WorldWideScience

Sample records for technology transfer handbook

  1. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  2. Newnes communications technology handbook

    CERN Document Server

    Lewis, Geoff

    1994-01-01

    Newnes Communications Technology Handbook provides a discussion on different topics relevant to communications technology. The book is comprised of 39 chapters that tackle a wide variety of concern in communications technology. The coverage of the text includes technologies, such as analog digital communications systems, radio frequency receiver, and satellite systems. The book also discusses some methods and techniques used in communications technology, including mixer signal processing, modulation and demodulation, and spread spectrum techniques. The text will be of great use to engineers, t

  3. Nuclear safeguards technology handbook

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included. (LK)

  4. Nuclear safeguards technology handbook

    International Nuclear Information System (INIS)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included

  5. Handbook of surveillance technologies

    CERN Document Server

    Petersen, JK

    2012-01-01

    From officially sanctioned, high-tech operations to budget spy cameras and cell phone video, this updated and expanded edition of a bestselling handbook reflects the rapid and significant growth of the surveillance industry. The Handbook of Surveillance Technologies, Third Edition is the only comprehensive work to chronicle the background and current applications of the full-range of surveillance technologies--offering the latest in surveillance and privacy issues.Cutting-Edge--updates its bestselling predecessor with discussions on social media, GPS circuits in cell phones and PDAs, new GIS s

  6. Sodium technology handbook

    International Nuclear Information System (INIS)

    2005-09-01

    This document was published as a textbook for the education and training of personnel working for operations and maintenances of sodium facilities including FBR plants and those engaged in R and D activities related to sodium technology. This handbook covers the following technical areas. Properties of sodium. Compatibilities of sodium with materials. Thermalhydraulics and structural integrity. Sodium systems and components. Sodium instrumentations. Sodium handling technology. Sodium related accident evaluation and countermeasures for FBRs. Operation, maintenance and repair technology of sodium facilities. Safety measures related to sodium. Laws, regulations and internal rules related to sodium. The plannings and discussions of the handbook were made in the Sodium Technology Education Committee organized in O-arai Engineering Center consisting of the representatives of the related departments including Tsuruga headquarters. Experts in various departments participated in writing individual technical subjects. (author)

  7. Industrial communication technology handbook

    CERN Document Server

    Zurawski, Richard

    2014-01-01

    Featuring contributions from major technology vendors, industry consortia, and government and private research establishments, the Industrial Communication Technology Handbook, Second Edition provides comprehensive and authoritative coverage of wire- and wireless-based specialized communication networks used in plant and factory automation, automotive applications, avionics, building automation, energy and power systems, train applications, and more.New to the Second Edition:46 brand-new chapters and 21 substantially revised chaptersInclusion of the latest, most significant developments in spe

  8. Communications technology handbook

    CERN Document Server

    Lewis, Geoff

    2013-01-01

    This is the first point of reference for the communications industries. It offers an introduction to a wide range of topics and concepts encountered in the field of communications technology. Whether you are looking for a simple explanation, or need to go into a subject in more depth, the Communications Technology Handbook provides all the information you need in one single volume.This second edition has been updated to include the latest technology including: Video on DemandWire-less Distribution systemsHigh spee

  9. Handbook of Visual Display Technology

    CERN Document Server

    Cranton, Wayne; Fihn, Mark

    2012-01-01

    The Handbook of Visual Display Technology is a unique work offering a comprehensive description of the science, technology, economic and human interface factors associated with the displays industry. An invaluable compilation of information, the Handbook will serve as a single reference source with expert contributions from over 150 international display professionals and academic researchers. All classes of display device are covered including LCDs, reflective displays, flexible solutions and emissive devices such as OLEDs and plasma displays, with discussion of established principles, emergent technologies, and particular areas of application. The wide-ranging content also encompasses the fundamental science of light and vision, image manipulation, core materials and processing techniques, display driving and metrology.

  10. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  11. Biofuel technology handbook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Dominik; Janssen, Rainer

    2008-01-15

    This comprehensive handbook was created in order to promote the production and use of biofuels and to inform politicians, decision makers, biofuel traders and all other relevant stakeholders about the state-of-the-art of biofuels and relevant technologies. The large variety of feedstock types and different conversion technologies are described. Explanations about the most promising bio fuels provide a basis to discuss about the manifold issues of biofuels. The impartial information in this handbook further contributes to diminish existing barriers for the broad use of biofuels. Emphasis of this handbook is on first generation biofuels: bio ethanol, Biodiesel, pure plant oil, and bio methane. It also includes second generation biofuels such as BTL-fuels and bio ethanol from lingo-cellulose as well as bio hydrogen. The whole life cycle of bio fuels is assessed under technical, economical, ecological, and social aspect. Characteristics and applications of bio fuels for transport purposes are demonstrated and evaluated. This is completed by an assessment about the most recent studies on biofuel energy balances. This handbook describes the current discussion about green house gas (GHG) balances and sustainability aspects. GHG calculation methods are presented and potential impacts of biofuel production characterized: deforestation of rainforests and wetlands, loss of biodiversity, water pollution, human health, child labour, and labour conditions.

  12. Handbook of advanced lighting technology

    CERN Document Server

    Sun, Ching-Cherng; Zissis, Georges; Ma, Ruiqing

    2017-01-01

    The Handbook of Advanced Lighting Technology is a major reference work on the subject of light source science and technology, with particular focus on solid-state light sources – LEDs and OLEDs – and the development of 'smart' or 'intelligent' lighting systems; and the integration of advanced light sources, sensors, and adaptive control architectures to provide tailored illumination which is 'fit to purpose.' The concept of smart lighting goes hand-in-hand with the development of solid-state light sources, which offer levels of control not previously available with conventional lighting systems. This has impact not only at the scale of the individual user, but also at an environmental and wider economic level. These advances have enabled and motivated significant research activity on the human factors of lighting, particularly related to the impact of lighting on healthcare and education, and the Handbook provides detailed reviews of work in these areas. The potential applications for smart lighting span ...

  13. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  14. Handbook of digital games and entertainment technologies

    NARCIS (Netherlands)

    Nakatsu, R.; Rauterberg, G.W.M.; Ciancarini, P.

    2017-01-01

    The topics treated in this handbook cover all areas of games and entertainment technologies, such as digital entertainment; technology, design/art, and sociology. The handbook consists of contributions from top class scholars and researchers from the interdisciplinary topic areas. The aim of this

  15. Handbook of vacuum technology

    CERN Document Server

    2016-01-01

    This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.

  16. Handbook of display technology

    CERN Document Server

    Castellano, Joseph A

    1992-01-01

    This book presents a comprehensive review of technical and commercial aspects of display technology. It provides design engineers with the information needed to select proper technology for new products. The book focuses on flat, thin displays such as light-emitting diodes, plasma display panels, and liquid crystal displays, but it also includes material on cathode ray tubes. Displays include a large number of products from televisions, auto dashboards, radios, and household appliances, to gasoline pumps, heart monitors, microwave ovens, and more.For more information on display tech

  17. Technology transfer

    International Nuclear Information System (INIS)

    1998-01-01

    On the base of technological opportunities and of the environmental target of the various sectors of energy system this paper intend to conjugate the opportunity/objective with economic and social development through technology transfer and information dissemination [it

  18. Handbook of digital games and entertainment technologies

    CERN Document Server

    Rauterberg, Matthias; Ciancarini, Paolo

    2017-01-01

    The topics treated in this handbook cover all areas of games and entertainment technologies, such as digital entertainment; technology, design/art, and sociology. The handbook consists of contributions from top class scholars and researchers from the interdisciplinary topic areas.  The aim of this handbook is to serving as a key reference work in the field and provides readers with a holistic picture of this interdisciplinary field covering technical issues, aesthetic/design issues, and sociological issues. At present, there is no reference work in the field that provides such a broad and complete picture of the field. Engineers and researchers who want to learn about this emerging area will be able to find adequate answers regarding technology issues on digital entertainment. Designers and artists can learn how their skills and expertise can contribute to this emerging area. Also researchers working in the field of sociology and psychology will find how their experience and knowledge are connected to other ...

  19. Handbook of manufacturing engineering and technology

    CERN Document Server

    2015-01-01

    The Springer Reference Work Handbook of Manufacturing Engineering and Technology provides overviews and in-depth and authoritative analyses on the basic and cutting-edge manufacturing technologies and sciences across a broad spectrum of areas. These topics are commonly encountered in industries as well as in academia. Manufacturing engineering curricula across universities are now essential topics covered in major universities worldwide.

  20. Handbook of social network technologies and applications

    CERN Document Server

    Furht, Borko

    2010-01-01

    Social networking is a concept that has existed for a long time; however, with the explosion of the Internet, social networking has become a tool for people to connect and communicate in ways that were impossible in the past. The recent development of Web 2.0 has provided many new applications, such as Myspace, Facebook, and LinkedIn. The purpose of ""Handbook of Social Networks: Technologies and Applications"" is to provide comprehensive guidelines on the current and future trends in social network technologies and applications in the field of Web-based Social Networks. This handbook includes

  1. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  2. Technology transfer

    International Nuclear Information System (INIS)

    Boury, C.

    1986-01-01

    This paper emphasizes in the specific areas of design, engineering and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  3. Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Illustrated by the example of the FRG's nuclear energy exports, it is shown that the nuclear technology transfer leads to new dimensions of intergovernmental relations, which hold within themselves on account of multiple state-to-state, scientific, industrial and - last but not least - personal contacts the chance of far-reaching friendships between countries and people. If the chance is taken, this can also be seen as an important contribution towards maintaining the peace. (orig.) [de

  4. The international handbook of space technology

    CERN Document Server

    Badescu, Viorel

    2014-01-01

    This comprehensive handbook provides an overview of space technology and a holistic understanding of the system-of-systems that is a modern spacecraft. With a foreword by Elon Musk, CEO and CTO of SpaceX, and contributions from globally leading agency experts from NASA, ESA, JAXA, and CNES, as well as European and North American academics and industrialists, this handbook, as well as giving an interdisciplinary overview, offers, through individual self-contained chapters, more detailed understanding of specific fields, ranging through: ·         Launch systems, structures, power, thermal, communications, propulsion, and software, to ·         entry, descent and landing, ground segment, robotics, and data systems, to ·         technology management, legal and regulatory issues, and project management. This handbook is an equally invaluable asset to those on a career path towards the space industry as it is to those already within the industry.

  5. Handbook of VLSI microlithography principles, technology and applications

    CERN Document Server

    Glendinning, William B

    1991-01-01

    This handbook gives readers a close look at the entire technology of printing very high resolution and high density integrated circuit (IC) patterns into thin resist process transfer coatings-- including optical lithography, electron beam, ion beam, and x-ray lithography. The book's main theme is the special printing process needed to achieve volume high density IC chip production, especially in the Dynamic Random Access Memory (DRAM) industry. The book leads off with a comparison of various lithography methods, covering the three major patterning parameters of line/space, resolution, line e

  6. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  7. CASTI handbook of cladding technology. 2. ed.

    International Nuclear Information System (INIS)

    Smith, L.; Celant, M.

    2000-01-01

    This updated (2000) CASTI handbook covers all aspects of clad products - the different means of manufacture, properties and applications in various industries. Topics include: an introduction to cladding technology, clad plate, clad pipes, bends, clad fittings, specification requirements of clad products, welding clad products, clad product application and case histories from around the world. Unique to this book is the documentation of case histories of major cladding projects from around the world and how the technology of that day has withstood the demands of time. Filled with over 100 photos and graphics illustrating the various cladding technology examples and products, this book truly documents the most recent technologies in the field of cladding technology used worldwide

  8. The handbook of science and technology studies

    CERN Document Server

    Fouché, Rayvon; Miller, Clark A; Smith-Doerr, Laurel

    2017-01-01

    Science and Technology Studies (STS) is a flourishing interdisciplinary field that examines the transformative power of science and technology to arrange and rearrange contemporary societies. The Handbook of Science and Technology Studies provides a comprehensive and authoritative overview of the field, reviewing current research and major theoretical and methodological approaches in a way that is accessible to both new and established scholars from a range of disciplines. This new edition, sponsored by the Society for Social Studies of Science, is the fourth in a series of volumes that have defined the field of STS. It features 36 chapters, each written for the fourth edition, that capture the state of the art in a rich and rapidly growing field. One especially notable development is the increasing integration of feminist, gender, and postcolonial studies into the body of STS knowledge. The book covers methods and participatory practices in STS research; mechanisms by which knowledge, people, and societies ...

  9. International technology transfer

    International Nuclear Information System (INIS)

    Kwon, Won Gi

    1991-11-01

    This book introduces technology progress and economic growth, theoretical consideration of technology transfer, policy and mechanism on technology transfer of a developed country and a developing country, reality of international technology transfer technology transfer and industrial structure in Asia and the pacific region, technology transfer in Russia, China and Eastern Europe, cooperation of science and technology for development of Northeast Asia and strategy of technology transfer of Korea.

  10. Technology transfer by multinationals

    OpenAIRE

    Kostyantyn Zuzik

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  11. Handbook of Research on Innovative Technology Integration in Higher Education

    Science.gov (United States)

    Nafukho, Fredrick Muyia, Ed.; Irby, Beverly J., Ed.

    2015-01-01

    Our increasingly globalized world is driven by shared knowledge, and nowhere is that knowledge more important than in education. Now more than ever, there is a demand for technology that will assist in the spread of knowledge through customized, self-paced, and on-demand learning. The Handbook of Research on Innovative Technology Integration in…

  12. Sustainable technology transfer

    NARCIS (Netherlands)

    Punter, H.T.; Krikhaar, R.L.; Bril, R.J.

    2006-01-01

    In this position paper we address the issue of transferring a technology from research into an industrial organization by presenting a refined process for technology transfer. Based on over two decades of industrial experience, we identified the need for a dedicated technology engineering phase for

  13. 20. AINSE plasma science and technology conference. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 20th AINSE plasma science and technology conference was held at Flinders University of South Australia on 13-14 February 1995. Topics under discussion included plasma physics studies, current status of rotamak devices, plasma processing and material studies. The handbook contains the conference program, 54 abstracts and a list of participants.

  14. 20. AINSE plasma science and technology conference. Conference handbook

    International Nuclear Information System (INIS)

    1995-01-01

    The 20th AINSE plasma science and technology conference was held at Flinders University of South Australia on 13-14 February 1995. Topics under discussion included plasma physics studies, current status of rotamak devices, plasma processing and material studies. The handbook contains the conference program, 54 abstracts and a list of participants

  15. Handbook of Research on Instructional Systems and Educational Technology

    Science.gov (United States)

    Kidd, Terry, Ed.; Morris, Lonnie R., Jr., Ed.

    2017-01-01

    Incorporating new methods and approaches in learning environments is imperative to the development of education systems. By enhancing learning processes, education becomes more attainable at all levels. "The Handbook of Research on Instructional Systems and Educational Technology" is an essential reference source for the latest scholarly…

  16. Technology transfer for adaptation

    Science.gov (United States)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  17. Technology Transfer and Technology Transfer Intermediaries

    Science.gov (United States)

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  18. NASA Technology Transfer System

    Science.gov (United States)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  19. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  20. Hybrid microcircuit technology handbook materials, processes, design, testing and production

    CERN Document Server

    Licari, James J

    1998-01-01

    The Hybrid Microcircuit Technology Handbook integrates the many diverse technologies used in the design, fabrication, assembly, and testing of hybrid segments crucial to the success of producing reliable circuits in high yields. Among these are: resistor trimming, wire bonding, die attachment, cleaning, hermetic sealing, and moisture analysis. In addition to thin films, thick films, and assembly processes, important chapters on substrate selections, handling (including electrostatic discharge), failure analysis, and documentation are included. A comprehensive chapter of design guidelines will

  1. Technology Transfer Report

    Science.gov (United States)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  2. The IAEA handbook on radionuclide transfer to wildlife

    International Nuclear Information System (INIS)

    Howard, B.J.; Beresford, N.A.; Copplestone, D.; Telleria, D.; Proehl, G.; Fesenko, S.; Jeffree, R.A.; Yankovich, T.L.; Brown, J.E.; Higley, K.; Johansen, M.P.; Mulye, H.; Vandenhove, H.; Gashchak, S.; Wood, M.D.; Takata, H.; Andersson, P.; Dale, P.; Ryan, J.; Bollhöfer, A.

    2013-01-01

    An IAEA handbook presenting transfer parameter values for wildlife has recently been produced. Concentration ratios (CR wo-media ) between the whole organism (fresh weight) and either soil (dry weight) or water were collated for a range of wildlife groups (classified taxonomically and by feeding strategy) in terrestrial, freshwater, marine and brackish generic ecosystems. The data have been compiled in an on line database, which will continue to be updated in the future providing the basis for subsequent revision of the Wildlife TRS values. An overview of the compilation and analysis, and discussion of the extent and limitations of the data is presented. Example comparisons of the CR wo-media values are given for polonium across all wildlife groups and ecosystems and for molluscs for all radionuclides. The CR wo-media values have also been compared with those currently used in the ERICA Tool which represented the most complete published database for wildlife transfer values prior to this work. The use of CR wo-media values is a pragmatic approach to predicting radionuclide activity concentrations in wildlife and is similar to that used for screening assessments for the human food chain. The CR wo-media values are most suitable for a screening application where there are several conservative assumptions built into the models which will, to varying extents, compensate for the variable data quality and quantity, and associated uncertainty

  3. Industrial technology transfer

    International Nuclear Information System (INIS)

    Bulger, W.

    1982-06-01

    The transfer of industrial technology is an essential part of the CANDU export marketing program. Potential customers require the opportunity to become self-sufficient in the supply of nuclear plant and equipment in the long term and they require local participation to the maximum extent possible. The Organization of CANDU Industries is working closely with Atomic Energy of Canada Ltd. in developing comprehensive programs for the transfer of manufacturing technology. The objectives of this program are: 1) to make available to the purchasing country all nuclear component manufacturing technology that exists in Canada; and 2) to assure that the transfer of technology takes place in an efficient and effective way. Technology transfer agreements may be in the form of joint ventures or license agreements, depending upon the requirements of the recipient

  4. Technology Transfer: Marketing Tomorrow's Technology

    Science.gov (United States)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers

  5. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  6. Technology transfer quality assurance

    International Nuclear Information System (INIS)

    Hood, F.C.

    1991-03-01

    The results of research conducted at Pacific Northwest Laboratory (PNL) for the DOE are regularly transferred from the laboratory to the private sector. The principal focus of PNL is on environmental research and waste management technology; other programs of emphasis include molecular science research. The technology transfer process is predicated on Quality to achieve its objectives effectively. Total quality management (TQM) concepts and principles readily apply to the development and translation of new scientific concepts into commercial products. The concept of technology transfer epitomizes the TQM tenet of continuous improvement: always striving for a better way to do things and always satisfying the customer. A successful technology transfer process adds value to society by providing new or enhanced processes, products, and services to government and commercial customers, with a guarantee of product pedigree and process validity. 2 refs

  7. Handbook of heat and mass transfer. Volume 2

    International Nuclear Information System (INIS)

    Cheremisinoff, N.P.

    1986-01-01

    This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors

  8. Handbook of public communication of science and technology

    CERN Document Server

    Trench, Brian

    2008-01-01

    Comprehensive yet accessible, this key handbook provides an up-to-date overview of the fast growing and increasingly important area of 'public communication of science and technology', from both research and practical perspectives. As well as introducing the main issues, arenas and professional perspectives involved, it presents the findings of earlier research and the conclusions previously drawn. Unlike most existing books on this topic, this unique volume couples an overview of the practical problems faced by practitioners with a thorough review of relevant literature and research. The practical handbook format ensures it is a student-friendly resource, but its breadth of scope and impressive contributors means that it is also ideal for practitioners and professionals working in the field. Combining the contributions of different disciplines (media and journalism studies, sociology and history of science), the perspectives of different geographical and cultural contexts, and by selecting key contributions ...

  9. University Technology Transfer

    Directory of Open Access Journals (Sweden)

    Mike Cox

    2004-09-01

    Full Text Available This article describes the experiences and general observations of the author at Heriot-Watt University and concerns the transfer of university technology for the purposes of commercialisation. Full commercial exploitation of a university invention generally requires transferring that technology into the industrial arena, usually either by formation of a new company or licensing into an existing company. Commercialisation activities need to be carried out in unison with the prime activities of the university of research and teaching. Responsibility for commercialising university inventions generally rests with a specific group within the university, typically referred to as the technology transfer group. Each technology transfer should be considered individually and appropriate arrangements made for that particular invention. In general, this transfer process involves four stages: identification, evaluation, protection and exploitation. Considerations under these general headings are outlined from a university viewpoint. A phased approach is generally preferred where possible for the evaluation, protection and exploitation of an invention to balance risk with potential reward. Evaluation of the potential opportunity for a university invention involves essentially the same considerations as for an industrial invention. However, there are a range of commercial exploitation routes and potential deals so that only general guidelines can be given. Naturally, the final deal achieved is that which can be negotiated. The potential rewards for the university and inventor are both financial (via licensing income and equity realisation and non-financial.

  10. The evolution of automotive technology : a handbook

    NARCIS (Netherlands)

    Mom, G.P.A.

    2015-01-01

    This book covers one and a quarter century of the automobile, conceived as a cultural history of its technology, aimed at engineering students and all those who wish to have a concise introduction into the basics of automotive technology and its long-term development. Its approach is systemic and

  11. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1

    International Nuclear Information System (INIS)

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems

  12. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3

    International Nuclear Information System (INIS)

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems

  13. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2

    International Nuclear Information System (INIS)

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems

  14. Technology transfer for development

    International Nuclear Information System (INIS)

    Abraham, D.

    1990-07-01

    The IAEA has developed a multifaceted approach to ensure that assistance to Member States results in assured technology transfer. Through advice and planning, the IAEA helps to assess the costs and benefits of a given technology, determine the basic requirements for its efficient use in conditions specific to the country, and prepare a plan for its introduction. This report describes in brief the Technical Co-operation Programmes

  15. Enabling cleanup technology transfer

    International Nuclear Information System (INIS)

    Ditmars, J. D.

    2002-01-01

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites

  16. Technology transfer packages

    International Nuclear Information System (INIS)

    Mizon, G.A.; Bleasdale, P.A.

    1994-01-01

    Nuclear power is firmly established in many developed countries'energy policies and is being adopted by emerging nations as an attractive way of gaining energy self sufficiency. The early users of nuclear power had to develop the technology that they needed, which now, through increasing world wide experience, has been rationalised to meet demanding economic and environmental pressures. These justifiable pressures, can lead to existing suppliers of nuclear services to consider changing to more appropriate technologies and for new suppliers to consider licensing proven technology rather then incurring the cost of developing new alternatives. The transfer of technology, under license, is made more straight forward if the owner conveniently groups appropriate technology into packages. This paper gives examples of 'Technology Packages' and suggests criteria for the specification, selection and contractual requirements to ensure successful licensing

  17. Technology transfer and innovation

    International Nuclear Information System (INIS)

    Ashworth, Graham; Thornton, Anna

    1987-01-01

    The aims of the conference were advice, assistance and action for all those with technology to licence or inventions to patent, and for people seeking financial help and advice. There was a free exchange of ideas and information. Of the forty or so papers collected together, many are concerned with the financial aspects of new ventures, others look at technology transfer from academic institutes and schemes which support technological problems. One paper on fast reactor collaboration in Europe, is indexed separately. (U.K.)

  18. Handbook of terahertz technologies devices and applications

    CERN Document Server

    Song, Ho-Jin

    2015-01-01

    Terahertz waves, which lie in the frequency range of 0.1-10 THz, have long been investigated in a few limited fields, such as astronomy, because of a lack of devices for their generation and detection. Several technical breakthroughs made over the last couple of decades now allow us to radiate and detect terahertz waves more easily, which has triggered the search for new uses of terahertz waves in many fields, such as bioscience, security, and information and communications technology. The book covers some of the technical breakthroughs in terms of device technologies. It discusses not only th

  19. Computing handbook information systems and information technology

    CERN Document Server

    Topi, Heikki

    2014-01-01

    Disciplinary Foundations and Global ImpactEvolving Discipline of Information Systems Heikki TopiDiscipline of Information Technology Barry M. Lunt and Han ReichgeltInformation Systems as a Practical Discipline Juhani IivariInformation Technology Han Reichgelt, Joseph J. Ekstrom, Art Gowan, and Barry M. LuntSociotechnical Approaches to the Study of Information Systems Steve Sawyer and Mohammad Hossein JarrahiIT and Global Development Erkki SutinenUsing ICT for Development, Societal Transformation, and Beyond Sherif KamelTechnical Foundations of Data and Database ManagementData Models Avi Silber

  20. Handbook of medical and healthcare technologies

    CERN Document Server

    Furht, Borko

    2013-01-01

    This book equips readers to understand a complex range of healthcare products that are used to diagnose, monitor, and treat diseases or medical conditions affecting humans. The first part of the book presents medical technologies such as medical information retrieval, tissue engineering techniques, 3D medical imaging, nanotechnology innovations in medicine, medical wireless sensor networks, and knowledge mining techniques in medicine. The second half of the book focuses on healthcare technologies including prediction hospital readmission risk, modeling e-health framework, personal Web in healt

  1. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    Science.gov (United States)

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  2. Handbook of vacuum science and technology

    National Research Council Canada - National Science Library

    Hoffman, Dorothy M; Singh, Bawa; Thomas, John H

    1998-01-01

    ... or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier's Science and Technology Rights Department in Oxford, UK. Phone: (44) 1865 843830, Fax: (44) 1865 853333. e-mail: permissions@elsevier.co.uk. You may also com...

  3. Veterinary Medicine and Animal Health Technology Handbook.

    Science.gov (United States)

    New York State Education Dept., Albany. Office of the Professions.

    The laws, rules, and regulations of the New York State Education Department that govern professional veterinary medicine and animal health technology practice in the state are presented. Licensure requirements are described, and complete application forms and instructions for obtaining license and first registration as a licensed veterinarian and…

  4. Technology transfer at TRIUMF

    International Nuclear Information System (INIS)

    Gardner, P.

    1994-06-01

    TRIUMF is Canada's major national research centre for sub-atomic physics. For the past five or six years, there has been an increasing emphasis on commercializing the technology that has emanated from the scientific research at the facility. This emphasis on technology transfer reflects a national policy trend of the Canadian federal government, which is the funding source for the majority of the research performed at TRIUMF. In TRIUMF's case, however, the initiative and funding for the commercialization office came from the provincial, or local government. This paper will describe the evolution of technology transfer at the TRIUMF facility, identifying the theory, policies and practical procedures that have been developed and followed. It will also include TRIUMF's experiences in finding exploitable technologies, protecting those technologies, and locating and linking with suitable industry partners to commercialize the technologies. There will be a discussion of resource allocation, and how TRIUMF has endeavoured to establish a portfolio of projects of assorted risks and expected returns. (author). 15 refs

  5. Handbook on advanced design and manufacturing technologies for biomedical devices

    CERN Document Server

    2013-01-01

    The last decades have seen remarkable advances in computer-aided design, engineering and manufacturing technologies, multi-variable simulation tools, medical imaging, biomimetic design, rapid prototyping, micro and nanomanufacturing methods and information management resources, all of which provide new horizons for the Biomedical Engineering fields and the Medical Device Industry. Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices covers such topics in depth, with an applied perspective and providing several case studies that help to analyze and understand the key factors of the different stages linked to the development of a novel biomedical device, from the conceptual and design steps, to the prototyping and industrialization phases. Main research challenges and future potentials are also discussed, taking into account relevant social demands and a growing market already exceeding billions of dollars. In time, advanced biomedical devices will decisively change methods and resu...

  6. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  7. Technology transfer 1995

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  8. TRIUMF: Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In our occasional series highlighting the increasingly important area of technology transfer and industrial spinoff from high energy physics, this month the CERN Courier focuses on TRIUMF in Vancouver, Canada's major national facility for research in subatomic physics, a particularly illustrative example of the rewards and challenges involved. TRIUMF is based on a 520 MeV negative hydrogen ion cyclotron meson factory operated by a consortium of Canadian universities. Although the primary funding from the Canadian government is earmarked for support of basic research, the laboratory has always fostered applications of the technologies available, supporting them with funds from other sources. At first this ''applied programme'' involved simply the provision of particle beams for other scientific, medical and industrial uses - protons for the development of neutrondeficient radioisotopes, neutrons for activation analysis, pions for cancer therapy, and muons for chemistry and condensed-matter physics. Twenty five years on, the technology transfer process has resulted not only in a significantly expanded internal applied programme, with many areas of activity quite independent of the big cyclotron, but also in a number of successful commercial operations in the Vancouver area. Radioisotope production has been a particularly fruitful source for technology transfer, the early development work leading to two important initiatives - the establishment of a commercial radioisotope production facility on site and the inauguration of a positron emission tomography (PET) program at the University of British Columbia nearby. In 1979 Atomic Energy of Canada Ltd's isotope production division (now Nordion International Inc.) decided to establish a western Canadian facility at TRIUMF, to produce the increasingly important neutron-deficient radioisotopes obtainable with accelerator beams, primarily for medical applications. This would complement their

  9. Technology transfer of Cornell university

    International Nuclear Information System (INIS)

    Yoo, Wan Sik

    2010-01-01

    This book introduces technology transfer of Cornell university which deals with introduction of Cornell university, composition of organization and practice of technology transfer : a research contract, research perform, invention report, evaluation and succession of invention, a patent application and management, marketing, negotiation and writing contract, management of contract, compensation, result of technology transfer, cases of success on technical commercialization and daily life of technology transfer center.

  10. Technology transfer in CANDU marketing

    International Nuclear Information System (INIS)

    Pon, G.A.

    1982-06-01

    The author discusses how the CANDU system lends itself to technology transfer, the scope of CANDU technology transfer, and the benefits and problems associated with technology transfer. The establishment of joint ventures between supplier and client nations offers benefits to both parties. Canada can offer varying technology transfer packages, each tailored to a client nation's needs and capabilities. Such a package could include all the hardware and software necessary to develop a self-sufficient nuclear infrastructure in the client nation

  11. Evaluating Technology Transfer and Diffusion.

    Science.gov (United States)

    Bozeman, Barry; And Others

    1988-01-01

    Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…

  12. International nuclear technology transfer

    International Nuclear Information System (INIS)

    Cartwright, P.; Rocchio, J.P.

