structural evolution of inversion structures in cross-section. The modelling was performed with the software FaultFold Forward v. 6, which is based on trishear kinematics (Zehnder and Allmendinger, 2000). Key aspect of the study was to derive the controlling factors for the geometry of inversion structures. The simulation results show, that the trishear approach is able to reproduce the geometry of tectonic inversion structures in a realistic way. This implies that inversion structures are simply fault-related folds that initiated as extensional fault-propagation folds, which were subsequently transformed into compressional fault-propagation folds when the stress field changed. The hanging wall deformation is a consequence of the decrease in slip towards the tip line of the fault. Trishear angle and propagation-to-slip ratio are the key controlling factors for the geometry of the fault-related deformation. We tested trishear angles in the range of 30 - 60 and propagation-to-slip ratios between 1 and 2 in increments of 0.1. Small trishear angles and low propagation-to-slip ratios produced tight folds, whereas large trishear angles and high propagation-to-slip ratios led to more open folds with concentric shapes. This has a direct effect on the size and geometry of potential hydrocarbon traps. The 2D simulations can be extended to a pseudo 3D approach, where a set of parallel cross-sections is used to describe

  10. Density contrast across the Moho beneath the Indian shield: Implications for isostasy

    Science.gov (United States)

    Paul, Himangshu; Mangalampally, Ravi Kumar; Tiwari, Virendra Mani; Singh, Arun; Chadha, Rajender Kumar; Davuluri, Srinagesh

    2018-04-01

    Knowledge of isostasy provides insights into how excess (or deficit) of mass on and within the lithosphere is maintained over different time scales, and also helps decipher the vertical dynamics. In continental regions, isostasy is primarily manifested as a crustal root, the extent of which is defined by the lithospheric strength and the density contrast at the Moho. In this study, we briefly review the methodology for extracting the density contrast across the Moho using the amplitudes of the P-to-s converted and free-surface reverberating phases in a receiver function (RF). We test the efficacy of this technique by applying it on synthetic and real data from 10 broadband seismic stations sited on diverse tectonic provinces in the Indian shield. We determine the density contrast after parameterizing the shear-wave velocity structure beneath the stations using the nearest neighbourhood algorithm. We find considerable variation in the density contrast across the Moho beneath the stations (0.4-0.65 gm/cc). This is explained in terms of isostatic compensation, incorporating the existing estimates of lithospheric strength (Te). Crustal roots computed using the estimated Te and the deduced density contrast substantiate the crustal thickness values inferred through RF analysis, and vice versa. This illustrates isostasy as a combination of variation in density contrast and Te. The density contrasts and crustal thicknesses inferred from RF analysis explain well the isostatic compensation mechanism in different regions. However, unusually large density contrasts (∼0.6 gm/cc) corresponding to elevated regions are intriguing and warrant further investigations. Our observation of varied density contrasts at the Moho in a Precambrian continental setting is interesting and raises a question about the existence of such situations in other parts of the world.

  11. Transient magmatic control in a tectonic domain: the central Aeolian volcanic arc (South Italy)

    KAUST Repository

    Ruch, Joel; Vezzoli, Luigina; Di Lorenzo, Riccardo; De Rosa, Rosanna; Acocella, Valerio

    2015-01-01

    The background stress field in volcanic areas may be overprinted by that produced by transient magmatic intrusions, generating local faulting. These events are rarely monitored and thus not fully understood, generating debate about the role of magma and tectonics in any geodynamic setting. Here we carried out a field structural analysis on the NNW-SSE strike-slip system of the central Aeolian Arc, Italy (Lipari and Vulcano islands) with ages constrained by stratigraphy to better capture the tectonic and magmatic evolution at the local and regional scales. We consider both islands as a single magmatic system and define 5 principal stratigraphic units based on magmatic and tectonic activity. We collected >500 measurements of faults, extension fractures and dikes at 40 sites, mostly NNE-SSW to NNW-SSE oriented with a dominant NS orientation. These structures are governed quasi exclusively by pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral slip, the latter being mostly related to old deposits (>50 ka). We further reconstructed the evolution of the Vulcano-Lipari system during the last ~20 ka and find that it consists of an overall half-graben-like structure, with faults with predominant eastward dips. Field evidence suggests that faulting occurs often in temporal and spatial relation with magmatic events, suggesting that most of the observable deformation derived from transient magmatic activity, rather than from steady regional tectonics. To explain the dominant magmatic and episodic extension in a tectonic dominant domain, we propose a model where the regional N-S trending maximum horizontal stress, responsible for strike-slip activity, locally rotates to vertical in response to transient pressurization of the magmatic system and magma rise below Lipari and Vulcano. This has possibly generated the propagation of N-S trending dikes in the past 1 ka along a 10 km long by 1 km wide crustal corridor, with important

  12. Transient magmatic control in a tectonic domain: the central Aeolian volcanic arc (South Italy)

    KAUST Repository

    Ruch, Joel

    2015-04-01

    The background stress field in volcanic areas may be overprinted by that produced by transient magmatic intrusions, generating local faulting. These events are rarely monitored and thus not fully understood, generating debate about the role of magma and tectonics in any geodynamic setting. Here we carried out a field structural analysis on the NNW-SSE strike-slip system of the central Aeolian Arc, Italy (Lipari and Vulcano islands) with ages constrained by stratigraphy to better capture the tectonic and magmatic evolution at the local and regional scales. We consider both islands as a single magmatic system and define 5 principal stratigraphic units based on magmatic and tectonic activity. We collected >500 measurements of faults, extension fractures and dikes at 40 sites, mostly NNE-SSW to NNW-SSE oriented with a dominant NS orientation. These structures are governed quasi exclusively by pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral slip, the latter being mostly related to old deposits (>50 ka). We further reconstructed the evolution of the Vulcano-Lipari system during the last ~20 ka and find that it consists of an overall half-graben-like structure, with faults with predominant eastward dips. Field evidence suggests that faulting occurs often in temporal and spatial relation with magmatic events, suggesting that most of the observable deformation derived from transient magmatic activity, rather than from steady regional tectonics. To explain the dominant magmatic and episodic extension in a tectonic dominant domain, we propose a model where the regional N-S trending maximum horizontal stress, responsible for strike-slip activity, locally rotates to vertical in response to transient pressurization of the magmatic system and magma rise below Lipari and Vulcano. This has possibly generated the propagation of N-S trending dikes in the past 1 ka along a 10 km long by 1 km wide crustal corridor, with important

  13. Scenarios constructed for the effects of tectonic processes on the potential nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Barr, G.E.; Borns, D.J.; Fridrich, C.

    1996-10-01

    A comprehensive collection of scenarios is presented that connect initiating tectonic events with radionuclide releases by logical and physically possible combinations or sequences of features, events and processes. The initiating tectonic events include both discrete faulting and distributed rock deformation developed through the repository and adjacent to it, as well as earthquake-induced ground motion and changes in tectonic stress at the site. The effects of these tectonic events include impacts on the engineered-barrier system, such as container rupture and failure of repository tunnels. These effects also include a wide range of hydrologic effects such as changes in pathways and flow rates in the unsaturated and saturated zones, changes in the water-table configuration, and in the development of perched-water systems. These scenarios are intended go guide performance-assessment analyses and to assist principal investigators in how essential field, laboratory, and calculational studies are used. This suite of scenarios will help ensure that all important aspects of the system disturbance related to a tectonic scenario are captured in numerical analyses. It also provides a record of all options considered by project analysts to provide documentation required for licensing agreement. The final portion of this report discusses issues remaining to be addressed with respect to tectonic activity. 105 refs

  14. P-wave velocity structure beneath the northern Antarctic Peninsula

    Science.gov (United States)

    Park, Y.; Kim, K.; Jin, Y.

    2010-12-01

    We have imaged tomographically the tree-dimensional velocity structure of the upper mantle beneath the northern Antarctic Peninsula using teleseismic P waves. The data came from the seven land stations of the Seismic Experiment in Patagonia and Antarctica (SEPA) campaigned during 1997-1999, a permanent IRIS/GSN station (PMSA), and 3 seismic stations installed at scientific bases, Esperanza (ESPZ), Jubany (JUBA), and King Sejong (KSJ), in South Shetland Islands. All of the seismic stations are located in coast area, and the signal to noise ratios (SNR) are very low. The P-wave model was inverted from 95 earthquakes resulting in 347 ray paths with P- and PKP-wave arrivals. The inverted model shows a strong low velocity anmaly beneath the Bransfield Strait, and a fast anomaly beneath the South Shetland Islands. The low velocity anomaly beneath the Bransfield might be due to a back arc extension, and the fast velocity anomaly beneath the South Shetland Islands could indicates the cold subducted slab.

  15. Tectonics control over instability of volcanic edifices in transtensional tectonic regimes

    Science.gov (United States)

    Norini, G.; Capra, L.; Lagmay, A. M. F.; Manea, M.; Groppelli, G.

    2009-04-01

    We present the results of analogue modeling designed to investigate the interactions between volcanic edifices and transtensional basement faulting. Three sets of experiments were run to account for three examples of stratovolcanoes in active transtensive tectonics regimes, the Nevado de Toluca and Jocotitlan volcanoes in Mexico, and the Mayon volcano in the Philippines. All these volcanoes show different behavior and relationship among volcanism, instability of the volcanic edifice, and basement tectonics. Field geological and structural data gave the necessary constrains to the models. The modeling apparatus consisted of a sand cone on a sheared basal layer. Injections of vegetable oil were used to model the rising of magma inside the deformed analogue cones. Set 1: In the case of a volcano directly on top of a basal transtensive shear producing a narrow graben, as observed on the Nevado de Toluca volcano, the analogue models reveal a strong control of the basement faulting on the magma migration path and the volcano instability. Small lateral collapses are directed parallel to the basal shear and affect a limited sector of the cone. Set 2: If the graben generated by transtensive tectonics is bigger in respect to the volcanic edifice and the volcano sits on one boundary fault, as in the case of Mayon volcano, the combined normal and transcurrent movements of the analogue basement fault generate a sigmoidal structure in the sand cone, inducing major sector collapses directed at approx 45° relative to the basement shear toward the downthrown block. Set 3: For volcanoes located near major transtensive faults, as the Jocotitlan volcano, analogue modelling shows an important control of the regional tectonics on the geometry of the fractures and migration paths of magma inside the cone. These structures render unstable the flanks of the volcano and promote sector collapses perpendicular to the basement shear and directed toward the graben formed by the transtensive

  16. Tectonic and volcanic history of Rhea as inferred from studies of scarps, ridges, troughs, and other lineaments

    International Nuclear Information System (INIS)

    Thomas, P.G.

    1988-01-01

    The 13 geomorphic feature types presently defined through the analysis of landforms on Rhea are with only one exception interpretable as of tectonic or volcanic-tectonic origin. The troughs, grabens, grooves, pit chains, scarps, and other lineaments are purely extensional in nature, while the ridges are volcanic features formed in an extensional stress field; this extension was followed by a global compression era generating megaridges and megascarps. The extensional landforms seem to form a global grid pattern that is directionally similar to the theoretically projected pattern of a tidally distorted planet. 17 references

  17. The Ecology of Urban Tectonics

    DEFF Research Database (Denmark)

    Beim, Anne; Hvejsel, Marie Frier

    2016-01-01

    This paper is related to previous research by the authors that examine the phenomenon of tectonics as architectural design theory and method. These studies have shown that the notion of tectonics at large is associated with exclusive architecture, and that, as a profession architects have...... to develop methods for applying tectonic knowledge extracted from significant existing examples for developing future practical methods (Frampton 2002: 81). The specific intention of this paper is to push the understanding of tectonics further, into the scale of the urban context and thereby to discuss...... using Hansen’s work as a case study. (Beim & Madsen (ed.) 2014) Methodologically this has been done by applying the notion of ‘urban tectonics’ inspired by the work of Eduard F. Sekler, as a critical lens. (Sekler 1964, Sekler 1965) Through this lens we study how Hansen was able to treat culture...

  18. Initial Results from the New Stress Map of Texas Project

    Science.gov (United States)

    Lund Snee, J. E.; Zoback, M. D.

    2015-12-01

    Modern techniques for characterizing tectonic stress orientation and relative magnitude have been successfully used for more than 35 years. Nevertheless, large areas of North America lack high spatial resolution maps of stress orientation, magnitude, and faulting regime. In Texas, for example, data are foundational elements of attempts to characterize tectonic driving forces, understand hazards associated with induced seismicity, and optimize production of oil, gas, and geothermal resources. This year, we launched the Texas Stress Map project to characterize tectonic stress patterns at higher spatial resolution across Texas and nearby areas. Following a successful effort just completed in Oklahoma, we will evaluate borehole breakouts, drilling-induced tensile fractures, shear wave anisotropy, and earthquake data. The principal data source will be FMI (fullbore formation microimager), UBI (ultrasonic borehole imager), cross-dipole sonic, density, and caliper logs provided by private industry. Earthquake moment tensor solutions from the U.S. Geological Survey, Saint Louis University and other sources will also be used. Our initial focus is on the Permian Basin and Barnett Shale petroleum plays due to the availability of data, but we will expand our analysis across the state as the project progresses. In addition, we hope to eventually apply the higher spatial resolution data coverage to understanding tectonic and geodynamic characteristics of the southwestern United States and northeastern Mexico. Here we present early results from our work to constrain stress orientations and faulting regime in and near Texas, and we also provide a roadmap for the ongoing research.

  19. Reconstructing the tectonic history of Fennoscandia from its margins: The past 100 million years

    International Nuclear Information System (INIS)

    Muir Wood, R.

    1995-12-01

    In the absence of onland late Mesozoic and Cenozoic geological formations the tectonic history of the Baltic Shield over the past 100 million years can most readily be reconstructed from the thick sedimentary basins that surround Fennoscandia on three sides. Tectonic activity around Fennoscandia through this period has been diverse but can be divided into four main periods: a. pre North Atlantic spreading ridge (100-60 Ma) when transpressional deformation on the southern margins of Fennoscandia and transtensional activity to the west was associated with a NNE-SSW maximum compressive stress direction; b. the creation of the spreading ridge (60-45 Ma) when there was rifting along the western margin; c. the re-arrangement of spreading axes (45-25 Ma) when there was a radial compression around Fennoscandia, and d. the re-emergence of the Iceland hot-spot (25-0 Ma) when the stress-field has come to accord with ridge or plume 'push'. Since 60 Ma the Alpine plate boundary has had little influence on Fennoscandia. The highest levels of deformation on the margins of Fennoscandia were achieved around 85 Ma, 60-55 Ma, with strain-rates around 10 -9 /year. Within the Baltic Shield long term strain rates have been around 10 -1 1/year, with little evidence for evidence for significant deformations passing into the shield from the margins. Fennoscandian Border Zone activity, which was prominent from 90-60 Ma, was largely abandoned following the creation of the Norwegian Sea spreading ridge, and with the exception of the Lofoten margin, there is subsequently very little evidence for deformation passing into Fennoscandia. Renewal of modest compressional deformation in the Voering Basin suggest that the 'Current Tectonic Regime' is of Quaternary age although the orientation of the major stress axis has remained approximately consistent since around 10 Ma. The past pattern of changes suggest that in the geological near-future variations are to be anticipated in the magnitude rather

  20. Reconstructing the tectonic history of Fennoscandia from its margins: The past 100 million years

    Energy Technology Data Exchange (ETDEWEB)

    Muir Wood, R [EQE International Ltd (United Kingdom)

    1995-12-01

    In the absence of onland late Mesozoic and Cenozoic geological formations the tectonic history of the Baltic Shield over the past 100 million years can be reconstructed from the thick sedimentary basins that surround Fennoscandia on three sides. Tectonic activity around Fennoscandia through this period has been diverse but can be divided into four main periods: a. pre North Atlantic spreading ridge (100-60 Ma) when transpressional deformation on the southern margins of Fennoscandia and transtensional activity to the west was associated with a NNE-SSW maximum compressive stress direction; b. the creation of the spreading ridge (60-45 Ma) when there was rifting along the western margin; c. the re-arrangement of spreading axes (45-25 Ma) when there was a radial compression around Fennoscandia, and d. the re-emergence of the Iceland hot-spot (25-0 Ma) when the stress-field has come to accord with ridge or plume `push`. Since 60 Ma the Alpine plate boundary has had little influence on Fennoscandia. The highest levels of deformation on the margins of Fennoscandia were achieved around 85 Ma, 60-55 Ma, with strain-rates around 10{sup -9}/year. Within the Baltic Shield long term strain rates have been around 10{sup -1}1/year, with little evidence for significant deformations passing into the shield from the margins. Fennoscandian Border Zone activity, which was prominent from 90-60 Ma, was largely abandoned following the creation of the Norwegian Sea spreading ridge, and with the exception of the Lofoten margin, there is subsequently little evidence for deformation passing into Fennoscandia. Renewal of modest compressional deformation in the Voering Basin suggest that the `Current Tectonic Regime` is of Quaternary age although the orientation of the major stress axis has remained consistent since around 10 Ma. The past pattern of changes suggest that in the geological near-future variations are to be anticipated in the magnitude rather than the orientation of stresses.

  1. Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran

    KAUST Repository

    Landgraf, A.

    2013-09-01

    The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a “simple” to a “composite” state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.

  2. Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran

    KAUST Repository

    Landgraf, A.; Zielke, Olaf; Arrowsmith, J. R.; Ballato, P.; Strecker, M. R.; Schildgen, T. F.; Friedrich, A. M.; Tabatabaei, S. H.

    2013-01-01

    The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a “simple” to a “composite” state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.

  3. Crustal and Upper Mantle Velocity Structure beneath Northwestern South America revealed by the CARMArray

    Science.gov (United States)

    Miao, W.; Cornthwaite, J.; Levander, A.; Niu, F.; Schmitz, M.; Dionicio, V.; Nader-Nieto, M. F.

    2017-12-01

    The Caribbean plate (CAR) is a fragment of the Farallon plate heavily modified by igneous processes that created the Caribbean large igneous province (CLIP) between 110 and 80 Ma.The CAR collided with and initiated subduction beneath northwestern South America plate (SA) at about 60-55 Ma as a narrow flat-slab subduction zone with an accretionary prism offshore, but no volcanic arc. Large scale regional tomography suggests that 1000 km of the CAR has been subducted (Van Benthem et al., 2013, JGR). The flat slab has caused Laramide-style basement uplifts of the Merida Andes, Sierra de la Perija, and Santa Marta ranges with elevations >5 km. The details of subduction geometry of the CAR plate beneath northeastern Colombia and northwestern Venezuela are complicated and remain unclear. The region of slab steepening lies below the triangular Maracaibo block (Bezada et al, 2010, JGR), bounded by major strike slip faults and currently escaping to the north over the CAR. Geodetic data suggests the this region has the potential for a magnitude 8+ earthquake (Bilham and Mencin, 2013, AGU Abstract). To better understand the subduction geometry, we deployed 65 broadband (BB) stations across northeastern Colombia and northwestern Venezuela in April of 2016. The 65 stations interweave with the 32 existing Colombian and Venezuelan BB stations, forming a 2-D array (hereafter referred to as CARMArray) with a station spacing of 35-100 km that covers an area of 600 km by 400 km extending from the Caribbean coast in Colombia to the interior plains of Venezuela. With data from the first year of operation, we have measured the Rayleigh wave phase velocities and Z/H ratios in the period range of 8-40 s using both ambient noise and earthquake data recorded by the CARMArray. We also generated Ps receiver functions from waveform data of teleseismic events recorded by the array. We then jointly inverted the three datasets to construct a 3-D S-wave velocity model beneath the array. We will

  4. Temporal changes in stress preceding the 2004-2008 eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Lehto, H.L.; Roman, D.C.; Moran, S.C.

    2010-01-01

    The 2004-2008 eruption of Mount St. Helens (MSH), Washington, was preceded by a swarm of shallow volcano-tectonic earthquakes (VTs) that began on September 23, 2004. We calculated locations and fault-plane solutions (FPS) for shallow VTs recorded during a background period (January 1999 to July 2004) and during the early vent-clearing phase (September 23 to 29, 2004) of the 2004-2008 eruption. FPS show normal and strike-slip faulting during the background period and on September 23; strike-slip and reverse faulting on September 24; and a mixture of strike-slip, reverse, and normal faulting on September 25-29. The orientation of ??1 beneath MSH, as estimated from stress tensor inversions, was found to be sub-horizontal for all periods and oriented NE-SW during the background period, NW-SE on September 24, and NE-SW on September 25-29. We suggest that the ephemeral ~90?? change in ??1 orientation was due to intrusion and inflation of a NE-SW-oriented dike in the shallow crust prior to the eruption onset. ?? 2010 Elsevier B.V.

  5. Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling

    DEFF Research Database (Denmark)

    Khan, A.; Zunino, Andrea; Deschamps, F.

    2013-01-01

    Here we discuss the nature of velocity heterogeneities seen in seismic tomography images of Earth's mantle whose origins and relation to thermochemical variations are yet to be understood. We illustrate this by inverting fundamental-mode and higher-order surface-wave phase velocities for radial....../Fe and Mg/Si values relative to surrounding mantle. Correlated herewith are thermal variations that closely follow surface tectonics. We also observe a strong contribution to lateral variations in structure and topography across the “410 km” seismic discontinuity from thermochemically induced phase......-wave tomography models with other regional models is encouraging. Radial anisotropy is strongest at 150/200 km depth beneath oceanic/continental areas, respectively, and appears weak and homogeneous below. Finally, geoid anomalies are computed for a subset of sampled model and compared to observations....

  6. The tectonic plates are moving!

    CERN Document Server

    Livermore, Roy

    2018-01-01

    Written in a witty and informal style, this book explains modern plate tectonics in a non-technical manner, showing not only how it accounts for phenomena such as great earthquakes, tsunamis, and volcanic eruptions, but also how it controls conditions at the Earth’s surface, including global geography and climate, making it suitable for life. The book presents the advances that have been made since the establishment of plate tectonics in the 1960s, highlighting, on the fiftieth anniversary of the theory, the contributions of a small number of scientists who have never been widely recognized for their discoveries. Beginning with the publication of a short article in Nature by Vine and Matthews, the book traces the development of plate tectonics through two generations of the theory. First-generation plate tectonics covers the exciting scientific revolution of the 1960s, its heroes, and its villains. The second generation includes the rapid expansions in sonar, satellite, and seismic technologies during the 1...

  7. Three-Dimensional Seismic Tomography Beneath Tangshan, China

    Science.gov (United States)

    Chang, J. C.; Keranen, K. M.; Keller, G.; Qu, G.; Harder, S. H.

    2010-12-01

    The 1976 earthquake in Tangshan, China ranks as the deadliest earthquake in modern times. Though the exact number of casualties remains disputed, it is widely accepted that at least a quarter of a million people died. The high casualty level is surprising since the earthquake was not unusually large (Mw 7.5). Amplification of ground motion by thick sediment fill in the basin underlying the city is a likely cause for the extensive destruction. However, the extent of the unconsolidated material and the broader subsurface geology beneath Tangshan and surrounding areas needs to be better-constrained to properly model predicted ground motion and mitigate the hazards of future earthquakes. From a broader perspective, the Tangshan area is at the northern edge of the Bohai Bay basin province that has experienced both Cenozoic extension and related strike-slip tectonism. In January 2010, our group conducted a three-dimensional seismic investigation centered on the city of Tangshan. In an area of approximately 40 km x 60 km, we deployed 500 REFTEK 125A (“Texan”) recorders at 500 m spacing. A number of different sources, 20 altogether, were recorded during the two-day listening window, which include our large shots, smaller explosive shots from a co-spatial reflection survey, blasts from nearby quarries, and a small (Mearthquake. Our preliminary analyses suggest that the sediment fill is, on average, less than 1 km thick. Sediment fill is thinner to the north, as evidenced by outcropping bedrock, and thickens to the south. Sediment seismic velocity is about 1.8 km/s. Upper crustal velocities are 5.2 to 6.6 km/s, and increase to 7.0 km/s at mid-crustal depths.

  8. Theory of denudation tectonics and practice in prospecting. Pt.1

    International Nuclear Information System (INIS)

    Tong Hangshou

    1994-01-01

    The theory of denudation tectonics--earth science frontiers--upsurged in the 1980's of the century and a great mass fervor of its research has spread to the uranium geology. For the studying and applying the theory of denudation tectonics and on the invitation of the Editorial Department of 'Uranium Geology', this paper has been written and will be published in several issues with the following contents accordingly: (1) New progress in the research on denudation tectonics in China; (2) The evolution of denudation tectonics' concept and layer zoning of the Earth; (3) The fundamental implication of the denudation tectonics and relevant tectonic terminology; (4) Discussion on dynamics of the formation of denudation tectonics; (5) Definition and discrimination of denudation tectonics; (6) Research method of denudation tectonics; (7) Ore control theory of denudation tectonics and prospecting; (8) Outlook on the research of denudation tectonics

  9. Tectonic Mechanism for the Mid-Cretaceous - Early Paleogene Intraplate Magmatism from the Gulf of Mexico to Northwestern Canada

    Science.gov (United States)

    Liu, Y.; Murphy, M. A.; Snow, J. E.; van Wijk, J.; Cannon, J. M.; Parsons, C.

    2017-12-01

    Tectonic mechanisms have remained controversial for a number of intraplate igneous suites of mid-Cretaceous - early Paleogene age across North America. They span the northern Gulf of Mexico (GoM), through Arkansas and Kansas in the US, to Saskatchewan and Northwestern Territories in Canada, resembling a belt that is located 1000+ km inboard from, and aligned sub-parallel to, the western margin of North America. The northern GoM magmatism is characterized by lamproites, carbonatites, nephelinites, with other alkaline rocks, whereas the rest igneous provinces are dominated by kimberlites. Their geochemical signatures, in general, point to a sub-lithospheric mantle origin. Hypotheses that explain the tectonic origin of these magmatic rocks include: (1) hotspots and mantle plumes, (2) edge-driven convection, (3) lithospheric reactivation, and (4) low-angle subduction. Evaluation based on our integration of published geological and geophysical data shows that contradictions exist in each model between observations and predictions. To explain this plate-scale phenomenon, we propose that the Farallon slab may have stagnated within or around the mantle transition zone during the Early Cretaceous, with its leading edge reaching ca. 1600 km inland beneath the North American plate. Dehydration and decarbonation of the slab produces sporadic, dense, low-degree partial melts at the mantle transition zone depths. As the slab descends into the lower mantle, Rayleigh-Taylor instabilities are induced at slab edges, causing passive upwelling that brings alkali-rich carbonate silicate melts to the base of the overriding plate. Subsequently, the North American lithosphere with varying thicknesses, discontinuities, and compositions interacts with the rising partial melts, generating a spectrum of igneous rocks. Fragments of the once-stagnated slab may still be detectable in the lower mantle beneath eastern US in seismic tomography models. This study highlights a profound plate

  10. Using the 2011 Mw9.0 Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure

    Science.gov (United States)

    Toda, Shinji; Lin, Jian; Stein, Ross S.

    2011-01-01

    The 11 March 2011 Tohoku Earthquake provides an unprecedented test of the extent to which Coulomb stress transfer governs the triggering of aftershocks. During 11-31 March, there were 177 aftershocks with focal mechanisms, and so the Coulomb stress change imparted by the rupture can be resolved on the aftershock nodal planes to learn whether they were brought closer to failure. Numerous source models for the mainshock have been inverted from seismic, geodetic, and tsunami observations. Here, we show that, among six tested source models, there is a mean 47% gain in positively-stressed aftershock mechanisms over that for the background (1997-10 March 2011) earthquakes, which serve as the control group. An aftershock fault friction of 0.4 is found to fit the data better than 0.0 or 0.8, and among all the tested models, Wei and Sladen (2011) produced the largest gain, 63%. We also calculate that at least 5 of the seven large, exotic, or remote aftershocks were brought ≥0.3 bars closer to failure. With these tests as confirmation, we calculate that large sections of the Japan trench megathrust, the outer trench slope normal faults, the Kanto fragment beneath Tokyo, and the Itoigawa-Shizuoka Tectonic Line, were also brought ≥0.3 bars closer to failure.

  11. Earth's youngest exposed granite and its tectonic implications: the 10-0.8 Ma Kurobegawa Granite.

    Science.gov (United States)

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years.

  12. Tectonic vocabulary and materialization: Discourse on the future of tectonic architectural research in the Nordic countries

    DEFF Research Database (Denmark)

    Beim, Anne; Bundgaard, Charlotte; Hvejsel, Marie Frier

    2015-01-01

    By referring to the fundamental question of how we unite aesthetics and technology – tectonic theory is necessarily a focal point in the development of the architectural discipline. However, a critical reconsideration of the role of tectonic theory seems necessary when facing the present everyday....... On the occasion of the Second International Conference on Structures & Architecture held in July 2013 in Portugal the authors organized a special session entitled From open structures to the cladding of control bringing together researchers from the Nordic countries to discuss this issue. Likewise the initiative...... to establish a Nordic Network for Research and Teaching in Tectonics is currently forming. This paper seeks to jointly reflect upon these initiatives in order to bring them further, with the intention to clad a discourse on the future of tectonic architectural research that addresses the conditions of everyday...

  13. Formwork tectonics

    DEFF Research Database (Denmark)

    Manelius, Anne-Mette

    2012-01-01

    På engelsk: Based on the concept of techné and framed in architectural studies of tectonics and an experimental practice of making, this paper investigates the multiple technological roles of textiles in fabric formwork for concrete in four analytical studies of experimental data of the author......’s doctoral dissertation Fabric Formwork for Concrete – Investigations into Formwork Tectonics and Stereogeneity in Architectural Constructions. In the paper only textile roles are discussed but it is suggested that a study of multiple technological roles of key formwork elements will emphasize...... their potential as ‘common denominators’ between architects, engineers and builders. Findings include textile used for the ‘textilization’ of concrete and the ‘concretization’ of textiles as two opposite starting points in fabric-forming. Recent research into thin-shell construction using fabric formwork is shown...

  14. Spiral tectonics

    Science.gov (United States)

    Hassan Asadiyan, Mohammad

    2014-05-01

    Spiral Tectonics (ST) is a new window to global tectonics introduced as alternative model for Plate Tectonics (PT). ST based upon Dahw(rolling) and Tahw(spreading) dynamics. Analogues to electric and magnetic components in the electromagnetic theory we could consider Dahw and Tahw as components of geodynamics, when one component increases the other decreases and vice versa. They are changed to each other during geological history. D-component represents continental crust and T-component represents oceanic crust. D and T are two arm of spiral-cell. T-arm 180 degree lags behind D-arm so named Retard-arm with respect to D or Forward-arm. It seems primary cell injected several billions years ago from Earth's center therefore the Earth's core was built up first then mantel and finally the crust was build up. Crust building initiate from Arabia (Mecca). As the universe extended gravitation wave swirled the earth fractaly along cycloid path from big to small scale. In global scale (order-0) ST collect continents in one side and abandoned Pacific Ocean in the other side. Recent researches also show two mantels upwelling in opposite side of the Earth: one under Africa (tectonic pose) and the other under Pacific Ocean (tectonic tail). In higher order (order-1) ST build up Africa in one side and S.America in the other side therefore left Atlantic Ocean meandered in between. In order-n e.g. Khoor Musa and Bandar-Deylam bay are seen meandered easterly in the Iranian part but Khoor Abdullah and Kuwait bay meandered westerly in the Arabian part, they are distributed symmetrically with respect to axis of Persian Gulf(PG), these two are fractal components of easterly Caspian-wing and westerly Black Sea-wing which split up from Anatoly. Caspian Sea and Black Sea make two legs of Y-like structure, this shape completely fitted with GPS-velocity map which start from PG and split up in the Catastrophic Point(Anatoly). We could consider PG as remnants of Ancient Ocean which spent up

  15. Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering

    Science.gov (United States)

    Servali, A.; Long, M. D.; Benoit, M.

    2017-12-01

    The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.

  16. Towards a Tectonic Sustainable Building Practice

    DEFF Research Database (Denmark)

    Bech-Danielsen, Claus

    and environmental problems? The objective of the project is to analyse and develop the tectonic practice based on case studies, in relation to: • Cultural anchoring and identity creation • Building culture and creative processes • Sustainability, lifecycle and resource management The research project is divided...... into a main project and various subprojects, respectively, two levels that mutually feed each other.The main project, which constitutes the general level, seeks to identify a coherent strategy towards a new tectonically sustainable building culture.The subprojects look at partial issues and go into specific......Can a tectonic building practice be strengthened through new creation processes, where resources are used more purposefully, deliberately and systematically? Which new measures are necessary if we are to develop a strong tectonic building practice with due consideration for increasing climate...

  17. Depth variations of P-wave azimuthal anisotropy beneath East Asia

    Science.gov (United States)

    Wei, W.; Zhao, D.; Xu, J.

    2017-12-01

    We present a new P-wave anisotropic tomographic model beneath East Asia by inverting a total of 1,488,531 P wave arrival-time data recorded by the regional seismic networks in East Asia and temporary seismic arrays deployed on the Tibetan Plateau. Our results provide important new insights into the subducting Indian, Pacific and Philippine Sea plates and mantle dynamics in East Asia. Our tomographic images show that the northern limit of the subducting Indian plate has reached the Jinsha River suture in eastern Tibet. A striking variation of P-wave azimuthal anisotropy is revealed in the Indian lithosphere: the fast velocity direction (FVD) is NE-SW beneath the Indian continent, whereas the FVD is arc parallel beneath the Himalaya and Tibetan Plateau, which may reflect re-orientation of minerals due to lithospheric extension, in response to the India-Eurasia collision. The FVD in the subducting Philippine Sea plate beneath the Ryukyu arc is NE-SW(trench parallel), which is consistent with the spreading direction of the West Philippine Basin during its initial opening stage, suggesting that it may reflect the fossil anisotropy. A circular pattern of FVDs is revealed around the Philippine Sea slab beneath SE China. We suggest that it reflects asthenospheric strain caused by toroidal mantle flow around the edge of the subducting slab. We find a striking variation of the FVD with depth in the subducting Pacific slab beneath the Northeast Japan arc. It may be caused by slab dehydration that changed elastic properties of the slab with depth. The FVD in the mantle wedge beneath the Northeast Japan and Ryukyu arcs is trench normal, which reflects subduction-induced convection. Beneath the Kuril and Izu-Bonin arcs where oblique subduction occurs, the FVD in the mantle wedge is nearly normal to the moving direction of the downgoing Pacific plate, suggesting that the oblique subduction together with the complex slab morphology have disturbed the mantle flow.

  18. Tectonic and metallogenic model for northeast Asia

    Science.gov (United States)

    Parfenov, Leonid M.; Nokleberg, Warren J.; Berzin, Nikolai A.; Badarch, Gombosuren; Dril, Sergy I.; Gerel, Ochir; Goryachev, Nikolai A.; Khanchuk, Alexander I.; Kuz'min, Mikhail I.; Prokopiev, Andrei V.; Ratkin, Vladimir V.; Rodionov, Sergey M.; Scotese, Christopher R.; Shpikerman, Vladimir I.; Timofeev, Vladimir F.; Tomurtogoo, Onongin; Yan, Hongquan; Nokleberg, Warren J.

    2011-01-01

    This document describes the digital files in this report that contains a tectonic and metallogenic model for Northeast Asia. The report also contains background materials. This tectonic and metallogenic model and other materials on this report are derived from (1) an extensive USGS Professional Paper, 1765, on the metallogenesis and tectonics of Northeast Asia that is available on the Internet at http://pubs.usgs.gov/pp/1765/; and (2) the Russian Far East parts of an extensive USGS Professional Paper, 1697, on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera that is available on the Internet at http://pubs.usgs.gov/pp/pp1697/. The major purpose of the tectonic and metallogenic model is to provide, in movie format, a colorful summary of the complex geology, tectonics, and metallogenesis of the region. To accomplish this goal four steps were taken: (1) 13 time-stage diagrams, from the late Neoproterozoic (850 Ma) through the present (0 Ma), were adapted, generalized, and transformed into color static time-stage diagrams; (2) the 13 time-stage diagrams were placed in a computer morphing program to produce the model; (3) the model was examined and each diagram was successively adapted to preceding and subsequent diagrams to match the size and surface expression of major geologic units; and (4) the final version of the model was produced in successive iterations of steps 2 and 3. The tectonic and metallogenic model and associated materials in this report are derived from a project on the major mineral deposits, metallogenesis, and tectonics of the Northeast Asia and from a preceding project on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. Both projects provide critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major

  19. Subduction and Plate Edge Tectonics in the Southern Caribbean

    Science.gov (United States)

    Levander, A.; Schmitz, M.; Niu, F.; Bezada, M. J.; Miller, M. S.; Masy, J.; Ave Lallemant, H. G.; Pindell, J. L.; Bolivar Working Group

    2013-05-01

    The southern Caribbean plate boundary consists of a subduction zone at at either end of a complex strike-slip fault system: In the east at the Lesser Antilles subduction zone, the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west in the Colombia basin, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean plates subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system that has been cut off at the Bocono fault, the southeastern boundary fault of the Maracaibo block. A variety of seismic probes identify subduction features at either end of the system (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Growdon et al., 2009; Huang et al., 2010; Masy et al, 2011). The El Pilar system forms at the southeastern corner of the Antilles subduction zone with the Atlantic plate tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. Tearing the Atlantic plate from the rest of South America appears to cause further lithospheric instability continentward. In northwestern South America the Caribbean plate very likely also tears, as its southernmost element subducts at shallow angles under northernmost Colombia but then rapidly descends to the transition zone under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab controls the tectonics of the Neogene Merida Andes, Perija, and Santa Marta ranges. The nonsubducting part of the Caribbean plate also underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the edge of the underthrust

  20. ON TECTONIC PROBLEMS OF THE OKINAWA TROUGH

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Okinawa Trough is a very active tectonic zone at the margin of the Northwest Pacific and is typical of back-arc rifting at the young stage of tectonic evolution. Many scientists from Japan, China, Germany, France, the U.S.A. and Russia have done a lot of geologic and geophysical investigations there. It is well known that the Okinawa Trough is an active back-arc rift with extremely high heat flow, very strong hydrothermal circulation, strong volcanic and magmatic activity, frequent earthquakes, rapid subsidence and rifting, well-developed fault and central graben. But up to now, there are still some important tectonic problems about the Okinawa Trough that require clarification on some aspects such as the type of its crust, its forming time, its tectonic evolution, the distribution of its central grabens, the relationship between its high heat flow and tectonic activity. Based on the data obtained from seismic survey, geomagnetic and gravity measurements, submarine sampling and heat flow measurements in the last 15 years, the author discusses the following tectonic problems about the Okinawa Trough: (1) If the Okinawa Trough develops oceanic crust or not. (2) Is the South Okinawa Trough tectonically more active than the North Okinawa Trough with shallower water and few investigation data on it. (3) The formation time of the Okinawa Trough and its tectonic evolution. The Okinawa Trough has a very thin continental crust. Up to now, there is no evidence of oceanic crust in the Okinawa Trough. The North, Middle and South Okinawa Trough are all very strongly active areas. From 6 Ma B.P., the Okinawa Trough began to form. Since 2 Ma, the Okinawa Trough has been very active.

  1. Three-dimensional Crustal Structure beneath the Tibetan Plateau Revealed by Multi-scale Gravity Analysis

    Science.gov (United States)

    Xu, C.; Luo, Z.; Sun, R.; Li, Q.

    2017-12-01

    The Tibetan Plateau, the largest and highest plateau on Earth, was uplifted, shorten and thicken by the collision and continuous convergence of the Indian and Eurasian plates since 50 million years ago, the Eocene epoch. Fine three-dimensional crustal structure of the Tibetan Plateau is helpful in understanding the tectonic development. At present, the ordinary method used for revealing crustal structure is seismic method, which is inhibited by poor seismic station coverage, especially in the central and western plateau primarily due to the rugged terrain. Fortunately, with the implementation of satellite gravity missions, gravity field models have demonstrated unprecedented global-scale accuracy and spatial resolution, which can subsequently be employed to study the crustal structure of the entire Tibetan Plateau. This study inverts three-dimensional crustal density and Moho topography of the Tibetan Plateau from gravity data using multi-scale gravity analysis. The inverted results are in agreement with those provided by the previous works. Besides, they can reveal rich tectonic development of the Tibetan Plateau: (1) The low-density channel flow can be observed from the inverted crustal density; (2) The Moho depth in the west is deeper than that in the east, and the deepest Moho, which is approximately 77 km, is located beneath the western Qiangtang Block; (3) The Moho fold, the directions of which are in agreement with the results of surface movement velocities estimated from Global Positioning System, exists clearly on the Moho topography.This study is supported by the National Natural Science Foundation of China (Grant No. 41504015), the China Postdoctoral Science Foundation (Grant No. 2015M572146), and the Surveying and Mapping Basic Research Programme of the National Administration of Surveying, Mapping and Geoinformation (Grant No. 15-01-08).

  2. Construction of the seismic wave-speed model by adjoint tomography beneath the Japanese metropolitan area

    Science.gov (United States)

    Miyoshi, Takayuki

    2017-04-01

    The Japanese metropolitan area has high risks of earthquakes and volcanoes associated with convergent tectonic plates. It is important to clarify detail three-dimensional structure for understanding tectonics and predicting strong motion. Classical tomographic studies based on ray theory have revealed seismotectonics and volcanic tectonics in the region, however it is unknown whether their models reproduce observed seismograms. In the present study, we construct new seismic wave-speed model by using waveform inversion. Adjoint tomography and the spectral element method (SEM) were used in the inversion (e.g. Tape et al. 2009; Peter et al. 2011). We used broadband seismograms obtained at NIED F-net stations for 140 earthquakes occurred beneath the Kanto district. We selected four frequency bands between 5 and 30 sec and used from the seismograms of longer period bands for the inversion. Tomographic iteration was conducted until obtaining the minimized misfit between data and synthetics. Our SEM model has 16 million grid points that covers the metropolitan area of the Kanto district. The model parameters were the Vp and Vs of the grid points, and density and attenuation were updated to new values depending on new Vs in each iteration. The initial model was assumed the tomographic model (Matsubara and Obara 2011) based on ray theory. The source parameters were basically used from F-net catalog, while the centroid times were inferred from comparison between data and synthetics. We simulated the forward and adjoint wavefields of each event and obtained Vp and Vs misfit kernels from their interaction. Large computation was conducted on K computer, RIKEN. We obtained final model (m16) after 16 iterations in the present study. For the waveform improvement, it is clearly shown that m16 is better than the initial model, and the seismograms especially improved in the frequency bands of longer than 8 sec and changed better for seismograms of the events occurred at deeper than a

  3. Earth's youngest exposed granite and its tectonic implications: the 10–0.8 Ma Kurobegawa Granite

    Science.gov (United States)

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years. PMID:23419636

  4. Magma-Tectonic Interactions along the Central America Volcanic Arc: Insights from the August 1999 Magmatic and Tectonic Event at Cerro Negro, Nicaragua

    Science.gov (United States)

    La Femina, P.; Connor, C.; Strauch, W.

    2002-12-01

    Volcanic vent alignments form parallel to the direction of maximum horizontal stress, accommodating extensional strain via dike injection. Roughly east-west extension within the Central America Volcanic Arc is accommodated along north-northwest-trending basaltic vent alignments. In Nicaragua, these alignments are located in a northwest-trending zone of dextral shear, with shear accommodated along northeast trending bookshelf faults. The recent eruption of Cerro Negro volcano, Nicaragua and Marabios Range seismic swarm revealed the interaction of these fault systems. A low energy (VEI 1), small volume (0.001 km3 DRE) eruption of highly crystalline basalt occurred at Cerro Negro volcano, Nicaragua, August 5-7, 1999. This eruption followed three tectonic earthquakes (each Mw 5.2) in the vicinity of Cerro Negro hours before the onset of eruptive activity. The temporal and spatial pattern of microseismicity and focal mechanisms of the Mw 5.2 earthquakes suggests the activation of northeast-trending faults northwest and southeast of Cerro Negro within the Marabios Range. The eruption was confined to three new vents formed on the southern flank of Cerro Negro along a preexisting north-northwest trending alignment; the El Hoyo alignment of cinder cones, maars and explosion craters. Surface ruptures formed > 1 km south and southeast of the new vents suggest dike injection. Numerical simulations of conduit flow illustrate that the observed effusion rates (up to 65 ms-1) and fountain heights (50-300 m) can be achieved by eruption of magma with little or no excess fluid pressure, in response to tectonic strain. These observations and models suggest that 1999 Cerro Negro activity is an excellent example of tectonically induced small-volume eruptions in an arc setting.

  5. ON TECTONIC PROBLEMS OF THE OKINAWA TROUGH

    Institute of Scientific and Technical Information of China (English)

    李乃胜

    2001-01-01

    The Okinawa Trough is a very active tectonic zone at the margin of the Northwest Pacific and is typical of back-arc rifting at the young stage of tectonic evolution. Many scientists from Japan,China, Germany, France, the U. S.A. and Russia have done a lot of geologic and geophysical investigations there. It is well known that the Okinawa Trough is an active back-arc rift with extremely high heat flow, very strong hydrothermal circulation, strong volcanic and magmatic activity, frequent earthquakes,rapid subsidence and rifting, well-developed fault and central graben. But up to now, there are still some important tectonic problems about the Okinawa Trough that require clarification on some aspects such as the type of its crust, its forming time, its tectonic evolution, the distribution of its central grabens, the relationship between its high heat flow and tectonic activity. Based on the data obtained from seismic sur-vey, geomagnetic and gravity measurements, submarine sampling and heat flow measurements in the last 15 years, the author discusses the following tectonic problems about the Okinawa Trough: (1) If the Okinawa Trough develops oceanic crust or not. (2) Is the South Okinawa Trough tectonically more active than the North Okinawa Trough with shallower water and few investigation data on it. (3) The formation time of the Okinawa Trough and its tectonic evolution. The Okinawa Trough has a very thin continental crust. Up to now, there is no evidence of oceanic crust in the Okinawa Trough. The North, Middle and South Okinawa Trough are all very strongly active areas. From 6 Ma B.P. , the Okinawa Trough began to form. Since 2 Ma, the Okinawa Trough has been very active.

