WorldWideScience

Sample records for technology superconductivity energy

  1. Research and development of superconductivity for energy technology in electrotechnical laboratory

    International Nuclear Information System (INIS)

    Koyama, K.

    1984-01-01

    Superconductivity is a physical effect wherein the electrical resistivity disappears at cryogenic temperatures. Superconductivity has the advantage of following large current densities and high magnetic fields, which are stable and homogeneous. There are many applications of superconductivity which take advantage of these merits. It is of special importance to apply superconductors to alternative energy and energy saving technology. This paper presents briefly some of the research and development efforts to apply superconductivity to energy technology in the Electrotechnical Laboratory

  2. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  3. Superconductivity Engineering and Its Application for Fusion 3.Superconducting Technology as a Gateway to Future Technology

    Science.gov (United States)

    Asano, Katsuhiko

    Hopes for achieving a new source of energy through nuclear fusion rest on the development of superconducting technology that is needed to make future equipments more energy efficient as well as increase their performance. Superconducting technology has made progress in a wide variety of fields, such as energy, life science, electronics, industrial use and environmental improvement. It enables the actualization of equipment that was unachievable with conventional technology, and will sustain future “IT-Based Quality Life Style”, “Sustainable Environmental” and “Advanced Healthcare” society. Besides coil technology with high magnetic field performance, superconducting electoronics or device technology, such as SQUID and SFQ-circuit, high temperature superconducting material and advanced cryogenics technology might be great significance in the history of nuclear fusion which requires so many wide, high and ultra technology. Superconducting technology seems to be the catalyst for a changing future society with nuclear fusion. As society changes, so will superconducting technology.

  4. ORNL superconducting technology program for electric energy systems

    Science.gov (United States)

    Hawsey, R. A.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY-92 Peer Review of Projects, which was conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  5. Superconductivity application technologies. Superconducting quadrupole magnet and cooling system for KEK B factory

    International Nuclear Information System (INIS)

    Tsuchiya, Kiyosumi; Yamaguchi, Kiyoshi; Sakurabata, Hiroaki; Seido, Masahiro; Matsumoto, Kozo.

    1997-01-01

    At present in National Laboratory for High Energy Physics (KEK), the construction of B factory is in progress. By colliding 8 GeV electrons and 3.5 GeV positrons, this facility generates large amounts of B mesons and anti-B mesons, and performs the elementary particle experiment of high accuracy. It is the collision type accelerator of asymmetric two-ring type comprising 8 GeV and 3.5 GeV rings. In the field of high energy physics, superconductivity technology has been put to practical use. As the objects of superconductivity technology, there are dipole magnet for bending beam, quadrupole magnet for adjusting beam, large solenoid magnet used for detector and so on. Superconducting magnets which are indispensable for high energy, superconducting wire material suitable to accelerators, and the liquid helium cooling system for maintaining superconducting magnets at 4.4 K are reported. The technologies of metallic conductors and making their coils have advanced rapidly, and also cooling technology has advanced, accordingly, superconductivity technology has reached the stage of practical use perfectly. (K.I.)

  6. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  7. Civilian applications for superconducting magnet technology developed for defense

    International Nuclear Information System (INIS)

    Johnson, R.A.; Klein, S.W.; Gurol, H.

    1986-01-01

    Seventy years after its discovery, superconducting technology is beginning to play an important role in the civilian sector. Strategic defense initiative (SDI)-related research in space- and ground-based strategic defense weapons, particularly research efforts utilizing superconducting magnet energy storage, magnetohydrodynamics (MHD), and superconducting pulsed-power devices, have direct applications in the civilian sector as well and are discussed in the paper. Other applications of superconducting magnets, which will be indirectly enhanced by the overall advancement in superconducting technology, include high-energy physics accelerators, magnetic resonance imaging, materials purifying, water purifying, superconducting generators, electric power transmission, magnetically levitated trains, magnetic-fusion power plants, and superconducting computers

  8. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  9. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  10. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  11. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  12. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  13. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  14. Superconducting magnet technology for particle accelerators and detectors seminar

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    This lecture is an introduction to superconducting magnets for particle accelerators and detectors, the aim being to explain the vocabulary and describe the basic technology of modern superconducting magnets, and to explore the limits of the technology. It will include the following: - Why we need superconducting magnets - Properties of superconductors, critical field, critical temperature - Why accelerators need fine filaments and cables; conductor manufacture - Temperature rise and temperature margin: the quench process, training - Quench protection schemes. Protection in the case of the LHC. - Magnets for detectors - The challenges of state-of-the-art magnets for High Energy Physics

  15. Superconducting magnets technologies for large accelerator

    International Nuclear Information System (INIS)

    Ogitsu, Toru

    2017-01-01

    The first hadron collider with superconducting magnet technologies was built at Fermi National Accelerator Laboratory as TEVATRON. Since then, the superconducting magnet technologies are widely used in large accelerator applications. The paper summarizes the superconducting magnet technologies used for large accelerators. (author)

  16. Superconducting magnetic energy storage (SMES). Results of a technology assessment

    International Nuclear Information System (INIS)

    Fleischer, T.; Juengst, K.P.; Brandl, V.; Maurer, W.; Nieke, E.

    1995-05-01

    The authors report on results of a Technology Assessment study commissioned by the German Federal Ministry of Education, Science, Research and Technology. The objective of this study was to evaluate the potential of superconducting magnetic energy storage (SMES) technology with respect to the economical, political and organization structures in the Federal Republic of Germany. The main focus of the study was on the technical and economic potential of large-scale SMES for diurnal load levelling applications. It was shown that there is no demand for the development of large SMES in Germany in the short and medium term. A second range of applications investigated is storage of electric energy for immediate delivery or consumption of electric power in case of need or for periodic power supply within the range of seconds. Due to its excellent dynamic properties SMES has substantial advantages over conventional storage technologies in this field. For those so-called dynamic applications SMES of small and medium energy capacity are needed. It was shown that SMES may be economically attractive for the provision of spinning reserve capacity in electrical networks, in particular cases for power quality applications (uninterruptable power supply, UPS) and for the compensation of cyclic loads, as well as in some market niches. The use of SMES for storage of recuperated energy in electrical railway traction systems has been proven to be uneconomical. Mobile SMES applications are unrealistic due to technical and size limitations. In SMES systems the energy is stored in a magnetic field. Biological objects as well as technical systems in the vicinity of a SMES plant are exposed to this field. The knowledge on impacts of magnetic fields on sensitive technical systems as well as on living organisms and especially on effects on human health is rather small and quite uncertain. (orig./MM) [de

  17. Improving superconducting RF technology for high energy particle accelerators

    International Nuclear Information System (INIS)

    Leconte, P.

    1991-01-01

    A review of the state of the art is given. It shows recent proofs of success of the technology. An important R and D effort remains to be done in order to collect all the expectable benefits of RF superconductivity. (author)

  18. A chopper circuit for energy transfer between superconducting magnets

    International Nuclear Information System (INIS)

    Onishi, Toshitada; Tateishi, Hiroshi; Takeda, Masatoshi; Matsuura, Toshiaki; Nakatani, Toshio.

    1986-01-01

    It has been suggested that superconducting magnets could provide a medium for storing energy and supplying the large energy pulses needed by experimental nuclear-fusion equipment and similar loads. Based on this concept, tests on energy transfer between superconducting magnets are currently being conducted at the Agency of Industrial Science and Technology's Electrotechnical Laboratory. Mitsubishi Electric has pioneered the world's first chopper circuit for this application. The circuit has the advantages of being simple and permitting high-speed, bipolar energy transfer. The article describes this circuit and its testing. (author)

  19. Advances in elementary particle physics with applied superconductivity. Contribution of superconducting technology to CERN large hadron collider accelerator

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2011-01-01

    The construction of the Large Hadron Collider (LHC) was started in 1994 and completed in 2008. The LHC consists of more than seven thousand superconducting magnets and cavities, which play an essential role in elementary particle physics and its energy frontier. Since 2010, physics experiments at the new energy frontier have been carried out to investigate the history and elementary particle phenomena in the early universe. The superconducting technology applied in the energy frontier physics experiments is briefly introduced. (author)

  20. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  1. Superconducting Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1989-01-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high Tc materials on SMES is discussed

  2. FY 1999 report on the results of the superconductive energy application technology development/research on a total system, etc. Survey of potentiality of the commercialization of superconductive technology, effects of the introduction, etc. (Future course of the superconductive technology development in Japan); 1999 nendo chodendo denryoku oryokuyo gijutsu kaihatsu total system nado no kenkyu. Chodendo gijutsu no jitsuyoka kanosei oyobi donyu koka nado no chosa (Nippon ni okeru chodendo gijutsu kaihatsu no kongo no hokosei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    By the use of superconductive technology, the following are aimed at: marked reduction in power loss of electrical equipment and power transmission path, and size/weight reduction in electrical devices by high current/magnetic flux density. The superconductive technology has advantages such as great energy saving effect, CO2 reduction and global environmental preservation. As an example, concerning the superconductive generator now being developed under the New Sunshine Project, power loss can be reduced by half, and by the use of high magnetic field, size/weight can be reduced such as reduction in rotor diameter and reduction in weight by half. Further, as an innovative system, cited are the superconducting magnetic energy storage system (SMES) and flywheel energy storage system. The superconducting magnetic levitation railway, medical use MRI, etc. have also innovativity which is difficult to get in the conventional technology. Effects are also expected of introducing the process development using superconducting magnet such as magnetic separation, electromagnetic metallurgy, electromagnetic agitation and monocrytal growth convection control. Also cited is Josephson electronic device. High performance SQUID in bio-magnetic/non-destructive inspection is also expected to be developed. (NEDO)

  3. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb$_{3}$Sn for realizing Higher Field - NbTi to Nb$_{3}$Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb$_{3}$Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb$_{3}$Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb$_{3}$Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phase...

  4. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb3Sn for realizing Higher Field - NbTi to Nb3Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb3Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb3Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb3Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phases and Applications - Poss...

  5. Superconductivity - applications

    International Nuclear Information System (INIS)

    The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de

  6. Technology of RF superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams

  7. ORNL superconducting technology program for electric power systems

    Science.gov (United States)

    Hawsey, R. A.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  8. Superconducting Technology Assessment

    National Research Council Canada - National Science Library

    2005-01-01

    This Superconducting Technology Assessment (STA) has been conducted by the National Security Agency to address the fundamental question of a potential replacement for silicon complementary metal oxide semiconductor (CMOS...

  9. Contamination issues in superconducting cavity technology

    International Nuclear Information System (INIS)

    Kneisel, Peter

    1997-01-01

    The application of radio-frequency superconductivity technology in particle accelerator projects has become increasingly evident in recent years. Several large scale projects around the world are either completed or close to completion, such as CEBAF, HERA, TRISTAN and LEP. And superconducting cavity technology is seriously being considered for future applications in linear colliders (TESLA), high current proton accelerators (APT, spallation neutron sources), muon colliders and free electron lasers for industrial application. The reason for this multitude of activities are matured technology based on a better understanding of the phenomena encountered in superconducting cavities and the influence of improved material properties and contamination and quality control measures

  10. Superconducting magnetic energy storage (SMES) program, January 1-December 31, 1981

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1982-02-01

    Work reported is on the development of a 30 MJ superconducting magnetic energy storage (SMES) unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie. The 30 MJ superconducting coil manufacture was completed. Design of the seismic mounting of the coil to the nonconducting dewar lid and a concrete foundation is complete. The superconducting application VAR (SAVAR) control study indicated a low economic advantage and the SAVAR program was terminated. An economic and technological evaluation of superconducting fault current limiter (SFCL) was completed and the results are reported

  11. Technologies pioneered by LHC. Superconducting magnet and radiation-tolerant tracking detector

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Unno, Yoshinobu

    2007-01-01

    In the LHC project of proton-proton collisions exploring the energy frontier, superconducting magnets and radiation-tolerant tracking detector play fundamental roles as key technologies. The superconducting magnets contribute to bending and focusing particle beam by using high magnetic field created with the NbTi superconductor cooled to the superfluid temperature of He (1.9 K). In order to overcome the unprecedented radiation damage and to capture the particles emerging with high energy and high density, the large area and highly radiation-tolerant silicon semiconductor tracking detector has been developed for the LHC experiment. (author)

  12. Superconducting magnetic energy storage and superconducting self-supplied electromagnetic launcher

    Science.gov (United States)

    Ciceron, Jérémie; Badel, Arnaud; Tixador, Pascal

    2017-10-01

    Superconductors can be used to build energy storage systems called Superconducting Magnetic Energy Storage (SMES), which are promising as inductive pulse power source and suitable for powering electromagnetic launchers. The second generation of high critical temperature superconductors is called coated conductors or REBCO (Rare Earth Barium Copper Oxide) tapes. Their current carrying capability in high magnetic field and their thermal stability are expanding the SMES application field. The BOSSE (Bobine Supraconductrice pour le Stockage d'Energie) project aims to develop and to master the use of these superconducting tapes through two prototypes. The first one is a SMES with high energy density. Thanks to the performances of REBCO tapes, the volume energy and specific energy of existing SMES systems can be surpassed. A study has been undertaken to make the best use of the REBCO tapes and to determine the most adapted topology in order to reach our objective, which is to beat the world record of mass energy density for a superconducting coil. This objective is conflicting with the classical strategies of superconducting coil protection. A different protection approach is proposed. The second prototype of the BOSSE project is a small-scale demonstrator of a Superconducting Self-Supplied Electromagnetic Launcher (S3EL), in which a SMES is integrated around the launcher which benefits from the generated magnetic field to increase the thrust applied to the projectile. The S3EL principle and its design are presented. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  13. Detailed modeling of superconducting magnetic energy storage (SMES) system

    NARCIS (Netherlands)

    Chen, L.; Liu, Y.; Arsoy, A.B.; Ribeiro, P.F.; Steurer, M.; Iravani, M.R.

    2006-01-01

    This paper presents a detailed model for simulation of a Superconducting Magnetic Energy Storage (SMES) system. SMES technology has the potential to bring real power storage characteristic to the utility transmission and distribution systems. The principle of SMES system operation is reviewed in

  14. A feasibility demonstration program for superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Filios, P.G.

    1988-01-01

    The Defense Nuclear Agency, as the agent of the Strategic Defense Initiative (SDI) Office, has begun a program to build an engineering test model (ETM) of a superconducting magnetic energy storage (SMES) system. The ETM will serve to demonstrate the feasibility of using SMES technology to meet both SDI and public utility requirements for electric energy storage. SMES technology characteristics are reviewed and related to SDI and electric utility requirements. Program structure and schedule are related to specific objectives, and critical issues are defined

  15. Superconductive energy storage magnet study

    International Nuclear Information System (INIS)

    Rhee, S.W.

    1982-01-01

    Among many methods of energy storages the superconducting energy storage has been considered as the most promising method. Many related technical problems are still unsolved. One of the problems is the magnetizing and demagnetizing loss of superconducting coil. This loss is mainly because of hysteresis of pinning force. In this paper the hysteresis loss is calculated and field dependence of the a.c. losses is explained. The ratio of loss and stored energy is also calculated. (Author)

  16. Superconducting magnetic energy storage for electric utility load leveling: A study of cost vs. stored energy

    International Nuclear Information System (INIS)

    Luongo, C.A.; Loyd, R.J.

    1987-01-01

    Superconducting Magnetic Energy Storage (SMES) is a promising technology for electric utility load leveling. This paper presents the results of a study to establish the capital cost of SMES as a function of stored energy. Energy-related coil cost and total installed plant cost are given for construction in nominal soil and in competent rock. Economic comparisons are made between SMES and other storage technologies and peaking gas turbines. SMES is projected to be competitive at stored energies as low as 1000 MWh

  17. Advanced superconducting technology for global science: The Large Hadron Collider at CERN

    Science.gov (United States)

    Lebrun, Ph.

    2002-05-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organization for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology-high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system-to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 1034 cm-2ṡs-1, respectively with protons). After some ten years of focussed R&D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling the physics goals, performance challenges and design choices of the machine, we describe its major technical systems, with particular emphasis on relevant advances in the key technologies of superconductivity and cryogenics, and report on its construction progress.

  18. The progresses of superconducting technology for power grid last decade in China

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Liye; Gu, Hong Wei [Applied Superconductivity Laboratory, Chinese Academy of Sciences, Beijing (China)

    2015-03-15

    With the increasing development of renewable energy, it is expected that large-scale renewable power would be transported from the west and north area of China to the east and south area. For this reason, it will be necessary to develop a wide-area power grid in which the renewable energy would be the dominant power source, and the power grid will be faced by some critical challenges such as long-distance large-capacity power transmission, the stability of the wide-area power grid and the land use problem for the power grid. The superconducting technology for power (STP) would be a possible alternative for the development of China’s future power grid. In last decade, STP has been extensively developed in China. In this paper, we present an overview of the R and D of STP last decade in China including: 1) the development of high temperature superconducting (HTS) materials, 2) DC power cables, 3) superconducting power substations, 4) fault current limiters and 5) superconducting magnetic energy storage (SMES)

  19. The progresses of superconducting technology for power grid last decade in China

    International Nuclear Information System (INIS)

    Xiao, Liye; Gu, Hong Wei

    2015-01-01

    With the increasing development of renewable energy, it is expected that large-scale renewable power would be transported from the west and north area of China to the east and south area. For this reason, it will be necessary to develop a wide-area power grid in which the renewable energy would be the dominant power source, and the power grid will be faced by some critical challenges such as long-distance large-capacity power transmission, the stability of the wide-area power grid and the land use problem for the power grid. The superconducting technology for power (STP) would be a possible alternative for the development of China’s future power grid. In last decade, STP has been extensively developed in China. In this paper, we present an overview of the R and D of STP last decade in China including: 1) the development of high temperature superconducting (HTS) materials, 2) DC power cables, 3) superconducting power substations, 4) fault current limiters and 5) superconducting magnetic energy storage (SMES)

  20. Superconductivity in the 1990's

    International Nuclear Information System (INIS)

    Stekly, Z.J.J.

    1990-01-01

    Superconducting magnets, coils or windings are the basis for a range of major applications in the energy area such as energy storage in superconducting coils, magnets for fusion research, and rotating machinery. Other major applications of superconductivity include high energy physics where 1000 superconducting magnets are operated continuously in the Tevatron at Fermilab in Illinois, over 12,000 superconducting magnets will be required for the superconducting Super Collider being build near Dallas. The largest commercial application of superconductors is in magnets for magnetic resonance imaging (MRI) - a new medical diagnostic imaging technique with about 2,000 systems installed worldwide. These form a sizable technology base on which to evaluate and push forward applications such as magneto hydrodynamic propulsion of seagoing vessels. The attractiveness of which depends ultimately on the characteristics of the superconducting magnet. The magnet itself is a combination of several technology areas - the conductors, magnetics, structures and cryogenics. This paper reviews state-of-the-art in each of the technology areas as they relate to superconductors

  1. submitter Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?

    CERN Document Server

    Thomas, Heiko; Chervyakov, Alexander; Stückrad, Stefan; Salmieri, Delia; Rubbia, Carlo

    2016-01-01

    Despite the extensive research and development investments into superconducting science and technology, both at the fundamental and at the applied levels, many benefits of superconducting transmission lines (SCTL) remain unknown to the public and decision makers at large. This paper aims at informing about the progress in this important research field. Superconducting transmission lines have a tremendous size advantage and lower total electrical losses for high capacity transmission plus a number of technological advantages compared to solutions based on standard conductors. This leads to a minimized environmental impact and enables an overall more sustainable transmission of electric energy. One of the direct benefits may be an increased public acceptance due to the low visual impact with a subsequent reduction of approval time. The access of remote renewable energy (RE) sources with high-capacity transmission is rendered possible with superior efficiency. That not only translates into further reducing $CO_2...

  2. Superconductivity in energy technologies

    International Nuclear Information System (INIS)

    1990-01-01

    Four years after the sensational discovery the purpose of this book is to show the current state of the art, the technical-physical concepts and new aspects of the technical application and use of superconductors, in the field of energy technologies. The book will focus primarily on the following topics: general introductions; materials: requirements, properties, manufacture, processing; cryotechnology; machines, cables, switches, transformers; energy storage; magnetic engineering for fusion, transport and mass separation; magnets for particle accelerators; promotional activities, economy, patents. This book has been written by and for scientists and engineers working in industry, large-scale research institutions, universities and other research and application fields to help further their knowledge in this field. Apart from the current state of the art, the book also describes future application and development possibilities for the superconductor in power engineering. (orig.)

  3. Superconducting generator technology--an overview

    International Nuclear Information System (INIS)

    Edmonda, J.S.

    1979-01-01

    Application of superconducting technology to field windings of large ac generators provides virtually unlimited field capability without incurring resistive losses in the winding. Several small-scale superconducting generators have been built and tested demonstrating the feasibility of such concepts. For machines of much larger capacity, conceptual designs for 300 Mva and 1200 Mva have been completed. The development of a 300 Mva generator is projected. Designed, engineered and fabricated as a turbo generator, the superconducting machine is to be installed in a power plant, tested and operated in concert with a prime mover, the steam generator and the auxiliary support systems of the power plant. This will provide answers to the viability of operating a superconducting machine and its cryogenic handling systems in a full time, demanding environment. 21 refs

  4. Playing catch with energy between two superconducting coils

    International Nuclear Information System (INIS)

    Masuda, Masayoshi; Shintomi, Takakazu; Asaji, Kiyoyuki.

    1979-03-01

    The first performance of playing catch with energy between two 100 kJ superconducting magnets has been presented. The mechanism of the energy transfer as an interface between the superconducting coils is a thyristorized DC-AC-DC converter. The obtained experimental efficiency of energy transfer has been compared with the theory and good agreement has been obtained. The method will offer a versatile extension of superconductive technique in energy problems. (author)

  5. Advanced superconducting technology for global science: The Large Hadron Collider at CERN

    International Nuclear Information System (INIS)

    Lebrun, Ph.

    2002-01-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organization for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology-high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system-to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 10 34 cm -2 ·s -1 , respectively with protons). After some ten years of focussed R and D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling the physics goals, performance challenges and design choices of the machine, we describe its major technical systems, with particular emphasis on relevant advances in the key technologies of superconductivity and cryogenics, and report on its construction progress

  6. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  7. Superconducting energy stabilizer with charging and discharging DC-DC converters

    International Nuclear Information System (INIS)

    Kim, S.H.; Kostecki, E.L.; DeWinkel, C.C.

    1992-01-01

    This patent describes a superconducting energy stabilizer having multiple load connections and employing DC-DC conversion for storing energy in a superconducting inductive energy storage device having a first end and a second end, and for releasing the stored energy from the superconducting inductive energy storage device to a load or loads or to a utility or an industrial electrical distribution system, the superconducting energy stabilizer having multiple load connections and employing DC-DC conversion. It comprises: energy storage cell means for supplying energy to the load, discharging DC-DC converter means for releasing energy from the superconducting inductive energy storage device to the energy storage cell means, the discharging DC-DC converter means having input terminals, output terminals, and a discharging control line means for carrying signals controlling the operation of the discharging DC-DC converter means, one of the input terminals of the discharging DC-DC converter means coupled to the first end of the superconducting energy storage device

  8. A new power supply for superconductive magnetic energy storage system

    International Nuclear Information System (INIS)

    Karady, G.G.; Han, B.M.

    1992-01-01

    In this paper a new power supply for a superconductive magnetic energy storage system, which permits a fast independent regulation of the active and reactive power, is presented. The power supply is built with several units connected in parallel. Each unit consists of a 24-pulse bridge converter, thyristor-switched tap-changing transformer, and thyristor-switched capacitor bank. Its system operation is analyzed by computer simulation and a feasible system realization is shown. A superconductive magnetic energy storage system with the proposed power supply has the capability of leveling the load variation, damping the low-frequency oscillation, and improving the transient stability in the power system. This power supply can be built with commercially available components using well-proven technologies

  9. Modern technologies in rf superconductivity

    International Nuclear Information System (INIS)

    Lengeler, H.

    1994-01-01

    The development and application of superconducting rf cavities in particle accelerators is a fine example of advanced technology and of close cooperation with industry. This contribution examines the theoretical and present-day practical limitations of sc cavities and describes some advanced technologies needed for their large scale applications. (orig.)

  10. The future of superconducting technology

    International Nuclear Information System (INIS)

    Kolm, H.H.