    1978-01-01

    Light water reactors (LWRs), originally developed in the United States, became the nuclear workhorses for utilities in Europe and Japan largely because the U.S. industry was willing and able to transfer its nuclear know-how abroad. In this international effort, the industry had the encouragement and support of the U.S. governement. In the case of the boiling water reactor (BWR) the program for technology transfer was developed in response to overseas customer demands for support in building local designs and manufacturing capabilities. The principal vehicles have been technology exchange agreements through which complete engineering and manufacturing information is furnished covering BWR systems and fuel. Agreements are held with companies in Germany, Japan, Italy, and Sweden. In recent years, a comprehensive program of joint technology development with overseas manufacturers has begun. The rapidly escalating cost of nuclear research and development make it desirable to minimize duplication of effort. These joint programs provide a mechanism for two or more parties jointly to plan a development program, assign work tasks among themselves, and exchange test results. Despite a slower-than-hoped-for start, nuclear power today is playing a significant role in the economic growth of some developing countries, and can continue to do so. Roughly half of the 23 free world nations that have adopted LWRs are developing countries

  13. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  14. Handbook of Research on E-Transformation and Human Resources Management Technologies: Organizational Outcomes and Challenges

    NARCIS (Netherlands)

    Bondarouk, Tatiana; Ruel, Hubertus Johannes Maria; Guiderdoni-Jourdain, Karine; Oiry, Ewan

    2009-01-01

    Digital advancements and discoveries are now challenging traditional human resource management services within businesses. The Handbook of Research on E-Transformation and Human Resources Management Technologies: Organizational Outcomes and Challenges provides practical, situated, and unique

  15. Decommissioning Handbook

    International Nuclear Information System (INIS)

    Cusack, J.G.; Dalfonso, P.H.; Lenyk, R.G.

    1994-01-01

    The Decommissioning Handbook provides technical guidance on conducting decommissioning projects. Information presented ranges from planning logic, regulations affecting decommissioning, technology discussion, health and safety requirements, an developing a cost estimate. The major focus of the handbook are the technologies -- decontamination technologies, waste treatment, dismantling/segmenting/demolition, and remote operations. Over 90 technologies are discussed in the handbook providing descriptions, applications, and advantages/disadvantages. The handbook was prepared to provide a compendium of available or potentially available technologies in order to aid the planner in meeting the specific needs of each decommissioning project. Other subjects presented in the Decommissioning Handbook include the decommissioning plan, characterization, final project configuration based planning, environmental protection, and packaging/transportation. These discussions are presented to complement the technologies presented in the handbook

  16. Managerial technology transfer

    CERN Document Server

    2012-01-01

    Organisations need to think globally, but act locally - with a full appreciation of the diversity of local cultures. Major global companies must recognise that policies need to be managed with the broad context of business strategy and integrated into the work culture with the support of all elements of human resources management. Most currently, companies are accommodating national cultural differences while preserving work culture principals that encourage people to effectively execute the company's strategic objectives. Even to the casual observer, it is apparent that culture- a society's programming of the mind- has both a pervasive and changing influence on each national business environment. Global managers must recognise the influence of culture and be prepared to either respond to it or change it. This book examines current research in the study of managerial technology transfer.

  17. Technology transfer from nuclear research

    International Nuclear Information System (INIS)

    1989-01-01

    A number of processes, components and instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, find application in industry and are available for transfer to private or public sector undertakings for commercial exploitation. The Technology Transfer Group (TTG) constituted in January 1980 identifies such processes and prototypes which can be made available for transfer. This catalogue contains brief descriptions of such technologies and they are arranged under three groups, namely, Group A containing descriptions of technologies already transferred, Group B containing descriptions of technologies ready for transfer and Group C containing descriptions of technology transfer proposals being processed. The position in the above-mentioned groups is as on 1 March 1989. The BARC has also set up a Technology Corner where laboratory models and prototypes of instruments, equipment and components are displayed. These are described in the second part of the catalogue. (M.G.B.)

  18. Search Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  19. Available Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  20. Federal Technology Transfer Act (FTTA)

    Science.gov (United States)

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  1. Handbook of parameter values for the prediction of radionuclide transfer in temperate environments

    International Nuclear Information System (INIS)

    1994-01-01

    This Handbook has been prepared in response to a widely expressed interest in having a convenient and authoritative reference for radionuclide transfer parameter values used in biospheric assessment models. It draws on data from North America and Europe, much of which was collected through projects of the International Union of Radioecologists (IUR) and the Commission of European Communities (CEC) over the last decade. It is intended to supplement existing IAEA publications on environmental assessment methodology, primarily Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases, IAEA Safety Series No. 57 (1982). 219 refs, 3 figs, 32 tabs

  2. Handbook of parameter values for the prediction of radionuclide transfer to wildlife

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    This handbook provides generic parameter values for estimating the transfer of radionuclides from environmental media to wildlife for the purpose of assessing potential radiation exposure under equilibrium conditions. These data are intended for use where site specific data are either not available or not required, and to parameterize generic assessment models. They are based on a comprehensive review of the available literature, including many Russian language publications that have not previously been available in English. The publication addresses the limitations of the parameter values and the applicability of data. Some general background information on the assessment of potential impacts of radioactive releases on wildlife is also included. It complements the existing handbook in the same IAEA series with parameter to assess the radiological impact to humans.

  3. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2015 Edition

    International Nuclear Information System (INIS)

    Fazio, Concetta; Sobolev, V.P.; Aerts, A.; Gavrilov, S.; Lambrinou, K.; Schuurmans, P.; Gessi, A.; Agostini, P.; Ciampichetti, A.; Martinelli, L.; Gosse, S.; Balbaud-Celerier, F.; Courouau, J.L.; Terlain, A.; Li, N.; Glasbrenner, H.; Neuhausen, J.; Heinitz, S.; Zanini, L.; Dai, Y.; Jolkkonen, M.; Kurata, Y.; Obara, T.; Thiolliere, N.; Martin-Munoz, F.J.; Heinzel, A.; Weisenburger, A.; Mueller, G.; Schumacher, G.; Jianu, A.; Pacio, J.; Marocco, L.; Stieglitz, R.; Wetzel, T.; Daubner, M.; Litfin, K.; Vogt, J.B.; Proriol-Serre, I.; Gorse, D.; Eckert, S.; Stefani, F.; Buchenau, D.; Wondrak, T.; Hwang, I.S.

    2015-01-01

    Heavy liquid metals such as lead or lead-bismuth have been proposed and investigated as coolants for fast reactors since the 1950's. More recently, there has been renewed interest worldwide in the use of these materials to support the development of systems for the transmutation of radioactive waste. Heavy liquid metals are also under evaluation as a reactor core coolant and accelerator-driven system neutron spallation source. Several national and international R and D programmes are ongoing for the development of liquid lead-alloy technology and the design of liquid lead-alloy-cooled reactor systems. In 2007, a first edition of the handbook was published to provide deeper insight into the properties and experimental results in relation to lead and lead-bismuth eutectic technology and to establish a common database. This handbook remains a reference in the field and is a valuable tool for designers and researchers with an interest in heavy liquid metals. The 2015 edition includes updated data resulting from various national and international R and D programmes and contains new experimental data to help understand some important phenomena such as liquid metal embrittlement and turbulent heat transfer in a fuel bundle. The handbook provides an overview of liquid lead and lead-bismuth eutectic properties, materials compatibility and testing issues, key aspects of thermal-hydraulics and existing facilities, as well as perspectives for future R and D. (authors)

  4. The development of nuclear technology transfer

    International Nuclear Information System (INIS)

    Nack-chung Sung

    1987-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigeneous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turnkey approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented. (author)

  5. Federal Technology Transfer Act Success Stories

    Science.gov (United States)

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  6. SHARED TECHNOLOGY TRANSFER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  7. Technology transfer: The CANDU approach

    International Nuclear Information System (INIS)

    Hart, R.S.

    1998-01-01

    The many and diverse technologies necessary for the design, construction licensing and operation of a nuclear power plant can be efficiently assimilated by a recipient country through an effective technology transfer program supported by the firm long term commitment of both the recipient country organizations and the supplier. AECL's experience with nuclear related technology transfer spans four decades and includes the construction and operation of CANDU plants in five countries and four continents. A sixth country will be added to this list with the start of construction of two CANDU 6 plants in China in early 1997. This background provides the basis for addressing the key factors in the successful transfer of nuclear technology, providing insights into the lessons learned and introducing a framework for success. This paper provides an overview of AECL experience relative to the important factors influencing technology transfer, and reviews specific country experiences. (author)

  8. Bridge Scour Technology Transfer

    Science.gov (United States)

    2018-01-24

    Scour and flooding are the leading causes of bridge failures in the United States and therefore should be monitored. New applications of tools and technologies are being developed, tested, and implemented to reduce bridge scour risk. The National Coo...

  9. Review of the book, International handbook of research and development in Technology Education

    OpenAIRE

    Householder, Dan L.

    2012-01-01

    This is by far the most comprehensive volume yet issued by Sense Publishers in their excellent contemporary series, International Technology Education Studies. Earlier books in the series are the International Handbook of Technology Education: Reviewing the Past Twenty Years, edited by Marc J. de Vries and Ilja Mottier (2006); Analyzing Best Practices in Technology Education, edited by Marc de Vries, Rod Custer, John Dakers, and Gene Martin (2007); Researching Technology Education, edited by ...

  10. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  11. DESY: Technology transfer on show

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    As well as exploring the unknown, fundamental physics research, with its continual demands for special conditions and precision measurements, makes special demands on frontier technology. One of the most prolific areas of this technology transfer, superconductivity and cryogenics, was highlighted by a recent exhibition at DESY organized by the International Cryogenic Engineering Committee

  12. DESY: Technology transfer on show

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-12-15

    As well as exploring the unknown, fundamental physics research, with its continual demands for special conditions and precision measurements, makes special demands on frontier technology. One of the most prolific areas of this technology transfer, superconductivity and cryogenics, was highlighted by a recent exhibition at DESY organized by the International Cryogenic Engineering Committee.

  13. Understanding University Technology Transfer

    Science.gov (United States)

    Association of American Universities, 2011

    2011-01-01

    Federal government agencies provide about $33 billion a year to universities to conduct scientific research. That continuing investment expands human knowledge and helps educate the next generation of science and technology leaders. New discoveries from university research also form the basis for many new products and processes that benefit the…

  14. Technology transfer - north/south

    Energy Technology Data Exchange (ETDEWEB)

    Ercan, Y [Gazi University, Ankara (Turkey). Faculty of Engineering and Architecture

    1991-01-01

    Technology transfer is needed to the developing countries in the fields of fuel, combustion equipment, and operations to maximise combustion efficiency and minimise the harmful emissions. Channels of technology transfer available include: direct foreign investment, joint ventures, patent and licence purchases, industrial co-operation and technical aid, importation of technical goods, and turn-key projects. Dependency on totally imported technology and equipment both in boilers and flue gas treatment systems, however, results in high investment costs and may limit extensive use of power plants based on coal. If technologies to improve the efficiencies and emission behaviour of coal utilizing facilities are transferred to developing countries, a business scheme mutually beneficial both to the developing countries and the coal producing countries can be reached, which will boost the industrialization of the developing countries. 11 refs., 3 figs., 1 tab.

  15. Technology transfer - the role of AEA Technology

    International Nuclear Information System (INIS)

    Hughes, A.E.; Bullough, R.; Mason, J.P.

    1989-01-01

    This paper concentrates mostly on examples of spin offs which have arisen from the more basic research carried out by the AEA. However, it should not be inferred from this that the only examples of successful technology transfer by the AEA are of a similar, often unforeseen nature. The most outstanding example of technology transfer by the AEA must surely be that achieved through the applied research which has enabled the establishment of a successful civil nuclear power programme in the UK. The natural transfer of technology here, achieved by virtue of the unique bridging position of the AEA with respect to universities and the nuclear industry, means that its success can easily be overlooked; to do so would be a mistake. However, by including spin off examples, we hope to illustrate how the AEA has also succeeded in bridging to more difficult areas where the special relationship which it shares with the nuclear industry is absent. (author)

  16. Technology transfer around the corner?

    International Nuclear Information System (INIS)

    Willis, R.B.; Rowell, D.; Patchen, D.

    1994-01-01

    This paper will describe how the Oil and Gas industry can become involved in shaping a new national program to aid in the transfer of technology from a variety of sources to the hands of the local independents. Technology Transfer has been a ''buzzword'' in the Oil and Gas Industry for some time now. Most of them might admit that it has been more of a ''buzzword'' and less of an activity. While most of the operators in the Appalachian Basin want to apply the latest in technology to their exploration and production activities is has quite often been difficult to find the appropriate technology. The Department of Energy, realizing that much of the technology which exists involving Oil and Gas is seldom applied by those who work so hard to produce it efficiently, has instigated the Petroleum Technology Transfer Council (PTTC). The PTTC will be a national ''umbrella'' organization formed by the Independent Petroleum Association of America (IPAA), in cooperation with the state and regional oil and gas producer associations, the Gas Research Institute (GRI), the Interstate Oil and Gas Compact Commission (IOGGCC), and other groups. The mission of the PTTC is to foster the effective transfer of exploration and production technology to domestic producers in all regions of the country. One of the most important functions of the program will be to provide a feedback loop so that the needs and concerns of producers can be communicated effectively to the entire research community and to the Department of Energy

  17. Human-Computer Interaction Handbook Fundamentals, Evolving Technologies, and Emerging Applications

    CERN Document Server

    Jacko, Julie A

    2012-01-01

    The third edition of a groundbreaking reference, The Human--Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications raises the bar for handbooks in this field. It is the largest, most complete compilation of HCI theories, principles, advances, case studies, and more that exist within a single volume. The book captures the current and emerging sub-disciplines within HCI related to research, development, and practice that continue to advance at an astonishing rate. It features cutting-edge advances to the scientific knowledge base as well as visionary perspe

  18. Human-computer interaction handbook fundamentals, evolving technologies and emerging applications

    CERN Document Server

    Sears, Andrew

    2007-01-01

    This second edition of The Human-Computer Interaction Handbook provides an updated, comprehensive overview of the most important research in the field, including insights that are directly applicable throughout the process of developing effective interactive information technologies. It features cutting-edge advances to the scientific knowledge base, as well as visionary perspectives and developments that fundamentally transform the way in which researchers and practitioners view the discipline. As the seminal volume of HCI research and practice, The Human-Computer Interaction Handbook feature

  19. Handbook of Research on Technology Tools for Real-World Skill Development (2 Volumes)

    Science.gov (United States)

    Rosen, Yigel, Ed.; Ferrara, Steve, Ed.; Mosharraf, Maryam, Ed.

    2016-01-01

    Education is expanding to include a stronger focus on the practical application of classroom lessons in an effort to prepare the next generation of scholars for a changing world economy centered on collaborative and problem-solving skills for the digital age. "The Handbook of Research on Technology Tools for Real-World Skill Development"…

  20. Macroeconomic level of technology transfer

    Directory of Open Access Journals (Sweden)

    Smirnova Nadezhda

    2016-04-01

    Full Text Available World practice of economic management has proved that the best indicator of competitiveness is achieved by that economic system, the economic units of which timely and adequately update the resource and technical base, thus achieving higher financial and economic indicators. Ensuring that sustainable development becomes possible due to the transfer of technological innovations, namely the diffusion from the developer to the customer on both commercial and free of charge basis. The article focuses on functioning of technology transfer at the macro level, namely the creation of its domestic models.

  1. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  2. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  3. Technology Transfer: A Contact Sport

    Science.gov (United States)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  4. ICAT and the NASA technology transfer process

    Science.gov (United States)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  5. Technology transfer and localization: A Framatome perspective

    International Nuclear Information System (INIS)

    Preneuf, R. de

    2000-01-01

    Localization and technology transfer have been important factors influencing the decision-making process in countries embarking on a nuclear power programme. It seems natural that relationships between donors and recipients of technology, beginning with sub-contracting, should evolve towards technology transfers and cooperation on an equal footing. France was both a receiver and a donor of technology transfer in the area of nuclear power. This paper describes the French experience in technology transfer and the lesson learned therefrom. (author)

  6. Project approach helps technology transfer

    International Nuclear Information System (INIS)

    Walcher, M.W.

    1982-01-01

    The placing of the contract by the National Power Corporation with Westinghouse for the Philippines nuclear power plant (PNPP-1) is described. Maximised use of Philippine contractors under Westinghouse supervision was provided for. Technology transfer is an important benefit of the contract arrangements, since National Power Corporation project management acquires considerable nuclear plant experience during plant construction through consultation with technical personnel. (U.K.)

  7. NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  8. Decommissioning Handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  9. Transfer of nuclear technology from Spain

    International Nuclear Information System (INIS)

    Madrid, G.

    1985-01-01

    Technology transfer from Spain is possible in several fields of nuclear technology ranging from the head end of the fuel cycle (ENUSA) to the back end (ENRESA). The advantages of such a transfer are emphasized

  10. EPA Reports to Congress on Technology Transfer

    Science.gov (United States)

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  11. Technology transfer: the key to fusion commercialization

    International Nuclear Information System (INIS)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer

  12. Handbook of camera monitor systems the automotive mirror-replacement technology based on ISO 16505

    CERN Document Server

    2016-01-01

    This handbook offers a comprehensive overview of Camera Monitor Systems (CMS), ranging from the ISO 16505-based development aspects to practical realization concepts. It offers readers a wide-ranging discussion of the science and technology of CMS as well as the human-interface factors of such systems. In addition, it serves as a single reference source with contributions from leading international CMS professionals and academic researchers. In combination with the latest version of UN Regulation No. 46, the normative framework of ISO 16505 permits CMS to replace mandatory rearview mirrors in series production vehicles. The handbook includes scientific and technical background information to further readers’ understanding of both of these regulatory and normative texts. It is a key reference in the field of automotive CMS for system designers, members of standardization and regulation committees, engineers, students and researchers.

  13. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  14. The transfer of accelerator technology to industry

    International Nuclear Information System (INIS)

    Favale, A.

    1992-01-01

    The national laboratories and universities are sources for innovative accelerator technology developments. With the growing application of accelerators in such fields as semiconductor manufacturing, medical therapy isotope production, nuclear waste transmutation, materials testing, bomb detection, pure science, etc., it is becoming more important to transfer these technologies and build an accelerator industrial base. In this talk the methods of technology transfer, the issues involved in working with the labs and examples of successful technology transfers are discussed. (Author)

  15. The Spanish technology transfer. Diagnostic and perspectives

    International Nuclear Information System (INIS)

    Rodriguez Pomeda, J.; Casani Fernandez de Navarrete, F.

    2007-01-01

    After a non exhaustive literature review of technology transfer in Spain, the authors offer a synthetic view of it. The main aspects reviewed are as follows: general ideas on technology transfer and their links with universities third mission; obstacles and success factors, and, lastly, support structures and transfer tools. (Author) 58 refs

  16. Low-level radioactive waste management handbook series: corrective measures technology for shallow land burial

    International Nuclear Information System (INIS)

    1984-10-01

    The purpose of this document is to serve as a handbook to operators of low-level waste burial sites for dealing with conditions which can cause problems in waste isolation. This handbook contains information on planning and applying corrective actions, and is organized in such a way as to assist the operator in associating problems or potential problems with causative conditions. Thus, the operator is encouraged to direct actions at those conditions, rather than the possible temporary expedient of treating symptoms. In Chapter 2 of this handbook, corrective action planning is briefly presented. Chapter 3 discusses the application of corrective measures by addressing, in separate sections, the following conditions which can occur at burial sites: eroding trench cover; permeable trench cover; subsidence of trench; groundwater entering trenches; trench intrusion by deep-rooted plants; and trench intrusion by burrowing animals. In each of these sections, a condition is introduced and related to burial-site problems. It is followed by a discussion of alternative methods for correcting the condition. This discussion includes descriptive information, application considerations for these alternatives, a listing of potential advantages and disadvantages, presentation of generalized cost information, and in conclusion, a statement of recommendations regarding application of corrective action technologies. 66 references, 21 figures, 24 tables

  17. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  18. The Clean Development Mechanism and Technology Transfer

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    2017-01-01

    This study assesses the impact of the Clean Development Mechanism (CDM) on the transfer of clean technology in India. The reason this study is unique is because firstly, it adopts an outcome-oriented approach to define ‘technology transfer’, which means that technology transfer occurs if firms...

  19. Energy technologies and the environment: Environmental information handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acid rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).

  20. Technological entrepreneurship : technology transfer from academia to new firms

    NARCIS (Netherlands)

    Prodan, I.

    2007-01-01

    This doctoral dissertation aims to do the following: 1. Develop the conceptual model of technological entrepreneurship 2. Position technology transfer from academia to new firms in a newly developed conceptual model of technological entrepreneurship 3. Develop the model of technology transfer from

  1. SWAMI II technology transfer plan

    International Nuclear Information System (INIS)

    Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

    1995-01-01

    Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection

  2. Energy technologies and the environment: environmental information handbook

    International Nuclear Information System (INIS)

    1981-06-01

    This manual draws together information on the environmental consequences of energy technologies that will be in use in the United States during the next 20 years. We hope it will prove useful to planners, policymakers, legislators, researchers, and environmentalists. The information on environmental issues, control technologies, and energy production and conservation processes should also be a convenient starting point for deeper exploration. Published references are given for the statements, data, and conclusions so that the interested reader can obtain more detailed information where necessary. Environmental aspects of energy technologies are presented in a form suitable for government and public use and are intended to assist decisionmakers, researchers, and the public with basic information and references that can be relied upon through changing policies and changing world energy prices

  3. License Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI Technology Transfer Center (TTC) licenses the discoveries of NCI and nine other NIH Institutes so new technologies can be developed and commercialized, to convert them into public health benefits.

  4. A dynamic approach to technology transfer

    International Nuclear Information System (INIS)

    Shave, D.F.; Kent, G.F.; Giambusso, A.; Jacobs, S.B.

    1987-01-01

    Stone and Webster Engineering Corporation has developed a systematic program for achieving efficient, effective technology transfer. This program is based on transferring both know-why and know-how. The transfer of know-why and know-how is achieved most effectively by working in partnership with the recipient of the technology; by employing five primary transfer mechanisms, according to the type of learning required; by treating the technology transfer as a designed process rather than an isolated event; and by using a project management approach to control and direct the process. This paper describes the philosophy, process, and training mechanisms that have worked for Stone and Webster, as well as the project management approach needed for the most effective transfer of technology. (author)

  5. BUSINESS MODELS FOR INCREASING TECHNOLOGICAL TRANSFER EFFECTIVENESS

    Directory of Open Access Journals (Sweden)

    Simina FULGA

    2016-05-01

    Full Text Available The present paper is devoted to analyze the appropriate recommendations to increase the effectiveness of technology transfer organizations (centers from ReNITT, by using the specific instruments of Business Model Canvas, associated to the technological transfer value chain for the value added services addressed to their clients and according to a continuously improved competitive strategy over competition analysis.

  6. An integrated approach towards technology transfer

    NARCIS (Netherlands)

    Wal, L.F. van der; Eldering, C.J.J.; Putten, N.J. van

    2010-01-01

    In 2001 the European Space Agency (ESA), the Dutch Ministry of Economic Affairs and the Netherlands Organisation of applied scientific research TNO initiated the Dutch Technology Transfer Programme (DTTP). Since then, 'technology transfer' has been a relevant part of Dutch space policy. The DTTP

  7. Partnering Events | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  8. 48 CFR 970.2770 - Technology Transfer.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  9. Handbook of chemical vapor deposition principles, technology and applications

    CERN Document Server

    Pierson, Hugh O

    1999-01-01

    Turn to this new second edition for an understanding of the latest advances in the chemical vapor deposition (CVD) process. CVD technology has recently grown at a rapid rate, and the number and scope of its applications and their impact on the market have increased considerably. The market is now estimated to be at least double that of a mere seven years ago when the first edition of this book was published. The second edition is an update with a considerably expanded and revised scope. Plasma CVD and metallo-organic CVD are two major factors in this rapid growth. Readers will find the latest

  10. Technology transfer in the Clean Development Mechanism

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Haake, F.; Van der Linden, N.H.

    2007-01-01

    Technology transfer is often mentioned as an ancillary benefit of the Kyoto Protocol's Clean Development Mechanism (CDM), but this claim has never been researched or substantiated. The question of technology transfer is important from two perspectives: for host countries, whether the CDM provides a corridor for foreign, climate-friendly technologies and investment, and for industrialised countries as it provides export potential for climate-friendly technologies developed as a consequence of stringent greenhouse gas targets. In order to better understand whether technology transfer from the EU and elsewhere is occurring through the CDM, and what is the value of the associated foreign investment, this paper examines technology transfer in the 63 CDM projects that were registered on January 1st, 2006. Technology originates from outside the host country in almost 50% of the evaluated projects. In the projects in which the technology originates from outside the host country, 80% use technology from the European Union. Technologies used in non-CO2 greenhouse gas and wind energy projects, and a substantial share of the hydropower projects, use technology from outside the host country, but biogas, agricultural and biomass projects mainly use local technology. The associated investment value with the CDM projects that transferred technology is estimated to be around 470 million Euros, with about 390 coming from the EU. As the non-CO2 greenhouse gas projects had very low capital costs, the investment value was mostly in the more capital-intensive wind energy and hydropower projects

  11. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Butera, F.; Farinelli, U.

    1992-01-01

    With the use of critical analyses of some examples of technology transfer by industrialized to third world countries, this paper illustrates the importance, in technology transfer, of giving due consideration to the specific social and marketing contexts of the targeted developing country and its physical and financial capability to acquire all the technology necessary to make the total realization of a desired industrial scheme feasible from the economic, technical and social points of view. It also indicates that the most effective transfers are those in which efforts are made to optimize local work force learning levels, process scheme efficiency and cost through the careful integration of innovative with conventional technologies

  12. Development of nuclear technology transfer - Korea as a recipient

    International Nuclear Information System (INIS)

    Sung, N.C.

    1988-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigenous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turn-key approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented

  13. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Radiation Measurement (ARM) Program

    2016-03-01

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141 seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.

  14. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  15. Procedures and technology for shallow-land burial. Low-level radioactive-waste-management handbook series

    International Nuclear Information System (INIS)

    1983-08-01

    This handbook provides technical information on the requirements, activities, and the roles of all parties involved in the development and operation of new shallow land burial facilities for disposal of low-level radioactive waste. It presents an overview of site selection, design, construction, operation, and closure. Low-level waste shallow land burial practices and new technology applications are described. The handbook is intended to provide a basis for understanding the magnitude and complexity of developing new low-level waste disposal facilities

  16. Importance of the documentation of the manual of quality and procedures handbook in the nuclear technology center

    International Nuclear Information System (INIS)

    Domech More, J.; Bolanos Hernandez, R.; Quitero Rosello, R.; Fernandez Rondon, M.; Milian Lorenzo, D.; Rodriguez Gual, M.

    1997-01-01

    In the present work is presented the methodology used for the elaboration of manual of quality of the Nuclear Technology Center and the technical Procedures Handbook for the execution of Preliminary Safety report of the Juragua Nuclear Power Plant, as well as the importance that has this documentation for the work of the center

  17. Technology Transfer brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  18. Technology Transfer brochure (English version)

    CERN Multimedia

    Lefevre, C

    2007-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  19. Technology Transfer brochure (Swedish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  20. A case history of technology transfer

    Science.gov (United States)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  1. Pakistan's experience in transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad Khan, Nunir

    1977-01-01

    Of all technologies, nuclear technology is perhaps the most interdisciplinary in character as it encompasses such varied fields as nuclear physics, reactor physics, mechanical, electrical electronics controls, metallurgical and even civil and geological engineering. When we speak of transfer of acquisition of nuclear technology we imply cumulative know-how in many fields, most of which are not nuclear per se but are essential for building the necessry infrastructure and back-up facilities for developing and implementing any nuclear energy program. In Pakistan, efforts on utilization of nuclear energy for peaceful applications were initiated about twenty years ago. During these years stepwise development of nuclear technology has taken place. The experience gained by Pakistan so far in transfer of nuclear technology is discussed. Suggestions have been made for continuing the transfer of this most essential technology from the advanced to the developing countries while making sure that necessary safeguard requirements are fullfilled

  2. Distance technology transfer course content development.

    Science.gov (United States)

    2013-06-01

    The Illinois Department of Transportation (IDOT) offers multiple technology transfer courses for engineering, : project design, and safety training for state and local agency personnel. These courses are often essential to the : agency mission. Becau...

  3. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1991-01-01

    This paper gives some examples of how technology transfer can successfully be given to third world countries to allow them to benefit in their quest for economic growth and better standards of living through reduced energy consumption and environmental pollution. It also suggests methods by which obstacles such as high investment costs, lack of information, market demand, etc., can be overcome in order to motivate technological transfer by industrialized countries

  4. Nuclear energy technology transfer: the security barriers

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1975-08-01

    The problems presented by security considerations to the transfer of nuclear energy technology are examined. In the case of fusion, the national security barrier associated with the laser and E-beam approaches is discussed; for fission, the international security requirements, due to the possibility of the theft or diversion of special nuclear materials or sabotage of nuclear facilities, are highlighted. The paper outlines the nuclear fuel cycle and terrorist threat, examples of security barriers, and the current approaches to transferring technology. (auth)

  5. Technology transfer from Canadian nuclear laboratories

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Evans, W.; MacEwan, J.R.; Melvin, J.G.

    1985-09-01

    Canada has developed a unique nuclear power system, the CANDU reactor. AECL - Research Company (AECL-RC) has played a key role in the CANDU program by supplying its technology to the reactor's designers, constructors and operators. This technology was transferred from our laboratories to our sister AECL companies and to domestic industries and utilities. As CANDUs were built overseas, AECL-RC made its technology available to foreign utilities and agencies. Recently the company has embarked on a new transfer program, commercial R and D for nuclear and non-nuclear customers. During the years of CANDU development, AECL-RC has acquired the skills and technology that are especially valuable to other countries embarking on their own nuclear programs. This report describes AECL-RC's thirty years' experience with the transfer of technology

  6. Technology transfer program of Microlabsat

    Science.gov (United States)

    Nakamura, Y.; Hashimoto, H.