  6. Link between concentrations of sediment flux and deep crustal processes beneath the European Alps.

    Science.gov (United States)

    Garefalakis, Philippos; Schlunegger, Fritz

    2018-01-09

    Large sediment fluxes from mountain belts have the potential to cause megafans to prograde into the neighbouring sedimentary basins. These mechanisms have been documented based from numerical modelling and stratigraphic records. However, little attention has been focused on inferring temporal changes in the concentrations of supplied sediment from coarse-grained deposits. Here, we extract changes of this variable in the field from a Late Oligocene, c. 4 km-thick suite of fluvial conglomerates situated in the North Alpine foreland basin, which evolved in response to the tectonic and erosional history of the Alps. We measure a decrease in channel depths from >2 m to 20 cm from the base to the top of the suite. These constraints are used to calculate an increase in fan surface slopes from 1.0° based on the Shields criteria for sediment entrainment. We combine slope and bulk grain size data with the Bagnold equation for sediment transport to infer higher concentrations of the supplied sediment. We use these shifts to propose a change towards faster erosion and a steeper landscape in the Alpine hinterland, driven by mantle-scale processes beneath the Alps.

  7. Bed-Deformation Experiments Beneath a Temperate Glacier

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2002-12-01

    Fast flow of glaciers and genesis of glacial landforms are commonly attributed to shear deformation of subglacial sediment. Although models of this process abound, data gathered subglacially on the kinematics and mechanics of such deformation are difficult to interpret. Major difficulties stem from the necessity of either measuring deformation near glacier margins, where conditions may be abnormal, or at the bottoms of boreholes, where the scope of instrumentation is limited, drilling disturbs sediment, and local boundary conditions are poorly known. A different approach is possible at the Svartisen Subglacial Laboratory, where tunnels melted in the ice provide temporary human access to the bed of Engabreen, a temperate outlet glacier of the Svartisen Ice Cap in Norway. A trough (2 m x 1.5 m x 0.5 m deep) was blasted in the rock bed, where the glacier is 220 m thick and sliding at 0.1-0.2 m/d. During two spring field seasons, this trough was filled with 2.5 tons of simulated till. Instruments in the till recorded shear (tiltmeters), volume change, total normal stress, and pore-water pressure as ice moved across the till surface. Pore pressure was brought to near the total normal stress by feeding water to the base of the till with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. Results illustrate some fundamental aspects of bed deformation. Permanent shear deformation requires low effective normal stress and hence high pore-water pressure, owing to the frictional nature of till. Shear strain generally increases upward in the bed toward the glacier sole, consistent with previous measurements beneath thinner ice at glacier margins. At low effective normal stresses, ice sometimes decouples from underlying till. Overall, bed deformation accounts for 10-35 % of basal motion, although this range excludes shear in the uppermost 0.05 m of till where shear was not measured. Pump tests with durations ranging from seconds to hours highlight the need

  8. Active stress along the ne external margin of the Apennines: the Ferrara arc, northern Italy

    Science.gov (United States)

    Montone, Paola; Mariucci, M. Teresa

    1999-09-01

    We have analysed borehole breakout data from 12 deep wells in order to constrain the direction of the minimum and maximum horizontal stress in a part of the Po Plain, northern Italy, characterised by a ˜N-S prevailing compressional stress regime, and in order to shed light on the regional state of stress and on the correlation between the active stress field and the orientation of tectonic structures. The results have been compared with seismological data relating to 1988-1995 crustal seismicity (2.5Reggio Emilia ( Ms=5.1) events. Plio-Pleistocene mesostructural data are also described in order to better define the present-day stress field and to understand the active tectonic processes in particular stress provinces. The borehole breakout analysis, in accordance with the seismicity and mesostructural data, shows the presence of a predominant compression area, characterised by approximately N-S maximum horizontal stress, along the outer thrust of the Ferrara arc. Particularly, the breakout analysis indicates a minimum horizontal stress, N81W±22° relative to a total of eleven analysed wells, with 3746 m cumulative total length of breakout zones. Among these, nine wells are located in the same tectonic structure, consisting of an arc of asymmetric folds overthrust towards the NE. The breakout results for these wells are quite similar in terms of minimum horizontal stress direction (˜E-W oriented). The other two wells are located in the outside sector of the arc and one of them shows a different minimum horizontal stress direction, probably distinctive of another tectonic unit. On the basis of these new reliable stress indicators, the active compressive front in this area is located along the termination of the external northern Apenninic arc.

  9. A Comparison between Deep and Shallow Stress Fields in Korea Using Earthquake Focal Mechanism Inversions and Hydraulic Fracturing Stress Measurements

    Science.gov (United States)

    Lee, Rayeon; Chang, Chandong; Hong, Tae-kyung; Lee, Junhyung; Bae, Seong-Ho; Park, Eui-Seob; Park, Chan

    2016-04-01

    We are characterizing stress fields in Korea using two types of stress data: earthquake focal mechanism inversions (FMF) and hydraulic fracturing stress measurements (HF). The earthquake focal mechanism inversion data represent stress conditions at 2-20 km depths, whereas the hydraulic fracturing stress measurements, mostly conducted for geotechnical purposes, have been carried out at depths shallower than 1 km. We classified individual stress data based on the World Stress Map quality ranking scheme. A total of 20 FMF data were classified into A-B quality, possibly representing tectonic stress fields. A total of 83 HF data out of compiled 226 data were classified into B-C quality, which we use for shallow stress field characterization. The tectonic stress, revealed from the FMF data, is characterized by a remarkable consistency in its maximum stress (σ1) directions in and around Korea (N79±2° E), indicating a quite uniform deep stress field throughout. On the other hand, the shallow stress field, represented by HF data, exhibits local variations in σ1 directions, possibly due to effects of topography and geologic structures such as faults. Nonetheless, there is a general similarity in σ1 directions between deep and shallow stress fields. To investigate the shallow stress field statistically, we follow 'the mean orientation and wavelength analysis' suggested by Reiter et al. (2014). After the stress pattern analysis, the resulting stress points distribute sporadically over the country, not covering the entire region evenly. In the western part of Korea, the shallow σ1directions are generally uniform with their search radius reaching 100 km, where the average stress direction agrees well with those of the deep tectonic stress. We note two noticeable differences between shallow and deep stresses in the eastern part of Korea. First, the shallow σ1 orientations are markedly non-uniform in the southeastern part of Korea with their search radius less than 25 km

  10. Deformation in D″ Beneath North America From Anisotropy

    Science.gov (United States)

    Nowacki, A. J.; Wookey, J.; Kendall, J. M.

    2009-12-01

    The lowermost few hundred kilometres of the Earth's mantle—known as D″—form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a strong heterogeneity in seismic wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (VS) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. A phase change of MgSiO3-perovskite (pv) to a post-perovskite (ppv) structure at near-core-mantle boundary (CMB) conditions is a compelling mechanism to explain the seismic features of D″. An outstanding question is how this and other mineral phases may deform to produce anisotropy, with different mechanisms possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can potentially determine the other with observations of the resulting seismic anisotropy. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW>5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained—a single azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The

  11. Underground water stress release models

    Science.gov (United States)

    Li, Yong; Dang, Shenjun; Lü, Shaochuan

    2011-08-01

    The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We incorporate the information of the underground water level into the stress release models (SRM), and obtain the underground water stress release model (USRM). We apply USRM to the earthquakes occurred at Tangshan region. The analysis shows that the underground water stress release model outperforms both Poisson model and stress release model. Monte Carlo simulation shows that the simulated seismicity by USRM is very close to the real seismicity.

  12. Determining the stress field in active volcanoes using focal mechanisms

    Directory of Open Access Journals (Sweden)

    Bruno Massa

    2016-11-01

    Full Text Available Stress inversion of seismological datasets became an essential tool to retrieve the stress field of active tectonics and volcanic areas. In particular, in volcanic areas, it is able to put constrains on volcano-tectonics and in general in a better understanding of the volcano dynamics. During the last decades, a wide range of stress inversion techniques has been proposed, some of them specifically conceived to manage seismological datasets. A modern technique of stress inversion, the BRTM, has been applied to seismological datasets available at three different regions of active volcanism: Mt. Somma-Vesuvius (197 Fault Plane Solutions, FPSs, Campi Flegrei (217 FPSs and Long Valley Caldera (38,000 FPSs. The key role of stress inversion techniques in the analysis of the volcano dynamics has been critically discussed. A particular emphasis was devoted to performances of the BRTM applied to volcanic areas.

  13. Iapetus: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  14. Meso-cenozoic extensional tectonics and uranium metallogenesis in southeast China

    International Nuclear Information System (INIS)

    Chen Yuehui; Chen Zuyi; Cai Yuqi; Fu Jin; Feng Quanhong; Shi Zuhai

    1998-12-01

    Through a systematic study on Meso-Cenozoic extensional tectonics in Southeast China, the authors point out that there are three major types of extensional tectonics such as taphrogenic thermo-upwelling, and gravitational extensional tectonics. The characteristics of structural forms, combination patterns, movement style and syn-tectonic magmatism of different extensional tectonics are studied. Then according to the known isotope age data of uranium mineralizations in the area, the relations between the process of extensional tectonics and regional uranium metallogenesis, as well as the corresponding relations in space and time between extensional tectonics and uranium deposits of different types are analyzed. In conclusion, the authors suggest that the uranium mineralizations of different types in Southeast China are characterized by an united ore-forming mechanism due to the apparent control of extensional tectonics to the regional uranium metallogenesis

  15. Everyday Tectonics?

    DEFF Research Database (Denmark)

    Beim, Anne; Hvejsel, Marie Frier

    2016-01-01

    Frascari and Kenneth Frampton (Harris & Berke 1997, Read 2000, Frascari 1984, Frampton 1995kilder). Whereas the focus upon everyday architecture seems to have lost its momentum too quickly, tectonic theory in architecture has been steadily growing as a field of research in architecture, especially related...

  16. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins.

    Science.gov (United States)

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Imaging pockets and conduits of low velocity material beneath the lithosphere of the Atlas Mountains of Morocco: links to volcanism and orogenesis

    Science.gov (United States)

    Miller, M. S.; Sun, D.; O'Driscoll, L.; Holt, A.; Butcher, A.; Becker, T. W.; Diaz Cusi, J.; Thomas, C.

    2014-12-01

    The Atlas Mountains of Morocco have unusually high topography, with no apparent deep crustal root, and regions of localized Cenozoic alkaline volcanism. Previous seismic imaging and geophysical studies have implied a hot mantle upwelling as the source of the volcanism and high elevation, but the existence and physical properties of such an upwelling are debated. Recent temporary deployments of over 100 broadband seismometers that extended across Morocco as part of the PICASSO, Morocco-Münster, and IberArray experiments along with select permanent stations have provided a dataset to image the detailed mantle and lithospheric structure beneath the Atlas. We present results from S receiver functions (SRF), shear wave splitting, waveform modeling, and geodynamic models that help constrain the tectonic evolution of the Atlas and the localized alkaline volcanism. The receiver functions show that the lithosphere is thin (~65 km) beneath the Atlas, but thickens (~105 km) over a very short length scale at the flanks of the mountains and near the Quaternary volcanoes. These changes in lithospheric thickness also correspond to dramatic decreases in delay times inferred from S and SKS splitting observations. SRFs also indicate a broad, low seismic velocity anomaly (~150 km) below the shallow lithosphere that extends along much of the Atlas and beneath the Anti-Atlas and correlates with the location of Pliocene-Quaternary magmatism. Waveform analysis from the linear array across the Middle and High Atlas constrains the position, shape, and physical characteristics of a localized, low velocity conduit that extends up from the uppermost mantle (~200 km). The shape, position and temperature of the imaged low velocity anomaly, offsets in the lithosphere-asthenosphere boundary, and correlation with mantle flow inferred from shear wave splitting suggest that the unusually high topography of the Atlas Mountains is due to active mantle support.

  18. Elastic and Anelastic Structure Beneath Eurasia

    National Research Council Canada - National Science Library

    Ekstrom, Goran

    1997-01-01

    The primary objective of this work has been to map the variations of elastic mantle properties beneath Eurasia over horizontal length scales of approximately 1000-1500 kilometers and vertial length...

  19. Probing Earth's State of Stress

    Science.gov (United States)

    Delorey, A. A.; Maceira, M.; Johnson, P. A.; Coblentz, D. D.

    2016-12-01

    The state of stress in the Earth's crust is a fundamental physical property that controls both engineered and natural systems. Engineered environments including those for hydrocarbon, geothermal energy, and mineral extraction, as well those for storage of wastewater, carbon dioxide, and nuclear fuel are as important as ever to our economy and environment. Yet, it is at spatial scales relevant to these activities where stress is least understood. Additionally, in engineered environments the rate of change in the stress field can be much higher than that of natural systems. In order to use subsurface resources more safely and effectively, we need to understand stress at the relevant temporal and spatial scales. We will present our latest results characterizing the state of stress in the Earth at scales relevant to engineered environments. Two important components of the state of stress are the orientation and magnitude of the stress tensor, and a measure of how close faults are to failure. The stress tensor at any point in a reservoir or repository has contributions from both far-field tectonic stress and local density heterogeneity. We jointly invert seismic (body and surface waves) and gravity data for a self-consistent model of elastic moduli and density and use the model to calculate the contribution of local heterogeneity to the total stress field. We then combine local and plate-scale contributions, using local indicators for calibration and ground-truth. In addition, we will present results from an analysis of the quantity and pattern of microseismicity as an indicator of critically stressed faults. Faults are triggered by transient stresses only when critically stressed (near failure). We show that tidal stresses can trigger earthquakes in both tectonic and reservoir environments and can reveal both stress and poroelastic conditions.

  20. Meso-Cenozoic tectonic evolution and uranium potential evaluations of basins in Beishan-Gansu corridor region

    International Nuclear Information System (INIS)

    Guo Qingyin; Chen Zuyi; Liu Hongxu; Yu Jinshui

    2006-01-01

    Beishan-Gansu Corridor region is located at the intersection of the plates of Tarim, North China, Kazakhstan, Siberia and Qaidam. During the Meso-Cenozoic, the region experienced movements of Indo-sinian, Yanshanian, Sichuanian, North China, Himalayan and Neotectonic, and over 20 medium-small size superimposed continental basins were formed. On the basis of analyzing the tectonic stress field, sediment-filling and structure-deformation; the general trending of tectonic evolution in the Meso-Cenozoic is summarized as three-time compressional uplifting and two-time extensional down-faulting. The different evolution of basins under the above mentioned setting can be divided into six stages according to characteristics of filled sediment. The sand bodies developed in down-faulted basins are favorable for uranium ore-formation as they are formed under humid paleoclimates, and rich in reducing matter. Therefore, the Lower-Middle Jurassic is selected as the main target horizon for sandstone-hosted uranium deposit, and the Lower Cretaceous as the minor one. Although the tectonic reactivation of the target horizon after its deposition was generally strong, the slopes formed in some basins could be favorable for the infiltration of uranium-and oxygen-bearing groundwater into sand bodies and form uranium deposits. According to the favorable sand bodies and tectonic reactivation, the northern parts of Chaoshui and Bayingobi basins are regarded as potential regions which are worthy of further exploration. (authors)

  1. The Stress-Strain State of Recent Structures in the Northeastern Sector of the Russian Arctic Region

    Science.gov (United States)

    Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.

    2018-03-01

    Complex research to determine the stress-strain state of the Earth's crust and the types of seismotectonic destruction for the northeastern sector of the Russian Arctic was conducted. The principles of regional ranking of neotectonic structures were developed according to the activity of geodynamic processes, and argumentation for their class differentiation is presented. The structural-tectonic position, the parameters of the deep structure, the system of active faults, and the tectonic stress fields, calculated on the basis of both tectonophysical analysis of discontinuous and folded late Cenozoic deformations and seismological data, were analyzed. This complex of investigations made it possible to determine the directions of the main axes of deformations of the stress-strain state of the Earth's crust and to reveal the regularity in the change of tectonic regimes.

  2. Seismic Discontinuities within the Crust and Mantle Beneath Indonesia as Inferred from P Receiver Functions

    Science.gov (United States)

    Woelbern, I.; Rumpker, G.

    2015-12-01

    Indonesia is situated at the southern margin of SE Asia, which comprises an assemblage of Gondwana-derived continental terranes, suture zones and volcanic arcs. The formation of SE Asia is believed to have started in Early Devonian. Its complex history involves the opening and closure of three distinct Tethys oceans, each accompanied by the rifting of continental fragments. We apply the receiver function technique to data of the temporary MERAMEX network operated in Central Java from May to October 2004 by the GeoForschungsZentrum Potsdam. The network consisted of 112 mobile stations with a spacing of about 10 km covering the full width of the island between the southern and northern coast lines. The tectonic history is reflected in a complex crustal structure of Central Java exhibiting strong topography of the Moho discontinuity related to different tectonic units. A discontinuity of negative impedance contrast is observed throughout the mid-crust interpreted as the top of a low-velocity layer which shows no depth correlation with the Moho interface. Converted phases generated at greater depth beneath Indonesia indicate the existence of multiple seismic discontinuities within the upper mantle and even below. The strongest signal originates from the base of the mantle transition zone, i.e. the 660 km discontinuity. The phase related to the 410 km discontinuity is less pronounced, but clearly identifiable as well. The derived thickness of the mantle-transition zone is in good agreement with the IASP91 velocity model. Additional phases are observed at roughly 33 s and 90 s relative to the P onset, corresponding to about 300 km and 920 km, respectively. A signal of reversed polarity indicates the top of a low velocity layer at about 370 km depth overlying the mantle transition zone.

  3. Soft Plate and Impact Tectonics

    Science.gov (United States)

    Tikoff, Basil

    In the field of tectonics, most of our ideas are published in journals. This is not true of other fields, such as history, in which ideas are primarily published in books. Within my own field of structural geology, I can recall only one book, Strain Fades by E. Hansen (Springer-Verlag, 1971), which presents a new idea in book form. However, even this book is more useful for its philosophical approach and particular methodology of determining directions of folding, than for its overarching idea.Enter Soft Plate and Impact Tectonics, a new book with an interesting hypothesis that has been informally discussed in the geoscience community: A fundamental tenet of plate tectonics is incorrect—namely, that the plates are rigid. This assertion is evident when looking at any mountain range, and is perhaps most clearly stated in Molnar [1988].

  4. Crustal structure beneath Eastern Greenland

    DEFF Research Database (Denmark)

    Reiche, Sönke; Thybo, H.; Kaip, G.

    2011-01-01

    is recorded by 350 Reftek Texan receivers for 10 equidistant shot points along the profile. We use forward ray tracing modelling to construct a two-dimensional velocity model from the observed travel times. These results show the first images of the subsurface velocity structure beneath the Greenland ice...

  5. Crustal stress evolution of last 700 years in North China and earthquake occurrences

    Science.gov (United States)

    Wan, Y.; Shen, Z.; Gan, W.; Li, T.; Zeng, Y.

    2004-12-01

    We simulate the evolution process of cumulative Coulomb failure stress change (Δ CFS) in North China since 1303, manifested by secular tectonic stress loading and occurrence of large earthquakes. Secular tectonic stress loading is averaged from crustal strain rates derived from GPS. Fault rupture parameters of historical earthquakes are estimated as follows: the earthquake rupture length and the amount of slip are derived based on their statistical relationships with the earthquake intensity distribution and magnitude, calibrated using parameters of instrumental measured contemporary earthquakes. The earthquake rake angle is derived based on geologically determined fault setting parameters and seismically estimated orientation of regional tectonic stresses. Assuming a layered visco-elastic medium, we calculate stress evolution resulted from secular tectonic loading and coseismic and postseismic deformation. 49 M¡Y6.5 earthquakes occurred in North China since 1303. Statistics shows that 39 out of the 48 subsequent events were triggered by positive Δ CFS, yielding a triggering rate of 81.3%. The triggering rate for M¡Y5 earthquakes after the 1976 Tangshan earthquake is 82.1%. The triggering rate is up to 90% if corrections are made for some aftershocks which were wrongly identified as occurred in stress shadow zones because of errors in parameter estimates of historical earthquakes. Our study shows very high correlation between positive Δ CFS and earthquake occurrences. Relatively high Δ CFS in North China at present time is concentrated around the Bohai Sea, the west segment of the Northern Qinling fault, western end of the Zhangjiakou-Bohai seismic zone, and the Taiyuan basin in Shanxi rift zone, suggesting relatively higher earthquake potential in these areas.

  6. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc:A review

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa

    2014-01-01

    Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources (input) and arc or back-arc magmas (output) in the Philippine Sea Plate-Ryukyu Arc-Okinawa Trough system (PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Oki-nawa Trough lavas:sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt (MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and sub-continental lithospheric mantle (SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the“seafloor spreading”process in the southwest segment,“rift propagation”process in the middle seg-ment, and

  7. Tectonic regimes in the Baltic Shield during the last 1200 Ma - A review

    International Nuclear Information System (INIS)

    Larsson, S.Aa.; Tullborg, E.L. and

    1993-11-01

    This report is a review about tectonic regimes in the Baltic (Fennoscandian) Shield from the Sveconorwegian (1.2 Ga ago) to the present. It also covers what is known about palaeostress during this period, which was chosen to include both orogenic and anorogenic events. A summery is given in table form, and a litho-stratigraphic map of Baltica including adjacent sea areas is enclosed. Plate movements are the ultimate reason for stress build-up in the crust. It is concluded that continental drift and rotation velocity have changed during the Earth's history. Periods of convergence and collision between continents are succeeded by periods of continental break-up. The different stress regimes, which prevailed during fracturing, produced specific fracture patterns on different scales. These fractures were reactivated during later favourable stress regimes. Within the next 100 000 years the stress situation of the Baltica crust will not change, except for the effects imposed by the growth and melting of an ice cover. 214 refs

  8. Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor

    Science.gov (United States)

    Shelly, David R.

    2009-01-01

    Earthquake predictability depends, in part, on the degree to which sudden slip is preceded by slow aseismic slip. Recently, observations of deep tremor have enabled inferences of deep slow slip even when detection by other means is not possible, but these data are limited to certain areas and mostly the last decade. The region near Parkfield, California, provides a unique convergence of several years of high-quality tremor data bracketing a moderate earthquake, the 2004 magnitude 6.0 event. Here, I present detailed observations of tectonic tremor from mid-2001 through 2008 that indicate deep fault slip both before and after the Parkfield earthquake that cannot be detected with surface geodetic instruments. While there is no obvious short-term precursor, I find unidirectional tremor migration accompanied by elevated tremor rates in the 3 months prior to the earthquake, which suggests accelerated creep on the fault ∼16 km beneath the eventual earthquake hypocenter.

  9. Geochronology and geochemistry of early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East: Petrogenesis and tectonic implications

    Science.gov (United States)

    Xu, Ting; Xu, Wen-Liang; Wang, Feng; Ge, Wen-Chun; Sorokin, A. A.

    2018-02-01

    This paper presents new geochronological and geochemical data for early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East, with the aim of elucidating the Paleozoic evolution and tectonic attributes of the Khanka Massif. New U-Pb zircon data indicate that early Paleozoic magmatism within the Khanka Massif can be subdivided into at least four stages: 502, 492, 462-445, and 430 Ma. The 502 Ma pyroxene diorites contain 58.28-59.64 wt% SiO2, 2.84-3.69 wt% MgO, and relatively high Cr and Ni contents. Negative εHf(t) values (- 1.8 to - 0.4), along with other geochemical data, indicate that the primary magma was derived from partial melting of mafic lower crust with the addition of mantle material. The 492 Ma syenogranites have high SiO2 and K2O contents, and show positive Eu anomalies, indicating the primary magma was generated by partial melting of lower crust at relatively low pressure. The 445 Ma Na-rich trondhjemites display high Sr/Y ratios and positive εHf(t) values (+ 1.8 to + 3.9), indicating the primary magma was generated by partial melting of thickened hydrous mafic crust. The 430 Ma granitoids have high SiO2 and K2O contents, zircon εHf(t) values of - 5.4 to + 5.8, and two-stage model ages of 1757-1045 Ma, suggesting the primary magma was produced by partial melting of heterogeneous Proterozoic lower crustal material. The geochemistry of these early Paleozoic intrusive assemblages indicates their formation in an active continental margin setting associated with the subduction of a paleo-oceanic plate beneath the Khanka Massif. The εHf(t) values show an increasingly negative trend with increasing latitude, revealing a lateral heterogeneity of the lower crust beneath the Khanka Massif. Regional comparisons of the magmatic events indicate that the Khanka Massif in the Russian Far East has a tectonic affinity to the Songnen-Zhangguangcai Range Massif rather than the adjacent Jiamusi Massif.

  10. Engaging students in geodesy: A quantitative InSAR module for undergraduate tectonics and geophysics classes

    Science.gov (United States)

    Taylor, H.; Charlevoix, D. J.; Pritchard, M. E.; Lohman, R. B.

    2013-12-01

    In the last several decades, advances in geodetic technology have allowed us to significantly expand our knowledge of processes acting on and beneath the Earth's surface. Many of these advances have come as a result of EarthScope, a community of scientists conducting multidisciplinary Earth science research utilizing freely accessible data from a variety of instruments. The geodetic component of EarthScope includes the acquisition of synthetic aperture radar (SAR) images, which are archived at the UNAVCO facility. Interferometric SAR complements the spatial and temporal coverage of GPS and allows monitoring of ground deformation in remote areas worldwide. However, because of the complex software required for processing, InSAR data are not readily accessible to most students. Even with these challenges, exposure at the undergraduate level is important for showing how geodesy can be applied in various areas of the geosciences and for promoting geodesy as a future career path. Here we present a module focused on exploring the tectonics of the western United States using InSAR data for use in undergraduate tectonics and geophysics classes. The module has two major objectives: address topics concerning tectonics in the western U.S. including Basin and Range extension, Yellowstone hotspot activity, and creep in southern California, and familiarize students with how imperfect real-world data can be manipulated and interpreted. Module questions promote critical thinking skills and data literacy by prompting students to use the information given to confront and question assumptions (e.g. 'Is there a consistency between seismic rates and permanent earthquake deformation? What other factors might need to be considered besides seismicity?'). The module consists of an introduction to the basics of InSAR and three student exercises, each focused on one of the topics listed above. Students analyze pre-processed InSAR data using MATLAB, or an Excel equivalent, and draw on GPS and

  11. Tectonic Vocabulary & Materialization

    DEFF Research Database (Denmark)

    Hvejsel, Marie Frier; Beim, Anne; Bundgaard, Charlotte

    2015-01-01

    . On the occasion of the Second International Conference on Structures & Architecture held in July 2013 in Portugal the authors organized a special session entitled From open structures to the cladding of control bringing together researchers from the Nordic countries to discuss this issue. Likewise the initiative......By referring to the fundamental question of how we unite aesthetics and technology – tectonic theory is necessarily a focal point in the development of the architectural discipline. However, a critical reconsideration of the role of tectonic theory seems necessary when facing the present everyday...... conditions of the built environment. We see an increasing number of square meters in ordinary housing, in commercial buildings and in public buildings such as hospitals and schools that are dealt with as performative structural frameworks rather than qualitative spaces for habitation and contemplation...

  12. A Review of Geophysical Constraints on the Deep Structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their Tectonic Implications

    Science.gov (United States)

    Molnar, P.

    1988-09-01

    The Tibetan Plateau, the Himalaya and the Karakoram are the most spectacular consequences of the collision of the Indian subcontinent with the rest of Eurasia in Cainozoic time. Accordingly, the deep structures beneath them provide constraints on both the tectonic history of the region and on the dynamic processes that have created these structures. The dispersion of seismic surface waves requires that the crust beneath Tibet be thick: nowhere less than 50 km, at least 65 km, in most areas, but less than 80 km in all areas that have been studied. Wide-angle reflections of P-waves from explosive sources in southern Tibet corroborate the existence of a thick crust but also imply the existence of marked lateral variations in that thickness, or in the velocity structure of the crust. Thus isostatic compensation occurs largely by an Airy-type mechanism, unlike that, for instance, of the Basin and Range Province of western North America where a hot upper mantle buoys up a thin crust. The P-wave and S-wave velocities in the uppermost mantle of most of Tibet are relatively high and typical of those of Precambrian shields and stable platforms: Vp = 8.1 km s-1 or higher, and Vs≈ 4.7 km s-1. Travel times and waveforms of S-waves passing through the uppermost mantle of much of Tibet, however, require a much lower average velocity in the uppermost mantle than that of the Indian, or other, shields. They indicate a thick low-velocity zone in the upper mantle beneath Tibet, reminiscent of tectonically active regions. These data rule out a shield structure beneath northern Tibet and suggest that if such a structure does underlie part of the plateau, it does so only beneath the southern part. Lateral variations in the upper-mantle structure of Tibet are apparent from differences in travel times of S-waves from earthquakes in different parts of Tibet, in the attenuation of short-period phases, Pn and Sn, that propagate through the uppermost mantle of Tibet, and in surface

  13. Magma storage in a strike-slip caldera.

    Science.gov (United States)

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E

    2016-07-22

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  14. The alternative concept of global tectonics

    Science.gov (United States)

    Anokhin, Vladimir; Kholmyansky, Mikhael

    2016-04-01

    The existing plate tectonic paradigm becomes more questionable in relation to the new facts of the Earth. The most complete to date criticism of plate tectonics provisions contained in the article (Pratt, 2000). Authors can recall a few facts that contradict the idea of long-range movement of plates: - The absence of convection cells in the mantle, detected by seismic tomography; - The presence of long-lived deep regmatic network in the crust, not distorted by the movement of plates; - The inability of linking the global geometry of the of mutual long-distance movement of plates. All this gives reason to believe that correct, or at least a satisfactory concept of global tectonics are not exist now. After overcoming the usual inertia of thinking the plate paradigm in the foreseeable future will replace by different concept, more relevant as the observable facts of the Earth and the well-known physical laws. The authors suggest that currently accumulated sufficient volume of facts and theoretical ideas for the synthesis of a new general hypothesis of the structure and dynamics of the Earth. Analysis of the existing tectonic theory suggests that most of their provisions are mutually compatible. Obviously, plume tectonics perfectly compatible with any of classical models. It contradicts the only plate tectonics (movement of hot spots in principle not linked either with each other or with the general picture of the plate movements, the presence of mantle convection and mantle streams are mutually exclusive, and so on). The probable transfer of the heated material down up within the Earth may occur in various forms, the simplest of which (and, consequently, the most probable) are presented plumes. The existence in the mantle numerous large volumes of decompressed substances (detected seismic tomography), can be correlated with the bodies of plumes at different stages of uplift. Plumes who raise to the bottom of the lithosphere, to spread out to the sides and form a set

  15. Magmatic versus tectonic influence in the Eolian arc: the case of Vulcano and Lipari islands revisited

    Science.gov (United States)

    Ruch, Joel; Di Lorenzo, Riccardo; Vezzoli, Luigina Maria; De Rosa, Rosanna; Acocella, Valerio; Catalano, Stefano; Romagnoli, Gino

    2014-05-01

    The prevalent influence of magma versus tectonics for the edification and the evolution of volcanic zones is matter of debate. Here we focus on Vulcano and Lipari, two active volcanic islands located in the central sector of the Eolian arc (North of Sicily). Both systems are influenced by regional tectonics and affected by historical magmatic events taking place along a NS oriented structure, connecting both islands. We revisit and implement previous structural studies performed during the 1980's considering several new geophysical, geochemical and geodynamical findings. Four extensive structural campaigns have been performed on both islands and along the shorelines in 2012-2013 covering about 80% of the possible accessible outcrops. We collected ~500 measurements (e.g. faults, fractures and dikes) at 40 sites. Overall, most of the observed structures are oriented N-S and NNW-SSE, confirming previous studies, however, almost all features are strikingly dominated by an EW-oriented extensive regime, which is a novelty. These findings are supported by kinematic indicators and suggest a predominant dip-slip component (pitch from 80 and 130°) with alternating left and right kinematics. Marginal faulting in most recent formations have been observed, suggesting that the deformation may occur preferentially during transient deformation related to periods of magmatic activity, instead of resulting from continuous regional tectonic processes. Overall, fault and dike planes are characterized by a dominant eastward immersion, suggesting an asymmetric graben-like structure of the entire area. This may be explained by the presence of a topographic gradient connecting both islands to the deep Gioia basin to the East, leading to a preferential ample gravitational collapse. Finally, we propose a model in which the stress field rotates northward. It transits from a pure right lateral strike-slip regime along the Tindari fault zone (tectonic-dominant) to an extensive regime

  16. Plain formation on Mercury: tectonic implications

    International Nuclear Information System (INIS)

    Thomas, P.

    1980-01-01

    Four major plain units, plus intermediates, are distinguished on Mercury. The chronologic relationships between these plains indicate that plains formation was a permanent process on Mercury. Their location and morphology seem to indicate a possible volcanic origin for these plains. The relationships between tectonism and volcanism seems to indicate the global contraction is not the only tectonic process on Mercury. (Auth.)

  17. Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake

    Science.gov (United States)

    Ryder, I.; Burgmann, R.; Pollitz, F.

    2011-01-01

    In 2001 November a magnitude 7.8 earthquake ruptured a 400 km long portion of the Kunlun fault, northeastern Tibet. In this study, we analyse over five years of post-seismic geodetic data and interpret the observed surface deformation in terms of stress relaxation in the thick Tibetan lower crust. We model GPS time-series (first year) and InSAR line of sight measurements (years two to five) and infer that the most likely mechanism of post-seismic stress relaxation is time-dependent distributed creep of viscoelastic material in the lower crust. Since a single relaxation time is not sufficient to model the observed deformation, viscous flow is modelled by a lower crustal Burgers rheology, which has two material relaxation times. The optimum model has a transient viscosity 9 ?? 1017 Pa s, steady-state viscosity 1 ?? 1019 Pa s and a ratio of long term to Maxwell shear modulus of 2:3. This model gives a good fit to GPS stations south of the Kunlun Fault, while displacements at stations north of the fault are over-predicted. We attribute this asymmetry in the GPS residual to lateral heterogeneity in rheological structure across the southern margin of the Qaidam Basin, with thinner crust/higher viscosities beneath the basin than beneath the Tibetan Plateau. Deep afterslip localized in a shear zone beneath the fault rupture gives a reasonable match to the observed InSAR data, but the slip model does not fit the earlier GPS data well. We conclude that while some localized afterslip likely occurred during the early post-seismic phase, the bulk of the observed deformation signal is due to viscous flow in the lower crust. To investigate regional variability in rheological structure, we also analyse post-seismic displacements following the 1997 Manyi earthquake that occurred 250 km west of the Kokoxili rupture. We find that viscoelastic properties are the same as for the Kokoxili area except for the transient viscosity, which is 5 ?? 1017 Pa s. The viscosities estimated for the

  18. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2016-07-01

    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  19. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    Energy Technology Data Exchange (ETDEWEB)

    Ry, Rexha Verdhora, E-mail: rexha.vry@gmail.com [Master Program of Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesha No.10, Bandung 40132 (Indonesia)

    2015-04-24

    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.

  20. Seismic structure of the western U.S. mantle and its relation to regional tectonic and magmatic activity

    Science.gov (United States)

    Schmandt, Brandon

    Vigorous convective activity in the western U.S. mantle has long been inferred from the region's widespread intra-plate crustal deformation, volcanism, and high elevations, but the specific form of convective activity and the degree and nature of lithospheric involvement have been strongly debated. I design a seismic travel-time tomography method and implement it with seismic data from the EarthScope Transportable Array and complementary arrays to constrain three-dimensional seismic structure beneath the western U.S. Tomographic images of variations in compressional velocity, shear velocity, and the ratio of shear to compressional velocity in the western U.S. mantle to a depth of 1000 km are produced. Using these results I investigate mantle physical properties, Cenozoic subduction history, and the influence of small-scale lithospheric convection on regional tectonic and magmatic activity, with particular focus on southern California and the Pacific Northwest. This dissertation includes previously published co-authored material. Chapter II presents a travel-time tomography method I designed and first implemented with data from southern California and the surrounding southwestern U.S. The resulting images provide a new level of constraint on upper mantle seismic anomalies beneath the Transverse Ranges, southern Great Valley, Salton Trough, and southwestern Nevada volcanic field. Chapter III presents tomographic images of the western U.S. mantle, identifies upper mantle volumes where partial melt is probable, and discusses implications of the apparently widespread occurrence of gravitational instabilities of continental lithsophere and the complex geometry and buoyancy of subducted ocean lithosphere imaged beneath the western U.S. In Chapter IV, tomography images are used in conjunction with geologic constraints on major transitions in crustal deformation and magmatism to construct a model for Pacific Northwest evolution since the Cretaceous. Accretion in the Pacific

  1. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    Science.gov (United States)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  2. Seismogenic Tectonic Environment of 1976 Great Tangshan Earthquake: Results from Dense Seismic Array Observations

    Science.gov (United States)

    LIU, Qiyuan; WANG, Jun; CHEN, Jiuhui; LI, Shuncheng; GUO, Biao

    On July 28, 1976, the great Tangshan earthquake that shook the whole world took place in the Tangshan area of the Hebei Province, China. A big incomprehensible question is why such a tremendous earthquake took place in the Paleo-craton area in North China? It would be worth considering whether a similar event will reoccur in the Tangshan region. In this study, using the receiver function inversion technique and teleseismic P waveform data recorded at the Capital Circle Seismic network and our movable seismic array, we investigated the 3-D S-wave velocity structure of the crust and upper mantle down to 60 km beneath Tangshan area. Our results manifest that (1) the media beneath the Tangshan block cut by active faults are very different from the adjacent area, and all of the active faults surrounding the Tangshan block was through the whole crust; (2) in the upper and middle crust, there exist obvious heterogeneous low-velocity media beneath the Tangshan earthquake region; the crust-mantle boundary has an obvious block uplift and, in comparison with both sides, the top anomalous uplift of the upper mantle beneath the Tangshan block reaches to 10 km, and the upper mantle beneath has an anomalous heterogeneous structure; (4) beneath the Tangshan earthquake region, there are probably massive intrusions derived from the upper mantle, which form the low-velocity body in the upper and middle crust. Because of our results having much higher resolution than previous results, some new features of the crust and upper mantle velocity structure could be shown in this study; (5) the locations of destructive earthquakes are not random and are related closely to their deep structure of the crust and upper mantle. This provides a possibility of correctly estimating the location of destructive earthquakes. On the basis of our results, we discuss the dynamic genesis of the Tangshan earthquake. We consider that the main dynamic source for the Tangshan earthquake is the vertical

  3. Radon emanation in tectonically active areas

    International Nuclear Information System (INIS)

    King, C.Y.

    1980-01-01

    Subsurface radon emanation has been continuously monitored for up to three years by the Track Etch method in shallow dry holes at more than 60 sites along several tectonic faults in central California and at 9 sites near the Kilauea volcano in Hawaii. The measured emanation in these tectonically active areas shows large long-term variations that may be related mainly to crustal strain changes

  4. Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions

    Science.gov (United States)

    White, Randall A.; McCausland, Wendy

    2016-01-01

    We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from:

  5. Seismic structure and tectonics of the Alasehir--Gediz Graben, Western Turkey

    Science.gov (United States)

    Turk, Sezer

    The Aegean Extensional Province (AEP) in Western Anatolia includes three major graben systems that have formed as a result of N-S tectonic extension in the latest Cenozoic. The 6 to 30-km-wide Alasehir--Gediz Graben (AGG) in the north contains ˜3-km-thick Miocene and Plio-Quaternary, alluvial--fluvial and lacustrine sedimentary rocks. I have used seismic profiles, well-log data and the regional stratigraphy to identify the key stratigraphic units, their bounding surfaces and vertical thicknesses, and to document the subsurface structural architecture of the AGG. A north-dipping detachment fault exposed in the southern shoulder of the AGG basin occurs at 2--2.5 km at depth beneath the graben fill, and is dissected by ˜E--W--striking, synthetic to antithetic, high-angle normal faults. The graben system is crosscut by NNE-oriented cross faults, showing several km of recurrence interval and 10s of meters of vertical displacement. These faults divide the graben into several sub-basins and display positive and negative flower structures. The structural architecture in the sub-basins shows important variations in stratigraphic thicknesses, fault geometry-displacement and deformation patterns, indicating that cross faulting played a critical role in the evolution of the AAG.

  6. Strike-slip tectonics during rift linkage

    Science.gov (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.

    2017-12-01

    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  7. The Latemar: A Middle Triassic polygonal fault-block platform controlled by synsedimentary tectonics

    Science.gov (United States)

    Preto, Nereo; Franceschi, Marco; Gattolin, Giovanni; Massironi, Matteo; Riva, Alberto; Gramigna, Pierparide; Bertoldi, Luca; Nardon, Sergio

    2011-03-01

    Detailed field mapping of a Middle Triassic carbonate buildup, the Latemar in the western Dolomites, northern Italy, has been carried out. The Latemar is an isolated carbonate buildup that nucleates on a fault-bounded structural high (horst) cut into the underlying late Anisian carbonate bank of the Contrin Fm. This study demonstrates that extensional synsedimentary tectonics is the main factor controlling its geometry and provides an age for this tectonic phase. In an early phase, slopes were mostly composed of well bedded, clinostratified grainstones and rudstones. In a later stage, the deposition of grainstones was accompanied by the emplacement of clinostratified megabreccias. The upper portion of slopes is a microbial boundstone with abundant Tubiphytes and patches or lenses of grainstone. Boundstones may occasionally expand into the platform interior and downward to the base of the slope. The depositional profile was that of a mounded platform. The buildup is dissected by a dense framework of high angle fractures and faults, and by magmatic and sedimentary dikes, exhibiting two principal directions trending NNW-SSE and ENE-WSW. Faults trending WNW-ESE were also observed. Magmatic dikes are related to the emplacement of the nearby Predazzo intrusion and are thus upper Ladinian. Kinematic indicators of strike-slip activity were observed on fault planes trending NNE-SSW and NNW-SSE, that can be attributed to Cenozoic Alpine tectonics. Faults, magmatic dikes and sedimentary dikes show systematic cross-cutting relationships, with strike-slip faults cutting magmatic dikes, and magmatic dikes cutting sedimentary (neptunian) dikes. ENE-WSW and WNW-ESE faults are cut by all other structures, and record the oldest tectonic activity in the region. Structural analysis attributes this tectonic phase to an extensional stress field, with a direction of maximum extension oriented ca. N-S. Several lines of evidence, including sealed faults and growth wedge geometries allow us

  8. Framework for Tectonic Thinking, a Conceptual Approach

    DEFF Research Database (Denmark)

    Garritzmann, Udo

    2017-01-01

    This research paper is a contribution to the field of architectural design theory in the area of tectonics. From the designer’s point of view, it will develop an overarching conceptual framework for tectonic thinking (FTT), which will serve as a tool for the comparative analysis and interpretation...

  9. Are diamond-bearing Cretaceous kimberlites related to shallow-angle subduction beneath western North America?

    Science.gov (United States)

    Currie, C. A.; Beaumont, C.

    2009-05-01

    The origin of deep-seated magmatism (in particular, kimberlites and lamproites) within continental plate interiors remains enigmatic in the context of plate tectonic theory. One hypothesis proposes a relationship between kimberlite occurrence and lithospheric subduction, such that a subducting plate releases fluids below a continental craton, triggering melting of the deep lithosphere and magmatism (Sharp, 1974; McCandless, 1999). This study provides a quantitative evaluation of this hypothesis, focusing on the Late Cretaceous- Eocene (105-50 Ma) kimberlites and lamproites of western North America. These magmas were emplaced along a corridor of Archean and Proterozoic lithosphere, 1000-1500 km inboard of the plate margin separating the subducting Farallon Plate and continental North America Plate. Kimberlite-lamproite magmatism coincides with tectonic events, including the Laramide orogeny, shut-down of the Sierra Nevada arc, and eastward migration of volcanism, that are commonly attributed to a change in Farallon Plate geometry to a shallow-angle trajectory (subduction that places the Farallon Plate beneath the western edge of the cratonic interior of North America. This geometry is consistent with the observed continental dynamic subsidence that lead to the development of the Western Interior Seaway. The models also show that the subducting plate has a cool thermal structure, and subducted hydrous minerals (serpentine, phengite and phlogopite) remain stable to more than 1200 km from the trench, where they may break down and release fluids that infiltrate the overlying craton lithosphere. This is supported by geochemical studies that indicate metasomatism of the Colorado Plateau and Wyoming craton mantle lithosphere by an aqueous fluid and/or silicate melt with a subduction signature. Through Cretaceous shallow-angle subduction, the Farallon Plate was in a position to mechanically and chemically interact with North American craton lithosphere at the time of

  10. Tectonics: The meaning of form

    DEFF Research Database (Denmark)

    Christiansen, Karl; Brandt, Per Aage

    Tectonics – The meaning of form deals with one of the core topics of architecture: the relationship between form and content. In the world of architecture, form is not only made from brick, glass and wood. Form means something. When a material is processed with sufficient technical skill and insi...... perspectives. You can read the chapters in any order you like – from the beginning, end or the middle. There is no correct order. The project is methodologically inductive: the more essays you read, the broader your knowledge of tectonics get....

  11. Stress field during early magmatism in the Ali Sabieh Dome, Djibouti, SE Afar rift

    Science.gov (United States)

    Sue, Christian; Le Gall, Bernard; Daoud, Ahmed Mohamed

    2014-09-01

    The so-called Ali Sabieh range, SE Afar rift, exhibits an atypical antiform structure occurring in the overall extensional tectonic context of the Afar triple junction. We dynamically analyzed the brittle deformation of this specific structural high using four different methods in order to better constrain the tectonic evolution of this key-area in the Afar depression. Paleostress inversions appear highly consistent using the four methods, which a posteriori validates this approach. Computed paleostress fields document two major signals: an early E-W extensional field, and a later transcurrent field, kinematically consistent with the previous one. The Ali Sabieh range may have evolved continuously during Oligo-Miocene times from large-scale extensional to transcurrent tectonism, as the result of probable local stress permutation between σ1 and σ2 stress axes.

  12. Extending Whole-earth Tectonics To The Terrestrial Planets

    Science.gov (United States)

    Baker, V. R.; Maruyama, S.; Dohm, J. M.