    1974-01-01

    As soon as cryogenic engineering problems are convincingly solved, superconducting technology is destined to play a vital role in mining, pollution control, medicine, power generation and transmission, and metallurgy. (author)

  11. Fundamental of cryogenics (for superconducting RF technology)

    CERN Document Server

    Pierini, Paolo

    2013-01-01

    This review briefly illustrates a few fundamental concepts of cryogenic engineering, the technological practice that allows reaching and maintaining the low-temperature operating conditions of the superconducting devices needed in particle accelerators. To limit the scope of the task, and not to duplicate coverage of cryogenic engineering concepts particularly relevant to superconducting magnets that can be found in previous CAS editions, the overview presented in this course focuses on superconducting radio-frequency cavities.

  12. Future of IT, PT and superconductivity technology

    Science.gov (United States)

    Tanaka, Shoji

    2003-10-01

    Recently the Information Technology is developing very rapidly and the total traffic on the Internet is increasing dramatically. The numerous equipments connected to the Internet must be operated at very high-speed and the electricity consumed in the Internet is also increasing. Superconductivity devices of very high-speed and very low power consumption must be introduced. These superconducting devices will play very important roles in the future information society. Coated conductors will be used to generate extremely high magnetic fields of beyond 20 T at low temperatures. At the liquid nitrogen temperature they can find many applications in a wide range of Power Technology and other industries, since we have already large critical current and brilliant magnetic field dependences in some prototypes of coated conductors. It is becoming certain that the market for the superconductivity technology will be opened between the years of 2005 and 2010.

  13. Superconductivity and fusion energy—the inseparable companions

    Science.gov (United States)

    Bruzzone, Pierluigi

    2015-02-01

    Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.

  14. Superconducting magnetic energy storage, possibilities and limitations

    International Nuclear Information System (INIS)

    Bace, M.; Knapp, V.

    1981-01-01

    Energy storage is of great importance for the exploitation of new energy sources as well as for the better utilisation of conventional ones. Several proposals in recent years have suggested that superconducting magnets could be used as energy storage in large electricity networks. It is a purpose of this note to point out that the requirements which have to be met by energy storage in a large electricity network place serious limitation on the possible use of superconducting energy storage. (author)

  15. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  16. United States Superconducting MHD Magnet Technology Development Program

    International Nuclear Information System (INIS)

    Dawson, A.M.; Marston, P.G.; Thome, R.J.; Iwasa, Y.; Tarrh, J.M.

    1981-01-01

    A three-faceted program supported by the U.S. Dep of Energy is described. These facets include basic technology development, technology transfer and construction by industry of magnets for the national MHD program. The program includes the maintenance of a large component test facility; investigation of superconductor stability and structural behavior; measurements of materials' properties at low temperatures; structural design optimization; analytical code development; cryogenic systems and power supply design. The technology transfer program is designed to bring results of technology development and design and construction effort to the entire superconducting magnet community. The magnet procurement program is responsible for developing conceptual designs of magnets needed for the national MHD program, for issuing requests for quotation, selecting vendors and supervising design, construction, installation and test of these systems. 9 refs

  17. Fourteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    Presented are many short articles on various aspects of energy production, use, and conservation in industry. The impacts of energy efficient equipment, recycling, pollution regulations, and energy auditing are discussed. The topics covered include: New generation sources and transmission issues, superconductivity applications, integrated resource planning, electro technology research, equipment and process improvement, environmental improvement, electric utility management, and recent European technology and conservation opportunities. Individual papers are indexed separately

  18. Superconducting Magnetic Energy Storage (SMES). (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  19. Superconducting Magnetic Energy Storage (SMES). (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the technology and use of superconducting magnetic energy storage (SMES). The design, analysis, evaluation, and operation of SMES systems and equipment are discussed. Topics include utility scale SMES plants, SMES for transmission line stabilization, design and protection of superconducting magnets and coils, computer controlled SMES systems, and fusion power reactors. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  20. Superconducting rf activities at Cornell University

    International Nuclear Information System (INIS)

    Padamsee, H.; Hakimi, M.; Kirchgessner, J.

    1988-01-01

    Development of rf superconductivity for high energy accelerators has been a robust activity at the Cornell Laboratory of Nuclear Studies (LNS) for many years. In order to realize the potential of rf superconductivity, a two-pronged approach has been followed. On the one hand accelerator applications were selected where the existing state-of-the art of superconducting rf is competitive with alternate technologies, then LNS engaged in a program to design, construct and test suitable superconducting cavities, culminating in a full system test in an operating accelerator. On the second front the discovery and invention of ideas, techniques and materials required to make superconducting rf devices approach the ideal in performance has been aggressively pursued. Starting with the development of superconducting cavities for high energy electron synchrotrons, the technology was extended to high energy e + e - storage rings. The LE5 cavity design has now been adopted for use in the Continuous Electron Beam Accelerator Facility (CEBAF). When completed, this project will be one of the largest applications of SRF technology, using 440 LE5 modules[4]. In the last two years, the cavity design and the technology have been transferred to industry and CEBAF. Cornell has tested the early industrial prototypes and cavity pairs. LNS has developed, in collaboration with CEBAF, designs and procedures for cavity pair and cryomodule assembly and testing. Advanced research for future electron accelerators is badly needed if particle physicists hope to expand the energy frontier. Superconducting cavity technology continues to offer attractive opportunities for further advances in achievable voltage at reasonable cost for future accelerators. For Nb, the full potential implies an order of magnitude increase over current capabilities. 20 references, 11 figures

  1. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1997-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  2. Superconductive technologies for the Large Hadron collider at CERN

    CERN Document Server

    Rossi, L

    2000-01-01

    The Large Hadron Collider (LHC) project is the largest plant based on superconductivity and cryogenics: 27 km of tunnel filled with superconducting magnets and other equipment that will be kept at 1.9 K. The dipole magnets have to generate a minimum magnetic field of 8.3 T to allow collisions of proton beams at an energy of 14 TeV in the centre of mass. The construction of LHC started in 1997 at CERN in Geneva and required 10 years of research and development on fine- filament NbTi superconducting wires and cables, on magnet technology and on He-II refrigerators. In particular the project needs the production of about 1000 tons of high-homogeneity NbTi with current densities of more than 2000 A mm/sup -2/ at 9 T and 1.9 K, with tight control also of all other cable properties such as magnetization, interstrand resistance and copper resistivity. The paper describes the main dipole magnets and reviews the most significant steps in the research and development, focusing on the issues related to the conductor, to...

  3. Project in fiscal 1988 for research and development of basic technologies in next generation industries. Research and development of superconducting materials and superconducting elements (Achievement report on research and development of high-temperature superconducting elements); 1988 nendo koon chodendo soshi no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    With an objective of engineering utilization of superconducting materials in the electronics field, research and development has been inaugurated on superconducting elements having new functions. This paper summarizes the achievements in fiscal 1988. In the research of a superconducting element technology, researches were inaugurated on the four themes of the electric field effect type and charge injection type elements in the proximity effect type tri-terminal element, and low energy electron type and high energy electron type elements in the superconduction base type tri-terminal element. In bonding superconductors with semiconductors, discussions were given on a method to form both conductors by controlling oxygen concentrations of oxides having the same composition, and a method to laminate the superconductors on the semiconductors under super-high vacuum atmosphere. In the research of a new functional element technology, researches were inaugurated on the two themes of a single electron tunneling type tri-terminal element and a local potential tunneling type tri-terminal element. In addition, works were performed on epitaxial growth of high-quality superconducting films as a common basic technology, and such an assignment has been made clear as the necessity of controlling the crystalline azimuth. (NEDO)

  4. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  5. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Bob Lawrence and Associates, Inc., Alexandria, VA (United States)

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  6. Research for superconducting energy storage patterns and its practical countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, D.H., E-mail: lindehua_cn@yahoo.com.cn [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); Cui, D.J.; Li, B.; Teng, Y.; Zheng, G.L. [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); Wang, X.Q. [College of Physics, Chongqing University, JD Duz (USA)-CQU Institute for Superconductivity, Chongqing 400030 (China); State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030 (China)

    2013-10-15

    Highlights: • Proposed some new ideas and strategies about how to improve the energy storage density for SMES system. • Increasing the effective current density in the superconducting coils or optimizing the configuration of the SMES coil could improve the energy storage density. • A new conceive of energy compression is also proposed. -- Abstract: In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage.

  7. Research for superconducting energy storage patterns and its practical countermeasures

    International Nuclear Information System (INIS)

    Lin, D.H.; Cui, D.J.; Li, B.; Teng, Y.; Zheng, G.L.; Wang, X.Q.

    2013-01-01

    Highlights: • Proposed some new ideas and strategies about how to improve the energy storage density for SMES system. • Increasing the effective current density in the superconducting coils or optimizing the configuration of the SMES coil could improve the energy storage density. • A new conceive of energy compression is also proposed. -- Abstract: In this paper, we attempt to introduce briefly the significance, the present status, as well as the working principle of the primary patterns of the superconducting energy storage system, first of all. According to the defect on the lower energy storage density of existed superconducting energy storage device, we proposed some new ideas and strategies about how to improve the energy storage density, in which, a brand-new but a tentative proposal regarding the concept of energy compression was emphasized. This investigation has a certain reference value towards the practical application of the superconducting energy storage

  8. Development and operation of the JAERI superconducting energy recovery linacs

    Science.gov (United States)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  9. Superconducting technology program Sandia 1996 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1997-02-01

    Sandia's Superconductivity Technology Program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) Process development and characterization of thallium-based high-temperature superconducting closed system wire and tape, (2) Investigation of the synthesis and processing of thallium-based thick films using two-zone processing, and (3) Cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY96 in each of these areas

  10. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1995

    International Nuclear Information System (INIS)

    Hawsey, R.A.; Turner, J.W.

    1996-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1995 Annual Program Review held August 1-2, 1995. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems

  11. Superconductivity in high energy particle accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  12. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  13. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  14. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  15. Energy conservation and environmental benefits that may be realized from Superconducting Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1992-01-01

    This paper discusses the Superconducting Magnetic Energy Storage (SMES) technology which has the capability to significantly improve electrical system operations within electric utility systems. This has been demonstrated by Bonneville Power Administration in a 30-MJ SMES demonstration unit. Savings in utility operations from improved system efficiency, increased reliability, and reduced maintenance requirements contribute to the economic justification of SMES. Beyond these benefits, there are additional benefits which in the long run may significantly outweigh the electrical operational benefits. These benefits are the energy conservation and environmental benefits. Since SMES can uncouple generation from load, it can shift generation around, thereby changing the operational characteristics of the system. The technology has the capability of reducing fuel consumption which can in turn reduce emissions. In a regional setting it can potentially shift emissions both in volumes and in physical areas to avoid problem situations. With its capability to strategically shift generation and significantly affect emissions and air quality it can stretch clean energy generation options. With these attributes, SMES can be recognized as an energy and environmental management technology and tool

  16. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  17. Advanced Superconducting Technology for Global Science The Large Hadron Collider at CERN

    CERN Document Server

    Lebrun, P

    2002-01-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organisation for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology - high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system - to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 1034 cm-2.s-1, respectively with protons). After some ten years of focussed R&D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling ...

  18. Vacuum Technology for Superconducting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Chiggiato, P [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The basic notions of vacuum technology for superconducting applications are presented, with an emphasis on mass and heat transport in free molecular regimes. The working principles and practical details of turbomolecular pumps and cryopumps are introduced. The specific case of the Large Hadron Collider’s cryogenic vacuum system is briefly reviewed.

  19. Critical energy of superconducting composites

    International Nuclear Information System (INIS)

    Jayakumar, R.

    1987-01-01

    The stability of superconducting composites is studied in one-dimensional geometry and critical quench energies are calculated by solving for the steady state temperature profile which gives the minimum energy. The present calculations give lower values for the critical energy than previous estimates. The calculations are shown to be applicable to both direct cooled and impregnated conductors. Critical energies are also calculated including the effect of temperature dependence of conductor properties. (author)

  20. Superconducting energy store

    International Nuclear Information System (INIS)

    Elsel, W.

    1986-01-01

    The advantages obtained by the energy store device according to the invention with a superconducting solenoid system consist of the fact that only relatively short superconducting forward and return leads are required, which are collected into cables as far as possible. This limits the coolant losses of the cables. Only one relatively expensive connecting part with a transition of its conductors from room temperature to a low temperature is required, which, like the normal conducting current switch, is easily accessible. As the continuation has to be cooled independently of the upper part solenoid, cooling of this continuation part can prevent the introduction of large quantities of heat into the connected part solenoid. Due to the cooling of the forward and return conductors of the connecting cable with the coolant of the lower part solenoid, there are relatively few separations between the coolant spaces of the part solenoids. (orig./MM) [de

  1. Potential energy efficiency and conservation, economic, and environmental benefits from the implementation of superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Baumann, P.D.

    1992-01-01

    This paper reports on Superconducting Magnetic Energy Storage (SMES) which is a recent technology that has the capability to significantly improve electrical system operations within electric utility systems. The technology has already been demonstrated by Bonneville Power Administration in a 30-MJ SMES test demonstration unit. Savings in utility operations from improved system efficiency, increased reliability, and reduced maintenance requirements contribute to the economic justification of SMES. Beyond these benefits, there are additional benefits which in the long run may equal or outweigh the electrical operational benefits. These benefits are the energy conservation and environmental benefits. The technology has the capability of reducing fuel consumption which can in turn reduce emissions. In a regional setting it can shift emissions both in volumes and in physical. With its capability to strategically shift generation and significantly affect emissions and air quality it can stretch clean energy generation options, thus SMES can be seen as an energy and environmental management technology and tool

  2. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  3. SMES [Superconducting Magnetic Energy Storage] systems applications to improve quality service

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, P.; Gutierrez-Iglesias, J.L. [ASINEL (Spain); Bautista, A. [IBERDROLA (Spain); Rodriguez, J.M.; Urretavizcaya, E. [Red Electrica de Espana (Spain)

    1997-12-31

    This article presents the contribution of SMES (Superconducting Magnetic Energy Storage) systems to improvement quality of service, either as a mitigating element or as a power support for critical loads. It also describes these systems and its operation. Finally, a description is shown of the state of the art of this technology in Spain, as developed until now in the AMAS500 project. (Author)

  4. Coil protection for a utility scale superconducting magnetic energy storage plant

    International Nuclear Information System (INIS)

    Loyd, R.J.; Schoenung, S.M.; Rogers, J.D.; Hassenzahl, W.V.; Purcell, J.R.

    1986-01-01

    Superconducting Magnetic Energy Storage (SMES) is proposed for electric utility load leveling. Attractive costs, high diurnal energy efficiency (≥ 92%), and rapid response are advantages relative to other energy storage technologies. Recent industry-led efforts have produced a conceptual design for a 5000 MWh/1000 MW energy storage plant which is technically feasible at commercially attractive estimated costs. The SMES plant design includes a protection system which prevents damage to the magnetic coil if events require a rapid discharge of stored energy. This paper describes the design and operation of the coil protection system, which is primarily passive and uses the thermal capacity of the coil itself to absorb the stored electromagnetic energy

  5. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...

  6. Superconducted tour

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    Superconductivity - the dramatic drop in electrical resistance in certain materials at very low temperatures - has grown rapidly in importance over the past two or three decades to become a key technology for high energy particle accelerators. It was in this setting that a hundred students and 15 lecturers met in Hamburg in June for a week's course on superconductivity in particle accelerators, organized by the CERN Accelerator School and the nearby DESY Laboratory.

  7. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    International Nuclear Information System (INIS)

    Ogata, M; Matsue, H; Yamashita, T; Hasegawa, H; Nagashima, K; Maeda, T; Matsuoka, T; Mukoyama, S; Shimizu, H; Horiuchi, S

    2016-01-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper. (paper)

  8. Superconducting systems of advanced sources of electrical energy in the USSR

    International Nuclear Information System (INIS)

    Demirchian, K.S.

    1987-01-01

    Two examples illustrating some of the possible applications of the superconductivity effect are discussed in this presentation. One of these examples, the MHD method of energy conversion, illustrates the use of superconducting magnet systems for raising the efficiency of conversion of organic fuel energy to electrical energy. The other example, the magnet system of Tokamak-type fusion facility, illustrates the use of superconductivity in application to new sources of energy. The choice of these examples is governed by the fact that the availability of superconducting systems is essential in both cases. Furthermore, the development of such systems per se presents a major scientific and technical achievement based on extensive studies in the field of solid state physics, electro- and thermophysics and engineering

  9. Technological trends in energy industry

    International Nuclear Information System (INIS)

    Martin Moyano, R.

    1995-01-01

    According to the usual meaning, technological trends are determined by main companies and leading countries with capacity for the development and marketing of technology. Presently, those trends are addressed to: the development of cleaner and more efficient process for fossil fuels utilization (atmospheric and pressurized fluidized beds, integrated gasification in combined cycle, advanced combined cycles, etc), the development of safer and more economic nuclear reactors; the efficiency increase in both generation and utilisation of energy, including demand side management and distribution automation; and the reduction of cost of renewable energies. Singular points of these trends are: the progress in communication technologies (optical fibre, trucking systems, etc.); the fuel cells; the supercritical boilers; the passive reactors; the nuclear fusion; the superconductivity; etc. Spain belongs to the developed countries but suffer of certain technology shortages that places it in a special situation. (Author)

  10. Advances in superconducting materials and electronics technologies

    International Nuclear Information System (INIS)

    Palmer, D.N.

    1990-01-01

    Technological barriers blocking the early implementation of ceramic oxide high critical temperature [Tc] and LHe Nb based superconductors are slowly being dismantled. Spearheading these advances are mechanical engineers with diverse specialties and creative interests. As the technology expands, most engineers have recognized the importance of inter-disciplinary cooperation. Cooperation between mechanical engineers and material and system engineers is of particular importance. Recently, several problems previously though to be insurmountable, has been successfully resolved. These accomplishment were aided by interaction with other scientists and practitioners, working in the superconductor research and industrial communities, struggling with similar systems and materials problems. Papers published here and presented at the 1990 ASME Winter Annual Meeting held in Dallas, Texas 25-30 November 1990 can be used as a bellwether to gauge the progress in the development of both ceramic oxide and low temperature Nb superconducting device and system technologies. Topics are focused into two areas: mechanical behavior of high temperature superconductors and thermal and mechanical problems in superconducting electronics

  11. ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.

    2000-06-13

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  12. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W

    2000-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  13. ORNL Superconducting Technology Program for Electric Power Systems--Annual Report for FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, RA

    2002-02-18

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. A new part of the wire research effort was the Accelerated Coated Conductor Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 2001 Annual Program Review held August 1-3, 2001. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference/Cryogenic Engineering Conference (July 2001) are included in this report as well. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  14. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  15. Accelerators and superconductivity: A marriage of convenience

    International Nuclear Information System (INIS)

    Wilson, M.

    1987-01-01

    This lecture deals with the relationship between accelerator technology in high-energy-physics laboratories and the development of superconductors. It concentrates on synchrotron magnets, showing how their special requirements have brought about significant advances in the technology, particularly the development of filamentary superconducting composites. Such developments have made large superconducting accelerators an actuality: the Tevatron in routine operation, the Hadron Electron Ring Accelerator (HERA) under construction, and the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC) at the conceptual design stage. Other applications of superconductivity have also been facilitated - for example medical imaging and small accelerators for industrial and medical use. (orig.)

  16. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Boye, Henri

    2013-01-01

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  17. Design and optimization of superconducting magnet system for energy storage application

    International Nuclear Information System (INIS)

    Bhunia, Uttam

    2015-01-01

    In view of developing superconducting magnetic energy storage system (SMES) technology that will mitigate voltage sag/dip in the utility line, VEC centre has taken up a leading role in the country. In the first phase a solenoid-type 0.6 MJ SMES system using cryo-stable NbTi superconductor has been designed, developed and tested successfully with resistive load to mitigate power line voltage dips. The cryogenic test results of 0.6 MJ SMES coil will be highlighted. Further, effort is underway to develop a 4.5 MJ/1 MW SMES system with toroidal coil configuration. The lecture will also cover the superconducting coil development for SMES application with special emphasis on design aspects and the optimization issue of the toroidal system using NbTi based Rutherford-type cable. (author)

  18. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  19. Progress of plasma experiments and superconducting technology in LHD

    International Nuclear Information System (INIS)

    Motojima, O.; Sakakibara, S.; Imagawa, S.; Sagara, A.; Seki, T.; Mutoh, T.; Morisaki, T.; Komori, A.; Ohyabu, N.; Yamada, H.

    2006-01-01

    The large helical device is a heliotron device with L = 2 and M = 10 continuous helical coils and three pairs of poloidal coils, and all of coils are superconductive. Since the experiments started in 1998, the development of engineering technologies and the demonstration of large-superconducting-machine operations have greatly contributed to an understanding of physics in currentless plasmas and a verification of the capability of fully steady-state operation. In recent plasma experiments, the steady state and high-beta experiments, which are the most important subjects for the realization of attractive fusion reactors, have progressed remarkably and produced two world-record parameters, i.e. the highest average beta of 4.5% in helical devices and the highest total input energy of 1.6 GJ in all magnetic confinement devices. No degradation has been observed in the coil performance, and stable cryogenic operational schemes at 4.4 K have been established. The physics and engineering results from the LHD experiment directly contribute to the design study for a D-T fusion demo reactor FFHR with a LHD-type heliotron configuration

  20. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-04-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  1. CLIQ. A new quench protection technology for superconducting magnets

    CERN Document Server

    Ravaioli, Emmanuele; ten Kate, H H J

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling loss and its robust electrical design, which makes it more reliable and less interfering with the coil winding process. The analysis of the electro-magnetic and thermal transients during and after a CLIQ discharge allows identifying the system parameters that affect the system performance and defining guidelines for implementing this technology on coils of various characteristics. Most existing superconducting magnets can be protected by CLIQ as convincingly shown by test results performed on magnets of different sizes, superconductor types, geometries, cables and strand parameters. Experimental results are successfully reproduced by means of a novel technique for modeling non-linear dynamic effects in superconducting...

  2. Superconducting magnetic energy storage for asynchronous electrical systems

    Science.gov (United States)

    Boenig, Heinrich J.

    1986-01-01

    A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.

  3. Superconducting versus normal conducting cavities

    CERN Document Server

    Podlech, Holger

    2013-01-01

    One of the most important issues of high-power hadron linacs is the choice of technology with respect to superconducting or room-temperature operation. The favour for a specific technology depends on several parameters such as the beam energy, beam current, beam power and duty factor. This contribution gives an overview of the comparison between superconducting and normal conducting cavities. This includes basic radiofrequency (RF) parameters, design criteria, limitations, required RF and plug power as well as case studies.

  4. Industrialization of Superconducting RF Accelerator Technology

    Science.gov (United States)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  5. Project in fiscal 1988 for research and development of basic technologies in next generation industries. Research and development of superconducting materials and superconducting elements (Achievement report on forecast and research of superconducting element technologies); 1988 nendo chodendo soshi gijutsu yosoku kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    With an objective to perform survey and forecast on the future of superconducting elements, collection of latest technological information and analyses of technological trends were carried out by members of the Technology Forecast and Research Committee. This paper summarizes the achievements therein. It was discovered that the Josephson element using an Al{sub 2}O{sub 3} barrier and an Nb electrode shows excellent characteristics with very good reproducibility. Trial fabrication of a four-bit micro processor was recently executed successfully by the SQUID gate using the above element. On the other hand, application of devices using high-temperature superconductors has not come out with an achievement. Although a large number of achievements have been released on mono-crystalline thin films that show good characteristics, development of substrates and barrier materials is still needed for device configuration. The method for manufacturing metal-based superconducting films has been established nearly completely as an elementary technology to develop the superconducting elements. However, making thinner the high-temperature superconducting films having been discovered recently is encountering a number of inherent problems, whereas the present stage is such that experimental discussions are being made. The process technologies, simulation, and evaluation technologies are basically the same as those for the metallic systems even for the oxide superconduction. (NEDO)

  6. Current status of development on superconducting magnetic energy storage systems and magnetic refrigeration

    International Nuclear Information System (INIS)

    Hirano, Naoki

    2010-01-01

    Superconducting magnetic energy storage (SMES) systems have excellent characteristics as energy-storage equipment in power systems such as high efficiency, quick response, and no deterioration in repetitive operations. There are many projects to develop SMES throughout the world. Since 1991, a national project by the Agency for Natural Resources and Energy Japan has been working to develop an SMES system to control power in power systems. Moreover, SMES has been developed to compensate for momentary voltage dips since 2003. To reduce energy consumption due to prolonged operating times, we developed energy-conserving electrical equipment incorporating refrigerating aggregates such as air conditioners. We conduced R and D to convert magnetic refrigeration and highly-efficient, energy-conserving/environmentally friendly technologies, to practical applications. The current status in the development of SMES to control power systems, bridging to deal with instantaneous voltage dips, and magnetic refrigeration technology will be explained in this paper. (author)

  7. Superconducting radio frequency technology: Expanding the horizons of physics and technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Leemann, C.W.; Sundelin, R.M.; Hartline, B.K.