    2004-11-01

    A 50kg-class small satellite developed by JAXA called "MicroLabSat" was launched piggyback by H-IIA rocket No. 4 on 14 December 2002. This satellite will demonstrate small satellite bus technology and conduct experiments on a new separator feasibility and remote inspection technology. All missions were completed successfully on 25 May 2003. Furthermore, the hand-construction by young JAXA engineers motivated these engineers to higher performance in learning design, assembly and testing technology. Small and medium-sized Japanese companies have recently joined together and initiated a project to develop a small satellite. The goal of the project is to commercialise small satellites, which will require low- cost development. Therefore, they have started with a satellite incorporating the components and bus technologies of MicroLabSat and have been technically supported by universities and JAXA since 2004. This satellite project, in which industry, universities and a space agency are collaborating, seeks to meet the technical challenge of launching a low-cost satellite. This paper reports JAX's strategies for developing a small satellite for demonstrating space technology as well as the development and operation results of MicroLabSat. It also describes the project status of an industry-based satellite, developed through collaboration among industries, universities and the space agency, and how the technologies of MicroLabSat are applied.

  7. Understanding the CDM's contribution to technology transfer

    International Nuclear Information System (INIS)

    Schneider, Malte; Holzer, Andreas; Hoffmann, Volker H.

    2008-01-01

    Developing countries are increasingly contributing to global greenhouse gas emissions and, consequently, climate change as a result of their rapid economic growth. In order to reduce their impact, the private sector needs to be engaged in the transfer of low-carbon technology to those countries. The Clean Development Mechanism (CDM) is currently the only market mechanism aimed at triggering changes in the pattern of emissions-intensive activities in developing countries and is likely to play a role in future negotiations. In this paper, we analyse how the CDM contributes to technology transfer. We first develop a framework from the literature that delineates the main factors which characterise technology transfer. Second, we apply this framework to the CDM by assessing existing empirical studies and drawing on additional expert interviews. We find that the CDM does contribute to technology transfer by lowering several technology-transfer barriers and by raising the transfer quality. On the basis of this analysis, we give preliminary policy recommendations

  8. Macrosystems management approach to nuclear technology transfer

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Maultsby, T.E.

    1978-01-01

    The world of the 1980s will be a world of diminishing resources, shifting economic bases, rapidly changing cultural and societal structures, and an ever increasing demand for energy. A major driving function in this massive redistribution of global power is man's ability to transfer technology, including nuclear technology, to the developing nations. The major task facing policy makers in planning and managing technology transfer is to avoid the difficulties inherent in such technology exploitation, while maximizing the technical, economic, social, and cultural benefits brought about by the technology itself. But today's policy makers, using industrial-style planning, cannot adequately deal with all the complex, closely-coupled issues involved in technology transfer. Yet, policy makers within the developing nations must be capable of tackling the full spectrum of issues associated with technology transfer before committing to a particular course of action. The transfer and acceptance of complex technology would be significantly enhanced if policy makers followed a macrosystems management approach. Macrosystems management is a decision making methodology based on the techniques of macrosystems analysis. Macrosystems analysis combines the best quantitative methods in systems analysis with the best qualitative evaluations provided by multidisciplined task teams. These are focused in a project management structure to produce solution-oriented advice to the policy makers. The general relationships and management approach offered by macrosystems analysis are examined. Nowhere are the nuclear power option problems and issues more complex than in the transfer of this technology to developing nations. Although many critical variables of interest in the analysis are generic to a particular importer/exporter relationship, two specific issues that have universally impacted the nuclear power option, namely the fuel cycle, and manpower and training, are examined in the light of

  9. Canadian Experience in Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Boulton, J.

    1987-01-01

    Technology transfer has and will continue to play a major role in the development of nuclear power programs. From the early beginnings of the development of the peaceful uses of nuclear power by just a few nations in the mid-1940s there has been a considerable transfer of technology and today 34 countries have nuclear programs in various stages of development. Indeed, some of the major nuclear vendors achieves their present position through a process of technology transfer and subsequent development. Canada, one of the early leaders in the development of nuclear power, has experience with a wide range of programs bout within its own borders and with other countries. This paper briefly describes this experience and the lessons learned from Canada's involvement in the transfer of nuclear power technology. Nuclear technology is complex and diverse and yet it can be assimilated by a nation given a fire commitment of both suppliers and recipients of technology to achieve success. Canada has reaped large benefits from its nuclear program and we believe this has been instrumentally linked to the sharing of goals and opportunity for participation over extended periods of time by many interests within the Canadian infrastructure. While Canada has accumulated considerable expertise in nuclear technology transfer, we believe there is still much for US to learn. Achieving proficiency in any of the many kinds of nuclear related technologies will place a heavy burden on the financial and human resources of a nation. Care must be taken to plan carefully the total criteria which will assure national benefits in industrial and economic development. Above all, effective transfer of nuclear technology requires a long term commitment by both parties

  10. The process for technology transfer in Baltimore

    Science.gov (United States)

    Golden, T. S.

    1978-01-01

    Ingredients essential for a successful decision process relative to proper technological choices for a large city were determined during four years of experience in the NASA/Baltimore Applications Project. The general approach, rationale, and process of technology transfer are discussed.

  11. Technology Transfer: A Third World Perspective.

    Science.gov (United States)

    Akubue, Anthony I.

    2002-01-01

    Technology transfer models are based on assumptions that do not reflect Third-World realities. Obstacles to building indigenous technology capacity include multinational corporations' control of innovations, strings attached to foreign aid, and indigenous reluctance to undertake research. Four areas of development include foreign direct…

  12. Loudspeaker handbook

    CERN Document Server

    Eargle, John

    2003-01-01

    The second edition of Loudspeaker Handbook follows the same general outlines as the highly successful first edition and has been augmented and updated in many areas of technology. Most notable are the developments in large-scale, programmable line arrays, distributed mode loudspeakers, and ultrasonic-based audio transduction. Additionally, the core chapters on low frequency systems, system concepts, and horn systems have been expanded to include both more analytical material and a richer array of examples. Much of the success of the first edition has been due to its accessibility both to loudspeaker engineers and to lay technicians working in the field - a point of view the author maintains in the present work. A full understanding of the underlying technology requires a fairly rigorous engineering background through the second year of professional study. At the same time, the generous use of graphs, with their intuitive thrust, will be useful to all readers. Loudspeaker Handbook, Second Edition continues to ...

  13. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  14. Development of Technology Transfer Economic Growth Metrics

    Science.gov (United States)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  15. Why not stop transfer of technology

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, J M

    1979-01-01

    One of the crucial themes in the dialogue between rich and poor nations is the nature and volume of the transfer of technology from the industrialized to the developing world. In contrast to the demand of overcoming the technology gap, Prof. Baumer argues that the postulate should rather be formulated as reduction of technological dependence. Industrialized countries say without technology, there is no growth; they say modern technology is the right technology. They are indeed against a cutting of costs and basically against simplifying the getting hold of their technology. Of prime importance is the development of technology at the site of the problems themselves. Problems can be solved in technically quite different ways - from simple to very complicated - and drawer-technology is only in the rarest cases the best solution. (MCW)

  16. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  17. Technology development and transfer in environmental management

    International Nuclear Information System (INIS)

    Katz, J.; Karnovitz, A.; Yarbrough, M.

    1994-01-01

    Federal efforts to develop and employ the innovative technologies needed to clean up contaminated facilities would greatly benefit from a greater degree of interaction and integration with the energies and resources of the private sector. Yet there are numerous institutional, economic, and regulatory obstacles to the transfer and commercialization of environmental restoration and waste management technologies. These obstacles discourage private sector involvement and investment in Federal efforts to develop and use innovative technologies. A further effect is to impede market development even where private sector interest is high. Lowering these market barriers will facilitate the commercialization of innovative environmental cleanup technologies and expedite the cleanup of contaminated Federal and private facilities. This paper identifies the major barriers to transfer and commercialization of innovative technologies and suggests possible strategies to overcome them. Emphasis is placed on issues particularly relevant to the Department of Energy's Environmental Restoration and Waste Management (EM) program, but which are applicable to other Federal agencies confronting complex environmental cleanup problems

  18. Transfer of Canadian nuclear regulatory technology

    International Nuclear Information System (INIS)

    Harvie, J.D.

    1985-10-01

    This paper discusses the Canadian approach to the regulation of nuclear power reactors, and its possible application to CANDU reactors in other countries. It describes the programs which are in place to transfer information on licensing matters to egulatory agencies in other countries, and to offer training on nuclear safety regulation as it is practised in Canada. Experience to date in the transfer of regulatory technology is discussed. 5 refs

  19. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  20. People transfer-sinequanon for nuclear technology transfer

    International Nuclear Information System (INIS)

    Ahmed, M.

    1977-01-01

    The main obstacles facing the developing countries which wish to adopt sophisticated nuclear technology can be the following: lack of trained personnel, lack of entrepreneurs and capital, and bureaucracy. Of these the greatest problem is undoubtedly the lack of trained manpower. Urgently required skilled manpower may be obtained through training of selected persons in foreign countries on a crash program of nuclear energy. Exchange of expertise can also take place among the developing countries themselves. Another problem particularly peculiar to the poor developing countries is the lack of entrepreneurs and capital. It therefore becomes necessary to attract entrepreneurs from abroad with all the benefit of managerial know-how and capital transfer that it entails. Exchange of scientist, teachers, managerial and administrative personnel between the developed and developing countries and also among the developing countries themselves is therefore essential for an effective transfer of nuclear technology

  1. JAERI Nuclear Engineering School and technology transfer

    International Nuclear Information System (INIS)

    Nishimura, Kazuaki; Kawaguchi, Chiyoji

    1978-01-01

    A method is introduced to evaluate the degree of nuclear technology transfer; that is, the output powers of Japanese nuclear reactors constructed in these 20 years are chronologically plotted in a semi-log figure. All reactors plotted are classified into imported and domestic ones according to a value of domestication factor. A space between two historical trajectories of reactor construction may be interpreted as one of the measures indicating the degree of nuclear technology transfer. In connection with this method, historical change of educational and training courses in Nuclear Engineering School of Japan Atomic Energy Research Institute is reviewed in this report. (author)

  2. Transferring technology to the public sector.

    Science.gov (United States)

    Alper, M. E.

    1972-01-01

    Approximately four years ago the Jet Propulsion Laboratory, under NASA sponsorship, began to devote some of its resources to examining ways to transfer space technology to the civil sector. As experience accumulated under this program, certain principles basic to success in technology transfer became apparent. An adequate definition of each problem must be developed before any substantial effort is expended on a solution. In most instances, a source of funds other than the potential user is required to support the problem definition phase of the work. Sensitivity to the user's concerns and effective interpersonal communications between the user and technical personnel are essential to success.

  3. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  4. An Effective Method For Nuclear Technology Transfer

    International Nuclear Information System (INIS)

    Jeon, Jan Pung

    1987-01-01

    Three basic entities involved in the implementation of nuclear projects are the Owner, Regulatory Authority and Nuclear Industry. Their ultimate objective is to secure the safe, reliable and economical nuclear energy. For s successful nuclear power program, the owner should maintain a good relationship with the other entities and pursue an optimization of the objectives. On the other hand, he should manage projects along the well - planned paths in order to effectively learn the nuclear technology. One of the problems in the nuclear projects of developing countries was the absence of long - term technology development program, a limited local participation and the technical incapability. For the effective technology transfer, a motivation of the technology supplier and a readiness of the recipient to accommodate such technologies are required. Advanced technology is usually developed at considerable expense with the expectation that the developer will use it in furthering his own business. Therefore, he tends to be reluctant to transfer it to the others, particularly, to the potential competitors. There is a disinclination against further technology transfer beyond the minimum contractual obligation or the requirements by Government Regulatory. So, an additional commercial incentive must be provided to the developer

  5. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  6. Climate change scenarios and Technology Transfer Protocols

    International Nuclear Information System (INIS)

    Kypreos, Socrates; Turton, Hal

    2011-01-01

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. - Research Highlights: → Climate policy scenarios are assessed with differentiated commitments in carbon emission control supported by Technology Transfer Protocols. → Donor countries finance, via carbon-tax revenues, the exports of carbon-free technologies in developing countries helping to get a new international agreement. → Developing countries experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and secondary benefits. → Under Technology Protocols alone and

  7. Effective technology transfer through regional information teams

    International Nuclear Information System (INIS)

    Wicks, D.E.; Gahan, B.; Hoyle, G.

    1997-01-01

    Communication and the transfer of technical information is critical to the international gas industry. The technical research results developed through Gas Research Institute's natural gas supply program have been disseminated through a number of vehicles. Two primary vehicles are GRI's Information Centers and Regional Technology Transfer Agents (RTTA). The Information Centers serve as repositories for GRI information as well as provide no-cost literature searching expertise. The RTTAs actively communicate and interface with area producers, introducing potential technology adopters with GRI technology managers and/or the appropriate licensed product or service distributors. The combination of Information Centers and RTTAs continues to help independent producers break through the barriers of technology and accelerate the benefits of lower cost natural gas recovery. (au)

  8. Technology transfer, a two-way street

    International Nuclear Information System (INIS)

    Martin, H.L.

    1994-01-01

    Technology transfer through the Pollution Prevention ampersand Control Conferences, which have been cosponsored by the Environmental Protection Agency and by the professional societies of industry, greatly improved the environmental projects of the Department of Energy at Savannah River Site (SRS) in the mid-1980's. Those technologies, used in the liquid effluent treatment of the metal finishing liquid effluents from aluminum cleaning and nickel plating of fuel and targets for the nuclear production reactors, have been enhanced by the research and development of SRS engineers and scientists. The technology transfer has now become a two-way street to the benefit of our Nation's environment as these enhancements are being adopted in the metal finishing industry. These success stories are examples of the achievements anticipated in the 1990's as technology development in the federal facilities is shared with commercial industry

  9. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  10. Assessing technology transfer in the Clean Development Mechanism

    OpenAIRE

    Cools, Sara Lena Yri

    2007-01-01

    This paper presents an operational definition of technology transfer, to be applied in studies of technology transfer in projects under the Kyoto Protocol’s Clean Development Mechanism (CDM). Although the CDM has never been given an explicit mandate for transferring technologies, its contribution in this respect has both been hoped for and exacted. The discussions of technology transfer in CDM projects are however blurred by widely varying conceptions of what technology transfer is. Qu...

  11. Technology Transfer, Foreign Direct Investment and Economic ...

    African Journals Online (AJOL)

    The aim of this study is to investigate the long-run equilibrium relationship between various international factors and economic growth, as well as to assess the short-term impact of inward FDI, trade and economic growth on international technology transfer to Nigeria. To achieve this, the study used a time series data from ...

  12. Convexity of oligopoly games without transferable technologies

    NARCIS (Netherlands)

    Driessen, Theo; Meinhardt, Holger I.

    2005-01-01

    We present sufficient conditions involving the inverse demand function and the cost functions to establish the convexity of oligopoly TU-games without transferable technologies. For convex TU-games it is well known that the core is relatively large and that it is generically nonempty. The former

  13. A New Strategic Approach to Technology Transfer

    Science.gov (United States)

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  14. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies

    International Nuclear Information System (INIS)

    2007-01-01

    As part of the development of advanced nuclear systems, including accelerator-driven systems (ADS) proposed for high-level radioactive waste transmutation and generation IV reactors, heavy liquid metals such as lead (Pb) or lead-bismuth eutectic (LBE) are under evaluation as reactor core coolant and ADS neutron target material. Heavy liquid metals are also being envisaged as target materials for high-power neutron spallation sources. The objective of this handbook is to collate and publish properties and experimental results on Pb and LBE in a consistent format in order to provide designers with a single source of qualified properties and data and to guide subsequent development efforts. The handbook covers liquid Pb and LBE properties, materials compatibility and testing issues, key aspects of the thermal-hydraulics and system technologies, existing test facilities, open issues and perspectives. (author)

  15. Introduction of Capacitive Power Transfer Technology

    OpenAIRE

    Hattori, Reiji

    2017-01-01

    Wireless power transfer (WPT) technology is expected for eliminating troublesomeness of connecting an electronic cable. The development of WPT technology has a long history since Nikola Tesla built up Wardenclyffe Tower located in Long Island, New York for developing a WPT system in the early 1980’s. But it cannot be said that WPT technology is widely spread in a current human life space enough. The reason is that it cannot find the specific application which only WPT can achieve yet. There a...

  16. Transfer of radiation technology to developing countries

    Science.gov (United States)

    Markovic, Vitomir; Ridwan, Mohammad

    1993-10-01

    Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.

  17. Technology transfer and commercialization of in situ vitrification technology

    International Nuclear Information System (INIS)

    Williams, L.D.; Hansen, J.E.

    1992-01-01

    In situ vitrification (ISV) technology was conceived and an initial proof-of-principle test was conducted in 1980 by Battelle Memorial Institute for the U.S. Department of Energy (DOE) at Pacific Northwest Laboratory (PNL). The technology was rapidly developed through bench, engineering pilot, and large scales in the following years. In 1986, DOE granted rights to the basic ISV patent to Battelle in exchange for a commitment to commercialize the technology. Geosafe Corporation was established as the operating entity to accomplish the commercialization objective. This paper describes and provides status information on the technology transfer and commercialization effort

  18. Hazardous properties and environmental effects of materials used in solar heating and cooling (SHAC) technologies: interim handbook

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, J.Q.

    1978-12-01

    General background informaion related to SHAC systems, how a particular material was chosen for this handbook, and codes and standards are given. Materials are categorized according to their functional use in SHAC systems as follows: (1) heat transfer fluids and fluid treatment chemicals, (2) insulation materials, (3) seals and sealant materials, (4) glazing materials, (5) collector materials, and (6) storage media. The informaion is presented under: general properties, chemical composition, thermal degradation products, and thermoxidative products of some commercial materials; toxic properties and other potential health effects; fire hazard properties; and environmental effects of and disposal methods for SHAC materials. (MHR)

  19. Technological economics: innovation, project management, and technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, F R

    1981-06-01

    The relationship between economics and technology, as well as their interaction in production, productivity, project management, and in technology transfer processes are reviewed. Over the last two decades there has been an increasing interest by economists in the technologist's view of technical change and its mechanisms. The author looks at the zone between technology and economics, the technological economics, and discusses the theory of innovation recently sketched out by Nelson and Winter. The relevance to project management and technology transfer of contemporary writing by economists leads to the view that there are welcome signs of a convergence of the conceptual models now emerging and the practical problems of technology management and movement. Economists now seem more willing to come to terms with technology than technologists with economics. The economic significance of the multitudes of technically unglamorous activities in development work is seriously neglected as a result of over-emphasis on the spectacular technological break. If economic elegance were to be admitted to the criteria of success, one might get a significant improvement in the engineering of technological change. 29 references, 4 figure.

  20. Technology transfer in the national laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  1. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  2. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  3. Robot, Eye, and ROI: Technology Transformation Versus Technology Transfer

    OpenAIRE

    Sacerdoti, Earl

    1985-01-01

    I want to discuss two aspects of technology transfer. First I've been asked to present a brief perspective on how AI is fitting into a particular application area: Industrial automation. Then I want to give my two cents worth on AI as a business activity.

  4. Technological transfer. 1. Appropriateness for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Berrie, T W

    1978-12-01

    Capital-intensive projects dominate the technology transferred to developing countries in spite of the need to serve a pool of unskilled labor and small capital reserves. Recent doubts about the appropriateness of large industrialization projects have questioned the social and economic benefits of this approach and led to an emphasis on innovative planning for the benefit of the urban and rural poor. This shift assumed that direct attacks on the roots of poverty will be more effective than the trickle-down approach, but development planners now see that technologies can be planned that are not limited to single groups. Official policies, often working against the adoption of appropriate technologies, must consider local needs and local resources. Farm equipment, for example, must minimize the need for skilled labor and maintenance. Planners for appropriate urban technology should emphasize local capability, but should also risk occasional failure in the effort to improve the efficiency of labor.

  5. Experience in transfer of nuclear technology

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1977-01-01

    Nuclear energy development in the Federal Republic of Germany was initiated in 1955. In spite of this late start, the country now has a broad potential in all branches of peaceful nuclear technology. Turkey nuclear power plants are erected by German industry, and the country has the basic technology at its disposal for all stages of the nuclear fuel cycle. In the areas of uranium enrichment and reprocessing, multilateral joint ventures with European countries have been formed. The country also has an active development program for advanced reactors. In general areas of technology transfer and development aid, in the nuclear field, there are interrelated activities of both government and industry. The government has concluded bilateral agreements with a number of countires e.g. Argentina, Brazil, India, Iran and Pakistan, covering the general field of nuclear science; in the framework of these agreements, which are being carried out mainly by the nuclear research centers at Juelich and Karlsruhe, active cooperation in research, development, education, and training are being pursued. The nonproliferation of nuclear weapons is a major objective of the Federal government which strongly affects its policies for international nuclear trade. The paper describes the nuclear technology potential available in the Federal Republic of Germany and reviews experience gathered in cooperation with developing countries. Future policies for nuclear technology transfer are discussed with special reference to the role of national R and D laboratories

  6. Helping transfer technology to developing countries

    International Nuclear Information System (INIS)

    Masters, R.

    1978-01-01

    Manpower planning and training are an increasingly important part of the activities of the IAEA which organises a number of courses for engineers and administrators from developing countries. The Agency supports the view of these countries that there should be a real transfer of nuclear technology and not just the import of equipment and services. A Construction and Operation Management course held at Karlsruhe, is reviewed. (author)

  7. Safety handbook

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of the Australian Nuclear Science and Technology Organization's Safety Handbook is to outline simply the fundamental procedures and safety precautions which provide an appropriate framework for safe working with any potential hazards, such as fire and explosion, welding, cutting, brazing and soldering, compressed gases, cryogenic liquids, chemicals, ionizing radiations, non-ionising radiations, sound and vibration, as well as safety in the office. It also specifies the organisation for safety at the Lucas Heights Research Laboratories and the responsibilities of individuals and committees. It also defines the procedures for the scrutiny and review of all operations and the resultant setting of safety rules for them. ills

  8. Technology transfer by multinational firms: the resource cost of transferring technological know-how

    Energy Technology Data Exchange (ETDEWEB)

    Teece, D J

    1977-06-01

    The essence of modern economic growth is the increase in the stock of useful knowledge and the extension of its application. Since the origins of technical and social innovations have never been confined to the borders of any one nation, the economic growth of all countries depends to some degree on the successful application of a transnational stock of knowledge. Nevertheless, economists have been remarkably slow in addressing themselves to the economics of international technology transfer. This paper addresses itself to this need. The starting-point is Arrow's suggestion (Am. Econ. Review, 52: 29-35 (May 1969)) that the cost of communication, or information transfer, is a fundamental factor influencing the world-wide diffusion of technology. The purpose of the paper is to examine the level and determinants of the costs involved in transferring technology. The value of the resources that have to be utilized to accomplish the successful transfer of a given manufacturing technology is used as a measure of the cost of transfer. The resource cost concept is therefore designed to reflect the ease or difficulty of transferring technological know-how from manufacturing plants in one country to manufacturing plants in another. 32 references.

  9. Technology transfer in Activities Implemented Jointly (AIJ)

    Energy Technology Data Exchange (ETDEWEB)

    Usher, P.E.O. [United Nations Environment Programme (Cayman Islands)

    1998-08-01

    The agreed objective of the United Nations Framework Convention on Climate Change is to bring about early and significant reductions in greenhouse gas emissions. For many, the most attractive option for promoting this end is joint implementation. Indivisible from this is the transfer of current and innovative technology, though technology transfer is not conditional on joint implementation. The somewhat ad hoc nature of Activities Implemented Jointly (AIJ) and the failure to establish ground rules at the outset is considered. Common action can contribute to cost-effective mitigation of climate change through a sharing of the costs, benefits and risks of R and D, cross fertilisation of ideas among countries, economies of scale for new technologies, and clear signals to the international market. Potential problems include: the reluctance of national private industry to share proprietary information which might compromise competitiveness; premature convergence on technical standards that might inhibit the emergence of more developed technology; specific national circumstances which mean that solutions satisfactory to others are inappropriate in its case. This latter issue is of particular relevance to developing countries. AIJ needs to be approached in a systematic way taking into account lessons learned from evaluating the pilot phase if it is to be seen to be working effectively. (UK)

  10. Technology Transfer: Technocultures, Power and Communication--The Australian Experience.

    Science.gov (United States)

    More, Elizabeth; Irwin, Harry

    1995-01-01

    Discusses issues of communication and power in the organizational dimensions of international technology transfer, including technoculture differences and strategic political alliances. Theoretical discussion is supplemented by analysis of international technology transfer activities involving Australian participation in the aerospace and…

  11. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    OpenAIRE

    Durán-García Martín Enrique

    2014-01-01

    Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the ...

  12. NAC international dry spent fuel transfer technology

    International Nuclear Information System (INIS)

    Shelton, Thomas A.; Malone, James P.; Patterson, John R.

    1996-01-01

    cask. The loaded transfer cask is then placed upon the adapter and the fuel canister is transferred into the cavity of the shipping cask. This operation is repeated until the shipping cask is completely loaded. Once completed, the shipping cask is prepared for shipment in the normal manner. One significant advantage of utilizing this technology is the minimization of cask decontamination efforts which are typically time consuming following wet loading. DTS equipment has been used with research reactor and MTR fuel assemblies in Taiwan, Iraq and Greece over the past several years. The handling of canistered fuel has enabled NAC to standardize the canister handling equipment and transfer system. The entire process has proven to be a straightforward and direct approach in solving facility interface problems in the spent fuel transportation arena. NAC completed DTS operations at the Neeley Nuclear Research Center on the Georgia Tech campus prior to the Olympic Games. The DTS was most recently used at the La Reina reactor in Santiago, Chile and will be used to load the fuel at the Brookhaven National Laboratory in late 1996 or early 1997, depending on DOE's schedule. (author)

  13. Mission & Role | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  14. Handbook of Technical Communication

    OpenAIRE

    Mehler , Alexander; Romary , Laurent; Gibbon , Dafydd

    2012-01-01

    International audience; The handbook "Technical Communication" brings together a variety of topics which range from the role of technical media in human communication to the linguistic, multimodal enhancement of present-day technologies. It covers the area of computer-mediated text, voice and multimedia communication as well as of technical documentation. In doing so, the handbook takes professional and private communication into account. Special emphasis is put on technical communication bas...

  15. Technology transfer from research and development to European industry

    International Nuclear Information System (INIS)

    Conrads, H.; Theenhaus, R.

    1989-01-01

    This paper gives an overview of technology transfer, i.e. the transfer of knowledge, insights and technologies from research and development to practical application, especially in the Federal Republic of Germany. Some examples and perspectives of technology transfer for nuclear fusion are given. (author). 7 refs.; 5 figs

  16. The Change Book: A Blueprint for Technology Transfer.

    Science.gov (United States)

    Addiction Technology Transfer Centers.

    This document was developed by the Addiction Technology Transfer Center (ATTC) National Network to improve understanding about how valuable effective technology transfer is to the fields of substance abuse treatment and prevention. Technology transfer involves creating a mechanism by which a desired change is accepted, incorporated, and reinforced…

  17. Technology transfer in the Spanish nuclear programme

    International Nuclear Information System (INIS)

    Perez-Naredo, F.

    1983-01-01

    The paper describes the process of technology transfer under the Spanish nuclear programme and its three generations of nuclear power plants during the last 20 years, with special reference to the nine new plants equipped with Westinghouse pressurized water reactors and the rising level of national involvement in these stations. It deals with the development of Westinghouse Nuclear's organization in Spain, referring to its staff and to the manufacturers who supply equipment for the programme, going into particular detail where problems of quality assurance are concerned. In conclusion, it summarizes the present capacity of Spanish industry in various areas connected with the design, manufacture and construction of nuclear power plants. (author)

  18. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    Pasquini, L.A.

    1986-01-01

    The purpose of the Shippingport Station Decommissioning Project (SSDP) is to place the Shippingport Atomic Power Station in a long-term radiologically safe condition following defueling of the reactor, to perform decommissioning in such a manner as to demonstrate to the nuclear industry the application of decommissioning procedures to a large scale nuclear power plant, and to provide useful planning data for future decommissioning projects. This paper describes the Technology Transfer Program for collecting and archiving the decommissioning data base and its availability to the nuclear industry

  19. Local R&D and Technology Transfers

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    ownership is categorised according to the control exercisable by them as defined under the Companies’ Act of India. A comparative analysis of domestic and different categories of foreign firms was conducted at two time periods: the global boom period of 2004-2008 and post crisis period of 2008......-2014. The propensity score matching (PSM) analysis reveals that the majority owned foreign companies spend less on R&D and more on technology transfers than their local counterparts. Overall, threshold equity holding and global conditions matter. A panel data regression analysis on matched sample confirms the findings...

  20. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during

  1. Handbook of nature-inspired and innovative computing integrating classical models with emerging technologies

    CERN Document Server

    2006-01-01

    As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. This handbook explores the connection between nature-inspired and traditional computational paradigms. It presents computing paradigms and models based on natural phenomena.

  2. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  3. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  4. Technology transfer from accelerator laboratories (challenges and opportunities)

    International Nuclear Information System (INIS)

    Verma, V.K.; Gardner, P.L.

    1994-06-01

    It is becoming increasingly evident that technology transfer from research laboratories must be a key element of their comprehensive strategic plans. Technology transfer involves using a verified and organized knowledge and research to develop commercially viable products. Management of technology transfer is the art of organizing and motivating a team of scientists, engineers and manufacturers and dealing intelligently with uncertainties. Concurrent engineering is one of the most effective approaches to optimize the process of technology transfer. The challenges, importance, opportunities and techniques of transferring technology from accelerator laboratories are discussed. (author)

  5. Brazing handbook

    CERN Document Server

    American Welding Society

    2007-01-01

    By agreement between the American Welding Society C3 Committee on Brazing and Soldering and the ASM Handbook Committee, the AWS Brazing Handbook has been formally adopted as part of the ASM Handbook Series. Through this agreement, the brazing content in the ASM Handbook is significantly updated and expanded. The AWS Brazing Handbook, 5th Edition provides a comprehensive, organized survey of the basics of brazing, processes, and applications. Addresses the fundamentals of brazing, brazement design, brazing filler metals and fluxes, safety and health, and many other topics. Includes new chapters on induction brazing and diamond brazing.