    Based on the need to explain a great many geological and geophysical anomalies on Mars, and stimulated by the new results from the Mars Global Surveyor Mission, we propose a conceptual model of whole-EARTH (Episodic Annular Revolving Thermal Hydrologic) tectonics for the long-term evolution of terrestrial planets. The theory emphasizes (1) the importance of water in planetary evolution, and (2) the physi- cal transitions in modes of mantle convection in relation to planetary heat produc- tion. Depending on their first-order geophysical parameters and following accretion and differentiation from volatile-rich planetessimals, terrestrial planets should evolve through various stages of mantle convection, including magma ocean, plate tectonic, and stagnant lid processes. If a water ocean is able to condense from the planet's early steam atmosphere, an early regime of plate tectonics will follow the initial magma ocean. This definitely happened on earth, probably on Mars, and possibly on Venus. The Mars history led to transfer of large amounts of water to the mantle during the pe- riod of heavy bombardment. Termination of plate tectonics on Mars during the heavy bombardment period led to initiation of superplumes at Tharsis and Elysium, where long-persistent volcanism and water outbursts dominated much of later Martian his- tory. For Venus, warming of the early sun made the surface ocean unstable, eliminating its early plate-tectonic regime. Although Venus now experiences stagnant-lid convec- tion with episodic mantle overturns, the water subducted to its lower mantle during the ancient plate-tectonic regime manifests itself in the initation of volatile-rich plumes that dominate its current tectonic regime.

  13. Mechanical coupling between earthquakes and volcanoes inferred from stress transfer models: evidence from Vesuvio, Etna and Alban Hills (Italy)

    Science.gov (United States)

    Cocco, M.; Feuillet, N.; Nostro, C.; Musumeci, C.

    2003-04-01

    We investigate the mechanical interactions between tectonic faults and volcanic sources through elastic stress transfer and discuss the results of several applications to Italian active volcanoes. We first present the stress modeling results that point out a two-way coupling between Vesuvius eruptions and historical earthquakes in Southern Apennines, which allow us to provide a physical interpretation of their statistical correlation. Therefore, we explore the elastic stress interaction between historical eruptions at the Etna volcano and the largest earthquakes in Eastern Sicily and Calabria. We show that the large 1693 seismic event caused an increase of compressive stress along the rift zone, which can be associated to the lack of flank eruptions of the Etna volcano for about 70 years after the earthquake. Moreover, the largest Etna eruptions preceded by few decades the large 1693 seismic event. Our modeling results clearly suggest that all these catastrophic events are tectonically coupled. We also investigate the effect of elastic stress perturbations on the instrumental seismicity caused by magma inflation at depth both at the Etna and at the Alban Hills volcanoes. In particular, we model the seismicity pattern at the Alban Hills volcano (central Italy) during a seismic swarm occurred in 1989-90 and we interpret it in terms of Coulomb stress changes caused by magmatic processes in an extensional tectonic stress field. We verify that the earthquakes occur in areas of Coulomb stress increase and that their faulting mechanisms are consistent with the stress perturbation induced by the volcanic source. Our results suggest a link between faults and volcanic sources, which we interpret as a tectonic coupling explaining the seismicity in a large area surrounding the volcanoes.

  14. Lesser Himalayan sequences in Eastern Himalaya and their deformation: Implications for Paleoproterozoic tectonic activity along the northern margin of India

    Directory of Open Access Journals (Sweden)

    Dilip Saha

    2013-05-01

    Full Text Available Substantial part of the northern margin of Indian plate is subducted beneath the Eurasian plate during the Caenozoic Himalayan orogeny, obscuring older tectonic events in the Lesser Himalaya known to host Proterozoic sedimentary successions and granitic bodies. Tectonostratigraphic units of the Proterozoic Lesser Himalayan sequence (LHS of Eastern Himalaya, namely the Daling Group in Sikkim and the Bomdila Group in Arunachal Pradesh, provide clues to the nature and extent of Proterozoic passive margin sedimentation, their involvement in pre-Himalayan orogeny and implications for supercontinent reconstruction. The Daling Group, consisting of flaggy quartzite, meta-greywacke and metapelite with minor mafic dyke and sill, and the overlying Buxa Formation with stromatolitic carbonate-quartzite-slate, represent shallow marine, passive margin platformal association. Similar lithostratigraphy and broad depositional framework, and available geochronological data from intrusive granites in Eastern Himalaya indicate strikewise continuity of a shallow marine Paleoproterozoic platformal sequence up to Arunachal Pradesh through Bhutan. Multiple fold sets and tectonic foliations in LHS formed during partial or complete closure of the sea/ocean along the northern margin of Paleoproterozoic India. Such deformation fabrics are absent in the upper Palaeozoic–Mesozoic Gondwana formations in the Lesser Himalaya of Darjeeling-Sikkim indicating influence of older orogeny. Kinematic analysis based on microstructure, and garnet composition suggest Paleoproterozoic deformation and metamorphism of LHS to be distinct from those associated with the foreland propagating thrust systems of the Caenozoic Himalayan collisional belt. Two possibilities are argued here: (1 the low greenschist facies domain in the LHS enveloped the amphibolite to granulite facies domains, which were later tectonically severed; (2 the older deformation and metamorphism relate to a Pacific type

  15. Extension joints: a tool to infer the active stress field orientation (case study from southern Italy)

    Science.gov (United States)

    De Guidi, Giorgio; Caputo, Riccardo; Scudero, Salvatore; Perdicaro, Vincenzo

    2013-04-01

    An intense tectonic activity in eastern Sicily and southern Calabria is well documented by the differential uplift of Late Quaternary coastlines and by the record of the strong historical earthquakes. The extensional belt that crosses this area is dominated by a well established WNW-ESE-oriented extensional direction. However, this area is largely lacking of any structural analysis able to define the tectonics at a more local scale. In the attempt to fill this gap of knowledge, we carried out a systematic analysis of extension joint sets. In fact, the systematic field collection of these extensional features, coupled with an appropriate inversion technique, allows to determine the characteristic of the causative tectonic stress field. Joints are defined as outcrop-scale mechanical discontinuities showing no evidence of shear motion and being originated as purely extensional fractures. Such tectonic features are one of the most common deformational structures in every tectonic environment and particularly abundant in the study area. A particular arrangement of joints, called "fracture grid-lock system", and defined as an orthogonal joint system where mutual abutting and crosscutting relationships characterize two geologically coeval joint sets, allow to infer the direction and the magnitude of the tectonic stress field. We performed the analyses of joints only on Pleistocene deposits of Eastern Sicily and Southern Calabria. Moreover we investigated only calcarenite sediments and cemented deposits, avoiding claysh and loose matrix-supported clastic sediments where the deformation is generally accomodated in a distributed way through the relative motion between the single particles. In the selection of the sites, we also took into account the possibility to clearly observe the geometric relationships among the joints. For this reason we chose curvilinear road cuts or cliffs, wide coastal erosional surfaces and quarries. The numerical inversions show a similar stress

  16. Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru

    Science.gov (United States)

    Jang, H.; Kim, Y.; Clayton, R. W.

    2017-12-01

    We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.

  17. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa Depression

    Science.gov (United States)

    Sun, Shuai; Hou, Guiting; Zheng, Chunfang

    2017-11-01

    Stress variation associated with folding is one of the controlling factors in the development of tectonic fractures, however, little attention has been paid to the influence of neutral surfaces during folding on fracture distribution in a fault-related fold. In this study, we take the Cretaceous Bashijiqike Formation in the Kuqa Depression as an example and analyze the distribution of tectonic fractures in fault-related folds by core observation and logging data analysis. Three fracture zones are identified in a fault-related fold: a tensile zone, a transition zone and a compressive zone, which may be constrained by two neutral surfaces of fold. Well correlation reveals that the tensile zone and the transition zone reach the maximum thickness at the fold hinge and get thinner in the fold limbs. A 2D viscoelastic stress field model of a fault-related fold was constructed to further investigate the mechanism of fracturing. Statistical and numerical analysis reveal that the tensile zone and the transition zone become thicker with decreasing interlimb angle. Stress variation associated with folding is the first level of control over the general pattern of fracture distribution while faulting is a secondary control over the development of local fractures in a fault-related fold.

  18. Localized Failure Promoted by Heterogeneous Stresses in Tectonic Mélanges

    Science.gov (United States)

    Phillips, N. J.; Rowe, C. D.; Ujiie, K.

    2017-12-01

    Within the shallow (PLC) toolbox developed at the University of Maine, which uses Asymptotic Expansion Homogenization (AEH) over a finite element mesh to determine the instantaneous stress distributions in a multiphase system. We model the shale matrix mélange to be deforming through a modified flow law for viscous creep based on coupled frictional sliding and pressure solution, where at a strain rate of 10-12 s-1 the flow stress is 10 MPa under the temperature (190 ºC) and pressure ( 100 MPa) conditions during deformation, and describe the behaviour of the basaltic blocks using experimentally-derived power law flow laws. The results show that at the strain rates calculated based on plate-rate motion, differential stresses high enough to cause comminution of the basalts ( 300 MPa) correspond strongly to areas around the blocks with basalt derived cataclasites. Within the basalt derived cataclasites, thin zones of ultracataclasite record localized slip. We hypothesize that the heterogeneous stress distributions within subduction mélanges: 1) fractures the strong basalt thereby facilitating weakening through fluid-rock interactions, and 2) promotes localized slip (and occasionally seismicity) within these zones of altered basalt along the margins of strong intact basalt.

  19. Mapping lithosphere thickness beneath the Southern Caribbean and Venezuela using body wave reflectivity and surface wave tomography

    Science.gov (United States)

    Masy, J.; Niu, F.; Levander, A.; Schmitz, M.

    2012-12-01

    The Caribbean (CAR) and South American (SA) plate boundary in Venezuela is a broad zone of diffuse deformation and faulting. GPS measurements indicate that the CAR is moving approximately 2 cm/yr respect to SA, parallel to the strike slip fault system in the east, but with an oblique convergence component in the west (Weber et al., 2001). Along the central and eastern Venezuela coast, most of the motion is accommodated by both transpression and transtension along the right lateral strike-slip San Sebastian- El Pilar fault system. The main tectonic features of the area include accretionary wedges and coastal thrust belts with their associated foreland basins (e.g. Sierra del Interior and Espino Graben). Southern of the plate boundary is located the Guayana Shield, which is part of the Amazonian Craton, and is an elevated plain consisting of Precambrian rocks. BOLIVAR (Broadband Onshore-Offshore Lithospheric Investigation of Venezuela and the Antilles Arc Region) was a multidisciplinary, international investigation to determine the evolution of the CAR-SA plate boundary (Levander et al., 2006) that included a 47 station broadband seismic array to complement the 40 station Venezuelan national array operated by FUNVISIS. The goal of this study is to map out lithosphere thickness across the region in order to understand its role for the various types of deformations observed at surface. We combined surface wave tomography and body wave reflectivity to locate the depth of the lithosphere-asthenosphere boundary (LAB). To generate a coherent 3D reflectivity volume of the study area, we used both P- and S-wave receiver-function data, as well as the ScS reverberation records of two deep earthquakes occurring in South America. We also measured Rayleigh phase velocities in the frequency range of 20-100 s using the two plane-wave method to remove multi-pathing effects (Forsyth and Li, 2005). Finite-frequency kernels were computed for a total of 63 teleseismic events to improve

  20. Devonian through early Carboniferous (Mississippian) metallogenesis and tectonics of northeast Asia, Chapter 6 in Metallogenesis and tectonics of northeast Asia

    Science.gov (United States)

    Badarch, Gombosuren; Dejidmaa, Gunchin; Gerel, Ochir; Obolenskiy, Alexander A.; Prokopiev, Andrei V.; Timofeev, Vladimir F.; Nokleberg, Warren J.

    2010-01-01

    The major purposes of this chapter are to provide (1) an overview of the regional geology, tectonics, and metallogenesis of Northeast Asia for readers who are unfamiliar with the region, (2) a general scientific introduction to the succeeding chapters of this volume, and (3) an overview of the methodology of metallogenic and tectonic analysis used in this study. We also describe how a high-quality metallogenic and tectonic analysis, including construction of an associated metallogenic-tectonic model will greatly benefit other mineral resource studies, including synthesis of mineral-deposit models; improve prediction of undiscovered mineral deposit as part of a quantitative mineral-resource-assessment studies; assist land-use and mineral-exploration planning; improve interpretations of the origins of host rocks, mineral deposits, and metallogenic belts, and suggest new research. Research on the metallogenesis and tectonics of such major regions as Northeast Asia (eastern Russia, Mongolia, northern China, South Korea, and Japan) and the Circum-North Pacific (the Russian Far East, Alaska, and the Canadian Cordillera) requires a complex methodology including (1) definitions of key terms, (2) compilation of a regional geologic base map that can be interpreted according to modern tectonic concepts and definitions, (3) compilation of a mineral-deposit database that enables a determination of mineral-deposit models and clarification of the relations of deposits to host rocks and tectonic origins, (4) synthesis of a series of mineral-deposit models that characterize the known mineral deposits and inferred undiscovered deposits in the region, (5) compilation of a series of metallogenic-belt belts constructed on the regional geologic base map, and (6) construction of a unified metallogenic and tectonic model. The summary of regional geology and metallogenesis presented here is based on publications of the major international collaborative studies of the metallogenesis and

  1. Tectonic evolution of mercury; comparison with the moon

    International Nuclear Information System (INIS)

    Thomas, P.G.; Masson, P.

    1983-01-01

    With regard to the Earth or to Mars, the Moon and Mercury look like tectonicless planetary bodies, and the prominent morphologies of these two planets are due to impact and volcanic processes. Despite these morphologies, several types of tectonic activities may be shown. Statistical studies of lineaments direction indicate that Mercury, as well as the Moon, have a planet wide lineament pattern, known as a ''grid''. Statistical studies of Mercury scarps and the Moon grabens indicate an interaction between planetary lithospheric evolution and large impact basins. Detailed studies of the largest basins indicate specific tectonic motions directly or indirectly related to impacts. These three tectonic types have been compared on each planet. The first tectonic type seems to be identical for Mercury and the Moon. But the two other types seem to be different, and are consistent with the planets' thermal evolution

  2. Petrological Constraints on Melt Generation Beneath the Asal Rift (Djibouti)

    Science.gov (United States)

    Pinzuti, P.; Humler, E.; Manighetti, I.; Gaudemer, Y.; Bézos, A.

    2010-12-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 95 lava flows sampled along 10 km of the rift axis and 8 km off-axis (that is for the last 650 ky). The major element composition and the trace element ratios of aphyric basalts across the Asal Rift show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. FeO, Fe8.0, Sm/YbN and Zr/Y increase, whereas SiO2 and Lu/HfN decrease from the rift axis to the rift shoulders. These variations are qualitatively consistent with a shallower melting beneath the rift axis than off-axis and the data show that the melting regime is inconsistent with a passive upwelling model. In order to quantify the depth range and extent of melting, we invert Na8.0 and Fe8.0 contents of basalts based on a pure active upwelling model. Beneath the rift axis, melting paths are shallow, from 60 to 30 km. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned mantle lithosphere. In contrast, melting on the rift shoulders occurred beneath a thick mantle lithosphere and required mantle solidus temperature 180°C hotter than normal (melting paths from 110 to 75 km). The calculated rate of lithospheric thinning is high (6.0 cm yr-1) and could explain the survival of a metastable garnet within the mantle at depth shallower than 90 km beneath the modern Asal Rift.

  3. Raft tectonics in northern Campos Basin; Tectonica de jangada (raft tectonics) na area norte da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Marilia R. de [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil)]|[PETROBRAS, Macae, RJ (Brazil). Unidade de Negocio da Bacia de Campos; Fugita, Adhemar M. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Programa de Recursos Humanos da ANP

    2004-07-01

    In the northern area of Campos Basin salt gliding/spreading processes promoted the break-up and transport of Cretaceous and Tertiary rocks overlying the evaporites. This process is known as raft tectonics, and it represents the most extreme form of thin-skinned extension above the salt decollement surface. Three distinct geotectonic domains were recognized that formed in response to the raft tectonics. The first one, confined to the shallower shelf portion of the basin, is characterized by minor extension (pre-raft domain), probably because of small salt thickness and low gradient. In the second domain (or disorganized rafts domain), located in distal platformal and slope areas, seismic sections show the occurrence of blocks or rafts with angular shapes, sometimes imbricated and frequently discontinuous. In the third domain, or domain of organized rafts, located in bacinal region, seismic sections show a more continuous raft pattern, often folded because of salt compression in the distal portions of the basin. The main purposes of this work is to characterize these three tectonic domains distinguished by raft tectonics, as well as their importance in hydrocarbon accumulations in calcarenites. (author)

  4. From Plate Tectonic to Continental Dynamics

    Science.gov (United States)

    Molnar, P. H.

    2017-12-01

    By the early 1970s, the basics of plate tectonics were known. Although much understanding remained to be gained, as a topic of research, plate tectonics no longer defined the forefront of earth science. Not only had it become a foundation on which to build, but also the methods used to reveal it became tools to take in new directions. For me as a seismologist studying earthquakes and active processes, the deformation of continents offered an obvious topic to pursue. Obviously examining the deformation of continents and ignoring the widespread geologic evidence of both ongoing and finite deformation of crust would be stupid. I was blessed with the opportunity to learn from and collaborate with two of the best, Paul Tapponnier and Clark Burchfiel. Continental deformation differed from plate tectonics both because deformation was widespread but more importantly because crust shortens (extends) horizontally and thickens (thins), processes that can be ignored where plate tectonics - the relative motion of rigid plates - occurs. Where a plate boundary passes into a continent, not only must the forces that move plates do work against friction or other dissipative processes, but where high terrain is created, they must also do work against gravity, to create gravitational potential energy in high terrain. Peter Bird and Kenneth Piper and Philip England and Dan McKenzie showed that a two-dimensional thin viscous sheet with vertically averaged properties enabled both sources of resistance to be included without introducing excessive complexity and to be scaled by one dimensionless number, what the latter pair called the Argand number. Increasingly over the past thirty years, emphasis has shifted toward the role played by the mantle lithosphere, because of both its likely strength and its negative buoyancy, which makes it gravitationally unstable. Despite progress since realizing that rigid plates (the essence of plate tectonics) provides a poor description of continental

  5. Multi-type Tectonic Responses to Plate Motion Changes of Mega-Offset Transform Faults at the Pacific-Antarctic Ridge

    Science.gov (United States)

    Zhang, F.; Lin, J.; Yang, H.; Zhou, Z.

    2017-12-01

    Magmatic and tectonic responses of a mid-ocean ridge system to plate motion changes can provide important constraints on the mechanisms of ridge-transform interaction and lithospheric properties. Here we present new analysis of multi-type responses of the mega-offset transform faults at the Pacific-Antarctic Ridge (PAR) system to plate motion changes in the last 12 Ma. Detailed analysis of the Heezen, Tharp, and Udintsev transform faults showed that the extensional stresses induced by plate motion changes could have been released through a combination of magmatic and tectonic processes: (1) For a number of ridge segments with abundant magma supply, plate motion changes might have caused the lateral transport of magma along the ridge axis and into the abutting transform valley, forming curved "hook" ridges at the ridge-transform intersection. (2) Plate motion changes might also have caused vertical deformation on steeply-dipping transtensional faults that were developed along the Heezen, Tharp, and Udintsev transform faults. (3) Distinct zones of intensive tectonic deformation, resembling belts of "rift zones", were found to be sub-parallel to the investigated transform faults. These rift-like deformation zones were hypothesized to have developed when the stresses required to drive the vertical deformation on the steeply-dipping transtensional faults along the transform faults becomes excessive, and thus deformation on off-transform "rift zones" became favored. (4) However, to explain the observed large offsets on the steeply-dipping transtensional faults, the transform faults must be relatively weak with low apparent friction coefficient comparing to the adjacent lithospheric plates.

  6. Summary of the stretching tectonics research

    International Nuclear Information System (INIS)

    Yu Dagan

    1994-01-01

    The rise of stretching tectonics is established on the basis of recent structural geology theory, the establishment of metamorphic nucleus complex structural model on one hand plays an important promoting art to the development of stretching structure, on the other hand, it needs constant supplement and perfection in practice. Metamorphic nucleus complex is the carrier of comparatively deep geological information in vertical section of the crust and has wide distribution in the era of south China. Evidently, it can be taken as the 'key' to understanding the deep and studying the basement, Strengthening the study will play the important promoting role to the deep prospecting. The study of stretching tectonics is not only limited within the range of structure and metamorphism, but combine with the studies of sedimentation, magmatism, metamorphism and mineralization, thus form a new field of tectonic geology of self-developing system

  7. Drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonephritis: a review

    Directory of Open Access Journals (Sweden)

    Miguel Hage Amaro

    2015-02-01

    Full Text Available The aim of this paper is to do a review of Drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonephritis. Drusenlike beneath retinal deposits in type II mesangiocapillary glomerulonephritis appear to develop at an early age, often second decade of life different of drusen from age-related macular degeneration (AMD.Long term follow-up of the cases in this disease shows in the most of them, no progression of the of drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonefritis, the most of subjects retain good visual acuity and no specific treatment is indicated.

  8. Looking for Plate Tectonics in all the wrong fluids

    Science.gov (United States)

    Davaille, Anne

    2017-04-01

    Ever since the theory of Plate Tectonics in the 1960's, the dream of the geomodeler has been to generate plate tectonics self-consistently from thermal convection in the laboratory. By selfconsistenly, I mean that the configuration of the plate boundaries is in no way specified a priori, so that the plates develop and are wholly consumed without intervention from the modeler. The reciepe is simple : put a well-chosen fluid in a fishtank heated from below and cooled from above, wait and see. But the « well-chosen » is the difficult part... and the interesting one. Plate tectonics is occuring on Earth because of the characteristics of the lithosphere rheology. The latter are complex to estimate as they depend on temperature, pressure, phase, water content, chemistry, strain rate, memory and scale. As a result, the ingredients necessary for plate tectonics are still debated, and it would be useful to find an analog fluid who could reproduce plate tectonics in the laboratory. I have therefore spent the last 25 years to try out fluids, and I shall present a number of failures to generate plate tectonics using polymers, colloids, ketchup, milk, chocolate, sugar, oils. To understand why they failed is important to narrow down the « well-chosen » fluid.

  9. The extent of continental crust beneath the Seychelles

    Science.gov (United States)

    Hammond, J. O. S.; Kendall, J.-M.; Collier, J. S.; Rümpker, G.

    2013-11-01

    The granitic islands of the Seychelles Plateau have long been recognised to overlie continental crust, isolated from Madagascar and India during the formation of the Indian Ocean. However, to date the extent of continental crust beneath the Seychelles region remains unknown. This is particularly true beneath the Mascarene Basin between the Seychelles Plateau and Madagascar and beneath the Amirante Arc. Constraining the size and shape of the Seychelles continental fragment is needed for accurate plate reconstructions of the breakup of Gondwana and has implications for the processes of continental breakup in general. Here we present new estimates of crustal thickness and VP/VS from H-κ stacking of receiver functions from a year long deployment of seismic stations across the Seychelles covering the topographic plateau, the Amirante Ridge and the northern Mascarene Basin. These results, combined with gravity modelling of historical ship track data, confirm that continental crust is present beneath the Seychelles Plateau. This is ˜30-33 km thick, but with a relatively high velocity lower crustal layer. This layer thins southwards from ˜10 km to ˜1 km over a distance of ˜50 km, which is consistent with the Seychelles being at the edge of the Deccan plume prior to its separation from India. In contrast, the majority of the Seychelles Islands away from the topographic plateau show no direct evidence for continental crust. The exception to this is the island of Desroche on the northern Amirante Ridge, where thicker low density crust, consistent with a block of continental material is present. We suggest that the northern Amirantes are likely continental in nature and that small fragments of continental material are a common feature of plume affected continental breakup.

  10. Tectonic studies in the Lansjaerv region

    International Nuclear Information System (INIS)

    Henkel, H.

    1987-10-01

    This report contains the results and the analysis of ground geophysical measurements and the tectonic interpretation in the 150x200 km Lansjaerv study area. It describes the data and methods used. The significance of strike slip fault patterns in relation to the surface morphology is discussed. The obtained results are used to suggest a tentative model for the present tectonic deformation. The report is part of the bedrock stability programme of SKB. The major conclusions regarding the tectonic structure are: Three regional fault systems are identified, two steep NW and N trending and a third NNE trending with gentle ESE dips, the steep fault systems have strike slip generated deformation patterns both in the Precambrian structures and in the surface morphology, the post-glacial faults of the area are part of this fault pattern and represent movements mainly on reactivated, gently dipping zones, several suspected late or post-glacial, fault related features are found along the steep NW and N faults. Sites for drilling and geodetic networks for deformation measurements are suggested. Detailed background data are documented in additional 4 reports. The basic geophysical and geological datasets are documented in color plotted 1:250 000 maps. A tectonic interpretation map in the same scale has been produced by combined interpretation of magnetic, elevation, elevation relief and gravity data. (orig./HP) With 6 maps

  11. Mapping magnetic lineaments and subsurface basement beneath ...

    Indian Academy of Sciences (India)

    65

    studied the basement structures beneath parts of the Lower Benue Trough (LBT). Anudu et .... order vertical derivatives can be calculated respectively using the relations below: 145. ( ) ... minerals as in the case of the FVD-RTP-TMI (Figure 6).

  12. Tectonic design strategies

    DEFF Research Database (Denmark)

    Beim, Anne

    2000-01-01

    as the poetics of construction, thus it may be considered as an essential activity in the development of the architectural design process.  Similar to the complex nature of the tectonic, the design process is an ongoing movement of interpretation, mediation, and decision making where the skills of the architect...

  13. Characterisation of tectonic lineaments in the Central Equatorial ...

    African Journals Online (AJOL)

    Characterisation of tectonic lineaments in the Central Equatorial Atlantic region of Africa using Bouguer anomaly gravity data. ... Ife Journal of Science ... 3-D standard Euler deconvolution analysis was carried out on Bouguer anomaly gravity data for configuration definition and approximate depth estimate of tectonic ...

  14. Habitability from Tidally Induced Tectonics

    Science.gov (United States)

    Valencia, Diana; Tan, Vivian Yun Yan; Zajac, Zachary

    2018-04-01

    The stability of Earth’s climate on geological timescales is enabled by the carbon–silicate cycle that acts as a negative feedback mechanism stabilizing surface temperatures via the intake and outgassing of atmospheric carbon. On Earth, this thermostat is enabled by plate tectonics that sequesters outgassed CO2 back into the mantle via weathering and subduction at convergent margins. Here we propose a separate tectonic mechanism—vertical recycling—that can serve as the vehicle for CO2 outgassing and sequestration over long timescales. The mechanism requires continuous tidal heating, which makes it particularly relevant to planets in the habitable zone of M stars. Dynamical models of this vertical recycling scenario and stability analysis show that temperate climates stable over timescales of billions of years are realized for a variety of initial conditions, even as the M star dims over time. The magnitude of equilibrium surface temperatures depends on the interplay of sea weathering and outgassing, which in turn depends on planetary carbon content, so that planets with lower carbon budgets are favored for temperate conditions. The habitability of planets such as found in the Trappist-1 system may be rooted in tidally driven tectonics.

  15. The World Stress Map - A Freely Accessible Tool For Geohazard Assessment

    International Nuclear Information System (INIS)

    Mueller, Birgit; Heidbach, Oliver; Tingay, Mark

    2006-01-01

    The World Stress Map (WSM) database contains over 16,000 indicators on contemporary crustal tectonic stress and provides an essential parameter for geohazard assessment. This paper focuses on the importance of database accessibility for geohazard assessment and presents the basic concepts and availability of the WSM. The WSM can be applied to several key aspects of geohazard assessment, in particular the mapping of stress patterns and places of stress concentration for improved delineation of zones of seismic hazard. Furthermore, contemporary tectonic stresses can be used in combination with numerical modeling to identify faults or sections of fault systems with high failure potential and can help to predict the likely type of fault reactivation. This approach is especially valuable for assessing the likelihood of strong and rare seismic events for which probabilistic hazard assessment will fail and physically based methodologies are required. Herein, we use the Caspian-Caucasian region as an example to apply WSM data for geohazard assessment. The Caspian-Caucasian area is characterized by the occurrence of a number of stress related geohazards on different spatial scales, in particular crustal earthquakes, seismically triggered landslides and mud volcanism

  16. Structural analysis and Miocene-to-Present tectonic evolution of a lithospheric-scale, transcurrent lineament: The Sciacca Fault (Sicilian Channel, Central Mediterranean Sea)

    Science.gov (United States)

    Fedorik, Jakub; Toscani, Giovanni; Lodolo, Emanuele; Civile, Dario; Bonini, Lorenzo; Seno, Silvio

    2018-01-01

    Seismo-stratigraphic and structural analysis of a large number of multichannel seismic reflection profiles acquired in the northern part of the Sicilian Channel allowed a 3-D reconstruction of a regional NS-trending transfer zone which displays a transcurrent tectonic regime, and that is of broad relevance for its seismotectonic and geodynamic implications. It is constituted of two major transcurrent faults delimiting a 30-km-wide, mostly undeformed basin. The western fault (Capo Granitola) does not show clear evidence of present-day tectonic activity, and toward the south it is connected with the volcanic area of the Graham Bank. The eastern fault (Sciacca) is structurally more complex, showing active deformation at the sea-floor, particularly evident along the Nerita Bank. The Sciacca Fault is constituted of a master and splay faults compatible with a right-lateral kinematics. Sciacca Fault is superimposed on an inherited weakness zone (a Mesozoic carbonate ramp), which borders to the east a 2.5-km-thick Plio-Quaternary basin, and that was reactivated during the Pliocene. A set of scaled claybox analogue models was carried out in order to better understand the tectonic processes that led to the structural setting displayed by seismic data. Tectonic structures and uplift/subsidence patterns generated by the models are compatible with the 3-D model obtained from seismic reflection profiles. The best fit between the tectonic setting deriving from the interpretation of seismic profiles and the analogue models was obtained considering a right-lateral movement for the Sciacca Fault. Nevertheless, the stress field in the study area derived from GPS measurements does not support the present-day modelled right-lateral kinematics along the Sciacca Fault. Moreover, seismic events along this fault show focal mechanisms with a left-lateral component. We ascribe the slip change along the Sciacca Fault, from a right-lateral transcurrent regime to the present-day left

  17. Mars: Lithospheric Flexure of the Tharsis Montes Volcanoes and the Evolutionary Relationship to Their Tectonic History

    Science.gov (United States)

    Chute, H.; Dombard, A. J.; Byrne, P. K.

    2017-12-01

    Lithospheric flexure associated with Arsia, Pavonis, and Ascraeus Montes has been previously studied to constrain the timeline and breadth of endogenic surface features surrounding these volcanoes. Here, we simulate the radial extent of two specific load-related features: annular graben and flank terraces. Detailed mapping of Ascraeus Mons (the youngest of the three volcanoes) showed a phase of compression of the edifice, forming the terraces and an annulus of graben immediately off the flanks, followed by a period of extension that formed additional graben superposed on the terraces on the lower flanks of the edifice. This transition from compression to extension on the lower flanks has been difficult to reconcile in mechanical models. We explore, with finite-element simulations, the effects of a thermal anomaly associated with an intrusive crustal underplate, which results in locally thinning the lithosphere (in contrast to past efforts that assumed a constant-thickness lithosphere). We find that it is primarily the horizontal extent of this thermal anomaly that governs how the lithosphere flexes under a volcano, as well as the transition from flank compression to a tight annulus of extensional stresses. Specifically, we propose that the structures on Ascraeus may be consistent with an early stage of volcanic growth accompanied by an underplate about the same width as the edifice that narrowed as volcanism waned, resulting in an inward migration of the extensional horizontal stresses from the surrounding plains onto the lower flanks. By linking the surface strains on the volcano with the volcano-tectonic evolution predicted by our flexure model, we can further constrain a more accurate timeline for the tectonic history of Ascraeus Mons. More broadly, because these tectonic structures are commonly observed, our results provide a general evolutionary model for large shield volcanoes on Mars.

  18. Earthquakes and Tectonics Expert Judgment Elicitation Project

    International Nuclear Information System (INIS)

    Coppersmith, K.J.; Perman, R.C.; Youngs, R.R.

    1993-02-01

    This report summarizes the results of the Earthquakes and Tectonics Expert Judgement Excitation Project sponsored by the Electric Power Research Institute (EPRI). The objectives of this study were two-fold: (1) to demonstrate methods for the excitation of expert judgement, and (2) to quantify the uncertainties associated with earthquake and tectonics issues for use in the EPRI-HLW performance assessment. Specifically, the technical issue considered is the probability of differential fault displacement through the proposed repository at Yucca Mountain, Nevada. For this study, a strategy for quantifying uncertainties was developed that relies on the judgements of multiple experts. A panel of seven geologists and seismologists was assembled to quantify the uncertainties associated with earthquake and tectonics issues for the performance assessment model. A series of technical workshops focusing on these issues were conducted. Finally, each expert was individually interviewed in order to elicit his judgement regarding the technical issues and to provide the technical basis for his assessment. This report summarizes the methodologies used to elicit the judgements of the earthquakes and tectonics experts (termed ''specialists''), and summarizes the technical assessments made by the expert panel

  19. Earth's glacial record and its tectonic setting

    Science.gov (United States)

    Eyles, N.

    1993-09-01

    clearly established glacial parentage. The same remarks apply to many successions of laminated and thin-bedded facies interpreted as "varvites". Despite suggestions of much lower values of solar luminosity (the weak young sun hypothesis), the stratigraphic record of Archean glaciations is not extensive and may be the result of non-preservation. However, the effects of very different Archean global tectonic regimes and much higher geothermal heat flows, combined with a Venus-like atmosphere warmed by elevated levels of CO 2, cannot be ruled out. The oldest unambiguous glacial succession in Earth history appears to be the Early Proterozoic Gowganda Formation of the Huronian Supergroup in Ontario; the age of this event is not well-constrained but glaciation coincided with regional rifting, and may be causally related to, oxygenation of Earth's atmosphere just after 2300 Ma. New evidence that oxygenation is tectonically, not biologically driven, stresses the intimate relationship between plate tectonics, evolution of the atmosphere and glaciation. Global geochemical controls, such as elevated atmospheric CO 2 levels, may be responsible for a long mid-Proterozoic non-glacial interval after 2000 Ma that was terminated by the Late Proterozoic glaciations just after 800 Ma. A persistent theme in both Late Proterozoic and Phanerozoic glaciations is the adiabatic effect of tectonic uplift, either along collisional margins or as a result of passive margin uplifts in areas of extended crust, as the trigger for glaciation; the process is reinforced by global geochemical feedback, principally the drawdown of atmospheric CO 2 and Milankovitch "astronomical" forcing but these are unlikely, by themselves, to inititiate glaciation. The same remarks apply to late Cenozoic glaciations. Late Proterozoic glacially-influenced strata occur on all seven continents and fall into two tectonostratigraphic types. In the first category are thick sucessions of turbidites and mass flows deposited along

  20. Remembering myth and ritual in the everyday tectonics of hospitals

    DEFF Research Database (Denmark)

    Tvedebrink, Tenna Doktor Olsen

    2015-01-01

    When discussing tectonics, the book Studies in tectonic culture by Kenneth Frampton (2001) is often mentioned for linking the ethics of architecture with a focus on structural genius. Another reference is the paper The tell-the-tale detail by Marco Frascari (1984), which in addition to Frampton put...... emphasis on both the physical construction and mental construing of architecture. With this dual perspective Frascari established a discourse in tectonic thinking which brings the tectonic expression beyond structural genius into socio-cultural realms of storytelling, myth and ritual. However, in everyday...... architecture like hospitals this perspective of construing is often neglected. In this paper, I explore if it is possible through a re-reading of Frascari’s words to inspire for a re-construction of everyday tectonics? Based on project MORE at Aalborg Hospital, I argue that the perspective of construing...

  1. Plate tectonics and planetary habitability: current status and future challenges.

    Science.gov (United States)

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  2. S-wave attenuation structure beneath the northern Izu-Bonin arc

    Science.gov (United States)

    Takahashi, Tsutomu; Obana, Koichiro; Kodaira, Shuichi

    2016-04-01

    To understand temperature structure or magma distribution in the crust and uppermost mantle, it is essential to know their attenuation structure. This study estimated the 3-D S-wave attenuation structure in the crust and uppermost mantle at the northern Izu-Bonin arc, taking into account the apparent attenuation due to multiple forward scattering. In the uppermost mantle, two areas of high seismic attenuation (high Q -1) imaged beneath the volcanic front were mostly colocated with low-velocity anomalies. This coincidence suggests that these high- Q -1 areas in low-velocity zones are the most likely candidates for high-temperature regions beneath volcanoes. The distribution of random inhomogeneities indicated the presence of three anomalies beneath the volcanic front: Two were in high- Q -1 areas but the third was in a moderate- Q -1 area, indicating a low correlation between random inhomogeneities and Q -1. All three anomalies of random inhomogeneities were rich in short-wavelength spectra. The most probable interpretation of such spectra is the presence of volcanic rock, which would be related to accumulated magma intrusion during episodes of volcanic activity. Therefore, the different distributions of Q -1 and random inhomogeneities imply that the positions of hot regions in the uppermost mantle beneath this arc have changed temporally; therefore, they may provide important constraints on the evolutionary processes of arc crust and volcanoes.

  3. Late Tharsis tectonic activity and implications for Early Mars

    Science.gov (United States)

    Bouley, S.; Baratoux, D.; Paulien, N.; Missenard, Y.; Saint-Bezar, B.

    2017-12-01

    Constraining the timing of Tharsis volcanism is critical to understanding the planet's evolution including its climate, surface environment and mantle dynamics. The tectonic history of the Tharsis bulge was previously documented from the distribution and ages of related tectonic features [1]. Here we revisit the ages of 7493 Tharsis-related tectonic features based on their relationship with stratigraphic units defined in the new geological map [2]. Conversely to previous tectonic mapping [1], which suggested that Tharsis growth was nearly achieved during the Noachian, we find a protracted growth of Tharsis during the Hesperian. Faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. Accumulated tectonic deformation was maximum in the Early Hesperian for compressional strain (Solis, Lunae and Ascuris Planum) and extended over time from Noachian to Amazonian for extensional strain (Noctis Labyrinthus and Fossae, Sinai Planum and Tractus, Ulysses and Fortuna fossae, Alba Patera). This new scenario is consistent with a protracted growth of Tharsis dome during the Hesperian and with the timing a large Tharsis-driven true polar wander post-dating the incision of Late Noachian/Hesperian valley networks[3]. References:[1] Anderson et al. JGR-Planets 106, E9, 20,563-20,585 (2001).[2] Tanaka, K.L. et al. Geologic map of Mars (2014). [3] Bouley et al. Nature doi:10.1038 (2016)

  4. The Seismotectonics of the Po Plain (Northern Italy): Tectonic Diversity in a Blind Faulting Domain

    Science.gov (United States)

    Vannoli, Paola; Burrato, Pierfrancesco; Valensise, Gianluca

    2015-05-01

    We present a systematic and updated overview of a seismotectonic model for the Po Plain (northern Italy). This flat and apparently quiet tectonic domain is, in fact, rather active as it comprises the shortened foreland and foredeep of both the Southern Alps and the Northern Apennines. Assessing its seismic hazard is crucial due to the concentration of population, industrial activities, and critical infrastructures, but it is also complicated because (a) the region is geologically very diverse, and (b) nearly all potential seismogenic faults are buried beneath a thick blanket of Pliocene-Pleistocene sediments, and thus can be investigated only indirectly. Identifying and parameterizing the potential seismogenic faults of the Po Plain requires proper consideration of their depth, geometry, kinematics, earthquake potential and location with respect to the two confronting orogens. To this end, we subdivided them into four main, homogeneous groups. Over the past 15 years we developed new strategies for coping with this diversity, resorting to different data and modeling approaches as required by each individual fault group. The most significant faults occur beneath the thrust fronts of the Ferrara-Romagna and Emilia arcs, which correspond to the most advanced and buried portions of the Northern Apennines and were the locus of the destructive May 2012 earthquake sequence. The largest known Po Plain earthquake, however, occurred on an elusive reactivated fault cutting the Alpine foreland south of Verona. Significant earthquakes are expected to be generated also by a set of transverse structures segmenting the thrust system, and by the deeper ramps of the Apennines thrusts. The new dataset is intended to be included in the next version of the Database of Individual Seismogenic Sources (DISS; http://diss.rm.ingv.it/diss/, version 3.2.0, developed and maintained by INGV) to improve completeness of potential sources for seismic hazard assessment.

  5. Morphological indicators of a mascon beneath Ceres' largest crater, Kerwan

    Science.gov (United States)

    Bland, Michael T.; Ermakov, Anton; Raymond, Carol A.; Williams, David A.; Bowling, Tim J.; Preusker, F.; Park, Ryan S.; Marchi, Simone; Castillo-Rogez, Julie C.; Fu, R.R.; Russell, Christopher T.

    2018-01-01

    Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long‐term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact‐induced uplift of the high‐density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest‐degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin‐associated gravity anomalies, although their origin may differ substantially.

  6. Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan

    Science.gov (United States)

    Bland, M. T.; Ermakov, A. I.; Raymond, C. A.; Williams, D. A.; Bowling, T. J.; Preusker, F.; Park, R. S.; Marchi, S.; Castillo-Rogez, J. C.; Fu, R. R.; Russell, C. T.

    2018-02-01

    Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long-term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact-induced uplift of the high-density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest-degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin-associated gravity anomalies, although their origin may differ substantially.

  7. Evidence for early hunters beneath the Great Lakes.

    Science.gov (United States)

    O'Shea, John M; Meadows, Guy A

    2009-06-23

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000-7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron.

  8. The Black Mountain tectonic zone--a reactivated northeast-trending crustal shear zone in the Yukon-Tanana Upland of east-central Alaska: Chapter D in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    Science.gov (United States)

    O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.

  9. A New Model of Lithosphere Deformation Beneath the Okinawa Trough Based on Gravity Data

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lihong; JIANG Xiaodian; ZHANG Weigang

    2002-01-01

    The Ryukyu trench-arc system can be divided into two types according to its subduction model. The normal sub-duction in the northern part of the Philippine Sea plate creates a hinge sedimentary wedge with large deformation at the col-lision front, while the oblique subduction in the southern part gives rise to a smaller accretion with small deformation thanthat in the northern part. The mechanisms that cause the distinction between these two types have been analysed and calcu-lated by using gravity data based on the lithosphere rheology and the stress state of the lithosphere in the subduction bound-ary. The two types of subduction model are associated with the internal extension in the southern Okinawa Trough and thesmall extension in the northern part. The difference of the stress state between the two types of subduction model is alsomanifested in other tectonic features, such as topography, volcanic activity and crust movement. Modeling bathymetric andgravity data from this area suggests that the oblique subduction of low angle, together with smooth geometry of the overlyingplate crust, results in small stress released on the south of the trench by the subduction plate. The intraplate faults in thesouthern Okinawa Trough behind the trench stand in surplus intensive stress. On the other hand, the normal subduction ofhigh angle, together with strong undulation geometry of the overlying crust, results in more intensive stress released in thenorthern Ryukyu Trench than that in the south. The intraplate faults in the northern Okinawa Trough behind the northernRyukyu Trench stand in small stress.

  10. Tectonic tremor

    Science.gov (United States)

    Shelly, David R.

    2016-01-01

    Tectonic, non-volcanic tremor is a weak vibration of ground, which cannot be felt by humans but can be detected by sensitive seismometers. It is defined empirically as a low-amplitude, extended duration seismic signal associated with the deep portion (∼20–40 km depth) of some major faults. It is typically observed most clearly in the frequency range of 2–8 Hz and is depleted in energy at higher frequencies relative to regular earthquakes.

  11. Estimating Net Primary Productivity Beneath Snowpack Using Snowpack Radiative Transfer Modeling and Global Satellite Data

    Science.gov (United States)

    Barber, D. E.; Peterson, M. C.

    2002-05-01

    Sufficient photosynthetically active radiation (PAR) penetrates snow for plants to grow beneath snowpack during late winter or early spring in tundra ecosystems. During the spring in this ecosystem, the snowpack creates an environment with higher humidity and less variable and milder temperatures than on the snow-free land. Under these conditions, the amount of PAR available is likely to be the limiting factor for plant growth. Current methods for determining net primary productivity (NPP) of tundra ecosystems do not account for this plant growth beneath snowpack, apparently resulting in underestimating plant production there. We are currently in the process of estimating the magnitude of this early growth beneath snow for tundra ecosystems. Our method includes a radiative transfer model that simulates diffuse and direct PAR penetrating snowpack based on downwelling PAR values and snow depth data from global satellite databases. These PAR levels are convolved with plant growth for vegetation that thrives beneath snowpacks, such as lichen. We expect to present the net primary production for Cladonia species (a common Arctic lichen) that has the capability of photosynthesizing at low temperatures beneath snowpack. This method may also be used to study photosynthesis beneath snowpacks in other hardy plants. Lichens are used here as they are common in snow-covered regions, flourish under snowpack, and provide an important food source for tundra herbivores (e.g. caribou). In addition, lichens are common in arctic-alpine environments and our results can be applied to these ecosystems as well. Finally, the NPP of lichen beneath snowpack is relatively well understood compared to other plants, making it ideal vegetation for this first effort at estimating the potential importance of photosynthesis at large scales. We are examining other candidate plants for their photosynthetic potential beneath snowpack at this time; however, little research has been done on this topic. We

  12. Climate vs. tectonic induced variations in Cenozoic sediment supply from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    Eocene times tectonic activity related to the final stage of opening of the North Atlantic was apparently controlling the sediment input in the North Sea as sediment pulses correlate well with tectonic events. Although there is no signs of Cenozoic tectonic activity onshore Scandinavia (igneous bodies......, faulting), tectonic disturbance related to ocean opening could be responsible for deposition of thick Paleocene wedges along the western coast of Norway. During subsequent Cenozoic periods domal structures in the Norwegian shelf are a proof for mild and protracted compression. However, depositional...... patterns from offshore Scandinavia have been interpreted as a result of significant tectonic movements. In the absence of proofs for active tectonic agents we attempt to explain these sediment input variations as a result of climate fluctuations. The Eocene-Oligocene greenhouse-icehouse climate transition...

  13. a Revision to the Tectonics of the Flores Back-Arc Thrust Zone, Indonesia?

    Science.gov (United States)

    Tikku, A. A.