    1986-01-01

    This paper describes a major new technology supporting the further evolution of accelerators: superconducting radio frequency (SRF) technology, which is today on the verge of large-scale application in accelerators. Originally foreseen in the early 1960s as a promising technology, SRF only recently has overcome several technological and practical hurdles. SRF accelerating structures promise low rf losses and high gradients under cw operation. High-quality, intense cw beams can be accelerated without risk of melting the structure and without requiring enormous amounts of input rf power

  8. U.S. program to develop superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Hassenzahl, W.V.; Filios, P.G.

    1988-01-01

    The United States Government, along with the Electric Power Research Institute (EPRI), has initiated a program to develop Superconducting Magnetic Energy Storage (SMES). This program is designed to answer questions of technical and economic viability by the mid-1990s, thereby paving the way to commercialization. EPRI has supported this technology since 1981 and is interested in its potential use in diurnal electric load-leveling. The U.S. Government has an additional interest in the potential of SMES to power ground-based lasers for Strategic Defense purposes. This paper presents a brief description of SMES technology, a review of the programmatic aspects of the ongoing program, including EPRI and DoD objectives, critical issues, and program milestones. The potential impact of high temperature superconductors on SMES is also discussed

  9. High power density superconducting rotating machines—development status and technology roadmap

    Science.gov (United States)

    Haran, Kiruba S.; Kalsi, Swarn; Arndt, Tabea; Karmaker, Haran; Badcock, Rod; Buckley, Bob; Haugan, Timothy; Izumi, Mitsuru; Loder, David; Bray, James W.; Masson, Philippe; Stautner, Ernst Wolfgang

    2017-12-01

    Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia.

  10. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  11. Superconducting magnets in the world of energy, especially in fusion power

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Industrial applications of superconducting magnets are only feasible in the near future for superconducting monopolar machines and possible MHD generators. For superconducting synchronous machines, after the successful operation of machines in the MVA range, a new phase of basic investigations has started. Fundamental problems which could not be studied in the MVA machines, but which influence the design of large turbo-alternators, must now be investigated. Fusion power by magnetic confinement will probably be the largest field of application for superconducting magnets in the long run. The present research programmes require large superconducting magnets by the mid-1980s for the experimental reactors envisaged at that time. In addition to dc windings, pulse-operated superconducting windings are required in some systems, such as Tokamak. The high sensitivity of the overall plant efficiency and the active power demand of the pulsed windings require great efficiency from energy storage and transfer systems. Superconducting energy storage systems would be suitable for this, if transfer between inductances could be provided with sufficient efficiency. Basic experiments gave encouraging results. In power plant systems and electric machines an extremely high level of reliability and availability has been achieved. Less reliability will not be accepted for systems with superconducting magnets. This requires great efforts during the development work. (author)

  12. Energy-storage technologies and electricity generation

    International Nuclear Information System (INIS)

    Hall, Peter J.; Bain, Euan J.

    2008-01-01

    As the contribution of electricity generated from renewable sources (wind, wave and solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise combinations of technologies such as electrochemical supercapacitors, flow batteries, lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes. Lithium-ion technology has significant potential, and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome with regard to the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals that may be achieved by 2050

  13. 100 Years of Superconductivity: Perspective on Energy Applications

    Science.gov (United States)

    Grant, Paul

    2011-11-01

    One hundred years ago this past April, in 1911, traces of superconductivity were first detected near 4.2 K in mercury in the Leiden laboratory of Kammerlingh Onnes, followed seventy-five years later in January, 1986, by the discovery of ``high temperature'' superconductivity above 30 K in layered copper oxide perovskites by Bednorz and Mueller at the IBM Research Laboratory in Rueschlikon. Visions of application to the electric power infrastructure followed each event, and the decades following the 1950s witnessed numerous, successful demonstrations to electricity generation, transmission and end use -- rotating machinery, cables, transformers, storage, current limiters and power conditioning, employing both low and high temperature superconductors in the USA, Japan, Europe, and more recently, China. Despite these accomplishments, there has been to date no substantial insertion of superconducting technology in the electric power infrastructure worldwide, and its eventual deployment remains problematic. We will explore the issues delaying such deployment and suggest future electric power scenarios where superconductivity will play an essential central role.

  14. Project in fiscal 1989 for research and development of basic technologies in next generation industries. Research and development of superconducting materials and superconducting elements (Achievement report on forecast and research of superconducting element technology); 1990 nendo chodendo soshi gijutsu yosoku kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    With an objective to forecast the ways the future superconducting elements and the related technologies should proceed, investigations and researches were performed on the progress in research and development of high-temperature superconducting elements, and the superconduction in a wide range. This paper summarizes the achievements in fiscal 1990. The high-temperature superconducting thin film technology has made remarkable advancement. The correlation of film forming conditions with characteristics of thin films was studied by using the sputtering process, laser deposition process and CVD process, having made production of thin films sufficiently applicable to electronics possible. A technology has been developed to suppress deterioration of characteristics for high-temperature conductors in thin film patterning, surface treatment and lamination structure fabrication. However, the problem of characteristics deterioration on interface of tri-terminal elements still remain unsolved. The bonded structure elements using high-temperature superconductors is the central technology in electronics application, but such problems exist as the coherence length being short, deterioration of characteristics at interfaces, and the electric characteristics being sensitive to crystalline orientation. Technological development to overcome these problems is under way. (NEDO)

  15. Superconducting energy gap of YB6 studied by point-contact spectroscopy

    International Nuclear Information System (INIS)

    Szabo, Pavol; Kacmarcik, Jozef; Samuely, Peter; Girovsky, Jan; Gabani, Slavomir; Flachbart, Karol; Mori, Takao

    2007-01-01

    Yttrium hexaboride has the second highest critical temperature, T c ∼ 8 K, among all borides. The presented paper deals with the experimental study of its superconducting energy gap established by the method of the point-contact spectroscopy. The temperature dependence of the energy gap and the strength of the superconducting coupling is presented

  16. Advanced fusion technologies developed for JT-60 superconducting tokamak

    International Nuclear Information System (INIS)

    Sakasai, Akira; Ishida, S.; Matsukawa, M.

    2003-01-01

    The modification of JT-60U is planned as a full superconducting tokamak (JT-60SC). The objectives of the JT-60SC program are to establish scientific and technological bases for the steady-state operation of high performance plasmas and utilization of reduced-activation materials in economically and environmentally attractive DEMO reactor. Advanced fusion technologies relevant to DEMO reactor have been developed in the superconducting magnet technology and plasma facing components for the design of JT-60SC. To achieve a high current density in a superconducting strand, Nb 3 Al strands with a high copper ratio of 4 have been newly developed for the toroidal field coils (TFC) of JT-60SC. The R and D to demonstrate applicability of Nb 3 Al conductor to the TFC by a react-and-wind technique have been carried out using a full-size Nb 3 Al conductor. A full-size NbTi conductor with low AC loss using Ni-coated strands has been successfully developed. A forced cooling divertor component with high heat transfer using screw tubes has been developed for the first time. The heat removal performance of the CFC target was successfully demonstrated on the electron beam irradiation stand. (author)

  17. Superconducting Cable Development for Future High Energy Physics Detector Magnets

    Science.gov (United States)

    Horvath, I. L.

    1995-11-01

    Under the leadership of the Swiss Federal Institute of Technology (ETHZ) an international ad hoc collaboration for superconducting cables developed an aluminium stabilised superconducting cable for future detector magnets. With the financial support of the Swiss government, this R&D work was carried out for the European Organisation for Nuclear Research (CERN). In this report the manufacturing process is described and results of the quality control measurements are summarised. These tests showed that the industrial manufacturing of an aluminium stabilised superconducting cable is feasible.

  18. Data on development of new energy technologies

    Science.gov (United States)

    1994-03-01

    The paper compiles data on the trend of development of new energy technologies into a book. By category, renewable energy is solar energy, wind power generation, geothermal power generation, ocean energy, and biomass. As a category of fuel form conversion, cited are coal liquefaction/gasification, coal gasification combined cycle power generation, and natural gas liquefaction/decarbonization. The other categories are cogeneration by fuel cell and ceramic gas turbine, district heat supply system, power load leveling technology, transportation-use substitution-fuel vehicle, and others (Stirling engine, superconducting power generator, etc.). The data are systematically compiled on essential principles, transition of introduction, objectives of introduction, status of production, cost, development schedule, performance, etc. The paper also deals with the related legislation system, developmental organizations, and a menu for power companies' buying surplus power.

  19. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  20. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  1. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  2. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Yoon, Donghee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsangbuk-do 712-701 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-712 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  3. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    International Nuclear Information System (INIS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to develop power and energy management system to save operating cost. •An 100 kWh of SFES is effective to decrease peak power and energy consumption. •Operation cost saving can be achieved using superconducting flywheel energy storage. -- Abstract: This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed

  4. Overview of superconducting ion linacs and related technologies

    International Nuclear Information System (INIS)

    Facco, A.

    2004-01-01

    Particle accelerators, fundamental tools in physics, are presently becoming part of everyday life, being extensively used in industry, medicine and, in the future, also for energy production and nuclear waste transmutation. Accelerator technology is very important not only for the progress of science but also because it often finds unforeseen application a long time after its development. Different particle types, different energy range and different applications require different kinds of accelerators. Electrostatic accelerators provide DC beams but are limited in energy to about 20 MeV per charge unit; for higher energies, RF accelerators are required. In circular accelerators, like synchrotrons, the beam is passing many times through the same RF accelerating structures in order to acquire the requested energy; the limits come from synchrotron radiation and magnetic field intensity that force the construction of very large rings. Cyclotrons are cheap machines suitable for intermediate energy cw beams (up to hundreds of MeV); they are limited in current and in energy by extraction problems and by dipole magnet size. Linear accelerators, where the beam goes only once through RF accelerating structures, can provide cw beams from very low to very high energy (they are not limited by synchrotron radiation), and they can allow for the highest beam current, up to hundreds of mA (figure 1). The next frontier in energy, after the construction of the LHC synchrotron at CERN, will be probably reached by a superconducting linac

  5. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  6. Proceedings of the fourth international conference and exhibition: World Congress on superconductivity. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Krishen, K.; Burnham, C. [eds.] [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center

    1994-12-31

    This document contains papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held at the Marriott Orlando World Center, Orlando, Florida, June 27--July 1, 1994. This conference encompassed research, technology, applications, funding, political, and social aspects of superconductivity. Specifically, the areas of research, technology, and development covered during the conference included high-temperature materials, thin films, C-60 based superconductors, persistent magnetic fields and shielding, fabrication methodology, space applications, physical applications, performance characterization, device applications, weak link effects and flux motion, accelerator technology, superconductivity energy, storage, future research and development directions, medical applications, granular superconductors, wire fabrication technology, computer applications, technical and commercial challenges, and power and energy applications. The key objective of this conference was to provide a forum for the world community to share technological results of recent advances made in the field of superconductivity and to discuss translation of the research to technology which will benefit humanity. More than 150 presentations were made at this conference. Individual papers are indexed separately on the Energy Data Bases.

  7. Proceedings of the fourth international conference and exhibition: World Congress on superconductivity. Volume 2

    International Nuclear Information System (INIS)

    Krishen, K.; Burnham, C.

    1994-01-01

    This document contains papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held at the Marriott Orlando World Center, Orlando, Florida, June 27--July 1, 1994. This conference encompassed research, technology, applications, funding, political, and social aspects of superconductivity. Specifically, the areas of research, technology, and development covered during the conference included high-temperature materials, thin films, C-60 based superconductors, persistent magnetic fields and shielding, fabrication methodology, space applications, physical applications, performance characterization, device applications, weak link effects and flux motion, accelerator technology, superconductivity energy, storage, future research and development directions, medical applications, granular superconductors, wire fabrication technology, computer applications, technical and commercial challenges, and power and energy applications. The key objective of this conference was to provide a forum for the world community to share technological results of recent advances made in the field of superconductivity and to discuss translation of the research to technology which will benefit humanity. More than 150 presentations were made at this conference. Individual papers are indexed separately on the Energy Data Bases

  8. Proceedings of the fourth international conference and exhibition: World Congress on superconductivity. Volume 1

    International Nuclear Information System (INIS)

    Krishen, K.; Burnham, C.

    1994-01-01

    The goals of the World Congress on Superconductivity (WCS) have been to establish and foster the development and commercial application of superconductivity technology on a global scale by providing a non-adversarial, non-advocacy forum where scientists, engineers, businessmen and government personnel can freely exchange information and ideas on recent developments and directions for the future of superconductive research. Sessions were held on: accelerator technology, power and energy, persistent magnetic fields, performance characterization, physical properties, fabrication methodology, superconductive magnetic energy storage (SMES), thin films, high temperature materials, device applications, wire fabrication, and granular superconductors. Individual papers are indexed separately

  9. Proceedings of the fourth international conference and exhibition: World Congress on superconductivity. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Krishen, K.; Burnham, C. [eds.] [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center

    1994-12-31

    The goals of the World Congress on Superconductivity (WCS) have been to establish and foster the development and commercial application of superconductivity technology on a global scale by providing a non-adversarial, non-advocacy forum where scientists, engineers, businessmen and government personnel can freely exchange information and ideas on recent developments and directions for the future of superconductive research. Sessions were held on: accelerator technology, power and energy, persistent magnetic fields, performance characterization, physical properties, fabrication methodology, superconductive magnetic energy storage (SMES), thin films, high temperature materials, device applications, wire fabrication, and granular superconductors. Individual papers are indexed separately.

  10. Energy Technology Division research summary 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  11. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  12. The power processor of a high temperature superconducting energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, J. [Power Electronics, Tampere University of Technology, Tampere (Finland)

    1997-12-31

    This report introduces the structure and properties of a power processor unit for a high temperature superconducting magnetic energy storage system which is bused in an UPS demonstration application. The operation is first demonstrated using simulations. The software based operating and control system utilising combined Delta-Sigma and Sliding-Mode control is described shortly. Preliminary test results using a conventional NbTi superconducting energy y storage magnet operating at 4.2 K is shown. (orig.)

  13. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-05-11

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  14. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    International Nuclear Information System (INIS)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-01-01

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  15. Overview of Superconductivity and Challenges in Applications

    Science.gov (United States)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  16. Superconductivity and magnet technology

    International Nuclear Information System (INIS)

    Lubell, M.S.

    1975-01-01

    The background theory of superconducting behavior is reviewed. Three parameters that characterize superconducting materials with values of commercial materials as examples are discussed. More than 1000 compounds and alloy systems and 26 elements are known to exhibit superconducting properties under normal conditions at very low temperatures. A wide variety of crystal structures are represented among the known superconductors. The most important ones do seem to have cubic symmetry such as the body-centered cubic (NbZr and NbTi), face-centered cubic (NbN), and the A15 or β-tungsten structures (Nb 3 Sn), V 3 Ga, Nb 3 Ge, Nb 3 Al, and V 3 Si). Attempts to understand some of the particular phenomena associated with superconductors as a necessary prelude to constructing superconducting magnets are discussed by the author. The origin of degradation is briefly discussed and methods to stabilize magnets are illustrated. The results of Oak Ridge National Laboratory design studies of toroidal magnet systems for fusion reactors are described

  17. Superconductivity and the environment: a Roadmap

    International Nuclear Information System (INIS)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Keenan, Shane; Foley, Cathy P; Febvre, Pascal; Mukhanov, Oleg; Cooley, Lance D; Hassenzahl, William V; Izumi, Mitsuru

    2013-01-01

    There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity. Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain. The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30 TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and

  18. Superconductivity and the environment: a Roadmap

    Science.gov (United States)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity. Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain. The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30 TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and

  19. Development of superconducting acceleration cavity technology for free electron lasers

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10 9 at 2.5K, and 8x10 9 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  20. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  1. Survey of potential applications of superconducting suspensions

    International Nuclear Information System (INIS)

    Rao, D.K.; Bupara, S.S.

    1993-01-01

    The purpose of this report is to survey the recent developments in applying the bulk superconductors to mechanical applications. These applications, called superconducting suspensions, can be broadly divided into three groups - Passive Magnetic Bearings, Passive Superconducting Dampers and Active Superconducting Bearings. Basically, passive magnetic bearings utilize bulk superconductors to support a rotating shaft without contact while active superconducting bearings employ superconducting wires. Passive superconducting dampers, on the other hand, dissipate energy from a vibrating component. Over the past one year, dramatic improvements have been made in processing large-size specimens made of high grade bulk superconductors. As a result, they can meet the size requirements and load capacity requirements of many applications. With this size-scale up, one can utilize them in a wider number of applications than what was possible a few years back. At present several organizations have demonstrated the capability of passive magnetic bearings. The targeted applications include miniature cryoturboexpanders, cryoturbopumps, energy storage wheels and turbomolecular pumps. These demonstrations indicate that the passive magnetic bearings are closer to technology maturity. (orig.)

  2. Superconductivity in Spain. Midas program

    International Nuclear Information System (INIS)

    Yndurain, F.

    1996-01-01

    The different activities in the field of applied superconductivity carried out in Spain under the auspices of the MIDAS program are reported. Applications using both low- and high-temperature superconductors are considered. In the low temperature superconductors case, the design and construction of a 1 mega joule SMES (Superconducting Magnetic Energy Storage) unit, as well as the fabrication of voltage and resistance standards, are reviewed. Developments involving the design and fabrication of an inductive current fault limited and mono- and multi-filamentary wires and tapes using high-temperature superconductors are discussed. Finally, the prospects for the application of superconductivity technology to electric power systems for the electric utilities is considered. (author)

  3. CLIQ. A new quench protection technology for superconducting magnets

    NARCIS (Netherlands)

    Ravaioli, Emanuele

    2015-01-01

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling

  4. Superconductivity: 100th anniversary of its discovery and its future

    International Nuclear Information System (INIS)

    Kitazawa, Koichi

    2011-01-01

    The past and prospects of the superconducting technology are discussed as a systematic wide technology from the aspects of energy, transport and telecommunication. Superconductivity has unique characteristics, perpetual current, diamagnetism and Josephson effect. Since its discovery 100 years ago, it had taken nearly half a century to elucidate its mechanism and its application has still been restricted only to fields of extreme needs in the technical level. The major reason for the delay has apparently been the 'penalty of cooling', however, it is also due to the fact that a superconducting wire has to be a complex composite in a nanotechnology-processed structure. Also, owing to the discovery of high-temperature superconductors, it has recently become feasible to forecast a promising future of the superconducting technology in a long term. (author)

  5. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2012-01-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  6. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of)

    2012-08-15

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  7. Energy of magnetic moment of superconducting current in magnetic field

    International Nuclear Information System (INIS)

    Gurtovoi, V.L.; Nikulov, A.V.

    2015-01-01

    Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment

  8. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    Science.gov (United States)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  9. Development of high gradient superconducting radio frequency cavities for international linear collider and energy recovery linear accelerator

    International Nuclear Information System (INIS)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    2009-01-01

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented. (author)

  10. Development of High Gradient Superconducting Radio Frequency Cavities for International Linear Collider and Energy Recovery Linear Accelerator

    Science.gov (United States)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented.

  11. Prediction of energy-related technology for next 30 years

    Energy Technology Data Exchange (ETDEWEB)

    Hashiguchi, Isao; Kondo, Satoru

    1987-12-01

    The report outlines major results of a survey concerning technologies expected to emerge during the next 30 years that was carried out by the Japan's Science and Technology Agency using the DELPHI method. The survey covered 51 technical issues in energy-related areas including fossil energy, nucler energy, natural energy, biomass and energy utilization techniques, and process-related areas including exploration, collection/extraction, transportation/storage, power generation, resources conversion and substitution. For each technical issue, investigation is made on its importance, time of realization, restrictions, procedure and responsible organization for promoting research and development, and government policy. Results show that the importance of nuclear energy will continue to increase and that diversification of energy sources, such as shift to coal, will also become more important. It is indicated that technological breakthroughs, such as the development of new superconducting materials, will accelerate the development of other techniques in related areas and simultaneously increase the importance of such techniques. The survey provides valuable basic data serving for predicting future social changes that may be caused by technical innovation or a shift in view on technology in the economic areas or in the society. (2 figs, 1 tab)

  12. Advantage of superconducting bearing in a commercial flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Viznichenko, R; Velichko, A V; Hong, Z; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)], E-mail: tac1000@cam.ac.uk

    2008-02-01

    The use of a superconducting magnetic bearing in an Urenco Power Technologies (UPT) 100kW flywheel is being studied. The dynamics of a conventional flywheel energy storage system have been studied at low frequencies. We show that the main design consideration is overcoming drag friction losses and parasitic resonances. We propose an original superconducting magnetic bearing design and improved cryogenic motor cooling to increase stability and decrease energy losses in the system.

  13. Characterization of Superconducting Cavities for HIE-ISOLDE

    CERN Document Server

    Martinello, Martina

    2013-01-01

    In this report the radiofrequency measurements done for the superconducting cavities developed at CERN for the HIE-ISOLDE project are analyzed. The purpose of this project is improve the energy of the REX-ISOLDE facility by means of a superconducting LINAC. In this way it will be possible to reach higher accelerating gradients, and so higher particle energies (up to 10MeV/u). At this purpose the Niobium thin film technology was preferred to the Niobium bulk technology because of the technical advantages like the higher thermal conductivity of Copper and the higher stiffness of the cavities which are less sentitive to mechanical vibrations. The Niobium coating is being optimized on test prototypes which are qualified by RF measurements at cold.

  14. The stationary storage of energy. Available technologies and CEA researches

    International Nuclear Information System (INIS)

    2012-01-01

    After a discussion of the main challenges related to the stationary storage of energy, this publication proposes an overview of the different available technologies: plant for transfer of energy by pumping, compressed air, energy flywheels, hydrogen, lithium-ion battery, redox-flow battery, thermal storage by sensitive heat, thermal-chemical storage coupled to a thermal solar system, thermal storage by phase change, superconductive inductance storage, super-capacitors. It discusses the criteria of choice of storage technology, either for electric energy storage or for heat storage. It proposes an overview of researches performed within the CEA on storage systems: electrochemical, thermal, and hydrogen-based storages. The final chapter addresses current fundamental researches on storage in the field of lithium-ion batteries, hydrogen as a fuel, and thermoelectricity

  15. Superconducting magnets in nuclear and high energy physics

    International Nuclear Information System (INIS)

    Hamelin, J.; Parain, J.; Perot, J.; Lesmond, C.

    1976-01-01

    A few examples of superconducting magnets developped at Saclay for high energy physics are presented. The OGA doublet is a large acceptance optical system consisting of two quadrupoles with maximum field gradients of 35 and 23 teslas per meter giving an increase of the beam acceptance by a factor 4. The ALEC dipole is a synchrotron magnet with a length of 1.5 meter and a field of 5 teslas, operating in pulse made at a frequency of 0.1 Hertz and entirely constructed in industry. The ECO project is a demonstration of electrical energy saving by means of superconductors. It consists in the replacement of conventional copper of a classical beam transport magnet by superconducting windings. The use of superconductors for polarized target magnets allows a large variety of configurations to be obtained in order to satisfy the acceptance and space requirements to the detectors around the targets [fr

  16. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-01-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  17. Overview of superconductivity in Japan Strategy road map and R&D status

    Science.gov (United States)

    Tsukamoto, O.