  6. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  7. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  8. Transfer Pricing and Developing Economies : A Handbook for Policy Makers and Practitioners

    OpenAIRE

    Cooper, Joel; Fox, Randall; Loeprick, Jan; Mohindra, Komal

    2016-01-01

    Recent years have seen unprecedented public scrutiny over the tax practices of Multinational Enterprise (MNE) groups. Tax policy and administration concerning international transactions, aggressive tax planning, and tax avoidance have become an issue of extensive national and international debate in developed and developing countries alike. Within this context, transfer pricing, historically a subject of limited specialist interest, has attained name recognition amongst a broader global audie...

  9. Mechanical Design Handbook for Elastomers

    Science.gov (United States)

    Darlow, M.; Zorzi, E.

    1986-01-01

    Mechanical Design Handbook for Elastomers reviews state of art in elastomer-damper technology with particular emphasis on applications of highspeed rotor dampers. Self-contained reference but includes some theoretical discussion to help reader understand how and why dampers used for rotating machines. Handbook presents step-by-step procedure for design of elastomer dampers and detailed examples of actual elastomer damper applications.

  10. Mechanisms for international technology exchange, privatization, and transfer

    International Nuclear Information System (INIS)

    Mayfield, T.

    1993-01-01

    An environmental technology transfer business assistance program is needed to encourage collaboration and technology transfer within the international community. This program helped to find appropriate mechanisms to facilitate the transfer of these technologies for use by DOE environmental restoration and waste management (ER/WM) programs while assisting U.S. private industry (especially small and medium size business) in commercializing the technologies nationally and abroad

  11. Technology Transfer, Foreign Direct Investment and International Trade

    OpenAIRE

    Leonard K. Cheng

    2000-01-01

    By developing a Ricardian trade model that features technology transfer via foreign direct investment (FDI), we show that technology transfer via multinational enterprises (MNEs) increases world output and trade in goods and services. When there are many goods a continuous reduction in the cost of technology transfer will cause increasingly more technologically advanced goods to go through the product cycle, i.e., goods initially produced in the advanced North are later produced in the backwa...

  12. The competence accumulation process in the technology transference strategy

    OpenAIRE

    Souza, André Silva de; Segatto-Mendes, Andréa Paula

    2008-01-01

    The present article evaluates and measures the technological competence accumulation in an automation area enterprise to distribution centers, Knapp Sudamérica Logistic and Automation Ltd, in the interval of the technology transference process previous period (1998-2001) and during the technology transference process (2002-2005). Therefore, based on an individual case study, the study identified the technology transference strategy and mechanism accorded between the head office and the branch...

  13. Energy technology characterizations handbook: environmental pollution and control factors. Third edition

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    This Handbook deals with environmental characterization information for a range of energy-supply systems and provides supplementary information on environmental controls applicable to a select group of environmentally characterized energy systems. Environmental residuals, physical-resource requirements, and discussion of applicable standards are the principal information provided. The quantitative and qualitative data provided are useful for evaluating alternative policy and technical strategies and for assessing the environmental impact of facility siting, energy production, and environmental controls.

  14. Energy technology characterizations handbook: environmental pollution and control factors. Third edition

    International Nuclear Information System (INIS)

    1983-03-01

    This Handbook deals with environmental characterization information for a range of energy-supply systems and provides supplementary information on environmental controls applicable to a select group of environmentally characterized energy systems. Environmental residuals, physical-resource requirements, and discussion of applicable standards are the principal information provided. The quantitative and qualitative data provided are useful for evaluating alternative policy and technical strategies and for assessing the environmental impact of facility siting, energy production, and environmental controls

  15. Technology transfer at NASA - A librarian's view

    Science.gov (United States)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  16. The transfer of nuclear technology: necessities and limitations

    International Nuclear Information System (INIS)

    Haunschild, H.-H.

    1978-01-01

    Political and economical importance of the transfer of nuclear technologies to less developed countries is examined. Energy needs of the world create the necessity of technology transfer. Three levels are distinguished: 1) Basic elements of cooperation are agreed between the two Governments, 2) scientific cooperation and 3) industrial cooperation. Technology transfer is more than mere technology export. Limitations of nuclear technology transfer are: the lack of infrastructure, the high price of a nuclear power station but above all the problem of proliferation. In conclusion the solution of international problems of nuclear energy is the concept of cooperation on the basis of equal rights

  17. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  18. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  19. University Technology Transfer Information Processing from the Attention Based View

    Science.gov (United States)

    Hamilton, Clovia

    2015-01-01

    Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…

  20. Food irradiation: technology transfer to developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, Peter [Nordion International Inc., Kanata, ON (Canada)

    1990-01-01

    This paper discusses Nordion's experiences to-date with the Food Irradiation Project in Thailand (1987-1990). This project will enable the Government of Thailand and the Thai food industry to benefit from established Canadian technology in food irradiation. It includes the design and the construction in Thailand of a multipurpose irradiation facility, similar to the Canadian Irradiation Centre. In addition Canada provides the services, for extended periods of time, of construction and installation management and experts in facility operation, maintenance and training. The Technology Transfer component is a major part of the overall Thai Food Irradiation Project. Its purpose is to familiarize Thai government and industry personnel with Canadian requirements in food regulations and distribution and to conduct market and consumer tests of selected Thai irradiated food products in Canada, once the products have Canadian regulatory approval. On completion of this project, Thailand will have the necessary facility, equipment and training to continue to provide leadership in food irradiation research, as well as scientific and technical support to food industries not only in Thailand but also in the ASEAN region. (author).

  1. Food irradiation: technology transfer to developing countries

    International Nuclear Information System (INIS)

    Kunstadt, Peter

    1990-01-01

    This paper discusses Nordion's experiences to-date with the Food Irradiation Project in Thailand (1987-1990). This project will enable the Government of Thailand and the Thai food industry to benefit from established Canadian technology in food irradiation. It includes the design and the construction in Thailand of a multipurpose irradiation facility, similar to the Canadian Irradiation Centre. In addition Canada provides the services, for extended periods of time, of construction and installation management and experts in facility operation, maintenance and training. The Technology Transfer component is a major part of the overall Thai Food Irradiation Project. Its purpose is to familiarize Thai government and industry personnel with Canadian requirements in food regulations and distribution and to conduct market and consumer tests of selected Thai irradiated food products in Canada, once the products have Canadian regulatory approval. On completion of this project, Thailand will have the necessary facility, equipment and training to continue to provide leadership in food irradiation research, as well as scientific and technical support to food industries not only in Thailand but also in the ASEAN region. (author)

  2. Food irradiation: Technology transfer to developing countries

    Science.gov (United States)

    Kunstadt, Peter

    This paper discusses Nordion's experiences to-date with the Food Irradiation Project in Thailand (1987-1990). This project will enable the Government of Thailand and the Thai food industry to benefit from established Canadian technology in food irradiation. It includes the design and the construction in Thailand of a multipurpose irradiation facility, similar to the Canadian Irradiation Centre. In addition Canada provides the services, for extended periods of time, of construction and installation management and experts in facility operation, maintenance and training. The Technology Transfer component is a major part of the overall Thai Food Irradiation Project. Its purpose is to familiarize Thai government and industry personnel with Canadian requirements in food regulations and distribution and to conduct market and consumer tests of selected Thai irradiated food products in Canada, once the products have Canadian regulatory approval. On completion of this project, Thailand will have the necessary facility, equipment and training to continue to provide leadership in food irradiation research, as well as scientific and technical support to food industries not only in Thailand by also in the ASEAN region.

  3. Technology transfer considerations for the collider dipole magnet

    International Nuclear Information System (INIS)

    Goodzeit, C.; Fischer, R.

    1991-03-01

    The R ampersand D program at the national laboratories has resulted in significant advances in design and fabrication methods for the Collider Dipole Magnets. The status of the transfer of the technology developed by the laboratories is reviewed. The continuation of the technology transfer program is discussed with a description of: (1) the relation of technology transfer activities to collider dipole product development; (2) content of the program relating to key magnet performance issues; and (3) methods to implement the program. 5 refs

  4. Practical electronics handbook

    CERN Document Server

    Sinclair, Ian R

    1988-01-01

    Practical Electronics Handbook, Second Edition covers information useful in electronics, with focus on mathematical conventions. The handbook discusses the passive (resistors, capacitors, band coding, and inductors) and active discrete (diodes, transistors and negative feedback) components; discrete component circuits; and transferring digital data. Linear I.C.s, which are the single-chip arrangements of amplifier circuits that are intended to be biased and operated in a linear way, and digital I.C.s, which process signals and consist of two significant voltage levels, are also considered. T

  5. Radioactivity Handbook

    International Nuclear Information System (INIS)

    Firestone, R.B.; Browne, E.

    1985-01-01

    The Radioactivity Handbook will be published in 1985. This handbook is intended primarily for applied users of nuclear data. It will contain recommended radiation data for all radioactive isotopes. Pages from the Radioactivity Handbook for A = 221 are shown as examples. These have been produced from the LBL Isotopes Project extended ENDSF data-base. The skeleton schemes have been manually updated from the Table of Isotopes and the tabular data are prepared using UNIX with a phototypesetter. Some of the features of the Radioactivity Handbook are discussed here

  6. The National Information Infrastructure and Dual-Use Technology Transfer

    National Research Council Canada - National Science Library

    Wigand, Rolf

    1997-01-01

    .... Concepts and principles guiding the organization, structure, and design of Web sites as a suitable medium for electronic technology transfer are from the literature on transaction costs, marketing...

  7. University-to-industry advanced technology transfer. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Goldhor, R S; Lung, R T

    1983-06-01

    This case study examines the events in the transfer of an advanced technology (a text-to-speech reading machine) from the university group that developed the technology to an industrial firm seeking to exploit the innovation. After a brief history of the six-year project, the paper discusses the roles of the participants, markets, and time and cost considerations. A model of technology transfer is presented and policy implications derived from the case are discussed. Emphasis is placed on the need for matching technical competence between donor and recipient, and on the function of a transfer agent in facilitating the social process of technology transfer. 42 references, 6 figures, 4 tables.

  8. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    Science.gov (United States)

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  9. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  10. Cooperation arrangements related to technology transfer

    International Nuclear Information System (INIS)

    Eysel, G.

    1986-04-01

    A developing country which considers to launch a nuclear program should put as much as possible efforts to elaborate a program which suits the country's needs as well as reflects its capabilities. It deems advantageous that a developing country makes use of the experience and knowledge in the nuclear field of a partner country already in the phase when exploring the technical and commercial aspects of a nuclear power program. For the different stages of cooperation between two countries a three-level concept appears advisable for establishing the basis for individual cooperation agreement. The first level are agreements between the governments of both countries on joint scientific research projects and technical development programs covering a broad spectrum of activities not limited to the energy sector. At the second level cooperation agreements can already concentrate on the energy sector and e.g. specifically investigate the energy structure of the developing country. If this investigation results in the decision of the developing country to establish a nuclear power program the next level will cover a broad based cooperation in the nuclear field including a large number of different cooperation contracts in various fields. In this stage of bilateral cooperation the main emphasis will be put on industrial cooperation. Cooperation agreements to be concluded between respective partners of both countries may cover fields related to research and development, engineering of a nuclear power plant, manufacturing of its components, erection and installation as well as operation of the plant. The most common agreements refer to technical cooperation, which covers not only the transfer of blueprints but also training of the recipient's personnel in the partner's country and delegation of experts to the recipient's country. The most comprehensive form of cooperation is the foundation of a joint venture company where the technology partner does not only transfer his know

  11. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    Science.gov (United States)

    1995-09-01

    transfer project. (D) 8a Organization has a technology transfer organization. (D,A) 10a Marketing and advertising of technologies targeted to relevant...Entrepreneurial (D) Developer: 10A: Marketing and advertising of technologies targeted to relevant industries. Most developers indicate that they marketed...regard to marketing and advertising . 10B: Technology maturation supported by internal units or by contracting out. Technology maturation is the

  12. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described

  13. The technology transfer and the Laguna Verde power plants

    International Nuclear Information System (INIS)

    Garza, R.F. de La

    1991-01-01

    The process of technology transfer to the construction of Laguna Verde Nuclear Power Plants, Mexico, is described. The options and the efforts for absorbing the technology of Nuclear Power Plant design and construction by the mexican engineers are emphasized. (author)

  14. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  15. Summary of the National Technology Transfer and Advancement Act

    Science.gov (United States)

    Provides a summary of the National Technology Transfer and Advancement Act which pomote economic, environmental, and social well-being by bringing technology and industrial innovation to the marketplace

  16. Technology Transfer: Use of Federally Funded Research and Development

    National Research Council Canada - National Science Library

    Schacht, Wendy H

    2007-01-01

    .... These applications can result from technology transfer, a process by which technology developed in one organization, in one area, or for one purpose is applied in another organization, in another...

  17. Transfer of nuclear technology: A designer-contractor's perspective

    International Nuclear Information System (INIS)

    See Hoye, D.; Hedges, K.R.; Hink, A.D.

    2000-01-01

    The paper presents the successful Canadian experience in developing a nuclear power technology - CANDU - and exporting it. Consideration is paid to technology that has to be transferred, receiver country objectives and mechanisms and organizational framework. (author)

  18. Siemens technology transfer and cooperation in the nuclear fuel area

    International Nuclear Information System (INIS)

    Holley, H.-P.; Fuchs, J. H.; Rothenbuecher, R. A.

    1997-01-01

    Siemens is a full-range supplier in the area of nuclear power generation with broad experience and activities in the field of nuclear fuel. Siemens has developed advanced fuel technology for all types fuel assemblies used throughout the world and has significant experience worldwide in technology transfer in the field of nuclear fuel. Technology transfer and cooperation has ranged between the provision of mechanical design advice for a specific fuel design and the erection of complete fabrication plants for commercial operation in 3 countries. In the following the wide range of Siemens' technology transfer activities for both fuel design and fuel fabrication technologies are shown

  19. A continuing program for technology transfer to the apparel industry

    Science.gov (United States)

    Clingman, W. H.

    1971-01-01

    A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.

  20. Low-level radioactive waste treatment technology. Low-level radioactive waste management handbook series

    International Nuclear Information System (INIS)

    1984-07-01

    Each generator of low-level radioactive waste must consider three sequential questions: (1) can the waste in its as-generated form be packaged and shipped to a disposal facility; (2) will the packaged waste be acceptable for disposal; and (3) if so, is it cost effective to dispose of the waste in its as-generated form. These questions are aimed at determining if the waste form, physical and chemical characteristics, and radionuclide content collectively are suitable for shipment and disposal in a cost-effective manner. If not, the waste management procedures will involve processing operations in addition to collection, segregation, packaging, shipment, and disposal. This handbook addresses methods of treating and conditioning low-level radioactive waste for shipment and disposal. A framework is provided for selection of cost-effective waste-processing options for generic categories of low-level radioactive waste. The handbook is intended as a decision-making guide that identifies types of information required to evaluate options, methods of evaluation, and limitations associated with selection of any of the processing options

  1. Wind energy a reference handbook

    CERN Document Server

    Newton, PhD, David E

    2014-01-01

    While covering the fascinating history of wind power as a whole, this timely handbook focuses on current technological developments and the promise--and pitfalls--of wind energy as part of the world's energy future.

  2. Developer's handbook of interactive multimedia

    CERN Document Server

    Phillips, Robin

    2014-01-01

    New technology is being used more and more in education and providers have to be aware of what is on offer and how it can be used. This practical handbook demonstrates how interactive multimedia can be developed for educational application.

  3. Optimizing Outcome in the University-Industry Technology Transfer Projects

    Science.gov (United States)

    Alavi, Hamed; Hąbek, Patrycja

    2016-06-01

    Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm) Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of knowledge in

  4. OPTIMIZING OUTCOME IN THE UNIVERSITY-INDUSTRY TECHNOLOGY TRANSFER PROJECTS

    Directory of Open Access Journals (Sweden)

    Hamed ALAVI

    2016-04-01

    Full Text Available Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of

  5. Introduction to the workshop on technology transfer in software engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roelf J.

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  6. Technology transfer in a horizontally differentiated product-market

    NARCIS (Netherlands)

    Mukherjee, A.; Balasubramanian, N.

    1999-01-01

    This paper considers technology transfer in a Cournot-duopoly market where the firms produce horizontally differentiated products. It turns out that without the threat of imitation from the licensee, the licenser always transfers its best technology. However, the patent licensing contract consists

  7. NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL

    Science.gov (United States)

    Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal Technology Transfer Prize May 7, 2009 A new class of ultra-light, high-efficiency solar cells developed by the U.S. Department of Energy's National Renewable Energy Laboratory has been awarded a national prize

  8. A southern region conference on technology transfer and extension

    Science.gov (United States)

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  9. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  10. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  11. Success in nuclear technology transfer: A Canadian perspective

    International Nuclear Information System (INIS)

    Lawson, D.S.; Stevens, J.E.S.; Boulton, J.

    1986-10-01

    Technology transfer has played a significant part in the expansion of nuclear power to many countries of the world. Canada's involvement in nuclear technology transfer spans four decades. The experience gained through technology transfer, initially to Canadian industry and then to other countries in association with the construction of CANDU nuclear power plants, forms a basis from which to assess the factors which contribute to successful technology transfer. A strong commitment from all parties, in terms of both financial and human resources, is essential to success. Detailed planning of both the scope and timing of the technology transfer program is also required together with an assessment of the impact of the introduction of nuclear power on other sectors of the economy. (author)

  12. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  13. Legal aspects of the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Sartorelli, C.

    1980-03-01

    The paper stresses the importance of nuclear technology transfer and describes the legal instruments for transfer of technical and scientific technology, particularly from the contractual viewpoint. A description follows of the setting-up of national joint ventures for nuclear power plant projects with emphasis on technological know-how to enable operation of plants in compliance with safety standards. The possibility is discussed of the export of nuclear technology, and finally mention is made of a proposal for a 'code of conduct' on such transfers in the framework of the United Nations, having regard to the 'London agreements' on nuclear exports. (NEA) [fr

  14. The digital media handbook

    CERN Document Server

    Dewdney, Andrew

    2013-01-01

    The new edition of The Digital Media Handbook presents an essential guide to the historical and theoretical development of digital media, emphasising cultural continuity alongside technological change, and highlighting the emergence of new forms of communication in contemporary networked culture.Andrew Dewdney and Peter Ride present detailed critical commentary and descriptive historical accounts, as well as a series of interviews from a range of digital media practitioners, including producers, developers, curators and artists.The Digital Media Handbook highlights key concerns of today's prac

  15. Handbook of vacuum physics

    CERN Document Server

    1964-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr

  16. Nanoelectronic device applications handbook

    CERN Document Server

    Morris, James E

    2013-01-01

    Nanoelectronic Device Applications Handbook gives a comprehensive snapshot of the state of the art in nanodevices for nanoelectronics applications. Combining breadth and depth, the book includes 68 chapters on topics that range from nano-scaled complementary metal-oxide-semiconductor (CMOS) devices through recent developments in nano capacitors and AlGaAs/GaAs devices. The contributors are world-renowned experts from academia and industry from around the globe. The handbook explores current research into potentially disruptive technologies for a post-CMOS world.These include: Nanoscale advance

  17. Radiation`96. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The conference program includes eight invited lectures which cover a range of contemporary topics in radiation science and technology. In addition, thirty-two oral papers were presented, along with forty-five posters. The conference handbook contains one-page precis or extended abstracts of all presentations, and is a substantial compendium of current radiation research in Australia.

  18. Radiation`96. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference program includes eight invited lectures which cover a range of contemporary topics in radiation science and technology. In addition, thirty-two oral papers were presented, along with forty-five posters. The conference handbook contains one-page precis or extended abstracts of all presentations, and is a substantial compendium of current radiation research in Australia.

  19. Radiation'96. Conference handbook

    International Nuclear Information System (INIS)

    1996-01-01

    The conference program includes eight invited lectures which cover a range of contemporary topics in radiation science and technology. In addition, thirty-two oral papers were presented, along with forty-five posters. The conference handbook contains one-page precis or extended abstracts of all presentations, and is a substantial compendium of current radiation research in Australia

  20. Springer handbook of robotics

    CERN Document Server

    Khatib, Oussama

    2016-01-01

    The second edition of this handbook provides a state-of-the-art cover view on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition o...

  1. DOE/EPA sludge irradiation technology transfer program

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.

    1980-01-01

    The cesium-137 sludge irradiation program has successfully progressed through the phases of technology development and pilot plant evaluation and has entered the technology transfer phase. Initial technology transfer activities have identified a growing interest among wastewater engineers and public officials to learn more about the application of irradiation in sludge treatment. As a result, a formal technology transfer program has been developed. As a major activity of this program, it is planned that the US Department of Energy, working with the US Environmental Protection Agency, state and local governments, will support the placement of five to 10 sludge irradiators at selected wastewater treatment facilities throughout the United States. Facilities which may best benefit from this process technology are being identified. Technology transfer will be stimulated as engineers and wastewater officials become familiar with the evaluation and implementation of sludge irradiation at these sites

  2. Cookstove handbook

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Firewood has become a matter of serious concern due to dwindling forest resources coupled with excessive consumption resulting from wasteful and inefficient methods of cooking. Efforts are now being made by various researchers to design more efficient and less expensive cooking stoves. This handbook is a compendium of more than 40 different types of solid-fuel cooking stoves which can be manufactured using locally available materials and skills. The evolution of cooking stoves from open-fire cooking arrangements is described. One chapter is devoted to cooking-stove design considerations, including performance, combustion, oxygen requirements, surrounding air effects, near-by solid-surface effects, the excess-air concept, heat transfer, geometrical efficiency and stove components. The bulk of the document introduces traditionally used and improved cooking-stove designs for wood and charcoal burning in detail providing information on fuels, stove materials, and advantages and disadvantages. A description of 14 different laboratory investigations on efficiency aspects of cooking stoves is presented. Annexes are devoted to the composition and properties of wood, a summary of characteristics of the stoves described in the text, the efficiencies of commonly used cooking stoves with different fuels and a glossary. 82 references.

  3. Decommissioning handbook

    Energy Technology Data Exchange (ETDEWEB)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

  4. Decommissioning handbook

    International Nuclear Information System (INIS)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained

  5. Legislation on university technology transfer and research management 2012

    International Nuclear Information System (INIS)

    2012-02-01

    This book deals with legislation on university technology transfer in 2012, which includes invention promotion act, legislation on technology transfer and promotion of industrialization, legislation on industrial education and industrial cooperation, and special legislation on venture business. It lists the legislation related research and development by government department : fundamental law of scientific technique, law on evaluation and management of domestic research development business, national science and technology council and the patent office.

  6. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  7. An ISM approach for analyzing the factors in technology transfer

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdavi Mazdeh

    2015-07-01

    Full Text Available Technology transfer, from research and technology organizations (RTOs toward local industries, is considered as one of important and significant strategies for countries' industrial development. In addition to recover the enormous costs of research and development for RTOs, successful technology transfer from RTOs toward local firms forms technological foundations and develops the ability to enhance the competitiveness of firms. Better understanding of factors influencing process of technology transfer helps RTOs and local firms prioritize and manage their resources in an effective and efficient way to maximize the success of technology transfer. This paper aims to identify important effective factors in technology transfer from Iranian RTOs and provides a comprehensive model, which indicate the interactions of these factors. In this regard, first, research background is reviewed and Cummings and Teng’s model (2003 [Cummings, J. L., & Teng, B.-S. (2003. Transferring R&D knowledge: The key factors affecting knowledge transfer success. Journal of Engineering and Technology Management, 20(1-2, 39-68.] was selected as the basic model in this study and it was modified through suggesting new factors identified from literature of inter-organizational knowledge and technology transfer and finally a Delphi method was applied for validation of modified model. Then, research conducted used Interpretive Structural Modeling (ISM to evaluate the relationship between the factors of final proposed model. Results indicate that there were twelve factors influencing on technology transfer process from Iranian RTOs to local firms and also the intensity of absorption capability in transferee could influence on the intensity of desorption capability in transferor.

  8. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  9. Crane handbook

    CERN Document Server

    Dickie, D E

    1975-01-01

    Crane Handbook offers extensive advice on how to properly handle a crane. The handbook highlights various safety requirements and rules. The aim of the book is to improve the readers' crane operating skills, which could eventually make the book a standard working guide for training operators. The handbook first reminds the readers that the machine should be carefully tested by a regulatory board before use. The text then notes that choosing the right crane for a particular job is vital and explains why this is the case. It then discusses how well-equipped and durable the crane should be. T

  10. globalization, technology transfer and the knowledge gap

    African Journals Online (AJOL)

    USER

    2011-06-10

    Jun 10, 2011 ... manufacturing technology to the less developed countries of the South (Nigeria) in ... the primary sources of progress (Mill 1846 cited .... globalization process as in Asia and Latin. America. The Nigerian technology dream is.

  11. Technology Transfer at CERN (english version)

    CERN Multimedia

    Marcastel, F

    2006-01-01

    A brief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  12. Technology Transfer at CERN (french version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    Abrief overview of how CERN's pioneering technologies for scientific research have branched out into various fields. Medicine, industrial processes, information and communication technology, as well as environment and energy fields make use of these innovative developments.

  13. CRC handbook of modern telecommunications

    CERN Document Server

    Morreale, Patricia A

    2001-01-01

    This authoritative handbook, contributed to by a team of international experts, covers the most dynamic areas in the changing telecommunications landscape. Written for telecommunications specialists who implement the new technologies, The CRC Handbook of Modern Telecommunications is an excellent companion volume to the authors' The Telecommunications Handbook, but stands well on its own, as it extends the range of topics to include voice over Internet, traffic management, quality of service, and other dominant future trends. It is an indispensable reference for all professionals working in the

  14. Technology transfer and national participation. Key issue paper no. 3

    International Nuclear Information System (INIS)

    Chernilin, Y.F.

    2000-01-01

    Nuclear technology was developed in industrialized countries and largely remains in a few industrialized countries. Non-nuclear countries today find it necessary to import this technology. Some aspects of technology transfer: legal and institutional structure; different type of agreements; arrangements; and national participation are presented in this paper. (author)

  15. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    Uddin, Mahatab

    that developed the technology, to another that adopts, adapts, and uses it. As different kinds of threats posed by climate change are continuously increasing all over the world the issue of “technology transfer” especially the transfer of environmentally sound technologies has become one of the key topics...

  16. Food irradiation: Technology transfer in Asia, practical experiences

    Science.gov (United States)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  17. Food irradiation: technology transfer in Asia, practical experiences

    International Nuclear Information System (INIS)

    Kunstadt, P.

    1993-01-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the successful conclusion of the world's first complete food irradiation technology transfer project. (Author)

  18. Phase change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  19. Creation of a European network dedicated to technology transfer

    CERN Multimedia

    2008-01-01

    The CERN Council recently approved the creation of a technology transfer network, whose aim will be to improve European industry’s access to the technologies developed by the particle physics community in the Member States. The gas detectors for the TOTEM experiment (GEM) offer potential for fruitful collaboration within the framework of the TT network. Many other technologies are going down the same road.The desire to set up a technology transfer network follows on from the European Strategy for Particle Physics, approved by the CERN Council on 14 July 2006 in Lisbon. In this context, special emphasis was laid on European industry’s participation in the implementation of particle physics programmes and, in particular, its access to the new technologies developed by the scientific community. It was recognised that effort needs to be put into improving the efficiency of technology transfer...

  20. Exploring the influence of technology size on the duration of production technology transfer implementation

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2005-01-01

    This study explores the relationship between technology size and installation time in technology transfer projects. A literature study revealed that the installation time has so far not received much attention. Current studies address the effectiveness of technology transfer rather than efficiency.

  1. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V

    2011-01-01

    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  2. The universal access handbook

    CERN Document Server

    Stephanidis, Constantine

    2009-01-01

    In recent years, the field of Universal Access has made significant progress in consolidating theoretical approaches, scientific methods and technologies, as well as in exploring new application domains. Increasingly, professionals in this rapidly maturing area require a comprehensive and multidisciplinary resource that addresses current principles, methods, and tools. Written by leading international authorities from academic, research, and industrial organizations and nonmarket institutions, The Universal Access Handbook covers the unfolding scientific, methodological, technological, and pol

  3. Japan acts to speed technology transfer from universities

    CERN Multimedia

    Saegusa, A

    1999-01-01

    A Japanese law will take effect in the autumn to promote technology transfer from universities and laboratories. The new measures aim to encourage collaborations with the commercial sector and allow industrial research partners to retain title to inventions (1 page).

  4. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  5. U.S. EPA Federal Technology Transfer Program Fact Sheet

    Science.gov (United States)

    The Federal Technology Transfer Act (FTTA), enacted by Congress in 1986 and building on previous legislation, improves access to federal laboratories by non-federal organizations for research and development opportunities.

  6. Collaborating with EPA through the Federal Technology Transfer Act

    Science.gov (United States)

    Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.

  7. Entrepreneurship and technology transfer knowledge utilization and management

    NARCIS (Netherlands)

    Chavez, Victor

    2016-01-01

    Research at the intersection of creative enterprise, knowledge intensive entrepreneurship, public policy, and economic development is limited, although individually, each of these areas has been researched extensively. Reflective practitioners in industry, Government, and Technology Transfer can

  8. International water and sanitation technology transfers, experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer Tokich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others

  9. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Science.gov (United States)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  10. The transfer of technologies for biomass energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, H H [German Agency for Technical Cooperation (GTZ), Eschborn (Germany)

    1995-12-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  11. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  12. Societal and economic valuation of technology-transfer deals

    Science.gov (United States)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  13. Technology transfer and the management of radioactive waste

    International Nuclear Information System (INIS)

    Bonne, A.; Chan-Sands, C.

    1998-01-01

    One of the IAEA's fundamental roles is to act as a centre for the transfer of nuclear technologies, including those for managing radioactive wastes. In the area of waste management technology, the Agency is actively working to improve and develop new and efficient means to fulfill that responsibility. Recognizing its responsibilities and challenges, IAEA efforts related to radioactive waste management technologies into the next century are framed around three major areas: the development and implementation of mechanisms for better technology transfer and information exchange; the promotion of sustainable and safer processes and procedures; and the provision of peer reviews and direct technical assistance that help facilitate bilateral and multinational efforts. To illustrate some specific elements of the overall programme, this article reviews selected technology-transfer activities that have been initiated in the field

  14. International technology identification, transfer, and program support

    International Nuclear Information System (INIS)

    Kitchen, B.