    2011-12-01

    The Flores and Bali Basins are continental basins in the Flores back-arc thrust zone associated with Eocene subduction of the Indo-Australian plate beneath the Sunda plate followed by Miocene to present-day inversion/thrusting. The basins are east of Java and north of the islands of Bali, Lombok, Sumbawa and Flores in the East Java Sea area of Indonesia. The tectonic interpretation of these basins is based on seismic, bathymetry and gravity data and is also supported by present-day GPS measurements that demonstrate subduction is no longer active across the Flores thrust zone. Current thinking about the area is that the Flores Basin (on the east end of the thrust zone) had the most extension in the back-arc thrust and may be a proto-oceanic basin, though the option of a purely continental extensional basin can not be ruled out. The Bali Basin (on the west end of the thrust zone) is thought to be shallower and have experienced less continental thinning and extension than the Flores Basin. Depth to basement estimates from recently collected marine magnetic data indicate the depth of the Bali Basin may be comparable to the depth of the Flores Basin. Analysis of the marine magnetic data and potential implications of relative plate motions will be presented.

  14. Tectonic vision in architecture

    DEFF Research Database (Denmark)

    Beim, Anne

    1999-01-01

    By introducing the concept; Tectonic Visions, The Dissertation discusses the interrelationship between the basic idea, the form principles, the choice of building technology and constructive structures within a given building. Includes Mies van der Rohe, Le Corbusier, Eames, Jorn Utzon, Louis Kahn...

  15. Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic-early Jurassic tectonics associated with the Paleo-Tethys Ocean

    Science.gov (United States)

    Wang, Yixuan; Liang, Xiao; Wang, Genhou; Yuan, Guoli; Bons, Paul D.

    2018-03-01

    The Mesozoic orogeny in Central Qiangtang Metamorphic Belt, northern Tibet, provides important insights into the geological evolution of the Paleo-Tethys Ocean. However, the Triassic-early Jurassic tectonics, particularly those associated with the continental collisionstage, remains poorly constrained. Here we present results from geological mapping, structural analysis, P-T data, and Ar-Ar geochronology of the Mayer Kangri metamorphic complex. Our data reveal an E-W-trending, 2 km wide dome-like structure associated with four successive tectonic events during the Middle Triassic and Early Jurassic. Field observations indicate that amphibolite and phengite schist complexes in this complex are separated from the overlying lower greenschist mélange by normal faulting with an evident dextral shearing component. Open antiform-like S2 foliation of the footwall phengite schist truncates the approximately north-dipping structures of the overlying mélange. Microtextures and mineral chemistry of amphibole reveal three stages of growth: Geothermobarometric estimates yield temperatures and pressures of 524 °C and 0.88 GPa for pargasite cores, 386 °C and 0.34 GPa for actinolite mantles, and 404 °C and 0.76 GPa for winchite rims. Peak blueschist metamorphism in the phengite schist occurred at 0.7-1.1 GPa and 400 °C. Our Ar-Ar dating of amphibole reveals rim-ward decreasing in age bands, including 242.4-241.2 Ma, ≥202.6-196.8, and 192.9-189.8 Ma. The results provide evidence for four distinct phases of Mesozoic tectonic evolution in Central Qiangtang: (1) northward oceanic subduction beneath North Qiangtang ( 244-220 Ma); (2) syn-collisional slab-break off (223-202 Ma); (3) early collisional extension driven by buoyant extrusion flow from depth ( 202.6-197 Ma); and (4) post-collision contraction and reburial (195.6-188.7 Ma).

  16. 3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise

    Science.gov (United States)

    Xie, Jun; Chu, Risheng; Yang, Yingjie

    2018-05-01

    Ambient noise seismic tomography has been widely used to study crustal and upper-mantle shear velocity structures. Most studies, however, concentrate on short period (structure on a continental scale. We use broadband Rayleigh wave phase velocities to obtain a 3-D V S structures beneath the contiguous United States at period band of 10-150 s. During the inversion, 1-D shear wave velocity profile is parameterized using B-spline at each grid point and is inverted with nonlinear Markov Chain Monte Carlo method. Then, a 3-D shear velocity model is constructed by assembling all the 1-D shear velocity profiles. Our model is overall consistent with existing models which are based on multiple datasets or data from earthquakes. Our model along with the other post-USArray models reveal lithosphere structures in the upper mantle, which are consistent with the geological tectonic background (e.g., the craton root and regional upwelling provinces). The model has comparable resolution on lithosphere structures compared with many published results and can be used for future detailed regional or continental studies and analysis.

  17. Stress field modelling from digital geological map data

    Science.gov (United States)

    Albert, Gáspár; Barancsuk, Ádám; Szentpéteri, Krisztián

    2016-04-01

    To create a model for the lithospheric stress a functional geodatabase is required which contains spatial and geodynamic parameters. A digital structural-geological map is a geodatabase, which usually contains enough attributes to create a stress field model. Such a model is not accurate enough for engineering-geological purposes because simplifications are always present in a map, but in many cases maps are the only sources for a tectonic analysis. The here presented method is designed for field geologist, who are interested to see the possible realization of the stress field over the area, on which they are working. This study presents an application which can produce a map of 3D stress vectors from a kml-file. The core application logic is implemented on top of a spatially aware relational database management system. This allows rapid and geographically accurate analysis of the imported geological features, taking advantage of standardized spatial algorithms and indexing. After pre-processing the map features in a GIS, according to the Type-Property-Orientation naming system, which was described in a previous study (Albert et al. 2014), the first stage of the algorithm generates an irregularly spaced point cloud by emitting a pattern of points within a user-defined buffer zone around each feature. For each point generated, a component-wise approximation of the tensor field at the point's position is computed, derived from the original feature's geodynamic properties. In a second stage a weighted moving average method calculates the stress vectors in a regular grid. Results can be exported as geospatial data for further analysis or cartographic visualization. Computation of the tensor field's components is based on the implementation of the Mohr diagram of a compressional model, which uses a Coulomb fracture criterion. Using a general assumption that the main principal stress must be greater than the stress from the overburden, the differential stress is

  18. Thermo-Compositional Evolution of a Brine Reservoir Beneath Ceres' Occator Crater and Implications for Cryovolcanism at the Surface

    Science.gov (United States)

    Quick, L. C.

    2017-12-01

    The Dawn spacecraft has imaged several putative cryovolcanic features on Ceres (Buczkowski et al., 2016; Ruesch et al., 2016), and several lines of evidence point to past cryovolcanic activity at Occator crater (De Sanctis et al., 2016; Krohn et al., 2016; Buczkowski et al., 2017; Nathues et al., 2017; Ruesch et al., 2017; Zolotov, 2017). Hence it is possible that cryovolcanism played a key role in delivering carbonate and/or chloride brines to Ceres' surface in the past. As any cryolavas delivered to the surface would have issued from a briny subsurface reservoir, or, cryomagma chamber, it is necessary to consider the thermal and compositional evolution of such a reservoir. The detection of a 200 km x 200 km negative Bouguer anomaly beneath Occator suggests the presence of a low-density region beneath the crater (Ermakov et al., 2017). If this region is a residual cryomagma chamber, excess pressures caused by its gradual freezing, or stresses produced by the Occator-forming impact, could have once facilitated the delivery of cryolavas to the Cerean surface. I have investigated the progressive solidification of a cryomagma chamber beneath Occator and implications for the changing compositions of cryolavas on Ceres. I will present the results of this study as well as discuss the dynamics and heat transfer associated with cryomagmatic ascent to the surface. Preliminary results suggest that a 200 km wide cryomagma chamber situated beneath Ceres' crust would take approximately 1 Gyr to completely crystallize. However, such a reservoir would be depleted in chloride and carbonate salts after only 54 Myr of cooling. If the reservoir contained NH3-bearing fluids, eruptions could proceed for another 100 Myr before increased reservoir crystallization rendered cryomagmatic fluids completely immobile. In addition, it is likely that cryomagmas delivered to Ceres' surface had viscosities < 108 Pa s, and were delivered in fractures with propagation speeds ≥ 10-5 m/s. I will

  19. Residual stresses around Vickers indents

    International Nuclear Information System (INIS)

    Pajares, A.; Guiberteau, F.; Steinbrech, R.W.

    1995-01-01

    The residual stresses generated by Vickers indentation in brittle materials and their changes due to annealing and surface removal were studied in 4 mol% yttria partially stabilized zirconia (4Y-PSZ). Three experimental methods to gain information about the residual stress field were applied: (i) crack profile measurements based on serial sectioning, (ii) controlled crack propagation in post indentation bending tests and (iii) double indentation tests with smaller secondary indents located around a larger primary impression. Three zones of different residual stress behavior are deduced from the experiments. Beneath the impression a crack free spherical zone of high hydrostatic stresses exists. This core zone is followed by a transition regime where indentation cracks develop but still experience hydrostatic stresses. Finally, in an outward third zone, the crack contour is entirely governed by the tensile residual stress intensity (elastically deformed region). Annealing and surface removal reduce this crack driving stress intensity. The specific changes of the residual stresses due to the post indentation treatments are described and discussed in detail for the three zones

  20. Thermally driven gas flow beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Amter, S.; Lu, Ning; Ross, B.

    1991-01-01

    A coupled thermopneumatic model is developed for simulating heat transfer, rock-gas flow and carbon-14 travel time beneath Yucca Mountain, NV. The aim of this work is to understand the coupling of heat transfer and gas flow. Heat transfer in and near the potential repository region depends on several factors, including the geothermal gradient, climate, and local sources of heat such as radioactive wastes. Our numerical study shows that small temperature changes at the surface can change both the temperature field and the gas flow pattern beneath Yucca Mountain. A lateral temperature difference of 1 K is sufficient to create convection cells hundreds of meters in size. Differences in relative humidities between gas inside the mountain and air outside the mountain also significantly affect the gas flow field. 6 refs., 7 figs

  1. History and Evolution of Precambrian plate tectonics

    Science.gov (United States)

    Fischer, Ria; Gerya, Taras

    2014-05-01

    Plate tectonics is a global self-organising process driven by negative buoyancy at thermal boundary layers. Phanerozoic plate tectonics with its typical subduction and orogeny is relatively well understood and can be traced back in the geological records of the continents. Interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts however (e.g., Brown, 2006), suggest a different tectonic regime in the Precambrian. Due to higher radioactive heat production the Precambrian lithosphere shows lower internal strength and is strongly weakened by percolating melts. The fundamental difference between Precambrian and Phanerozoic tectonics is therefore the upper-mantle temperature, which determines the strength of the upper mantle (Brun, 2002) and the further tectonic history. 3D petrological-thermomechanical numerical modelling experiments of oceanic subduction at an active plate at different upper-mantle temperatures show these different subduction regimes. For upper-mantle temperatures 250 K above the present day value no subduction occurs any more. The whole lithosphere is delaminating and due to strong volcanism and formation of a thicker crust subduction is inhibited. This stage of 200-250 K higher upper mantle temperature which corresponds roughly to the early Archean (Abbott, 1994) is marked by strong volcanism due to sublithospheric decompression melting which leads to an equal thickness for both oceanic and continental plates. As a consequence subduction is inhibited, but a compressional setup instead will lead to orogeny between a continental or felsic terrain and an oceanic or mafic terrain as well as internal crustal convection. Small-scale convection with plume shaped cold downwellings also in the upper mantle is of increased importance compared to the large-scale subduction cycle observed for present temperature conditions. It is also observed that lithospheric downwellings may initiate subduction by

  2. Cretacic tectonics in Uruguay

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2012-01-01

    This work is about Cretacic tectonics in Uruguay, this formation is characterized by high level cortex because the basament is cratonized since Middle Devonian. There were formed two main grabens such as Santa Lucia and Mirim-Pelotas which are filled with basalt and sediments.

  3. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  4. Analysis of groundwater flow beneath ice sheets

    International Nuclear Information System (INIS)

    Boulton, G. S.; Zatsepin, S.; Maillot, B.

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix

  5. Gravitational and tectonic forces controlling the post-collisional deformation and present-day stress of the Alps. Insights from numerical modelling.

    NARCIS (Netherlands)

    Jimenez-Munt, I.; Garcia-Gastellanos, D.; Negredo, A.; Platt, J.

    2005-01-01

    We perform numerical modeling to investigate the mechanisms leading to the postcollisional tectonic evolution of the Alps. We model the lithospheric deformation as a viscous thin sheet with vertically averaged rheology and coupled with surface mass transport. The applied kinematic boundary

  6. Quarternary tectonics in the Lower Elbe region. Pt. 2

    International Nuclear Information System (INIS)

    Meyer, K.D.

    1980-01-01

    In the Lower Elbe region, quarternary tectonic movements cannot be excluded, neither on the basis of ground survey findings and exploratory drills nor by evaluation of topographic and geological maps and geoscientific literature. It can be stated that: 1) The deep quarternary channels are neither tectonic structures nor fossil river beds cut into a foreland assumed to have been raised by 300-400 m but, rather, subglacially deepened erosion valleys; this hypothesis is proved not only by their shape and course but also by their being filled with purely nordic material. 2) Fracture-tectonic terrace movements cannot be proved; disturbances in geest regions are due to unit shortening of ice, dead ice subsidences, etc. 3) The river beds in the Lower Elbe region do not follow tectonic lines, and hydrographic 'anomalies' in the Gorleben region are randomly constructed. 4) The so-called 'crust movements' in the north-west GDR are, among others, relative movements against sea level and have many components whose order of magnitude is difficult to estimate. In particular, the apparently undisturbed location of the lower Elbe terrace makes tectonic mobility and earthquake hazards appear highly improbable. 5) Subrosion sinks and collapse sinks have so far not been detected over the Gorleben salt dome, and their existence is highly improbable. (orig.) [de

  7. Cenozoic structures and the tectonic evolution of the eastern North Sea

    DEFF Research Database (Denmark)

    Clausen, O.R.; Nielsen, S.B.; Egholm, D.L.

    2011-01-01

    Abundant seismic sections and well data from the Cenozoic succession in the eastern North Sea area generally reveal normal faulting, salt tectonics and localized tectonic inversion. However, inferences on the Cenozoic dynamic evolution of the region require thorough analysis of interactions between...... or cover tectonism took place. Our objectives are thus 1) to analyze the interaction between basement and cover structures, and if possible 2) to relate the structures to the regional tectonic evolution. The Zechstein evaporites pinch out onto the Ringkøbing-Fyn High, which in the eastern North Sea...... influencede.g. Miocene deposition and controlled the generation of second order faults. The latter detached along the top Chalk Group due to the topography generated during faulting, i.e. they are second order detachment surfaces. We conclude that the regional tectonic significance of the Cenozoic structures...

  8. GeoBioScience: Red Wood Ants as Bioindicators for Active Tectonic Fault Systems in the West Eifel (Germany

    Directory of Open Access Journals (Sweden)

    Ulrich Schreiber

    2013-05-01

    Full Text Available In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.

  9. Assessment of relative active tectonics, south central Alborz (north Iran)

    Science.gov (United States)

    Khavari, R.; Ghorashi, M.; Arian, M.

    2009-04-01

    The paper present a method for evaluating relative active tectonics based on geomorphic indices useful in evaluating morphology and topography. Indices used include: stream length-gradient index (SL), drainage basin asymmetry (Af), hypsometric integral (Hi), ratio of valley-floor width to valley height (Vf), index of drainage basin shape (Bs), and index of mountain front sinuosity (Smf). Results from the analysis are accumulated and expressed as an index of relative active tectonics (Iat), which we divide into four classes from relatively low to highest tectonic activity. The study area along the south flank of the central Alborz mountain range in north Iran is an ideal location to test the concept of an index to predict relative tectonic activity on a basis of area rather than a single valley or mountain front. The recent investigations show that neotectonism has played a key role in the geomorphic evolution of this part of the Alborz mountain range. Geomorphic indices indicate the presence of differential uplifting in the geological past. The area surrounding the Amirkabir lake shows very high relative tectonic activity.

  10. Investigations of some rock stress measuring techniques and the stress field in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Tor Harald

    1998-12-31

    Rock stresses are important to the safe construction and operation of all man-made structures in rock, whether In mining, civil or petroleum engineering. The crucial issue is their relative magnitude and orientation. This thesis develops equipment and methods for further rock stress assessment and reevaluates existing overcoring rock stress measurements, and relates this information to the present geological setting. Both laboratory work and field work are involved. In the field, rock stresses are measured by the overcoring and the hydraulic fracturing technique. An observation technique for assessing likely high stresses is developed. The field data refer to several hydropower projects and to some offshore hydrocarbon fields. The principal sections are: (1) Tectonic setting in the western Fennoscandia, (2) Triaxial rock stress measurements by overcoring using the NTH cell (a strain gauge cell developed at the Norwegian technical university in Trondheim and based on the CSIR cell of the South African Council for Scientific and Industrial Research), (3) Laboratory testing of the NTH cell, (4) Quality ranking of stresses measured by the NTH cell, (4) Recalculated rock stresses and implications to the regional stress field, (5) Hydraulic fracturing stress measurements. 113 refs., 98 figs., 62 tabs.

  11. Investigations of some rock stress measuring techniques and the stress field in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Tor Harald

    1997-12-31

    Rock stresses are important to the safe construction and operation of all man-made structures in rock, whether In mining, civil or petroleum engineering. The crucial issue is their relative magnitude and orientation. This thesis develops equipment and methods for further rock stress assessment and reevaluates existing overcoring rock stress measurements, and relates this information to the present geological setting. Both laboratory work and field work are involved. In the field, rock stresses are measured by the overcoring and the hydraulic fracturing technique. An observation technique for assessing likely high stresses is developed. The field data refer to several hydropower projects and to some offshore hydrocarbon fields. The principal sections are: (1) Tectonic setting in the western Fennoscandia, (2) Triaxial rock stress measurements by overcoring using the NTH cell (a strain gauge cell developed at the Norwegian technical university in Trondheim and based on the CSIR cell of the South African Council for Scientific and Industrial Research), (3) Laboratory testing of the NTH cell, (4) Quality ranking of stresses measured by the NTH cell, (4) Recalculated rock stresses and implications to the regional stress field, (5) Hydraulic fracturing stress measurements. 113 refs., 98 figs., 62 tabs.

  12. Topography, stresses, and stability at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Swolfs, H.S.; Savage, W.Z.

    1985-01-01

    Plane-strain solutions are used to analyze the influence of topography on the state of stress at Yucca Mountain, Nye County, Nevada. The results are in good agreement with the measured stress components obtained in drill holes by the hydraulic-fracturing technique, particularly those measured directly beneath the crest of the ridge, and indicate that these stresses are gravitationally induced. A separate analysis takes advantage of the fact that a well-developed set of vertical faults and fractures, subparallel to the ridge trend, imparts a vertical transverse isotropy to the rock and that, as a consequence of gravitational loading, unequal horizontal stresses are induced in directions perpendicular and parallel to the anisotropy

  13. New conclusions about the tectonic structure in the Gandlova deposit of Czechoslovakia

    Energy Technology Data Exchange (ETDEWEB)

    Simecek, M

    1979-01-01

    The Gandlov coal deposit is confined to volcanic-sedimentary sections. The author examines examples of complex tectonic disturbances associated with the concept of landslide-gravitational tectonics. The consideration of such types of tectonic disturbances must be aided by the most modern technical means available.

  14. The African upper mantle and its relationship to tectonics and surface geology

    Science.gov (United States)

    Priestley, Keith; McKenzie, Dan; Debayle, Eric; Pilidou, Sylvana

    2008-12-01

    This paper focuses on the upper-mantle velocity structure of the African continent and its relationship to the surface geology. The distribution of seismographs and earthquakes providing seismograms for this study results in good fundamental and higher mode path coverage by a large number of relatively short propagation paths, allowing us to image the SV-wave speed structure, with a horizontal resolution of several hundred kilometres and a vertical resolution of ~50 km, to a depth of about 400 km. The difference in mantle structure between the Archean and Pan-African terranes is apparent in our African upper-mantle shear wave model. High-velocity (4-7 per cent) roots exist beneath the cratons. Below the West African, Congo and Tanzanian Cratons, these extend to 225-250 km depth, but beneath the Kalahari Craton, the high wave speed root extends to only ~170 km. With the exception of the Damara Belt that separates the Congo and Kalahari Cratons, any high-speed upper-mantle lid below the Pan-African terranes is too thin to be resolved by our long-period surface wave technique. The Damara Belt is underlain by higher wave speeds, similar to those observed beneath the Kalahari Craton. Extremely low SV-wave speeds occur to the bottom of our model beneath the Afar region. The temperature of the African upper mantle is determined from the SV-wave speed model. Large temperature variations occur at 125 km depth with low temperatures beneath west Africa and all of southern Africa and warm mantle beneath the Pan-African terrane of northern Africa. At 175 km depth, cool upper mantle occurs below the West African, Congo, Tanzanian and Kalahari Cratons and anomalously warm mantle occurs below a zone in northcentral Africa and beneath the region surrounding the Red Sea. All of the African volcanic centres are located above regions of warm upper mantle. The temperature profiles were fit to a geotherm to determine the thickness of the African lithosphere. Thick lithosphere exists

  15. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  16. Regional stressing rate appears to control duration and decay of off-fault aftershocks in the 2011 M=9.0 Tohoku-oki, Japan, earthquake

    Science.gov (United States)

    Toda, S.; Stein, R. S.

    2013-12-01

    The 11 March 2001 M=9.0 Tohoku-oki, Japan, earthquake brought the unprecedented broad increase in seismicity over inland Japan and far offshore. The seismicity rate increase was observed at distances of up to 425 km from the locus of high seismic slip on the megathrust, which roughly corresponds to the areas over 0.1 bar Coulomb stress increase (e.g., Toda et al., 2011). Such stress perturbation in the entire eastern Honshu island gives us a great opportunity to test one of the hypotheses in rate and state friction of Dieterich (1994): aftershock duration (ta) is inversely proportional to fault stressing rate. The Tohoku-oki mainshock indeed started a stopwatch simultaneously for all the off-fault and on-fault aftershocks in various tectonic situations. We have carefully examined the aftershock decays fitting the Omori-Utsu formula in several activated regions, including on the 2011 source fault, several inland areas of Tohoku (Akita, Iwaki, northern Sendai, and Fukushima), Tokyo metropolitan area, Choshi (east of Tokyo), Izu Peninsula, and areas along the most active Itoigawa-Shizuoka Tectonic Line (ISTL) central Honshu. Comparing the regional aftershock decays with the background rates of seismicity estimated from the JMA catalog from 2000 to 2010, we measured ta. One of the extreme short duration was measured at the Izu Peninsula where the heightened seismicity was rapidly toned down to the normal in one month. Overall seismicity in the Tohoku mainshock zone has been mostly closing to normal in 2 - 3 years. Both regions are characterized by high loading rate due to plate collision and subduction. Seismicity beneath Tokyo, also characterized by complex plate interfaces and brought average 1 bar closer to failure, has not followed the simple Omori decay but being settled a new higher rate after a rapid decay. In contrast to these highly deformed regions, current seismicity in slowly loading Tohoku inland regions are still much higher than background rate, which

  17. Plate tectonics in the late Paleozoic

    Directory of Open Access Journals (Sweden)

    Mathew Domeier

    2014-05-01

    Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.

  18. Tectonic evolution of Lavinia Planitia, Venus

    Science.gov (United States)

    Squyres, Steven W.; Frank, Sharon L.; Mcgill, George E.; Solomon, Sean C.

    1991-01-01

    High resolution radar images from the Magellan spacecraft have revealed the first details of the morphology of the Lavinia Planitia region of Venus. Lavinia is a broad lowland over 2000 km across, centered at about 45 deg S latitude, 345 deg E longitude. Herein, the tectonic evolution of Lavinia is discussed, and its possible relationship to processes operating in the planet's interior. The discussion is restricted to the region from 37.3 to 52.6 deg S latitude and from about 340 to 0 deg E longitude. One of the most interesting characteristics of Lavinia is that the entire region possesses a regional tectonic framework of striking regularity. Lavinia is also transected by a complex pattern of belts of intense tectonic deformation known as ridge belts. Despite the gross topographic similarity of all of the ridge belts in Lavinia, they exhibit two rather distinct styles of near surface deformation. One is composed of sets of broad, arch-like ridges rising above the surrounding plains. In the other type, obvious fold-like ridges are rare to absent in the radar images. Both type show evidence for small amounts of shear distributed across the belts.

  19. Mimas: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Mimas, the innermost of the major saturnian satellites, occupies an important place in comparative studies of icy satellites. It is the smallest icy satellite known to have a mostly spherical shape. Smaller icy objects like Hyperion and Puck are generally irregular in shape, while larger ones like Miranda and Enceladus are spherical. Thus Mimas is near the diameter where the combination of increasing surface gravity and internal heating begin to have a significant effect on global structure. The nature and extent of endogenic surface features provide important constraints on the interior structure and history of this transitional body. The major landforms on Mimas are impact craters. Mimas has one of the most heavily cratered surfaces in the solar system. The most prominent single feature on Mimas is Herschel, an unrelaxed complex crater 130 km in diameter. The only other recognized landforms on Mimas are tectonic grooves and lineaments. Groove locations were mapped by Schenk, but without analysis of groove structures or superposition relationships. Mimas' tectonic structures are remapped here in more detail than previously has been done, as part of a general study of tectonic features on icy satellites.

  20. Global tectonics and space geodesy

    Science.gov (United States)

    Gordon, Richard G.; Stein, Seth

    1992-01-01

    Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries of about 1 to 60 kilometers. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover approximately 15 percent of earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, provides the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities avaraged over millions of years.

  1. Plate tectonics, habitability and life

    Science.gov (United States)

    Spohn, Tilman; Breuer, Doris

    2016-04-01

    The role of plate tectonics in defining habitability of terrestrial planets is being increasingly discussed (e.g., Elkins-Tanton, 2015). Plate tectonics is a significantly evolved concept with a large variety of aspects. In the present context, cycling of material between near surface and mantle reservoirs is most important. But increased heat transport through mixing of cold lithosphere with the deep interior and formation of continental crust may also matter. An alternative mechanism of material cycling between these reservoirs is hot-spot volcanism combined with crust delamination. Hot-spot volcanism will transport volatiles to the atmosphere while delamination will mix crust, possibly altered by sedimentation and chemical reactions, with the mantle. The mechanism works as long as the stagnant lithosphere plate has not grown thicker than the crust and as long as volcanic material is added onto the crust. Thermal evolution studies suggest that the mechanism could work for the first 1-2 Ga of planetary evolution. The efficiency of the mechanism is limited by the ratio of extrusive to intrusive volcanism, which is thought to be less than 0.25. Plate tectonics would certainly have an advantage by working even for more evolved planets. A simple, most-used concept of habitability requires the thermodynamic stability of liquid water on the surface of a planet. Cycling of CO2between the atmosphere, oceans and interior through subduction and surface volcanism is an important element of the carbonate-silicate cycle, a thermostat feedback cycle that will keep the atmosphere from entering into a runaway greenhouse. Calculations for a model Earth lacking plate tectonics but degassing CO2, N, and H2O to form a surface ocean and a secondary atmosphere (Tosi et al, 2016) suggest that liquid water can be maintained on the surface for 4.5Ga. The model planet would then qualify as habitable. It is conceivable that the CO2 buffering capability of its ocean together with silicate

  2. Basement Structure and Styles of Active Tectonic Deformation in Central Interior Alaska

    Science.gov (United States)

    Dixit, N.; Hanks, C.

    2017-12-01

    Central Interior Alaska is one of the most seismically active regions in North America, exhibiting a high concentration of intraplate earthquakes approximately 700 km away from the southern Alaska subduction zone. Based on increasing seismological evidence, intraplate seismicity in the region does not appear to be uniformly distributed, but concentrated in several discrete seismic zones, including the Nenana basin and the adjacent Tanana basin. Recent seismological and neotectonics data further suggests that these seismic zones operate within a field of predominantly pure shear driven primarily by north-south crustal shortening. Although the location and magnitude of the seismic activity in both basins are well defined by a network of seismic stations in the region, the tectonic controls on intraplate earthquakes and the heterogeneous nature of Alaska's continental interior remain poorly understood. We investigated the current crustal architecture and styles of tectonic deformation of the Nenana and Tanana basins using existing geological, geophysical and geochronological datasets. The results of our study demonstrate that the basements of the basins show strong crustal heterogeneity. The Tanana basin is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. Northeast-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. The Nenana basin has a fundamentally different geometry; it is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Fault. This study identifies two distinct modes of tectonic deformation in central Interior Alaska at present, and provides a basis for modeling the interplay between intraplate stress fields and major structural features that potentially influence the generation of intraplate earthquakes in the region.

  3. Tectonic microplates in a wax model of sea-floor spreading

    International Nuclear Information System (INIS)

    Katz, Richard F; Ragnarsson, Rolf; Bodenschatz, Eberhard

    2005-01-01

    Rotating, growing microplates are observed in a wax analogue model of sea-floor spreading. Wax microplates are kinematically similar to sea-floor tectonic microplates in terms of spreading rate and growth rate. Furthermore, their spiral pseudofault geometry is quantitatively consistent with Schouten's oceanic microplate model. These results suggest that Schouten's edge-driven microplate model captures the kinematics of tectonic microplate evolution on Earth. Based on the wax observations, a theory for the nucleation of overlapping spreading centres, the precursors of tectonic microplates, is developed

  4. Test plan for in situ stress measurement system development

    International Nuclear Information System (INIS)

    Kim, K.

    1981-09-01

    The tests are to be performed to provide information regarding the state of stress of the basalt rock beneath the Hanford Site. This test series is designed to obtain information necessary to determine if hydrofracturing stress measurement is feasible in a fractured basalt medium. During the course of these field tests, it will be attempted to adapt the conventional hydrofracturing test method and analysis techniques to the basalt medium. If the test is shown to be feasible, more holes will be identified for testing. A comprehensive in situ stress determination program will be initiated. 2 figs

  5. Magmatic underplating beneath the Rajmahal Traps: Gravity ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Thickness of this layer varies from 16 km to the west of the Rajmahal towards north to .... The eastern boundary of the. Rajmahal .... field values of the crustal structure with flat transi- .... tions: Key indicators in applying plate tectonics to old rocks ...

  6. Quantitative analysis of the tectonic subsidence in the Potiguar Basin (NE Brazil)

    Science.gov (United States)

    Lopes, Juliana A. G.; de Castro, David L.; Bertotti, Giovanni

    2018-06-01

    The Potiguar Basin, located in the Brazilian Equatorial Margin, evolved from a complex rifting process implemented during the Atlantic Ocean opening in the Jurassic/Cretaceous. Different driving mechanisms were responsible for the onset of an aborted onshore rift and an offshore rift that initiated crustal rupture and the formation of a continental transform margin. Therefore, we applied the backstripping method to quantify the tectonic subsidence during the rift and post-rift phases of Potiguar Basin formation and to analyze the spatial variation of subsidence during the two successive and distinct tectonic events responsible for the basin evolution. The parameters required to apply this methodology were extracted from 2D seismic lines and exploratory well data. The tectonic subsidence curves present periods with moderate subsidence rates (up to 300 m/My), which correspond to the evolution of the onshore Potiguar Rift (∼141 to 128 Ma). From 128-118 Ma, the tectonic subsidence curves show no subsidence in the onshore Potiguar Basin, whereas subsidence occurred at high rates (over 300 m/My) in the offshore rift. The post-rift phase began ca. 118 Ma (Aptian), when the tectonic subsidence drastically slowed to less than 35 m/My, probably related to thermal relaxation. The tectonic subsidence rates in the various sectors of the Potiguar Rift, during the different rift phases, indicate that more intense faulting occurred in the southern portion of the onshore rift, along the main border faults, and in the southeastern portion of the offshore rift. During the post-rift phase, the tectonic subsidence rates increased from the onshore portion towards the offshore portion until the continental slope. The highest rates of post-rift subsidence (up to 35 m/My) are concentrated in the central region of the offshore portion and may be related to lithospheric processes related to the continental crust rupture and oceanic seafloor spreading. The variation in subsidence rates and

  7. Imaging Lithospheric-scale Structure Beneath Northern Altiplano in Southern Peru and Northern Bolivia

    Science.gov (United States)

    Kumar, A.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.

    2014-12-01

    The northern Altiplano plateau of southern Peru and northern Bolivia is one of the highest topographic features on the Earth, flanked by Western and Eastern Cordillera along its margin. It has strongly influenced the local and far field lithospheric deformation since the early Miocene (Masek et al., 1994). Previous studies have emphasized the importance of both the crust and upper mantle in the evolution of Altiplano plateau (McQuarrie et al., 2005). Early tomographic and receiver function studies, south of 16° S, show significant variations in the crust and upper mantle properties in both perpendicular and along strike direction of the Altiplano plateau (Dorbath et. al., 1993; Myers et al., 1998; Beck and Zandt, 2002). In order to investigate the nature of subsurface lithospheric structure below the northern Altiplano, between 15-18° S, we have determined three-dimensional seismic tomography models for Vp and Vs using P and S-wave travel time data from two recently deployed local seismic networks of CAUGHT and PULSE. We also used data from 8 stations from the PERUSE network (PERU Subduction Experiment). Our preliminary tomographic models show a complex variation in the upper mantle velocity structure with depth, northwest and southeast of lake Titicaca. We see the following trend, at ~85 km depth, northwest of lake Titicaca: low Vp and Vs beneath the Western Cordillera, high Vs beneath the Altiplano and low Vp and Vs beneath the Eastern Cordillera. This low velocity anomaly, beneath Eastern Cordillera, seems to coincide with Kimsachata, a Holocene volcano in southern Peru. At depth greater than ~85 km: we find high velocity anomaly beneath the Western Cordillera and low Vs beneath the Altiplano. This high velocity anomaly, beneath Western Cordillera, coincides with the well-located Wadati-Benioff zone seismicity and perhaps represents the subducting Nazca slab. On the southeast of lake Titicaca, in northern Bolivia, we see a consistently high velocity anomaly

  8. Lithosphere stress changes due to groundwater unloading in North China Plain

    Science.gov (United States)

    Pang, Yajin; Zhang, Huai; Shi, Yaolin

    2015-04-01

    During the past 50 years, excessive groundwater pumping has led to the continuous decline of groundwater table in North China Plain, which becomes one of the global hotspots of groundwater depletion. Over most of the rural areas of the plain, the shallow aquifer has experienced a water-table decline of more than 15m, with greater declines up to 50m in most urban centres, such as Beijing, Tangshan, Shijiangzhuang and so forth in 1960-2000. The entire groundwater depletion area covers a total area of approximately 56,273 km2 , more than 40% of the North China Plain. The vast area of enormous groundwater exploitation in North China Plain will definitely unload the lithosphere and create stress perturbations, the problem is if the stresses change large enough to affect tectonic activities. In this essay, we set up a 3 dimensional numerical visco-elastic model to discuss the effect of groundwater over-pumping on the lithosphere deformation and stress state in North China Plain. Based on the records of total groundwater-table decline during 1960-2010 in North China Plain, we estimate the accumulated deformation and lithosphere stress due to unloading of human-induced groundwater depletion. The area in the model ranges from 34° To 42°N, and 112° To 119°E, including the major groundwater depression cones in North China Plain. According to the simulating result, the maximum surface vertical uplift caused by groundwater unloading is 8cm. Meanwhile cumulative horizontal crustal stress changes near the surface goes up to 100kPa, and up to 40kPa at 15km depth where most earthquakes occurred in this area. The tectonic compressive stress rate is about 0.25kPa per year. Therefore, the stress changes due to groundwater pumping is significant compared with the tectonic driven stress changes. As China developed rapidly since 1978, the groundwater table mainly declined after 1978. Taking the earthquake catalog in the vicinity of groundwater depression zone into consideration, we

  9. Plate Tectonics as a Far-From-Equilibrium Self-Organized Dissipative System

    Science.gov (United States)

    Anderson, D. L.

    2001-12-01

    or the asthenosphere by hot upwellings. The study of soft matter, bubble rafts, foam, fragile systems, force bridges and jamming may give insights into the physics of plate tectonics. For example, plates might be defined as "force bridges" that carry lateral compression, but dissolve and reform if the stress system changes. In the plate tectonic problem it is not clear what, if anything, is being minimized. Is it dissipation, or toroidal energy or something else? This session should stimulate new ways of thinking about plates, plate boundaries and lithospheric rheology.

  10. Active Tectonics Revealed by River Profiles along the Puqu Fault

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2015-04-01

    Full Text Available The Puqu Fault is situated in Southern Tibet. It is influenced by the eastward extrusion of Northern Tibet and carries the clockwise rotation followed by the southward extrusion. Thus, the Puqu Fault is bounded by the principal dynamic zones and the tectonic evolution remains active alongside. This study intends to understand the tectonic activity in the Puqu Fault Region from the river profiles obtained from the remotely sensed satellite imagery. A medium resolution Digital Elevation Model (DEM, 20 m was generated from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER stereo pair of images and the stream network in this region was extracted from this DEM. The indices of slope and drainage area were subsequently calculated from this ASTER DEM. Based on the stream power law, the area-slope plots of the streams were delineated to derive the indices of channel concavity and steepness, which are closely related to tectonic activity. The results show the active tectonics varying significantly along the Puqu Fault, although the potential influence of glaciations may exist. These results are expected to be useful for a better understanding of tectonic evolution in Southeastern Tibet.

  11. 3-D Simulation of Tectonic Evolution in Mariana with a Coupled Model of Plate Subduction and Back-Arc Spreading

    Science.gov (United States)

    Hashima, A.; Matsu'Ura, M.

    2006-12-01

    We obtained the expressions for internal deformation fields due to a moment tensor in an elastic-viscoelastic layered holf-space. This unified formulation of internal deformation fields for shear faulting and crack opening enabled us to deal with the problem of tectonic deformation at a composite type of plate boundary zones. The tectonic deformation can be ascribed to mechanical interaction at plate boundaries, which make a closed circuit with the mode of relative plate motion changing from divergence to convergence through transcurrent motion. One of the rational ways to represent mechanical interaction at plate boundaries is specifying the increase rates of normal or tangential displacement discontinuity across plate interfaces. On the basis of such a basic idea we developed a 3-D simulation model for the nonlinear, coupled system of plate subduction and back-arc spreading in Mariana. Through numerical simulations we revealed the evolution process of back-arc spreading. At the first stage, steady plate subduction (shear faulting at a plate interface) gradually forms tensile stress fields in the back-arc region of the overriding plate. When the accumulated tensile stress reaches a critical level, back-arc spreading (crack opening) starts at a structurally weak portion of the overriding plate. The horizontal motion of the frontal part of the overriding plate due to back-arc spreading pushes out the plate boundary toward the oceanic plate. In steady-state plate subduction the shear stress acting on a plate interface must balance with the maximum frictional resistance (shear strength) of the plate interface. Therefore, the increase of shear stress at the plate interface leads to the increase of slip rate at the plate interface. The local increase of slip rate at the plate interface produces the additional tensile stress in the back-arc region. The increased tensile stress must be canceled out by the additional crack opening. Such a feedback mechanism between plate

  12. Venus tectonics: another Earth or another Mars

    International Nuclear Information System (INIS)

    McGill, G.E.

    1979-01-01

    The presence of presumably primordial large craters has led to the suggestion that Venus may have a thick lithosphere like that of Mars despite its similarities to Earth in size and density. However, crust and upper mantle temperatures on Venus are very likely higher than on Earth so that a dry Venus could have a lithosphere with a thickness similar to that of Earth. If a trace of volatiles is present in the mantle, the lithosphere of Venus could be thinner. Due to the absence of liquid water, erosion and deposition will be much slower on Venus than on Earth, favoring retention of primordial cratered surfaces on portions of the crust that have not been destroyed or buried by tectonic and volcanic activity. Geochemical models of solar system origin and petrological considerations suggest that K is about as abundant in Venus as in Earth. The abundance of 40 Ar in the atmosphere of Venus lies somewhere between the Earth value and one-tenth of the Earth value. Because erosional liberation of 40 Ar on Venus will be relatively inefficient, this range for 40 Ar abundance at least permits an active tectonic history, and if the 40 Ar abundance is towards the high end of the range, it may well require an active tectonic history. Thus we are not constrained to a Mars-like model of Venus tectonics by craters and possible mantle dryness; an Earth-like model is equally probable

  13. New constraints on the crustal structure beneath northern Tyrrhenian Sea

    Science.gov (United States)

    Levin, V. L.; Park, J. J.

    2009-12-01

    We present new seismological data on the seismic structure beneath the Tyrrhenian Sea between Corsica and the coast of Italy. Teleseismic receiver functions from two Tyrrhenian islands (Elba and Gorgona) identify clear P-to-S mode-converted waves from two distinct interfaces, at ~20 and ~45 km depth. Both interfaces are characterized by an increase of seismic wavespeed with depth. Using a summation of direct and multiply-reflected body waves within the P wave coda we estimate the mean ratio of compressional and shear wave speeds above the 45 km interface to be 1.75-1.80. Using reflectivity computations in 1D layered models we develop a model of seismic wavespeed distribution that yields synthetic seismograms very similar to those observed. We apply a Ps-multiple summation procedure to the synthetic waveforms to further verify the match between observed and predicted wavefields. The lower layer of our model, between 20 and 45 km, has Vp ~ 7.5 km/sec, a value that can be ascribed to either very fast crustal rocks or very slow upper mantle rocks. The Vp/Vs ratio is ~1.8 in this intermediate layer. On the basis of a well-constrained downward increase in seismic wave speed beneath this second layer, we interpret it as the magmatically reworked lower crust, a lithology that has been proposed to explain high-Vp layers in the crustal roots of island-arc terranes and volcanically altered continental margins, as well as lower-crustal high-Vp features sometimes seen beneath continental rifts. The presence of a thick layer of high-Vp, but crustal, lithology beneath the Tyrrhenian Sea differs considerably from previous estimates that interpreted the interface at ~20 km as the Moho. Our new interpretation obviates a need for a crustal thickness change of over 20 km at the crest of the Apennines orogen. We propose an alteration in the properties of the lower crust instead. We argue that ongoing convergent subduction of the Adriatic lithospehre is not required beneath northern

  14. Framework for Tectonic Thinking, a Conceptual Tool of the Architect

    DEFF Research Database (Denmark)

    Garritzmann, Udo

    2017-01-01

    This paper is a contribution to the understanding of the term tectonics in the field of architectural design theory. It considers tectonic thinking as a ‘tool of the architect’ to analyse and interpret buildings from the past, to be operative in design practices of the present, and to trigger...... imaginations for the future. Contextualisation: In architectural theory the term tectonics was introduced not until the first half of the 19th century, to more or less disappear from it again with the rise of the modern movement. Only from the 1980ies onwards the term has gained renewed critical attention......: To answer the research question, this paper will develop an overarching Framework for Tectonic Thinking (FTT) by combining three different categories loadbearing construction, type of construction and constructive expression with the following oppositional poles as distinguishing criteria: loadbearing...

  15. The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution

    Science.gov (United States)

    Madon, Mazlan; Kim, Cheng Ly; Wong, Robert

    2013-10-01

    The structural-stratigraphic history of the North Luconia Province, Sarawak deepwater area, is related to the tectonic history of the South China Sea. The Sarawak Basin initiated as a foreland basin as a result of the collision of the Luconia continental block with Sarawak (Sarawak Orogeny). The foreland basin was later overridden by and buried under the prograding Oligocene-Recent shelf-slope system. The basin had evolved through a deep foreland basin ('flysch') phase during late Eocene-Oligocene times, followed by post-Oligocene ('molasse') phase of shallow marine shelf progradation to present day. Seismic interpretation reveals a regional Early Miocene Unconformity (EMU) separating pre-Oligocene to Miocene rifted basement from overlying undeformed Upper Miocene-Pliocene bathyal sediments. Seismic, well data and subsidence analysis indicate that the EMU was caused by relative uplift and predominantly submarine erosion between ˜19 and 17 Ma ago. The subsidence history suggests a rift-like subsidence pattern, probably with a foreland basin overprint during the last 10 Ma. Modelling results indicate that the EMU represents a major hiatus in the sedimentation history, with an estimated 500-2600 m of missing section, equivalent to a time gap of 8-10 Ma. The EMU is known to extend over the entire NW Borneo margin and is probably related to the Sabah Orogeny which marks the cessation of sea-floor spreading in the South China Sea and collision of Dangerous Grounds block with Sabah. Gravity modelling indicates a thinned continental crust underneath the Sarawak shelf and slope and supports the seismic and well data interpretation. There is a probable presence of an overthrust wedge beneath the Sarawak shelf, which could be interpreted as a sliver of the Rajang Group accretionary prism. Alternatively, magmatic underplating beneath the Sarawak shelf could equally explain the free-air gravity anomaly. The Sarawak basin was part of a remnant ocean basin that was closed by

  16. A new Triassic shortening-extrusion tectonic model for Central-EasternAsia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)

    Science.gov (United States)

    Zhao, Pan; Faure, Michel; Chen, Yan; Xu, Bei

    2017-04-01

    tectonic model for Central-Eastern Asia is firstly proposed. The NNW-SSE shortening results in the eastward extrusion of the continental wedge bounded by the BCF and EGF, which is accommodated by the different kinematic patterns of the southern (XMF and BCF) and northwestern (EGF) bounding faults. This shortening-extrusion tectonic framework is tentatively interpreted as the result of the far field forces associated with three Late Triassic lithosphere-scale convergences in East Asia: i)northward intracontinental subduction between the NCB and South China Block, ii)collision of the Qiangtang Block with the Qaidam Block, and iii)southward subduction of the Mongol-Okhotsk Ocean beneath the Mongolia Block.

  17. New insight on the recent tectonic evolution and uplift of the southern Ecuadorian Andes from gravity and structural analysis of the Neogene-Quaternary intramontane basins

    Science.gov (United States)

    Tamay, J.; Galindo-Zaldívar, J.; Ruano, P.; Soto, J.; Lamas, F.; Azañón, J. M.