    2008-09-01

    Superconducting technology benefits society in broad fields; environment/energy, life science, manufacturing industry and information and communication. Superconducting equipments and devices used in various fields are divided into two categories, electric and electronic applications. Technologies in those applications are progressing remarkably owing to firm and consistent supports by various national projects. The final target of the NEDO R&D project of fundamental technology for superconductivity applications to develop 500 m long coated conductors (CCs) of the critical current 300 A/cm (at 77 K, 0 T) will be fulfilled by the end of JFY 2007 and manufacturing process to produce extremely low-cost CCs is to be developed to make the applications realistic. Preliminary works to develop power apparatuses using CCs have started in the frame of the R&D project for the fundamental technology and have produced significant results. Performance of BSCCO/Ag-sheathed wires has been improved greatly and various applications using those wires are being developed. R&D projects for SMES, power cable, flywheel energy storage and rotating machines are going to introduce those equipments to the real world. Technologies of SQUID and SFQ, basic devices of the electronic applications, are progressing dramatically also owing to various national projects. In this back ground the technology strategy map in the field of superconducting technology was formulated to prioritize investments in R&D by clearly defining the objectives and inspire autonomous R&D actives in various fields of industries. R&D activities in the superconducting technologies are to be scheduled following this strategy map.

  18. Today's markets for superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The worldwide market for superconductive products may exceed $1 billion in 1987. These products are expanding the frontiers of science, revolutionizing the art of medical diagnosis, and developing the energy technology of the future. In general, today's customers for superconductive equipment want the highest possible performance, almost regardless of cost. The products operate within a few degrees of absolute zero, and virtually all are fabricated from niobium or niobium alloys-so far the high-temperature superconductors discovered in 1986 and 1987 have had no impact on these markets. The industry shows potential and profound societal impact, even without the new materials

  19. Effect of superconducting electrons on the energy splitting of tunneling systems

    International Nuclear Information System (INIS)

    Yu, C.C.; Granato, A.V.

    1985-01-01

    We consider the effect of superconducting electrons on the magnitude of the energy splitting of a tunneling system. A specific example is a hydrogen atom tunneling in niobium. We find that in this case the splitting is roughly 20% smaller in the normal state than in the superconducting state. This difference in the splitting should be observable in neutron scattering and ultrasonic measurements

  20. Survey of domestic research on superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Dresner, L.

    1991-09-01

    This report documents the results of a survey of domestic research on superconducting magnetic energy storage (SMES) undertaken with the support of the Oak Ridge National Laboratory (ORNL) Superconductivity Pilot Center. Each survey entry includes the following: Name, address, and other telephone and facsimile numbers of the principal investigator and other staff members; funding for fiscal year 1991, 1992, 1993; brief descriptions of the program, the technical progress to date, and the expected technical progress; a note on any other collaboration. Included with the survey are recommendations intended to help DOE decide how best to support SMES research and development (R ampersand D). To summarize, I would say that important elements of a well-rounded SMES research program for DOE are as follows. (1) Construction of a large ETM. (2) Development of SMES as an enabling technology for solar and wind generation, especially in conjunction with the ETM program, if possible. (3) Development of small SMES units for electric networks, for rapid transit, and as noninterruptible power supplies [uses (2), (3), and (4) above]. In this connection, lightweight, fiber-reinforced polymer structures, which would be especially advantageous for space and transportation applications, should be developed. (4) Continued study of the potential impacts of high-temperature superconductors on SMES, with construction as soon as feasible of small SMES units using high-temperature superconductors (HTSs)

  1. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  2. Superconducting magnetic energy storage apparatus structural support system

    Science.gov (United States)

    Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.

    1992-01-01

    A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.

  3. Report on the achievements in fiscal 1999. Research and development on a basic technology to apply superconductivity (Research and development on a basic technology to apply superconductivity); 1999 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho. Chodendo oyo kiban gijutsu kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The development of a basic technology to improve superconductivity characteristics has performed (1) studies on the high-temperature superconductivity mechanism, (2) studies on the critical current mechanism, and (3) search for materials. In Item (1), composition and temperature dependence were investigated by measuring superconductivity gap and change in the electron state of pseudo gap using photo-electron spectra and Raman scattering spectra. In Item (2), magnetic flux behavior in the vicinity of the irreversible line was investigated on magnetic flux dynamics of Bi2212 by measuring magnetic resistance and magnetization. High viscosity condition having strong magnetic flux liquid zone was discovered. In Item (3), Sr was used in place of Ba as the constituting element, and several new mercury-based superconductors were synthesized successfully by using the high pressure synthesizing method. In developing superconductive bulk materials and wire materials, elucidation was given on (1) an element technology for high magnetic power bulk materials, (2) an element technology for high critical temperature bulk materials, (3) a fundamental technology for manufacturing next generation wire materials, (4) a fundamental technology for manufacturing next generation large current conductors, and (5) growth mechanism in wire material crystals. Development of laminating and processing technologies for superconductive materials has worked on (1) a single crystal substrate technology, (2) a thin film lamination technology, (3) a standard bonding technology, (4) an advanced bonding technology, and (5) a thin film and bond evaluation technology. (NEDO)

  4. Free electron lasers on superconducting linac

    International Nuclear Information System (INIS)

    Lapierrre, Y.

    1986-01-01

    Analysing the results of several Free Electron Laser experiments, we show that the best accelerator should be a superconducting linear accelerator: it can provide a c.w. high quality beam (energy spread and emittance). The technology of RF superconductivity provide the opportunity to build such an accelerator. In this paper, we present the foreseen results one can expect from a FEL based on such a machine: - Average power > 1 Kw, - Total efficiency > 2.5%, - Tunability between 0.6 and 5 μm [fr

  5. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    International Nuclear Information System (INIS)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati R.

    2015-01-01

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications

  6. Protection of large-stored-energy superconducting coils

    International Nuclear Information System (INIS)

    Kircher, F.

    1975-11-01

    When the stored energy of superconducting magnets increases, the problem of the protection of the coil when a quench occurs becomes more and more important, especially if the structure of the coil is such that the energy can be dissipated only in a small part of the coil. The aim of this paper is first to describe a program which enables to predict the increase of temperature inside the coil for several kinds of protection and to give results for KEK pulsed dipoles (under construction and planned for TRISTAN). (auth.)

  7. A double-superconducting axial bearing system for an energy storage flywheel model

    Science.gov (United States)

    Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.

    2008-02-01

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  8. Overview of superconductivity in Japan - Strategy road map and R and D status

    International Nuclear Information System (INIS)

    Tsukamoto, O.

    2008-01-01

    Superconducting technology benefits society in broad fields; environment/energy, life science, manufacturing industry and information and communication. Superconducting equipments and devices used in various fields are divided into two categories, electric and electronic applications. Technologies in those applications are progressing remarkably owing to firm and consistent supports by various national projects. The final target of the NEDO R and D project of fundamental technology for superconductivity applications to develop 500 m long coated conductors (CCs) of the critical current 300 A/cm (at 77 K, 0 T) will be fulfilled by the end of JFY 2007 and manufacturing process to produce extremely low-cost CCs is to be developed to make the applications realistic. Preliminary works to develop power apparatuses using CCs have started in the frame of the R and D project for the fundamental technology and have produced significant results. Performance of BSCCO/Ag-sheathed wires has been improved greatly and various applications using those wires are being developed. R and D projects for SMES, power cable, flywheel energy storage and rotating machines are going to introduce those equipments to the real world. Technologies of SQUID and SFQ, basic devices of the electronic applications, are progressing dramatically also owing to various national projects. In this back ground the technology strategy map in the field of superconducting technology was formulated to prioritize investments in R and D by clearly defining the objectives and inspire autonomous R and D actives in various fields of industries. R and D activities in the superconducting technologies are to be scheduled following this strategy map

  9. Status on RF superconductivity at the institute for high energy physics

    International Nuclear Information System (INIS)

    Sevryukova, L.M.

    2003-01-01

    The development of SC cavities started at the Institute for High Energy Physics in September 1980 when the group of technology and study of SC cavities of the Research Institute of Nuclear Physics at Tomsk Polytechnic Institute moved there. At first the group worked at the Linear Accelerator Division, then later, in March 1993 the Federate Problem Laboratory for Technology and Study of the superconducting cavities of the Russian Atomic Ministry was founded at IHEP. The main goal of the SC cavity investigation is to study and develop the suppression methods for emission effects and conditions for thermomagnetic breakdown creation to increase the accelerating fields at SC cavities; also developing the experimental equipment to answer this goal. In this report the following items are enlightened in short: 1. Study and development of methods to suppress emission effects in SC cavities; 2. Study and development of methods to increase the threshold of the thermomagnetic breakdown. 3. Study of new materials and technologies. 4. SVAAP (SC accelerator for the applied purposes) project development. (author)

  10. The present role of superconductivity in fusion

    International Nuclear Information System (INIS)

    Shimamoto, S.

    1986-01-01

    After completion of large fusion devices in the world, such as JT-60, JET and TFTR, high temperature plasma is proceeding to critical condition for fusion. The devices up to now use mainly conventional magnet. However, for the next generation machine which demonstrates fusion reaction, deuterium-tritium burning, superconducting magnet system is indispensable from view point of both net energy extraction and capacity limitation of power supply. In order to realize such a large and complicated system, a lot of development works is being carried out. This paper describes required parameters of superconducting magnet and helium refrigerator, the state of plasma condition and superconducting magnet. It is shown that the present technology of superconducting magnet is not so far from realization of fusion experimental reactor

  11. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  12. Design fractures and commercial potential of superconducting magnetic energy storage for electric utility application

    International Nuclear Information System (INIS)

    Lloyd, R.J.; Schoenung, S.

    1986-01-01

    Historically, energy storage in the United States has been provided by a few pumped hydroelectric plants, but siting constraints and high cost severely limit the use of this option. Two other options which will soon be in use are batteries and compressed air energy storage. A fourth option, currently being developed for load leveling is Superconducting Magnetic Energy Storage (SMES). This paper reports the design features and estimated costs of utility scale SMES plants. For moderate discharge duration, SMES is projected to have substantially lower revenue requirements and better availability than other load leveling options. The Electric Power Research Institute has prepared a plan for commercialization which could, if aggressively pursued, lead to a demonstrated SMES technology that is available for utility commitment by the late 1990's

  13. Overview of Superconductivity and Challenges in Applications

    CERN Document Server

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device...

  14. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  15. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  16. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Fagnard, J-F; Crate, D; Jamoye, J-F; Laurent, Ph; Mattivi, B; Cloots, R; Ausloos, M; Genon, A; Vanderbemden, Ph

    2006-01-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 μV/cm criterion). Critical currents were found to exceed 100 A for T < 30 K. An electronic DC-DC converter was built in order to control the energy flow in and out of the superconducting coil. The converter consists of a MOS transistor bridge switching at a 80 kHz frequency and controlled with standard Pulse Width Modulation (PWM) techniques. The system was tested using a 30 V squared wave power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s

  17. Single-flux-quantum circuit technology for superconducting radiation detectors

    International Nuclear Information System (INIS)

    Fujimaki, Akira; Onogi, Masashi; Matsumoto, Tomohiro; Tanaka, Masamitsu; Sekiya, Akito; Hayakawa, Hisao; Yorozu, Shinichi; Terai, Hirotaka; Yoshikawa, Nobuyuki

    2003-01-01

    We discuss the application of the single-flux-quantum (SFQ) logic circuits to multi superconducting radiation detectors system. The SFQ-based analog-to-digital converters (ADCs) have the advantage in current sensitivity, which can reach less than 10 nA in a well-tuned ADC. We have also developed the design technology of the SFQ circuits. We demonstrate high-speed operation of large-scale integrated circuits such as a 2x2 cross/bar switch, arithmetic logic unit, indicating that our present SFQ technology is applicable to the multi radiation detectors system. (author)

  18. Superconductivity in Washington, D.C

    International Nuclear Information System (INIS)

    Ritter, D.

    1988-01-01

    The author provides insights into the federal government's activity in superconductors. He says the President's most important legislative proposal is a change in anti-trust laws to allow businesses to cooperate on joint production ventures. The President has also directed the Department of Energy, the Department of Commerce, the National Aeronautics and Space Administration, the National Science Foundation, and the Department of Defense to establish Superconductivity Research Centers to conduct research and disseminate information. The author says he thinks it is worthwhile to pursue the President's proposal for cooperation with Japan in superconductivity research and development. The author explains why he supports this and other key legislation related to superconductivity. He says if the United States does not do all that it can, as fast as it can, both domestically and internationally, the U.S. could lose the cutting edge of technological and commercial leadership in the latter 20th century and the 21st century. This is what superconductivity represents

  19. Role of superconducting electronics in advancing science and technology (invited) (abstract)

    Science.gov (United States)

    Faris, S. M.

    1988-08-01

    The promises of the ultrahigh-performance properties of superconductivity and Josephson junction technologies have been known for quite some time. This presentation describes the first superconducting electronics and measurement system and its important role as a major tool to advance microwave and millimeter wave technologies. This breakthrough tool is a sampling oscilloscope with 5-ps rise time, 50-μV sensitivity, and a time domain reflectometer with 8-ps rise time. In order to achieve these performance goals, several technological hurdles had to be overcome including perfecting a manufacturing process for building Josephson junction IC chips, developing an innovative cooling technique, developing interfaces and interconnections with bandwidths in excess of 70 GHz, and developing the room-temperature hardware and software necessary to make the instruments convenient, easy to use, easy to learn, in addition to making available functions and features users have come to expect from sophisticated digital test instrumentation. These technological developments are stepping stones leading to the realization of more sophisticated and complex electronic systems satisfying the needs of scientists, technologists, and engineers. The unprecedented speed and sensitivity make it possible to attack new frontiers.

  20. High-current applications of superconductivity

    International Nuclear Information System (INIS)

    Komarek, P.

    1995-01-01

    The following topics were dealt with: superconducting materials, design principles of superconducting magnets, magnets for research and engineering, superconductivity for power engineering, superconductivity in nuclear fusion technology, economical considerations

  1. Superconducting conversion of the Intersecting storage Rings

    International Nuclear Information System (INIS)

    1977-01-01

    A study is presented of design, performances and cost estimates for superconducting proton storage rings in the existing ISR tunnel at CERN. By using a proven technology for the superconducting magnets an energy of 120 GeV is attainable, which corresponds to a bending field of 5.12 T. Using injection from the PS and stacking at 25 GeV, followed by phase displacement acceleration, luminosities of up to 4.10 33 cm -2 s -1 at 120 GeV are obtained. (Auth.)

  2. Second order phase transition in thermodynamic geometry and holographic superconductivity in low-energy stringy black holes

    Science.gov (United States)

    Rizwan, C. L. Ahmed; Vaid, Deepak

    2018-05-01

    We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.

  3. Technological stakes of LHC, the large superconducting collider in project at CERN

    International Nuclear Information System (INIS)

    Lebrun, P.

    1991-01-01

    The LHC large superconducting particle collider project is presented, with particular emphasis on its major technological requirements and returns, mostly in the domains of high-field electromagnets, superfluid helium cryogenics, and integration of such advanced techniques in a large machine. The corresponding cooperation and technological transfer to European laboratories and industries are briefly discussed [fr

  4. Design of a superconducting accelerator for positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Oshima, Nagayasu; Kuroda, Ryunosuke; Suzuki, Ryoichi; Kinomura, Atsushi; Ohdaira, Toshiyuki; Hayashizaki, Noriyosu; Hattori, Toshiyuki

    2008-01-01

    A design of a superconducting accelerator for a positron beam with energy of ∼1 MeV for positron annihilation spectroscopy is proposed. The total system can be extremely small with an application of superconducting technology. Both a miniaturization and easy maintenance of the accelerator can be achieved by usage of a small liquidless refrigerator for cooling of a superconducting RF cavity. Moreover, operation duty cycle of the superconducting cavity is ∼100%. The required RF power to drive the system is only ∼10 W, therefore a large-size klystron is not necessary. The designed system including a slow positron source is small (∼2 m 3 ) enough to be used in a general laboratory. (author)

  5. New superconducting coil configuration for energy storage

    International Nuclear Information System (INIS)

    Tokorabet, M.; Mailfert, A.; Colteu, A.

    1998-01-01

    Energy storage using superconducting coils involves the problem of electromagnetic field pollution outside the considered system. Different configurations are widely studied: the torus, the alone solenoid and multiple parallel solenoids enclosed in one container. A new configuration which minimizes the external pollution is studied in this paper. The theoretical system is composed of two spherical distributions of the current which are concentric. The analytical study uses solution of Laplace equations. Parametric study covers energy, flux density and geometrical data. The second study concerns the numerical approach of this design using coaxial solenoids. A comparison between this new system and the known systems is presented as a conclusion. (orig.)

  6. Development of innovative superconducting DC power cable

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Teruo; Kiuchi, Masaru [Dept. of Computer Science and Electronics Kyushu Institute of Technology, Iizuka (Japan)

    2017-09-15

    It is required to reduce the cost of superconducting cable to realize a superconducting DC power network that covers a wide area in order to utilize renewable energy. In this paper a new concept of innovative cable is introduced that can enhance the current-carrying capacity even though the same superconducting tape is used. Such a cable can be realized by designing an optimal winding structure in such a way that the angle between the tape and magnetic field becomes small. This idea was confirmed by preliminary experiments for a single layer model cable made of Bi-2223 tapes and REBCO coated conductors. Experiments of three and four layer cables of practical sizes were also done and it was found that the current-carrying capacity increased as theoretically predicted. If the critical current properties of commercial superconducting tapes are further improved in a parallel magnetic field, the enhancement will become pronounced and this technology will surely contribute to realization of superconducting DC power network.

  7. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  8. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    Science.gov (United States)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  9. Magnet field design considerations for a high energy superconducting cyclotron

    International Nuclear Information System (INIS)

    Botman, J.I.M.; Craddock, M.K.; Kost, C.J.; Richardson, J.R.

    1983-08-01

    This paper reports the pole shape designs for a two stage superconducting isochronous cyclotron combination (CANUCK) to accelerate 100 μA proton beams to 15 GeV. The pole shape of the 15 sectors of the first stage 3.5 GeV proton cyclotron provides isochronism over the full energy range and a constant axial tune over all but the lowest energies. Progress on the pole design of the 42 sector 15 GeV second stage is also reported. The magnetic fields are computed from the current distribution of the superconducting coils and the infinitely thin current sheets simulating the fully saturated poles. A least squares method is used to minimize deviations from isochronism by adjusting the size of various elemental shim coils placed around the main coil. The method to obtain the desired axial tune is described

  10. Status of the Argonne superconducting-linac heavy-ion energy booster

    International Nuclear Information System (INIS)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979

  11. Status of the Argonne superconducting-linac heavy-ion energy booster

    Energy Technology Data Exchange (ETDEWEB)

    Aron, J.; Benaroya, R.; Bollinger, L.M.; Clifft, B.E.; Henning, W.; Johnson, K.W.; Nixon, J.M.; Markovich, P.; Shepard, K.W.

    1979-01-01

    A superconducting linac is being constructed to provide an energy booster for heavy ions from an FN tandem. By late 1980 the linac will consist of 24 independently-phased superconducting resonators, and will provide an effective accelerating potential of more than 25 MV. While the linac is under construction, completed sections are being used to provide useful beam for nuclear physics experiments. In the most recent run with beam (June 1979), an eight resonator array provided an effective accelerating potential of 9.3 MV. Operation of a 12 resonator array is scheduled to begin in October 1979.

  12. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  13. Search for Superconducting Energy Gap in UPt3 by Point-Contact Spectroscopy

    International Nuclear Information System (INIS)

    Gouchi, Jun; Sumiyama, Akihiko; Yamaguchi, Akira; Motoyama, Gaku; Kimura, Noriaki; Yamamoto, Etsuji; Haga, Yoshinori; Ōnuki, Yoshichika

    2015-01-01

    We have investigated the differential resistance of the point contacts between heavy-fermion superconductor UPt 3 and a normal metal Pt, which were fabricated using a commercial piezo-electric actuator, and retried the observation of the energy gap of UPt 3 . A V-shaped dip is observed in both normal and superconducting states and disappeared around T K ∼ 20 K, suggesting that it is related to the Kondo effect. Below the superconducting transition temperature, a shallow double-minimum structure, which indicates the energy gap, has been observed for the contacts on the faces perpendicular to the a-, b- and c-axes of UPt 3

  14. Power and reactive power simultaneous control by 0.5 MJ superconducting magnet energy storage

    International Nuclear Information System (INIS)

    Ise, Toshifumi; Tsuji, Kiichiro; Murakami, Yoshishige

    1984-01-01

    Superconducting magnet energy storage (SMES) is expected to be widely applied to the pulsed sources for fusion reactor research and to the energy storage substituting for pumping-up power stations, because of its fast energy storing and discharging and very high efficiency. Some results have been obtained so far. In this paper, however, the simultaneous control of power and reactive power is considered for an energy storage composed of two sets of thyristorized power conversion system and superconducting magnets in series connection, and a direct digital control system is described on the principle, design and configuration including the compensator, and on the experiment using the 0.5 MJ superconducting magnet energy storage installed in the Superconduction Engineering Experiment Center, Osaka University. The results obtained are as follows: (1) P control priority mode and Q control priority mode (in which power and reactive power control has priority, respectively) were proposed as the countermeasures when the simultaneous control of power and reactive power became impossible; (2) the design method was established, by which power and reactive power control loops can independently be designed as a result of simulation; (3) the achievement of the simultaneous control of power and reactive power was confirmed by using P-control priority mode and Q-control priority mode, in the experiment using the control system designed by simulation. The validity of simulation model was also confirmed by actual response waveforms. (Wakatsuki, Y.)

  15. The LHC Superconducting RF System

    CERN Document Server

    Boussard, Daniel

    1999-01-01

    The European Laboratory for Particle Physics (CERN), the largest high energy physics laboratory worldwide, is constructing the Large Hadron Collider (LHC) in the existing 27 km circumference LEP (Large Electron Positron) collider tunnel. For the LHC, superconducting cavities, operating at 4.5 K, will provide the required acceleration field for ramping the beam energy up to 7 TeV and for keeping the colliding proton beams tightly bunched. Superconducting cavities were chosen, not only because of their high acceleration field leading to a small contribution to the machine impedance, but also because of their high stored energy which minimises the effects of periodic transient beam loading associated with the high beam intensity (0.5 A). There will be eight single-cell cavities per beam, each delivering 2 MV (5.3 MV/m) at 400 MHz. The cavities themselves are now being manufactured by industrial firms, using niobium on copper technology which gives full satisfaction at LEP. A complete cavity prototype assembly in...

  16. Superconducting energy storage magnet

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Boom, R.W.; Young, W.C.; McIntosh, G.E.; Abdelsalam, M.K.

    1986-01-01

    A superconducting magnet is described comprising: (a) a first, outer coil of one layer of conductor including at least a superconducting composite material; (b) a second, inner coil of one layer of conductor including at least a superconducting composite material. The second coil disposed adjacent to the first coil with each turn of the second inner coil at substantially the same level as a turn on the first coil; (c) an inner support structure between the first and second coils and engaged to the conductors thereof, including support rails associated with each turn of conductor in each coil and in contact therewith along its length at positions on the inwardly facing periphery of the conductor. The rail associated with each conductor is electrically isolated from other rails in the inner support structure. The magnetic field produced by a current flowing in the same direction through the conductors of the first and second coils produces a force on the conductors that are directed inwardly toward the inner support structure

  17. Framework of collaboration investigation on neutron effect on superconducting magnet materials

    International Nuclear Information System (INIS)

    Nishimura, Arata; Takeuchi, Takao; Nishijima, Shigehiro; Izumi, Yoshinobu; Takakura, Kosuke; Ochiai, Kentaro; Henmi, Tsutomu; Nishijima, Gen; Watanabe, Kazuo; Sato, Isamu; Kurisita, Hiroaki; Narui, Minoru; Shikama, Tatsuo

    2009-01-01

    A fusion reactor will generate D-T neutron and the kinetic energy of the neutron will be converted to the thermal energy and electrical energy. The neutron has huge energy and will be able to penetrate a shielding blanket and stream out of ports for neutral beam injections. The penetrated and streamed out neutrons will reach superconducting magnets and make some damages on the magnet system. To investigate the neutron irradiation effects on the superconducting magnet materials, a collaborative network must be organized and the irradiation researches must be performed. This report will describe the framework of the collaboration investigation which has been established among neutronics, superconducting magnet and fusion system. After showing the collaboration scheme, some new results on 14 MeV neutron irradiation effect are presented. Then, a three years new project which was adopted as one of 'Nuclear basic infrastructure strategy study initiatives' by MEXT will be introduced as an example of collaborative program among superconducting materials, fission reactor and high magnetic field technology. (author)

  18. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1990-01-01

    Development of a superconducting slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first superconducting heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerator System). The Physics Division at ANL has continued to develop superconducting RF technology for accelerating heavy-ions, with the result that the linac has been in an almost continuous process of upgrade and expansion. In 1987, the Engineering Physics Division at ANL began developing of superconducting RF components for the acceleration of high-brightness proton and deuterium beams. The two divisions collaborate in work on several applications of RF superconductivity, and also in work to develop the technology generally. The present report briefly describes major features of the superconducting heavy-ion linac (very-low-velocity superconducting linac, positive ion injector), proton accelerating structures (superconducting resonant cavities for acceleration of high-current proton and deuteron beams, RF properties of oxide superconductors), and future work. Both divisions expect to continue a variety of studies, frequently in collaboration, to advance the basic technology of RF superconductivity. (N.K.)