    1993-01-01

    Savannah River Site (SRS) activities primarily address vitrification technologies being investigated with Japan and the former Soviet Union (FSU). They also support the overall management of EM's international activities

  15. Reusable Orbit Transfer Vehicle Propulsion Technology Considerations

    National Research Council Canada - National Science Library

    Perkins, Dave

    1998-01-01

    .... ROTV propulsion technologies to consider chemical rockets have limited mission capture, solar thermal rockets capture most missions but LH2 issues, and electric has highest PL without volume constraint...

  16. Technology and knowledge transfer for development

    CSIR Research Space (South Africa)

    Chakwizira, J

    2008-01-01

    Full Text Available policy makers, higher education and research (HER) communities, production entrepreneurs, funding agencies and consumers associations should be given priority. More emphasis on technological education and training as well as on the ability to acquire... Universities, Higher Education and Research & Development Institutions, Ministries of Education, Science & Technology in collaboration and partnership with other Ministries such as Ministry of Health, Ministry of Environment & Tourism, Ministry of Mining...

  17. Technology transfer for women entrepreneurs: issues for consideration.

    Science.gov (United States)

    Everts, S I

    1998-01-01

    This article discusses the effectiveness of technology transfers to women entrepreneurs in developing countries. Most women's enterprises share common characteristics: very small businesses, employment of women owners and maybe some family members, limited working capital, low profit margins, and flexible or part-time work. Many enterprises do not plan for growth. Women tend to diversify and use risk-avoidance strategies. Support for women's enterprises ignores the characteristics of women's enterprises. Support mechanisms could be offered that would perfect risk-spreading strategies and dynamic enterprise management through other means than growth. Many initiatives, since the 1970s, have transferred technologies to women. Technologies were applied to only a few domains and were viewed as appropriate based on their small size, low level of complexity, low cost, and environmental friendliness. Technology transfers may not be viewed by beneficiaries as the appropriate answer to needs. The bottleneck in transfers to women is not in the development of prototypes, but in the dissemination of technology that is sustainable, appropriate, and accessible. Key features for determining appropriateness include baseline studies, consumer linkages, and a repetitive process. Institutional factors may limit appropriateness. There is a need for long-term outputs, better links with users, training in use of the technology, grouping of women into larger units, and technology availability in quantities large enough to meet demand. Guidelines need to be developed that include appropriate content and training that ensures transfer of knowledge to practice.

  18. On transferring the grid technology to the biomedical community.

    Science.gov (United States)

    Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".

  19. Nuclear technology transfer adapted to the needs of developing countries

    International Nuclear Information System (INIS)

    Martin, A.; Nentwich, D.

    1983-01-01

    The paper explains the build-up of nuclear know-how in the Federal Republic of Germany after 1955, when activities in the nuclear field became permitted. Furthermore, it shows the development of nuclear technology transfer via the increasing number of nuclear power plants exported. The inevitable interrelationship between the efficient transfer of know-how and long-term nuclear co-operation is demonstrated. Emphasis is put on the adaptation of nuclear technology transfer to the needs of the recipient countries. Guidelines to achieve the desired goal are given. (author)

  20. Polymer solidification: Technology transfer to DOE and industry

    International Nuclear Information System (INIS)

    Kalb, P.D.; Strand, G.

    1994-01-01

    In keeping with the congressional mandate for technology transfer between federal research and development institutions and U.S. industry, the Brookhaven National Laboratory (BNL) Environmental and Waste Technology Center is pursuing industrial partnership with industry. These efforts, supported by the Department of Energy's Office of Environmental Restoration and Waste Management involve both the transfer of BNL developed technology to industry and the use of commercially developed technologies as part of an integrated waste treatment system. A Cooperative Research and Development Agreement has been established with VECTRA Technologies, Inc. (formerly Pacific Nuclear), a U.S. company that provides waste treatment and other services to the commercial nuclear power industry. The agreement involves investigation of polyethylene encapsulation for treatment of ion exchange resin wastes. In addition, other avenues of cooperation are being investigated including use of a VECTRA Technologies volume reduction pre-treatment process for use with the polyethylene technology in treating aqueous radioactive, hazardous, and mixed wastes

  1. 2017 Technology Showcase | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The 2017 Technology Showcase is an inaugural, half-day event showcased technologies developed by the National Cancer Institute's Center for Cancer Research (CCR) and the Frederick National Laboratory for Cancer Research (FNLCR).

  2. Technology transfer and development: a preliminary look at Chinese technology in Guyana

    Energy Technology Data Exchange (ETDEWEB)

    Long, F

    1982-05-01

    Technology is regarded as a vital ingredient for development. Since developing countries can hardly fill their technological requirements indigenously, such countries tend to acquire the bulk of technology applied to their production systems from abroad. However, the transfer of technology tends to be associated with a series of problems: foreign exchange, inappropriateness, the generation of limited inter-sectorial linkages, limited use of raw materials, and other inputs associated with technology dependency. The study points to the fact that technology transfer need not necessarily be associated with the disadvantages identified in the literature. The study which essentially looks at the use of Chinese technology in clay-brick manufacturing in Guyana, shows that the country was able to reap several development benefits from the technology-transfer arrangement. At the same time, certain problems arising from the technology-transfer package such as the transfer of critical skills in key areas of production, and maintenance and servicing, are discussed. But these, the author argues, are not a function of restrictive conditions found in technology-transfer clauses, but rather of improper technology-transfer management. 2 tables.

  3. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  4. Grazing and Rangeland Development for Livestock Production. A Handbook for Volunteers. Agriculture Technology for Developing Countries. Appropriate Technologies for Development. Reprint R-47.

    Science.gov (United States)

    Sprague, Howard B.; And Others

    This handbook, developed for training Peace Corps volunteers, reviews the basic principles that underlie sound grazing land management and indicates the application of these principles for livestock production in the tropics and subtropics. The handbook is made up of three technical series bulletins. The first bulletin covers management of…

  5. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  6. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  7. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    Science.gov (United States)

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  8. Handbook of unmanned aerial vehicles

    CERN Document Server

    Vachtsevanos, George

    2015-01-01

    The Handbook of Unmanned Aerial Vehicles is a reference text for the academic and research communities, industry, manufacturers, users, practitioners, Federal Government, Federal and State Agencies, the private sector, as well as all organizations that are and will be using unmanned aircraft in a wide spectrum of applications. The Handbook covers all aspects of UAVs, from design to logistics and ethical issues. It is also targeting the young investigator, the future inventor and entrepreneur by providing an overview and detailed information of the state-of-the-art as well as useful new concepts that may lead to innovative research. The contents of the Handbook include material that addresses the needs and ‘know how’ of all of the above sectors targeting a very diverse audience. The Handbook offers a unique and comprehensive treatise of everything one needs to know about unmanned aircrafts, from conception to operation, from technologies to business activities, users, OEMs, reference sources, conferences, ...

  9. Practical manual for technology transfer strategy

    International Nuclear Information System (INIS)

    Heo, Jae Gwan

    2004-03-01

    This book deals with technical transfer strategy in the 21 century, management period of intellectual property, which includes value of invisible and intangible assets, core topic of management of intellectual property construction of virtuous cycle of intellectual and creative activity, and phase and building strategy of intellectual property management system. It also mentions building of useful patent portfolio and strategy with patent problems in business management strategy, case of patent management strategy of IBM in the Uited Sates and Fujitsu in Japan, and profit process using intellectual property outside of the company.

  10. Accelerating the transfer of improved production technologies ...

    African Journals Online (AJOL)

    Since 1988, epidemics of African cassava mosaic disease (ACMD) caused by a whitefly-transmitted geminivirus have caused severe devastation in Uganda resulting in food shortages and famine in some areas. In order to control the disease and restore food security in the country, appropriate technologies had to be ...

  11. Annual Technology Transfer Report FY 2017

    Science.gov (United States)

    2018-04-01

    The U.S. Department of Transportation (U.S. DOT) is the Federal steward of the Nation's transportation system. U.S. DOT consists of multiple modal operating administrations (OAs) that carry out mission-related research, development, and technology (R...

  12. Foreign cooperative technology development and transfer

    International Nuclear Information System (INIS)

    Schassburger, R.J.; Robinson, R.A.

    1988-01-01

    It is the policy of the US Department of Energy (DOE) that, in pursuing the development of mined geologic repositories in the United States, the waste isolation program will continue to actively support international cooperation and exchange activities that are judged to be in the best interest of the program and in compliance with the Nuclear Waste Policy Act of 1982, Sec. 223. Because there are common technical issues and because technology development often requires large expenditures of funds and dedication of significant capital resources, it is advantageous to cooperate with foreign organizations carrying out similar activities. The DOE's Office of Civilian Radioactive Waste Management is working on cooperative nuclear waste isolation technology development programs with the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA), Canada's Atomic Energy of Canada, Limited (AECL), Sweden, Switzerland, and the Federal Republic of Germany. This paper describes recent technology results that have been obtained in DOE's foreign cooperative programs. Specific technology development studies are discussed for cooperative efforts with Canada, OECD/NEA, and a natural analog project in Brazil

  13. Night vision and electro-optics technology transfer, 1972 - 1981

    Science.gov (United States)

    Fulton, R. W.; Mason, G. F.

    1981-09-01

    The purpose of this special report, 'Night Vision and Electro-Optics Technology Transfer 1972-1981,' is threefold: To illustrate, through actual case histories, the potential for exploiting a highly developed and available military technology for solving non-military problems. To provide, in a layman's language, the principles behind night vision and electro-optical devices in order that an awareness may be developed relative to the potential for adopting this technology for non-military applications. To obtain maximum dollar return from research and development investments by applying this technology to secondary applications. This includes, but is not limited to, applications by other Government agencies, state and local governments, colleges and universities, and medical organizations. It is desired that this summary of Technology Transfer activities within Night Vision and Electro-Optics Laboratory (NV/EOL) will benefit those who desire to explore one of the vast technological resources available within the Defense Department and the Federal Government.

  14. Technology transfer and international development: Materials and manufacturing technology

    Science.gov (United States)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  15. Transferability of economic evaluations of medical technologies: a new technology for orthopedic surgery.

    Science.gov (United States)

    Steuten, Lotte; Vallejo-Torres, Laura; Young, Terry; Buxton, Martin

    2008-05-01

    Transferring results of economic evaluations across countries or jurisdictions can potentially save scarce evaluation resources while helping to make market access and reimbursement decisions in a timely fashion. This article points out why transferring results of economic evaluations is particularly important in the field of medical technologies. It then provides an overview of factors that are previously identified in the literature as affecting transferability of economic evaluations, as well as methods for transferring results in a scientifically sound way. As the current literature almost exclusively relates to transferability of pharmacoeconomic evaluations, this article highlights those factors and methodologies that are of particular relevance to transferring medical technology assessments. Considering the state-of-the-art literature and a worked, real life, example of transferring an economic evaluation of a product used in orthopedic surgery, we provide recommendations for future work in this important area of medical technology assessment.

  16. Technology transfer to Africa: constraints for CDM operations

    International Nuclear Information System (INIS)

    Karani, Patrick

    2002-01-01

    It is practically difficult to design, implement and manage Clean Development Mechanism (CDM) projects in Africa without a provision for capacity building that will enable the application of modern technologies and techniques. Existing institutions need strengthening, human capacity needs to be developed and new markets need to be promoted. The author outlines institutional and market constraints in relation to technology transfer (e.g renewable energy technologies) and development in Africa. (Author)

  17. Technological transfer. 2. Through developing small businesses

    Energy Technology Data Exchange (ETDEWEB)

    Berrie, T W; Leslie, D

    1978-12-01

    The transfer of small businesses to developing countries is proposed as the most effective way to build upon existing capabilities and small resources while benefiting the largest number of people. Labor-intensive small businesses require little capital investment and can bring immediate progress to both urban and rural areas. One drawback to this approach is the need for organizational effort by the government, although the Civil Service in India has been able to fill this function. Small businesses can be promoted through tax exemptions or benefits, the restriction of some manufacturing to small-scale industries, and government support of equipment research. This approach is less disruptive of social patterns and lifestyles than urbanization and its associated costs while still providing the opportunity for an improved standard of living. Electrification can be handled at the village level with diesel generators or by central power plants, although consumer cooperatives have worked better than the small business concept in this area.

  18. System analysis for technology transfer readiness assessment of horticultural postharvest

    Science.gov (United States)

    Hayuningtyas, M.; Djatna, T.

    2018-04-01

    Availability of postharvest technology is becoming abundant, but only a few technologies are applicable and useful to a wider community purposes. Based on this problem it requires a significant readiness level of transfer technology approach. This system is reliable to access readiness a technology with level, from 1-9 and to minimize time of transfer technology in every level, time required technology from the selection process can be minimum. Problem was solved by using Relief method to determine ranking by weighting feasible criteria on postharvest technology in each level and PERT (Program Evaluation Review Technique) to schedule. The results from ranking process of post-harvest technology in the field of horticulture is able to pass level 7. That, technology can be developed to increase into pilot scale and minimize time required for technological readiness on PERT with optimistic time of 7,9 years. Readiness level 9 shows that technology has been tested on the actual conditions also tied with estimated production price compared to competitors. This system can be used to determine readiness of technology innovation that is derived from agricultural raw materials and passes certain stages.

  19. Technology transfer of military space microprocessor developments

    Science.gov (United States)

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  20. The Infrared & Electro-Optical Systems Handbook. Emerging Systems and Technologies, Volume 8

    Science.gov (United States)

    1993-01-01

    423-424, 7-427-430 radiosity , 3-360 Radiative transfer tables, 7-433-434, 7-436- reflectivity, 3-360 452 transmissivity, 3-360 Radiative transport...248 radiosity , 1-5 calibration, 7-311 sterance, 1-5 circular variable filter, 7-246-247 sterisent, 1-5-6 dual-band, 1-333-334 Radiometric transfer, 1...322 near extended source, 1-329 temporal frequency bandwidth, 1-321 near small source, 1.329 throughput, 1.323 power responsivity, 1-328 Radiosity , 1-5

  1. Sustainability of University Technology Transfer: Mediating Effect of Inventor’s Technology Service

    Directory of Open Access Journals (Sweden)

    Fang Li

    2018-06-01

    Full Text Available Based on the perspective of knowledge transfer and the technology acceptance model (TAM, this paper constructs a university technology transfer sustainable development model that considers the inventor’s technology service from the perspective of the long-term cooperation of enterprise, and analyzes the mediating effect of the inventor’s technology service on university technology transfer sustainability. By using 270 questionnaires as survey data, it is found that the availability of an inventor’s technology service has a significant positive impact on the attitude tendency and practice tendency of enterprise long-term technological cooperation; enterprise technology absorption capacity and trust between a university and an enterprise also have significant influence on an inventor’s technical service availability. Therefore, the inventor’s technology service acts as a mediator in the relationship between university technology transfer sustainability and influence factors. Universities ought to establish the technology transfer model, which focuses on the inventor’s tacit knowledge transfer service, and promotes the sustainable development of the university.

  2. Handbook of sustainable engineering

    CERN Document Server

    Lee, Kun-Mo

    2013-01-01

    "The efficient utilization of energy, sustainable use of natural resources, and large-scale adoption of sustainable technologies is the key to a sustainable future. The Handbook of Sustainable Engineering provides tools that will help us achieve these goals". Nobel Prize Winner Dr. R.K. Pauchauri, Chairman, UN Intergovernmental Panel on Climate Change As global society confronts the challenges of diminishing resources, ecological degradation, and climate change, engineers play a crucial role designing and building technologies and products that fulfil our needs for utility and sustainability. The Handbook of Sustainable Engineering equips readers with the context and the best practices derived from both academic research and practical examples of successful implementations of sustainable technical solutions. The handbook’s content revolves around the two themes, new ways of thinking and new business models, including sustainable production, products, service systems and consumption while addressing key asse...

  3. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  4. Employee Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Madelyn

    2008-09-05

    Welcome to Berkeley Lab. You are joining or are already a part of a laboratory with a sterling tradition of scientific achievement, including eleven Nobel Laureates and thirteen National Medal of Science winners. No matter what job you do, you make Berkeley Lab the outstanding organization that it is. Without your hard work and dedication, we could not achieve all that we have. We value you and thank you for choosing to be part of our community. This Employee Handbook is designed to help you navigate the Lab. With over 3,000 employees, an additional 3,000 guests visiting from countries around the world, a 200-acre campus and many policies and procedures, learning all the ins and outs may seem overwhelming, especially if you're a new employee. However, even if you have been here for a while, this Handbook should be a useful reference tool. It is meant to serve as a guide, highlighting and summarizing what you need to know and informing you where you can go for more detailed information. The general information provided in this Handbook serves only as a brief description of many of the Lab's policies. Policies, procedures and information are found in the Lab's Regulations and Procedures Manual (RPM), Summary Plan Descriptions, University of California policies, and provisions of Contract 31 between the Regents of the University and the U.S. Department of Energy. In addition, specific terms and conditions for represented employees are found in applicable collective bargaining agreements. Nothing in this Handbook is intended to supplant, change or conflict with the previously mentioned documents. In addition, the information in this Handbook does not constitute a contract or a promise of continued employment and may be changed at any time by the Lab. We believe employees are happier and more productive if they know what they can expect from their organization and what their organization expects from them. The Handbook will familiarize you with the

  5. The Fintech Book: the Financial Technology Handbook for Investors, Entrepreneurs and Visionaries

    OpenAIRE

    Amalia, Fitri

    2016-01-01

    This book review deals with the fiancial technology area in emerging markets. The followings are the data about the book:Keyword:Publisher:Length:Price:Reading rating:Overall rating:financial technology, emerging marketsJohn Wiley & Sons Ltd, West Sussex, United Kingdom (2016)291 pages$27.16 (paperback)8 (1 = very difficult; 10 = very easy)3 (1 = average; 4 = outstanding)

  6. Open Science Training Handbook

    OpenAIRE

    Sonja Bezjak; April Clyburne-Sherin; Philipp Conzett; Pedro Fernandes; Edit Görögh; Kerstin Helbig; Bianca Kramer; Ignasi Labastida; Kyle Niemeyer; Fotis Psomopoulos; Tony Ross-Hellauer; René Schneider; Jon Tennant; Ellen Verbakel; Helene Brinken

    2018-01-01

    For a readable version of the book, please visit https://book.fosteropenscience.eu A group of fourteen authors came together in February 2018 at the TIB (German National Library of Science and Technology) in Hannover to create an open, living handbook on Open Science training. High-quality trainings are fundamental when aiming at a cultural change towards the implementation of Open Science principles. Teaching resources provide great support for Open Science instructors and trainers. The ...

  7. A case study of technology transfer: Cardiology

    Science.gov (United States)

    Schafer, G.

    1974-01-01

    Research advancements in cardiology instrumentation and techniques are summarized. Emphasis is placed upon the following techniques: (1) development of electrodes which show good skin compatibility and wearer comfort; (2) contourography - a real time display system for showing the results of EKGs; (3) detection of arteriosclerosis by digital computer processing of X-ray photos; (4) automated, noninvasive systems for blood pressure measurement; (5) ultrasonoscope - a noninvasive device for use in diagnosis of aortic, mitral, and tricuspid valve disease; and (6) rechargable cardiac pacemakers. The formation of a biomedical applications team which is an interdisciplinary team to bridge the gap between the developers and users of technology is described.

  8. Technology transfer? The rise of China and India in green technology sectors

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2012-01-01

    International technology transfer is central to the debate about how to curb the carbon emissions from rapid economic growth in China and India. But given China and India's great progress in building innovation capabilities and green industries, how relevant is technology transfer...... for these countries? This paper seeks insights from three green technology sectors in both countries: wind power, solar energy and electric and hybrid vehicles. We find that, conventional technology transfer mechanisms such as foreign direct investments and licensing, were important for industry formation and take...

  9. Adaptation in the context of technology development and transfer

    DEFF Research Database (Denmark)

    Olhoff, Anne

    2015-01-01

    and transfer. It summarizes what technologies for adaptation are, how they relate to development, and what their role is in adaptation. It subsequently highlights a number of policy and research issues that could be important to inform future policy. The commentary has two key messages. First, it argues...... that informed policy decisions on technology development and transfer to enhance adaptation require systematic assessments of the findings in the theoretical and empirical literature. Second, in light of the potential for overlap between processes for adaptation and processes for technologies for adaptation......Starting from a summary of key developments under the United Nations Framework Convention on Climate Change (UNFCCC) related to adaptation and technologies, the commentary provides an initial review of the available literature relevant to adaptation in the context of technology development...

  10. 2017 Technology Showcase Presentations | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Presentations from the 2017 Technology Showcase by NIH Intramural Research Program scientists held at Frederick National Laboratories for Cancer Research on June 7, 2017. | [google6f4cd5334ac394ab.html

  11. A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER

    Directory of Open Access Journals (Sweden)

    Hennie Husniah

    2016-05-01

    Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high.  We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.

  12. A practical approach to the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Segerberg, F.

    1978-01-01

    The paper deals specifically with the transfer of light-water reactor technology to a developing country. The technology transfer scheme presented assumes that Sweden is the supplier of this technology. The basis of the proposed approach is that hardware deliveries for nuclear power plants in the recipient country should constitute an activity in parallel with the general technology transfer. It is pointed out that the developing countries form a very heterogeneous group with respect to industrial capability. On the other hand the supplier nations are not a homogeneous group. Sweden's most relevant characteristics as supplier nation can be summarized under the following headings: (i) fairly small and highly industrialized country; (ii) concentration on nuclear power to cover increasing electricity demands; (iii) independent reactor technology; (iv) well-established infrastructure with regard to component manufacturing; (v) political neutrality. It follows that each combination of two countries constitutes a unique example. The nuclear technology transfer schemes must consequently be extremely flexible. The paper outlines a 'modular' system. This concept means that the supplier offers a great variety of independent courses, training opportunities, facilities etc. which can then be combined into a package meeting the wishes of the recipient nation. The components in a Swedish package of this kind are elaborated. The paper ends with the general conclusion that Sweden has so far been successful in combining high national ambitions with limited manpower and limited financial resources. The underlying efficiency and flexibility will hopefully make Sweden an attractive partner for developing countries. (author)

  13. Transfer of industry-oriented nuclear technology at NUCOR

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1983-10-01

    The transfer of industry-oriented nuclear technology at the Nuclear Development Corporation of South Africa (Pty) Ltd (NUCOR) is centred in a few divisions only, as most of the NUCOR's program is internally oriented. The industry-oriented activities include radiation technology, production of radioisotopes and application of nuclear techniques in solving problems of industry. The study is concerned mainly with the last of these activities. The general problem of transferring innovative technology is reviewed and a systems approach is used to analyse the transfer process at NUCOR, in terms of the organisation itself and its environment. Organisational strengths and weaknesses are identified and used as a basis to determine opportunities and threats. Possible objectives are formulated and a strategy to meet them is suggested. 'Demand-pull' as opposed to 'technology-push' is advanced as the main triggering mechanism in the transfer of industry-oriented nuclear technology. The importance of marketing this technology, as well as its commercialization, are discussed

  14. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    Science.gov (United States)

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  15. Blending addiction research and practice: strategies for technology transfer.

    Science.gov (United States)

    Condon, Timothy P; Miner, Lucinda L; Balmer, Curtis W; Pintello, Denise

    2008-09-01

    Consistent with traditional conceptions of technology transfer, efforts to translate substance abuse and addiction research into treatment practice have typically relied on the passive dissemination of research findings. The large gap between addiction research and practice, however, indicates that there are many barriers to successful technology transfer and that dissemination alone is not sufficient to produce lasting changes in addiction treatment. To accelerate the translation of research into practice, the National Institute on Drug Abuse launched the Blending Initiative in 2001. In part a collaboration with the Substance Abuse and Mental Health Services Administration/Center for Substance Abuse Treatment's Addiction Technology Transfer Center program, this initiative aims to improve the development, effectiveness, and usability of evidence-based practices and reduce the obstacles to their timely adoption and implementation.

  16. Two perspectives on a successful lab/industry technology transfer

    International Nuclear Information System (INIS)

    MacArthur, D.W.; Ulbrich, R.

    1995-01-01

    Technology transfer from government laboratories to private business is of increasing concern in today's marketplace. Some prospective partners (on both sides) believe that technology transfer is a relatively simple process requiring little or no extra effort from the participants. In the authors experience this is not true and, in fact, positive results from a collaboration are directly proportional to the effort that both parties invest in the relationship. Communication, both between prospective partners before an agreement and between partners following the agreement, is essential. Neither technology nor marketing can stand by itself; it is the combination of the two that can produce a useful and available product. Laboratories and industries often have very different ways of looking at almost everything. Misunderstandings arising from these differences can short-circuit the transfer process or result in the production of a product that is unsalable. The authors will cover some of their experiences, potential problems, and their solutions. Examples discussed here is transfer of technology for long-range alpha detection developed at Los Alamos National Laboratory and transferred to Eberline Instrument Corporation

  17. Transfer of NPP technology from Finland fo Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Varis, M. V.K. [Imatran Voima Oy, Vantaa (Finland); Frigyesi, F. [Paksi Atomeroemue Vallalat (Hungary)

    1989-07-15

    Imatran Voima Oy (IVO), which accounts for 45% of the total Finnish electricity supply, have their own architect-engineering capacity. This know-how is also available internationally (IVO International). This report explains how technology is transferred to the client's organisation using the advantages of the client's own organization culture, supplemented by IVO's experience. The technology transferred to the Hungarian Paks Nuclear Power Company (PAV) regarding project management services is a good example. A materials management example explains the method. The customer is familiarized via wall chart on which the useful features in IVO's system are added.

  18. Technology transfer assessment in the nuclear agreement Brazil-Germany

    International Nuclear Information System (INIS)

    Cecchi, J.C.

    1985-04-01

    The three main arguments utilized in the Nuclear Brazil-Germany Agreement celebrated in 1975 were the following: a) the low Brazilian hydroelectric potential insufficient to attend the increasing of electrical energy demand; b) the low cost of nuclear energy related to hydroelectric energy: c) and finally, the nuclear technology transfer, involving inclusive the fuel cycle and that could permit to Brazil self-sufficiency in the nuclear energy field. Thus, this work intends to describe and discussing the 'technology transfer strategy' trying to understand and showing which are its main characteristics, and also which are the real actuals results. (author) [pt

  19. Technology Transfer, Labour and Local Learning Processes in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    The transfer of technologies by the foreign electronic industries operating in Malaysia involves training of workers for various purposes. The upgrading of skills to assimilate the transferred technology aims at increasing productivity and product quality. Communicating awareness about work hazards...... is meant to reduce breakdowns in production and workers' accidents. How do the training paradigms, which transnationals introduce in their subsidiaries in Malaysia, interact with the preconditions of learning with the local labour force? In shaping local learning processes, what is the scope for workers...

  20. Technology transfer and technological learning through CERN's procurement activity

    CERN Document Server

    Autio, Erkko; Hameri, Ari-Pekka; CERN. Geneva

    2003-01-01

    This report analyses the technological learning and innovation benefits derived from CERN's procurement activity during the period 1997-2001. The base population of our study, the technology-intensive suppliers to CERN, consisted of 629 companies out of 6806 companies during the same period, representing 1197 MCHF in procurement. The main findings from the study can be summarized as follows: the various learning and innovation benefits (e.g., technological learning, organizational capability development, market learning) tend to occur together. Learning and innovation benefits appear to be regulated by the quality of the supplier's relationship with CERN: the greater the amount of social capital built into the relationship, the greater the learning and innovation benefits. Regardless of relationship quality, virtually all suppliers derived significant marketing reference benefits from CERN. Many corollary benefits are associated with procurement activity. As an example, as many as 38% of the respondents devel...

  1. NASA technology utilization applications. [transfer of medical sciences

    Science.gov (United States)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  2. Space technology transfer to developing countries: opportunities and difficulties

    Science.gov (United States)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  3. Advances in energy-transfer technology

    International Nuclear Information System (INIS)

    Terpstra, L.

    1992-01-01

    This paper discusses the technology of drying and curing inks, coatings and adhesives which is changing rapidly as converters and manufacturers strive to comply with regulations governing airborne emissions as well as discharge of liquid and solid wastes. Compliance with these regulations will become more difficult in the coming decade as the Clean Air Act's increasingly stringent limitations on emissions of volatile organic compounds are implemented to support the intentions of the Montreal protocol. Many of the customary solvents are being eliminated, and the volume of production for many others will be severely reduced. For some companies, the switch to the new materials means updating or replacing antiquated hot-air drying systems with high-velocity impingement ovens with higher temperature capabilities. Probably the least-expansive alternative to replacing the entire oven is to retrofit the installation with infrared (IR) energy in the form of separate predryers or postheaters or, in some cases, to install auxiliary IR heaters between the hot-air nozzles within the oven

  4. Information and Communication Technologies in Schools A Handbook for Teachers or How ICT Can Create New, Open Learning Environments

    Directory of Open Access Journals (Sweden)

    Ramazan Güzel

    2017-02-01

    Full Text Available Information and Communication Technologies in Schools, a Handbook for Teachers or How ICT can Create New, Open Learning Environments delivers very detailed presentation and utilization of ICT in education. This publication is very good resource to teachers and teacher educators. In reviewing this book, the first thing that attracts the readers’ attention is the layout of the publication. Content, organization, and reference sources are efficient enough for this publication which aims to help teachers while forming new, open learning environments with ICT. However, the cover page image and watermark image in the first nine pages are not very relevant with use of ICT in education. Globe in the UNESCO Headquarter garden and the Eiffel Tower doesn’t make any sense with ICT. Instead of this image, more convenient image could have been selected.   This publication allows the reader to easily follow the use of ICT in the classroom by giving authentic examples. The book is divided into seven chapters and first chapter starts with the background information of the ICT. Second chapter explains very detailed ICT tools used for education. Some tools mentioned in this chapter under storage title have already been outdated. It shows that how fast technology changes and how fast it wears out the old technology. Third chapter mentions about the change in learning environment with the use of ICT by examining it from teachers’ and students’ view. In the fourth chapter, it proposes new pedagogical methods in learning and teaching. In my opinion, this chapter is foremost part of this publication. It explains the organization of the learning process with the use of ICT and examples are can easily be implemented in classrooms. Fifth Chapter describes the place of ICT in school learning activities. This chapter also defines how to structure ICT in school curricula. It gives very good examples but these examples do not relate directly to the teachers because

  5. Experience in SSAC training and technology transfer

    International Nuclear Information System (INIS)

    Hatcher, C.R.; Keepin, G.R.; Pontes, B.