    2016-10-01

    The sedimentary basins of Loja, Malacatos-Vilcabamba and Catamayo belong to the Neogene-Quaternary synorogenic intramontane basins of South Ecuador. They were formed during uplift of the Andes since Middle-Late Miocene as a result of the Nazca plate subduction beneath the South American continental margin. This E-W compressional tectonic event allowed for the development of NNE-SSW oriented folds and faults, determining the pattern and thickness of sedimentary infill. New gravity measurements in the sedimentary basins indicate negative Bouguer anomalies reaching up to -292 mGal related to thick continental crust and sedimentary infill. 2D gravity models along profiles orthogonal to N-S elongated basins determine their deep structure. Loja Basin is asymmetrical, with a thickness of sedimentary infill reaching more than 1200 m in the eastern part, which coincides with a zone of most intense compressive deformation. The tectonic structures include N-S, NW-SE and NE-SW oriented folds and associated east-facing reverse faults. The presence of liquefaction structures strongly suggests the occurrence of large earthquakes just after the sedimentation. The basin of Malacatos-Vilcabamba has some folds with N-S orientation. However, both Catamayo and Malacatos-Vilcabamba basins are essentially dominated by N-S to NW-SE normal faults, producing a strong asymmetry in the Catamayo Basin area. The initial stages of compression developed folds, reverse faults and the relief uplift determining the high altitude of the Loja Basin. As a consequence of the crustal thickening and in association with the dismantling of the top of the Andes Cordillera, extensional events favored the development of normal faults that mainly affect the basins of Catamayo and Malacatos-Vilcabamba. Gravity research helps to constrain the geometry of the Neogene-Quaternary sedimentary infill, shedding some light on its relationship with tectonic events and geodynamic processes during intramontane basin

  18. Tectonic blocks and suture zones of eastern Thailand: evidence from enhanced airborne geophysical analysis

    Directory of Open Access Journals (Sweden)

    Arak Sangsomphong

    2013-04-01

    Full Text Available Airborne geophysical data were used to analyze the complex structures of eastern Thailand. For visual interpretation, the magnetic data were enhanced by the analytical signal, and we used reduction to the pole (RTP and vertical derivative (VD grid methods, while the radiometric data were enhanced by false-colored composites and rectification. The main regional structure of this area trends roughly in northwest-southeast direction, with sinistral faulting movements. These are the result of compression tectonics (sigma_1 in an east-west direction that generated strike-slip movement during the pre Indian-Asian collision. These faults are cross-cut by the northeast-southwest-running sinistral fault and the northwest-southeast dextral fault, which occurred following the Indian-Asian collision, from the transpession sinistral shear in the northwest-southeast direction. Three distinct geophysical domains are discernible; the Northern, Central and Southern Domains. These three domains correspond very well with the established geotectonic units, as the Northern Domain with the Indochina block, the Central Domain with the Nakhonthai block, the Upper Southern Sub-domain with the Lampang-Chaing Rai block, and the Lower Southern Sub-domain with the Shan Thai block. The Indochina block is a single unit with moderate radiometric intensities and a high magnetic signature. The direction of the east-west lineament pattern is underlain by Mesozoic non-marine sedimentary rock, with mafic igneous bodies beneath this. The Nakhonthai block has a strong magnetic signature and a very weak radiometric intensity, with Late Paleozoic-Early Mesozoic volcanic rock and mélange zones that are largely covered by Cenozoic sediments. The boundaries of this block are the southern extension of the Mae Ping Faults and are oriented in the northwest-southeast direction. The Lampang-Chaing Rai and Shan Thai blocks, with very weak to moderate magnetic signatures and moderate to very

  19. Spontaneous growth of whiskers from an interlayer of Mo sub 2 C beneath a diamond particle deposited in a combustion-flame

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Katsuyuki; Komatsu, Shojiro; Ishigaki, Takamasa; Matsumoto, Seiichiro; Moriyoshi, Yusuke (National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan))

    1992-02-01

    When diamond particles deposited on a molybdenum substrate in a C{sub 2}H{sub -}O{sub 2} combustion-flame were kept for one year in the ambient atmosphere at room temperature, spontaneous whisker growth from an interlayer of Mo{sub 2}C beneath the diamond particles took place. The whiskers were clarified by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM) in a polycrystal composed of MoO{sub 2}, MoOC, and Mo{sub 2}C. The growth mechanism of them is discussed from two different points of view as follows: One is that the oxidation of an interlayer of Mo{sub 2}C beneath a diamond particle effectively reduces the surface free energy between the interlayer and diamond particle; consequently, the whisker can grow by using a screw dislocation. The other is that the internal stress existing between a diamond particle and an Mo{sub 2}C interlayer provides a very reactive zone where the growth of whisker takes place through the oxidation of Mo{sub 2}C. (orig.).

  20. Identifying tectonic parameters that influence tsunamigenesis

    Science.gov (United States)

    van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca

    2017-04-01

    The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.

  1. U-Pb Detrital Zircon Ages from Sarawak: Changes in Provenance Reflecting the Tectonic Evolution of Southeast Asia

    Science.gov (United States)

    Breitfeld, H. T.; Galin, T.; Hall, R.

    2014-12-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. Five sedimentary basins are distinguished with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic of the Sadong-Kuching Basin and were sourced by a Carnian to Norian volcanic arc and erosion of Cathaysian rocks containing zircons of Paleoproterozoic age. Sandstones of the Upper Jurassic to Cretaceous Bau-Pedawan Basin have distinctive zircon populations indicating a major change of tectonic setting, including initiation of subduction below present-day West Sarawak in the Late Jurassic. A wide range of inherited zircon ages indicates various Cathaysian fragments as major source areas and the arrival of the SW Borneo Block following subduction beneath the Schwaner Mountains in the early Late Cretaceous. After collision of the SW Borneo Block and the microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension were responsible for basin development on land from the latest Cretaceous onwards, probably in a strike-slip setting. The first episode formed the Kayan Basin in the Latest Cretaceous (Maastrichtian) to Early Paleocene, and the second formed the Ketungau Basin and the Penrissen Sandstone in the Middle to Late Eocene. Zircons indicate nearby volcanic activity throughout the Early Cenozoic in NW Borneo. Inherited zircon ages indicate an alternation between Borneo and Tin Belt source rocks. A large deep marine basin, the Rajang Basin, formed north of the Lupar Line fault. Zircons from sediments of the Rajang Basin indicate they are of similar age and provenance as the contemporaneous terrestrial sediments to the south suggesting a narrow steep continental Sundaland margin at the

  2. Influence of the lithosphere-asthenosphere boundary on the stress field northwest of the Alps

    Science.gov (United States)

    Maury, J.; Cornet, F. H.; Cara, M.

    2014-11-01

    In 1356, a magnitude 6-7 earthquake occurred near Basel, in Switzerland. But recent compilations of GPS measurements reveal that measured horizontal deformation rates in northwestern continental Europe are smaller than error bars on the measurements, proving present tectonic activity, if any, is very small in this area. We propose to reconcile these apparently antinomic observations with a mechanical model of the lithosphere that takes into account the geometry of the lithosphere-asthenosphere boundary, assuming that the only loading mechanism is gravity. The lithosphere is considered to be an elastoplastic material satisfying a Von Mises plasticity criterion. The model, which is 400 km long, 360 km wide and 230 km thick, is centred near Belfort in eastern France, with its width oriented parallel to the N145°E direction. It also takes into account the real topography of both the ground surface and that of the Moho discontinuity. Not only does the model reproduce observed principal stress directions orientations, it also identifies a plastic zone that fits roughly the most seismically active domain of the region. Interestingly, a somewhat similar stress map may be produced by considering an elastic lithosphere and an ad-hoc horizontal `tectonic' stress field. However, for the latter model, examination of the plasticity criterion suggests that plastic deformation should have taken place. It is concluded that the present-day stress field in this region is likely controlled by gravity and rheology, rather than by active Alpine tectonics.

  3. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    International Nuclear Information System (INIS)

    Frey, H.

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics

  4. Laboratory triggering of stick-slip events by oscillatory loading in the presence of pore fluid with implications for physics of tectonic tremor

    Science.gov (United States)

    Bartlow, Noel M.; Lockner, David A.; Beeler, Nicholas M.

    2012-01-01

    The physical mechanism by which the low-frequency earthquakes (LFEs) that make up portions of tectonic (also called non-volcanic) tremor are created is poorly understood. In many areas of the world, tectonic tremor and LFEs appear to be strongly tidally modulated, whereas ordinary earthquakes are not. Anomalous seismic wave speeds, interpreted as high pore fluid pressure, have been observed in regions that generate tremor. Here we build upon previous laboratory studies that investigated the response of stick-slip on artificial faults to oscillatory, tide-like loading. These previous experiments were carried out using room-dry samples of Westerly granite, at one effective stress. Here we augment these results with new experiments on Westerly granite, with the addition of varying effective stress using pore fluid at two pressures. We find that raising pore pressure, thereby lowering effective stress can significantly increase the degree of correlation of stick-slip to oscillatory loading. We also find other pore fluid effects that become important at higher frequencies, when the period of oscillation is comparable to the diffusion time of pore fluid into the fault. These results help constrain the conditions at depth that give rise to tidally modulated LFEs, providing confirmation of the effective pressure law for triggering and insights into why tremor is tidally modulated while earthquakes are at best only weakly modulated.

  5. Phanerozoic tectonic evolution of the Circum-North Pacific

    Science.gov (United States)

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along

  6. Geophysical investigations of underplating at the Middle American Trench, weathering in the critical zone, and snow water equivalent in seasonal snow

    Science.gov (United States)

    St. Clair, James

    This dissertation consists of four chapters that are broadly related through the use of geophysical methods to investigate Earth processes. In Chapter 1, an along-strike seismic reflection/refraction data set is used to investigate the plate boundary beneath the forearc offshore Costa Rica. The convergent margin offshore Costa Rica is representative of the 19,000 km of subduction zones that are considered to be erosive, or that experience a net mass loss over time. At these margins, sediments along with material that is tectonically eroded from the overlying plate are presumably carried down the subduction zones and recycled into the mantle. In addition to the mass that they represent, sediments, eroded upper-plate material, and subducted oceanic crust carry fluids into the subduction zone, which influence both magma generating processes and the chemical composition of arc lavas. Thus, understanding the ultimate fate of subducted material along these margins is critical for evaluating both the chemical and mass balances. Beneath the forearc offshore Costa Rica, we observe an ˜40 km long, 1-to-3 km-thick lens of material sitting directly above the subducting Cocos plate. Directly above this lens, the forearc shows evidence for long-term uplift consistent with the steady growth of this lens. Our results suggest that the convergent margin at Costa Rica experience simultaneous outer-forearc erosion and underplating beneath the inner forearc. In Chapter 2, a combination of three-dimensional stress modeling and landscape scale geophysical imaging is used to test the hypothesis that topographic perturbations to regional stress fields control lateral variations in bedrock permeability. The permeability of bedrock fractures influences groundwater flow, water and nutrient availability for biota, chemical weathering rates, and the long-term evolution of life-sustaining layer at Earth's surface commonly referred to as the "critical zone" (CZ). The results of this study

  7. A new plate tectonic concept for the eastern-most Mediterranean

    Science.gov (United States)

    Huebscher, C.; McGrandle, A.; Scaife, G.; Spoors, R.; Stieglitz, T.

    2012-04-01

    Owing to the seismogenic faults bordering the Levant-Sinai realm and the discovery of giant gas reservoirs in the marine Levant Basin the scientific interest in this tectonically complex setting increased in recent years. Here we provide a new model for the Levant Basin architecture and adjacent plate boundaries emphasizing the importance of industrial seismic data for frontier research in earth science. PSDM seismics, residual gravity and depth to basement maps give a clear line of evidence that the Levant Basin, formerly considered as a single tectonic entity, is divided into two different domains. Highly stretched continental crust in the southern domain is separated from deeper and presumably Tethyan oceanic crust in the north. A transform continuing from southwest Cyprus to the Carmel Fault in northern Israel is considered as the boundary. If this interpretation holds, the Carmel-Cyprus Transform represents a yet unknown continent-ocean boundary in the eastern Mediterranean, thus adding new constrains for the Mediterranean plate tectonic puzzle. The Eratosthenes Seamount, considered as the spearhead of incipient continental collision in the eastern Mediterranean, is interpreted as a carbonate platform that developed above a volcanic basement. NW-SE trending strike-slip faults are abundant in the entire Levant region. Since this trend also shapes the topography of the Levant hinterland including Quaternary deposits their recent tectonic activity is quite likely. Thus, our study supports previous studies which attributed the evolution of submarine canyons and Holocene triggering of mass failures not only to salt tectonics or depositional processes, but also to active plate-tectonics.

  8. Tectonic characteristics and structural styles of a continental rifted basin: Revelation from deep seismic reflection profiles

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-09-01

    Full Text Available The Fushan Depression is a half-graben rifted sub-basin located in the southeast of the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the sub-basin. Using three-dimensional (3-D seismic data and logging data over the sub-basin, we analyzed structural styles and sedimentary characteristics of the Liushagang sequence. Five types of structural styles were defined: ancient horst, traditional slope, flexure slope-break, faulted slope-break and multiple-stage faults slope, and interpretations for positions, background and development formations of each structural style were discussed. Structural framework across the sub-basin reveals that the most remarkable tectonic setting is represented by the central transfer zone (CTZ which divides the sub-basin into two independent depressions, and two kinds of sequence architectures are summarized: (i the western multi-stage faults slope; (ii the eastern flexure slope break belt. Combined with regional stress field of the Fushan Depression, we got plane combinations of the faults, and finally built up plan distribution maps of structural system for main sequence. Also, we discussed the controlling factors mainly focused on subsidence history and background tectonic activities such as volcanic activity and earthquakes. The analysis of structural styles and tectonic evolution provides strong theoretical support for future prospecting in the Fushan sub-basin and other similar rifted basins of the Beibuwan Basin in South China Sea.

  9. Fault kinematics and active tectonics of the Sabah margin: Insights from the 2015, Mw 6.0, Mt. Kinabalu earthquake

    Science.gov (United States)

    Wang, Y.; Wei, S.; Tapponnier, P.; WANG, X.; Lindsey, E.; Sieh, K.

    2016-12-01

    A gravity-driven "Mega-Landslide" model has been evoked to explain the shortening seen offshore Sabah and Brunei in oil-company seismic data. Although this model is considered to account simultaneously for recent folding at the edge of the submarine NW Sabah trough and normal faulting on the Sabah shelf, such a gravity-driven model is not consistent with geodetic data or critical examination of extant structural restorations. The rupture that produced the 2015 Mw6.0 Mt. Kinabalu earthquake is also inconsistent with the gravity-driven model. Our teleseismic analysis shows that the centroid depth of that earthquake's mainshock was 13 to 14 km, and its favored fault-plane solution is a 60° NW-dipping normal fault. Our finite-rupture model exhibits major fault slip between 5 and 15 km depth, in keeping with our InSAR analysis, which shows no appreciable surface deformation. Both the hypocentral depth and the depth of principal slip are far too deep to be explained by gravity-driven failure, as such a model would predict a listric normal fault connecting at a much shallower depth with a very gentle detachment. Our regional mapping of tectonic landforms also suggests the recent rupture is part of a 200-km long system of narrowly distributed active extension in northern Sabah. Taken together, the nature of the 2015 rupture, the belt of active normal faults, and structural consideration indicate that active tectonic shortening plays the leading role in controlling the overall deformation of northern Sabah and that deep-seated, onland normal faulting likely results from an abrupt change in the dip-angle of the collision interface beneath the Sabah accretionary prism.

  10. Variable crustal thickness beneath Thwaites Glacier revealed from airborne gravimetry, possible implications for geothermal heat flux in West Antarctica

    Science.gov (United States)

    Damiani, Theresa M.; Jordan, Tom A.; Ferraccioli, Fausto; Young, Duncan A.; Blankenship, Donald D.

    2014-12-01

    Thwaites Glacier has one of the largest glacial catchments in West Antarctica. The future stability of Thwaites Glacier's catchment is of great concern, as this part of the West Antarctic Ice Sheet has recently been hypothesized to already be en route towards collapse. Although an oceanic trigger is thought to be responsible for current change at the grounding line of Thwaites Glacier, in order to determine the effects of this coastal change further in the interior of the West Antarctic Ice Sheet it is essential to also better constrain basal conditions that control the dynamics of fast glacial flow within the catchment itself. One major contributor to fast glacial flow is the presence of subglacial water, the production of which is a result of both glaciological shear heating and geothermal heat flux. The primary goal of our study is to investigate the crustal thickness beneath Thwaites Glacier, which is an important contributor to regional-scale geothermal heat flux patterns. Crustal structure is an indicator of past tectonic events and hence provides a geophysical proxy for the thermal status of the crust and mantle. Terrain-corrected Bouguer gravity disturbances are used here to estimate depths to the Moho and mid-crustal boundary. The thin continental crust we reveal beneath Thwaites Glacier supports the hypothesis that the West Antarctic Rift System underlies the region and is expressed topographically as the Byrd Subglacial Basin. This rifted crust is of similar thickness to that calculated from airborne gravity data beneath neighboring Pine Island Glacier, and is more extended than crust in the adjacent Siple Coast sector of the Ross Sea Embayment. A zone of thinner crust is also identified near the area's subaerial volcanoes lending support to a recent interpretation predicting that this part of Marie Byrd Land is a major volcanic dome, likely within the West Antarctic Rift System itself. Near-zero Bouguer gravity disturbances for the subglacial highlands

  11. Heterogeneous Structure and Seismicity beneath the Tokyo Metropolitan Area

    Science.gov (United States)

    Nakagawa, S.; Kato, A.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Kurashimo, E.; Obara, K.; Kasahara, K.; Aketagawa, T.; Kimura, H.; Hirata, N.

    2010-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. Sato et al. (2005) revealed the geometry of upper surface of PSP, and Hagiwara et al. (2006) estimated the velocity structure beneath Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the Tokyo metropolitan area including those due to an intra-slab M7+ earthquake. So, we launched the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area (Hirata et al., 2009). Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) and stress field within PSP is very important to attain this issue. The core item of this project is a dense seismic array called Metropolitan Seismic Observation network (MeSO-net) for making observations in the metropolitan area (Sakai and Hirata, 2009; Kasahara et al., 2009). We deployed the 249 seismic stations with a spacing of 5 km. Some parts of stations construct 5 linear arrays at interval of 2 km such as Tsukuba-Fujisawa (TF) array, etc. The TF array runs from northeast to southwest through the center of Tokyo. In this study, we applied the tomography method to image the heterogeneous structure under the Tokyo metropolitan area. We selected events from the Japan Meteorological Agency (JMA) unified earthquake list. All data of MeSO-net were edited into event data by the selected JMA unified earthquake list. We picked the P and S wave arrival times. The total number of stations and events are 421 and 1,256, respectively. Then, we applied the double-difference tomography method (Zhang and Thurber, 2003) to this dataset and estimated the fine-scale velocity structure. The grid nodes locate 10 km interval in parallel with the array, 20 km interval in perpendicular to the array; and on depth direction, 5 km interval to a depth of less than 50 km and 10 km interval at a depth of more

  12. Estimates of stress drop and crustal tectonic stress from the 27 February 2010 Maule, Chile, earthquake: Implications for fault strength

    Science.gov (United States)

    Luttrell, K.M.; Tong, X.; Sandwell, D.T.; Brooks, B.A.; Bevis, M.G.

    2011-01-01

    The great 27 February 2010 Mw 8.8 earthquake off the coast of southern Chile ruptured a ???600 km length of subduction zone. In this paper, we make two independent estimates of shear stress in the crust in the region of the Chile earthquake. First, we use a coseismic slip model constrained by geodetic observations from interferometric synthetic aperture radar (InSAR) and GPS to derive a spatially variable estimate of the change in static shear stress along the ruptured fault. Second, we use a static force balance model to constrain the crustal shear stress required to simultaneously support observed fore-arc topography and the stress orientation indicated by the earthquake focal mechanism. This includes the derivation of a semianalytic solution for the stress field exerted by surface and Moho topography loading the crust. We find that the deviatoric stress exerted by topography is minimized in the limit when the crust is considered an incompressible elastic solid, with a Poisson ratio of 0.5, and is independent of Young's modulus. This places a strict lower bound on the critical stress state maintained by the crust supporting plastically deformed accretionary wedge topography. We estimate the coseismic shear stress change from the Maule event ranged from-6 MPa (stress increase) to 17 MPa (stress drop), with a maximum depth-averaged crustal shear-stress drop of 4 MPa. We separately estimate that the plate-driving forces acting in the region, regardless of their exact mechanism, must contribute at least 27 MPa trench-perpendicular compression and 15 MPa trench-parallel compression. This corresponds to a depth-averaged shear stress of at least 7 MPa. The comparable magnitude of these two independent shear stress estimates is consistent with the interpretation that the section of the megathrust fault ruptured in the Maule earthquake is weak, with the seismic cycle relieving much of the total sustained shear stress in the crust. Copyright 2011 by the American

  13. Scaling and spatial complementarity of tectonic earthquake swarms

    KAUST Repository

    Passarelli, Luigi

    2017-11-10

    Tectonic earthquake swarms (TES) often coincide with aseismic slip and sometimes precede damaging earthquakes. In spite of recent progress in understanding the significance and properties of TES at plate boundaries, their mechanics and scaling are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments activated by earlier swarms, which suggests efficient strain release and aseismic slip. The fault area illuminated by earthquakes during swarms may be more representative of the total moment release than the cumulative moment of the swarm earthquakes. We use these findings and other published results from a variety of tectonic settings to discuss general scaling properties for TES. The results indicate that the importance of TES in releasing tectonic strain at plate boundaries may have been underestimated.

  14. The tectonic significance of the Cabo Frio Tectonic Domain in the SE Brazilian margin: a Paleoproterozoic through Cretaceous saga of a reworked continental margin

    Directory of Open Access Journals (Sweden)

    Renata da Silva Schmitt

    Full Text Available ABSTRACT: The Cabo Frio Tectonic Domain is composed of a Paleoproterozoic basement tectonically interleaved with Neoproterozoic supracrustal rocks (Buzios-Palmital successions. It is in contact with the Neoproterozoic-Cambrian Ribeira Orogen along the SE Brazilian coast. The basement was part of at least three continental margins: (a 1.97 Ga; (b 0.59 - 0.53 Ga; (c 0.14 Ga to today. It consists of continental magmatic arc rocks of 1.99 to 1.94 Ga. Zircon cores show a 2.5 - 2.6 Ga inheritance from the ancient margin of the Congo Craton. During the Ediacaran, this domain was thinned and intruded by tholeiitic mafic dykes during the development of an oceanic basin at ca. 0.59 Ma. After the tectonic inversion, these basin deposits reached high P-T metamorphic conditions, by subduction of the oceanic lithosphere, and were later exhumed as nappes over the basement. The Cabo Frio Tectonic Domain collided with the arc domain of the Ribeira Orogen at ca. 0.54 Ga. It is not an exotic block, but the eastern transition between this orogen and the Congo Craton. Almost 400 m.y. later, the South Atlantic rift zone followed roughly this suture, not coincidently. It shows how the Cabo Frio Tectonic Domain was reactivated as a continental margin in successive extensional and convergent events through geological time.

  15. Identification of tectonic deformations on the south polar surface of the moon

    Science.gov (United States)

    Mukherjee, Saumitra; Singh, Priyadarshini

    2015-07-01

    Recent extensional and contractional tectonic features present globally over the lunar surface have been studied to infer lunar crustal tectonism. Investigation of indicators of recent crustal tectonics, such as fault lines, thrust fault scarps, and dislocation of debris along the identified fault planes, primarily using data from the miniature-synthetic aperture radar (mini-SAR) aboard CHANDRAYAAN-1 mission and Narrow angle camera (NAC) images, are the focus of this study. Spatial orientation of these tectonic features helps to elucidate the change in the interior geological dynamics of any planetary body with time. The ability of microwave sensors to penetrate the lunar regolith, along with application of m-χ decomposition method on Mini-SAR data has been used to reveal unique features indicative of hidden tectonics. The m-χ decomposition derived radar images expose hidden lineaments and lobate scarps present within shadowed crater floors as well as over the illuminated regions of the lunar surface. The area around and within Cabeus B crater in the South Polar Region contains lobate scarps, hidden lineaments and debris avalanches (associated with the identified lineaments) indicative of relatively recent crustal tectonism.

  16. Continental tectonics and continental kinetics

    International Nuclear Information System (INIS)

    Allegre, C.J.; Jaupart, C.; Paris-7 Univ., 75

    1985-01-01

    We present a model of continental growth which combines the results of geochemical studies and tectonic ideas about the evolution of continents through geological time. The process of continental growth is mainly controlled by surface phenomena. Continental material is extracted from the mantle along subduction zones at the periphery of oceans, and is destroyed in collision zones where it is remobilized and made available for subduction. We derive an equation for S, the portion of the Earth's surface occupied by continents, which reads as follows: dS/dt=a . √(1-S)-b . S. Coefficients a and b depend on the geometry of plates, on their number and on their velocities. We assume that they decrease exponentially with time with the same time-scale α. This model satisfies both geochemical and tectonic constraints, and allows the integration of several current observations in a single framework. (orig.)

  17. Seismo-tectonic model regarding the genesis and occurrence of Vrancea (Romania) earthquakes

    International Nuclear Information System (INIS)

    Enescu, D.; Enescu, B.D.

    1998-01-01

    The first part of this paper contains a very short description of some previous attempts in seismo-tectonic modeling of Vrancea zone. The seismo-tectonic model developed by the authors of this work is presented in the second part of the paper. This model is based on the spatial distribution of hypo-centers and focal mechanism characteristics. Lithosphere structure and tectonics of the directly implied zones represent very important characteristics of the seismo-tectonic model. Some two-dimensional and three-dimensional sketches of the model, which satisfy all the above mentioned characteristics and give realistic explanations regarding the genesis and occurrence of Vrancea earthquakes are presented. (authors)

  18. Stagnant lid tectonics: Perspectives from silicate planets, dwarf planets, large moons, and large asteroids

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2018-01-01

    Full Text Available To better understand Earth's present tectonic style–plate tectonics–and how it may have evolved from single plate (stagnant lid tectonics, it is instructive to consider how common it is among similar bodies in the Solar System. Plate tectonics is a style of convection for an active planetoid where lid fragment (plate motions reflect sinking of dense lithosphere in subduction zones, causing upwelling of asthenosphere at divergent plate boundaries and accompanied by focused upwellings, or mantle plumes; any other tectonic style is usefully called “stagnant lid” or “fragmented lid”. In 2015 humanity completed a 50+ year effort to survey the 30 largest planets, asteroids, satellites, and inner Kuiper Belt objects, which we informally call “planetoids” and use especially images of these bodies to infer their tectonic activity. The four largest planetoids are enveloped in gas and ice (Jupiter, Saturn, Uranus, and Neptune and are not considered. The other 26 planetoids range in mass over 5 orders of magnitude and in diameter over 2 orders of magnitude, from massive Earth down to tiny Proteus; these bodies also range widely in density, from 1000 to 5500 kg/m3. A gap separates 8 silicate planetoids with ρ = 3000 kg/m3 or greater from 20 icy planetoids (including the gaseous and icy giant planets with ρ = 2200 kg/m3 or less. We define the “Tectonic Activity Index” (TAI, scoring each body from 0 to 3 based on evidence for recent volcanism, deformation, and resurfacing (inferred from impact crater density. Nine planetoids with TAI = 2 or greater are interpreted to be tectonically and convectively active whereas 17 with TAI <2 are inferred to be tectonically dead. We further infer that active planetoids have lithospheres or icy shells overlying asthenosphere or water/weak ice. TAI of silicate (rocky planetoids positively correlates with their inferred Rayleigh number. We conclude that some type of stagnant lid tectonics is

  19. The tectonic evolution of the southeastern Terceira Rift/São Miguel region (Azores)

    Science.gov (United States)

    Weiß, B. J.; Hübscher, C.; Lüdmann, T.

    2015-07-01

    The eastern Azores Archipelago with São Miguel being the dominant subaerial structure is located at the intersection of an oceanic rift (Terceira Rift) with a major transform fault (Gloria Fault) representing the westernmost part of the Nubian-Eurasian plate boundary. The evolution of islands, bathymetric highs and basin margins involves strong volcanism, but the controlling geodynamic and tectonic processes are currently under debate. In order to study this evolution, multibeam bathymetry and marine seismic reflection data were collected to image faults and stratigraphy. The basins of the southeastern Terceira Rift are rift valleys whose southwestern and northeastern margins are defined by few major normal faults and several minor normal faults, respectively. Since São Miguel in between the rift valleys shows an unusual W-E orientation, it is supposed to be located on a leaky transform. South of the island and separated by a N120° trending graben system, the Monacco Bank represents a N160° oriented flat topped volcanic ridge dominated by tilted fault blocks. Up to six seismic units are interpreted for each basin. Although volcanic ridges hamper a direct linking of depositional strata between the rift and adjacent basins, the individual seismic stratigraphic units have distinct characteristics. Using these units to provide a consistent relative chrono-stratigraphic scheme for the entire study area, we suggest that the evolution of the southeastern Terceira Rift occurred in two stages. Considering age constrains from previous studies, we conclude that N140° structures developed orthogonal to the SW-NE direction of plate-tectonic extension before ~ 10 Ma. The N160° trending volcanic ridges and faults developed later as the plate tectonic spreading direction changed to WSW-ENE. Hence, the evolution of the southeastern Terceira Rift domain is predominantly controlled by plate kinematics and lithospheric stress forming a kind of a re-organized rift system.

  20. Measurements of three dimensional residual stress distribution on laser irradiated spot

    International Nuclear Information System (INIS)

    Tanaka, Hirotomo; Akita, Koichi; Ohya, Shin-ichi; Sano, Yuji; Naito, Hideki

    2004-01-01

    Three dimensional residual stress distributions on laser irradiated spots were measured using synchrotron radiation to study the basic mechanism of laser peening. A water-immersed sample of high tensile strength steel was irradiated with Q-switched and frequency-doubled Nd:YAG laser. The residual stress depth profile of the sample was obtained by alternately repeating the measurement and surface layer removal by electrolytic polishing. Tensile residual stresses were observed on the surface of all irradiated spots, whereas residual stress changed to compressive just beneath the surface. The depth of compressive residual stress imparted by laser irradiation and plastic deformation zone increased with increasing the number of laser pulses irradiated on the same spot. (author)

  1. Late Mesozoic basin and range tectonics and related magmatism in Southeast China

    Directory of Open Access Journals (Sweden)

    Dezi Wang

    2012-03-01

    Full Text Available During the Late Mesozoic Middle Jurassic–Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacific Plate subduction. Basin tectonics consists of post-orogenic (Type I and intra-continental extensional basins (Type II. Type I basins developed in the piedmont and intraland during the Late Triassic to Early Jurassic, in which coarse-grained terrestrial clastic sediments were deposited. Type II basins formed during intra-continental crustal thinning and were characterized by the development of grabens and half-grabens. Graben basins were mainly generated during the Middle Jurassic and were associated with bimodal volcanism. Sediments in half-grabens are intercalated with rhyolitic tuffs and lavas and are Early Cretaceous in age with a dominance of Late Cretaceous–Paleogene red beds. Ranges are composed of granitoids and bimodal volcanic rocks, A-type granites and dome-type metamorphic core complexes. The authors analyzed lithological, geochemical and geochronological features of the Late Mesozoic igneous rock assemblages and proposed some geodynamical constraints on forming the basin and range tectonics of South China. A comparison of the similarities and differences of basin and range tectonics between the eastern and western shores of the Pacific is made, and the geodynamical evolution model of the Southeast China Block during Late Mesozoic is discussed. Studied results suggest that the basin and range terrane within South China developed on a pre-Mesozoic folded belt was derived from a polyphase tectonic evolution mainly constrained by subduction of the western Pacific Plate since the Late Mesozoic, leading to formation of various magmatism in a back-arc extensional setting. Its geodynamic mechanism can compare with that of basin and range tectonics in the eastern shore of the Pacific. Differences of basin and range

  2. Deciphering Stress State of Seismogenic Faults in Oklahoma and Kansas Based on High-resolution Stress Maps

    Science.gov (United States)

    Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.

    2017-12-01

    Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock

  3. Tectonic framework of the Hanoe Bay area, southern Baltic Sea

    International Nuclear Information System (INIS)

    Wannaes, K.O.; Floden, T.

    1994-06-01

    The tectonic framework and the general geologic development of the Hanoe Bay, from the Scanian coast in the west to south of Oeland in the east, has been investigated by means of reflection seismic methods. The Hanoe Bay is in this paper subdivided into four areas of different geologic settings. These are: 1) The Hanoe Bay slope, which forms a southward dipping continuation of the rigid Blekinge coastal plain. 2) The eastward dipping Kalmarsund Slope, which southwards from Oeland forms the western part of the Paleozoic Baltic Syneclise. 3) The Mesozoic Hanoe Bay Halfgraben, which forms the central and southern parts of the Hanoe Bay. The ongoing subsidence of the Halfgraben is estimated to be in the order of 20-60 m during the Quaternary. 4) The Yoldia Structural Element, which forms a deformed, tilted and possibly rotated block of Paleozoic bedrock located east of the Hanoe Bay Halfgraben. Two tectonic phases dominate the post-Paleozoic development of the Hanoe Bay, these are: 1) The Early Kimmerian phase, which initiated subsidence and reactivated older faults. 2) The Late Cretaceous phase, which is the main subsidence phase of the Hanoe Bay Halfgraben. The tectonic fault pattern of the Hanoe Bay is dominated by three directions, i.e. NW-SE, NE-SW and WNW-ESE. The two main tectonic elements of the area are the Kullen-Christiansoe Ridge System (NW-SE) and the Bornholm Gat Tectonic Zone (NE-SW). Sinistral strike-slip movements in order of 2-3 km are interpreted to have occurred along the Bornholm Gat Tectonic Zone during the late Cretaceous. 20 refs, 19 figs

  4. Imaging voids beneath bridge bent using electrical resistivity tomography.

    Science.gov (United States)

    2014-02-01

    Five electrical resistivity tomography (ERT) profiles and borehole control were acquired beneath two bridges on the bank of the : Gasconade River in order to determine extension of the underground water-filled openings in rock encountered during a dr...

  5. Holocene compression in the Acequión valley (Andes Precordillera, San Juan province, Argentina): Geomorphic, tectonic, and paleoseismic evidence

    Science.gov (United States)

    Audemard, M.; Franck, A.; Perucca, L.; Laura, P.; Pantano, Ana; Avila, Carlos R.; Onorato, M. Romina; Vargas, Horacio N.; Alvarado, Patricia; Viete, Hewart

    2016-04-01

    -induced effects already reported in the literature by this working team further support the tectonic activity of neighboring faults in the Holocene. As a concluding remark we could state that the ongoing deformation in the region under study is driven by a compressional regime whose maximum horizontal stress in the late Pleistocene-Holocene is roughly east-west oriented. This is further supported by focal mechanism solutions.

  6. Determination of the 8° discontinuity beneath the major tectonic units of Central Europe from regional seismicity in Europe and northern Africa

    Science.gov (United States)

    Nita, B.; Perchuc, E.; Thybo, H.; Maguire, P.; Denton, P.

    2004-12-01

    We evaluate the existence and the depth of the '8° discontinuity' beneath the Alpine orogen using the natural seismicity of Europe and northern Africa as well as events induced by mining activity. For this analysis, the regional events (1) must have epicenters further than 1000 km from the structure being imaged, and (2) the magnitude of body waves must be higher than 4.0 to obtain a favourable signal to noise ratio. The events satisfying the above conditions have epicentres in Algeria, Spain, Bulgaria, Greece and in the Lubin Copper Basin in Poland. The last region is characterised by high seismicity resulting from mining activity. We base our analysis on P-wave traveltime residuals compared to the general iasp91 model. The 8° discontinuity seems to be attributed to the observed P-wave traveltime delays at epicentral distances around 800 km. The analysis of events from the Lubin Coper Basin and the events from other regions mentioned above, gives P-wave delays of 3 s at the Alpine stations in comparison with stations in the Variscan areas to further north. We attribute this variation in travel time to the difference between 'fast' and 'slow' uppermost mantle structures in Europe.

  7. Andean tectonics: Implications for Satellite Geodesy

    Science.gov (United States)

    Allenby, R. J.

    1984-01-01

    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  8. Crustal Magnetic Field Anomalies and Global Tectonics

    Science.gov (United States)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  9. Analysis of in situ stress at Yucca Mountain

    International Nuclear Information System (INIS)

    Bauer, S.J.; Holland, J.F.

    1987-01-01

    A method has been developed to initialize far-field finite element models such that the measured in situ stress state appears to be reproduced well. The method includes use of the mechanical stratigraphy, mechanical effect of pore pressure, gravity loading, a horizontal ''tectonic'' component of stress, and use of a jointed rock model to calculate the mechanical response. Topographic effects and effects related to the vertical variation in mechanical properties are predicted for repository depths (∼ 300 m). Gravity loading with a small horizontal compression is used to calculate a minimum horizontal stress similar in magnitude to that measured in situ. 8 refs., 5 figs

  10. A palaeomagnetic perspective of Precambrian tectonic styles

    Science.gov (United States)

    Schmidt, P. W.; Embleton, B. J. J.

    1986-01-01

    The considerable success derived from palaeomagnetic studies of Phanerozoic rocks with respect to the tectonic styles of continental drift and plate tectonics, etc., have not been repeated by the many palaeomagnetic studies of Precambrian rocks. There are 30 years of research with results covering the major continents for Precambrian times that overlap considerably yet there is no concensus. There is good evidence that the usual assumptions employed by palaeomagnetism are valid for the Precambrian. The exisence of magnetic reversals during the Precambrian, for instance, is difficult to explain except in terms of a geomagnetic field that was predominantly dipolar in nature. It is a small concession to extend this notion of the Precambrian geomagnetic field to include its alignment with the Earth's spin axis and the other virtues of an axial geocentric dipole that characterize the recent geomagnetic field. In terms of greenstone terranes it is obvious that tectonic models postulated to explain these observations are paramount in understanding Precambrian geology. What relevance the current geographical relationships of continents have with their Precambrian relationships remains a paradox, but it would seem that the ensialic model for the development of greenstone terranes is favored by the Precambrian palaeomagnetic data.

  11. The geologic investigation of the bedrock and the tectonic and geophysical surveys at Kynnefjaell

    International Nuclear Information System (INIS)

    Ahlbom, K.; Ahlin, S.; Eriksson, L.; Samuelsson, L.

    1980-05-01

    The geologic survey took place at a selected area of Kynnefjaell. The result is given on geologic and tectonic maps. Two kinds of rock dominate, namely (a) sedimentary veined gneiss and (b) gneissic granite. The strike is in the N-S direction. A symmetric folds dip to the last. The fissure zones are oriented in the N-S and NE-SW directions. The latter zones are considered to be Precambrian shear zones with a dip to the NW. The dip of the fissure zones with the direction N-S is difficult to ascertain. The frequency of fissures is the same for granite and gneiss. The length of fissures is longer in the gneissic granite than in the sedimentary veined gneiss. The measurement of stress shows its main direction to be WNW-NW to ESE-SE. The fissure zones are at right or blunt-ended angles to the main stress direction. (G.B.)

  12. Active tectonics and earthquake potential of the Myanmar region

    OpenAIRE

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-01-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subd...

  13. Numerical modelling of edge-driven convection during rift-to-drift transition: application to the Red Sea

    Science.gov (United States)

    Fierro, Elisa; Capitanio, Fabio A.; Schettino, Antonio; Morena Salerno, V.

    2017-04-01

    We use numerical modeling to investigate the coupling of mantle instabilities and surface tectonics along lithospheric steps developing during rifting. We address whether edge driven convection (EDC) beneath rifted continental margins and shear flow during rift-drift transition can play a role in the observed post-rift compressive tectonic evolution of the divergent continental margins along the Red Sea. We run a series of 2D simulations to examine the relationship between the maximum compression and key geometrical parameters of the step beneath continental margins, such as the step height due to lithosphere thickness variation and the width of the margins, and test the effect of rheology varying temperature- and stress-dependent viscosity in the lithosphere and asthenosphere. The development of instabilities is initially illustrated as a function of these parameters, to show the controls on the lithosphere strain distribution and magnitude. We then address the transient evolution of the instabilities to characterize their duration. In an additional suite of models, we address the development of EDC during plate motions, thus accounting for the mantle shearing due to spreading. Our results show an increase of strain with the step height as well as with the margin width up to 200 km. After this value the influence of ridge margin can be neglected. Strain rates are, then, quantified for a range of laboratory-constrained constitutive laws for mantle and lithosphere forming minerals. These models propose a viable mechanism to explain the post-rift tectonic inversion observed along the Arabian continental margin and the episodic ultra-fast sea floor spreading in the central Red Sea, where the role of EDC has been invoked.

  14. Drilling to investigate processes in active tectonics and magmatism

    Science.gov (United States)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and

  15. Public regulations towards a tectonic architecture

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due

    2006-01-01

    's activities has primarily been to support the optimization of the building process through ‘trimmed building’ and ‘partnering’ that only takes the immediate economic benefits of the changes to the building process into account and as such has no measures for architectural quality. The public initiatives so......Public regulations can support tectonic architecture by changes to the tendering system, supporting new organizational structures of the building industry in public building projects and suggesting a focus on innovation through increased research and development activity. The Danish state...... are happening very slowly which is understandable when there is no economic incitement for the industry to change. A change of these public regulations from sticks to carrots could create the economic incitement for the building industry to create tectonic architecture and thereby develop the building industry...

  16. Earth's Decelerating Tectonic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  17. Hydrogeological behaviour of the Fuente-de-Piedra playa lake and tectonic origin of its basin (Malaga, southern Spain)

    Science.gov (United States)

    Rodriguez-Rodriguez, Miguel; Martos-Rosillo, Sergio; Pedrera, Antonio

    2016-12-01

    Changes in the quantity of groundwater input due to water extraction for irrigation and urban supply has modified the water balance in the Fuente de Piedra playa lake. We have analysed the hydrogeology of the playa-lake system and developed a water-level model by means of a simple long-term water balance and piezometric analysis. In addition, a tectonic model is proposed to explain the endorheic basin development that led to the formation of the playa. Upright folds developed since the late Miocene and density-driven subsidence favoured the setting-up of and endorheic system located between the Atlantic and the Mediterranean basins in the Quaternary. The underlying low permeability rocks beneath the playa form a very stable aquitard with highly saline groundwater that prevents groundwater recharge of the lake into the aquitard. The hydrological modelling allowed us to simulate the evolution of the wáter level under a scenario of unaltered conditions during a 13-year period, showing that the percentage of days with dry conditions varies from 24.8% of the time under altered conditions to 14.9% as far as an unaltered scenario is concerned.

  18. Constraints on the crustal structure beneath the Sinai subplate, SE Mediterranean, from analysis of local and regional travel times

    Directory of Open Access Journals (Sweden)

    Mohamed K. Salah

    2013-03-01

    Full Text Available The Sinai Peninsula has been recognized as a subplate of the African Plate located at the triple junction of the Gulf of Suez rift, the Dead Sea Transform fault, and the Red Sea rift. The upper and lower crustal structures of this tectonically active, rapidly developing region are yet poorly understood because of many limitations. For this reason, a set of P- and S-wave travel times recorded at 14 seismic stations belonging to the Egyptian National Seismographic Network (ENSN from 111 local and regional events are analyzed to investigate the crustal structures and the locations of the seismogenic zones beneath central and southern Sinai. Because the velocity model used for routine earthquake location by ENSN is one-dimensional, the travel-time residuals will show lateral heterogeneity of the velocity structures and unmodeled vertical structures. Seismic activity is strong along the eastern and southern borders of the study area but low to moderate along the northern boundary and the Gulf of Suez to the west. The crustal Vp/Vs ratio is 1.74 from shallow (depth ≤ 10 km earthquakes and 1.76 from deeper (depth > 10 km crustal events. The majority of the regional and local travel-time residuals are positive relative to the Preliminary Reference Earth Model (PREM, implying that the seismic stations are located above widely distributed, tectonically-induced low-velocity zones. These low-velocity zones are mostly related to the local crustal faults affecting the sedimentary section and the basement complex as well as the rifting processes prevailing in the northern Red Sea region and the ascending of hot mantle materials along crustal fractures. The delineation of these low-velocity zones and the locations of big crustal earthquakes enable the identification of areas prone to intense seismotectonic activities, which should be excluded from major future development projects and large constructions in central and southern Sinai.

  19. Buckling instabilities of subducted lithosphere beneath the transition zone

    NARCIS (Netherlands)

    Ribe, N.M.; Stutzmann, E.; Ren, Y.; Hilst, R.D. van der

    2007-01-01

    A sheet of viscous fluid poured onto a surface buckles periodically to generate a pile of regular folds. Recent tomographic images beneath subduction zones, together with quantitative fluid mechanical scaling laws, suggest that a similar instability can occur when slabs of subducted oceanic

  20. Mathematical model to determine the surface stress acting on the tooth of gear

    Directory of Open Access Journals (Sweden)

    Hinojosa-Torres J.

    2010-01-01

    Full Text Available Surface stress on the surface contact of gear tooth calculated by the Buckingham equation constitutes the basis for The American Gear Manufacturers Association (AGMA pitting resistance formula, which is based on a normal stress that does not cause failure since the yielding in contact problems is caused by shear stresses. An alternative expression based on the maximum-shear-stress is proposed in this paper. The new expression is obtained by using the maximum-shear-stress distribution and the Tresca failure criteria in order to know the maximum-shear-stress value and its location beneath the contact surface. Remarkable differences between the results using the proposed equation and those when the AGMA equation is applied are found.

  1. Mare Orientale: Widely Accepted Large Impact or a Regular Tectonic Depression?

    Science.gov (United States)

    Kochemasov, G. G.

    2018-04-01

    Mare Orientale is one of the critical features on Moon surface explaining its tectonics. The impact origin of it is widely accepted, but an attentive examination shows that this large Mare is a part of endogenous tectonic structure, not a random impact.

  2. Crustal structure and tectonic model of the Arctic region

    DEFF Research Database (Denmark)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey

    2016-01-01

    We present a new model of the crustal and tectonic structure of the Arctic region north of 60° N latitude, constrained as a part of the international Atlas of Geological Maps of the Circumpolar Arctic under the aegis of the Commission for the Geological Map of the World. The region is largely...... formed by (i) Archean-Paleoproterozoic shields and platforms, (ii) orogenic belts of the Neoproterozoic to the Late Mesozoic ages overlain by platform and basin sediments, (iii) Cenozoic rift structures formed in part as a consequence of seafloor spreading in the North East Atlantic Ocean...... and thickness of the sedimentary cover and presents tectonic regionalization based on 18 major crustal types (oceanic, transitional, and continental) recognized in the Arctic. A 7600. km-long crustal geotransect across the region illustrates the details of its crustal and tectonic structure. We discuss...