  19. Energy Technology Division research summary 2001

    International Nuclear Information System (INIS)

    2001-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the U.S. Department of Energy. As shown on the preceding page, the Division is organized into eight sections, four with concentrations in the materials area and four in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officer, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. This Overview highlights some major ET research areas. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the U.S. Nuclear Regulatory Commission (NRC) remains a significant area of interest for the Division. We currently have programs on environmentally assisted cracking, steam generator integrity, and the integrity of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out by three ET sections: Corrosion and Mechanics of Materials; Irradiation Performance; and Sensors, Instrumentation, and Nondestructive Evaluation

  20. Superconducting cavity development at RRCAT

    International Nuclear Information System (INIS)

    Joshi, S.C.

    2015-01-01

    Raja Ramanna Centre for Advanced Technology (RRCAT), Indore pursuing a program on 'R and D Activities for High Energy Proton Linac based Spallation Neutron Source'. Spallation neutron source (SNS) facility will provide high flux pulse neutrons for research in the areas of condensed matter physics, materials science, chemistry, biology and engineering. This will complement the existing synchrotron light source facility, INDUS-2 at RRCAT and reactor based neutron facilities at BARC. RRCAT is also participating in approved mega project on 'Physics and Advanced Technology for High Intensity Proton Accelerator' to support activities of Indian Institutions - Fermilab Collaboration (IIFC). The SNS facility will have a 1 GeV superconducting proton injector linac and 1 GeV accumulator ring. The linac will comprise of large number of superconducting radio-frequency (SCRF) cavities operating at different RF frequencies housed in suitable cryomodules. Thus, an extensive SCRF cavity infrastructure setup is being established. In addition, a scientific and technical expertise are also being developed for fabrication, processing and testing of the SCRF cavities for series production. The paper presents the status of superconducting cavity development at RRCAT

  1. Optimization of a Superconducting Magnetic Energy Storage Device via a CPU-Efficient Semi-Analytical Simulation

    OpenAIRE

    Dimitrov, I K; Zhang, X; Solovyov, V F; Chubar, O; Li, Qiang

    2014-01-01

    Recent advances in second generation (YBCO) high temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and considerable filament size of these wires requires the concomitant development of dedicated optimization methods that account for both the critical current density and ac losses in ...

  2. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  3. Energy-efficient electrical machines by new materials. Superconductivity in large electrical machines

    International Nuclear Information System (INIS)

    Frauenhofer, Joachim; Arndt, Tabea; Grundmann, Joern

    2013-01-01

    The implementation of superconducting materials in high-power electrical machines results in significant advantages regarding efficiency, size and dynamic behavior when compared to conventional machines. The application of HTS (high-temperature superconductors) in electrical machines allows significantly higher power densities to be achieved for synchronous machines. In order to gain experience with the new technology, Siemens carried out a series of development projects. A 400 kW model motor for the verification of a concept for the new technology was followed by a 4000 kV A generator as highspeed machine - as well as a low-speed 4000 kW propeller motor with high torque. The 4000 kVA generator is still employed to carry out long-term tests and to check components. Superconducting machines have significantly lower weight and envelope dimensions compared to conventional machines, and for this reason alone, they utilize resources better. At the same time, operating losses are slashed to about half and the efficiency increases. Beyond this, they set themselves apart as a result of their special features in operation, such as high overload capability, stiff alternating load behavior and low noise. HTS machines provide significant advantages where the reduction of footprint, weight and losses or the improved dynamic behavior results in significant improvements of the overall system. Propeller motors and generators,for ships, offshore plants, in wind turbine and hydroelectric plants and in large power stations are just some examples. HTS machines can therefore play a significant role when it comes to efficiently using resources and energy as well as reducing the CO 2 emissions.

  4. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  5. Development of Strategic Technology Road map for Establishing Safety Infrastructure of Fusion Energy

    International Nuclear Information System (INIS)

    Han, B. S.; Cho, S. H.; Kam, S. C.; Kim, K. T.

    2009-01-01

    The Korean Government established an 'Act for the Promotion of Fusion Energy Development (APFED)' and formulated a 'Strategy Promotion Plan for Fusion Energy Development.' KINS has carried out a safety review of KSTAR (Korea Superconducting Tokamak Advanced Research), for which an application for use was received in 2002 and the license was issued in August 2007. With respect to the APFED, 'Atomic Energy Acts (AEAs)' shall apply in the fusion safety regulation. However the AEAs are not applicable because they aim for dealing with nuclear energy. In this regard, this study was planned to establish safety infrastructure for fusion energy and to develop technologies necessary for verifying the safety. The purpose of this study is to develop a 'Strategic Technology Roadmap (STR) for establishing safety infrastructure of the fusion energy', which displays the content and development schedule and strategy for developing the laws, safety goals and principles, and safety standards applicable for fusion safety regulation, and core technology required for safety regulation of fusion facilities

  6. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  7. Prototype superconducting magnet for the FFAG accelerator

    International Nuclear Information System (INIS)

    Obana, T.; Ogitsu, T.; Yamamoto, A.; Yoshimoto, M.; Mori, Y.; Fujii, T.; Iwasa, M.; Orikasa, T.

    2006-01-01

    A study of a superconducting magnet for the Fixed Field Alternating Gradient (FFAG) accelerator has been performed. The FFAG accelerator requires static magnetic field, and it is suitable for superconducting magnet applications, because problems associated with time varying magnetic field such as eddy current loss can be eliminated. The superconducting magnet, which can generate high magnetic field, is possible to realize a higher beam energy with a given accelerator size or the size to be smaller for a given beam energy. The FFAG accelerator magnet is demanded to have a complicated nonlinear magnetic field with high accuracy. As a first prototype superconducting coil, the coil configuration which consists of left-right asymmetric cross-section and large aperture has been designed. The prototype coil has been successfully developed by using a 6-axis Computer Numerical Control (CNC) winding machine. The magnetic field of the prototype coil has been demonstrated in warm measurement. As a consequence, the technical feasibility has been verified with the prototype coil development and the performance test. In addition, the technology components developed in the prototype coil have a possibility to transfer to a fusion magnet

  8. Practical applications of superconducting technology; Chodendo gijutsu to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, M.; Yamamoto, K.; Urata, M. [Toshiba Corp., Tokyo (Japan)

    1995-11-01

    Remarkable progress has been made in superconducting technology recently. This paper describes the details and technical features of every cooling type of practical superconducting magnet (SCM), including the SCM for magnetic resonance imaging (MRI), SCM for semiconductor pulling devices, high-field SCM, SCM for magnetically confined plasma devices, and SCM for particle detectors. Commercial production of pool-boil-cooled SCMs has been realized by reducing helium evaporation and decreasing the frequency of helium pouring. The development of forced-cooled SCMs has made it possible to build large SCMs. Moreover, the development of the 4 K-GM refrigerator has enabled liquid-helium-free SCMs to be introduced. Since this type of SCM can be operated merely by turning on a switch, SCMs are expected to come into more widespread use. 7 refs., 1 fig.

  9. Industrial and scientific technology research and development project in fiscal 1997 commissioned by the New Energy and Industrial Technology Development Organization. Research and development of superconducting materials and transistors (report on overall investigation of superconductive devices); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (chodendo soshika gijutsu kaihatsu seika hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes development of superconducting new function transistors. Fiscal 1997 as the final year of the project advanced improvement in such transistor-using processes as formation and micro-processing of superconducting thin films to show enhancement in characteristics of high-temperature superconducting transistors and possibility of their application utilizing their high speed motions. Furthermore, fundamental technologies were studied with an aim on junction transistors to be applied as circuits. For field effect transistors, evaluation was performed on critical current distribution of step-type particle boundary junction to make it possible to evaluate characteristics of hundreds of transistors. At the same time, a magnetic flux quantum parametron gate with three-layer structure was fabricated to identify its operation. In superconducting-base transistors, strong reflection was recognized on temperature dependence of permittivity of an Nb-doped strontium titanate substrate used for collectors, by which barrier height was reduced. In the junction transistor and circuit technology, isotropic ramp-edge junctions were fabricated, and so was a frequency divider circuit with single magnetic flux quantum mode operation for evaluating high-speed response characteristics. High time resolution current was observed successfully by using a high-temperature superconducting sampler system. 148 refs., 127 figs., 4 tabs.

  10. Development of superconducting pulsed poloidal coil in JAERI

    International Nuclear Information System (INIS)

    Shimamoto, S.; Okuno, K.; Ando, T.; Tsuji, H.

    1990-01-01

    In the Japan Atomic Energy Research Institute, (JAERI), development work on pulsed superconductors and coils started in 1979, aiming at the demonstration of the applicability of superconducting technologies to pulsed poloidal coils in a fusion reactor. Initially our effort was concentrated mainly on the development of pool-cooled large-current pulsed conductors. Over the past ten years, superconducting technology has made great progress and the forced-flow cooled coil has assumed great importance in the development work. Now the Demo Poloidal Coil Project is in progress in JAERI, and three large forced-flow cooled coils have so far been fabricated and tested. Many improvements have been achieved in ac-loss performance and mechanical characteristics. (author)

  11. Pulsed energy conversion with a dc superconducting magnet

    International Nuclear Information System (INIS)

    Cowan, M.; Cnare, E.C.; Leisher, W.B.; Tucker, W.K.; Wessenberg, D.L.

    1976-01-01

    A generator system for pulsed power is described which employs a dc superconducting magnet in a magnetic flux compression scheme. Experience with a small-scale generator together with projections of numerical models indicate potential applications to fusion research and commercial power generation. When the system is large enough pulse energy can exceed that stored in the magnet and pulse rise time can range from several microseconds to tens of milliseconds. (author)

  12. The MgB2 superconducting energy gaps measured by Raman spectroscopy

    International Nuclear Information System (INIS)

    Quilty, James William

    2003-01-01

    Understanding the nature of the superconducting energy gap in magnesium diboride is an essential part of understanding this unusual superconductor, and Raman scattering is a convenient and powerful technique which is able to directly measure the key physical properties of the gap. The Raman spectra of MgB 2 show clear superconductivity induced renormalisations and evidence is found for two superconducting gaps residing on the σ and π Fermi surfaces with maximum magnitudes of around 110 and 30 cm -1 . The larger gap appears as a sharp peak in the electronic Raman scattering continuum while the smaller gap manifests itself as a threshold in the low-frequency spectral intensity, indicating that the gaps form in different electronic environments. The physical properties of the gaps favour explanations of the extraordinarily high T c in MgB 2 within strong coupling theory

  13. Long term performance of the superconducting cavities of the Saclay heavy ion linac

    International Nuclear Information System (INIS)

    Cauvin, B.; Desmons, M.; Girard, J.; Letonturier, P.

    1993-12-01

    The Saclay heavy ion superconducting linac has been in operation at full energy since mid 1989. The 50 independent superconducting helix resonators have now accelerated beams for more than 20000 hours. The long term performances of the linac, and more specifically of the superconducting R.F. technology, are discussed: vibrations of the resonators, cryostat design and operation, beam time, vacuum accidents, multipactor during operation due to small leaks, stability of the electric fields, cryogenics operation. 4 figs., 6 refs

  14. Superconducting materials and magnets

    International Nuclear Information System (INIS)

    1991-04-01

    The Technical Committee Meeting on Superconducting Materials and Magnets was convened by the IAEA and held by invitation of the Japanese government on September 4-6, 1989 in Tokyo. The meeting was hosted by the National Research Institute for Metals. Topics of the conference related to superconducting magnets and technology with particular application to fusion and the superconducting supercollider. Technology using both high and low-temperature superconductors was discussed. This document is a compendium of the papers presented at the meeting. Refs, figs and tabs

  15. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    Chaddah, P.; Dande, Y.D.; Dasannacharya, B.A.; Malik, M.K.; Raghavan, R.V.

    1987-01-01

    The advantages of low power loss, high magnetic fields and compactness of size of superconducting magnets have generated world-wide interest in using them for MHD generators, Tokamak fusion reactors, energy storage systems etc. With a view to assess the feasibility of using the technology in power engineering in India, the status of the efforts in the country is reviewed and the areas of R and D required are indicated. 13 figures, 15 refs. (author)

  16. Vacuum technology issues for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Joestlein, H.

    1989-01-01

    The Superconducting Super Collider, to be built in Texas, will provide an energy of 40 TeV from colliding proton beams. This energy is twenty times higher than currently available from the only other cryogenic collider, the Fermilab Tevatron, and will allow experiments that can lead to a better understanding of the fundamental properties of matter. The energy scale and the size of the new machine pose intriguing challenges and opportunities for the its vacuum systems. The discussion will include the effects of synchrotron radiation on cryogenic beam tubes, cold adsorption pumps for hydrogen, methods of leak checking large cryogenic systems, the development of cold beam valves, and radiation damage to components, especially electronics. 9 figs., 1 tab

  17. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  18. Capital and operating cost estimates for high temperature superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schoenung, S.M.; Meier, W.R.; Fagaly, R.L.; Heiberger, M.; Stephens, R.B.; Leuer, J.A.; Guzman, R.A.

    1992-01-01

    Capital and operating costs have been estimated for mid-scale (2 to 200 Mwh) superconducting magnetic energy storage (SMES) designed to use high temperature superconductors (HTS). Capital costs are dominated by the cost of superconducting materials. Operating costs, primarily for regeneration, are significantly reduced for HTS-SMES in comparison to low temperature, conventional systems. This cost component is small compared to other O and M and capital components, when levelized annual costs are projected. In this paper, the developments required for HTS-SMES feasibility are discussed

  19. On test results of the superconducting magnetic energy storage (SMES) system in Ariuragawa Power Station

    International Nuclear Information System (INIS)

    Katahira, Osamu; Fukui, Fumihiko; Karano, Koichi; Irie, Fujio; Takeo, Masakatsu; Okada, Hidehiko; Shimojo, Toshikazu.

    1991-01-01

    SMES system is that for storing electric energy in the form of magnetic energy by flowing DC current through a superconducting coil by utilizing the characteristics of its superconductivity. It comprises a superconducting coil for storing energy, an AC-DC converter, the cooling system for maintaining extremely low temperature and so on. The features of SMES are the high efficiency of storing electric energy (more than 90 % in the large scale system), the fast response to store and release electric power, and effective power and reactive power can be independently and arbitrarily controlled. It is expected that SMES can be applied to the stabilization of electric power system, the adjustment of system voltage, the adjustment of varying load and so on. In order to verify the results of the laboratory research in actual power system, the system test was carried out in Ariuragawa Power Station on November 20-22, 1990. The outline of the test, the method of controlling SMES, the test results and the examination of the results are reported. (K.I.)

  20. Operation of multiple superconducting energy doubler magnets in series

    International Nuclear Information System (INIS)

    Kalbfleisch, G.; Limon, P.J.; Rode, C.

    1977-01-01

    In order to understand the operational characteristics of the Energy Doubler, a series of experiments were begun which were designed to be a practical test of running superconducting accelerator magnets in series. Two separate tests in which two Energy Doubler dipoles were powered in series are described. Of particular interest are the static losses of the cryostats and the behavior of the coils and cryostats during quenches. The results of the tests show that Energy Doubler magnets can be safely operated near their short sample limit, and that the various safety devices used are adequate to protect the coils and the cryostats from damage

  1. Superconductivity: Phenomenology

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect

  2. Bulk superconducting gap of V_3Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sato, T.; Souma, S.; Nakayama, K.; Sugawara, K.; Toyota, N.; Takahashi, T.

    2016-01-01

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V_3Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V_3Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V_3Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T_c = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V_3Si is a single-gap s-wave superconductor.

  3. WTEC Panel on Power applications of superconductivity in Japan and Germany. Final report

    International Nuclear Information System (INIS)

    Shelton, R.D.; Larbalestier, David; Blaugher, Richard D.; Schwall, Robert E.; Sokolowski, Robert S.; Suenaga, Masaki; Willis, JefFR-ey O.

    1997-01-01

    In early 1996, the U.S. Department of Energy and National Science Foundation asked the World Technology Evaluation Center (WTEC) to assemble a panel to assess, relative to the United States, how Japan and Germany are responding to the challenge of applying superconductivity to power and energy applications. Although the study was focused mostly on the impact of high-temperature superconductors (HTS) on the power applications field, the WTEC panel also looked at many applications for low-temperature superconductors (LTS). The market for low-temperature superconductor applications is well established, as is that for superconducting electronics, for which there is a separate WTEC panel. The panel on power applications of superconductivity was commissioned to identify the roles of public organizations, industry, and academia for advancing power applications of superconductivity, taking both a present and a long-term view

  4. WTEC Panel on Power applications of superconductivity in Japan and Germany. Final report

    CERN Document Server

    Shelton, R D; Larbalestier, D; Schwall, R E; Sokolowski, R S; Suenaga, M; Willis, J E O

    1997-01-01

    In early 1996, the U.S. Department of Energy and National Science Foundation asked the World Technology Evaluation Center (WTEC) to assemble a panel to assess, relative to the United States, how Japan and Germany are responding to the challenge of applying superconductivity to power and energy applications. Although the study was focused mostly on the impact of high-temperature superconductors (HTS) on the power applications field, the WTEC panel also looked at many applications for low-temperature superconductors (LTS). The market for low-temperature superconductor applications is well established, as is that for superconducting electronics, for which there is a separate WTEC panel. The panel on power applications of superconductivity was commissioned to identify the roles of public organizations, industry, and academia for advancing power applications of superconductivity, taking both a present and a long-term view.

  5. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212.

    Science.gov (United States)

    Ino, Akihiro; Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi

    2013-12-05

    : The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.

  6. SSC [Superconducting Super Collider] magnet technology

    International Nuclear Information System (INIS)

    Taylor, C.

    1987-09-01

    To minimize cost of the SSC facility, small-bore high field dipole magnets have been developed;some of the new technology that has been developed at several U.S. national laboratories and in industry is summarized. Superconducting wire with high J/sub c/ and filaments as small as 5μm diameter is not produced iwht mechanical properties suitable for reliable cable production. A variety of collar designs of both aluminum and stainless steel have been used in model magnets. A low-heat leak post-type cryostat support system is used and a system for accurate alignment of coil-collar-yoke in the cryostat has been developed. Model magnets of 1-m, 1.8 m, 4.5 m, and 17 m lengths have been build during the past two years. 23 refs., 5 figs., 2 tabs

  7. Multi-cell superconducting structures for high energy e+ e- colliders and free electron laser linacs

    CERN Document Server

    Sekutowicz, J

    2008-01-01

    This volume, which is the first in the EuCARD Editorial Series on “Accelerator Science and Technology”, is closely combined with the most advanced particle accelerators – based on Superconducting Radio Frequency (SRF) technology. In general, SRF research includes following areas: high gradient cavities, cavity prototyping, thin film technologies, large grain and mono-crystalline niobium and niobium alloys, quenching effects in superconducting cavities, SRF injectors, photo-cathodes, beam dynamics, quality of electron beams, cryogenics, high power RF sources, low level RF controls, tuners, RF power coupling to cavities, RF test infrastructures, etc. The monograph focuses on TESLA structures used in FLASH machine and planned for XFEL and ILC experiments.

  8. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  9. WORKSHOPS: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-01-15

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991.

  10. Influence of quasiparticle multi-tunneling on the energy flow through the superconducting tunnel junction

    International Nuclear Information System (INIS)

    Samedov, V. V.; Tulinov, B. M.

    2011-01-01

    Superconducting tunnel junction (STJ) detector consists of two layers of superconducting material separated by thin insulating barrier. An incident particle produces in superconductor excess nonequilibrium quasiparticles. Each quasiparticle in superconductor should be considered as quantum superposition of electron-like and hole-like excitations. This duality nature of quasiparticle leads to the effect of multi-tunneling. Quasiparticle starts to tunnel back and forth through the insulating barrier. After tunneling from biased electrode quasiparticle loses its energy via phonon emission. Eventually, the energy that equals to the difference in quasiparticle energy between two electrodes is deposited in the signal electrode. Because of the process of multi-tunneling, one quasiparticle can deposit energy more than once. In this work, the theory of branching cascade processes was applied to the process of energy deposition caused by the quasiparticle multi-tunneling. The formulae for the mean value and variance of the energy transferred by one quasiparticle into heat were derived. (authors)

  11. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2013-01-01

    Highlights: ► A model-sized superconducting VSC-HVDC system was designed and fabricated. ► A real-time simulation using Real Time Digital Simulator has been performed. ► The AC loss characteristics of HTS DC power cable caused by harmonics were analyzed. ► The AC loss of the HTS DC power cable will be used as a parameter to design the cable cooling system. -- Abstract: The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail

  12. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 9 Sarim-Dong, Changwon 641-733 (Korea, Republic of)

    2013-01-15

    Highlights: ► A model-sized superconducting VSC-HVDC system was designed and fabricated. ► A real-time simulation using Real Time Digital Simulator has been performed. ► The AC loss characteristics of HTS DC power cable caused by harmonics were analyzed. ► The AC loss of the HTS DC power cable will be used as a parameter to design the cable cooling system. -- Abstract: The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  13. Status report on the Karlsruhe prototype superconducting proton linerar accelerator

    International Nuclear Information System (INIS)

    Citron, A.

    1974-01-01

    A short intoduction about linear accelerators in general and the advantage of using superconducting resonators is given. Subsequently some basic efforts on r.f. superconductivity are recalled and the status of technology of surface preparations is reported. The status of the Karlsruhe accelerator is given. In the low energy region some difficulties caused by mechanical instabilities had to be overcome. Protons have been accelerated in this part. Model studies for the subsequent sections of the accelerator have been started and look promising. (author)

  14. Energy and technology review

    International Nuclear Information System (INIS)

    1981-05-01

    Research programs at LLNL are reviewed. This issue discusses validation of the pulsed-power design for FXR, the NOVA plasma shutter, thermal control of the MFTF superconducting magnet, a low-energy x-ray spectrometer for pulsed-source diagnostics, micromachining, the electronics engineer's design station, and brazing with a laser microtorch

  15. Technology development of fabrication NbTi and Nb3 Sn superconducting wires

    International Nuclear Information System (INIS)

    Rodrigues Junior, D.; Bormio, C.; Baldan, C.A.; Ramos, M.J.; Pinatti, D.G.

    1988-01-01

    The technology development of NbTi and Nb 3 Sn superconducting wires are studied, mentioning the use of fluxes capture theory in the sizing of wires fabrication. The fabrication process, the thermal treatment and the experimental datas of critical temperature and current of Nb 3 Sn wires are described. (C.G.C.) [pt

  16. Project in fiscal 1989 for research and development of basic technologies in next generation industries. Research and development of superconducting materials and superconducting elements (Achievement report on forecast and research of superconducting element technology); 1989 nendo chodendo soshi gijutsu yosoku kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    Investigations were performed on the progress in elementary technologies common to the superconducting element technologies. This paper summarizes the achievements therein. For the most basic and important thin film technologies among the common elementary technologies, number of researches has increased as it entered in this fiscal year on the CVD process and the atomic layer control, resulting in the progress in film quality improvement and temperature reduction. With regard to the sputtering process and vacuum deposition process, findings were obtained on mechanisms and solutions for the reverse sputtering due to negative ions and oxygen activation which have been the issues. For electronic devices using high-temperature superconduction, the bridge type or tunnel type Josephson elements may be conceived. Elements for the SQUID magnetic flux meter have become to derive relatively high output by means of grain boundary bonding, suggesting a possibility of practical application in the near future. Tunnel bonding may be conceived for the switching elements, but the one operating at elevated temperatures has not been obtained. However, progress can be discovered in the proximity effects of high-temperature superconductors and silver, and the Josephson junction between high-temperature superconductors and metallic superconductors. (NEDO)

  17. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies

    Directory of Open Access Journals (Sweden)

    Nicolas G. N. Constantino

    2018-06-01

    Full Text Available Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20–250 nm. We present characterisation of the nanowires using DC electrical transport at temperatures down to 300 mK. We demonstrate that a range of different behaviours may be obtained in different nanowires, including bulk-like superconducting properties with critical-current features, the observation of phase-slip centres and the observation of zero conductance below a critical voltage, characteristic of coherent quantum phase-slips. We observe critical voltages up to 5 mV, an order of magnitude larger than other reports to date. The different prominence of quantum phase-slip effects in the various nanowires may be understood as arising from the differing importance of quantum fluctuations. Control of the nanowire properties will pave the way for routine fabrication of coherent quantum phase-slip nanowire devices for technology applications.