    1983-01-01

    Each year since 1980 an international training course on the implementation of States' Systems of Accounting for and Control of Nuclear Materials (SSACs) has been offered in the USA under the auspices of the Nuclear Non-Proliferation Act of 1978. The courses are sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency (IAEA) and conducted by the Los Alamos National Laboratory, with the assistance of other organizations. The purpose of the courses, which are described in detail in the paper, is ''to provide practical training in the design, implementation and operation of a national system of accounting for and control of nuclear materials that satisfies both national and IAEA international safeguards objectives.'' On odd numbered years, the course emphasis is on bulk-processing facilities; on even years the emphasis is on item-dominant facilities. Internationally known authorities are selected as course lecturers from the IAEA and Los Alamos, as well as government, industry, and national laboratories in both the USA and abroad. Lectures are supplemented with workshops, panel discussions, tours of Los Alamos safeguards laboratories, and visits to operating nuclear fuel-cycle facilities. Attendance at the 1981, 1982 and 1983 SSAC courses has averaged 26 student participants, with almost as many nations represented. The overall response to the courses has been highly favorable, indicating that they are fulfilling a timely and important need. Key to the success has been a course format that encourages maximum exchange of safeguards technology and experience among all participants, both students and lecturers. (author)

  6. The academic spin-offs as technology transfer way

    International Nuclear Information System (INIS)

    Gomez Gras, J. M.; Mira Solves, I.; Verdu Jover, A. J.; Sancho Azuar, J.

    2007-01-01

    One of the technology transfer mechanisms used by universities that has risen more interest in the last decade is the formation of academic spin-off, firms specifically created for the commercial exploitation of technology derived from research results. In the current paper we review the typologies and the development process of this kind of firms, as well as we propose a model that groups the conditioning factors of spin-off activity in the internal university environment. (Author) 92 refs

  7. School of the Future Handbook. A Guide for Technology Implementation. F. M. Black Middle School.

    Science.gov (United States)

    Smith, Richard Alan; Sassi, Anthony

    In 1985, Apple Computer, Inc., and the Houston Independent School District began a project to create a model School of the Future at the F. M. Black Middle School. As described in this guide, the project was designed to demonstrate how microcomputers and related technology can make the process of instruction more efficient and effective. The…

  8. Handbook of electroporation

    CERN Document Server

    2017-01-01

    This major reference work is a one-shot knowledge base on electroporation and the use of pulsed electric fields of high intensity and their use in biology, medicine, biotechnology, and food and environmental technologies. The Handbook offers a widespread and well-structured compilation of 156 chapters ranging from the foundations to applications in industry and hospital. It is edited and written by most prominent researchers in the field. With regular updates and growing in its volume it is suitable for academic readers and researchers regardless of their disciplinary expertise, and will also be accessible to students and serious general readers. The Handbook's 276 authors have established scholarly credentials and come from a wide range of disciplines. This is crucially important in a highly interdisciplinary field of electroporation and the use of pulsed electric fields of high intensity and its applications in different fields from medicine, biology, food proce ssing, agriculture, process engineering, en...

  9. Handbook of Brain Connectivity

    CERN Document Server

    Jirsa, Viktor K

    2007-01-01

    Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring struct...

  10. The Competence Accumulation Process in the Technology Transference Strategy

    Directory of Open Access Journals (Sweden)

    André Silva de Souza

    2008-04-01

    Full Text Available The present article evaluates and measures the technological competence accumulation in an automation area enterprise to distribution centers, Knapp Sudamérica Logistic and Automation Ltd, in the interval of the technology transference process previous period (1998-2001 and during the technology transference process(2002-2005. Therefore, based on an individual case study, the study identified the technology transference strategy and mechanism accorded between the head office and the branch office, the technological functions and activities developed by the receiver and, at last, the critical factors present in this process. The echnological competences accumulation exam was accomplished based on an analytical structure existent in the literature that was adapted to the researched segment analysis. The obtained results showed that the planed, organized, controlled and continuous effort to generating and disseminating knowledge allowed the enterprise to speed up the accumulation process of technological competences promoting the converting of this process from individual level to the organizational one: besides, it also allowed the identification of barriers and facilitators involved in this process.

  11. Building technology transfer within research universities an entrepreneurial approach

    CERN Document Server

    O'Shea, Rory P

    2014-01-01

    For the past number of years, academic entrepreneurship has become one of the most widely studied topics in the entrepreneurship literature. Yet, despite all the research that has been conducted to date, there has not been a systematic attempt to analyze critically the factors which lie behind successful business spin-offs from university research. In this book, a group of academic thought-leaders in the field of technology transfer examine a number of areas critical to the promotion of start-ups on campus. Through a series of case studies, they examine current policies, structures, program initiatives and practices of fourteen international universities to develop a theory of successful academic entrepreneurship, with the aim of helping other universities to enhance the quality of their university transfer programs. This book is a valuable resource for researchers and graduate students working on innovation, entrepreneurship and technology transfer, as well as senior managers and policymakers.

  12. Technology transfer: A cooperative agreement and success story

    International Nuclear Information System (INIS)

    Reno, H.W.; McNeel, K.; Armstrong, A.T.; Vance, J.K.

    1996-01-01

    This paper describes the cooperative agreement between the U.S. Department of Energy and Envirocare of Utah, Inc., wherein the former transferred macroencapsulative technology to the latter for purposes of demonstrating commercialization of treatment and disposal of 225, 000 Kg of radioactive lead stored at departmental installations

  13. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    Science.gov (United States)

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  14. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Boer, S.J.

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The

  15. 77 FR 46855 - Small Business Technology Transfer Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Chapter I RIN 3245-AF45 Small Business Technology Transfer Program Policy Directive AGENCY: Small Business Administration. ACTION: Final policy directive with request for comments. SUMMARY: The U.S. Small Business Administration (SBA) is amending its Small Business...

  16. NIH Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  17. Transfer And Adoption Of Labour Saving Technologies | Idu ...

    African Journals Online (AJOL)

    The study was carried out to assess the transfer and adoption of labour saving technologies in Apa Local Government area of BenueState. A total sample size One Hundred and Twenty was used in the study. Interview schedule was used to collect the data from respondents. The results revealed that herbicide was adopted ...

  18. Technology transfer. Its contribution to the Canadian nuclear industry

    International Nuclear Information System (INIS)

    Perryman, E.C.W.

    1977-01-01

    Technology transfer from the Laboratories of Atomic Energy of Canada Limited is discussed in relation to the birth and growth of the Canadian Nuclear Industry. The evolution of the laboratories and their changing emphasis during the commercialization of the CANDU reactor system is described

  19. TECHNOLOGY TRANSFER NETWORKS ON PAPAYA PRODUCTION WITH TRANSITIONAL GROWERS

    Directory of Open Access Journals (Sweden)

    Octavio Cano-Reyes

    2012-11-01

    Full Text Available Social networks analysis applied to rural innovation processes becomes a very useful technology transfer tool, since it helps to understand the complexity of social relationships among people and/or institutions in their environment, and it also defines those innovation networks given in specific working groups or regions. This study was conducted from April to May 2011 to determine those networks and key players present in the group of growers associated as “Productora y Comercializadora de Papaya de Cotaxtla S.P.R. de R.L.”, that influence the technology transfer process in Cotaxtla, Veracruz, Mexico. Data were analyzed using UCINET 6 software. Three centrality measures were obtained: range, degree of mediation and closeness. Of 32 network players, 27 actively diffuse innovations according to their interests; alliances must be established with them to transfer technology. Four growers stand out as central actors, which along with the Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, the Colegio de Postgraduados and the growers’ organization itself, could be the most appropriate actors to establish a technology transfer program to accelerate the diffusion and adoption of innovations. Wholesalers, middlemen and credit institutions do not participate in this process, but having capital they could be incorporated in the innovation diffusion process.

  20. Remote sensing education in NASA's technology transfer program

    Science.gov (United States)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  1. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    Science.gov (United States)

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  2. Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis

    Science.gov (United States)

    Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar

    2016-01-01

    University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…

  3. Institutionalization of Technology Transfer Organizations in Chinese Universities

    Science.gov (United States)

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  4. The 22nd AINSE plasma science and technology conference. Conference handbook

    International Nuclear Information System (INIS)

    1999-01-01

    These proceedings contain the extended abstracts of the papers and posters presented at the 22nd AINSE plasma science and technology conference hosted by the Australian National University in Canberra. Topics under discussion included: fusion devices and experiments; plasma production; plasma confinement; plasma heating and current drive; plasma waves; plasma diagnostics; basic collisionless plasma physics; laser produced plasmas and inertial confinement; low-temperature plasmas and interferometry. The individual papers were indexed separately

  5. Airlie House Pollution Prevention Technology Transfer pilot projects

    Energy Technology Data Exchange (ETDEWEB)

    Thuot, J.R.; Myron, H.; Gatrone, R.; McHenry, J.

    1996-08-01

    The projects were a series of pilot projects developed for DOE with the intention of transferring pollution prevention technology to private industry. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education program, the microscale cost benefit study, and the Bethel New Life recycling trainee program. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The recycle trainee project provided training for two participants and identified recycling and source reduction opportunities in Argonne`s solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identification of target technologies that were already available, identification of target audiences, and a focus of effort to achieve a limited but defined objective.

  6. Innovation, technology transfer and development: the spin-off companies

    Directory of Open Access Journals (Sweden)

    Teodoro Valente

    2014-05-01

    Full Text Available The article starts from the identification of the reasons why Italy is less prone to technology transfer than other countries, and indicates some key issues for the diffusion of technological innovations and the development of human capital. In particular, technology transfer is not a generic form of exploitation of outcome of the research, it involves specific actions that have impact on economic production, such as the patenting and the creation of new companies (spin-offs. The author discusses the various forms of spin-offs of university research, the evolution of the phenomenon in the structures of the uni- versities, the stages of development of a spin-off company and the current fund- ing arrangements and to be promoted.

  7. Blind Technology Transfer or Technological Knowledge Leakage: a Case Study from the South

    Directory of Open Access Journals (Sweden)

    Dario Codner

    2012-07-01

    Full Text Available Blurring boundaries between science and technology is a new phenomenon especially in fields such as biotechnology. The present work shows the fate of biotech research papers on foreign patents produced during the last decade in Quilmes National University. It aims at recognizing the flow of scientific knowledge developed at a public university towards foreign companies and organizations as well as reflecting on its technological value, the role of technology transfer management, the institutional significance of technology transfer processes and the need to develop innovative public policies for solving structural failures caused by industrial underdevelopment

  8. Near field communications handbook

    CERN Document Server

    Ahson, Syed A; Furht, Borko

    2011-01-01

    Near Field Communication, or NFC, is a short-range high frequency wireless communication technology that enables the exchange of data between devices over about a decimeter. The technology is a simple extension of the ISO 14443 proximity-card standard (contact less card, RFID) that combines the interface of a smart card and a reader into a single device with practical implications. A complete reference for NFC, this handbook provides technical information about all aspects of NFC, as well as applications. It covers basic concepts as well as research grade material and includes a discussion of

  9. Leybold vacuum handbook

    CERN Document Server

    Diels, K; Diels, Kurt

    1966-01-01

    Leybold Vacuum Handbook presents a collection of data sets that are essential for numerical calculation of vacuum plants and vacuum processes. The title first covers vacuum physics, which includes gas kinetics, flow phenomena, vacuum gauges, and vapor removal. Next, the selection presents data on vacuum, high vacuum process technology, and gas desorption and gettering. The text also deals with materials, vapor pressure, boiling and melting points, and gas permeability. The book will be of great interest to engineers and technicians that deals with vacuum related technologies.

  10. Nanobiomaterials handbook

    CERN Document Server

    Sitharaman, Balaji

    2011-01-01

    Nanobiomaterials exhibit distinctive characteristics, including mechanical, electrical, and optical properties, which make them suitable for a variety of biological applications. Because of their versatility, they are poised to play a central role in nanobiotechnology and make significant contributions to biomedical research and healthcare. Nanobiomaterials Handbook provides a comprehensive overview of the field, offering a broad introduction for those new to the subject as well as a useful reference for advanced professionals.Analyzing major topics and disciplines in this arena, this volume:

  11. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Adrian; Lema, Rasmus

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use new...... organizational arrangements for technology transfer which reflect the overall industry maturity in the solar PV sectors in these countries. This has great potential for long-term climate change mitigation efforts. However, the initiation of these new organizational arrangements often preceded the supply...... of technology into CDM projects. This raises important questions about the role of CDM in spearheading the development of technological capabilities required for sustainable development. The paper uses these findings to add to the literature about technology in CDM and to the wider policy debates over...

  12. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    Science.gov (United States)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  13. State of the Science in Technology Transfer: At the Confluence of Academic Research and Business Development--Merging Technology Transfer with Knowledge Translation to Deliver Value

    Science.gov (United States)

    Lane, Joseph P.

    2010-01-01

    The practice of technology transfer continues to evolve into a discipline. Efforts continue in the field of assistive technology (AT) to move technology-related prototypes, resulting from development in the academic sector, to product commercialization within the business sector. The article describes how technology transfer can be linked to…

  14. Managing knowledge: a technology transfer case study in IEN

    International Nuclear Information System (INIS)

    Pereira, Ana Gabriella Amorim Abreu

    2009-01-01

    Knowledge management is paramount nowadays. In order to enable the members of an organization to deal with their current situations effectively it is mandatory to know and enhance its intellectual capital. Managing the organization knowledge is important to the extent that it allows and reinforce its mission (what we are trying to accomplish?), and performance (how do we deliver the results?). As a result of a knowledge management effort, the organization can create value for itself and for society as a whole. In this paper, we argue that a technology developed at a research institute and transferred to an industry is knowledge to be managed in order to create value, both for the society and for the Institute. In order to manage such knowledge, it is proposed an approach to enhance the value creation potential of a technology transfer. This paper propose an investigation to expand the understanding on how a public research institute and a private firm could introduce their value creation wishes into a technology transfer agreement in a way to reflect and provide the realization of those wishes. It is proposed that, from the identification of the organizations expectations it is possible to infer which agreement attributes will contribute to that value creation and to establish satisfactory agreement configurations. These configurations have the potential to generate those consequences, given that, through the transfer, each organization seeks to increase potential benefits and to reduce potential sacrifices. Supported by exchange flow and value creation models, by the knowledge management and the means-end theory, an approach to increase the value creation potential of a technology transfer is proposed. Evidences from a case study sustain the proposed approach. The case study unity is the Instituto de Engenharia Nuclear, a public research institute. (author)

  15. Multigigabit wireless transfer of trigger data through millimetre wave technology

    International Nuclear Information System (INIS)

    Brenner, R; Cheng, S

    2010-01-01

    The amount of data that can be transferred from highly granular tracking detectors with several million channels is today limited by the available bandwidth in the readout links which again is limited by power budget, mass and the available space for services. The low bandwidth prevents the tracker from being fully read out in real time which is a requirement for becomming a part of the first level trigger. To get the tracker to contribute to the fast trigger decision the data transfer bandwidth from the tracker has either to be increased for all data to be read out in real time or the quantity of the data to be reduced by improving the quality of the data or a combination of the two. A higher data transfer rate can be achieved by increasing the the number of data links, the data transfer speed or a combination of both. The quantity of data read out from the detector can be reduced by introducing on-detector intelligence. Next generation multigigabit wireless technology has several features that makes the technology attractive for use in future trackers. The technology can provide both higher bandwidth for data readout and means to build on-detector intelligence to improve the quality of data. The emerging millimetre wave technology offers components that are small size,low power and mass thus well suited for integration in trackers. In this paper the feasibility of wireless transfer of trigger data using 60 GHz radio in the future upgraded tracker at the Super Large Hadron Collider (SLHC) is investigated.

  16. Landfill Gas Energy Project Development Handbook

    Science.gov (United States)

    View handbook that provides an overview of LFG energy project development guidance and presents the technological, economic and regulatory considerations that affect the feasibility and success of these projects.

  17. Electrical transformer handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Horne, D. (eds.)

    2005-07-01

    This handbook is a valuable user guide intended for electrical engineering and maintenance personnel, electrical contractors and electrical engineering students. It provides current information on techniques and technologies that can help extend the life of transformers. It discusses transformer testing, monitoring, design, commissioning, retrofitting and other elements involved in keeping electrical transformers in safe and efficient operation. It demonstrates how a power transformer can be put to use and common problems faced by owners. In addition to covering control techniques, testing and maintenance procedures, this handbook covers the power transformer; control electrical power transformer; electrical power transformer; electrical theory transformer; used electrical transformer; down electrical step transformer; electrical manufacturer transformer; electrical picture transformer; electrical transformer work; electrical surplus transformer; current transformer; step down transformer; voltage transformer; step up transformer; isolation transformer; low voltage transformer; toroidal transformer; high voltage transformer; and control power transformer. The handbook includes articles from leading experts on overcurrent protection of transformers; ventilated dry-type transformers; metered load factors for low-voltage, and dry-type transformers in buildings. The maintenance of both dry-type or oil-filled transformers was discussed with reference to sealing, gaskets, oils, moisture and testing. The adoption of dynamic load practices was also discussed along with the reclamation or recycling of used lube oil, transformer dielectric fluids and aged solid insulation. A buyer's guide and directory of transformer manufacturers and suppliers was also included. refs., tabs., figs.

  18. Westinghouse experience in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1977-01-01

    Westinghouse experience with transfer of technical information is two-sided. First is our experience in learning, and the second is our experience in teaching others. Westinghouse conducts a special school to which government, academic and industry people are invited. There are many problems involved in all technology transfers; these include: keeping information current, making certain changes are compatible with the supplier's manufacturing capability and also suitable to the receiver, patent right and proprietary information. The building, testing and maintenance of the unit on the line - and then a succession of its sister plant is the basis for the Westinghouse leadership

  19. PROMECE - Research Results Transfer - Collection of technology trends reports (ICT)

    OpenAIRE

    ITI

    2016-01-01

    Instituto Tecnológico de Informática has a non-economic Activities Plan (PROMECE) whose general objective is to strengthen the research lines in which the Institute works, within the scope of Information and Communication Technologies (ICT). Through this plan of activities a work is carried out to transfer the results obtained in the execution of R+D+I projects within these lines or areas of action. The transfer actions are aimed at companies and the industrial sector and society as a who...

  20. CTBT technical issues handbook

    International Nuclear Information System (INIS)

    Zucca, J.J.

    1994-05-01

    The purpose of this handbook is to give the nonspecialist in nuclear explosion physics and nuclear test monitoring an introduction to the topic as it pertains to a Comprehensive Test Ban Treaty (CTBT). The authors have tried to make the handbook visually oriented, with figures paired to short discussions. As such, the handbook may be read straight through or in sections. The handbook covers four main areas and ends with a glossary, which includes both scientific terms and acronyms likely to be encountered during CTBT negotiations. The following topics are covered: (1) Physics of nuclear explosion experiments. This is a description of basic nuclear physics and elementary nuclear weapon design. Also discussed are testing practices. (2) Other nuclear experiments. This section discusses experiments that produce small amounts of nuclear energy but differ from explosion experiments discussed in the first chapter. This includes the type of activities, such as laser fusion, that would continue after a CTBT is in force. (3) Monitoring tests in various environments. This section describes the different physical environments in which a test could be conducted (underground, in the atmosphere, in space, underwater, and in the laboratory); the sources of non-nuclear events (such as earthquakes and mining operations); and the opportunities for evasion. (4) On-site inspections. A CTBT is likely to include these inspections as an element of the verification provisions, in order to resolve the nature of ambiguous events. This chapter describes some technical considerations and technologies that are likely to be useful. (5) Selecting verification measures. This chapter discusses the uncertain nature of the evidence from monitoring systems and how compliance judgments could be made, taking the uncertainties into account. It also discusses how to allocate monitoring resources, given the likelihood of testing by various countries in various environments

  1. Technology transfer: federal legislation that helps businesses and universities

    Science.gov (United States)

    Oaks, Bill G.

    1992-05-01

    In 1980, Congress enacted the Stevenson-Wydler Technology Innovation Act to encourage federal laboratories to `spin off' their technology to industry, universities, and state and local governments. The law reflected Congressional concern for the economic well-being of the nation and the need for the United States to maintain its technological superiority. Almost half the nation's research is conducted in federal laboratories. Other legislation, the Small Business Innovation Development Act of 1982 and the National Cooperative Research Act of 1984, was followed by the Technology Transfer Act of 1986 that strengthened and consolidated policy concerning the technology transfer responsibilities of the federal labs. The law allows the labs to directly license their patents and permits the issuance of exclusive licenses. It allows the labs to enter into cooperative research and development agreements with industry, universities, and state and local governments. It institutionalized the Federal Laboratory consortium which, to that point in time, had been a formal but largely unrecognized body. Under the provisions of the law, the United States Air Force Rome Laboratory located in Rome, New York, as the Air Force lead laboratory in photonics research entered into an agreement with the Governor of the State of New York to collaborate in photonics research and development. Subsequent to that agreement, the state established the not-for-profit New York State Photonics Development Corporation in Rome to facilitate business access to Rome Laboratory's photonics research facilities and technologies. Rome Laboratory's photonics research and development program is described in this paper. The Technology Transfer Act of 1986 is summarized, and the roles and missions of the New York State Photonics Development Corporation is explained.

  2. Technology transfer and the Argentina-German cooperation agreement

    International Nuclear Information System (INIS)

    Di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessary imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has shown recently new concepts for the implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is conditioned by the latter requirement for simulataneous assistance to create or promote that infrastructure. An example of international cooperation to meet the requirement explained above is the Argentine-German agreement for the peaceful applications of nuclear energy. Since 1971 it has been used to strengthen the scientific and technical programs of the Argentine Atomic Energy Commission, by application to fields relevant by its industrial implications. The objectives and implementation of the agreement are described: cooperative actions where initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-76 are critically analyzed. This analysis has influenced the selection of future cooperative projects as well as the extension of the cooperation to other nuclear fields of common interest [es

  3. International co-operation and the transfer of nuclear technology

    International Nuclear Information System (INIS)

    di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessarily imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has recently shown new concepts for implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is tied to a requirement for simultaneous assistance in creating or promoting the infrastructure. An example of international co-operation to meet this requirement is the Argentine-German Agreement for the Peaceful Applications of Nuclear Energy. Since 1971 this has been used to strengthen the scientific and technical programmes of the Argentine Atomic Energy Commission in the relevant fields of industrial applications. The objectives and implementation of the agreement are described: co-operative actions were initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-1976 are critically analysed. This analysis has influenced the selection of future co-operative projects as well as the extension of the co-operation to other nuclear fields of common interest. (author)

  4. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  5. Technology transfer for Ukrainian milk treatment: A case study

    International Nuclear Information System (INIS)

    Dunn, M.J.; Walker, J.S.

    1994-01-01

    As a result of the Chernobyl Nuclear Power Plant accident, radioactive fission products have contaminated the food chain in the Ukraine. The highest doses to humans are a result of cesium contamination in milk. The milk produced in the Ukraine contains radioactive cesium at levels up to 10 times the acceptance standards. Bradtec has developed and demonstrated technology for the US Department of Energy for the treatment of groundwater and effluent water. This technology has also been tested and demonstrated for the Ukrainian government for the purpose of treating contaminated milk. Bradtec, a small business offering specialized technologies in the field of environmental remediation and waste management, has successfully worked with a consortium of businesses, National Laboratories and DOE Headquarters staff to develop and implement a technology demonstration strategy which has led to the implementation of a series collaboration agreements with Ukrainian officials. This paper describes, in a case study approach, the path followed by Bradtec and its collaboration partners in successfully implementing a technology transfer strategy. Also presented is an update on new programs that can provide benefit to private sector companies as DOE seeks to assist the private sector in joint venture/technology transfer relationships with the NIS (New Independent States). This paper should be of interest to all businesses seeking to participate in business opportunities in the NIS

  6. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  7. Imagining value, imagining users: academic technology transfer for health innovation.

    Science.gov (United States)

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  8. Electronic Handbooks Simplify Process Management

    Science.gov (United States)

    2012-01-01

    Getting a multitude of people to work together to manage processes across many organizations for example, flight projects, research, technologies, or data centers and others is not an easy task. Just ask Dr. Barry E. Jacobs, a research computer scientist at Goddard Space Flight Center. He helped NASA develop a process management solution that provided documenting tools for process developers and participants to help them quickly learn, adapt, test, and teach their views. Some of these tools included editable files for subprocess descriptions, document descriptions, role guidelines, manager worksheets, and references. First utilized for NASA's Headquarters Directives Management process, the approach led to the invention of a concept called the Electronic Handbook (EHB). This EHB concept was successfully applied to NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, among other NASA programs. Several Federal agencies showed interest in the concept, so Jacobs and his team visited these agencies to show them how their specific processes could be managed by the methodology, as well as to create mockup versions of the EHBs.

  9. Handbook of design research methods in education innovations in science, technology, engineering, and mathematics learning and teaching

    CERN Document Server

    Lesh, Richard A; Baek, John Y

    2008-01-01

    This Handbook presents the latest thinking and current examples of design research in education. Design-based research involves introducing innovations into real-world practices (as opposed to constrained laboratory contexts) and examining the impact of those designs on the learning process. Designed prototype applications (e.g., instructional methods, software or materials) and the research findings are then cycled back into the next iteration of the design innovation in order to build evidence of the particular theories being researched, and to positively impact practice and the diffusion of the innovation. The Handbook of Design Research Methods in Education-- the defining book for the field -- fills a need in how to conduct design research by those doing so right now. The chapters represent a broad array of interpretations and examples of how today's design researchers conceptualize this emergent methodology across areas as diverse as educational leadership, diffusion of innovations, complexity theory, an...

  10. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  11. VHA mental health information system: applying health information technology to monitor and facilitate implementation of VHA Uniform Mental Health Services Handbook requirements.

    Science.gov (United States)

    Trafton, Jodie A; Greenberg, Greg; Harris, Alex H S; Tavakoli, Sara; Kearney, Lisa; McCarthy, John; Blow, Fredric; Hoff, Rani; Schohn, Mary

    2013-03-01

    To describe the design and deployment of health information technology to support implementation of mental health services policy requirements in the Veterans Health Administration (VHA). Using administrative and self-report survey data, we developed and fielded metrics regarding implementation of the requirements delineated in the VHA Uniform Mental Health Services Handbook. Finalized metrics were incorporated into 2 external facilitation-based quality improvement programs led by the VHA Mental Health Operations. To support these programs, tailored site-specific reports were generated. Metric development required close collaboration between program evaluators, policy makers and clinical leadership, and consideration of policy language and intent. Electronic reports supporting different purposes required distinct formatting and presentation features, despite their having similar general goals and using the same metrics. Health information technology can facilitate mental health policy implementation but must be integrated into a process of consensus building and close collaboration with policy makers, evaluators, and practitioners.

  12. The uncounted benefits: Federal efforts in domestic technology transfer

    Science.gov (United States)

    Chapman, R. L.; Hirst, K.

    1986-01-01

    Organized technology transfer activities conducted by the agencies of the U.S. government are described. The focus is upon agency or departmental level activity rather than the laboratory level. None of the programs on which information was collected has been assessed or evaluated individually. However, the aggregate programs of the government have been judged in terms of obvious gaps and opportunities for future improvement. An overview, descriptions of the various agency or department programs of technology transfer, a list of persons interviewed or consulted during the survey, and a bibliography of publications, reports and other material made available to the study staff are given. An extensive appendix of illustrative material collected from the various programs is also given.

  13. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  14. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  15. Technology Transfer and Outreach for SNL/Rochester ALPHA Project.

    Energy Technology Data Exchange (ETDEWEB)

    Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report describes the next stage goals and resource needs for the joint Sandia and University of Rochester ARPA-E project. A key portion of this project is Technology Transfer and Outreach, with the goal being to help ensure that this project develops a credible method or tool that the magneto-inertial fusion (MIF) research community can use to broaden the advocacy base, to pursue a viable path to commercial fusion energy, and to develop other commercial opportunities for the associated technology. This report describes an analysis of next stage goals and resource needs as requested by Milestone 5.1.1.

  16. Future orbital transfer vehicle technology study. Volume 2: Technical report

    Science.gov (United States)

    Davis, E. E.

    1982-01-01

    Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.

  17. US Export Controls and Technology Transfer Requirements: A UK Perspective

    Science.gov (United States)

    2010-05-01

    34 (La Franchi , 2006). Such requirements make it difficult for partners to participate and generate a large administrative burden on team members, who...if this critical impediment to enhanced cooperation is to be removed. The U.S. export control system is broken; its technology transfer rules ...Retrieved April 3, 2009, from http://www.jsf.mil/news/news2009.htm La Franchi , P. (2006, July 4). Australia demands JSF resolution. Flight International

  18. Fastening Transfer of Technology Through the Franchise Agreement

    OpenAIRE

    Asikin, Zainal

    2014-01-01

    The major improvement of franchise practices in Indonesian within the last 10 (ten) years has speeded to many region. Yet the government and local government under informed about the exact concept and regulation of franchise. Therefore this research meant to find out the concept of franchise and how the government regulate franchise agreement and its relation with transfer of technology. This research in a normative research as a way to depth study legal norms in various primary and secondary...

  19. Nuclear engineering and manufacturing technology transfer coproduction with technical assistance

    International Nuclear Information System (INIS)

    Marillier, J.C.; Boury, C.

    1985-10-01

    This paper emphasizes in the specific areas of design, engineering, and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of successful implementation of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  20. Doctor-Patient Knowledge Transfer: Innovative Technologies and Policy Implications

    OpenAIRE

    Sára, Zoltán; Csedő, Zoltán; Tóth, Tamás; Fejes, József; Pörzse, Gábor

    2013-01-01

    The aim of this study was to empirically investigate the barriers in doctor-patient communication and knowledge transfer and the role of innovative technologies in overcoming these barriers. We applied qualitative research methods. Our results show that patients extensively use information sources, primarily the Internet before the visits. Patients regularly apply a self-diagnosis regarding their diseases. This implies several risks as many of them are not able to properly inte...