  3. Drilling to investigate processes in active tectonics and magmatism

    OpenAIRE

    J. Shervais; J. Evans; V. Toy; J. Kirkpatrick; A. Clarke; J. Eichelberger

    2014-01-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park C...

  4. Pargo Chasma and its relationship to global tectonics

    Science.gov (United States)

    Ghail, R. C.

    1993-01-01

    Pargo Chasma was first identified on Pioneer Venus data as a 10,000 km long lineation extending from Atla Regio in the north terminating in the plains south of Phoebe Regio. More recent Magellan data have revealed this feature to be one of the longest chains of coronae so far identified on the planet. Stofan et al have identified 60 coronae and 2 related features associated with this chain; other estimates differ according to the classification scheme adopted, for example Head et al. identify only 29 coronae but 43 arachnoids in the same region. This highlights one of the major problems associated with the preliminary mapping of the Magellan data: there has been an emphasis on identifying particular features on Venus without a universally accepted scheme to classify those features. Nevertheless, Pargo Chasma is clearly identified as a major tectonic belt of global significance. Together with the Artemis-Atla-Beta tectonic zone and the Beta-Phoebe rift belt, Pargo Chasma defines a region on Venus with an unusually high concentration of tectonic and volcanic features. Thus, an understanding of the processes involved in the formation of Pargo Chasma may lend significant insight into the evolution of the region and the planet as a whole. I have produced a detailed 1 to 10 million scale map of Pargo Chasma and the surrounding area from preliminary USGS controlled mosaiced image maps of Venus constructed from Magellan data. In view of the problems highlighted above in relation the efforts already made at identifying a particular set of features I have mapped the region purely on the basis of the geomorphology visible in the magellan data without any attempt at identifying a particular set or class of features. Thus, the map produced distinguishes between areas of different brightness and texture. This has the advantage of highlighting the tectonic fabric of Pargo Chasma and clearly illustrates the close inter-relationship between individual coronae and the surrounding

  5. Reassessment of seismic hazards at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Wong, I.G.; Hemphill-Haley, M.A.; Kelson, K.I.; Gardner, J.N.; House, L.S.

    1991-01-01

    A comprehensive seismic hazards evaluation program has been initiated at the Los Alamos National Laboratory (LANL) to update the current seismic design criteria. In part, this program has been motivated by recent studies which suggest that faults of the nearby Pajarito fault system may be capable of generating a large magnitude earthquake (M > 7). The specific objectives of this program are to: (1) characterize the tectonic setting of the LANL area; (2) characterize the nature, amount, and timing of late Quaternary fault displacements; (3) reevaluate the recorded seismicity in the LANL region to allow for the evaluation of seismogenic faults and the tectonic state of stress; (4) characterize the subsurface geologic conditions beneath the LANL required for the estimation of strong ground motions and site response; (5) estimate potential strong ground shaking both deterministically and probabilistically; and (6) develop the appropriate seismic design criteria. The approach and initial results of this seismic hazards program are described in this paper

  6. Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types of mantle sub-terranes beneath central Yakutia?

    Directory of Open Access Journals (Sweden)

    I.V. Ashchepkov

    2017-07-01

    Full Text Available Mineral data from Yakutian kimberlites allow reconstruction of the history of lithospheric mantle. Differences occur in compositions of mantle pyropes and clinopyroxenes from large kimberlite pipes in the Alakit and Daldyn fields. In the Alakit field, Cr-diopsides are alkaline, and Stykanskaya and some other pipes contain more sub-calcic pyropes and dunitic-type diamond inclusions, while in the Daldyn field harzburgitic pyropes are frequent. The eclogitic diamond inclusions in the Alakit field are sharply divided in types and conditions, while in the Daldyn field they show varying compositions and often continuous Pressure–Temperature (P–T ranges with increasing Fe# with decreasing pressures. In Alakit, Cr-pargasites to richterites were found in all pipes, while in Daldyn, pargasites are rare Dalnyaya and Zarnitsa pipes. Cr-diopsides from the Alakit region show higher levels of light Rare Earth Elements (LREE and stronger REE-slopes, and enrichment in light Rare Earth Elements (LREE, sometimes Th-U, and small troughs in Nb-Ta-Zr. In the Daldyn field, the High Field Strength Elements HFSE troughs are more common in clinopyroxenes with low REE abundances, while those from sheared and refertilized peridotites have smooth patterns. Garnets from Alakit show HREE minima, but those from Daldyn often have a trough at Y and high U and Pb. PTXfO2 diagrams from both regions show similarities, suggesting similar layering and structures. The degree of metasomatism is often higher for pipes which show dispersion in P–Fe# trends for garnets. In the mantle beneath Udachnaya and Aykhal, pipes show 6–7 linear arrays of P–Fe# in the lower part of the mantle section at 7.5–3.0 GPa, probably reflecting primary subduction horizons. Beneath the Sytykanskaya pipe, there are several horizons with opposite inclinations which reflect metasomatic processes. The high dispersion of the P–Fe# trend indicating widespread metasomatism is associated with decreased

  7. Palaeomagnetic evidence for post-thrusting tectonic rotation in the Southeast Pyrenees, Spain

    Science.gov (United States)

    Keller, P.; Lowrie, W.; Gehring, A. U.

    1994-12-01

    The structural framework of the Southeast Pyrenees led to two conflicting interpretations—thrust tectonics vs. wrench tectonics—to explain the geometry of this mountain range. In the present study palaeomagnetic data are presented in an attempt to resolve this conflict. The data reveal different magnetisation directions that indicate tectonic rotations about vertical axes. By means of a regionally homogeneous pattern of rotation, three tectonic units could be distinguished in the Southeast Pyrenees. The Internal Unit in the north reveals no rotation since the Permian. The External Unit to the south shows anticlockwise rotation of 25°, younger than the Early Oligocene. The Pedraforca Unit, placed on the External Unit, shows 57° clockwise rotation which can be assigned to the Neogene. The anticlockwise rotation of the External Unit can be explained by differential compression during the last phase of Pyrenean thrusting, whereas the clockwise rotation of the Pedraforca Unit can be interpreted by post-thrusting tectonics. The rotation pattern of the Southeast Pyrenees provides evidence for both Cretaceous to Paleogene N-S compression and Neogene right-lateral wrench tectonics.

  8. Electrical structure beneath the Hangai Dome, Mongolia, from magnetotelluric data

    Science.gov (United States)

    Comeau, Matthew; Käufl, Johannes; Becken, Michael; Kuvshinov, Alexey; Demberel, Sodnomsambuu; Sukhbaatar, Usnikh; Batmagnai, Erdenechimeg; Tserendug, Shoovdor; Nasan, Ochir

    2017-04-01

    The Hangai Dome in west-central Mongolia is an unusual high-elevation intra-continental plateau located far from tectonic plate boundaries and characterized by dispersed, low-volume, basaltic volcanism. This region is an ideal natural laboratory for studying intra-continental orogenic and magmatic processes resulting from crust-mantle interactions. The processes responsible for developing the Hangai Dome remain unexplained, due in part to a lack of high resolution geophysical data over the area. Here we present newly acquired broadband (0.008 - 3,000 s) magnetotelluric (MT) data from a large-scale ( 200 x 450 km) and high resolution (site spacing > 5 km) survey across the Hangai Dome. A total of 125 sites were collected and include full MT sites and telluric-only sites where inter-station transfer functions were computed. The MT data are used to generate an electrical resistivity model of the crust and upper mantle below the Hangai Dome. The model shows that the lower crust ( 30 - 50 km; below the brittle-ductile transition zone) beneath the Hangai Dome contains anomalous discrete pockets of low-resistivity ( 30 ohm-m) material that indicate the presence of local accumulations of fluids and/or low-percent partial melts. These anomalous regions appear to be spatially associated with the surface expressions of past volcanism, hydrothermal activity, and an increase in heat flow. They also correlate with observed crustal low-density and low-velocity anomalies. However they are in contrast to some geochemical and petrological studies which show long-lived crustal melt storage is impossible below the Hangai due to limited crustal assimilation and crustal contamination, arguing for a single parent-source at mantle depths. The upper mantle ( 6%) at this location. The results are consistent with modern geochemical and geophysical data, which show a thin lithosphere below the Hangai region. Furthermore the results agree with geodynamic models that require a low-heat flux

  9. Tectonic Evolution of the Çayirhan Neogene Basin (Ankara), Central Turkey

    Science.gov (United States)

    Behzad, Bezhan; Koral, Hayrettin; İşb&idot; l, Duygu; Karaaǧa; ç, Serdal

    2016-04-01

    Çayırhan (Ankara) is located at crossroads of the Western Anatolian extensional region, analogous to the Basin and Range Province, and suture zone of the Neotethys-Ocean, which is locus of the North Anatolian Transform since the Late Miocene. To the north of Çayırhan (Ankara), a Neogene sedimentary basin comprises Lower-Middle Miocene and Upper Miocene age formations, characterized by swamp, fluvial and lacustrine settings respectively. This sequence is folded and transected by neotectonic faults. The Sekli thrust fault is older than the Lower-Middle Miocene age formations. The Davutoǧlan fault is younger than the Lower-Middle Miocene formations and is contemporaneous to the Upper Miocene formation. The Çatalkaya fault is younger than the Upper Miocene formation. The sedimentary and tectonic features provide information on mode, timing and evolution of this Neogene age sedimentary basin in Central Turkey. It is concluded that the region underwent a period of uplift and erosion under the influence of contractional tectonics prior to the Early-Middle Miocene, before becoming a semi-closed basin under influence of transtensional tectonics during the Early-Middle Miocene and under influence of predominantly extensional tectonics during the post-Late Miocene times. Keywords: Tectonics, Extension, Transtension, Stratigraphy, Neotectonic features.

  10. Dynamic computer model for the metallogenesis and tectonics of the Circum-North Pacific

    Science.gov (United States)

    Scotese, Christopher R.; Nokleberg, Warren J.; Monger, James W.H.; Norton, Ian O.; Parfenov, Leonid M.; Khanchuk, Alexander I.; Bundtzen, Thomas K.; Dawson, Kenneth M.; Eremin, Roman A.; Frolov, Yuri F.; Fujita, Kazuya; Goryachev, Nikolai A.; Pozdeev, Anany I.; Ratkin, Vladimir V.; Rodinov, Sergey M.; Rozenblum, Ilya S.; Scholl, David W.; Shpikerman, Vladimir I.; Sidorov, Anatoly A.; Stone, David B.

    2001-01-01

    The digital files on this report consist of a dynamic computer model of the metallogenesis and tectonics of the Circum-North Pacific, and background articles, figures, and maps. The tectonic part of the dynamic computer model is derived from a major analysis of the tectonic evolution of the Circum-North Pacific which is also contained in directory tectevol. The dynamic computer model and associated materials on this CD-ROM are part of a project on the major mineral deposits, metallogenesis, and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. The project provides critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major scientific goals and benefits of the project are to: (1) provide a comprehensive international data base on the mineral resources of the region that is the first, extensive knowledge available in English; (2) provide major new interpretations of the origin and crustal evolution of mineralizing systems and their host rocks, thereby enabling enhanced, broad-scale tectonic reconstructions and interpretations; and (3) promote trade and scientific and technical exchanges between North America and Eastern Asia.

  11. Soil microbial respiration beneath Stipa tenacissima L. and in surrounding bare soil

    Directory of Open Access Journals (Sweden)

    Irena Novosádová

    2011-01-01

    Full Text Available Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa. Ecosystem functioning of these steppes is strongly related to the spatial pattern of grass tussocks. Soils beneath Stipa tenacissima L. grass show different fertility and different microclimatic conditions than in surrounding bare soil. The objective of this study was to assess the effect of Stipa tenacissima L. on the key soil microbial activities under controlled incubation conditions (basal and potential respiration. Basal and potential microbial respirations in the soils beneath Stipa tenacissima L. were, in general, not significantly different from the bare soils. The differences were less than 10%. Significantly less ethylene produced by microbial activity in soils beneath Stipa tenacissima L. after the addition of glucose could indicate the dependence of rhizospheric microbial communities on available carbon compounds. It can be concluded, that the soil respiration in semi-arid Mediterranean ecosystems is not necessarily associated with the patchy plant distribution and that some microbial activities characteristics can be unexpectedly homogenous.

  12. Stress field sensitivity analysis within Mesozoic successions in the Swiss Alpine foreland using 3-D-geomechanical-numerical models

    Science.gov (United States)

    Reiter, Karsten; Hergert, Tobias; Heidbach, Oliver

    2016-04-01

    The in situ stress conditions are of key importance for the evaluation of radioactive waste repositories. In stage two of the Swiss site selection program, the three siting areas of high-level radioactive waste are located in the Alpine foreland in northern Switzerland. The sedimentary succession overlays the basement, consisting of variscan crystalline rocks as well as partly preserved Permo-Carboniferous deposits in graben structures. The Mesozoic sequence represents nearly the complete era and is covered by Cenozoic Molasse deposits as well as Quaternary sediments, mainly in the valleys. The target horizon (designated host rock) is an >100 m thick argillaceous Jurassic deposit (Opalinus Clay). To enlighten the impact of site-specific features on the state of stress within the sedimentary succession, 3-D-geomechanical-numerical models with elasto-plastic rock properties are set up for three potential siting areas. The lateral extent of the models ranges between 12 and 20 km, the vertical extent is up to a depth of 2.5 or 5 km below sea level. The sedimentary sequence plus the basement are separated into 10 to 14 rock mechanical units. The Mesozoic succession is intersected by regional fault zones; two or three of them are present in each model. The numerical problem is solved with the finite element method with a resolution of 100-150 m laterally and 10-30 m vertically. An initial stress state is established for all models taking into account the depth-dependent overconsolidation ratio in Opalinus Clay in northern Switzerland. The influence of topography, rock properties, friction on the faults as well as the impact of tectonic shortening on the state of stress is investigated. The tectonic stress is implemented with lateral displacement boundary conditions, calibrated on stress data that are compiled in Northern Switzerland. The model results indicate that the stress perturbation by the topography is significant to depths greater than the relief contrast. The

  13. Historical volcanism and the state of stress in the East African Rift System

    Directory of Open Access Journals (Sweden)

    Geoffrey Wadge

    2016-09-01

    Full Text Available Crustal extension at the East African Rift System (EARS should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800 and find that 7 match the (approximate geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement, transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale, suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days, but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002 due to major along

  14. The importance of continent tectonic study

    International Nuclear Information System (INIS)

    Carneiro, C.D.R.

    1992-01-01

    Some aspects of tectonic study in the continents are presented, including the use of methods that measure the isotope radioactive disintegration of some elements presents in rocks and the mineral distribution in African and South American continents. (author)

  15. Crustal stress regime in Italy

    Directory of Open Access Journals (Sweden)

    M. Cesaro

    1997-06-01

    Full Text Available In order to obtain a reliable map of the present-day stress field in Italy, needed to better understand the active tectonic processes and to contribute to the assessment of seismic hazard, in 1992 we started to collect and analyze new data from borehole breakouts in deep oil and geothermal wells and focal mechanisms of earthquakes (2.5 < M <5 occurred in Italy between 1988 and 1995. From about 200 deep wells and 300 focal mechanisms analyzed to date, we infer that: the internal (SW sector of the Northern Apenninic arc is extending with minimum compressional stress (Shmin oriented ? ENE, while the external front is thrusting over the Adriatic foreland (Shmin ? NW-SE. The entire Southern Apennine is extending in NE direction (from the Tyrrhenian margin to the Apulian foreland and compression (in the foredeep is no longer active at the outer (NE thrust front. Between these two arcs, an abrupt change in the tectonic regime is detected with directions of horizontal stress changing by as much as 90º in the external front, around latitude 430N. Along the Ionian side of the Calabrian arc the stress directions inferred from breakouts and focal mechanisms are scattered with a hint of rotation from N-S Shmin close to the Southern Apennines, to ~ E-W directions in the Messina Strait. In Sicily, a NW-SE direction of SHmax is evident in the Hyblean foreland, parallel to the direction of plate motion between Africa and Europe. A more complex pattern of stress directions is observed in the thrust belt zone, with rotations from the regional trend (NW í directed SHmax to NE oriented SHmax. A predominant NW direction of SHmax is also detected in mainland Sicily from earthquake focal mechanisms, but no well data are available in this region. In the northern part of Sicily (Aeolian Islands a ~N-S direction of SHmax is observed.

  16. Tomography of the upper mantle beneath the African/Iberian collision zone

    Science.gov (United States)

    Mickael, B.; Nolet, G.; Villasenor, A.; Josep, G.; Thomas, C.

    2013-12-01

    During Cenozoic, geodynamics of the western Mediterranean domain has been characterized by a complex history of subduction of Mesozoic oceanic lithosphere. The final stage of these processes is proposed to have led to the development of the Calabria and Gibraltar arcs, whose formation is still under debate. In this study we take advantage of the dense broadband-station networks now available in Alborán Sea region, to develop a high-resolution 3D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone that will bring new constraints on the past dynamics of this zone. The model is based on 13200 teleseismic arrival times recorded between 2008 and 2012 at 279 stations for which cross-correlation delays are measured with a new technique in different frequency bands centered between 0.03 and 1.0 Hz, and interpreted using multiple frequency tomography. Our model shows, beneath Alborán Sea, a strong (~ 4%) fast vertically dipping anomaly observed to at least 650 km depth. The arched shape of this anomaly and its extent at depth are coherent with a lithospheric slab, thus favoring the hypothesis of a westward consumption of the Ligurian ocean slab by roll-back during Cenozoic. In addition to this fast anomaly in the deep upper-mantle, several high intensity slow anomalies are widely observed in the lithosphere and asthenosphere beneath Morocco and southern Spain. These anomalies are correlated at surface with the position of the orogens (Rif and Atlas) and with Cenozoic volcanic fields. We thus confirm the presence, beneath Morocco, of an anomalous (hot) upper mantle, with piece of evidence for a lateral connection with the Canary volcanic islands, likely indicating a lateral spreading of the Canary plume to the east.

  17. Nutrient transport and transformation beneath an infiltration basin

    Science.gov (United States)

    Sumner, D.M.; Rolston, D.E.; Bradner, L.A.

    1998-01-01

    Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10

  18. Thrust initiation and its control on tectonic wedge geometry: An insight from physical and numerical models

    Science.gov (United States)

    Bose, Santanu; Mandal, Nibir; Saha, Puspendu; Sarkar, Shamik; Lithgow-Bertelloni, Carolina

    2014-10-01

    We performed a series of sandbox experiments to investigate the initiation of thrust ramping in tectonic wedges on a mechanically continuous basal decollement. The experiments show that the decollement slope (β) is the key factor in controlling the location of thrust initiation with respect to the backstop (i.e. tectonic suture line). For β = 0, the ramping begins right at the backstop, followed by sequential thrusting in the frontal direction, leading to a typical mono-vergent wedge. In contrast, the ramp initiates away from the backstop as β > 0. Under this boundary condition an event of sequential back thrusting takes place prior to the onset of frontal thrust progression. These two-coupled processes eventually give rise to a bi-vergent geometry of the thrust wedge. Using the Drucker-Prager failure criterion in finite element (FE) models, we show the location of stress intensification to render a mechanical basis for the thrust initiation away from the backstop if β > 0. Our physical and FE model results explain why the Main Central Thrust (MCT) is located far away from the Indo-Tibetan plate contact (ITSZ) in the Himalayan fold-and-thrust belts.

  19. Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs

    Science.gov (United States)

    de Saint Blanquat, Michel; Horsman, Eric; Habert, Guillaume; Morgan, Sven; Vanderhaeghe, Olivier; Law, Richard; Tikoff, Basil

    2011-03-01

    The close relationship between crustal magmatism, an expression of heat dissipation, and tectonics, an expression of stress dissipation, leads to the question of their mutual relationships. Indeed, the low viscosity of magmas and the large viscosity contrast between magmas and surrounding rocks favor strain localization in magmas, and then possible "magmatic" initiation of structures at a wide range of scales. However, new data about 3-d pluton shape and duration of pluton construction perturb this simple geological image, and indicate some independence between magmatism and tectonics. In some cases we observe a direct genetic link and strong arguments for physical interactions between magmas and tectonics. In other cases, we observe an absence of these interactions and it is unclear how magma transfer and emplacement are related to lithospheric-plate dynamics. A simple explanation of this complexity follows directly from the pulsed, incremental assembly of plutons and its spatial and temporal characteristics. The size of each pluton is related to a magmatic pulsation at a particular time scale, and each of these coupled time/space scales is related to a specific process: in small plutons, we can observe the incremental process, the building block of plutons; in larger plutons, the incremental process is lost, and the pulsation, which consists of a cycle of injections at different timescales, must be related to the composition and thermal regime of the source region, itself driving magmatic processes (melting, segregation, and transfer) that interact with tectonic boundary conditions. The dynamics of pulsed magmatism observed in plutonic systems is then a proxy for deep lithospheric and magmatic processes. From our data and a review of published work, we find a positive corelation between volume and duration of pluton construction. The larger a pluton, the longer its construction time. Large/fast or small/slow plutons have not been identified to date. One

  20. Ore-lead isotopes and Grenville plate tectonics

    International Nuclear Information System (INIS)

    Farquhar, R.M.; Fletcher, I.R.

    1980-01-01

    Recent advances in the 'whole earth' modelling of evolutionary processes of Pb isotopes shed light upon the origin of the metals found in various types of ore deposits. On the bases of these models and several recently published data sets, we believe that the ore deposits formed in various plate tectonic environments may carry 'isotopic fingerprints' which, when used with other characteristics such as mineral assemblages, may identify the depositional environments of many ore bodies. In the present study Pb-isotopic measurements have been made of a number of Precambrain mineralization types and localities throughout the Central Metasedimentary Belt of the Grenville Province. The data for individual deposits are at best ambiguous, but fall into two groups sufficiently distinctive to allow some degree of 'fingerprint' identification. Comparisons with data from other areas suggest that the major periods of sedimentation within the Central Metasedimentary Belt accompanied plate rifting and/or island arc tectonic activity, with most of the mineralized lead being derived from mantle sources. Detailed comparisons between the Grenville and other regions are uncertain, mainly because there are few detailed high-accuracy data sets from younger, tectonically unambiguous mineral occurrences. We suggest that once these data sets are availble, isotopic fingerprinting may become diagnostic for deposits ranging well back into the Precambrain

  1. Assessment of tectonic hazards to waste storage in interior-basin salt domes

    International Nuclear Information System (INIS)

    Kehle, R.

    1979-01-01

    Salt domes in the northern Gulf of Mexico may make ideal sites for storage of radioactive waste because the area is tectonically quiet. The stability of such salt domes and the tectonic activity are discussed

  2. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf

    2012-01-01

    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  3. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    Science.gov (United States)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  4. Active stress from earthquake focal mechanisms along the Padan-Adriatic side of the Northern Apennines (Italy), with considerations on stress magnitudes and pore-fluid pressures

    Science.gov (United States)

    Boncio, Paolo; Bracone, Vito

    2009-10-01

    The active tectonic regime along the outer Northern Apennines (Padan-Adriatic area) is a matter of debate. We analyse the active tectonic regime by systematically inverting earthquake focal mechanisms in terms of their driving stress field, comparing two different stress inversion methods. Earthquakes within the area often deviate from Andersonian conditions, being characterized by reverse or transpressional slip on high-angle faults even if the regime is almost purely thrust faulting (e.g. Reggio Emilia 1996 and Faenza 2000 earthquakes). We analyse the stress conditions at faulting for the Reggio Emilia and Faenza earthquakes in order to infer the stress magnitudes and the possible role of fluid pressures. The stress analysis defines a consistent pattern of sub-horizontal active deviatoric compression arranged nearly perpendicular to the eastern front of the Padan-Adriatic fold-and-thrust system, independent of the stress inversion method used. The results are consistent with active compression operating within the Padan-Adriatic belt. The stress field is thrust faulting (sub-vertical σ3), except for the Cesena-Forlì and Ancona areas, where a strike-slip regime (sub-vertical or steeply-plunging σ2) operates. The strike-slip regimes are interpreted as being caused by the superposition of local tensional stresses due to oroclinal bending (i.e. rotations of the belt about vertical axes) on the regional compressional stress field. Kinematic complexities characterize the 1996 Reggio Emilia seismic sequence. The distribution of these complexities is not random, suggesting that they are due to local variations of the regional stress field within the unfaulted rocks surrounding the coseismic rupture. The stress conditions at faulting for the Reggio Emilia 1996 and Faenza 2000 earthquakes, coupled with the observation that seismicity in the Padan-Adriatic area often occurs in swarms, suggest that high pore-fluid pressures (Pf ≥ 70% of the lithostatic load) operate

  5. Effects of acid conditions on element distribution beneath a sulphur basepad

    International Nuclear Information System (INIS)

    Sevigny, J.H.; Fennell, J.W.; Sharma, A.

    1997-04-01

    A reconnaissance-scale study was conducted to determine the extent of acid conditions beneath a sulphur basepad at Canadian Occidental's Balzac sour gas plant and to examine the effects of acid conditions on element distribution in the subsurface. Sulphur which is extracted from sour natural gas is stored in large blocks directly on the ground. The elemental sulphur will oxidize to H 2 SO 4 under aerobic conditions and with the proper microorganisms can result in possible removal of metals from the soil and transportation in the groundwater. The basepad at the sour gas plant is 36 years old and is covered by about 1 metre of elemental sulphur. EM31 terrain conductivity and electrical resistivity tomography geophysical surveys were conducted to determine aerial and subsurface bulk electrical conductivity. The objective was to locate the indurated layer using the geophysical techniques and soil boring. The extent of acid conditions beneath the sulphur block was determined. Migration rates for the site were also estimated. Results suggested that minimal soil and groundwater impact can be expected from sulphur blocks overlying properly buffered soils, and that synthetic liners beneath sulphur blocks may not be a necessary measure at sour gas plants in Alberta. 19 refs., 6 tabs., 6 figs., 5 appendices

  6. Extensional tectonics on continents and the transport of heat and matter

    Science.gov (United States)

    Neugebauer, H. J.

    1985-01-01

    Intracontinental zones of extensional tectonic style are commonly of finite width and length. Associated sedimentary troughs are fault-controlled. The evolution of those structures is accompanied by volcanic activity of variable intensity. The characteristic surface structures are usually underlaid by a lower crust of the transitional type while deeper subcustal areas show delayed travel times of seismic waves especially at young tectonic provinces. A correspondence between deep-seated processes and zones of continental extension appears obvious. A sequential order of mechanisms and their importance are discussed in the light of modern data compilations and quantitative kinematic and dynamic approaches. The Cenozoic exensional tectonics related with the Rhine River are discussed.

  7. Paleomagnetism and tectonics of the Jura arcuate mountain belt in France and Switzerland

    Science.gov (United States)

    Gehring, Andreas U.; Keller, Peter; Heller, Friedrich

    1991-02-01

    Goethite and hematite in ferriferous oolitic beds of Callovian age from the Jura mountains (Switzerland, France) carry either pre- and/or post-tectonic magnetization. The frequent pre-tectonic origin of goethite magnetization indicates a temperature range during formation of the arcuate Jura mountain belt below the goethite Néel temperature of about 100°C. The scatter of the pre-tectonic paleomagnetic directions ( D = 11.5° E, I = 55.5°; α95 = 4.7) which reside both in goethite and hematite, provides strong evidence that the arcuate mountain belt was shaped without significant rotation. The paleomagnetic results support tectonic thin-skinned models for the formation of the Jura mountain belt.

  8. Temporal stress changes caused by earthquakes: A review

    Science.gov (United States)

    Hardebeck, Jeanne L.; Okada, Tomomi

    2018-01-01

    Earthquakes can change the stress field in the Earth’s lithosphere as they relieve and redistribute stress. Earthquake-induced stress changes have been observed as temporal rotations of the principal stress axes following major earthquakes in a variety of tectonic settings. The stress changes due to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake were particularly well documented. Earthquake stress rotations can inform our understanding of earthquake physics, most notably addressing the long-standing problem of whether the Earth’s crust at plate boundaries is “strong” or “weak.” Many of the observed stress rotations, including that due to the Tohoku-Oki earthquake, indicate near-complete stress drop in the mainshock. This implies low background differential stress, on the order of earthquake stress drop, supporting the weak crust model. Earthquake stress rotations can also be used to address other important geophysical questions, such as the level of crustal stress heterogeneity and the mechanisms of postseismic stress reloading. The quantitative interpretation of stress rotations is evolving from those based on simple analytical methods to those based on more sophisticated numerical modeling that can capture the spatial-temporal complexity of the earthquake stress changes.

  9. Tectonic implications of seismic activity recorded by the northern Ontario seismograph network

    International Nuclear Information System (INIS)

    Wetmiller, R.J.; Cajka, M.G.

    1989-01-01

    The northern Ontario seismograph network, which has operated under the Canadian Nuclear Fuel Waste Management Program since 1982, has provided valuable data to supplement those recorded by the Canadian national networks on earthquake activity, rockburst activity, the distribution of regional seismic velocities, and the contemporary stress field in northern Ontario. The combined networks recorded the largest earthquake known in northwestern Ontario, M 3.9 near Sioux Lookout on February 11, 1984, and many smaller earthquakes in northeastern Ontario. Focal mechanism solutions of these and older events showed high horizontal stress and thrust faulting to be dominant features of the contemporary tectonics of northern Ontario. The zone of more intense earthquake activity in western Quebec appeared to extend northwestward into the Kapuskasing area of northeastern Ontario, where an area of persistent microearthquake activity had been identified by a seismograph station near Kapuskasing. Controlled explosions of the 1984 Kapuskasing Uplift seismic profile experiment recorded on the northern Ontario seismograph network showed the presence of anomalously high LG velocities in northeastern Ontario (3.65 km/s) that when properly taken into account reduced the mislocation errors of well-recorded seismic events by 50% on average

  10. Regional tectonic framework of the Pranhita Godavari basin, India

    Science.gov (United States)

    Biswas, S. K.

    2003-03-01

    The Pranhita-Godavari Gondwana rift (PGR) has a co-genetic relationship with Permo-Triassic reactivation of the Narmada-Son Geofracture (NSG). The Satpura Gondwana basin represents the terminal depocentre against the NSG, which restricted the northwestward propagation of the PGR. The NE-SW tensional stress responsible for the NW-SE trending PGR could not propagate beyond the ramp formed by uplift along the NSG and transformed kinetically into an ENE directed horizontal shear along the NSG, inducing large scale strike-slip movements. The latter dynamics were responsible for ENE extension of the Satpura rift as a pull-apart basin. The PGR extends up to the present east coast of India, where it is apparently terminated by the NE-SW trending Bapatla ridge along the Eastern Ghat Rift (EGR). The subsurface data, however, shows that the PGR extends across the Bapatla ridge and continues beneath the Cretaceous-Tertiary sediments of the Krishna-Godavari basin (KG) in the EGR. Thus, the Permo-Triassic PGR appears to have continued in the Indo-Antarctic plate before the Cretaceous break up. The EGR, during break up of the continents, cuts across the PGR and the KG basin was superimposed on it. The PGR site is located on a paleo-suture between the Dharwar and Bastar proto-cratons. The master faults developed bordering the rift, and the intra-rift higher order faults followed the pre-existing fabric. The transverse transfer zones manifested as basement ridges, divide the rift into segments of tectono-sedimentary domains. The major domains are the Chintalapudi, Godavari, and Chandrapur sub-basins, each of which subsided differentially. The central Godavari sub-basin subsided most and shows maximum structural complexity and sediment accommodation. The rifting started with initial half-graben faulting along the northeastern master fault and expanded by successive half graben faulting. This gave rise to intra-basinal horsts and grabens, which exercised control on the syn

  11. On the relative significance of lithospheric weakening mechanisms for sustained plate tectonics

    Science.gov (United States)

    Araceli Sanchez-Maes, Sophia

    2018-01-01

    Plate tectonics requires the bending of strong plates at subduction zones, which is difficult to achieve without a secondary weakening mechanism. Two classes of weakening mechanisms have been proposed for the generation of ongoing plate tectonics, distinguished by whether or not they require water. Here we show that the energy budget of global subduction zones offers a simple yet decisive test on their relative significance. Theoretical studies of mantle convection suggest bending dissipation to occupy only 10-20 % of total dissipation in the mantle, and our results indicate that the hydrous mechanism in the shallow part of plates is essential to satisfy the requirement. Thus, surface oceans are required for the long-term operation of plate tectonics on terrestrial worlds. Establishing this necessary and observable condition for sustained plate tectonics carries important implications for planetary habitability at large.

  12. Post-Laramide and pre-Basin and Range deformation and implications for Paleogene (55-25 Ma) volcanism in central Mexico: A geological basis for a volcano-tectonic stress model

    Science.gov (United States)

    Tristán-González, Margarito; Aguirre-Díaz, Gerardo J.; Labarthe-Hernández, Guillermo; Torres-Hernández, José Ramón; Bellon, Hervé

    2009-06-01

    At central-eastern Mexico, in the Mesa Central province, there are several ranges that were formed after the K/T Laramide compression but before the Basin and Range peak extensional episodes at middle-late Oligocene. Two important volcano-tectonic events happened during this time interval, 1) uplift of crustal blocks exhuming the Triassic-Jurassic metamorphic sequence and formation of basins that were filled with red beds and volcanic sequences, and 2) normal faulting and tilting to the NE of these blocks and fanglomerate filling of graben and half-graben structures. The first event, from late Paleocene to early Eocene, was related to NNE and NNW oriented dextral strike-slip faults. These faults were combined with NW-SE en echelon faulting in these blocks through which plutonism and volcanism occurred. The second event lasted from early Oligocene to early Miocene and coincided with Basin and Range extension. Intense volcanic activity occurred synchronously with the newly-formed or reactivated old fault systems, producing thick sequences of silicic pyroclastic rocks and large domes. Volcano-tectonic peaks occurred in three main episodes during the middle-late Oligocene in this part of Mexico, at about 32-30 Ma, 30-28 Ma, and 26-25 Ma. The objectives of this work is to summarize the volcano-tectonic events that occurred after the end of the Laramide orogeny and before the peak episodes of Basin and Range faulting and Sierra Madre Occidental Oligocene volcanism, and to discuss the influence of these events on the following Oligocene-Miocene volcano-tectonic peak episodes that formed the voluminous silicic volcanism in the Mesa Central, and hence, in the Sierra Madre Occidental. A model based upon geological observations summarizes the volcanic-tectonic evolution of this part of Mexico from the late Paleocene to the Early Miocene.

  13. Evaluation and upgrading of records of stress measurement data in the mining industry.

    CSIR Research Space (South Africa)

    Stacey, TR

    1998-06-01

    Full Text Available to tectonic inversion, Proc. Centennial Geocongress (1995), ed J.M.Barton Jnr and Y.E.Copperthwaite, Geological Society of South Africa, pp 452- 455. Gay, N.C. 1972. Virgin rock stresses at Doornfontein Gold Mine, Carletonville, South Africa, Journal... of Geology, Vol 80, pp 61-80. Gay, N.C. 1975. In-situ stress measurements in Southern Africa, Tectonophysics, Vol 29, pp 447-459. Handley, M.F. 1996. In-situ stress measurements taken near SVC raisebore on 109 level at Western Deep Levels Limited South...

  14. Peculiar Active-Tectonic Landscape Within the Sanctuary of Zeus at Mt. Lykaion (Peloponnese, Greece)

    Science.gov (United States)

    Davis, G. H.

    2008-12-01

    The Sanctuary of Zeus (Mt. Lykaion) lies in the Peloponnese within the Pindos fold and thrust belt. It is the object of investigation of the Mt. Lykaion Excavation and Survey (http://lykaionexcavation.org/). Mt. Lykaion is a thrust klippe, on the summit of which is an upper sanctuary marked by an ash altar, temenos, and column bases. Earliest objects recovered from the ash altar go back to 3000 BCE, leading Dr. David Romano (University of Pennsylvania), a principal leader of the project, to conclude that worship of divinities on the summit is ancient. Detailed structural geological mapping reveals one dimension of the "power" of the site. Crisscrossing the upper sanctuary are scree bands that mark the traces of active normal faults, which are expressions of tectonic stretching of the Aegean region. The scree bands, composed of cinder-block-sized limestone blocks, range up to 10 m in outcrop breadth, 100 m in length, and 5 m in thickness. Though discontinuous, most of the scree bands lie precisely on the traces of through-going faults, which cut and displace the sedimentary formations of the Pindos group. Some cut the thrust fault, whose elliptical trace defines the Lykaion klippe. What makes the scree bands of this active-tectonic landscape "peculiar" is that there are no cliffs from which the scree descends. Rather, the bands of scree occur along flanks of smooth, rounded hillslopes and ridges. The scree bands coincide with modest steps in the topography, ranging from tens of centimeters to several tens of meters. The specific bedrock formation where the bands are best developed is an Upper Cretaceous limestone whose average platy-bedding thickness (approximately 20 cm) matches closely the average joint spacing. The limestone has little mechanical integrity. It cannot support itself as a scarp footwall and instead collapses into a pile of scree, whose upper-surface inclination conforms to a stable angle of repose. Evidence of the contemporary nature of this

  15. Middle to Late Jurassic Tectonic Evolution of the Klamath Mountains, California-Oregon

    Science.gov (United States)

    Harper, Gregory D.; Wright, James E.

    1984-12-01

    The geochronology, stratigraphy, and spatial relationships of Middle and Late Jurassic terranes of the Klamath Mountains strongly suggest that they were formed in a single west-facing magmatic arc built upon older accreted terranes. A Middle Jurassic arc complex is represented by the volcanic rocks of the western Hayfork terrane and consanguineous dioritic to peridotitic plutons. New U/Pb zircon dates indicate that the Middle Jurassic plutonic belt was active from 159 to 174 Ma and is much more extensive than previously thought. This plutonic belt became inactive just as the 157 Ma Josephine ophiolite, which lies west and structurally below the Middle Jurassic arc, was generated. Late Jurassic volcanic and plutonic arc rocks (Rogue Formation and Chetco intrusive complex) lie outboard and structurally beneath the Josephine ophiolite; U/Pb and K/Ar age data indicate that this arc complex is coeval with the Josephine ophiolite. Both the Late Jurassic arc complex and the Josephine ophiolite are overlain by the "Galice Formation," a Late Jurassic flysch sequence, and are intruded by 150 Ma dikes and sills. The following tectonic model is presented that accounts for the age and distribution of these terranes: a Middle Jurassic arc built on older accreted terranes undergoes rifting at 160 Ma, resulting in formation of a remnant arc/back-arc basin/island arc triad. This system collapsed during the Late Jurassic Nevadan Orogeny (150 Ma) and was strongly deformed and stacked into a series of east-dipping thrust sheets. Arc magmatism was active both before and after the Nevadan Orogeny, but virtually ceased at 140 Ma.

  16. Simulation of flow in the unsaturated zone beneath Pagany Wash, Yucca Mountain

    International Nuclear Information System (INIS)

    Kwicklis, E.M.; Healy, R.W.; Flint, A.L.

    1994-01-01

    A one-dimensional numerical model was created to simulate water movement beneath Pagany Wash, Yucca Mountain, Nevada. Model stratigraphy and properties were based on data obtained from boreholes UE-25 UZ No. 4 and UE-25 UZ No. 5, which was drilled in the alluvial channel and bedrock sideslope of Pagany Wash. Although unable to account for multidimensional or preferential flowpaths beneath the wash, the model proved a useful conceptual tool with which to develop hypotheses and, in some cases, provide bounding calculations. The model indicated that liquid flux decreases with depth in the upper 120 m beneath the wash, with fluxes of several tens mm/yr in the nonwelded base of the Tiva Canyon Member and fluxes on the order of a tenth mm/yr in the upper Topopah Spring Member. Capillary barrier effects were indicated by the model to significantly delay the entry of large fluxes into the potential repository horizon during periods of increasing net infiltration, and to inhibit rapid drainage of water from the nonwelded and bedded intervals into the potential repository horizon during periods of moisture redistribution. Lateral moisture redistribution can be expected to be promoted by these effects

  17. A 9,000-year-old caribou hunting structure beneath Lake Huron.

    Science.gov (United States)

    O'Shea, John M; Lemke, Ashley K; Sonnenburg, Elizabeth P; Reynolds, Robert G; Abbott, Brian D

    2014-05-13

    Some of the most pivotal questions in human history necessitate the investigation of archaeological sites that are now under water. Nine thousand years ago, the Alpena-Amberley Ridge (AAR) beneath modern Lake Huron was a dry land corridor that connected northeast Michigan to southern Ontario. The newly discovered Drop 45 Drive Lane is the most complex hunting structure found to date beneath the Great Lakes. The site and its associated artifacts provide unprecedented insight into the social and seasonal organization of prehistoric caribou hunting. When combined with environmental and simulation studies, it is suggested that distinctly different seasonal strategies were used by early hunters on the AAR, with autumn hunting being carried out by small groups, and spring hunts being conducted by larger groups of cooperating hunters.

  18. Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions

    Science.gov (United States)

    White, Randall; McCausland, Wendy

    2016-01-01

    We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from: Log10 V = 0.77 Log ΣMoment - 5.32, with volume, V, in cubic meters and seismic moment in Newton meters. Because the cumulative seismic moment can be approximated from the size of just the few largest events, and is quite insensitive to precise locations

  19. Geometry and kinematics of Majiatan Fold-and-thrust Belt, Western Ordos Basin: implication for Tectonic Evolution of North-South Tectonic Belt

    Science.gov (United States)

    He, D.

    2017-12-01

    The Helan-Chuandian North-South Tectonic Belt crossed the central Chinese mainland. It is a boundary of geological, geophysical, and geographic system of Chinese continent tectonics from shallow to deep, and a key zone for tectonic and geomorphologic inversion during Mesozoic to Cenozoic. It is superimposed by the southeastward and northeastward propagation of Qinghai-Tibet Plateau in late Cenozoic. It is thus the critical division for West and East China since Mesozoic. The Majiatan fold-and-thrust belt (MFTB), locating at the central part of HCNSTB and the western margin of Ordos Basin, is formed by the tectonic evolution of the Helan-Liupanshan Mountains. Based on the newly-acquired high-resolution seismic profiles, deep boreholes, and surface geology, the paper discusses the geometry, kinematics, and geodynamic evolution of MFTB. With the Upper Carboniferous coal measures and the pre-Sinian ductile zone as the detachments, MFTB is a multi-level detached thrust system. The thrusting was mainly during latest Jurassic to Late Cretaceous, breaking-forward in the foreland, and resulting in a shortening rate of 25-29%. By structural restoration, this area underwent extension in Middle Proterozoic to Paleozoic, which can be divided into three phases of rifting such as Middle to Late Proterozoic, Cambiran to Ordovician, and Caboniferous to early Permian. It underwent compression since Late Triassic, including such periods as Latest Triassic, Late Jurassic to early Cretaceous, Late Cretaceous to early Paleogene, and Pliocene to Quaternary, with the largest shortening around Late Jurassic to early Cretaceous period (i.e. the mid-Yanshanian movement by the local name). However, trans-extension since Eocene around the Ordos Basin got rise to the formation the Yingchuan, Hetao, and Weihe grabens. It is concluded that MFTB is the leading edge of the intra-continental Helan orogenic belt, and formed by multi-phase breaking-forward thrusting during Late Jurassic to Cretaceous

  20. The upper crust laid on its side: tectonic implications of steeply tilted crustal slabs for extension in the basin and range

    Science.gov (United States)

    Howard, Keith A.

    2005-01-01

    Tilted slabs expose as much as the top 8–15 km of the upper crust in many parts of the Basin and Range province. Exposures of now-recumbent crustal sections in these slabs allow analysis of pre-tilt depth variations in dike swarms, plutons, and thermal history. Before tilting the slabs were panels between moderately dipping, active Tertiary normal faults. The slabs and their bounding normal faults were tilted to piggyback positions on deeper footwalls that warped up isostatically beneath them during tectonic unloading. Stratal dips within the slabs are commonly tilted to vertical or even slightly overturned, especially in the southern Basin and Range where the thin stratified cover overlies similarly tilted basement granite and gneiss. Some homoclinal recumbent slabs of basement rock display faults that splay upward into forced folds in overlying cover sequences, which thereby exhibit shallower dips. The 15-km maximum exposed paleodepth for the slabs represents the base of the brittle upper crust, as it coincides with the depth of the modern base of the seismogenic zone and the maximum focal depths of large normal-fault earthquakes in the Basin and Range. Many upended slabs accompany metamorphic core complexes, but not all core complexes have corresponding thick recumbent hanging-wall slabs. The Ruby Mountains core complex, for example, preserves only scraps of upper-plate rocks as domed-up extensional klippen, and most of the thick crustal section that originally overlay the uplifted metamorphic core now must reside below little-tilted hanging-wall blocks in the Elko-Carlin area to the west. The Whipple and Catalina Mountains core complexes in contrast are footwall to large recumbent hanging-wall slabs of basement rock exposing 8-15 km paleodepths that originally roofed the metamorphic cores; the exposed paleodepths require that a footwall rolled up beneath the slabs.

  1. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    Science.gov (United States)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  2. Spatial and temporal variation of tectonic uplift in the southeastern Ethiopian Plateau from morphotectonic analysis

    Science.gov (United States)

    Xue, Liang; Alemu, Tadesse; Gani, Nahid D.; Abdelsalam, Mohamed G.

    2018-05-01

    We use morphotectonic analysis to study the tectonic uplift history of the southeastern Ethiopian Plateau (SEEP). Based on studies conducted on the Northwestern Ethiopian Plateau, steady-state and pulsed tectonic uplift models were proposed to explain the growth of the plateau since 30 Ma. We test these two models for the largely unknown SEEP. We present the first quantitative morphotectonic study of the SEEP. First, in order to infer the spatial distribution of the tectonic uplift rates, we extract geomorphic proxies including normalized steepness index ksn, hypsometric integral HI, and chi integral χ from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM). Second, we compare these rates with the thickness of flood basalt that we estimated from geological maps. Third, to constrain the timing of regional tectonic uplift, we develop a knickpoint celerity model. Fourth, we compare our results to those from the Northwestern Ethiopian Plateau to suggest a possible mechanism to explain regional tectonic uplift of the entire Ethiopian Plateau. We find an increase in tectonic uplift rates from the southeastern escarpments of the Afar Depression in the northeast to that of the Main Ethiopian Rift to the southwest. We identify three regional tectonic uplift events at 11.7, 6.5, and 4.5 Ma recorded by the development of regionally distributed knickpoints. This is in good agreement with ages of tectonic uplift events reported from the Northwestern Ethiopian Plateau.