  18. Design of MgB2 superconducting dipole magnet for particle beam transport in accelerators

    OpenAIRE

    Abrahamsen, A.B.; Zangenberg, N.; Baurichter, A.; Grivel, Jean-Claude; Andersen, Niels Hessel

    2006-01-01

    A comprehensive analysis of the innovation potential of superconductivity at Risø was performed in February 2004 by the main author of this report [1]. Several suggestions for new products and new markets were formulated by the superconductivity group andexamined by the innovation staff at Risø. The existing markets of superconducting technology is within highly specialized scientific areas such as magnetic confinement in fusion energy, sample environment in neutron scattering and large scale...

  19. Superconducting energy storage magnet

    Science.gov (United States)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  20. Optimization of the protective energy removal parameters for tokamak HT7-U superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, P.P.; Chudnovsky, A.N.; Posadsky, I.A. [RRC ' Kurchatov Inst.' , Nuclear Fusion Inst., Moscow (Russian Federation); Bi, Y.F.; Cheng, S.M.; He, Y.X. [Academia Sinica, Hefei, Anhui (China). Inst. of Plasma Physics

    1998-07-01

    The design of the HT-7U superconducting tokamak is in progress now. The design incorporates superconducting magnets of the toroidal field and poloidal field systems. Toroidal field system consists of 16 D-shape coils and poloidal field system consists of 12 coils. All coils will be use NbTi/Cu cable-in-conduit conductor cooled with forced-flow supercritical helium at 4.5 K, 4 Bar. Quench in the superconducting magnets is accompanied byconversion of the stored magnetic field energy into a thermal one which is spent on heating of both the coil part which made transition into a normal state and dump resistors. A non-uniform heating of the coil part results in the emergence of thermomechanical stresses which can cause its destruction. The protective removal of a current is realized to prevent the coil destruction at the emergence of the quench. In that case, the faster the current removal occurs, the less the coil heating is. On the other hand, the current removal rate should not be too high in order to avoid an electric breakdown by the excited inductive voltage. Optimization of the protective energy removal parameters both for TF and PF superconducting magnets is presented. (author)

  1. Optimization of the protective energy removal parameters for tokamak HT7-U superconducting magnets

    International Nuclear Information System (INIS)

    Khvostenko, P.P.; Chudnovsky, A.N.; Posadsky, I.A.; Bi, Y.F.; Cheng, S.M.; He, Y.X.

    1998-01-01

    The design of the HT-7U superconducting tokamak is in progress now. The design incorporates superconducting magnets of the toroidal field and poloidal field systems. Toroidal field system consists of 16 D-shape coils and poloidal field system consists of 12 coils. All coils will be use NbTi/Cu cable-in-conduit conductor cooled with forced-flow supercritical helium at 4.5 K, 4 Bar. Quench in the superconducting magnets is accompanied by conversion of the stored magnetic field energy into a thermal one which is spent on heating of both the coil part which made transition into a normal state and dump resistors. A non-uniform heating of the coil part results in the emergence of thermomechanical stresses which can cause its destruction. The protective removal of a current is realized to prevent the coil destruction at the emergence of the quench. In that case, the faster the current removal occurs, the less the coil heating is. On the other hand, the current removal rate should not be too high in order to avoid an electric breakdown by the excited inductive voltage. Optimization of the protective energy removal parameters both for TF and PF superconducting magnets is presented. (author)

  2. Florida State University superconducting linac

    International Nuclear Information System (INIS)

    Myers, E.G.; Fox, J.D.; Frawley, A.D.; Allen, P.; Faragasso, J.; Smith, D.; Wright, L.

    1988-01-01

    As early as the fall of 1977 it was decided that the future research needs of their nuclear structure laboratory required an increase in energy capability to at least 8 MeV per nucleon for the lighter ions, and that these needs could be met by the installation of a 17 MV tandem Van de Graaff accelerator. The chief problem with this proposal was the high cost. It became apparent that a far less expensive option was to construct a linear accelerator to boost the energy from their existing 9 MV tandem. The options open to them among linac boosters were well represented by the room temperature linac at Heidelberg and the superconducting Stony Brook and Argonne systems. By the Spring of 1979 it had been decided that both capital cost and electric power requirements favored a superconducting system. As regards the two superconducting resonator technologies - the Argonne niobium-copper or the Caltech-Stony Brook lead plated copper - the Argonne resonators, though more expensive to construct, had the advantages of more boost per resonator, greater durability of the superconducting surface and less stringent beam bunching requirements. In 1980 pilot funding from the State of Florida enabled the construction of a building addition to house the linac and a new target area, and the setting up of a small, three resonator, test booster. Major funding by the NSF for the laboratory upgrade started in 1984. With these funds they purchased their present helium liquefaction and transfer system and constructed three large cryostats, each housing four Argonne beta = 0.105 resonators and two superconducting solenoids. The last large cryostat was completed and installed on-line early this year and the linac was dedicated on March 20. Nuclear physics experiments using the whole linac began in early June. 4 references, 6 figures, 1 table

  3. Fiscal 1997 R and D project on industrial science and technology under a consignment from NEDO. R and D of the superconducting material and device (technical development of the Josephson device hybrid system); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (Josephson soshi hybrid system no gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In order to establish basic technology for hybrid systems of superconducting and semiconducting devices, study was made on ultrahigh speed and low energy consumption properties of Josephson devices. As Josephson IC technology, a logical circuit, ring network, memory circuit, and oxide superconductor logical circuit were studied. As superconducting hybrid system technology, a Josephson device- semiconductor device interface, formation technology of signal transmission lines, and Josephson-MOS IC technology were developed. In fiscal 1997, as Josephson IC technology, switch motion of 4GHz in clock frequency was achieved by new high-density wiring process. Integration of some semiconducting processor elements, junction of surface- stabilized superconducting thin films, and motion of combination structure of some SQUIDs were also confirmed. On the hybrid system, voltage conversion operation of all interfaces was confirmed. Proper logical operation of the Josephson device hybrid circuit was also confirmed. 95 refs., 90 figs., 5 tabs.

  4. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  5. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Barger, R.K.; Bianchi, A.J.; Cooper, W.E.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-01-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and nonhigh current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  6. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-03-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and non-high current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  7. Superconducting Technology Program: Sandia 1993 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1994-05-01

    Sandia's STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) process research on the material synthesis of high-temperature superconductors; (2) investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films; (3) process development and characterization of high-temperature superconducting wire and tape, and (4) cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY93 in each of these four areas. A brief background of each project is included to provide historical context and perspective. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas

  8. AmpaCity. Superconducting cables and fault current limiters for the energy supply in conurbations

    International Nuclear Information System (INIS)

    Merschel, F.; Noe, M.; Stemmle, M.; Hobl, A.; Sauerbach, O.

    2013-01-01

    In 2013 RWE Germany is working jointly with cable manufacturer Nexans and with the scientific support of the Karlsruhe Institute of Technology (KIT) to install world's longest superconducting cable in the downtown area electricity grid of Essen. The AmpaCity project is partly funded by the German Federal Ministry of Economics and Technology and is playing an exemplary role in the further development of electricity grids in major cities worldwide. The project consortium presents AmpaCity as a convincing system solution especially with respect to economics and security of supply. Components of the system are a superconducting three-phase AC cable with two terminations and one connection joint in combination with a fault current limiter, which is also based on superconducting materials. The superconducting system is designed for 10 kV nominal voltage and 40 MW nominal power. It will replace a 110 kV cable system of equal capacity. At the same time, the project partners are paving the way for high failsafe performance, as the cable in conjunction with the fault current limiter cannot be overloaded by short circuit currents in the event of faults in the grid. Planning and follow up on the civil works in Essen posed a major challenge. Cable laying in the inner city, with various crossings of major highways, tramways, as well as already dense cable routes necessitated very thorough preparation and coordination. The civil works in Essen started in April 2013. At around the same time, after the cable had passed the type test, it went into production. Cable laying is scheduled for late summer. After commissioning, planned for the end of 2013, the field trial will run for at least two years under real grid conditions, to demonstrate this technology's suitability for wider deployment.

  9. Experimental studies on the thermal properties of fast pulsed superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Bleile, Alexander

    2016-01-01

    The new Facility for Antiproton and Ion Research FAIR is being constructed at the GSI research center in Darmstadt (Germany). This wordwide unique accelerator facility will provide beams of ions and antiprotons at high intensities and high energies for the fundamental research in nuclear, atomic and plasma physics as well as for applied science. The superconducting synchrotron SIS100 with a magnetic rigidity of 100 T/m, the core component of the FAIR facility will provide primary ion beams of all types from hydrogen up to uranium. One of the key technical systems of a new synchrotron are fast ramped electromagnets for the generation of fast ramped magnetic fields for deflecting and focusing of the ion beams. To reduce the energy consumption and to keep the operating costs of the synchrotron as low as possible superconducting magnet technology is applied in the SIS100. Superconducting magnets have been developed at GSI within the scope of the FAIR project. Although the superconducting magnet technology promises high cost saving, the power consumption of the fast ramped superconducting magnets can't be completely neglected. The pulsed operation generates dynamic losses in the iron yokes as well as in the superconducting coils of the magnets. A forced two-phase helium flow provides effective cooling for supercounducting magnets exposed to a continous relative high heat flow. The subject of this PhD thesis is experimental investigations and analysis of the dynamic power losses in fast ramped superconducting magnets and their dependencies on the operation cycles of the synchrotron. This research was conducted on the the first series SIS100 dipole magnet. Based on the experimentally defined dynamic heat loads and helium mass flow rates in the dipole magnet the heat loads and helium consumption for all other types of superconducting magnet modules of the SIS100 have been estimated. These results are essential for the development of the cooling system for the the

  10. A superconducting homopolar motor and generator—new approaches

    International Nuclear Information System (INIS)

    Fuger, Rene; Matsekh, Arkadiy; Kells, John; Sercombe, D B T; Guina, Ante

    2016-01-01

    Homopolar machines were the first continuously running electromechanical converters ever demonstrated but engineering challenges and the rapid development of AC technology prevented wider commercialisation. Recent developments in superconducting, cryogenic and sliding contact technology together with new areas of application have led to a renewed interest in homopolar machines. Some of the advantages of these machines are ripple free constant torque, pure DC operation, high power-to-weight ratio and that rotating magnets or coils are not required. In this paper we present our unique approach to high power and high torque homopolar electromagnetic turbines using specially designed high field superconducting magnets and liquid metal current collectors. The unique arrangement of the superconducting coils delivers a high static drive field as well as effective shielding for the field critical sliding contacts. The novel use of additional shielding coils reduces weight and stray field of the system. Liquid metal current collectors deliver a low resistance, stable and low maintenance sliding contact by using a thin liquid metal layer that fills a circular channel formed by the moving edge of a rotor and surrounded by a conforming stationary channel of the stator. Both technologies are critical to constructing high performance machines. Homopolar machines are pure DC devices that utilise only DC electric and magnetic fields and have no AC losses in the coils or the supporting structure. Guina Energy Technologies has developed, built and tested different motor and generator concepts over the last few years and has combined its experience to develop a new generation of homopolar electromagnetic turbines. This paper summarises the development process, general design parameters and first test results of our high temperature superconducting test motor. (paper)

  11. A superconducting homopolar motor and generator—new approaches

    Science.gov (United States)

    Fuger, Rene; Matsekh, Arkadiy; Kells, John; Sercombe, D. B. T.; Guina, Ante

    2016-03-01

    Homopolar machines were the first continuously running electromechanical converters ever demonstrated but engineering challenges and the rapid development of AC technology prevented wider commercialisation. Recent developments in superconducting, cryogenic and sliding contact technology together with new areas of application have led to a renewed interest in homopolar machines. Some of the advantages of these machines are ripple free constant torque, pure DC operation, high power-to-weight ratio and that rotating magnets or coils are not required. In this paper we present our unique approach to high power and high torque homopolar electromagnetic turbines using specially designed high field superconducting magnets and liquid metal current collectors. The unique arrangement of the superconducting coils delivers a high static drive field as well as effective shielding for the field critical sliding contacts. The novel use of additional shielding coils reduces weight and stray field of the system. Liquid metal current collectors deliver a low resistance, stable and low maintenance sliding contact by using a thin liquid metal layer that fills a circular channel formed by the moving edge of a rotor and surrounded by a conforming stationary channel of the stator. Both technologies are critical to constructing high performance machines. Homopolar machines are pure DC devices that utilise only DC electric and magnetic fields and have no AC losses in the coils or the supporting structure. Guina Energy Technologies has developed, built and tested different motor and generator concepts over the last few years and has combined its experience to develop a new generation of homopolar electromagnetic turbines. This paper summarises the development process, general design parameters and first test results of our high temperature superconducting test motor.

  12. Subharmonic energy-gap structure and heating effects in superconducting niobium point contacts

    DEFF Research Database (Denmark)

    Flensberg, K.; Hansen, Jørn Bindslev

    1989-01-01

    We present experimental data of the temperature-dependent subharmonic energy-gap structure (SGS) in the current-voltage (I-V) curves of superconducting niobium point contacts. The observed SGS is modified by heating effects. We construct a model of the quasiparticle conductance of metallic...

  13. Capacitor energy needed to induce transitions from the superconducting to the normal state

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Ross, R.R.

    1985-08-01

    The purpose of this paper is to describe a technique to turn a long length of superconducting wire normal by dumping a charged capacitor into it and justify some formulae needed in the design. The physical phenomenon is described. A formula for the energy to be stored in the capacitor is given. There are circumstances where the dc in an electrical circuit containing superconducting elements has to be turned off quickly and where the most convenient way to switch the current off is to turn a large portion or all of the superconducting wire normal. Such was the case of the Time Projection Chamber (TPC) superconducting magnet as soon as a quench was detected. The technique used was the discharge of a capacitor into the coil center tap. It turned the magnet winding normal in ten milliseconds or so and provided an adequate quench protection. The technique of discharging a capacitor into a superconducting wire should have many other applications whenever a substantial resistance in a superconducting circuit has to be generated in that kind of time scale. The process involves generating a pulse of large currents in some part of the circuit and heating the wire up by ac losses until the value of the wire critical current is smaller than the dc current. Use of low inductance connections to the circuit is necessary. Then the dc gets turned off due to the resistance of the wire as in a magnet quench

  14. Swiss Energy Research Programme 2008 - 2011. Electricity technologies and applications; Energieforschungsprogramm 2008-2011. Elektriztaetstechnologien und -Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Brueniger, R.

    2008-05-15

    This report published by the Swiss Federal Office of Energy (SFOE) discusses the results of research work done in Switzerland in the area of electricity technologies and their application. A technologies section takes a look at the conversion of heat into electricity, efficient compressed air storage and high-temperature superconductivity. In the applications area, efficient drives and motors, information technology and communication are discussed, as are electrical appliances for households and lighting. The organisation of the programme is presented and the focus of research for the period 2008 - 2011 in these areas is discussed.

  15. Quarterly Report to the New Energy and Industrial Technology Development Organization, Washington, D.C., by Analysis Review and Critique, dated August 23, 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-08-23

    Reports are made on U.S. Department of Energy activities relative to energy conservation, renewable energy, initiatives, Superconducting Super Collider, and national energy strategy. The Department in January 1990 announced an energy conservation/renewable energy research and development program comprising 11 initiatives, which are energy saving of more than 25% by relighting federal facilities, energy saving of more than 25% by relighting commercial buildings, integrated resource planning, accelerated building guidelines and standards relative to air-conditioning, etc., energy analysis and diagnostics for industrial facilities, energy production from municipal waste, manufacturing technology for photovoltaics, cost-competitive ethanol fuels, solar detoxification of hazardous waste, new laboratory building at SERI (Solar Energy Research Institute), and expanding hydropower contribution. Congress approved the Superconducting Super Collider project for fiscal 1990, and the accelerator is now proceeding to its construction phase. (NEDO)

  16. Enhancing the design of a superconducting coil for magnetic energy storage systems

    International Nuclear Information System (INIS)

    Indira, Gomathinayagam; UmaMaheswaraRao, Theru; Chandramohan, Sankaralingam

    2015-01-01

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done

  17. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  18. Modern high-temperature superconductivity

    International Nuclear Information System (INIS)

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  19. Power applications for superconducting cables in Denmark

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Østergaard, Jacob; Olsen, S. Krüger

    1999-01-01

    In Denmark a growing concern for environmental protection has lead to wishes that the open country is kept free of overhead lines as far as possible. New lines under 100 kV and existing 60/50 kV lines should be established as underground cables. Superconducting cables represent an interesting...... in cases such as transmission of energy into cities and through areas of special interest. The planned large groups of windmills in Denmark generating up to 2000 MVA or more both on dry land and off-shore will be an obvious case for the application of superconducting AC or DC cables. These opportunities...... can be combined with other new technologies such as HVDC light transmission using isolated gate bipolar transistors (IGBTs). The network needed in a system with a substantial wind power generation has to be very strong in order to handle energy fluctuations. Such a network will be possible...

  20. Design optimization of superconducting magnetic energy storage coil

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok

    2014-05-15

    Highlights: • We modeled the optimization formulation that minimizes overall refrigeration load into the SMES cryostat. • Higher the operating current reduces the dynamic load but increases static heat load into the cryostat. • Higher allowable hoop stress reduces both coil volume and refrigeration load. • The formulation can be in general be utilized for any arbitrary specification of SMES coil and conductor type. - Abstract: An optimization formulation has been developed for a superconducting magnetic energy storage (SMES) solenoid-type coil with niobium titanium (Nb–Ti) based Rutherford-type cable that minimizes the cryogenic refrigeration load into the cryostat. Minimization of refrigeration load reduces the operating cost and opens up the possibility to adopt helium re-condensing system using cryo-cooler especially for small-scale SMES system. Dynamic refrigeration load during charging or discharging operational mode of the coil dominates over steady state load. The paper outlines design optimization with practical design constraints like actual critical characteristics of the superconducting cable, maximum allowable hoop stress on winding, etc., with the objective to minimize refrigeration load into the SMES cryostat. Effect of design parameters on refrigeration load is also investigated.

  1. Nanolayers with advanced properties for superconducting nanoelectronics

    International Nuclear Information System (INIS)

    Prepelita, A.; Zdravkov, V.; Morari, R.; Socrovisciuc, A.; Antropov, E.; Sidorenko, A.

    2011-01-01

    Full text: Elaborated advanced technology for superconducting spintronics - technological process, based on magnetron sputtering of the metallic films with non-metallic protective layers, yields significant improvement in superconducting properties of thin Nb films and Nb/CuNi nanostructures in comparison with common methods of films deposition. The developed advanced technological process is patented (Patent RM number 175 from 31.03.2010). First experimental observation of the double re-entrant superconductivity in superconductor/ ferromagnetic nanostructures (Nb/Cu 41 Ni 59 bilayers) in dependence on the thickness of the ferromagnetic layer (Published in : A.S. Sidorenko, V.I. Zdravkov, J. Kehrle, R.Morari, E.Antropov, G. Obermeier, S. Gsell, M. Schreck, C. Muller, V.V. Ryazanov, S. Horn, R. Tidecks, L.R. Tagirov. Extinction and recovery of superconductivity by interference in superconductor/ferromagnet bilayers. In: Nanoscale Phenomena . Fundamentals and Applications,Ed. by H.Hahn, A.Sidorenko, I.Tiginyanu, Springer, 2009 p.1-10. Perspectives of applications: design of a new generation of superconducting spintronic devices - high frequency operating superconducting spin-switch for telecommunication and computers. (author)

  2. Research on heightening quality of free electron laser using superconducting linear accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1996-01-01

    In this paper, the superconducting high frequency linear accelerator technology using low temperature superconductor is introduced, and its application to the heightening of quality of free electron laser is discussed. The high frequency application of superconductivity is a relatively new technology, and the first superconducting high frequency linear accelerator was made at the middle of 1960s. The invention of free electron laser and the development so far are described. In free electron laser, the variation of wavelength, high efficiency and high power output are possible as compared with conventional type lasers. The price and the size are two demerits of free electron laser that remain to the last. In Japan Atomic Energy Research Institute, the adjustment experiment is carried out for the prototype free electron laser. About this prototype, injection system, superconducting accelerator, helium refrigerator, whole solid element high frequency power source, control system, electron beam transport system, undulator system and optical resonator are described. The application of high mean power output free electron laser and its future are discussed. (K.I.)

  3. Frustrated Kinetic Energy, the Optical Sum Rule, and the Mechanism of Superconductivity

    International Nuclear Information System (INIS)

    Chakravarty, S.; Kee, H.; Abrahams, E.

    1999-01-01

    The basis of the interlayer tunneling theory of high-temperature superconductivity is that the electronic kinetic energy in a direction perpendicular to the copper-oxygen planes is a substantial fraction of the condensation energy. This issue is critically examined, and it is argued from a rigorous conductivity sum rule that the consequences of this theory are consistent with recent optical and penetration depth measurements. copyright 1999 The American Physical Society

  4. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  5. A novel transition radiation detector utilizing superconducting microspheres for measuring the energy of relativistic high-energy charged particles

    International Nuclear Information System (INIS)

    Yuan, Luke C.L.; Chen, C.P.; Huang, C.Y.; Lee, S.C.; Waysand, G.; Perrier, P.; Limagne, D.; Jeudy, V.; Girard, T.

    2000-01-01

    A novel transition radiation detector (TRD) utilizing superheated superconducting microspheres of tin of 22-26, 27-32 and 32-38 μm in diameter, respectively, has been constructed which is capable of measuring accurately the energy of relativistic high-energy charged particles. The test has been conducted in a high-energy electron beam facility at the CERN PS in the energy range of 1-10 GeV showing an energy dependence of the TR X-ray photon produced and hence the value γ=E/mc 2 of the charged particle

  6. Research on superconducting generator and materials in Japan

    International Nuclear Information System (INIS)

    Uyeda, K.; Maki, N.; Kurihara, S.; Ueda, A.; Hirose, S.; Itoh, K.

    1988-01-01

    As a first step of application of superconducting technology to electric power equipment, the practical use of superconducting generator is sucessfully developed, enhanced generation efficiency, reduced construction cost, improved stability limit. For the development, it is required to integrated such technical assets as new generator design technology based on detailed analysis of techniques and high strength material for with standing intensive electro-magnetic force. This paper describes history and results of research and development of superconducting generator for experimental machines, the results of feasibility study of pilot generator, and master plan for research and development of superconducting technology for applications to generator and the other power apparatus

  7. Bulk superconducting gap of V{sub 3}Si studied by low-energy ultrahigh-resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T., E-mail: t-sato@arpes.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Souma, S. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nakayama, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Sugawara, K. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Toyota, N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Takahashi, T. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-04-15

    Highlights: • We report ultrahigh-resolution photoemission spectroscopy of A15 compound V{sub 3}Si. • We found a sharp quasiparticle peak due to superconducting-gap opening. • The surface metallic component is negligibly small in the bulk-sensitive measurement. • We show that V{sub 3}Si is a single-gap s-wave superconductor. - Abstract: We have performed low-energy ultrahigh-resolution photoemission spectroscopy (PES) of A15 compound V{sub 3}Si with a xenon-plasma discharge lamp to elucidate the bulk superconducting gap. Below the superconducting transition temperature (T{sub c} = 15.9 K), we found a sharp quasiparticle peak at the Fermi level in the PES spectrum. The gap spectrum is well fitted by a single s-wave superconducting-gap function together with a dip structure at ∼30 meV suggestive of a strong electron-phonon coupling. The anomalous in-gap state previously observed in the PES measurement with high-energy photons is absent or negligibly small in the present bulk-sensitive measurement. The present PES result shows that V{sub 3}Si is a single-gap s-wave superconductor.