  1. INTERNATIONAL TECHNOLOGY TRANSFER AND LOCALIZATION: SUCCESS STORIES IN NUCLEAR BRANCH

    Directory of Open Access Journals (Sweden)

    Yulia V. Chernyakhovskaya

    2016-01-01

    Full Text Available countries are considering nuclear power industry development [2, p. 3; 3, p. 3; 4]. For newcomer-countries it is of great importance to stimulate the national industry through NPP projects implementation based on technology transfer and localization (TTL. The study and systematization of world experience is useful in purpose to elaborate the national industry development programs. Objectives. The aim of article is to determine success factors of TTL; tasks: 1 to study TTL international experience in the fi eld of nuclear power technologies; 2 on the ground of the world practice to analyze preconditions, contents, stages, arrangement modes, formats and results of TTL. Methods. The following methods are utilized in the study: analysis and synthesis including problem-chronological, cause and eff ect and logical analysis and historical-diachronic method (method of periodization. Results. The following conclusions presented below have been made on the basis of the three cases study related to nuclear industry development using TTL (France, South Korea and China. Conclusions. The TTL success factors includes: Government support that provides long-term governmental development plan of nuclear power and industry for nuclear power based on TTL, and an appropriate international cooperation (under favorable conditions of “NPP buyers market”; Complex approach to implementation of the national TTL program and NPP construction projects: signing of NPP construction contracts with vendors stipulating technology transfer; NPP designing and constructing should be performed jointly with training and transferring of technical documentation and software. Technology transfer cooperation should be implemented through the licenses agreements and setting up joint ventures; Public acceptance and support.

  2. Technology Transfer of Isotopes-Based Assay: Strategies and Mechanisms

    International Nuclear Information System (INIS)

    Tabbada, R.S.D.C.; Rañada, M.L.O.; Mendoza, A.D.L.; Panganiban, R.; Castañeda, S.S.; Sombrito, E.Z.; Arcamo, S.V.R.

    2015-01-01

    Receptor Binding Assay for Paralytic Shellfish Poisoning (PSP RBA) is an isotope-based assay for detection and quantification of PSP toxins in seafood. It was established in the Philippines through a national program based on the recommendations of the Expert Mission sent by the International Atomic Energy Agency (IAEA). Through the said program, the Philippines Nuclear Research Institute (PNRI) was able to put up an RBA facility and develop expertise. Advantages of the technique against Mouse Bioassay (MBA) and high-performance Liquid Chromatography (HPLC) methods were are established. RBA is being utilized by some developed countries as screening method for Harmful Algal Bloom (HAB) Monitoring. However, it was not immediately adopted by the national HAB regulatory body for the following reasons: (1) acceptance of RBA as an official national method of analysis for PSP, (2) logistics and financial concerns in building up and maintaining a RBA facility, (3) considerations on the use of radioactive materials. To address these issues, the Philippines Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD) approved a Grants-In-Aid Project to initiate and to facilitate the transfer of the RBA technology to the monitoring and regulatory body. The project has two major objectives: capacity building and technology transfer. The capacity building focuses on human resources development of HAB monitoring personnel, specifically training on RBA and on the use of radioactive materials. On the other hand, the technology transfer deals with assistance that PNRI may render in establishing the new RBA facility and over-all know-how of the project. In this is poster, the mechanisms and strategies being undertaken by PNRI, in collaboration with the regulatory and monitoring body, to address the limitation of transferring a technology that utilizes radioactive materials including the technical difficulties are presented and discussed. (author)

  3. Handbook of smoke control engineering

    CERN Document Server

    Klote, John H; Turnbull, Paul G; Kashef, Ahmed; Ferreira, Michael J

    2012-01-01

    The Handbook of Smoke Control Engineering extends the tradition of the comprehensive treatment of smoke control technology, including fundamental concepts, smoke control systems, and methods of analysis. The handbook provides information needed for the analysis of design fires, including considerations of sprinklers, shielded fires, and transient fuels. It is also extremely useful for practicing engineers, architects, code officials, researchers, and students. Following the success of Principles of Smoke Management in 2002, this new book incorporates the latest research and advances in smoke control practice. New topics in the handbook are: controls, fire and smoke control in transport tunnels, and full-scale fire testing. For those getting started with the computer models CONTAM and CFAST, there are simplified instructions with examples. This is the first smoke control book with climatic data so that users will have easy-to-use weather data specifically for smoke control design for locations in the U.S., Can...

  4. Comparative Characteristics of Technology Transfer in Developed Countries

    Directory of Open Access Journals (Sweden)

    Natalia Palii

    2013-08-01

    Full Text Available The research into innovation transfer in the global economy is a very urgent issue under the modern conditions of development of any country. Comparative characteristics of technology transfer in such countries and regions as the USA, EU, Asia, presented in the article, permit us to detect certain patterns of this process inherent both in developed and developing countries. The analysis made in the article can be useful for developing technology transfer processes in the Danube countries’ economy. The analytical method used in this research allowed us to determine the factor that is crucial for the growth of the world market of high-technology products and services. The analysis was conducted on several criteria such as the level of expenditure on R&D in the whole global economy, as well as in individual countries and regions. Besides, there were taken into account the added value of high-tech industries and the share of expenditure on R&D in total production costs. The conclusions regarding the effectiveness of funds allocated for scientific research and experimental development in the U.S. can be drawn on the basis of data presented in the paper on the amount of added value of the U.S. high-tech industries.

  5. E-Beam - a new transfer system for isolator technology

    International Nuclear Information System (INIS)

    Sadat, Theo; Huber, Thomas

    2002-01-01

    In every aseptic filling application, the sterile transfer of goods into the aseptic area is a challenge, and there are many different ways to do it. With isolator technology a higher sterility assurance level (SAL) is achieved. This SAL is only as good as the weakest segment in the chain of manufacturing. The transfer of goods into and out of the isolator is one of these critical segments. Today different techniques, some already well established, others still very new, are available on the market like: dry heat tunnel, autoclave, pulsed light, rapid transfer systems (RTP), H 2 O 2 tunnel, UV light, etc. all these systems are either not applicable for continuous transfer, only good for heat-compatible materials like glass, or do not guarantee a 6 log spore reduction. E-Beam opens new perspectives in this field. With E-beam technology it is possible to transfer heat-sensitive (plastic), pre-sterilised materials at high speed, continuously into an aseptic area. E-Beam unifies three different technologies, that result in a very efficient and high-speed decontamination machine designed for the pharmaceutical industry. First, there is the electron beam that decontaminates the goods and an accurate shielding that protects the surrounding from this beam. Second, there is the conveyor system that guarantees the output and the correct exposure time underneath the beam. And third, there is the isolator interface to provide correct differential pressure and clean air inside the tunnel as well as the decontamination of the tunnel with H 2 O 2 prior to production. The E-beam is a low-energy electron beam, capable of decontaminating any kind of surface. It penetrates only a few micrometers into the material and therefore does not deform the packaging media. Currently, machines are being built to transfer pre-sterilised syringes, packed in plastic tubs with a Tyvek cover into an aseptic filling isolator with the following data: decontamination efficiency of 10 6 (6 log spore

  6. Handbook for sound engineers

    CERN Document Server

    Ballou, Glen

    2013-01-01

    Handbook for Sound Engineers is the most comprehensive reference available for audio engineers. All audio topics are explored: if you work on anything related to audio you should not be without this book! The 4th edition of this trusted reference has been updated to reflect changes in the industry since the publication of the 3rd edition in 2002 -- including new technologies like software-based recording systems such as Pro Tools and Sound Forge; digital recording using MP3, wave files and others; mobile audio devices such as iPods and MP3 players. Over 40 topic

  7. Handbook of enumerative combinatorics

    CERN Document Server

    Bona, Miklos

    2015-01-01

    Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklós Bóna of the University of Florida where he is a member of the Academy of Distinguished Teaching Scholars. He received his Ph.D. in mathematics at Massachusetts Institute of Technology in 1997. Miklós is the author of four books and more than 65 research articles, including the award-winning C

  8. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  9. HVAC systems design handbook

    CERN Document Server

    Haines, Roger W

    2010-01-01

    Thoroughly updated with the latest codes, technologies, and practices, this all-in-one resource provides details, calculations, and specifications for designing efficient and effective residential, commercial, and industrial HVAC systems. HVAC Systems Design Handbook, Fifth Edition, features new information on energy conservation and computer usage for design and control, as well as the most recent International Code Council (ICC) Mechanical Code requirements. Detailed illustrations, tables, and essential HVAC equations are also included. This comprehensive guide contains everything you need to design, operate, and maintain peak-performing HVAC systems.

  10. Embedded systems handbook

    CERN Document Server

    Zurawski, Richard

    2005-01-01

    Embedded systems are nearly ubiquitous, and books on individual topics or components of embedded systems are equally abundant. Unfortunately, for those designers who thirst for knowledge of the big picture of embedded systems there is not a drop to drink. Until now. The Embedded Systems Handbook is an oasis of information, offering a mix of basic and advanced topics, new solutions and technologies arising from the most recent research efforts, and emerging trends to help you stay current in this ever-changing field.With preeminent contributors from leading industrial and academic institutions

  11. Heat pump planning handbook

    CERN Document Server

    Bonin, Jürgen

    2015-01-01

    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  12. Handbook of mathematics

    CERN Document Server

    Kuipers, L

    1969-01-01

    International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp

  13. Seals and sealing handbook

    CERN Document Server

    Flitney, Robert K

    2014-01-01

    Seals and Sealing Handbook, 6th Edition provides comprehensive coverage of sealing technology, bringing together information on all aspects of this area to enable you to make the right sealing choice. This includes detailed coverage on the seals applicable to static, rotary and reciprocating applications, the best materials to use in your sealing systems, and the legislature and regulations that may impact your sealing choices. Updated in line with current trends this updated reference provides the theory necessary for you to select the most appropriate seals for the job and with its 'Failur

  14. The SQUID Handbook

    CERN Document Server

    Braginski, Alex I

    2006-01-01

    This two-volume handbook offers a comprehensive and well coordinated presentation of SQUIDs (Superconducting Quantum Interference Devices), including device fundamentals, design, technology, system construction and multiple applications. It is intended to bridge the gap between fundamentals and applications, and will be a valuable textbook reference for graduate students and for professionals engaged in SQUID research and engineering. It will also be of use to specialists in multiple fields of practical SQUID applications, from human brain research and heart diagnostics to airplane and nuclear

  15. Technology transfer present and futures in the electronic arts

    Directory of Open Access Journals (Sweden)

    Brian Degger

    2008-01-01

    Full Text Available We are entering an era where creating the fantastical is possible in the arts. In the areas of mixed reality and biological arts, responsive works are created based on advances in basic science and technology. This is enabling scientists and artists to pose new questions. As the time between discovery and application is so short, artists need imaginative ways of accessing new technology in order to critique and use it.These are the new paints that the majority of artists cannot afford or access, technology to enable cloning of DNA, to print channels on a chip, to access proprietary 3G networks. Currently, partnerships or residencies are used to facilitate artist’s access to these technologies. What would they do if technology was available that enabled them to make any art work they so desire? Are the limitations in current technology an advantage rather than a disadvantage in some of their works? Does interaction with technologists make their work more robust? Are there disadvantages? How do they get access to the technology they require? Open source or proprietary? Or have they encountered the situation where their vision is greater than technology allows. When their work breaks because of this fact, is their art broken? Blast Theory (Brighton,UK, FoAM(Brussels, Belgium and Amsterdam, Netherlands, SymbioticA (Perth, Australia are organisations pushing technological boundaries in the service of art. This paper addresses some questions of technology transfer in relation to recent artworks, particularly I like Frank in Adelaide (Blast Theory, transient reality generators (trg (FoAM and Multi electrode array artist (MeART (SymbioticA.

  16. 75 FR 80830 - Proposed Collection; Comment Request; Technology Transfer Center External Customer Satisfaction...

    Science.gov (United States)

    2010-12-23

    ... Request; Technology Transfer Center External Customer Satisfaction Survey (NCI) SUMMARY: In compliance...: Technology Transfer Center External Customer Satisfaction Survey (NCI). Type of Information Collection...: Obtain information on the satisfaction of TTC's external customers with TTC customer services; collect...

  17. Key Findings and Recommendations for Technology Transfer at the ITS JPO

    Science.gov (United States)

    2011-03-18

    This report provides key findings and recommendations for technology transfer at the Intelligent Transportation Systems Joint Program Office (ITS JPO) based upon an assessment of best practices in technology transfer in other industries, such as nati...

  18. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics.

  19. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  20. Technology transfer: The key to successful space engineering education

    Science.gov (United States)

    Fletcher, L. S.; Page, R. H.

    The 1990s are the threshold of the space revolution for the next century. This space revolution was initiated by space pioneers like Tsiolkovsky, Goddard, and Oberth, who contributed a great deal to the evolution of space exploration, and more importantly, to space education. Recently, space engineering education programs for all ages have been advocated around the world, especially in Asia and Europe, as well as the U.S.A. and the Soviet Union. And yet, although space related technologies are developing rapidly, these technologies are not being incorporated successfully into space education programs. Timely technology transfer is essential to assure the continued education of professionals. This paper reviews the evolution of space engineering education and identifies a number of initiatives which could strengthen space engineering education for the next century.

  1. An example of technological transfer to industry: the 'IMI' project

    International Nuclear Information System (INIS)

    Stefanini, A.; Amendolia, S.R.; Annovazzi, A.; Baldelli, P.; Bigongiari, A.; Bisogni, M.G.; Catarsi, F.; Cetronio, A.; Chianella, M.; Cinti, M.N.; Delogu, P.; Fantacci, M.E.; Galimberti, D.; Gambaccini, M.; Gilardoni, C.; Iurlaro, G.; Lanzieri, C.; Meoni, M.; Novelli, M.; Pani, R.; Passuello, G.; Pellegrini, R.; Pieracci, M.; Quattrocchi, M.; Rosso, V.; Venturelli, L.

    2004-01-01

    Several INFN Sections and Departments of Physics of Italian Universities have spent many man-years in the attempt to adapt detector and read-out technologies, originally developed in the field of High Energy Physics, to the domain of biomedical apparatuses. The research covered such areas as the exploitation of crystals for the production of monochromatic X-ray beams, the development of devices for efficient X-ray detection, the design of advanced VLSI electronics, the improvement of Position Sensitive Photomultiplier Tubes and crystals for Nuclear Medicine gamma-cameras. These studies have been integrated in the Integrated Mammographic Imaging (IMI) project, funded by the Italian Government through the law 46/82 (art.10) and is carried on by five high-technology industries in Italy, namely LABEN, CAEN, AMS, GILARDONI and POL.HI.TECH. We report on the status of this technological transfer project

  2. Significance of promoting innovative efforts and technology transfer for industry

    Energy Technology Data Exchange (ETDEWEB)

    Rembser, J [Bundesministerium fuer Forschung und Technologie, Bonn-Bad Godesberg (Germany, F.R.)

    1978-11-01

    Technological know how and innovations will be of considerable future importance for West German industry. Changes in the reliability of sources of supply (energy, raw materials), the burden imposed on the environment by intensive industrial production and numerous private sources, and the stiffening of international competition necessitate cLoser collaboration between industry and government. Public aid in research and development efforts will assume an important role. In West Germany there is a wide variety of such governmental aids. The range extends from direct grants to enterprises for research and development work to the furnishing of advice to promote innovative efforts and technology transfer. Banks provide risk capital with governmental aid to firms trying to indroduce high-risk innovations into the market. In recent years the aim has been to provide small and medium-size firms with better access to technological know how and governmental aids.

  3. Transferring aviation human factors technology to the nuclear power industry

    International Nuclear Information System (INIS)

    Montemerlo, M.D.

    1981-01-01

    The purpose of this paper is to demonstrate the availability of aviation safety technology and research on problems which are sufficiently similar to those faced by the nuclear power industry that an agressive effort to adapt and transfer that technology and research is warranted. Because of time and space constraints, the scope of this paper is reduced from a discussion of all of aviation safety technology to the human factors of air carrier safety. This area was selected not only because of similarities in the human factors challenges shared by both industries (e.g. selection, training, evaluation, certification, etc.) but because experience in aviation has clearly demonstrated that human error contributes to a substantially greater proportion of accidents and incidents than does equipment failure. The Congress of the United States has placed a great deal of emphasis on investigating and solving human factors problems in aviation. A number of recent examples of this interest and of the resulting actions are described. The opinions of prominent aviation organizations as to the human factors problems most in need of research are presented, along with indications of where technology transfer to the nuclear power industry may be viable. The areas covered include: fatigue, crew size, information transfer, resource management, safety data-bases, the role of automation, voice and data recording systems, crew distractions, the management of safety regulatory agencies, equipment recertification, team training, crew work-load, behavioural factors, human factors of equipment design, medical problems, toxicological factors, the use of simulators for training and certification, determining the causes of human errors, the politics of systems improvement, and importance of both safety and public perception of safety if the industry is to be viable. (author)

  4. Handbook of radiation effects

    International Nuclear Information System (INIS)

    Holmes-Siedle, A.; Adams, L.

    1993-01-01

    This handbook is intended to serve as a tool for designers of equipment and scientific instruments in cases where they are required to ensure the survival of the equipment in radiation environments. High-technology materials, especially semiconductors and optics, tend to degrade on exposure to radiation in many different ways. Intense high-energy radiation environments are found in nuclear reactors and accelerators, machines for radiation therapy, industrial sterilization, and space. Some engineers have to build equipment which will survive a nuclear explosion from a hostile source. Proper handling of a disaster with radioactive materials requires equipment which depends utterly on semiconductor microelectronics and imaging devices. Thus the technology of radiation-tolerant electronics is an instrument for good social spheres as diverse as disaster planning and the exploration of Mars. In order to design equipment for intense environments like those described above, then degradation from high-energy irradiation must be seen as a basic design parameter. The aim of this handbook is to assist the engineer or student in that thought; to make it possible to write intelligent specifications; to offer some understanding of the complex variety of effects which occur when high-technology components encounter high-energy radiation; and to go thoroughly into the balance of choices of how to alleviate the effects and hence achieve the design aims of the project. Separate abstracts were prepared for 15 chapters of this book

  5. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Science.gov (United States)

    2010-10-01

    ... cooperative research and development agreements with public and private entities for purposes of conducting research and development and transferring technology to the private sector. In implementing the NCTTA, DOE....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of...

  6. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Science.gov (United States)

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  7. Differences in technology transfer between science-based and development-based industries : transfer mechanisms and barriers

    NARCIS (Netherlands)

    Gilsing, V.A.; Bekkers, R.N.A.; Bodas Freitas, I.M.; Steen, van der M.

    2011-01-01

    Although several studies in the wide body of literature on technology transfer have hinted at differences across industries, this still remains an understudied issue. Our study addresses this topic and considers to what degree technology transfer processes differ across different industrial sectors.

  8. [Development and technological transfer of functional pastas extended with legumes].

    Science.gov (United States)

    Granito, Marisela; Ascanio, Vanesa

    2009-03-01

    Development and technological transfer of functional pastas extended with legumes. Semolina pasta is a highly consumed foodstuff, the biological value of which is low because its protein is deficient in lysine. However, if the semolina is extended with legumes rich in this essential aminoacid, not only and aminoacid supplementation is produced, but also the dietary fibre and minerals are increased. In this work, pastas extended in 10% with a white variety of Phaseolus vulgaris and with Cajanus cajan were produced on a pilot plant scale, and this technology was transferred to a cooperative producing artisanal pastas. The cooking qualities and the physical, chemical, and nutritional characteristics of the pastas were evaluated, as well as the sensorial acceptability in institutionalized elderly people. The extension of the pastas with legume flours increased the optimum cooking time (15 to 20%), the weight (20% and 25%), and the loss of solids by cooking. Similarly, the functional value of the pastas increased by increasing the contents of minerals and dietary fibre. The protein content, as well as the protein digestibility in vitro also increased; however, the parameters of colour L, a and b, and the total starch content of the pastas decreased. At consumer level, the pastas extended with legumes had a good acceptability, for what it was concluded that the extension of the semolina with legume flours in the manufacture of pastas is technologically feasible.

  9. EPA and the Federal Technology Transfer Act: Opportunity knocks

    Energy Technology Data Exchange (ETDEWEB)

    Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

  10. Can CDM bring technology transfer to China?-An empirical study of technology transfer in China's CDM projects

    International Nuclear Information System (INIS)

    Wang Bo

    2010-01-01

    China has undertaken the greatest number of projects and reported the largest emission reductions on the global clean development mechanism (CDM) market. As technology transfer (TT) was designed to play a key role for Annex II countries in achieving greenhouse gas emission reductions, this study examines various factors that have affected CDM and TT in China. The proportion of total income derived from the certified emissions reductions (CER) plays a key role in the project owners' decision to adopt foreign technology. Incompatibility of CDM procedures with Chinese domestic procedures, technology diffusion (TD) effects, Chinese government policy and the role of carbon traders and CDM project consultants all contribute to the different degrees and forms of TT. International carbon traders and CDM consultants could play a larger role in TT in China's CDM projects as investors and brokers in the future.

  11. An illustrated landslide handbook for developing nations

    Science.gov (United States)

    Highland, Lynn M.; Bobrowsky, Peter

    2008-01-01

    As landslides continue to be a hazard that account for large numbers of human and animal casualties, property loss, and infrastructure damage, as well as impacts on the natural environment, it is incumbent on developed nations that resources be allocated to educate affected populations in less developed nations, and provide them with tools to effectively manage this hazard. Given that the engineering, planning and zoning, and mitigation techniques for landslide hazard reduction are more accessible to developed nations, it is crucial that such landslide hazard management tools be communicated to less developed nations in a language that is not overly technical, and provides information on basic scientific explanations on where, why and how landslides occur. The experiences of the United States, Canada, and many other nations demonstrate that, landslide science education, and techniques for reducing damaging landslide impacts may be presented in a manner that can be understood by the layperson. There are various methods through which this may be accomplished–community-level education, technology transfer, and active one-on-one outreach to national and local governments, and non-governmental organizations (NGOs), who disseminate information throughout the general population. The population at large can also benefit from the dissemination of landslide information directly to individual community members. The United States Geological Survey and the Geological Survey of Canada have just published and will distribute a universal landslide handbook that can be easily made available to emergency managers, local governments, and individuals. The handbook, “The Landslide Handbook: A Guide to Understanding Landslides” is initially published as U.S. Geological Survey Circular 1325, in English, available in print, and accessible on the internet. It is liberally illustrated with schematics and photographs, and provides the means for a basic understanding of landslides, with

  12. Handbook of systems toxicology

    National Research Council Canada - National Science Library

    Casciano, Daniel A; Sahu, Saura C

    2011-01-01

    "In the first handbook to comprehensively cover the emerging area of systems toxicology, the Handbook of Systems Toxicology provides an authoritative compilation of up-to-date developments presented...

  13. Technology transfer: Half-way houses. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview and also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.

  14. Gen IV Materials Handbook Implementation Plan

    International Nuclear Information System (INIS)

    Rittenhouse, P.; Ren, W.

    2005-01-01

    maintenance and enhancement. Contracting of development of the Handbook website is discussed in terms of host server options, cost, technology, developer background and cooperative nature, and company stability. One of the first and most important activities in website development will be the generation of a detailed Handbook product requirements document including case diagrams and functional requirements tables. The Implementation Plan provides a detailed overview of the organizational structure of the Handbook and details of Handbook preparation, publication, and distribution. Finally, the Implementation Plan defines Quality Assurance requirements for the Handbook

  15. Low-level-waste-treatment handbook

    International Nuclear Information System (INIS)

    Clinton, S.D.; Goeller, H.E.; Holladay, D.W.; Donaldson, T.L.

    1982-01-01

    The initial draft of the Low-Level Waste Treatment Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. A revised draft is scheduled to be delivered to DOE Headquarters in December 1982. The Handbook is designed to be useful to all individuals and groups concerned with low-level wastes. It is one of several volumes that will ultimately comprise a Low-Level Waste Technology Handbook. The objective of the Low-Level Waste Treatment Handbook is to present an overview of current practices related to the segregation, classification, volume reduction, solidification, handling, packaging, and transportation of LLW for disposal in a shallow land burial facility. The Handbook is intended to serve as a guide to individuals interested in the treatment and handling of low-level radioactive waste. The Handbook will not explicitly tell the user how to design and operate LLW treatment facilities, but rather will identify (1) kinds of information required to evaluate the options, (2) methods that may be used to evaluate these options, and (3) limitations associated with the selection of the treatment options. The focus of the Handbook is providing guidance on how to do waste treatment for disposal by shallow land burial

  16. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    Science.gov (United States)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  17. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System

    Science.gov (United States)

    vanDam, Andries

    1998-01-01

    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  18. Evaluation of technology transfer on collider quadrupole manufacture at LBL

    International Nuclear Information System (INIS)

    Boeer, J.; Fechteler, H.; Moryson, H.; Sommer, F.; Grueneberg, H.; Kreutz, R.; Krischel, D.; Bensiek, W.; Ryan, B.

    1992-01-01

    As part of the contract on the collider quadruple magnets a technology transfer to Siemens Power Generation Group (KWU) was performed at Lawrence Berkeley Laboratory, Berkeley in September 1991. One inner and outer 1 m long coil each should be manufactured under the surveillance of LBL staff to become familiar with the coil production facilities available at LBL. In addition, KWU had the possibility to observe the production process of 5 m quadruple coils. The work is successfully completed and provided additional information for the further hardware operations at the Siemens site

  19. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  20. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  1. PWR Power Plant Reactor Maintenance: Site Experience and Technology Transfer

    International Nuclear Information System (INIS)

    Callot, T. R.

    1986-01-01

    In France, Framatome participates in every scheduled outage. Abroad our participation which was restricted only to Belgium, a few years ago now includes several stations in Europe, South Africa and the United States. In conclusion, whatever the work may be and whenever it is to be performed far away from the home office, it is the policy of Fumarate to find an arrangement with a local company for technology transfer either on a case by cast basis or more suitable within the framework of a general cooperation agreement

  2. Photovoltaic engineering handbook

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, F; Ang, T G [Asian Institute of Technolgoy, Bangkok (TH)

    1990-01-01

    The Photovoltaic Engineering Handbook is a comprehensive 'nuts and bolts' guide to photovoltaic technology and systems engineering aimed at engineers and designers in the field. It is the first book to look closely at the practical problems involved in evaluating and setting up a PV power system. The authors' comprehensive insight into the different procedures and decisions that a designer needs to make. The book is unique in its coverage and the technical information is presented in a concise and simple way to enable engineers from a wide range of backgrounds to initiate, assess, analyse and design a PV system. Energy planners making decisions on the most appropriate system for specific needs will also benefit from reading this book. Topics covered include technological processes, including solar cell technology, the photovoltaic generator, photovoltaic systems engineering; characterization and testing methods, sizing procedure; economic analysis and instrumentation. (author).

  3. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  4. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  5. Mechanical engineer's handbook

    CERN Document Server

    Marghitu, Dan B

    2001-01-01

    The Mechanical Engineer's Handbook was developed and written specifically to fill a need for mechanical engineers and mechanical engineering students throughout the world. With over 1000 pages, 550 illustrations, and 26 tables the Mechanical Engineer's Handbook is very comprehensive, yet affordable, compact, and durable. The Handbook covers all major areas of mechanical engineering with succinct coverage of the definitions, formulas, examples, theory, proofs, and explanations of all principle subject areas. The Handbook is an essential, practical companion for all mechanic

  6. Technological transfers and cooperation in the field of climatic change

    International Nuclear Information System (INIS)

    Riedacker, A.

    2002-01-01

    Fighting against climatic changes and adapting to them is a necessary condition to achieve sustainable development. The ultimate goal of the Framework Convention on Climate Change signed in Rio in 1992, and specified in article 2, is to stabilize the concentrations of greenhouse gases at a level that does not threaten climatic systems and allows ecosystems to adapt to climatic change, ensures that food production is not in danger and that sustainable development be achieved. A radical paradigm change is required, and in particular the adoption of new technologies. First, the new technologies must assist in limiting the emissions of greenhouse gases, both in industrialized and developing countries, and to adapt to the climatic changes. The author is of the opinion that technology transfers represent a means to address the issue of climatic change. The concentration of carbon dioxide in the atmosphere continues to increase since the advent of the industrial revolution. It seems dubious that we will be able to stabilize the climate to its actual level, therefore we must learn to adapt while continuing to reduce the emissions of greenhouse gases. The author then examines the technological cooperation since the adoption of the Marrakech Accords in 2001. The next section deals with technological cooperation between francophone cities of the north and francophone cities of the south. The author concludes by placing the emphasis on the importance of regular meetings and the implementation of specialized networks, such as the network on the technology of arid regions, in an effort to assist the technological cooperation north-south and south-south in the fight against climatic change. 2 figs

  7. Semiconductors data handbook

    CERN Document Server

    Madelung, Otfried

    2004-01-01

    This volume Semiconductors: Data Handbook contains frequently used data from the corresponding larger Landolt-Börnstein handbooks in a low price book for the individual scientist working in the laboratory. The Handbook contain important information about a large number of semiconductors

  8. Applications of aerospace technology in biomedicine. A technology transfer profile: Patient monitoring

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    NASA contributions to cardiovascular monitoring are described along with innovations in intracardiac blood pressure monitoring. A brief overview of the process of NASA technology transfer in patient monitoring is presented and a list of bioinstrumentation tech briefs and the number of requests for technical support is included.

  9. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Savannah River Site Bagless Transfer Technology Applied at Hanford

    International Nuclear Information System (INIS)

    Wong, J.W.