  3. Crustal structure and active tectonics in the Eastern Alps

    DEFF Research Database (Denmark)

    Brückl, E.; Behm, M.; Decker, K.

    2010-01-01

    fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south......During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian...

  4. Focal mechanisms in the southern Aegean from temporary seismic networks - implications for the regional stress field and ongoing deformation processes

    Science.gov (United States)

    Friederich, W.; Brüstle, A.; Küperkoch, L.; Meier, T.; Lamara, S.; Egelados Working Group

    2014-05-01

    The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located microearthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earthquakes fall into 16 distinct spatial clusters distributed over the southern Aegean region. For each cluster, a stress inversion could be carried out yielding consistent estimates of the stress field and its spatial variation. At crustal levels, the stress field is generally dominated by a steeply dipping compressional principal stress direction except in places where coupling of the subducting slab and overlying plate come into play. Tensional principal stresses are generally subhorizontal. Just behind the forearc, the crust is under arc-parallel tension whereas in the volcanic areas around Kos, Columbo and Astypalea tensional and intermediate stresses are nearly degenerate. Further west and north, in the Santorini-Amorgos graben and in the area of the islands of Mykonos, Andros and Tinos, tensional stresses are significant and point around the NW-SE direction. Very similar stress fields are observed in western Turkey with the tensional axis rotated to NNE-SSW. Intermediate-depth earthquakes below 100 km in the Nisyros region indicate that the Hellenic slab experiences slab-parallel tension at these depths. The direction of tension is close to east-west and thus deviates from the local NW-oriented slab dip presumably owing to the segmentation of the slab. Beneath the Cretan sea, at shallower levels, the slab is under NW-SE compression. Tensional principal stresses in the crust exhibit very good alignment with extensional strain rate principal axes derived from GPS velocities except in volcanic areas, where both

  5. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units

    NARCIS (Netherlands)

    Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.C.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K.

    2008-01-01

    A correlation of tectonic units of the Alpine-Carpathian-Dinaridic system of orogens, including the substrate of the Pannonian and Transylvanian basins, is presented in the form of a map. Combined with a series of crustal-scale cross sections this correlation of tectonic units yields a clearer

  6. Simulation of Wave-Plus-Current Scour beneath Submarine Pipelines

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu

    2016-01-01

    A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed and suspen......A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed...... and suspended load descriptions forming the basis for seabed morphology. The model was successfully validated against experimental measurements involving scour development and eventual equilibrium in pure-current flows over a range of Shields parameters characteristic of both clear-water and live-bed regimes....... This validation complements previously demonstrated accuracy for the same model in simulating pipeline scour processes in pure-wave environments. The model was subsequently utilized to simulate combined wave-plus-current scour over a wide range of combined Keulegan–Carpenter numbers and relative current strengths...

  7. Time-domain study of tectonic strain-release effects on seismic waves from underground nuclear explosions

    International Nuclear Information System (INIS)

    Nakanishi, K.K.; Sherman, N.W.

    1982-09-01

    Tectonic strain release affects both the amplitude and phase of seismic waves from underground nuclear explosions. Surface wave magnitudes are strongly affected by the component of tectonic strain release in the explosion. Amplitudes and radiation patterns of surface waves from explosions with even small tectonic components change magnitudes significantly and show a strong dependence on receiver locations. A thrust-slip source superimposed on an isotropic explosion can explain observed reversals in waveform at different azimuths and phase delays between normal and reversed Rayleigh waves. The mechanism of this reversal is due to the phase relationship between reasonable explosion and tectonic release sources. Spallation or an unusual source time function are not required. The observations of Shagan River events imply thrust-slip motion along faults in a northwest-southeast direction, which is consistent with regional tectonics

  8. Crustal structure and regional tectonics of SE Sweden and the Baltic Sea

    International Nuclear Information System (INIS)

    Milnes, A.G.; Gee, D.G.; Lund, C.E.

    1998-11-01

    In this desk study, the available geophysical and geological data on the crustal structure and regional tectonics of the wider surroundings of the Aespoe site (SE Sweden and adjacent parts of the Baltic Sea) are compiled and assessed. The aim is to contribute to the knowledge base for long-term rock mechanical modeling, using the Aespoe site as a proxy for a high-level radioactive waste repository site in Swedish bedrock. The geophysical data reviewed includes two new refraction/wide-angle reflection seismic experiments carried out within the EUROBRIDGE project, in addition to the numerous earlier refraction seismic profiles. The BABEL normal-incidence deep seismic profile is also considered. New geological data, presented at EUROBRIDGE workshops, and in recent SGU publications, are reviewed for the same area. In combination with the seismic data, these provide a base for interpreting the present composition and structure, and the Palaeoproterozoic-Mesoproterozoic evolution, of the crustal segment within which the Aespoe site lies - the Smaaland mega-block. This is characterized by having undergone little regionally significant deformation or magmatism since Neoproterozoic times (the last 1000 million years). It is shown that, at this scale of observation (of the order of 100 km), the long-term rheology of the lithosphere can be argued from a relatively tight observational network, when combined with the results of earlier SKB studies (seismo-tectonics, uplift patterns, state of stress, heat flow) and published research. Although many uncertainties exist, the present state of knowledge would suffice for first exploratory calculations and sensitivity studies of long-term, large-scale rock mechanics

  9. Creating global comparative analyses of tectonic rifts, monogenetic volcanism and inverted relief

    Science.gov (United States)

    van Wyk de Vries, Benjamin

    2016-04-01

    I have been all around the world, and to other planets and have travelled from the present to the Archaean and back to seek out the most significant tectonic rifts, monogenetic volcanoes and examples of inverted relief. I have done this to provide a broad foundation of the comparative analysis for the Chaîne des Puys - Limagne fault nomination to UNESCO world Heritage. This would have been an impossible task, if not for the cooperation of the scientific community and for Google Earth, Google Maps and academic search engines. In preparing global comparisons of geological features, these quite recently developed tools provide a powerful way to find and describe geological features. The ability to do scientific crowd sourcing, rapidly discussing with colleagues about features, allows large numbers of areas to be checked and the open GIS tools (such as Google Earth) allow a standardised description. Search engines also allow the literature on areas to be checked and compared. I will present a comparative study of rifts of the world, monogenetic volcanic field and inverted relief, integrated to analyse the full geological system represented by the Chaîne des Puys - Limagne fault. The analysis confirms that the site is an exceptional example of the first steps of continental drift in a mountain rift setting, and that this is necessarily seen through the combined landscape of tectonic, volcanic and geomorphic features. The analysis goes further to deepen the understanding of geological systems and stresses the need for more study on geological heritage using such a global and broad systems approach.

  10. Regional Characteristics of Stress State of Main Seismic Active Faults in Mid-Northern Part of Sichuan-Yunnan Block

    Science.gov (United States)

    Weiwei, W.; Yaling, W.

    2017-12-01

    We restore the seismic source spectrums of 1012 earthquakes(2.0 ≤ ML ≤ 5.0) in the mid-northern part of Sichuan-Yunnan seismic block(26 ° N-33 ° N, 99 ° E-104 ° E),then calculate the source parameters.Based on the regional seismic tectonic background, the distribution of active faults and seismicity, the study area is divided into four statistical units (Z1 Jinshajiang and Litang fault zone, Z2 Xianshuihe fault zone, Z3 Anninghe-Zemuhe fault zone, Z4 Lijiang-Xiaojinhe fault zone). Seismic source stress drop results show the following, (1)The stress at the end of the Jinshajiang fault is low, strong earthquake activity rare.Stress-strain loading deceases gradually from northwest to southeast along Litang fault, the northwest section which is relatively locked is more likely to accumulate strain than southeast section. (2)Stress drop of Z2 is divided by Kangding, the southern section is low and northern section is high. Southern section (Kangding-Shimian) is difficult to accumulate higher strain in the short term, but in northern section (Garzê-Kangding), moderate and strong earthquakes have not filled the gaps of seismic moment release, there is still a high stress accumulation in partial section. (3)High stress-drop events were concentrated on Z3, strain accumulation of this unit is strong, and stress level is the highest, earthquake risk is high. (4)On Z4, stress drop characteristics of different magnitude earthquakes are not the same, which is related to complex tectonic setting, the specific reasons still need to be discussed deeply.The study also show that, (1)Stress drops display a systematic change with different faults and locations, high stress-drop events occurs mostly on the fault intersection area. Faults without locking condition and mainly creep, are mainly characterized by low stress drop. (2)Contrasting to what is commonly thought that "strike-slip faults are not easy to accumulate stress ", Z2 and Z3 all exhibit high stress levels, which

  11. Do cratons preserve evidence of stagnant lid tectonics?

    Directory of Open Access Journals (Sweden)

    Derek Wyman

    2018-01-01

    Full Text Available Evidence for episodic crustal growth extending back to the Hadean has recently prompted a number of numerically based geodynamic models that incorporate cyclic changes from stagnant lid to mobile lid tectonics. A large part of the geologic record is missing for the times at which several of these cycles are inferred to have taken place. The cratons, however, are likely to retain important clues relating to similar cycles developed in the Mesoarchean and Neoarchean. Widespread acceptance of a form of plate tectonics by ∼3.2 Ga is not at odds with the sporadic occurrence of stagnant lid tectonics after this time. The concept of scale as applied to cratons, mantle plumes and Neoarchean volcanic arcs are likely to provide important constraints on future models of Earth's geodynamic evolution. The Superior Province will provide some of the most concrete evidence in this regard given that its constituent blocks may have been locked into a stagnant lid relatively soon after their formation and then assembled in the next global plate tectonic interval. Perceived complexities associated with inferred mantle plume – volcanic arc associations in the Superior Province and other cratons may be related to an over estimation of plume size. A possible stagnant lid episode between ∼2.9 Ga and ∼2.8 Ga is identified by previously unexplained lapses in volcanism on cratons, including the Kaapvaal, Yilgarn and Superior Province cratons. If real, then mantle dynamics associated with this episode likely eliminated any contemporaneous mantle plume incubation sites, which has important implications for widespread plumes developed at ∼2.7 Ga and favours a shallow mantle source in the transition zone. The Superior Province provides a uniquely preserved local proxy for this global event and could serve as the basis for detailed numerical models in the future.

  12. Living and Working Beneath the Sea – Next Approach

    Directory of Open Access Journals (Sweden)

    Rowiński Lech

    2017-04-01

    Full Text Available The idea of living beneath the sea is very new if compared with millennia of shipping activity. In fact, ocean surface was considered mainly as medium suitable for transport of persons and goods as well as aggression and robbery. More practical attempts to live “on” the water surface are limited to well protected internal waters.

  13. The 2001 Mt. Etna eruption: new constraints on the intrusive mechanism from ground deformation data

    Science.gov (United States)

    Palano, Mimmo; González, Pablo J.

    2013-04-01

    The occurrence of seismic swarms beneath the SW flank of Mt. Etna, often observed just a few months before an eruption, has been considered as the fragile response to a magma intrusion (Bonanno et al., 2011 and reference therein). These intrusions and/or pressurization of deep magmatic bodies, have been able to significantly affect the seismic pattern within the volcano edifice, leading to a changes in the local stress field. For example, during the months preceding the 1991-1993 Mt. Etna eruption, shallow intense seismic swarms (4-6 km deep) occurring in the SW flank (e.g. Cocina et al., 1998), related to the magma intrusion before the eruption onset, were observed contemporaneously with a rotation of stress field of about 90°. A similar scenario was observed during January 1998, when a magma recharging phases induced a local rotation of stress tensor, forcing a buried fault zone located beneath the SW flank of Mt. Etna to slip as a right-lateral strike-slip fault (Bonanno et al., 2011). This fault system was forced to slip again, during late April 2001 (more than 200 events in less than 5 days; maximum Magnitude = 3.6) by the pressurization of the magmatic bodies feeding the July-August 2001 Mt. Etna eruption. Here we analyzed in detail the July-August 2001 Mt. Etna eruption as well as the dynamics preceding this event, by using a large dataset of geodetic data (GPS and synthetic aperture radar interferometry) collected between July 2000 and August 2001. References Cocina, O., Neri, G., Privitera, E. and Spampinato S., 1998. Seismogenic stress field beneath Mt. Etna South Italy and possible relationships with volcano-tectonic features. J. Volcanol. Geotherm. Res., 83, 335-348. Bonanno A., Palano M., Privitera E., Gresta S., Puglisi G., 2011. Magma intrusion mechanisms and redistribution of seismogenic stress at Mt. Etna volcano (1997-1998). Terra Nova, 23, 339-348, doi: 10.1111/j.1365-3121.2011.01019.x, 2011.

  14. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    Science.gov (United States)

    Draut, Amy; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry

  15. Quantitative morphometric analysis for the tectonic characterisation of northern Tunisia.

    Science.gov (United States)

    Camafort, Miquel; Pérez-Peña, José Vicente; Booth-Rea, Guillermo; Ranero, César R.; Gràcia, Eulàlia; Azañón, José Miguel; Melki, Fetheddine; Ouadday, Mohamed

    2016-04-01

    Northern Tunisia is characterized by low deformation rates and low to moderate seismicity. Although instrumental seismicity reaches maximum magnitudes of Mw 5.5, some historical earthquakes have occurred with catastrophic consequences in this region. Aiming to improve our knowledge of active tectonics in Tunisia, we carried out both a quantitative morphometric analysis and field study in the north-western region. We applied different morphometric tools, like river profiles, knickpoint analysis, hypsometric curves and integrals and drainage pattern anomalies in order to differentiate between zones with high or low recent tectonic activity. This analysis helps identifying uplift and subsidence zones, which we relate to fault activity. Several active faults in a sparse distribution were identified. A selected sector was studied with a field campaign to test the results obtained with the quantitative analysis. During the fieldwork we identified geological evidence of recent activity and a considerable seismogenic potential along El Alia-Teboursouk (ETF) and Dkhila (DF) faults. The ETF fault could be responsible of one of the most devastating historical earthquakes in northern Tunisia that destroyed Utique in 412 A.D. Geological evidence include fluvial terraces folded by faults, striated and cracked pebbles, clastic dikes, sand volcanoes, coseismic cracks, etc. Although not reflected in the instrumental seismicity, our results support an important seismic hazard, evidenced by the several active tectonic structures identified and the two seismogenic faults described. After obtaining the current active tectonic framework of Tunisia we discuss our results within the western Mediterranean trying to contribute to the understanding of the western Mediterranean tectonic context. With our results, we suggest that the main reason explaining the sparse and scarce seismicity of the area in contrast with the adjacent parts of the Nubia-Eurasia boundary is due to its extended

  16. Tectonic isolation from regional sediment sourcing of the Paradox Basin

    Science.gov (United States)

    Smith, T. M.; Saylor, J.; Sundell, K. E.; Lapen, T. J.

    2017-12-01

    The Appalachian and Ouachita-Marathon mountain ranges were created by a series of tectonic collisions that occurred through the middle and late Paleozoic along North America's eastern and southern margins, respectively. Previous work employing detrital zircon U-Pb geochronology has demonstrated that fluvial and eolian systems transported Appalachian-derived sediment across the continent to North America's Paleozoic western margin. However, contemporaneous intraplate deformation of the Ancestral Rocky Mountains (ARM) compartmentalized much of the North American western interior and mid-continent. We employ lithofacies characterization, stratigraphic thickness, paleocurrent data, sandstone petrography, and detrital zircon U-Pb geochronology to evaluate source-sink relationships of the Paradox Basin, which is one of the most prominent ARM basins. Evaluation of provenance is conducted through quantitative comparison of detrital zircon U-Pb distributions from basin samples and potential sources via detrital zircon mixture modeling, and is augmented with sandstone petrography. Mixing model results provide a measure of individual source contributions to basin stratigraphy, and are combined with outcrop and subsurface data (e.g., stratigraphic thickness and facies distributions) to create tectonic isolation maps. These maps elucidate drainage networks and the degree to which local versus regional sources influence sediment character within a single basin, or multiple depocenters. Results show that despite the cross-continental ubiquity of Appalachian-derived sediment, fluvial and deltaic systems throughout much of the Paradox Basin do not record their influence. Instead, sediment sourcing from the Uncompahgre Uplift, which has been interpreted to drive tectonic subsidence and formation of the Paradox Basin, completely dominated its sedimentary record. Further, the strong degree of tectonic isolation experienced by the Paradox Basin appears to be an emerging, yet common

  17. APPLICABILITY OF SIMILARITY CONDITIONS TO ANALOGUE MODELLING OF TECTONIC STRUCTURES

    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov

    2010-01-01

    , ultimate strength, and tectonic stresses which caused formation of such structures (Fig. 7.(3 A way to overcome the above mentioned difficulties can be found through awareness of the fact that physical similarity conditions are often met per se, i.e. automatically observed due to linear relationships between similarity coefficients (Fig. 8. For example, decreasing the viscosity of the equivalent material will result in corresponding decrease of time required for deformation of the given model, all other conditions being equal. Moreover, it is possible to use this similarity condition, i.e. an equation in one unknown, not only to select a required equivalent material, but also to quantitatively estimate the natural parameter in the given condition.(4 Another way to overcome the above mentioned difficulties is simplification of modeling in cases when it is required to obtain qualitative results without any quantitative evaluations of parameters of structure formation (Figures 9 to 14. This necessitates development of fundamentally new criteria of similarity for modelling. For instance, it can be absence or presence of the original (pre-deformational structuring of the geological medium that is preconditioned by previous deformation processes of self-organization of the givem medium. Possibilities of simulation of the selforganization shall be the subject of our future study. It is also needed to elaborate new similarity criteria for modeling of hierarchically subordinate geodynamic systems and structural parageneses. So far it has been accepted that simulations of the kind should be conducted on the principle of selectivity (separate simulation, established by M.V. Gzovsky [1975], such as, for example, separate simulation of folding and cleavage.Having his own experience of 40+ years in experimental tectonics, the author addresses his views to young researchers, who are apprehensive about the need to ensure compliance with similarity conditions in physical modeling of

  18. DELP Symposium: Tectonics of eastern Asia and western Pacific Continental Margin

    Science.gov (United States)

    Eastern Asia and the western Pacific make up a broad region of active plate tectonic interaction. The area is a natural laboratory for studying the processes involved in the origin and evolution of volcanic island arcs, marginal basins, accretionary prisims, oceanic trenches, accreted terranes, ophiolite emplacement, and intracontinental deformation. Many of our working concepts of plate tectonics and intraplate deformation were developed in this region, even though details of the geology and geophysics there must be considered of a reconnaissance nature.During the past few years researchers have accumulated a vast amount of new and detailed information and have developed a better understanding of the processes that have shaped the tectonic elements in this region. To bring together scientists from many disciplines and to present the wide range of new data and ideas that offer a broader perspective on the interrelations of geological, geochemical, geophysical and geodetic studies, the symposium Tectonics of Eastern Asia and Western Pacific Continental Margin was held December 13-16, 1988, at the Tokyo Institute of Technology in Japan, under the auspicies of DELP (Dynamics and Evolution of the Lithosphere Project).

  19. A transparent and data-driven global tectonic regionalization model for seismic hazard assessment

    Science.gov (United States)

    Chen, Yen-Shin; Weatherill, Graeme; Pagani, Marco; Cotton, Fabrice

    2018-05-01

    A key concept that is common to many assumptions inherent within seismic hazard assessment is that of tectonic similarity. This recognizes that certain regions of the globe may display similar geophysical characteristics, such as in the attenuation of seismic waves, the magnitude scaling properties of seismogenic sources or the seismic coupling of the lithosphere. Previous attempts at tectonic regionalization, particularly within a seismic hazard assessment context, have often been based on expert judgements; in most of these cases, the process for delineating tectonic regions is neither reproducible nor consistent from location to location. In this work, the regionalization process is implemented in a scheme that is reproducible, comprehensible from a geophysical rationale, and revisable when new relevant data are published. A spatial classification-scheme is developed based on fuzzy logic, enabling the quantification of concepts that are approximate rather than precise. Using the proposed methodology, we obtain a transparent and data-driven global tectonic regionalization model for seismic hazard applications as well as the subjective probabilities (e.g. degree of being active/degree of being cratonic) that indicate the degree to which a site belongs in a tectonic category.

  20. Tectonic evolution of a part of the Tethyside orogenic collage: The Kargi Massif, northern Turkey

    Science.gov (United States)

    Tüysüz, Okan

    1990-02-01

    The central part of the Rhodope-Pontide fragment, one of the major tectonic units in Turkey, provides critical data for evaluating the Cimmeride and Alpide evolution of the Mediterranean Tethysides. Tectonic events that affected the central part of the Rhodope-Pontide fragment since the end of the Paleozoic, generated east-west trending belts with the event of every episode redeforming and partly obliterating the structures of previous episodes. This evolution may be conveniently described in terms of three major episodes: (1) Two different realms of pre-Dogger oceanic rocks are present in the area. The northern realm coincided with main branch of Paleo-Tethys that was being actively destroyed by south dipping subduction. The southern realm, the Karakaya ocean, a back arc basin related to this subduction, began opening by rifting of a retroarc carbonate platform during the Permo-Triassic. To the west a continental domain with sparse magmatism seperated the two oceanic areas. Toward the east the two oceans become united by the wedging out of the continental domain. These two pre-Dogger oceans closed during the Lias, and their remnants were emplaced between the southern margin of Laurasia and the fragments of the Cimmerian continent. (2) The second episode partly overlapped the first with rifting south of the Cimmerian continent fragment during the Lias. This rifting was followed by a transgression which covered the ruins of the Cimmeride orogenic belt by the Malm. This rifting concurrently led to the development of the northern branch of the Neo-Tethys and a south facing Atlantic-type continental margin. A southerly thickening sedimentary prism developed on this margin during the Lias to early Cretaceous interval. (3) The floor of the northern branch of Neo-Tethys began to be consumed along the north dipping subduction zone beneath the previosly constructed continental margin. This convergent margin generated a magmatic arc to the north and to the south a subduction

  1. Sine-Gordon equation and its application to tectonic stress transfer

    Science.gov (United States)

    Bykov, Victor G.

    2014-07-01

    An overview is given on remarkable progress that has been made in theoretical studies of solitons and other nonlinear wave patterns, excited during the deformation of fault block (fragmented) geological media. The models that are compliant with the classical and perturbed sine-Gordon equations have only been chosen. In these mathematical models, the rotation angle of blocks (fragments) and their translatory displacement of the medium are used as dynamic variables. A brief description of the known models and their geophysical and geodynamic applications is given. These models reproduce the kinematic and dynamic features of the traveling deformation front (kink, soliton) generated in the fragmented media. It is demonstrated that the sine-Gordon equation is applicable to the description of series of the observed seismic data, modeling of strain waves, as well as the features related to fault dynamics and the subduction slab, including slow earthquakes, periodicity of episodic tremor and slow slip (ETS) events, and migration pattern of tremors. The study shows that simple heuristic models and analytical and numerical computations can explain triggering of seismicity by transient processes, such as stress changes associated with solitary strain waves in crustal faults. The need to develop the above-mentioned new (nonlinear) mathematical models of the deformed fault and fragmented media was caused by the reason that it is impossible to explain a lot of the observed effects, particularly, slow redistribution and migration of stresses in the lithosphere, within the framework of the linear elasticity theory.

  2. Theatrical Tectonics: The Mediating Agent for a Contesting Practice

    Directory of Open Access Journals (Sweden)

    Gevork Hartoonian

    2014-07-01

    Full Text Available This paper posits the idea that the theme of agency in architecture is parallactic. It discusses the tectonic as an agent through which architecture turns into a state of constant flux. The intention is to promote a discourse of criticality, the thematic of which is drawn from the symptoms that galvanise architecture’s rapport with the image-laden culture of late capitalism. In an attempt to log the thematic of a contested practice, this essay will re-map the recent history of contemporary architecture.Exploring New Brutalism’s criticism of the established ethos of International Style architecture, the first part of this paper will highlight the movement’s tendency towards replacing the painterly with the sculptural, and this in reference to the contemporary interest in monolithic architecture. Having established the import of tectonics for the architecture of Brutalism, the paper then argues that in the present situation, when architecture – like other cultural products – is infatuated with the spectacle of late capitalism, a re-thinking of the Semperian notion of theatricality is useful. Of interest in the tectonic of theatricality is the work’s capacity to bring forth the division between intellectual and physical labours, and this in reference to architecture’s reserved acceptance of technification for which the aforementioned division is vital.Particular attention will be given to two projects, Zaha Hadid’s Phaeno Center and OMA’s Casa da Musica, where architectonic aspects of New Brutalism are revisited in the light of the tectonic of theatricality.

  3. Focal mechanisms in the southern Aegean from temporary seismic networks – implications for the regional stress field and ongoing deformation processes

    Directory of Open Access Journals (Sweden)

    W. Friederich

    2014-05-01

    Full Text Available The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located microearthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earthquakes fall into 16 distinct spatial clusters distributed over the southern Aegean region. For each cluster, a stress inversion could be carried out yielding consistent estimates of the stress field and its spatial variation. At crustal levels, the stress field is generally dominated by a steeply dipping compressional principal stress direction except in places where coupling of the subducting slab and overlying plate come into play. Tensional principal stresses are generally subhorizontal. Just behind the forearc, the crust is under arc-parallel tension whereas in the volcanic areas around Kos, Columbo and Astypalea tensional and intermediate stresses are nearly degenerate. Further west and north, in the Santorini–Amorgos graben and in the area of the islands of Mykonos, Andros and Tinos, tensional stresses are significant and point around the NW–SE direction. Very similar stress fields are observed in western Turkey with the tensional axis rotated to NNE–SSW. Intermediate-depth earthquakes below 100 km in the Nisyros region indicate that the Hellenic slab experiences slab-parallel tension at these depths. The direction of tension is close to east–west and thus deviates from the local NW-oriented slab dip presumably owing to the segmentation of the slab. Beneath the Cretan sea, at shallower levels, the slab is under NW–SE compression. Tensional principal stresses in the crust exhibit very good alignment with extensional strain rate principal axes derived from GPS velocities except

  4. Survey explores active tectonics in northeastern Caribbean

    Science.gov (United States)

    Carbó, A.; Córdoba, D.; Muñoz-Martín, A.; Granja, J.L.; Martín-Dávila, J.; Pazos, A.; Catalán, M.; Gómez, M.; ten Brink, Uri S.; von Hillebrandt, Christa; Payero, J.

    2005-01-01

    There is renewed interest in studying the active and complex northeastern Caribbean plate boundary to better understand subduction zone processes and for earthquake and tsunami hazard assessments [e.g., ten Brink and Lin, 2004; ten Brink et al., 2004; Grindlay et al., 2005]. To study the active tectonics of this plate boundary, the GEOPRICO-DO (Geological, Puerto Rico-Dominican) marine geophysical cruise, carried out between 28 March and 17 April 2005 (Figure 1), studied the active tectonics of this plate boundary.Initial findings from the cruise have revealed a large underwater landslide, and active faults on the seafloor (Figures 2a and 2c). These findings indicate that the islands within this region face a high risk from tsunami hazards, and that local governments should be alerted in order to develop and coordinate possible mitigation strategies.

  5. Determinations of directions of the mean stress field in Sichuan-Yunnan region from a number of focal mechanism solutions

    Science.gov (United States)

    Zhong, Ji-Mao; Cheng, Wan-Zheng

    2006-07-01

    Based on the spatial orientation and slip direction of the fault plane solutions, we present the expression of corresponding mechanical axis tensor in geographic coordinate system, and then put forward a method for calculating average mechanical axis tensor and its eigenvalues, which involves solving the corresponding eigenequation. The method for deducing mean stress field from T, B, and P axes parameters of a number of focal mechanism solutions has been verified by inverting data of mean stress fields in Fuyun region and in Tangshan region with fitting method of slip direction, and both results are consistent. To study regional average stress field, we need to choose a population of focal mechanism solutions of earthquakes in the massifs where there are significant tectonic structures. According to the focal mechanism solutions of 256 moderate-strong earthquakes occurred in 13 seismic zones of Sichuan-Yunnan region, the quantitative analysis results of stress tensor in each seismic zone have been given. The algorithm of such method is simple and convenient, which makes the method for analyzing tectonic stress field with large amount of focal mechanism solution data become quantified.

  6. 3D Crust and Uppermost Mantle Structure beneath Tian Shan Region from ambient noise and earthquake surface waves

    Science.gov (United States)

    Xiao, X.; Wen, L.

    2017-12-01

    As a typical active intracontinental mountain range in Central Asia, Tian Shan Mt serves as the prototype in studying geodynamic processes and mechanism of intracontinental mountain building. We study 3D crust and the uppermost mantle structure beneath Tian Shan region using ambient noise and earthquake surface waves. Our dataset includes vertical component records of 62 permanent broadband seismic stations operated by the Earthquake Administration of China. Firstly, we calculate two-year stacked Cross-Correlation Functions (CCFs) of ambient noise records between the stations. The CCFs are treated as the Empirical Green's Functions (EGFs) of each station pair, from which we measured phase velocities of fundamental-mode Rayleigh wave in the period of 3-40 s using a frequency-time analysis method. Secondly, we collect surface wave data from tele-seismic events with Mw > 5.5 and depth shallower than 200 km and measure phase velocities of the fundamental-mode of Rayleigh wave in the period of 30-150 s using a two-station method. Finally, we combine the phase velocity measurements from ambient noise and earthquake surface waves, obtain lateral isotropic phase velocity maps at different periods based on tomography and invert a 3D Vsv model of crust and uppermost mantle down to about 150 km using a Monte Carlo Inversion method. We will discuss our inversion results in detail, as well as their implications to the tectonics in the region.

  7. ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS

    International Nuclear Information System (INIS)

    Lenardic, A.; Crowley, J. W.

    2012-01-01

    A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees, for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ( s uper-Earths ) . The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.

  8. Spatial distribution of the earthquakes in the Vrancea zone and tectonic correlations

    International Nuclear Information System (INIS)

    Bala, Andrei; Diaconescu, Mihai; Biter, Mircea

    2001-01-01

    The tectonic plate evolution of the whole Carpathian Arc and Pannonian back-arc Basin indicates that at least three tectonic units have been in contact and at the same time in relative motion: the East European Plate, the Moesian plate and the Intra-Alpine plate. There were plotted graphically all the earthquake hypocentres from the period 1982-2000 situated in an area which includes Vrancea zone. Because of the great number of events plotted, they were found to describe well the limits of the tectonic plate (plate fragment?) which is supposed to be subducted in this region down to 200 km depth. The hypothesis of a plate fragment delaminated from an older subduction can not be overruled. These limits were put in direct relations with the known geology and tectonics of the area. Available fault plane solutions for the crustal earthquakes are analyzed in correlation with the main faults of the area. A graphic plot of the sunspot number is correlated with the occurrence of the earthquakes with magnitudes greater than 5. (authors)

  9. The analysis of the Tectonics - SSS - Seismicity System in the 3D-model of the Rasvumchorr Mine - Central Open Pit Natural and Technical System (Khibiny)

    Science.gov (United States)

    Zhirov, Dmitry; Klimov, Sergey; Zhirova, Anzhela; Panteleev, Alexey; Rybin, Vadim

    2017-04-01

    Main hazardous factors during the operation of deposits represent tectonics (structural dislocation), strain and stress state (SSS), and seismicity. The cause and effect relationships in the Fault Tectonics - SSS - Seismicity system were analyzed using a 3D geological and structural Rasvumchorr Mine - Central Open Pit model. This natural and technical system (NTS) has resulted from the development of the world-class apatite-nepheline deposits the Apatite Circus and Rasvumchorr Plateau. The 3D model integrates various spatial data on the earth's surface topography before and after mining, geometry of mines and dumps, SSS measurements and rock pressure, seismicity, fault tectonics and etc. The analysis of the 3D model has clearly demonstrated the localization of three main seismic emanation zones in the areas of maximum anthropogenic variation of the initial rock state, and namely: ore pass zone under the Southern edge of the Central open pit, collapse and joining zone of the Rasvumchorr Mine and NW edge of the open pit, and zone under the Apatite Circus plate - collapse console. And, on the contrary, in the area of a large dump under the underground mine, a perennial seismic minimum zone was identified. The relation of the seismicity and fault tectonics was revealed only in three local sectors near come certain echelon fissures of the Main Fault(MF). No confinement of increased seismicity areas to the MF and other numerous echelon fissures is observed. The same picture occurs towards manifestations of rock pressure. Only an insignificant part of echelon fissures (including low rank of hierarchy) controls hazardous manifestations of rock pressure (dumps, strong deformations of the mine contour, etc.). It is shown that the anthropogenic factor (explosive, geometry and arrangement of mined spaces and collapse console), as well as the time factor significantly change orientation and structure (contrast and heterogeneity) of the stress fields. Time series of natural

  10. Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey

    Science.gov (United States)

    Özden, Süha; Över, Semir; Poyraz, Selda Altuncu; Güneş, Yavuz; Pınar, Ali

    2018-04-01

    The west to southwestward motion of the Anatolian block results from the relative motions between the Eurasian, Arabian and African plates along the right-lateral North Anatolian Fault Zone in the north and left-lateral East Anatolian Fault Zone in the east. The Biga Peninsula is tectonically influenced by the Anatolian motion originating along the North Anatolian Fault Zone which splits into two main (northern and southern) branches in the east of Marmara region: the southern branch extends towards the Biga Peninsula which is characterized by strike-slip to oblique normal faulting stress regime in the central to northern part. The southernmost part of peninsula is characterized by a normal to oblique faulting stress regime. The analysis of both seismological and structural field data confirms the change of stress regime from strike-slip character in the center and north to normal faulting character in the south of peninsula where the earthquake swarm recently occurred. The earthquakes began on 14 January 2017 (Mw: 4.4) on Tuzla Fault and migrated southward along the Kocaköy and Babakale's stepped-normal faults of over three months. The inversion of focal mechanisms yields a normal faulting stress regime with an approximately N-S (N4°E) σ3 axis. The inversion of earthquakes occurring in central and northern Biga Peninsula and the north Aegean region gives a strike-slip stress regime with approximately WNW-ESE (N85°W) σ1 and NNE-SSW (N17°E) σ3 axis. The strike-slip stress regime is attributed to westward Anatolian motion, while the normal faulting stress regime is attributed to both the extrusion of Anatolian block and the slab-pull force of the subducting African plate along the Hellenic arc.

  11. Tectonic Movement in Korean Peninsula and Relation between Fault and Earthquake

    International Nuclear Information System (INIS)

    Bae, Dae Seok; Koh, Yong Kwon; Kim, Kyung Su

    2009-08-01

    The objectives of the research are to study geological faults and related geological processes such as tectonic processes and earthquake to select a safe site for the high level radioactive waste disposal consequently. The results from this study show the significance of faults evaluation and develop methods to analyze geological data related to faults such as tectonic processes and earthquake, which are important data for the site selection

  12. Residual stresses caused by head-on and 45° foreign object damage for a laser shock peened Ti–6Al–4V alloy aerofoil

    International Nuclear Information System (INIS)

    Zabeen, S.; Preuss, M.; Withers, P.J.

    2013-01-01

    This paper investigates the effect on the residual stresses of foreign object damage (FOD) to a previously laser shock peened (LSP) leading edge (LE). FOD was introduced onto the LE of the aerofoil-shaped specimen through ballistic impacts of a cube edge at angles of 0° and 45° to the leading edge. The residual stress distribution was mapped around the FOD notch by synchrotron X-ray diffraction. The results suggest that for both impact angles, the FOD event superimposed a significant additional residual stress on top of the pre-existing stress associated with the LSP process. In particular, the compressive stress was found to be largest directly beneath the notch and the tensile region, seen previously for unpeened aerofoils beneath the compressive zone, was absent due to the pre-existing peening stress field. This may help to explain the improved fatigue strength observed previously. It is shown that the FOD notch created by 45° impact was asymmetric in shape and smaller in depth compared to that created at 0°. The residual stresses were somewhat larger for the 0° impact condition than for 45° partly due to the larger notch depth introduced in the former case.

  13. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    DEFF Research Database (Denmark)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.

    2015-01-01

    Liquid water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground...... this zone to be a confined aquifer situated in sediments with a porosity of 23-42%. Discovery of this aquifer suggests that subsurface liquid water may be more pervasive in regions of continuous permafrost than previously thought and may represent an extensive habitat for microbial populations. Key Points...... Geophysical survey finds low resistivities beneath a lake in Antarctic Dry Valleys Liquid brine abundant beneath Antarctic lake Aquifer provides microbial refugium in cold desert environment...

  14. Euro-African MAGSAT anomaly-tectonic observations

    Science.gov (United States)

    Hinze, W. J.; Olivier, R.; Vonfrese, R. R. B.

    1985-01-01

    Preliminary satellite (MAGSAT) scalar magnetic anomaly data are compiled and differentially reduced to radial polarization by equivalent point source inversion for comparison with tectonic data of Africa, Europe and adjacent marine areas. A number of associations are evident to constrain analyses of the tectonic features and history of the region. The Precambrian shields of Africa and Europe exhibit varied magnetic signatures. All shields are not magnetic highs and, in fact, the Baltic shield is a marked minimum. The reduced-to-the-pole magnetic map shows a marked tendency for northeasterly striking anomalies in the eastern Atlantic and adjacent Africa, which is coincident to the track of several hot spots for the past 100 million years. However, there is little consistency in the sign of the magnetic anomalies and the track of the hot spots. Comparison of the radially polarized anomalies of Africa and Europe with other reduced-to-the-pole magnetic satellite anomaly maps of the Western Hemisphere support the reconstruction of the continents prior to the origin of the present-day Atlantic Ocean in the Mesozoic Era.

  15. Subsidence of the South Polar Terrain and global tectonic of Enceladus

    Science.gov (United States)

    Czechowski, Leszek

    2016-04-01

    compressional surface features do not have to be dominant. The SPT is compressed, so "tiger stripes" could exist for long time. Only after significant subsidence (below 1200 m) the regime of stresses changes to compressional. We suppose that it means the end of activity in a given region. Acknowledgments This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653). Computer resources of Interdisciplinary Centre for Mathematical and Computational Modeling of University of Warsaw were also used in the research References [1] Spencer, J. R., et al. (2009) Enceladus: An Active Cryovolcanic Satellite, in: M.K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, Springer Science, p. 683. [2] Czechowski L. (2015) Mass loss as a driving mechanism of tectonics of Enceladus 46th Lunar and Planetary Science Conference 2030.pdf. [3] Czechowski, L., (2014) Some remarks on the early evolution of Enceladus. Planet. Sp. Sc. 104, 185-199.

  16. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stuckless, J.S.; Whelan, J.F.; Steinkampf, W.C.

    1991-01-01

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent 14 C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent 14 C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent 14 C age and δ 13 C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab

  17. Tectonic DSAEK for the Management of Impending Corneal Perforation

    Directory of Open Access Journals (Sweden)

    Enrique O. Graue-Hernandez

    2012-01-01

    Full Text Available Purpose. To report a case of severe corneal thinning secondary to dry eye treated with a tectonic Descemet stripping automated lamellar keratoplasty (DSAEK and amniotic membrane graft. Methods. A 72-year-old man with a history of long standing diabetes mellitus type 2 and dry eye presented with 80% corneal thinning and edema on the right eye and no signs of infectious disease, initially managed with topical unpreserved lubrication and 20% autologous serum drops. Eight weeks after, the defect advanced in size and depth until Descemetocele was formed. Thereafter, he underwent DSAEK for tectonic purposes. One month after the procedure, the posterior lamellar graft was well adhered but a 4 mm epithelial defect was still present. A multilayered amniotic membrane graft was then performed. Results. Ocular surface healed quickly and reepithelization occurred over a 2-week period. Eight months after, the ocular surface remained stable and structurally adequate. Conclusion. Tectonic DSAEK in conjunction with multilayered amniotic graft may not only provide structural support and avoid corneal perforation, but may also promote reepithelization and ocular surface healing and decrease concomitant inflammation.

  18. Imaging a Remnant Slab Beneath Southeastern US: New Results from Teleseismic, Finite-frequency Tomography.

    Science.gov (United States)

    Biryol, C. B.; Wagner, L. S.; Fischer, K. M.; Hawman, R. B.

    2014-12-01

    Our new results from teleseismic, finite-frequency, body-wave tomography analysis reveal a relatively steep east-dipping fast velocity anomaly beneath the Southeastern US. The resolving power of our dataset is good enough to retrieve major mantle anomalies, such as this fast velocity body, owing to the dense receiver coverage provided by US Transportable Array (TA) and the SouthEastern Suture of the Appalachian Margin Experiment (SESAME). Various resolution and recovery tests demonstrate the robustness of this anomaly in our tomographic model between the depths of 60 and 660 km. Our images reveal that the dip of this structure decreases significantly in the mantle transition zone where it terminates. We also observe major gaps in the lateral continuity of this structure. Based on the amplitude, location and geometry of the velocity perturbation, we interpret this anomaly as remnant subducted lithosphere, suspended in the upper mantle after a subduction phase as young as 100-110 Ma or as old as 1Ga. Basic calculations and evaluations on the geometry and location of this anomaly help us to narrow down the origin of this slab to the Farallon flat-slab subduction in the west and Grenville Subduction during assembly of supercontinent Rodinia. Our images reveal possible mechanisms that would allow this slab to remain in the upper mantle without sinking into deeper mantle for such extended periods of time. We believe the flat geometry of the slab near the transition zone and the fragmented nature provide important clues about processes that could delay/resist the sinking while providing necessary time for it to transform into a more neutrally buoyant state. In this respect, we believe our results have broad implications for subduction processes and piece-meal slab failure, as well as tectonic implications for characteristics of former subduction zones that help shape North American Plate.

  19. The influence of tectonic inheritance on crustal extension style following failed subduction of continental crust: applications to metamorphic core complexes in Papua New Guinea

    Science.gov (United States)

    Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.

    2017-12-01

    The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We

  20. Paleoarchean bedrock lithologies across the Makhonjwa Mountains of South Africa and Swaziland linked to geochemical, magnetic and tectonic data reveal early plate tectonic genes flanking subduction margins

    Directory of Open Access Journals (Sweden)

    Maarten de Wit

    2018-05-01

    Full Text Available The Makhonjwa Mountains, traditionally referred to as the Barberton Greenstone Belt, retain an iconic Paleoarchean archive against which numerical models of early earth geodynamics can be tested. We present new geologic and structural maps, geochemical plots, geo- and thermo-chronology, and geophysical data from seven silicic, mafic to ultramafic complexes separated by major shear systems across the southern Makhonjwa Mountains. All reveal signs of modern oceanic back-arc crust and subduction-related processes. We compare the rates of processes determined from this data and balance these against plate tectonic and plume related models. Robust rates of both horizontal and vertical tectonic processes derived from the Makhonjwa Mountain complexes are similar, well within an order of magnitude, to those encountered across modern oceanic and orogenic terrains flanking Western Pacific-like subduction zones. We conclude that plate tectonics and linked plate-boundary processes were well established by 3.2–3.6 Ga. Our work provides new constraints for modellers with rates of a ‘basket’ of processes against which to test Paleoarchean geodynamic models over a time period close to the length of the Phanerozoic. Keywords: Paleoarchean, Barberton Greenstone Belt, Onverwacht Suite, Geologic bedrock and structural maps, Geochemistry and geophysics, Plate tectonics

  1. Volcanic and Tectonic Activity in the Red Sea Region (2004-2013): Insights from Satellite Radar Interferometry and Optical Imagery

    KAUST Repository

    Xu, Wenbin

    2015-04-01

    Studying recent volcanic and tectonic events in the Red Sea region is important for improving our knowledge of the Red Sea plate boundary and for regional geohazard assessments. However, limited information has been available about the past activity due to insufficient in-situ data and remoteness of some of the activity. In this dissertation, I have used satellite remote sensing to derive new information about several recent volcanic and tectonic events in the Red Sea region. I first report on three volcanic eruptions in the southern Red Sea, the 2007-8 Jebel at Tair eruption and the 2011-12 & 2013 Zubair eruptions, which resulted in formation of two new islands. Series of high- resolution optical images were used to map the extent of lava flows and to observe and analyze the growth and destructive processes of the new islands. I used Interferometric Synthetic Aperture Radar (InSAR) data to study the evolution of lava flows, to estimate their volumes, as well as to generate ground displacements maps, which were used to model the dikes that fed the eruptions. I then report on my work of the 2009 Harrat Lunayyir dike intrusion and the 2004 Tabuk earthquake sequence in western Saudi Arabia. I used InSAR observations and stress calculations to study the intruding dike at Harrat Lunayyir, while I combined InSAR data and Bayesian estimation to study the Tabuk earthquake activity. The key findings of the thesis are: 1) The recent volcanic eruptions in the southern Red Sea indicate that the area is magmatically more active than previously acknowledged and that a rifting episode has been taken place in the southern Red Sea; 2) Stress interactions between an ascending dike intrusion and normal faulting on graben-bounding faults above the dike can inhibit vertical propagation of magma towards the surface; 3) InSAR observations can improve locations of shallow earthquakes and fault model uncertainties are useful to associate earthquake activity with mapped faults; 4). The

  2. Comparisons of Source Characteristics between Recent Inland Crustal Earthquake Sequences inside and outside of Niigata-Kobe Tectonic Zone, Japan

    Science.gov (United States)

    Somei, K.; Asano, K.; Iwata, T.; Miyakoshi, K.