  8. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

    Science.gov (United States)

    Murphy, Andrew; Averin, Dmitri V.; Bezryadin, Alexey

    2017-06-01

    The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation.

  9. Multiplacting analysis on 650 MHz, BETA 0.61 superconducting RF LINAC cavity

    International Nuclear Information System (INIS)

    Seth, Sudeshna; Som, Sumit; Mandal, Aditya; Ghosh, Surajit; Saha, S.

    2013-01-01

    Design, analysis and development of high-β multi-cell elliptical shape Superconducting RF linac cavity has been taken up by VECC, Kolkata as a part of IIFC collaboration. The project aims to provide the-art technology achieving very high electric field gradient in superconducting linac cavity, which can be used in high energy high current proton linear accelerator to be built for ADSS/SNS programme in India and in Project-X at Fermilab, USA. The performance of this type of superconducting RF structure can be greatly affected due to multipacting when we feed power to the cavity. Multipacting is a phenomenon of resonant electron multiplication in which a large number of electrons build up an electron Avalanche which absorbs RF Energy leading to remarkable power losses and heating of the walls, making it impossible to raise the electric field by increasing the RF Power. Multipacting analysis has been carried out for 650 MHz, β=0.61, superconducting elliptical cavity using 2D code MultiPac 2.1 and 3 D code CST particle studio and the result is presented in this paper. (author)

  10. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  11. Superconducting Magnets for Accelerators

    Science.gov (United States)

    Brianti, G.; Tortschanoff, T.

    1993-03-01

    This chapter describes the main features of superconducting magnets for high energy synchrotrons and colliders. It refers to magnets presently used and under development for the most advanced accelerators projects, both recently constructed or in the preparatory phase. These magnets, using the technology mainly based on the NbTi conductor, are described from the aspect of design, materials, construction and performance. The trend toward higher performance can be gauged from the doubling of design field in less than a decade from about 4 T for the Tevatron to 10 T for the LHC. Special properties of the superconducting accelerator magnets, such as their general layout and the need of extensive computational treatment, the limits of performance inherent to the available conductors, the requirements on the structural design are described. The contribution is completed by elaborating on persistent current effects, quench protection and the cryostat design. As examples the main magnets for HERA and SSC, as well as the twin-aperture magnets for LHC, are presented.

  12. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  13. Summer Course on the Science and Technology of Superconductivity

    CERN Document Server

    Gregory, W D; Mathews, W N; The science and technology of superconductivity

    1973-01-01

    Since the discovery of superconductivity in 1911 by H. Kamerlingh Onnes, of the order of half a billion dollars has been spent on research directed toward understanding and utiliz­ ing this phenomenon. This investment has gained us fundamental understanding in the form of a microscopic theory of superconduc­ tivity. Moreover, superconductivity has been transformed from a laboratory curiosity to the basis of some of the most sensitive and accurate measuring devices known, a whole host of other elec­ tronic devices, a soon-to-be new international standard for the volt, a prototype generation of superconducting motors and gener­ ators, and magnets producing the highest continuous magnetic fields yet produced by man. The promise of more efficient means of power transmission and mass transportation, a new generation of superconducting motors and generators, and computers and other electronic devices with superconducting circuit elements is all too clear. The realization of controlled thermonuclear fu...

  14. Resistivity changes in superconducting-cavity-grade Nb following high-energy proton irradiation

    International Nuclear Information System (INIS)

    Snead, C.L. Jr.; Hanson, A.; Greene, G.A.

    1997-01-01

    Niobium superconducting rf cavities are proposed for use in the proton LINAC accelerators for spallation-neutron applications. Because of accidental beam loss and continual halo losses along the accelerator path, concern for the degradation of the superconducting properties of the cavities with accumulating damage arises. Residual-resistivity-ratio (RRR) specimens of Nb, with a range of initial RRR's were irradiated at room temperature with protons at energies from 200 to 2000 MeV. Four-probe resistance measurements were made at room temperature and at 4.2 K both prior to and after irradiation. Nonlinear increases in resistivity simulate expected behavior in cavity material after extended irradiation, followed by periodic anneals to room temperature: For RRR = 316 material, irradiations to (2 - 3) x 10 15 p/cm 2 produce degradations up to the 10% level, a change that is deemed operationally acceptable. Without. periodic warming to room temperature, the accumulated damage energy would be up to a factor of ten greater, resulting in unacceptable degradations. Likewise, should higher-RRR material be used, for the same damage energy imparted, relatively larger percentage changes in the RRR will result

  15. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    Science.gov (United States)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S3EL). In the S3EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S3EL concept is used in combination with the XRAM principle, allowing current multiplication.

  16. Optimized use of superconducting magnetic energy storage for electromagnetic rail launcher powering

    International Nuclear Information System (INIS)

    Badel, Arnaud; Tixador, Pascal; Arniet, Michel

    2012-01-01

    Electromagnetic rail launchers (EMRLs) require very high currents, from hundreds of kA to several MA. They are usually powered by capacitors. The use of superconducting magnetic energy storage (SMES) in the supply chain of an EMRL is investigated, as an energy buffer and as direct powering source. Simulations of direct powering are conducted to quantify the benefits of this method in terms of required primary energy. In order to enhance further the benefits of SMES powering, a novel integration concept is proposed, the superconducting self-supplied electromagnetic launcher (S 3 EL). In the S 3 EL, the SMES is used as a power supply for the EMRL but its coil serves also as an additional source of magnetic flux density, in order to increase the thrust (or reduce the required current for a given thrust). Optimization principles for this new concept are presented. Simulations based on the characteristics of an existing launcher demonstrate that the required current could be reduced by a factor of seven. Realizing such devices with HTS cables should be possible in the near future, especially if the S 3 EL concept is used in combination with the XRAM principle, allowing current multiplication.

  17. Lightweight superconducting alternators

    International Nuclear Information System (INIS)

    Keim, T.A.

    1988-01-01

    One of the most efficient and most lightweight means of converting high-temperature heat energy to electricity is a turboalternator set. Turboalternators are potentially important components of burst-mode power systems, either chemical or nuclear powered. Also, they are probable key components in future electric propulsion systems. Existing examples of multimegawatt turbomachines have been optimized for a variety of aerospace uses, ranging from aircraft propulsion to rocket engine fuel pump drives. There is no corresponding history of multimegawatt alternators built to aerospace standards of mass, performance, and reliability. This paper discusses one of the few such development efforts presently in progress, and gives an indication of possible future potential. In large power ratings, superconducting generators offer substantial power density, specific weight, and efficiency advantages over competing technologies. A program at GE has led to the construction of a lightweight high-voltage 20-MW generator with a superconducting field winding. The first part of this paper describes the design of the generator. The second projects the capabilities of the generator to other ratings

  18. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  19. Superconducting radiofrequency linac development at Fermilab

    International Nuclear Information System (INIS)

    Holmes, Stephen D.

    2009-01-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  20. Superconducting nanostructured materials

    International Nuclear Information System (INIS)

    Metlushko, V.

    1998-01-01

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines

  1. Superconducting superconvulsion. Shock US decision

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    After a baffling succession of seesaw decisions which saw the mood swing from the depths of pessimism to supreme optimism and back, on 21 October a US House of Representatives Committee proposed $640 million for the 'orderly termination' of the Superconducting Supercollider (SSC) project in Ellis County, Texas. By next July, the US Secretary of Energy is requested to produce a plan to 'maximize the value of the investment in the project and minimizing the loss to the US, including recommendations as to the feasibility of utilizing SSC assets in whole or in part in pursuit of an international high energy physics endeavour.' The SSC was to have been the biggest of them all - two 87-kilometre rings of superconducting magnets to collide proton beams at a total energy of 40 TeV (40,000 GeV) and search for the mechanisms underlying the behaviour of the quark constituents deep inside the colliding particles. It was from the start an ambitious project. It was meant to be. Conceived in the early 1980s amid all the Reagan euphoria of 'junk' bonds and heavy government borrowing, the SSC idea was in some ways a scientific parallel for the audacious technology of the Strategic Defense Initiative - 'Star Wars'

  2. Reactor structure and superconducting magnet system of ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Yoshida, Kiyoshi; Shibanuma, Kiyoshi; Okuno, Kiyoshi; Tsuji, Hiroshi; Shimamoto, Susumu

    1993-01-01

    Fusion Experimental Reactors are one of the major steps toward realization of the fusion energy and the key objective are to demonstrate the scientific and technological feasibility prior to the Demo Fusion Reactor. ITER (International Thermonuclear Experimental Reactor) is one of experimental reactors and the conceptual design has been completed by the united efforts of USA, USSR, EC and Japan. In parallel with the conceptual design, key technology development in various areas has being conducted. This paper describes the overall design concepts and the latest technological achievements of the ITER reactor structure and superconducting magnet system. (author)

  3. The development of superconducting equipment

    CERN Document Server

    Ueda, T; Hiue, H

    2003-01-01

    Fuji Electric has been developing various types of superconducting equipment for over a quarter of a century. This paper describes the development results achieved for superconducting equipment and especially focuses on large-capacity current leads and superconducting transmission systems, the development of which is being promoted for application to the field of nuclear fusion. High temperature superconductor (HTS) is becoming the mainstream in the field of superconductivity, and the HTS floating coil and conduction-cooled HTS transformed are also introduced as recent developments for devices that utilize this technology. (author)

  4. Design and construction of a resistive energy dump device for bipolar superconducting magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, M. J.

    1977-05-01

    When superconducting magnets quench, the resistance of the conductor material rises rapidly to its normal value. This increase in resistance can result in catastrophic heating in the magnet unless stored field energy is quickly removed from the system. Phase inversion is the normal mode of energy removal. SCR's in the power supply are phased back, the output of the supply is inverted, and magnetic field energy is directed back into the utility grid. Under certain conditions, however, the power supply may fail to invert properly, and an alternate energy removal scheme must protect the superconducting magnet system. Composed of an isolation switch, a semiconductor switching module, and a dump resistor, the resistive dump device provides a viable protection scheme. Operationally, several conditions are capable of activating the isolation switch and triggering the bipolar SCR switching module. Manual dump commands, for instance, permit the operator to dump field energy in the event of observed abnormalities. A special voltage tap quench detector senses the aforementioned abnormal power supply output inversion and also fires the dump circuit. Regardless of the nature of the trigger input, however, activation of the energy dump device diverts coil current through the dump resistor. I/sup 2/R losses over time then safely dissipate stored magnetic field energy.

  5. Developmental Challenges of SMES Technology for Applications

    Science.gov (United States)

    Rong, Charles C.; Barnes, Paul N.

    2017-12-01

    This paper reviews the current status of high temperature superconductor (HTS) based superconducting magnetic energy storage (SMES) technology as a developmental effort. Discussion centres on the major challenges in magnet optimization, loss reduction, cooling improvement, and new development of quench detection. The cryogenic operation for superconductivity in this technological application requires continued research and development, especially with a greater engineering effort that involves the end user. For the SMES-based technology to more fully mature, some suggestions are given for consideration and discussion.

  6. Influence of Superconducting Leads Energy Gap on Electron Transport Through Double Quantum Dot by Markovian Quantum Master Equation Approach

    International Nuclear Information System (INIS)

    Afsaneh, E.; Yavari, H.

    2014-01-01

    The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system. (author)

  7. Beauty physics at the ultrahigh energies of the ELOISATRON [Euroasiatic Long Intersecting Superconducting Accelerator Synchrotron

    International Nuclear Information System (INIS)

    Cox, B.

    1988-02-01

    The potential for experimentally studying B physics at the proposed INFN 100 TeV ELOISATRON (Euroasiatic Long Intersecting Superconducting Accelerator Synchrotron) is compared with possibilities at 40 TeV at the Superconducting Super Collider. The effect of the increase in center of mass energy on the production and decay of B mesons has been investigated, particularly with respect to the accummulation of large samples of B hadron decays necessary for the detection of CP violating effects. 13 refs., 7 figs., 1 tab

  8. Comparison of Levelized Cost of Energy of superconducting direct drive generators for a 10 MW offshore wind turbine

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Liu, Dong; Magnusson, Niklas

    2018-01-01

    A method for comparing the Levelized Cost of Energy (LCoE) of different superconducting drive trains is introduced. The properties of a 10 MW MgB$_{2}$ superconducting direct drive generator are presented in terms weight scaled to a turbine with a rotor diameter up of 280 m and the cost break down...

  9. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  10. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity

  11. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  12. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  13. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.O.; Newnam, B.E. [eds.; Peterson, D.E.

    1999-03-01

    Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

  14. A large superconducting accelerator project. International linear collider (ILC). Introduction

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2013-01-01

    The international linear collider (ILC) is proposed as the next-energy-frontier particle accelerator anticipated to be realized through global cooperation. The ILC accelerator is composed of a pair of electron and positron linear accelerators to realize head-on collision with a center-of-mass energy of 500 (250+250) GeV. It is based on superconducting radio-frequency (SCRF) technology, and the R and D and technical design have progressed in the technical design phase since 2007, and the technical design report (TDR) reached completion in 2012. This report reviews the ILC general design and technology. (author)

  15. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

    International Nuclear Information System (INIS)

    Murphy, Andrew; Bezryadin, Alexey; Averin, Dmitri V

    2017-01-01

    The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation. (paper)

  16. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design. Appendix A: energy storage coil and superconductor

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1979-09-01

    The technical aspects of a 1-GWh Superconducting Magnetic Energy Storage (SMES) coil for use as a diurnal load-leveling device in an electric utility system are presented. The superconductor for the coil is analyzed, and costs for the entire coil are developed

  17. APPLICATION OF NONLINEAR PID CONTROLLER IN SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    OpenAIRE

    PENG, Xiaotao; CHENG, Shijie

    2011-01-01

    As a new control strategy, Nonlinear PID(NLPID) controller has been introduced in the power system successfully. The controller is free of planting model foundation in the design procedure and realized simply. In this paper, a nonlinear PID controller used for superconducting magnetic energy storage (SMES) unit connected to a power system is proposed. Purpose of designing such controller is to improve the stability of the power system in a relatively wide operation range. The design procedure...

  18. Superconductivity and their applications

    OpenAIRE

    Roque, António; Sousa, Duarte M.; Fernão Pires, Vítor; Margato, Elmano

    2017-01-01

    Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...

  19. Acoustic wave spread in superconducting-normal-superconducting sandwich

    International Nuclear Information System (INIS)

    Urushadze, G.I.

    2004-01-01

    The acoustic wave spread, perpendicular to the boundaries between superconducting and normal metals in superconducting-normal-superconducting (SNS) sandwich has been considered. The alternate current flow sound induced by the Green function method has been found and the coefficient of the acoustic wave transmission through the junction γ=(S 1 -S 2 )/S 1 , (where S 1 and S 2 are average energy flows formed on the first and second boundaries) as a function of the phase difference between superconductors has been investigated. It is shown that while the SNS sandwich is almost transparent for acoustic waves (γ 0 /τ), n=0,1,2, ... (where τ 0 /τ is the ratio of the broadening of the quasiparticle energy levels in impurity normal metal as a result of scattering of the carriers by impurities 1/τ to the spacing between energy levels 1/τ 0 ), γ=2, (S 2 =-S 1 ), which corresponds to the full reflection of the acoustic wave from SNS sandwich. This result is valid for the limit of a pure normal metal but in the main impurity case there are two amplification and reflection regions for acoustic waves. The result obtained shows promise for the SNS sandwich as an ideal mirror for acoustic wave reflection

  20. Low-velocity superconducting accelerating structures

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  1. Linear arrangement of metallic and superconducting defects in a thin superconducting sample

    International Nuclear Information System (INIS)

    Barba-Ortega, J.; Sardella, Edson; Albino Aguiar, J.

    2013-01-01

    Highlights: • We study the influence of superconducting and metallic defects on the vortex configurations in a thin mesoscopic disk. • We found that the vortex–defect interaction leads to interesting vortex configurations. • The first vortex entry is always (never) found sitting on the metallic (superconducting) defect position. -- Abstract: The vortex matter in a superconducting disk with a linear configuration of metallic and superconducting defects is studied. Effects associated to the pinning (anti-pinning) force of the metallic (superconducting) defect on the vortex configuration and on the thermodynamic critical fields are analyzed in the framework of the Ginzburg Landau theory. We calculate the loop of the magnetization, vorticity and free energy curves as a function of the magnetic field for a thin disk. Due to vortex–defect attraction for a metallic defect (repulsion for a superconducting defect), the vortices always (never) are found to be sitting on the defect position

  2. Superconducting accelerator magnet technology in the 21st century: A new paradigm on the horizon?

    Science.gov (United States)

    Gourlay, S. A.

    2018-06-01

    Superconducting magnets for accelerators were first suggested in the mid-60's and have since become one of the major components of modern particle colliders. Technological progress has been slow but steady for the last half-century, based primarily on Nb-Ti superconductor. That technology has reached its peak with the Large Hadron Collider (LHC). Despite the superior electromagnetic properties of Nb3Sn and adoption by early magnet pioneers, it is just now coming into use in accelerators though it has not yet reliably achieved fields close to the theoretical limit. The discovery of the High Temperature Superconductors (HTS) in the late '80's created tremendous excitement, but these materials, with tantalizing performance at high fields and temperatures, have not yet been successfully developed into accelerator magnet configurations. Thanks to relatively recent developments in both Bi-2212 and REBCO, and a more focused international effort on magnet development, the situation has changed dramatically. Early optimism has been replaced with a reality that could create a new paradigm in superconducting magnet technology. Using selected examples of magnet technology from the previous century to define the context, this paper will describe the possible innovations using HTS materials as the basis for a new paradigm.

  3. Superconducting magnetic energy storage (SMES) program. Progress report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1981-03-01

    Work is reported on the development of two superconducting magnetic energy storage (SMES) units. One is a 30-MJ unit for use by the Bonneville Power Administration (BPA) to stabilize power oscillations on their Pacific AC Intertie, and the second is a 1- to 10-GWh unit for use as a diurnal load leveling device. Emphasis has been on the stabilizing system. The manufacturing phase of the 30-MJ superconducting coil was initiated and the coil fabrication has advanced rapidly. The two converter power transformers were manufactured, successfully factory tested, and shipped. One transformer reached the Tacoma Substation in good condition; the other was dropped enroute and has been returned to the factory for rebuilding. Insulation of the 30-MJ coil has been examined for high voltage effects apt to be caused by transients such as inductive voltage spikes from the protective dump circuit. The stabilizing system converter and protective energy dump system were completed, factory tested, and delivered

  4. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan)

    2010-11-15

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  5. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    International Nuclear Information System (INIS)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken

    2010-01-01

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  6. Thermo-magnetic instabilities in Nb3Sn Superconducting Accelerator Magnets

    International Nuclear Information System (INIS)

    Bordini, Bernardo; Pisa U.

    2006-01-01

    The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb 3 Sn. Several laboratories in the US and Europe are currently working on developing Nb 3 Sn accelerator magnets, and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb 3 Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb 3 Sn; a description of the manufacturing process of Nb 3 Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb 3 Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis

  7. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  8. 17th International Conference on RF Superconductivity

    CERN Document Server

    Laxdal, Robert E.; Schaa, Volker R.W.

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  9. Fast liberation of energy stored using superconductors

    International Nuclear Information System (INIS)

    Prost, G.; Sole, J.

    1967-01-01

    After a rapid description of the circumstances in which they first thought of using superconducting materials for the storage and liberation of energy, the authors examine, in comparison to condensers, the energy densities which can thus be stored, the methods used for introducing this energy into the superconducting circuit and for trapping it, and the law governing the discharge of this energy into a purely dissipative impedance. This leads to a derivation of the expression for the energy yield which depends on the characteristics of the switch used for opening the superconducting circuit. An experimental study has been made of a superconducting switch with a view to understanding the various parameters. As a result of this analysis, transitions of this switch, over the whole of its mass, were obtained for periods of a few microseconds, and energy yields close to unity were obtained. The obtention of fast discharges is now no longer a technological problem. (authors) [fr

  10. Superconducting RF Cavities Past, Present and Future

    CERN Document Server

    Chiaveri, Enrico

    2003-01-01

    In the last two decades many laboratories around the world, notably Argonne (ANL), TJNAF (formerly CEBAF), CERN, DESY and KEK, decided to develop the technology of superconducting (SC) accelerating cavities. The aim was either to increase the accelerator energy or to save electrical consumption or both. This technology has been used extensively in the operating machines showing good performances and strong reliability. At present, the technology using bulk niobium (Nb) or Nb coated on copper (Cu) is mature enough to be applied for many different applications, such as synchrotron light sources and spallation neutron drivers. Results, R&D work and future projects will be presented with emphasis on application to linear accelerators.

  11. Superconducting magnetic energy storage (SMES) program. January 1--December 31, 1978

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1979-02-01

    Work is reported on the development of two superconducting magnetic energy storage units. One is a 30-MJ unit for use by the Bonneville Power Administration to stabilize power oscillations on their Pacific AC Intertie, and the second is a 1- to 10-GWh unit for use as a diurnal load-leveling device. Emphasis has been placed on the stabilizing system. The engineering specification design of the 30-MJ superconducting coil was completed and a contract will be placed for the coil fabrication design. Bids have been received for the stabilizing system 10-MW converter and coil protective dump resistor. These components will be purchased in 1979. The reference design for the 1- to 10-GWh diurnal load-leveling unit has been totally revised and is being assembled in redrafted report form. Plans are to build a 10- to 30-MWh prototype diurnal load-leveling demonstration unit

  12. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Zhang, Chaowu

    2007-07-01

    Superconductors Nb 3 Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb 3 Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  13. Future development of large superconducting generators

    International Nuclear Information System (INIS)

    Singh, S.K.; Mole, C.J.

    1989-01-01

    Large superconducting generators are being developed worldwide. The use of superconductors to reduce the electrical power dissipation in power equipment has been a technological possibility ever since the discovery of superconductivity, even though their use in power equipment remained an impractical dream for a long time. However, scientific and technological progress in superconductivity and cryogenics has brought this dream much closer to reality. Results obtained so far establish the technical feasibility of these machines. Analytical developments have been providing a sound basis for the design of superconducting machines and results of these design studies have shown improvements in power density of up to a factor of 10 higher than the power density for conventional machines. This paper describes the recently completed USA programs, the current foreign and USA programs, and then proposes a USA development program to maintain leadership in the field

  14. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  15. Superconductivity: materials and applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.

    2008-01-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  16. MRI device – alternative for electrical energy storage

    Directory of Open Access Journals (Sweden)

    Molokáč, Š.

    2008-01-01

    Full Text Available It is well known, that the electrical energy storage in the large scale is basically difficult process. Such a process is marked by the energy losses, as the conversion of electrical energy into another form, is most frequently for example mechanical, and then back to the primary electrical form. Though, the superconducting magnetic energy storage (SMES technology offers the energy storage in an unchanged form, which is advantageous primarily in the achieved efficiency. Magnetic resonance imaging (MRI devices, commonly used in the medical facilities are based on the application of superconducting magnet. After its rejection from operation, there is possibility of using such devices for energy storage purposes. Additionally, such a technology of storage is also ecological.

  17. Application and Prospect of Superconducting High Gradient Magnetic Separation in Disposal of Micro-fine Tailings

    Science.gov (United States)

    Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei

    2017-12-01

    Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.

  18. Maximum field capability of energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Turkot, F.; Cooper, W.E.; Hanft, R.; McInturff, A.