    2001-01-01

    A ''bagless transfer'' process was developed at the Savannah River Site (SRS) to remove radioactive materials from glovebox enclosures for long-term storage in conformance with DOE Standard 3013. This process, unlike the more conventional ''bag-out'' process, produces an all-metal, helium-filled, welded storage container that does not contain materials subject to radiolytic decomposition. A Bagless Transfer System (BTS), utilizing this bagless transfer process, has been in service at SRS since August 1997. It is a semi-automated system that has proven to be very reliable during its three years of operation.The Plutonium Finishing Plant (PFP) at Hanford has a similar need for long-term storage of radioactive materials. The successful operation of the Savannah River Site BTS led to the selection of the same technology to fulfill the packaging need at Hanford. However, there are a number of differences between the existing SRS BTS and the system currently in operation at Hanford. These differences will be discussed in this paper. Additionally, a system is necessary to produce another all-metal, welded container into which the container produced by the BTS can be placed. This container must be in conformance with the criteria specified in DOE-STD-3013 for an outer container. SRS Engineers are developing a system (outer container welder), based on the tungsten inert gas (TIG) welding equipment used in the BTS, to produce this outer container

  11. Technology transfer - insider protection workshop (Safeguards Evaluation Method - Insider Threat)

    International Nuclear Information System (INIS)

    Strait, R.S.; Renis, T.A.

    1986-01-01

    The Safeguards Evaluation Method - Insider Threat, developed by Lawrence Livermore National Laboratory, is a field-applicable tool to evaluate facility safeguards against theft or diversion of special nuclear material (SNM) by nonviolent insiders. To ensure successful transfer of this technology from the laboratory to DOE field offices and contractors, LLNL developed a three-part package. The package includes a workbook, user-friendly microcomputer software, and a three-day training program. The workbook guides an evaluation team through the Safeguards Evaluation Method and provides forms for gathering data. The microcomputer software assists in the evaluation of safeguards effectiveness. The software is designed for safeguards analysts with no previous computer experience. It runs on an IBM Personal Computer or any compatible machine. The three-day training program is called the Insider Protection Workshop. The workshop students learn how to use the workbook and the computer software to assess insider vulnerabilities and to evaluate the benefits and costs of potential improvements. These activities increase the students' appreciation of the insider threat. The workshop format is informal and interactive, employing four different instruction modes: classroom presentations, small-group sessions, a practical exercise, and ''hands-on'' analysis using microcomputers. This approach to technology transfer has been successful: over 100 safeguards planners and analysts have been trained in the method, and it is being used at facilities through the DOE complex

  12. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  13. Future orbital transfer vehicle technology study. Volume 1: Executive summary

    Science.gov (United States)

    Davis, E. E.

    1982-01-01

    Reusable space and ground based LO2/LH2 OTV's, both advanced space engines and aero assist capability were compared. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. An all LO2/LH2 OTV fleet was also compared with a fleet of LO2/.H2 OTV's and electric OTV's. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. In this case, the LO2/LH2 OTV fleet provided a 23% advantage in total transportation cost. An accelerated technology LF2/LH2 OTV provided improvements in performance relative to LO2/.H2 OTV but has higher DDT&E cost which negated its cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but still did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on orbit propellant storage and transfer and on orbit maintenance capability.

  14. Key policy considerations for facilitating low carbon technology transfer to developing countries

    International Nuclear Information System (INIS)

    Ockwell, David G.; Watson, Jim; MacKerron, Gordon; Pal, Prosanto; Yamin, Farhana

    2008-01-01

    Based on Phase I of a UK-India collaborative study, this paper analyses two case studies of low carbon technologies-hybrid vehicles and coal-fired power generation via integrated gasification combined cycle (IGCC). The analysis highlights the following six key considerations for the development of policy aimed at facilitating low carbon technology transfer to developing countries: (1) technology transfer needs to be seen as part of a broader process of sustained, low carbon technological capacity development in recipient countries; (2) the fact that low carbon technologies are at different stages of development means that low carbon technology transfer involves both vertical transfer (the transfer of technologies from the R and D stage through to commercialisation) and horizontal transfer (the transfer from one geographical location to another). Barriers to transfer and appropriate policy responses often vary according to the stage of technology development as well as the specific source and recipient country contexts; (3) less integrated technology transfer arrangements, involving, for example, acquisition of different items of plant from a range of host country equipment manufacturers, are more likely to involve knowledge exchange and diffusion through recipient country economies; (4) recipient firms that, as part of the transfer process, strategically aim to obtain technological know-how and knowledge necessary for innovation during the transfer process are more likely to be able to develop their capacity as a result; (5) whilst access to Intellectual Property Rights (IPRs) may sometimes be a necessary part of facilitating technology transfer, it is not likely to be sufficient in itself. Other factors such as absorptive capacity and risks associated with new technologies must also be addressed; (6) there is a central role for both national and international policy interventions in achieving low carbon technology transfer. The lack of available empirical analysis

  15. Handbook for Policymackers

    DEFF Research Database (Denmark)

    Jensen, Ulla Højmark

    2016-01-01

    The purpose of the handbook is to support policy makers / decision makers by enabling them to make informed decisions about funding for second chance education or the adoption of its methods into mainstream education. The Handbook makes policy recommendations and provides guidelines to structure...... a quality assurance system that evidences success factors of second chance education and the value of informal learning. The handbook draws on the results of the literature review, the development of the quality assurance system (SMS system), the Teachers Handbook and the Organisational Handbook...

  16. Handbook on modelling for discrete optimization

    CERN Document Server

    Pitsoulis, Leonidas; Williams, H

    2006-01-01

    The primary objective underlying the Handbook on Modelling for Discrete Optimization is to demonstrate and detail the pervasive nature of Discrete Optimization. While its applications cut across an incredibly wide range of activities, many of the applications are only known to specialists. It is the aim of this handbook to correct this. It has long been recognized that "modelling" is a critically important mathematical activity in designing algorithms for solving these discrete optimization problems. Nevertheless solving the resultant models is also often far from straightforward. In recent years it has become possible to solve many large-scale discrete optimization problems. However, some problems remain a challenge, even though advances in mathematical methods, hardware, and software technology have pushed the frontiers forward. This handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It will be done in an academic handbook treatment...

  17. Technology transfer program at the Morgantown Energy Technology Center: FY 87 program report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.A.; Lessing, K.B.

    1987-10-01

    The Morgantown Energy Technology Center (METC), located in Morgantown, West Virginia, is an energy research center of the US Department of Energy's (DOE's) Office of Fossil Energy. The research and development work is different from research work conducted by other Government agencies. In DOE research, the Government is not the ultimate ''customer'' for the technologies developed; the ''customer'' is business and industry in the private sector. Thus, tehcnology transfer is a fundamental goal of the DOE. The mission of the Fossil Energy program is to enhance the use of the nations's fossil energy resources. METC's mission applies to certain technologies within the broad scope of technologies encompassed by the Office of Fossil Energy. The Government functions as an underwriter of risk and as a catalyst to stimulate the development of technologies and technical information that might otherwise proceed at a slower pace because of the high-risk nature of the research involved. The research programs and priorities are industry driven; the purpose is to address the perceived needs of industry such that industry will ultimately bring the technologies to the commercial market. As evidenced in this report, METC has an active and effective technology transfer program that is incorporated into all aspects of project planning and execution. Technology transfer at METC is a way of life---a part of everyday activities to further this goal. Each person has a charge to communicate the ideas from within METC to those best able to utilize that information. 4 figs., 20 tabs.

  18. Wave energy: technology transfer and generic R and D recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Scarr, D.; Kollek, R.; Collier, D.

    2001-07-01

    Arup have reviewed the status of the industry by way of individual interviews with all teams currently active in the UK as well as by research of international activities in the area. A preliminary technology workshop was organised to identify and discuss key issues with the teams and other industries. The following technology areas were discussed: (1) Regulatory Environment, HSE, Design Codes and Verification; (2) Construction Methods and Project Cost Estimation; (3) Marine Operations; (4) Mooring Systems; (5) Operations and Maintenance; (6) Materials; (7) Hydraulic Systems; (8) Pneumatic Systems; (9) Subsea Cables and Connectors; (10) Control Systems; (11) Power Quality and Grid Connection. The recommendations were made bearing in mind the proposed programme of Wave Energy Converter (WEC) prototype and power station development and the perceived need for further cost reductions. The major conclusions of the study were: The Wave Energy Industry is poorly co-ordinated. At present, all teams are working independently and commercial considerations force them to keep their ideas secret. There remains a lack of investor confidence and hence industrial support for the industry. Teams tend to be relatively small working out of University Departments or SMEs with some industrial backing. No major technological barriers to the development of Wave Energy Prototypes have been identified. All the issues raised under design, construction, deployment and operation can be addressed by transfer of technology from other industries, especially the offshore industry. However, costs, risks and approvals will need to be addressed. However, some technology gaps have been identified, notably in the areas of mooring and cable connections detailing, hydraulic machines and grid connection and energy storage. (author)

  19. FY05 Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions

  20. Reverse knowledge and technology transfer: imbalances caused by cognitive barriers in asymmetric relationships

    NARCIS (Netherlands)

    Millar-Schijf, Carla C.J.M.; Choi, Chong-Ju

    2009-01-01

    An imbalance exists in almost any type of knowledge and technology transfer due to the information asymmetry of the relationship. However, this is especially the case for reverse technology and knowledge transfer which is epitomised for us by "transfers from an MNC's subsidiary to its headquarters".

  1. Handbook of mass measurement

    CERN Document Server

    Jones, Frank E

    2002-01-01

    "How much does it weigh?" seems a simple question. To scientists and engineers, however, the answer is far from simple, and determining the answer demands consideration of an almost overwhelming number of factors.With an intriguing blend of history, fundamentals, and technical details, the Handbook of Mass Measurement sets forth the details of achieving the highest precision in mass measurements. It covers the whole field, from the development, calibration, and maintenance of mass standards to detailed accounts of weighing designs, balances, and uncertainty. It addresses the entire measurement process and provides in-depth examinations of the various factors that introduce error.Much of the material is the authors'' own work and some of it is published here for the first time. Jones and Schoonover are both highly regarded veterans of the U.S. National Institute of Standards and Technology. With this handbook, they have provided a service and resource vital to anyone involved not only in the determination of m...

  2. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  3. Renewable energy handbook

    Energy Technology Data Exchange (ETDEWEB)

    Fine, R

    1976-01-01

    The potential for renewable energy use in Canada is examined. It is pointed out that Canada can choose to begin to diversify its energy supply now, moving rapidly and smoothly towards an efficient energy society based on renewable energy sources; or, it can continue on its present course and face the possibility of being forced by necessity to make a later transition to renewable sources, probably with a great deal of economic and political disruption. The handbook begins with a discussion on major issues and options available. This second section deals with the technology, applications, and costs of direct solar energy utilization, solar thermal electricity generation, photovoltaic conversion, wind energy, biomass energy, tidal power, wave energy, ocean thermal energy, geothermal energy, heat pumps, and energy storage. Section three discusses how renewable energy might realistically supply Canada's energy requirements within a reasonable period of time. Some issues on how government, industry, and the individual may become involved to make this happen are suggested. A list of resource people and renewable energy businesses is provided in the last section. A recommended reading list and bibliography complete the handbook. (MCW)

  4. Ethanol production by extractive fermentation - Process development and technology transfer

    International Nuclear Information System (INIS)

    Daugulis, A.J.; Axford, D.B.; Mau, T.K.

    1991-01-01

    Extractive Fermentation is an ethanol processing strategy in which the operations of fermentation and product recovery are integrated and undertaken simultaneously in a single step. In this process an inert and biocompatible organic solvent is introduced directly into the fermentation vessel to selectively extract the ethanol product. The ethanol is readily recovered from the solvent at high concentration by means of flash vaporization, and the solvent is recycled in a closed loop back to the fermentor. This process is characterized by a high productivity (since ethanol does not build up to inhibitory levels), continuous operation, significantly reduced water consumption, and lower product recovery costs. The technical advantages of this processing strategy have been extensively demonstrated by means of a continuous, fully integrated and computer-controlled Process Demonstration Unit in the authors' laboratory. Numerous features of this technology have been protected by US patent. A thorough economic comparison of Extractive Fermentation relative to modern ethanol technology (continuous with cell recycle) has been completed for both new plants and retrofitting of existing facilities for a capacity of 100 million liters of ethanol per year. Substantial cost savings are possible with Extractive Fermentation ranging, depending on the process configuration, from 5 cents to 16 cents per liter. Activities are under way to transfer this proprietary technology to the private sector

  5. Does Technology Transfer Help Small and Medium Companies? Empirical Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Dae-Hwan Kim

    2016-11-01

    Full Text Available We challenge the view that technology transfer from big companies to small and medium (SM size companies helps SM companies to prosper. With a large dataset of SM companies in Korea, we utilize the stochastic production frontier (SPF model to examine the productivity of inputs and the generalized linear model (GLM to compare business performance between two groups of SM companies: SM companies that receive technology transfer and those that do not receive technology transfer from big companies. The empirical results demonstrate that the transfer of technology from big companies to SM companies help SM companies to enjoy productivity of capital. Nonetheless, SM companies receiving technology transfer were found to underperform in terms of labor productivity and profit margin compared to their counterparts. We further investigate the reasons why SM companies receiving technology transfer from big companies underperform relative to their counterparts, and our findings shows that the former do not export much of their product and face more difficulties such as lower price for their products imposed by big companies than the latter. By identifying the negative rather than the conventionally assumed positive effect of technology transfer, this paper contributes to the literature on the relationship between technology transfer and SM companies’ prosperity in the case of Korea. Our findings have important implications for how SM companies should strategize and rethink about the clauses embedded in the transfer of technology that they receive from big companies because technology transfer plays as a barrier to their prosperity.

  6. Springer handbook of ocean engineering

    CERN Document Server

    Xiros, Nikolaos

    2016-01-01

    The handbook is the definitive reference for the interdisciplinary field that is ocean engineering. It integrates the coverage of fundamental and applied material and encompasses a diverse spectrum of systems, concepts and operations in the maritime environment, as well as providing a comprehensive update on contemporary, leading-edge ocean technologies. Coverage includes but is not limited to; an overview of ocean science, ocean signals and instrumentation, coastal structures, developments in ocean energy technologies, and ocean vehicles and automation. The handbook will be of interest to practitioners in a range of offshore industries and naval establishments as well as academic researchers and graduate students in ocean, coastal, offshore, and marine engineering and naval architecture.

  7. What Motivates Brazilian Academic Researchers to Transfer Technology?

    Directory of Open Access Journals (Sweden)

    Lisiane Closs

    2013-12-01

    Full Text Available This study investigated what motivates Brazilian academic researchers to get involved in University-Industry Technology Transfer (UITT and deterrents to contributing to this process. The research relied on interviews with experienced academic scientists and managers from four universities in Brazil. Determination, persistence and entrepreneurship, related to motivational types Self-direction and Stimulation, were prominent. Hedonism, Achievement and Power - highlighting a shift in their professional identity - were also observed. Universalism type involved opening career opportunities, awakening and maintaining the interest of students. The major motivational goals were: generate resources, solve problems, professional challenge, personal gains, personal gratification, academic prestige, competition, and solving problems of society. Factors that discouraged researchers were: time required for UITT, lack of incentive, innovation environment, and fear of contravening university rules, among others. Knowledge of motivational profiles of academic scientists favors the development of incentive policies and programs for UITT, helping to attract and retain qualified researchers at Brazilian universities.

  8. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  9. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  10. Carbon emissions linked to capital and technology transfer

    International Nuclear Information System (INIS)

    Smith, P.F.

    1994-01-01

    Reducing carbon dioxide emissions, and hence global warming, could be achieved by placing a carbon budget on buildings and light vehicles. In this scheme, a building or vehicle is allocated an annual carbon budget expressed as kg/carbon. The user of the building or vehicle is then taxed for every carbon unit used over its budget limit. The aim of this paper is to extend this carbon budget idea in order to set up a formula for achieving capital and technology transfer from industrialized countries to developing countries. In addition, the author proposes a mechanism for linking historic carbon emissions caused in the industrialized world with compensation strategies for the developing nations. (UK)

  11. Handbook of smart antennas for RFID systems

    CERN Document Server

    2010-01-01

    The Handbook of Smart Antennas for RFID Systems is a single comprehensive reference on the smart antenna technologies applied to RFID. This book will provide a timely reference book for researchers and students in the areas of both smart antennas and RFID technologies. It is the first book to combine two of the most important wireless technologies together in one book. The handbook will feature chapters by leading experts in both academia and industry offering an in-depth description of terminologies and concepts related to smart antennas in various RFID systems applications.

  12. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  13. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  14. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Science.gov (United States)

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... to Edsel Brown, Assistant Director, Office of Technology, U.S. Small Business Administrator, 409...

  15. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    Science.gov (United States)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  16. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  17. A Conceptual Model of Technology Transfer for Public Universities in Mexico

    Directory of Open Access Journals (Sweden)

    Hugo Necoechea

    2013-12-01

    Full Text Available Technology transfer from academic and scientific institutions has been transformed into a strategic variable for companies and nations who wish to cope with the challenges of a global economy. Since the early 1970s, many technology transfer models have tried to introduce key factors in the process. Previous studies have shown that technology transfer is influenced by various elements. This study is based on a review of two recent technology transfer models that we have used as basic concepts for developing our own conceptual model. Researcher–firm networks have been considered as key elements in the technology transfer process between public universities and firms. The conceptual model proposed could be useful to improve the efficiency of existing technology transfer mechanisms.

  18. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-04-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-re- lated exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of disseminating knowledge and skills that a person owned to another per- son in order to generate higher productivity with new approach of producing a particular prod- uct or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most signifi- cant to influence technology transfer performance.

  19. Advanced robotic technologies for transfer at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1994-01-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs

  20. Handbook on data centers

    CERN Document Server

    Khan, Samee Ullah

    2015-01-01

    This handbook offers a comprehensive review of the state-of-the-art research achievements in the field of data centers. Contributions from international, leading researchers and scholars offer topics in cloud computing, virtualization in data centers, energy efficient data centers, and next generation data center architecture.  It also comprises current research trends in emerging areas, such as data security, data protection management, and network resource management in data centers. Specific attention is devoted to industry needs associated with the challenges faced by data centers, such as various power, cooling, floor space, and associated environmental health and safety issues, while still working to support growth without disrupting quality of service. The contributions cut across various IT data technology domains as a single source to discuss the interdependencies that need to be supported to enable a virtualized, next-generation, energy efficient, economical, and environmentally friendly data cente...

  1. Handbook of geomathematics

    CERN Document Server

    Nashed, M; Sonar, Thomas

    2015-01-01

    During the last three decades geosciences and geo-engineering were influenced by two essential scenarios: First, the technological progress has changed completely the observational and measurement techniques. Modern high speed computers and satellite based techniques are entering more and more all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment and about an expected shortage of natural resources. Obviously, both aspects, viz. efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne as well as space borne data of better and better quality explain the strong need of new mathematical structures, tools and methods. Mathematics concerned with geoscientific problems, i.e., Geomathematics, is becoming increasingly important. The ‘Handbook of Geomathematics’ deals with the qualitative and quantitative properties for the current and possible structures of the system Ea...

  2. Handbook of Intelligent Vehicles

    CERN Document Server

    2012-01-01

    The Handbook of Intelligent Vehicles provides a complete coverage of the fundamentals, new technologies, and sub-areas essential to the development of intelligent vehicles; it also includes advances made to date, challenges, and future trends. Significant strides in the field have been made to date; however, so far there has been no single book or volume which captures these advances in a comprehensive format, addressing all essential components and subspecialties of intelligent vehicles, as this book does. Since the intended users are engineering practitioners, as well as researchers and graduate students, the book chapters do not only cover fundamentals, methods, and algorithms but also include how software/hardware are implemented, and demonstrate the advances along with their present challenges. Research at both component and systems levels are required to advance the functionality of intelligent vehicles. This volume covers both of these aspects in addition to the fundamentals listed above.

  3. Determinants of International Technology Transfer: an Empirical Analysis of the Enterprise Europe Network

    Directory of Open Access Journals (Sweden)

    Carina Araújo

    2014-09-01

    Full Text Available This paper explores the key factors that foster technology transfer within the triad university-industry-government in an international context, i.e., the Enterprise Europe Network (EEN. Based on 71 technological Partnership Agreements (PAs, estimation results indicate that PAs associated to partners that provide their collaborators with the appropriate training in technology transfer-related issues, present substantial past experience in international or technological projects, and participate in extensive networks, are those that achieve better performances in terms of international technology transfer. High levels of formal schooling per se are not a key determinant of international technology transfer; the critical factor is highly educated human resources who receive complementary training in technology transfer issues.

  4. NASA Schedule Management Handbook

    Science.gov (United States)

    2011-01-01

    The purpose of schedule management is to provide the framework for time-phasing, resource planning, coordination, and communicating the necessary tasks within a work effort. The intent is to improve schedule management by providing recommended concepts, processes, and techniques used within the Agency and private industry. The intended function of this handbook is two-fold: first, to provide guidance for meeting the scheduling requirements contained in NPR 7120.5, NASA Space Flight Program and Project Management Requirements, NPR 7120.7, NASA Information Technology and Institutional Infrastructure Program and Project Requirements, NPR 7120.8, NASA Research and Technology Program and Project Management Requirements, and NPD 1000.5, Policy for NASA Acquisition. The second function is to describe the schedule management approach and the recommended best practices for carrying out this project control function. With regards to the above project management requirements documents, it should be noted that those space flight projects previously established and approved under the guidance of prior versions of NPR 7120.5 will continue to comply with those requirements until project completion has been achieved. This handbook will be updated as needed, to enhance efficient and effective schedule management across the Agency. It is acknowledged that most, if not all, external organizations participating in NASA programs/projects will have their own internal schedule management documents. Issues that arise from conflicting schedule guidance will be resolved on a case by case basis as contracts and partnering relationships are established. It is also acknowledged and understood that all projects are not the same and may require different levels of schedule visibility, scrutiny and control. Project type, value, and complexity are factors that typically dictate which schedule management practices should be employed.

  5. FINODEX Handbook for Entrepreneurs

    DEFF Research Database (Denmark)

    The handbook provides short introductions to necessary knowledge for applicants in the two calls in October 2014 and June 2015 where they can present an idea for product development and apply for up to 10,000 Euro. Furthermore, the handbook is relevant for the next phase, where the selected approx....... 50 projects elaborate detailed technical and market plans. Last, the handbook provides links to further study and information about how to get help in later phases....

  6. Energy Efficiency Governance: Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This handbook has been written to assist EE practitioners, government officials and stakeholders to establish effective EE governance structures for their country. The handbook provides readers with relevant information in an accessible format that will help develop comprehensive and effective governance mechanisms. For each of the specific topics dealt with (see Figure 1 in the Handbook), the IEA offers guidelines for addressing issues, or directs readers to examples of how such issues have been dealt with by specific countries.

  7. Technology transfer at CERN a study on inter-organizational knowledge transfer within multi-national R&D collaborations

    CERN Document Server

    Huuse, H; Streit-Bianchi, M

    2004-01-01

    This study focus on the knowledge aspect of inter-organizational technology transfer projects. We have studied two large R&D collaborations where CERN is involved as one of several participating organizations, in order to reveal the causalities related to the knowledge transfer processes within these projects. The objective of the study is to understand how knowledge transfer happens, identify influencing factors to the process, and finally investigate the outcome of such processes. The study is founded on a thorough literature review where we examine different aspects of inter-organizational knowledge transfer. Based on the theory, we develop an analytic framework and establish different elements in the knowledge transfer process to study in more detail. This framework illustrates the relation between the different elements in a knowledge transfer process and provides the structure for our empirical foundation. We perform an explanatory embedded multiple case study and analyze our findings in terms of th...

  8. The biodiesel handbook

    National Research Council Canada - National Science Library

    Knothe, Gerhard; Krahl, Jurgen; Van Gerpen, Jon Harlan

    2010-01-01

    .... The Biodiesel Handbook delivers solutions to issues associated with biodiesel feedstocks, production issues, quality control, viscosity, stability, applications, emissions, and other environmental...

  9. CRADA Payment Options | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY).

  10. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  11. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    Science.gov (United States)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  12. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  13. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  14. Moving R&D to the Marketplace, A Guidebook for Technology Transfer Managers

    Energy Technology Data Exchange (ETDEWEB)

    Mock, John E.; Kenkeremath, Deepak C.; Janis, F. Timothy

    1993-01-01

    This Guidebook serves as an introduction as well as a refresher for technology transfer managers. It focuses on the question: What can the Technology Transfer manager do when confronted by complex situations and events? The main functional issues addressed here concern the conduct of technology transfer in Technology Utilization programs. These R&D programs whose primary mission is to develop technologies that will be used outside of the Federal sector. Renewable energy, health care, and agricultural advances are technologies of this type. The contents of this Guidebook will be of value to managers in a variety of Federal, State, university and industry technology development and transfer programs. The general area of transferring service innovations is not covered here. The Guidebook is primarily about the development and care of hardware. This Guidebook makes no attempt to judge the value of specific technologies in meeting societal needs. Rather, it addresses the improvement of the technology transfer process itself. It does, however, include reminders that ascertainment of the social value of specific technologies is one of the important yet difficult tasks of R&D and technology transfer programs. [DJE-2005

  15. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  16. The Clean Development Mechanism as a Vehicle for Technology Transfer and Sustainable Development - Myth or Reality?

    Directory of Open Access Journals (Sweden)

    Gary Cox

    2010-09-01

    Full Text Available This paper critically examines the clean development mechanism (CDM established under Article 12 of the Kyoto Protocol in terms of its effectiveness as a vehicle for technology transfer to developing countries, a specific commitment under the UNFCCC. Fundamentally, the paper poses the question of whether technology transfer as part of the CDM is a myth or a reality in the broader context of sustainable development. Technology transfer between countries of the North and South is explored in a historical context and the emergence of technology transfer obligations is traced in multilateral environmental agreements. The architecture of the UNFCCC and the Kyoto Protocol are examined in relation to technology transfer obligations. Empirical studies are reviewed to gain an understanding of how CDM operates in practice, with a closer examination of a small number of recent CDM projects. There is an update on the Technology Mechanism being established under the Copenhagen Accord. The paper concludes with a summary of the benefits of CDM to date and its current limitations in achieving the scaling-up of affordable environmentally sound technology transfer envisaged in the Bali Action Plan. The conclusion is that technology transfer must be a much more explicit objective of CDM with better targeting of projects in order to achieve locally sustainable equitable outcomes. Furthermore, the link between CDM and technology transfer needs to be much more explicitly made in order that, in the long run, such interventions will lead to viable low emission development pathways in developing countries.

  17. Your idea and your university: issues in academic technology transfer.

    Science.gov (United States)

    Smith, Charles D

    2011-06-01

    Research discoveries may lead to products for commercial development. A central consideration for the researcher is how involved she or he will be in the commercialization process. In some cases, a university out-licenses the intellectual property, whereas in other cases, the investigator may want to be involved in the development process and choose to start his or her own company to develop and possibly to manufacture and sell the product. Before undertaking such a challenge, however, the investigator-turned-entrepreneur must consider a variety of issues, including career goals, financial and time commitments, potential conflicts of interest and/or commitment, start-up funding, and his or her ability to run a company or step aside to allow business experts to make necessary decisions. This paper discusses some personal considerations in deciding to start a spinout company and provides information on some of the available government grants to assist you should you decide to undertake your product's commercial development. In particular, the Small Business Innovative Research and Small Business Technology Transfer programs of federal funding agencies often are the source of early funding for new biomedical companies.

  18. Using CASE to Exploit Process Modeling in Technology Transfer

    Science.gov (United States)

    Renz-Olar, Cheryl

    2003-01-01

    A successful business will be one that has processes in place to run that business. Creating processes, reengineering processes, and continually improving processes can be accomplished through extensive modeling. Casewise(R) Corporate Modeler(TM) CASE is a computer aided software engineering tool that will enable the Technology Transfer Department (TT) at NASA Marshall Space Flight Center (MSFC) to capture these abilities. After successful implementation of CASE, it could then go on to be applied in other departments at MSFC and other centers at NASA. The success of a business process is dependent upon the players working as a team and continuously improving the process. A good process fosters customer satisfaction as well as internal satisfaction in the organizational infrastructure. CASE provides a method for business process success through functions consisting of systems and processes business models; specialized diagrams; matrix management; simulation; report generation and publishing; and, linking, importing, and exporting documents and files. The software has an underlying repository or database to support these functions. The Casewise. manual informs us that dynamics modeling is a technique used in business design and analysis. Feedback is used as a tool for the end users and generates different ways of dealing with the process. Feedback on this project resulted from collection of issues through a systems analyst interface approach of interviews with process coordinators and Technical Points of Contact (TPOCs).

  19. Transfer of technology: Management of disused radioactive sources

    International Nuclear Information System (INIS)

    Friedrich, V.

    2001-01-01

    The number of sealed radioactive sources worldwide is estimated to be in the millions, although the existing registries indicate a much smaller number. If a source is no longer needed or has become unfit for the intended application, it is classified as spent or disused source. The activity of a disused source may still be in the order of GBq or TBq. Recognizing the risk associated with disused radioactive sources and the number of incidents and accidents with a wide range of consequences including widespread contamination and deterministic health effects, the IAEA has embarked on various activities dealing with the safe management of disused radioactive sources. These activities include publication of up-to-date technical information and guidance, development and distribution of management tools, transfer of technology and know-how through training and technical co-operation projects and direct assistance to solve specific safety and technical problems. This paper briefly describes these activities with reference to publications and projects carried out in various Member States. (author)

  20. Transferring nuclear power technology to foster Chinese self-reliance

    International Nuclear Information System (INIS)

    Levi, J-D.

    1998-01-01

    Being convinced that nuclear energy will play an important role in meeting its huge future energy demands, China considers that the development of a very strong national nuclear industry capable of covering all aspects of a major national power program is of paramount importance.In this context, China has invited its foreign partners to propose contributions to the studies for this development, in view of establishing a suitable cooperation program with the entire Chinese nuclear power industry, including design institutes, equipment manufacturers, construction companies and plant operators.One of the main objectives defined by the Chinese authorities for the further development of their nuclear industry with some international cooperation is the achievement of a very high level of self-reliance by Chinese industry in all of the following areas: project management, design and engineering, construction, equipment design and manufacturing,operation and maintenance. The major key to reaching this target of overall and long term self reliance lies in the implementation of thorough design know how transfer towards all partners of the Chinese nuclear industry, who shall acquire the necessary capabilities so as to completely master nuclear engineering. While this policy might entail fairly high front end investments by the technology receivers, in terms of industrial infrastructure nad engineering capabilities it is expected to pay off over the long term with the development of a substantial nuclear power plant construction program.(DM)