    2012-12-01

    After the 1995 Kobe earthquake, many M7-class inland earthquakes occurred in Japan. Some of those events (e.g., the 2004 Chuetsu earthquake) occurred in a tectonic zone which is characterized as a high strain rate zone by the GPS observation (Sagiya et al., 2000) or dense distribution of active faults. That belt-like zone along the coast in Japan Sea side of Tohoku and Chubu districts, and north of Kinki district, is called as the Niigata-Kobe tectonic zone (NKTZ, Sagiya et al, 2000). We investigate seismic scaling relationship for recent inland crustal earthquake sequences in Japan and compare source characteristics between events occurring inside and outside of NKTZ. We used S-wave coda part for estimating source spectra. Source spectral ratio is obtained by S-wave coda spectral ratio between the records of large and small events occurring close to each other from nation-wide strong motion network (K-NET and KiK-net) and broad-band seismic network (F-net) to remove propagation-path and site effects. We carefully examined the commonality of the decay of coda envelopes between event-pair records and modeled the observed spectral ratio by the source spectral ratio function with assuming omega-square source model for large and small events. We estimated the corner frequencies and seismic moment (ratio) from those modeled spectral ratio function. We determined Brune's stress drops of 356 events (Mw: 3.1-6.9) in ten earthquake sequences occurring in NKTZ and six sequences occurring outside of NKTZ. Most of source spectra obey omega-square source spectra. There is no obvious systematic difference between stress drops of events in NKTZ zone and others. We may conclude that the systematic tendency of seismic source scaling of the events occurred inside and outside of NKTZ does not exist and the average source scaling relationship can be effective for inland crustal earthquakes. Acknowledgements: Waveform data were provided from K-NET, KiK-net and F-net operated by

  3. New Pn and Sn tomographic images of the uppermost mantle beneath the Mediterranean region

    Science.gov (United States)

    Gil, A.; Díaz, J.; Gallart, J.

    2012-04-01

    We present here new images of the seismic velocity and anisotropy variations in the uppermost mantle beneath the Mediterranean region, compiled from inversion of Pn and Sn phases. The method of Hearn (1996) has been applied to Pn and Sn lectures from the catalogs of the International Seismological Center and the Spanish Instituto Geografico Nacional. A total of 1,172,293 Pn arrivals coming from 16,527 earthquakes recorded at 1,657 stations with epicentral distances between 220 km and 1400 km have been retained (331,567 arrivals from 15,487events at 961 stations for Sn). Our results, grossly consistent with available 3D tomography images, show significant features well correlated with surface geology. The Pn velocities are high (>8.2 km/s) beneath major sedimentary basins (western Alboran Sea, Valencia Trough, Adriatic Sea, Aquitaine, Guadalquivir, Rharb, Aquitaine and Po basins), and low (Islands, probably related to a thermal anomaly associated to the westward displacement of the Alboran block along the Emile Baudot escarpment 16 Ma ago. The Pn anisotropic image shows consistent orientations sub-parallel to major orogenic structures, such as Betics, Apennines, Calabrian Arc and Alps. The station delays beneath Betic and Rif ranges are strongly negative, suggesting the presence of crustal thickening all along the Gibraltar Arc. However, only the Betics have a very strong low-velocity anomaly and a pronounced anisotropy pattern. The Sn tomographic image correlates well with the Pn image, even if some relevant differences can be observed beneath particular regions.

  4. MEVTV workshop on tectonic features on Mars

    International Nuclear Information System (INIS)

    Watters, T.R.; Golombek, M.P.

    1989-01-01

    The state of knowledge of tectonic features on Mars was determined and kinematic and mechanical models were assessed for their origin. Three sessions were held: wrinkle ridges and compressional structure; strike-slip faults; and extensional structures. Each session began with an overview of the features under discussion. In the case of wrinkle ridges and extensional structures, the overview was followed by keynote addresses by specialists working on similar structures on the Earth. The first session of the workshop focused on the controversy over the relative importance of folding, faulting, and intrusive volcanism in the origin of wrinkle ridges. The session ended with discussions of the origin of compressional flank structures associated with Martian volcanoes and the relationship between the volcanic complexes and the inferred regional stress field. The second day of the workshop began with the presentation and discussion of evidence for strike-slip faults on Mars at various scales. In the last session, the discussion of extensional structures ranged from the origin of grabens, tension cracks, and pit-crater chains to the origin of Valles Marineris canyons. Shear and tensile modes of brittle failure in the formation of extensional features and the role of these failure modes in the formation of pit-crater chains and the canyons of Valles Marineris were debated. The relationship of extensional features to other surface processes, such as carbonate dissolution (karst) were also discussed

  5. 3D monitoring of active tectonic structures

    Czech Academy of Sciences Publication Activity Database

    Stemberk, Josef; Košťák, Blahoslav; Vilímek, V.

    2003-01-01

    Roč. 36, 1-2 (2003), s. 103-112 ISSN 0264-3707 R&D Projects: GA MŠk OC 625.10 Institutional research plan: CEZ:AV0Z3046908 Keywords : tectonics * monitoring * active structures Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.754, year: 2003

  6. Stress state and movement potential of the Kar-e-Bas fault zone, Fars, Iran

    Science.gov (United States)

    Sarkarinejad, Khalil; Zafarmand, Bahareh

    2017-08-01

    The Kar-e-Bas or Mengharak basement-inverted fault is comprised of six segments in the Zagros foreland folded belt of Iran. In the Fars region, this fault zone associated with the Kazerun, Sabz-Pushan and Sarvestan faults serves as a lateral transfer zone that accommodates the change in shortening direction from the western central to the eastern Zagros. This study evaluates the recent tectonic stress regime of the Kar-e-Bas fault zone based on inversion of earthquake focal mechanism data, and quantifies the fault movement potential of this zone based on the relationship between fault geometric characteristics and recent tectonic stress regimes. The trend and plunge of σ 1 and σ 3 are S25°W/04°-N31°E/05° and S65°E/04°-N60°W/10°, respectively, with a stress ratio of Φ = 0.83. These results are consistent with the collision direction of the Afro-Arabian continent and the Iranian microcontinent. The near horizontal plunge of maximum and minimum principle stresses and the value of stress ratio Φ indicate that the state of stress is nearly strike-slip dominated with little relative difference between the value of two principal stresses, σ 1 and σ 2. The obliquity of the maximum compressional stress into the fault trend reveals a typical stress partitioning of thrust and strike-slip motion in the Kar-e-Bas fault zone. Analysis of the movement potential of this fault zone shows that its northern segment has a higher potential of fault activity (0.99). The negligible difference between the fault-plane dips of the segments indicates that their strike is a controlling factor in the changes in movement potential.

  7. Crustal structure and regional tectonics of SE Sweden and the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Milnes, A.G. [Bergen Univ. (Norway). Dept. of Geology; Gee, D.G.; Lund, C.E. [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    1998-11-01

    In this desk study, the available geophysical and geological data on the crustal structure and regional tectonics of the wider surroundings of the Aespoe site (SE Sweden and adjacent parts of the Baltic Sea) are compiled and assessed. The aim is to contribute to the knowledge base for long-term rock mechanical modeling, using the Aespoe site as a proxy for a high-level radioactive waste repository site in Swedish bedrock. The geophysical data reviewed includes two new refraction/wide-angle reflection seismic experiments carried out within the EUROBRIDGE project, in addition to the numerous earlier refraction seismic profiles. The BABEL normal-incidence deep seismic profile is also considered. New geological data, presented at EUROBRIDGE workshops, and in recent SGU publications, are reviewed for the same area. In combination with the seismic data, these provide a base for interpreting the present composition and structure, and the Palaeoproterozoic-Mesoproterozoic evolution, of the crustal segment within which the Aespoe site lies - the Smaaland mega-block. This is characterized by having undergone little regionally significant deformation or magmatism since Neoproterozoic times (the last 1000 million years). It is shown that, at this scale of observation (of the order of 100 km), the long-term rheology of the lithosphere can be argued from a relatively tight observational network, when combined with the results of earlier SKB studies (seismo-tectonics, uplift patterns, state of stress, heat flow) and published research. Although many uncertainties exist, the present state of knowledge would suffice for first exploratory calculations and sensitivity studies of long-term, large-scale rock mechanics 101 refs, 22 figs

  8. Petrological constraints on melt generation beneath the Asal Rift (Djibouti) using quaternary basalts

    Science.gov (United States)

    Pinzuti, Paul; Humler, Eric; Manighetti, Isabelle; Gaudemer, Yves

    2013-08-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 56 new lava flows sampled along 10 km of the rift axis and 9 km off-axis (i.e., erupted within the last 620 kyr). Petrological and primary geochemical results show that most of the samples of the inner floor of the Asal Rift are affected by plagioclase accumulation. Trace element ratios and major element compositions corrected for mineral accumulation and crystallization show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. While FeO, Fe8.0, Zr/Y, and (Dy/Yb)N decrease from the rift shoulders to the rift axis, SiO2, Na/Ti, Lu/Hf increase and Na2O and Na8.0 are constant across the rift. These variations are qualitatively consistent with shallow melting beneath the rift axis and deeper melting for off-axis lava flows. Na8.0 and Fe8.0 contents show that beneath the rift axis, melting paths are shallow, from 81 ± 4 to 43 ± 5 km. These melting paths are consistent with adiabatic melting in normal-temperature fertile asthenosphere, beneath an extensively thinned mantle lithosphere. On the contrary, melting on the rift shoulders (from 107 ± 7 to 67 ± 8 km) occurred beneath thicker lithosphere, requiring a mantle solidus temperature 100 ± 40°C hotter. In this geodynamic environment, the calculated rate of lithospheric thinning appears to be 4.0 ± 2.0 cm yr-1, a value close to the mean spreading rate (2.9 ± 0.2 cm yr-1) over the last 620 kyr.

  9. Multiple-frequency tomography of the upper mantle beneath the African/Iberian collision zone

    Science.gov (United States)

    Bonnin, Mickaël; Nolet, Guust; Villaseñor, Antonio; Gallart, Josep; Thomas, Christine

    2014-09-01

    During the Cenozoic, the geodynamics of the western Mediterranean domain has been characterized by a complex history of subduction of Mesozoic oceanic lithosphere. The final stage of these processes is proposed to have led to the development of the Calabria and Gibraltar arcs, whose formation is still under debate. In this study, we take advantage of the dense broad-band station networks now available in the Alborán Sea region, to develop a high-resolution 3-D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone that will better constraint the past dynamics of this zone. The model is based on 13200 teleseismic arrival times recorded between 2008 and 2012 at 279 stations for which cross-correlation delays are measured with a new technique in different frequency bands centred between 0.03 and 1.0 Hz, and for the first time interpreted using multiple frequency tomography. Our model shows, beneath the Alborán Sea, a strong (4 per cent) fast vertically dipping anomaly observed to at least 650 km depth. The arched shape of this anomaly, and its extent at depth, are coherent with a lithospheric slab, thus favouring the hypothesis of a westward consumption of the Ligurian ocean slab by roll-back during Cenozoic. In addition to this fast anomaly in the deep upper mantle, high intensity slow anomalies are widespread in the lithosphere and asthenosphere beneath Morocco and southern Spain. These anomalies are correlated at the surface with the position of the Rif and Atlas orogens and with Cenozoic volcanic fields. We thus confirm the presence, beneath Morocco, of an anomalous (hot?) upper mantle, but without clear indication for a lateral spreading of the Canary plume to the east.

  10. Tectonic reactivation in the Indian Ocean: Evidences from seamount morphology and manganese nodule characteristics

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Khadge, N.H.

    The Central Indian Ocean Basin (CIOB) was subjected to tectonic reactivation in geological past which is unusual for a basin occurring on an apparently single tectonic plate. ENE-WSW trending latitude parallel zone of reactivation across the central...

  11. Drainage Characteristics of Tectonically Active Areas: An Example from Rajasthan, India

    Directory of Open Access Journals (Sweden)

    SWATI JAIN

    2010-06-01

    Full Text Available The morphotectonic studies help in deciphering the role of tectonics and neotectonics in morphological evolution of drainage basins. On the basis of remote sensing technique, the relationship between morphology and tectonics have been investigated in Bundi-Indergarh sector of southeast Rajasthan. The area selected for present study is drained by Mej river and its tributaries and occupies the southeastern part of the Aravalli Mountain Range (AMR. The course of Mej river is mostly controlled by the Great Boundary Thrust (GBT and associated tectonic elements. GBT separates the folded, faulted and metamorphosed older rocks of the AMR in the west and relatively undeformed Vindhyan rocks in the east. This study has been carried out using digital and hard copy product of IRS 1C/1D LISS III geocoded FCC data. The morphometric and morphotectonic aspects have been studied for identification of present day tectonic activities in the area. The remote sensing data interpretation indicates that the landforms of the area are structurally controlled and mainly covered by linear and parallel strike ridges and valleys. These valleys indicate sign of stream rejuvenation and occasional presence of dynamic ravines. General morphometric parameters, bifurcation ratio, stream length and shape parameters have been computed. Longitudinal river profiles can be quantified by normalizing the elevation and the distance along rivers. Several parameters such as profile shape (concavity, gradient fluctuations, river grade and valley incision have been derived from longitudinal river profile. These quantified parameters and their interrelations are useful in comparing different drainage basins and also help drawing inferences on neotectonism. The computed values suggest that the area is covered by resistant rock and drainage network, affected by tectonic distur-bance. The valley floor ratio is very low, indicating channel down cutting vis-a-vis ground uplift. The gradient index

  12. Evidence for early hunters beneath the Great Lakes

    OpenAIRE

    O'Shea, John M.; Meadows, Guy A.

    2009-01-01

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000–7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and loca...

  13. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley

    DEFF Research Database (Denmark)

    Mikucki, J. A.; Auken, E.; Tulaczyk, S.

    2015-01-01

    The occurrence of groundwater in Antarctica, particularly in the ice-free regions and along the coastal margins is poorly understood. Here we use an airborne transient electromagnetic (AEM) sensor to produce extensive imagery of resistivity beneath Taylor Valley. Regional-scale zones of low subsu...

  14. Tectonic signatures on active margins

    Science.gov (United States)

    Hogarth, Leah Jolynn

    High-resolution Compressed High-Intensity Radar Pulse (CHIRP) surveys offshore of La Jolla in southern California and the Eel River in northern California provide the opportunity to investigate the role of tectonics in the formation of stratigraphic architecture and margin morphology. Both study sites are characterized by shore-parallel tectonic deformation, which is largely observed in the structure of the prominent angular unconformity interpreted as the transgressive surface. Based on stratal geometry and acoustic character, we identify three sedimentary sequences offshore of La Jolla: an acoustically laminated estuarine unit deposited during early transgression, an infilling or "healing-phase" unit formed during the transgression, and an upper transparent unit. The estuarine unit is confined to the canyon edges in what may have been embayments during the last sea-level rise. The healing-phase unit appears to infill rough areas on the transgressive surface that may be related to relict fault structures. The upper transparent unit is largely controlled by long-wavelength tectonic deformation due to the Rose Canyon Fault. This unit is also characterized by a mid-shelf (˜40 m water depth) thickness high, which is likely a result of hydrodynamic forces and sediment grain size. On the Eel margin, we observe three distinct facies: a seaward-thinning unit truncated by the transgressive surface, a healing-phase unit confined to the edges of a broad structural high, and a highly laminated upper unit. The seaward-thinning wedge of sediment below the transgressive surface is marked by a number of channels that we interpret as distributary channels based on their morphology. Regional divergence of the sequence boundary and transgressive surface with up to ˜8 m of sediment preserved across the interfluves suggests the formation of subaerial accommodation during the lowstand. The healing-phase, much like that in southern California, appears to infill rough areas in the

  15. Registering of tectonic shove in a mountain mass with the help of a tiltmeter

    Energy Technology Data Exchange (ETDEWEB)

    Panasenko, G.D.; Kolomiets, A.S.

    1981-01-01

    The authors observed shifting of the rock on the tectonic dislocation which took place approximately 800mm away fromn the tiltmeter station. Now the process is under study. The shifts are of an interrupted nature and possibily of tectonic origin.

  16. Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA

    Science.gov (United States)

    Gurdak, Jason J.; Roe, Cassia D.

    2010-12-01

    Playas are ephemeral, closed-basin wetlands that are hypothesized as an important source of recharge to the High Plains aquifer in central USA. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on groundwater from the High Plains aquifer has prompted many questions regarding the contribution and quality of recharge from playas to the High Plains aquifer. As a result, there has been considerable scientific debate about the potential for water to infiltrate the relatively impermeable playa floors, travel through the unsaturated zone sediments that are tens of meters thick, and subsequently recharge the High Plains aquifer. This critical review examines previously published studies on the processes that control recharge rates and chemistry beneath playas. Reported recharge rates beneath playas range from less than 1.0 to more than 500 mm/yr and are generally 1-2 orders of magnitude higher than recharge rates beneath interplaya settings. Most studies support the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this review provide science-based implications for management of playas and groundwater resources of the High Plains aquifer and directions for future research.

  17. Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline: Sheep Mountain Anticline, Wyoming

    Science.gov (United States)

    Amrouch, Khalid; Lacombe, Olivier; Bellahsen, Nicolas; Daniel, Jean-Marc; Callot, Jean-Paul

    2010-02-01

    In order to characterize and compare the stress-strain record prior to, during, and just after folding at the macroscopic and the microscopic scales and to provide insights into stress levels sustained by folded rocks, we investigate the relationship between the stress-strain distribution in folded strata derived from fractures, striated microfaults, and calcite twins and the development of the Laramide, basement-cored Sheep Mountain Anticline, Wyoming. Tectonic data were mainly collected in Lower Carboniferous to Permian carbonates and sandstones. In both rock matrix and veins, calcite twins recorded three different tectonic stages: the first stage is a pre-Laramide (Sevier) layer-parallel shortening (LPS) parallel to fold axis, the second one is a Laramide LPS perpendicular to the fold axis, and the third stage corresponds to Laramide late fold tightening with compression also perpendicular to the fold axis. Stress and strain orientations and regimes at the microscale agree with the polyphase stress evolution revealed by populations of fractures and striated microfaults, testifying for the homogeneity of stress record at different scales through time. Calcite twin analysis additionally reveals significant variations of differential stress magnitudes between fold limbs. Our results especially point to an increase of differential stress magnitudes related to Laramide LPS from the backlimb to the forelimb of the fold possibly in relation with motion of an underlying basement thrust fault that likely induced stress concentrations at its upper tip. This result is confirmed by a simple numerical model. Beyond regional implications, this study highlights the potential of calcite twin analyses to yield a representative quantitative picture of stress and strain patterns related to folding.

  18. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea

    Science.gov (United States)

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian

    2016-12-01

    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  19. A test of the hypothesis that impact-induced fractures are preferred sites for later tectonic activity

    Science.gov (United States)

    Solomon, Sean C.; Duxbury, Elizabeth D.

    1987-01-01

    Impact cratering has been an important process in the solar system. The cratering event is generally accompanied by faulting in adjacent terrain. Impact-induced faults are nearly ubiquitous over large areas on the terrestrial planets. The suggestion is made that these fault systems, particularly those associated with the largest impact features are preferred sites for later deformation in response to lithospheric stresses generated by other processes. The evidence is a perceived clustering of orientations of tectonic features either radial or concentric to the crater or basin in question. An opportunity exists to test this suggestion more directly on Earth. The terrestrial continents contain more than 100 known or probable impact craters, with associated geological structures mapped to varying levels of detail. Prime facie evidence for reactivation of crater-induced faults would be the occurrence of earthquakes on these faults in response to the intraplate stress field. Either an alignment of epicenters with mapped fault traces or fault plane solutions indicating slip on a plane approximately coincident with that inferred for a crater-induced fault would be sufficient to demonstrate such an association.

  20. Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions

    Science.gov (United States)

    Tokam, Alain-Pierre K.; Tabod, Charles T.; Nyblade, Andrew A.; Julià, Jordi; Wiens, Douglas A.; Pasyanos, Michael E.

    2010-11-01

    The Cameroon Volcanic Line (CVL) consists of a linear chain of Tertiary to Recent, generally alkaline, volcanoes that do not exhibit an age progression. Here we study crustal structure beneath the CVL and adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broad-band seismic stations deployed between 2005 January and 2007 February. We find that (1) crustal thickness (35-39km) and velocity structure is similar beneath the CVL and the Pan African Oubanguides Belt to the south of the CVL, (2) crust is thicker (43-48km) under the northern margin of the Congo Craton and is characterized by shear wave velocities >=4.0kms-1 in its lower part and (3) crust is thinner (26-31km) under the Garoua rift and the coastal plain. In addition, a fast velocity layer (Vs of 3.6-3.8kms-1) in the upper crust is found beneath many of the seismic stations. Crustal structure beneath the CVL and the Oubanguides Belt is very similar to Pan African crustal structure in the Mozambique Belt, and therefore it appears not to have been modified significantly by the magmatic activity associated with the CVL. The crust beneath the coastal plain was probably thinned during the opening of the southern Atlantic Ocean, while the crust beneath the Garoua rift was likely thinned during the formation of the Benue Trough in the early Cretaceous. We suggest that the thickened crust and the thick mafic lower crustal layer beneath the northern margin of the Congo Craton may be relict features from a continent-continent collision along this margin during the formation of Gondwana.

  1. Active Tectonics Around Almaty and along the Zailisky Alatau Rangefront

    Science.gov (United States)

    Grützner, C.; Walker, R. T.; Abdrakhmatov, K. E.; Mukambaev, A.; Elliott, A. J.; Elliott, J. R.

    2017-10-01

    The Zailisky Alatau is a >250 km long mountain range in Southern Kazakhstan. Its northern rangefront around the major city of Almaty has more than 4 km topographic relief, yet in contrast to other large mountain fronts in the Tien Shan, little is known about its Late Quaternary tectonic activity despite several destructive earthquakes in the historical record. We analyze the tectonic geomorphology of the rangefront fault using field observations, differential GPS measurements of fault scarps, historical and recent satellite imagery, meter-scale topography derived from stereo satellite images, and decimeter-scale elevation models from unmanned aerial vehicle surveys. Fault scarps ranging in height from 2 m to >20 m in alluvial fans indicate that surface rupturing earthquakes occurred along the rangefront fault since the Last Glacial Maximum. Minimum estimated magnitudes for those earthquakes are M6.8-7. Radiocarbon dating results from charcoal layers in uplifted river terraces indicate a Holocene slip rate of 1.2-2.2 mm/a. We find additional evidence for active tectonic deformation all along the Almaty rangefront, basinward in the Kazakh platform, and in the interior of the Zailisky mountain range. Our data indicate that the seismic hazard faced by Almaty comes from a variety of sources, and we emphasize the problems related to urban growth into the loess-covered foothills and secondary earthquake effects. With our structural and geochronologic framework, we present a schematic evolution of the Almaty rangefront that may be applicable to similar settings of tectonic shortening in the mountain ranges of Central Asia.

  2. The crustal structure beneath The Netherlands derived from ambient seismic noise

    NARCIS (Netherlands)

    Yudistira, Tedi; Paulssen, Hanneke; Trampert, Jeannot

    2017-01-01

    This work presents the first comprehensive 3-D model of the crust beneath The Netherlands. To obtain this model, we designed the NARS-Netherlands project, a dense deployment of broadband stations in the area. Rayleigh and Love wave group velocity dispersion was measured from ambient noise

  3. Radial viscous fingering of hot asthenosphere within the Icelandic plume beneath the North Atlantic Ocean

    Science.gov (United States)

    Schoonman, C. M.; White, N. J.; Pritchard, D.

    2017-06-01

    The Icelandic mantle plume has had a significant influence on the geologic and oceanographic evolution of the North Atlantic Ocean during Cenozoic times. Full-waveform tomographic imaging of this region shows that the planform of this plume has a complex irregular shape with significant shear wave velocity anomalies lying beneath the lithospheric plates at a depth of 100-200 km. The distribution of these anomalies suggests that about five horizontal fingers extend radially beneath the fringing continental margins. The best-imaged fingers lie beneath the British Isles and beneath western Norway where significant departures from crustal isostatic equilibrium have been measured. Here, we propose that these radial fingers are generated by a phenomenon known as the Saffman-Taylor instability. Experimental and theoretical analyses show that fingering occurs when a less viscous fluid is injected into a more viscous fluid. In radial, miscible fingering, the wavelength and number of fingers are controlled by the mobility ratio (i.e. the ratio of viscosities), by the Péclet number (i.e. the ratio of advective and diffusive transport rates), and by the thickness of the horizontal layer into which fluid is injected. We combine shear wave velocity estimates with residual depth measurements around the Atlantic margins to estimate the planform distribution of temperature and viscosity within a horizontal asthenospheric layer beneath the lithospheric plate. Our estimates suggest that the mobility ratio is at least 20-50, that the Péclet number is O (104), and that the asthenospheric channel is 100 ± 20 km thick. The existence and planform of fingering is consistent with experimental observations and with theoretical arguments. A useful rule of thumb is that the wavelength of fingering is 5 ± 1 times the thickness of the horizontal layer. Our proposal has been further tested by examining plumes of different vigor and planform (e.g. Hawaii, Cape Verde, Yellowstone). Our results

  4. In-situ stress measurements in the earth's crust in the eastern United States

    International Nuclear Information System (INIS)

    Rundle, T.A.; Singh, M.M.; Baker, C.H.

    1987-04-01

    The US Nuclear Regulatory Commission requires that the design basis for vibratory ground motion should be determined through correlation of seismicity with tectonic structures or provinces (10CFR100, Appendix A). Such criteria are difficult to apply in the eastern United States, which experiences persistent low level seismicity, with occasional moderate to large earthquakes. This report presents the results of in-situ stress measurements conducted towards reducing this uncertainty at three (3) seismically active sites in the region, namely, near Moodus, Connecticut, around the Ramapo fault zone in New York and New Jersey, and in central Virginia. As far as possible, at each location one bore hole was drilled close to the ''apparent'' epicenter of the seismic activity and one outside the ''known'' seismic zone, so that the data obtained could be compared. The results obtained were very consistent both as to magnitude and direction. No attempt was made to correlate the in-situ stress measurements with the tectonic setting or seismic activity, since this was beyond the scope of this project. Extensive appendices report experimental data. 35 refs

  5. Measurements of Active Tectonic Deformation on the Guerrero Coast, Mexico

    Science.gov (United States)

    Ramirez, T.; Cundy, A.; Carranza-Edwards, A.; Morales, E.; Kostoglodov, V.; Urrutia-Fucugauchi, J.

    2004-12-01

    The study of tectonic deformation rates using displaced shoreline features is relatively well-established, and has provided much useful information on seismic hazard. Such studies have frequently been complemented by analysis of the coastal sedimentary record, where past marine to terrestrial environmental changes (and vice versa) may be recorded by clear changes in stratigraphy. Studies of this type are particularly valuable for tectonically-active areas where the preservation of former shoreline features is poor, or where long-term subsidence has resulted in their erosion, drowning or burial. The specific objective of this study is to derive rates of tectonic deformation from geomorphic and stratigraphic studies of the Guerrero coastal area, and to examine the feasibility of this stratigraphic approach in the coastal lagoons of the Mexican Pacific coast, in the Guerrero gap. The Guerrero gap coastal area, where a major earthquake is expected to occur, parallels the Cocos plate subduction zone. Here convergence rates vary from 5.2 cm/yr to 5.8 cm/yr. The Guerrero gap has experienced several historical earthquakes, notably the 1911 (7.8 Ms). However, no large magnitude events since the 1911 earthquake and only a few Ms~6 events have occurred near the Guerrero gap edges. It is expected that a major interplate earthquake of estimated magnitude Mw=8.1 to 8.4 has a high probability to occur. Landforms within the Guerrero gap indicate that the coast is subsiding. A series of key indicators such as elongated islands reminiscent of ancient barriers, submerged barriers island, extensive marshy environments, increased depths in the lagoons, and submerged anthropogenic features (shell mounds), among others, suggest active tectonic subsidence of the coast. In contrast, the adjacent northwest area off the Guerrero gap exhibits landforms characteristic of tectonic uplift (marine terraces and uplifted beach ridges), indicating a different seismo-tectonic regime northwest of the

  6. Stress drop estimates and hypocenter relocations of induced earthquakes near Fox Creek, Alberta

    Science.gov (United States)

    Clerc, F.; Harrington, R. M.; Liu, Y.; Gu, Y. J.

    2016-12-01

    This study investigates the physical differences between induced and naturally occurring earthquakes using a sequence of events potentially induced by hydraulic fracturing near Fox Creek, Alberta. We perform precise estimations of static stress drop to determine if the range of values is low compared to values estimated for naturally occurring events, as has been suggested by previous studies. Starting with the Natural Resources Canada earthquake catalog and using waveform data from regional networks, we use a spectral ratio method to calculate the static stress drop values of a group of relocated earthquakes occurring in close proximity to hydraulic fracturing wells from December 2013 to June 2015. The spectral ratio method allows us to precisely constrain the corner frequencies of the amplitude spectra by eliminating the path and site effects of co-located event pairs. Our estimated stress drop values range from 0.1 - 149 MPa over the full range of observed magnitudes, Mw 1.5-4, which are on the high side of the typical reported range of tectonic events, but consistent with other regional studies [Zhang et al., 2016; Wang et al., 2016]. , Stress drops values range from 11 to 93 MPa and appear to be scale invariant over the magnitude range Mw 3 - 4, and are less well constrained at lower magnitudes due to noise and bandwidth limitations. We observe no correlation between event stress drop and hypocenter depth or distance from the wells. Relocated hypocenters cluster around corresponding injection wells and form fine-scale lineations, suggesting the presence and orientation of fault planes. We conclude that neither the range of stress drops nor their scaling with respect to magnitude can be used to conclusively discriminate induced and tectonic earthquakes, as stress drop values may be greatly affected by the regional setting. Instead, the double-difference relocations may be a more reliable indicator of induced seismicity.

  7. Crustal thickness and Moho sharpness beneath the Midcontinent rift from receiver functions

    Directory of Open Access Journals (Sweden)

    Moikwathai Moidaki

    2013-02-01

    Full Text Available The Mesoproterozoic Midcontinent rift (MCR in the central US is an approximately 2000 km long, 100 km wide structure from Kansas to Michigan. During the 20-40 million years of rifting, a thick (up to 20 km layer of basaltic lava was deposited in the rift valleys. Quantifying the effects of the rifting and associated volcanic eruptions on the structure and composition of the crust and mantle beneath the MCR is important for the understanding of the evolution of continental lithosphere. In this study we measure the crustal thickness (H, and the sharpness of the Moho (R at about 24 portable and permanent stations in Iowa, Kansas, and South Dakota by stacking Pto- S converted waves (PmS and their multiples (PPmS and PSmS. Under the assumption that the crustal mean velocity in the study area is the same as the IASP91 earth model, we find a significantly thickened crust beneath the MCR of about 53 km. The crustal Vp/Vs ratios increases from about 1.80 off rift to as large as 1.95 within the rift, which corresponds to an increase of Poisson’s ratio from 0.28 to 0.32, suggesting a more mafic crust beneath the MCR. The R measurements are spatially variable and are relatively small in the vicinity of the MCR, indicating the disturbance of the original sharp Moho by the rifting and magmatic intrusion and volcanic eruption.

  8. Treatment of Chlorinated Solvents in Groundwater Beneath an Occupied Building at the Young-Rainey STAR Center, Pinellas, FL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Joe [Navarro Research and Engineering; Surovchak, Scott [Dept. of Energy (DOE), Legacy Management; Tabor, Charles [Navarro Research and Engineering

    2016-03-01

    Groundwater contamination, consisting of two dissolved-phase plumes originating from chlorinated solvent source areas, in the southeastern portion of the Young- Rainey Star Center (also known as the Pinellas County, Florida, Site) in Largo, Florida, has migrated beyond the property boundary, beneath the roadways, and beneath adjacent properties to the south and east. Groundwater contamination will persist as long as the onsite contaminant source remains. The origin of the contamination appears to be multiple long-term point sources beneath Building 100, a 4.5 ha (11 acre) building that housed manufacturing facilities during US DOE operations at the site. The site is now owned by Pinellas County, and most of the space inside the building is leased to private companies, so DOE chose not to conduct characterization or remediation through the floor of the building, instead choosing to conduct all work from outside the building. Injection of emulsified soybean oil and a microbial culture has been used at other areas of the site to accelerate naturally occurring bacterial processes that degrade groundwater contaminants to harmless compounds, and that same approach was chosen for this task. The technical approach consisted of installing horizontal wells from outside the building footprint, extending through and around the identified subsurface treatment areas, and terminating beneath the building. Two 107 m (350 ft) long wells, two 122 m (400 ft) long wells, and four 137 m (450 ft) long wells have been installed to intersect the inferred source areas and confirmed contaminant plumes beneath the building. DOE then injected emulsified vegetable oil and a microbial culture into the horizontal wells at each of several target areas beneath the building where the highest groundwater contaminant concentrations have been detected. The target areas are the northwest corner of the building between the old drum storage pad locations and monitoring well PIN12-S35B, the vicinity of

  9. Analysis of pumping-induced unsaturated regions beneath aperennial river

    Energy Technology Data Exchange (ETDEWEB)

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.; Zhou, Q.

    2007-05-15

    The presence of an unsaturated region beneath a streambedduring groundwater pumping near streams reduces the pumping capacity whenit reaches the well screens, changes flow paths, and alters the types ofbiological transformations in the streambed sediments. Athree-dimensional, multi-phase flow model of two horizontal collectorwells along the Russian River near Forestville, California was developedto investigate the impact of varying the ratio of the aquifer tostreambed permeability on (1) the formation of an unsaturated regionbeneath the stream, (2) the pumping capacity, (3) stream-water fluxesthrough the streambed, and (4) stream-water travel times to the collectorwells. The aquifer to streambed permeability ratio at which theunsaturated region was initially observed ranged from 10 to 100. The sizeof the unsaturated region beneath the streambed increased as the aquiferto streambed permeability ratio increased. The simulations also indicatedthat for a particular aquifer permeability, decreasing the streambedpermeability by only a factor of 2-3 from the permeability wheredesaturation initially occurred resulted in reducing the pumpingcapacity. In some cases, the stream-water fluxes increased as thestreambed permeability decreased. However, the stream water residencetimes increased and the fraction of stream water that reached that thewells decreased as the streambed permeability decreased, indicating thata higher streambed flux does not necessarily correlate to greaterrecharge of stream water around the wells.

  10. Characteristics of newly found Quaternary fault, southern Korea, and its tectonic implication

    Science.gov (United States)

    Lee, Y.; Kim, M. C.; Cheon, Y.; Ha, S.; Kang, H. C.; Choi, J. H.; Son, M.

    2017-12-01

    This study introduces the detailed geometry and kinematics of recently found Quaternary fault in southern Korea, named Seooe Fault, and discusses its tectonic implication through a synthetic analysis with previous studies. The N-S striking Seooe Fault shows a top-to-the-east thrust geometry and cuts the Cretaceous Goseong Formation and overlying Quaternary deposits, and its slip senses and associated minor folds in the hanging wall indicate an E-W compressional stress. The age of the lower part of the Quaternary deposits obtained by OSL dating indicates that the last movement of the fault occurred after 61 60 ka. Arcuate geometry of the main fault showing an upward decreasing dip-angle, reverse offset of the fault breccias, and reverse-sense indicators observed on neighboring N-S striking high-angle fractures indicate that this Quaternary fault was produced by the reactivation of pre-existing fault under E-W compressional stress field. Using the apparent vertical displacement of the fault and the attitudes of cutting slope and main fault surface, its minimum net displacement is calculated as 2.17 m. When the value is applied to the empirical equation of maximum displacement - moment earthquake magnitude (Mw), the magnitude is estimated to reach about 6.7, assuming that this displacement was due to one seismic event. Most of the Quaternary faults in southern Korea are observed along major inherited fault zones, and their geometry and kinematics indicate that they were reactivated under ENE-WSW or E-W compressional stress field, which is concordant with the characteristics of the Seooe Fault. In addition, focal mechanism solutions and geotechnical in-situ stress data in and around the Korean peninsula also support the current ENE-WSW or E-W regional compression. On the basis of the regional stress trajectories in and around East Asia, the current stress field in Korean peninsula is interpreted to have resulted from the cooperation of westward shallow subduction of

  11. Regional stratigraphy and its dependency on tectonic movements (case study: Upper Cretaceous and Paleogene stages in Western Siberia)

    International Nuclear Information System (INIS)

    Podobina, V

    2015-01-01

    Multiscale and divergent tectonic movements have been identified in Western Siberia of which first - order movements caused transgressions and regressions, as well as the partial formation of sediments. As a result of tectonic movement direction turn, no transgression was observed in the cross-sections of Campanian and Danian central section and in the Priabonian top section. During second-order tectonic movements and undirectional transgression insignificant bed thicknesses and channels were formed. Such movements could have included different tectonic activities within the western and eastern parts of the region limited by the Koltogorsk-Urengoy Rift. Third-order tectonic movement of moderate amplitude promoted either extension, contraction or even depth variations of the marine basin itself

  12. Neoproterozoic tectonics of the Arabian-Nubian Shield

    NARCIS (Netherlands)

    Blasband, B.

    2006-01-01

    The Neoproterozoic tectonic development of the Arabian-Nubian Shield (ANS) can be divided in three parts: 1) the oceanic stage; 2) the arc-accretion stage; 3) the extensional stage. Three key-areas in the Arabian-Nubian Shield, namely the Bi'r Umq Complex, The Tabalah and Tarj Complex and the Wadi

  13. New Magnetic Anomaly Map of the East Asia with Some Preliminary Tectonic Interpretations

    Directory of Open Access Journals (Sweden)

    Wen-Bin Doo

    2015-01-01

    Full Text Available Magnetic data provides basic information for geological and geophysical interpretation. In this study we compile recently collected (57 cruises survey and old (published and open access magnetic data. This compilation includes land, marine and aeromagnetic data acquired in the East Asia region. The newly acquired magnetic data are mainly concentrated mainly in the South China Sea (SCS (especially in the northern continental shelf, the northwestern part of the West Philippine Basin (WPB, and the East China Sea. The updated magnetic dataset is gridded with a spacing of one arc-minute. The new magnetic map provides new insights into the tectonic setting of East Asia. Analysis of the compiled data reveals several regional anomaly patterns: (1 the NE-SW trending high positive magnetic anomaly zone extending from southwest Taiwan to the area about 114.5°E114.5°E and 22°N22°N is pronounced; but it is less continuous southwest of the Penghu islands. In addition, the orientation of this high linear magnetic zone changes slightly in 118.5°E,118.5°E, 22.5°N22.5°N from N60°EN60°E - N50°E.N50°E. (2 Between the Gagua Ridge (GR and the Luzon-Okinawa Fracture Zone (LOFZ the marine magnetic stripes of the WPB exhibit a NW-SE orientation. This suggests that the seafloor spreading could be related to the first stage of the WPB east of the LOFZ. (3 The Urdaneta and Amami plateaus are associated with high magnetization zones. These high magnetization zones extend northwestward and are subducting beneath the Ryukyu Trench.

  14. Tectonic predictions with mantle convection models

    Science.gov (United States)

    Coltice, Nicolas; Shephard, Grace E.

    2018-04-01

    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough

  15. Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia

    Science.gov (United States)

    Villagómez, Diego; Spikings, Richard; Magna, Tomas; Kammer, Andreas; Winkler, Wilfried; Beltrán, Alejandro

    2011-08-01

    Autochthonous rocks of the pre-Cretaceous continental margin of NW South America (the Tahami Terrane) are juxtaposed against a series of para-autochthonous rock units that assembled during the Early Cretaceous. Allochthonous, oceanic crust of the Caribbean Large Igneous Province collided with and accreted onto the margin during the Late Cretaceous. We present the first regional-scale dataset of zircon U-Pb LA-ICP-MS ages for intrusive and metamorphic rocks of the autochthonous Tahami Terrane, Early Cretaceous igneous para-autochthonous rocks and accreted oceanic crust. The U-Pb zircon data are complemented by multiphase 40Ar/ 39Ar crystallization and cooling ages. The geochronological data are combined with whole rock major oxide, trace element and REE data acquired from the same units to constrain the tectonic origin of the rock units and terranes exposed in the Western Cordillera, Cauca-Patía Valley and the Central Cordillera of Colombia. The Tahami Terrane includes lower Paleozoic orthogneisses (~ 440 Ma) that may have erupted during the active margin stage of the Rheic Ocean. Basement gneisses were intruded by Permian, continental arc granites during the final assembly of Pangea. Triassic sedimentary rocks were subsequently deposited in rift basins and partially melted during high-T metamorphism associated with rifting of western Pangea during 240-220 Ma. Continental arc magmatism during 180-145 Ma is preserved along the whole length of the Central Cordillera and was followed by an Early Cretaceous out-board step of the arc axis and the inception of the Quebradagrande Arc that fringed the continental margin. Back-stepping of the arc axis may have been caused by the collision of buoyant seamounts, which were coeval with plateau rocks exposed in the Nicoya Peninsular of Costa Rica. Rapid westward drift of South America closed the Quebradagrande basin in the late Aptian and caused medium-high P-T metamorphic rocks of the Arquía Complex to exhume and obduct onto

  16. A 2D double-porosity model for melting and melt migration beneath mid-oceanic ridges

    Science.gov (United States)

    Liu, B.; Liang, Y.; Parmentier, E.

    2017-12-01

    Several lines of evidence suggest that the melting and melt extraction region of the MORB mantle is heterogeneous consisting of an interconnected network of high permeability dunite channels in a low porosity harzburgite or lherzolite matrix. In principle, one can include channel formation into the tectonic-scale geodynamic models by solving conservation equations for a chemically reactive and viscously deformable porous medium. Such an approach eventually runs into computational limitations such as resolving fractal-like channels that have a spectrum of width. To better understand first order features of melting and melt-rock interaction beneath MOR, we have formulated a 2D double porosity model in which we treat the triangular melting region as two overlapping continua occupied by the low-porosity matrix and interconnected high-porosity channels. We use melt productivity derived from a thermodynamic model and melt suction rate to close our problem. We use a high-order accurate numerical method to solve the conservation equations in 2D for porosity, solid and melt velocities and concentrations of chemical tracers in the melting region. We carry out numerical simulations to systematically study effects of matrix-to-channel melt suction and spatially distributed channels on the distributions of porosity and trace element and isotopic ratios in the melting region. For near fractional melting with 10 vol% channel in the melting region, the flow field of the matrix melt follows closely to that of the solid because the small porosity (exchange between the melt and the solid. The smearing effect can be approximated by dispersion coefficient. For slowly diffusing trace elements (e.g., LREE and HFSE), the melt migration induced dispersion can be as effective as thermal diffusion. Therefore, sub-kilometer scale heterogeneities of Nd and Hf isotopes are significantly damped or homogenized in the melting region.

  17. Variations in Crust and Upper Mantle Structure Beneath Diverse Geologic Provinces in Asia

    National Research Council Canada - National Science Library

    Schwartz, Susan H

    1997-01-01

    This report presents results of a two year effort to determine crust and mantle lithospheric structure beneath Eurasia and to explore the effects that structural variations have on regional wave propagation...

  18. NW Africa post-rift tectonics: fieldwork constraints from an "unfitting" anticline in west Morocco

    Science.gov (United States)

    Fernández-Blanco, David; Gouiza, Mohamed

    2015-04-01

    The evolution of the Moroccan Atlantic rifted margin is marked by a period of abnormal and excessive early post-rift subsidence during the Late Jurassic-Early Cretaceous affecting the proximal coastal basins, the continental shelf and the distal deep basins, which acted coevally to km-scale uplift and erosion of large domains to the east. The tectonics of the uplift event are still unclear, as it took place 30 to 50 Myr after lithospheric breakup between Morocco and Nova Scotia and prior to the Atlas/Alpine contraction, which gave rise to the Atlas and the Rif mountain belts. The Essaouira-Haha basin, located on the coastal plain of the Atlantic rifted margin of Morocco, and bounded by two uplifted Paleozoic basement highs (i.e. the Massif Ancien of Marrakech, to the east, and the Jebilet, to the northeast), is an ideal location to investigate the tectonic processes that might have triggered these vertical movements. Although most of the deformation observed in the basin is classically attributed to Upper Cretaceous halokinesis and Neogene Atlas contraction, recent works have shown the existence of contractional structures. We carry out a structural analysis of the Jbel Amsittene Anticline, located in the middle of the Essaouira-Haha basin to investigate the tectonics of its formation and its relationship with the above-mentioned exhumation. We show structural field data along several cross-sections transecting the anticline, and characterize a salt-cored fault propagation fold verging north, with a Triassic salt acting as a detachment plane. Regional kinematic indicators and structures show overall NNW-SSE to NNE-SSW shortening and active tectonics during the postrift phase, as indicated by syn-tectonic wedges seen for the Late Jurassic to Early Cretaceous period. These facts discard the "salt-drives-tectonics" theory to let "tectonic-drives-salt" one to rise, and point to factors other than small-cell mantle convection acting during the evolution of the Moroccan

  19. The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses

    Science.gov (United States)

    Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael

    2011-01-01

    Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter

  20. Active stress field and seismotectonic features in Intra-Carpathian region of Romania

    Science.gov (United States)

    Oros, Eugen; Popa, Mihaela; Diaconescu, Mihai; Radulian, Mircea

    2017-04-01

    The Romanian Intra-Carpathian Region is located on the eastern half of Tisa-Dacia geodynamic block from the Neogene Carpathian-Pannonian Basin. The distribution of seismicity displays clear clusters and narrower zones with seismogenic potential confirmed by the damaging earthquakes recoded in the region, e.g. July 01, 1829 (Mw=6.2), October 10, 1834 (Mw=5.6), January 26, 1916 (Mw=6.4), July 12, 1991 (Mw=5.7), December 2, 1991 (Mw=5.5). The state of recent stress and deformation appears to be controlled by the interaction of plate-boundary and intraplate forces, which include the counterclockwise rotation and N-NE-directed indentation of the Adria microplate and buoyancy forces associated with differential topography and lithospheric heterogeneities. The stress field and tectonic regime are investigated at regional and local scales by the formal inversion of focal mechamisms. There can be observed short-scale lateral changes of i) tectonic regimes from compressive (reverse and strike-slip faultings) to pure extensive (normal faultings) and ii) variation of stress directions (SHmax) from NE-SW to EW and WNW-ESE towards Southern Carpathians and NS within Easter Carpathians. The changes in stress directions occur over a distance that is comparable to or smaller than the thickness of the lithosphere. A comparative analysis of stress tensor with GPS velocity/displacememt vectors shows variations from paralellism to orthogonality, suggesting different mechanisms of crustal deformations.The major seismic activity (Mw≥5.0) appears to be generally concentrated along the faults systems bordering de Tisa-Dacia Block, intersections of faults of different ages, internal shear zones and with the border of the former structural terrains, old rifts and neostructures.