    1983-01-01

    At an energy of 1 TeV the superconducting cable in the Energy Saver dipole magnets will be operating at ca. 96% of its nominal short sample limit; the corresponding number in the quadrupole magnets will be 81%. All magnets for the Saver are individually tested for maximum current capability under two modes of operation; some 900 dipoles and 275 quadrupoles have now been measured. The dipole winding is composed of four individually wound coils which in general come from four different reels of cable. As part of the magnet fabrication quality control a short piece of cable from both ends of each reel has its critical current measured at 5T and 4.3K. In this paper the authors describe and present the statistical results of the maximum field tests (including quench and cycle) on Saver dipole and quadrupole magnets and explore the correlation of these tests with cable critical current

  19. FY 1998 result report. Study of a total system for the development of superconductor power application technology (Feasibility study of commercialization of superconductivity technology and study of the introductory effect. Future superconductivity technology development in Japan); 1998 nendo seika hokokusho. Chodendo denryoku oyo gijutsu kaihatsu total system nado no kenkyu chodendo gijutsu no jitsuyoka kanosei oyobi donyu kokanado no chosa (Nippon ni okeru chodendo gijutsu kaihatsu no kongo no hokosei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    As a part of the New Sunshine Project, 'an R and D project on superconductor power application technology,' an examinational study was made as a mini project to clarify the developmental course for commercialization of superconductor technology. The superconductor technology is being watched with interest as a technology in the 21st century. In the application to the electric power/energy field, in particular, expected are the energy saving effect by high operation efficiency, excellent environmentality, developmental potentiality of new equipment/system by the application of ferromagnetism, etc. Accordingly, the paper analytically arranged the needs of superconductor devices in Japan and abroad and the technology seeds corresponding to the needs, and prepared the developmental subjects of superconductor technology. These developmental steps and the mutual relationship were expressed in an R and D framework. At the same time, as to the superconductivity, a survey outlined the projects carried out in each government office in Japan. The future developmental course was indicated, and proposals were made on the equipment/system as object which are the subjects for urgent development for commercialization. (NEDO)

  20. FY 1998 result report. Study of a total system for the development of superconductor power application technology (Feasibility study of commercialization of superconductivity technology and study of the introductory effect. Future superconductivity technology development in Japan); 1998 nendo seika hokokusho. Chodendo denryoku oyo gijutsu kaihatsu total system nado no kenkyu chodendo gijutsu no jitsuyoka kanosei oyobi donyu kokanado no chosa (Nippon ni okeru chodendo gijutsu kaihatsu no kongo no hokosei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    As a part of the New Sunshine Project, 'an R and D project on superconductor power application technology,' an examinational study was made as a mini project to clarify the developmental course for commercialization of superconductor technology. The superconductor technology is being watched with interest as a technology in the 21st century. In the application to the electric power/energy field, in particular, expected are the energy saving effect by high operation efficiency, excellent environmentality, developmental potentiality of new equipment/system by the application of ferromagnetism, etc. Accordingly, the paper analytically arranged the needs of superconductor devices in Japan and abroad and the technology seeds corresponding to the needs, and prepared the developmental subjects of superconductor technology. These developmental steps and the mutual relationship were expressed in an R and D framework. At the same time, as to the superconductivity, a survey outlined the projects carried out in each government office in Japan. The future developmental course was indicated, and proposals were made on the equipment/system as object which are the subjects for urgent development for commercialization. (NEDO)

  1. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  2. Pair Fermi contour and high-temperature superconductivity

    CERN Document Server

    Belyavsky, V I

    2002-01-01

    The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials

  3. Robustness Improvement of Superconducting Magnetic Energy Storage System in Microgrids Using an Energy Shaping Passivity-Based Control Strategy

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2017-05-01

    Full Text Available Superconducting magnetic energy storage (SMES systems, in which the proportional-integral (PI method is usually used to control the SMESs, have been used in microgrids for improving the control performance. However, the robustness of PI-based SMES controllers may be unsatisfactory due to the high nonlinearity and coupling of the SMES system. In this study, the energy shaping passivity (ESP-based control strategy, which is a novel nonlinear control based on the methodology of interconnection and damping assignment (IDA, is proposed for robustness improvement of SMES systems. A step-by-step design of the ESP-based method considering the robustness of SMES systems is presented. A comparative analysis of the performance between ESP-based and PI control strategies is shown. Simulation and experimental results prove that the ESP-based strategy achieves the stronger robustness toward the system parameter uncertainties than the conventional PI control. Besides, the use of ESP-based control method can reduce the eddy current losses of a SMES system due to the significant reduction of 2nd and 3rd harmonics of superconducting coil DC current.

  4. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  5. Discussion of superconducting and room-temperature high-intensity ion linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1996-01-01

    The point of view taken in this discussion is that the basic technology base exists in all essential respects for both superconducting or room-temperature rf linac accelerators and associated power and control systems, and thus a project can make a choice between these technologies on overall system considerations. These include performance, cost, availability, flexibility, and upgradability. Large high-intensity neutron source proposals involving light-ion rf linacs in three categories are reviewed in this context. The categories arc cw linacs to high (∼1 GeV) and low (∼40 MeV) output energy, and pulsed linacs to energy ∼1 GeV

  6. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design. Appendix D: superconductive magnetic energy storage cavern construction methods and costs

    International Nuclear Information System (INIS)

    1979-09-01

    The excavation and preparation of an underground cavern to contain a 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage (SMES) unit is examined. The cavern's principal function is to provide a rock structure for supporting the magnetic forces from the charged storage coil. Certain economic considerations indicate the refrigerator cold box for the helium system should also be underground. The study includes such a provision and considers, among other things, rock bolting, water seepage, concrete lining of the walls, steel bearing pads, a system to prevent freezing of the walls, a mining schedule, and costs

  7. Superconductivity: A critical analysis

    International Nuclear Information System (INIS)

    Sacchetti, Nicola

    1997-01-01

    It is some forty years now that superconductivity has entered into the field of applied Physics. Countless applications have been proposed some of which have been successfully tested in the form of prototypes and relatively few have become widely used products. This article offers an objective examination of what applied superconductivity represents in the area of modern technology highlighting its exclusive advantages and its inevitable limitations

  8. Superconducting magnets for accelerators

    International Nuclear Information System (INIS)

    Denisov, Yu.N.

    1979-01-01

    Expediency of usage and possibilities arising in application of superconducting devices in magnetic systems of accelerators and experimental nuclear-physical devices are studied. Parameters of specific devices are given. It is emphasized that at the existing level of technological possibilities, construction and usage of superconducting magnetic systems in experimental nuclear physics should be thought of as possible, from the engineering, and expedient, from the economical viewpoints [ru

  9. Development of a superconducting undulator for the APS

    International Nuclear Information System (INIS)

    Ivanyushenkov, Y; Abliz, M; Doose, C; Fuerst, J; Hasse, Q; Kasa, M; Trakhtenberg, E; Vasserman, I; Gluskin, E; Lev, V; Mezentsev, N; Syrovatin, V; Tsukanov, V

    2013-01-01

    As the western hemisphere's premier x-ray synchrotron radiation source, the Advanced Photon Source (APS) continues to advance the state of the art in insertion device technology in order to maintain record high brightness, especially in the hard x-ray wavelength region. Due to the unique bunch pattern used for normal APS operations and its ultimate capabilities, the APS has chosen superconducting technology for its future hard x-ray undulator sources. In the last several years, the APS in collaboration with the Budker Institute of Nuclear Physics has being developing the technology for planar, small-period superconducting undulators (SCUs). These developments include the design and construction of several prototypes and the construction of the necessary mechanical, vacuum, and cryogenic infrastructure at the APS site. Several prototypes of the SCU magnetic structure have been built and tested. The first SCU is assembled and will be installed in the APS storage ring at the end of 2012. Expected SCU performance in terms of x-ray brightness should noticeably exceed that of existing APS undulators. Immediately after commissioning, the SCU will be used at APS Sector 6 as the radiation source for high-energy x-ray studies.

  10. NORPAS - NORdic program of applied superconductivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [ed.

    1995-12-31

    High temperature superconducting (HTS) wire is rapidly maturing into a working material being produced in ever larger quantities and being used in more significant demonstrations and prototypes. Conductor is now produced routinely in several hundred meter lengths with reproducible results. Current density has progressed to a level suitable for demonstration on many applications. As with any technology trying to find a niche, widespread commercialization can only occur if the new technology can match the performance of an existing technology at a lower cost, or the new technology represents a breakthrough in capabilities, irrespective of cost, in turn enabling functionality previously thought impossible. There are two obvious areas where HTS will have significant benefit. The first is all applications which will notably benefit from a reduction in refrigeration power. The second area is the market of very high field magnets where there is no viable alternative. Applications under consideration for HTS include: (1) Rotating electrical machines (synchronous ac and homopolar dc motors), (2) Underground transmission cables, (3) Superconducting Magnetic Energy Storage (SMES), (4) Utility distribution equipment such as transformers and current limiters, (5) Commercial processing applications such as magnetic separation. (6) Military applications such as mine clearing, (7) Specialty magnets such as high field inserts

  11. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  12. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  13. Initial studies of Bremsstrahlung energy deposition in small-bore superconducting undulator structures in linac environments

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, T.; Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    One of the more promising technologies for developing minimal-length insertion devices for linac-driven, single-pass Free Electron Lasers (FELs) operating in the x-ray range is based on the use of superconducting (SC) materials. In recent FEL simulations, for example, a bifilar helical SC device with a 2 cm period and 1.8 T field was found to require a 30 m saturation length for operation at 1.5{Angstrom} on a 15 GeV linac, more than 40% shorter than an alternative hybrid/permanent magnet (hybrid/PM) undulator. AT the same time, however, SC technology is known to present characteristic difficulties for insertion device design, both in engineering detail and in operation. Perhaps the most critical problem, as observed, e.g., by Madey and co-workers in their initial FEL experiments, was the frequent quenching induced by scattered electrons upstream of their (bifilar) device. Postulating that this quenching was precipitated by directly-scattered or bremsstrahlung-induced particle energy deposited into the SC material or into material contiguous with it, the importance of numerical and experimental characterizations of this phenomenon for linac-based, user-facility SC undulator design becomes evident. In this paper we discuss selected prior experimental results and report on initial EGS4 code studies of scattered and bremsstrahlung induced particle energy deposition into SC structures with geometries comparable to a small-bore bifilar helical undulator.

  14. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaowu

    2007-07-15

    Superconductors Nb{sub 3}Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb{sub 3}Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  15. Case study on the US superconducting power transmission program

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, E.F.

    1996-02-01

    After the 1911 discovery of superconductivity (the abrupt loss of electrical resistance in certain materials at very low temperatures), attempts were made to make practical use of this phenomenon. Initially these attempts failed, but in the early 1960s (after 50 years of research) they succeeded. By then, the projected growth in the production and consumption of electrical energy required much higher capacity power transmission capabilities than were available or likely to become available from incremental improvements in existing transmission technology. Since superconductors were capable in principle of transmitting huge amounts of power, research programs to develop and demonstrate superconducting transmission lines were initiated in the US and abroad. The history of the US program, including the participants, their objectives, funding and progress made, is outlined. Since the R&D program was terminated before the technology was completely demonstrated, the reasons for and consequences of this action are discussed in a final section.

  16. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    International Nuclear Information System (INIS)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-01-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; E c =19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles

  17. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, H. Duran, E-mail: hdyildiz@ankara.edu.tr [Institute of Accelerator Technologies, Ankara University, Ankara (Turkey); Cakir, R. [Nanotechnology Engineering Department, Recep Tayyip Erdogan University, Rize (Turkey); Porsuk, D. [Physics Department, Dumlupinar University, Kutahya (Turkey)

    2015-06-11

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; E{sub c}=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  18. Superconducting frustration bit

    International Nuclear Information System (INIS)

    Tanaka, Y.

    2014-01-01

    Highlights: • A frustration bit element is proposed for a conventional superconducting circuit. • It is composed of π-junctions. • It mimics the multiband superconductor. - Abstract: A basic design is proposed for a classical bit element of a superconducting circuit that mimics a frustrated multiband superconductor and is composed of an array of π-Josephson junctions (π-junction). The phase shift of π provides the lowest energy for one π-junction, but neither a π nor a zero phase shift gives the lowest energy for an assembly of π-junctions. There are two chiral states that can be used to store one bit information. The energy scale for reading and writing to memory is of the same order as the junction energy, and is thus in the same order of the driving energy of the circuit. In addition, random access is also possible

  19. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10......We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  20. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  1. Superconducting magnets for high energy storage rings

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1977-01-01

    Superconducting dipole and quadrupole magnets were developed for the proton-proton intersecting storage accelerator ISABELLE. Full size prototypes of both kinds of magnets were constructed and successfully tested. The coils are fabricated from a single layer of wide braided superconductor and employ a low temperature iron core. This method of construction leads to two significant performance advantages; little or no training, and the ability of the coil to absorb its total magnetic stored energy without damage. A high pressure (15 atm) helium gas system is used for cooling. Measurements of the random field errors are compared with the expected field distribution. Three magnets (two dipoles and one quadrupole) were assembled into a segment of the accelerator ring structure (half cell). The performance of this magnet array, which is coupled in series both electrically and cryogenically, is also summarized

  2. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  3. Emerging boom in nano magnetic particle incorporated high-Tc superconducting materials and technologies - A South African perspective

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2009-01-01

    Full Text Available With a strategy to establish and embrace the emerging nano particle incorporated superconductivity technology (based on the HTS materials and nano magnetic particles) in South Africa, the author has initiated the following research activity in South...

  4. Proc. of the workshop on pushing the limits of RF superconductivity.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K-J., Eyberger, C., editors

    2005-04-13

    For three days in late September last year, some sixty experts in RF superconductivity from around the world came together at Argonne to discuss how to push the limits of RF superconductivity for particle accelerators. It was an intense workshop with in-depth presentations and ample discussions. There was added excitement due to the fact that, a few days before the workshop, the International Technology Recommendation Panel had decided in favor of superconducting technology for the International Linear Collider (ILC), the next major high-energy physics accelerator project. Superconducting RF technology is also important for other large accelerator projects that are either imminent or under active discussion at this time, such as the Rare Isotope Accelerator (RIA) for nuclear physics, energy recovery linacs (ERLs), and x-ray free-electron lasers. For these accelerators, the capability in maximum accelerating gradient and/or the Q value is essential to limit the length and/or operating cost of the accelerators. The technological progress of superconducting accelerators during the past two decades has been truly remarkable, both in low-frequency structures for acceleration of protons and ions as well as in high-frequency structures for electrons. The requirements of future accelerators demand an even higher level of performance. The topics of this workshop are therefore highly relevant and timely. The presentations given at the workshop contained authoritative reviews of the current state of the art as well as some original materials that previously had not been widely circulated. We therefore felt strongly that these materials should be put together in the form of a workshop proceeding. The outcome is this report, which consists of two parts: first, a collection of the scholarly papers prepared by some of the participants and second, copies of the viewgraphs of all presentations. The presentation viewgraphs, in full color, are also available from the Workshop

  5. Electrical protection of superconducting magnet systems

    International Nuclear Information System (INIS)

    Sutter, D.F.; Flora, R.H.

    1975-01-01

    The problem of dissipating the energy stored in the field of a superconducting magnet when a quench occurs has received considerable study. However, when the magnet becomes a system 4 miles in length whose normal operation is an ac mode, some re-examination of standard techniques for dissipating energy outside the magnets is in order. Data accumulated in the Fermilab Energy Doubler magnet development program shows that heating associated with the temporal and spatial development of quenches is highly localized and can result in temperatures damaging to the superconducting wire. The design and operation are discussed for several energy dumping schemes, compatible with the operation of ac superconducting magnets, wherein more than 70 percent of the stored energy can be dissipated outside the magnet. Instrumentation to detect quenches early in their development and circuits for dumping the field energy are described, and representative operating performance data for the dump circuits and data showing temporal development of quenches are presented. (auth)

  6. Microwave superconductivity for particle accelerators - How the high TC superconductors measure up

    International Nuclear Information System (INIS)

    Padamsee, H.; Green, K.; Gruschus, J.

    1988-01-01

    Application of superconducting niobium cavities to accelerators for high energy physics, nuclear physics and free electron laser is growing rapidly. Cornell has a long standing effort in the development of superconducting RF accelerator technology. Nb cavities developed here from the basis for constructing the world's highest energy electron accelerator for nuclear physics. These cavities have set a standard against which the behavior of the new superconductors must be compared. From available results on dc critical fields, and the energy gap, it appears that the new materials could make a significant impact on the capabilities of future accelerators. Crucial to this assessment, however, are direct microwave loss measurements, together with measurements of the energy gap and RF frequency dependence as well as the behavior at high RF fields. Latest results on these properties for bulk sintered ceramics, thin films and single crystals at RF frequencies of 1.5 and 6 Ghz are presented

  7. Superconductivity and future accelerators

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1963-01-01

    For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding

  8. Novel technologies and configurations of superconducting magnets for MRI

    International Nuclear Information System (INIS)

    Lvovsky, Yuri; Stautner, Ernst Wolfgang; Zhang Tao

    2013-01-01

    A review of non-traditional approaches and emerging trends in superconducting magnets for MRI is presented. Novel technologies and concepts have arisen in response to new clinical imaging needs, changes in market cost structure, and the realities of newly developing markets. Among key trends are an increasing emphasis on patient comfort and the need for ‘greener’ magnets with reduced helium usage. The paper starts with a brief overview of the well-optimized conventional MR magnet technology that presently firmly occupies the dominant position in the imaging market up to 9.4 T. Non-traditional magnet geometries, with an emphasis on openness, are reviewed. The prospects of MgB 2 and high-temperature superconductors for MRI applications are discussed. In many cases the introduction of novel technologies into a cost-conscious commercial market will be stimulated by growing needs for advanced customized procedures, and specialty scanners such as orthopedic or head imagers can lead the way due to the intrinsic advantages in their design. A review of ultrahigh-field MR is presented, including the largest 11.7 T Iseult magnet. Advanced cryogenics approaches with an emphasis on low-volume helium systems, including hermetically sealed self-contained cryostats requiring no user intervention, as well as future non-traditional non-helium cryogenics, are presented. (topical review)

  9. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1993-09-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991-1992, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  10. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1994-01-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991--92, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  11. FY 2000 research and development of fundamental technologies for AC superconducting power devices. R and D of fundamental technologies for superconducting power cables and faults current limiters, R and D of superconducting magnets for power applications, and study on the total systems and related subjects; 2000 nendo koryu chodendo denryoku kiki kiban gijutsu kenkyu kaihatsu seika hokokusho. Chodendo soden cable kiban gijutsu no kenkyu kaihatsu, chodendo genryuki kiban gijutsu no kenkyu kaihatsu, denryokuyo chodendo magnet no kenkyu kaihatsu, total system nado no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project for research and development of fundamental technologies for AC superconducting power devices has been started, and the FY 2000 results are reported. The R and D of fundamental technologies for superconducting power cables include grasping the mechanical characteristics associated with integration necessary for fabrication of large current capacity and long cables; development of barrier cable materials by various methods; and development of short insulated tubes as cooling technology for long superconducting cables, and grasping its thermal/mechanical characteristics. The R and D of faults current limiters include introduction of the unit for superconducting film fabrication, determination of the structures and layouts for large currents, and improvement of performance of each device for high voltages. R and D of superconducting magnets for power applications include grasping the fundamental characteristics of insulation at cryogenic temperature, completion of the insulation designs for high voltage/current lead bushing, and development of prototype sub-cooled nitrogen cooling unit for cooling each AC power device. Study on the total systems and related subjects include analysis for stabilization of the group model systems, to confirm improved voltage stability when the superconducting cable is in service. (NEDO)

  12. Applications and fabrication processes of superconducting composite materials

    International Nuclear Information System (INIS)

    Gregory, E.

    1984-01-01

    This paper discusses the most recent applications and manufacturing considerations in the field of superconductivity. The constantly changing requirements of a growing number of users encourage development in fabrication and inspection techniques. For the first time, superconductors are being used commercially in large numbers and superconducting magnets are no longer just laboratory size. Although current demand for these conductors represents relatively small quantities of material, advances in the production of high-quality composites may accelerate technological growth into several new markets. Three large-scale application areas for superconductors are discussed: accelerator magnets for high-energy physics research, magnetic confinement for thermonuclear fusion, and magnetic resonance imaging for health care. Each application described is accompanied by a brief description of the conductors used and fabrication processes employed to make them

  13. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    Science.gov (United States)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  14. Superconducting active impedance converter

    International Nuclear Information System (INIS)

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures

  15. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  16. Biased HiPIMS technology for superconducting rf accelerating cavities coating

    CERN Document Server

    G. Rosaz, G.; Sonato, D.; Calatroni, S.; Ehiasarian, A.; Junginger, T.; Taborelli, M.

    2016-01-01

    In the last few years the interest of the thin film science and technology community on High Impulse Power Magnetron Sputtering (HIPIMS) coatings has steadily increased. HIPIMS literature shows that better thin film morphology, denser and smoother films can be achieved when compared with standard dc Magnetron Sputtering (dcMS) coating technology. Furthermore the capability of HIPIMS to produce a high quantity of ionized species can allow conformal coatings also for complex geometries. CERN already studied the possibility to use such a coating method for SRF accelerating cavities. Results are promising but not better from a RF point of view than dcMS coatings. Thanks to these results the next step is to go towards a biased HiPIMS approach. However the geometry of the cavities leads to complex changes in the coating setup in order to apply a bias voltage. Coating system tweaking and first superconducting properties of biased samples are presented.

  17. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  18. Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility

    Science.gov (United States)

    Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu

    2018-07-01

    A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.

  19. Report on the production magnet measurement system for the Fermilab Energy-Saver superconducting dipoles and quadrupoles

    International Nuclear Information System (INIS)

    Brown, B.C.; Cooper, W.E.; Garvey, J.D.

    1983-03-01

    The measurement system and procedures used to test more than 900 superconducting dipole magnets and more than 275 superconducting quadrupole magnets for the Fermilab Energy Saver are described. The system is designed to measure nearly all parameters relevant to the use of the magnets in the accelerator including maximum field capability and precision field measurements. The performance of the instrumentation with regard to precision, reliability, and operational needs for high volume testing will be described. Previous reports have described the measurement system used during development of the Saver magnets from which this system has evolved

  20. Conceptual study of superconducting urban area power systems

    International Nuclear Information System (INIS)

    Noe, Mathias; Gold-acker, Wilfried; Bach, Robert; Prusseit, Werner; Willen, Dag; Poelchau, Juri; Linke, Christian

    2010-01-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  1. Superconducting bearings for flywheel applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Asger Bech

    2001-05-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found on the applications of superconducting bearings in flywheels. (au)

  2. Applications of superconductor technologies to transportation

    Science.gov (United States)

    Rote, D. M.; Herring, J. S.; Sheahen, T. P.

    1989-06-01

    This report assesses transportation applications of superconducting devices, such as rotary motors and generators, linear synchronous motors, energy storage devices, and magnets. Among conventional vehicles, ships appear to have the greatest potential for maximizing the technical benefits of superconductivity, such as smaller, lighter, and more-efficient motors and, possibly, more-efficient generators. Smaller-scale applications include motors for pipeline pumps, all-electric and diesel-electric locomotives, self-propelled rail cars, and electric highway vehicles. For diesel-electric locomotives, superconducting units would eliminate space limitations on tractive power. Superconducting magnetic energy storage devices appear most suitable for regenerative braking or power assistance in grade climbing, rather than for long-term energy storage. With toroidal devices (especially for onboard temporary energy storage), external fields would be eliminated. With regard to new vehicle technologies, the use of superconducting devices would only marginally enhance the benefits of inductive-power-coupled vehicles over conventional electric vehicles, but could enable magnetically levitated (maglev) vehicles to obtain speeds of 520 km/h or more. This feature, together with the quiet, smooth ride, might make maglev vehicles an attractive alternative to intercity highway-vehicle or airlane trips in the range of 100 to 600 miles. Electromagnetic airport applications are not yet feasible.

  3. Assessment of micro-superconducting magnetic energy storage (SMES) utility in railroad applications : a report to Congress

    Science.gov (United States)

    1997-07-01

    At the direction of the U.S. Congress, the Federal Railroad Administration (FRA), with technical support from the Volpe National Transportation Systems Center (Volpe Center), investigated the feasibility of using micro-Superconducting Magnetic Energy...

  4. Large high current density superconducting solenoids for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.; Eberhard, P.H.; Taylor, J.D.

    1976-05-01

    Very often the study of high energy physics in colliding beam storage-rings requires a large magnetic field volume in order to detect and analyze charged particles which are created from the collision of two particle beams. Large superconducting solenoids which are greater than 1 meter in diameter are required for this kind of physics. In many cases, interesting physics can be done outside the magnet coil, and this often requires that the amount of material in the magnet coil be minimized. As a result, these solenoids should have high current density (up to 10 9 A m -2 ) superconducting windings. The methods commonly used to stabilize large superconducting magnets cannot be employed because of this need to minimize the amount of material in the coils. A description is given of the Lawrence Berkeley Laboratory program for building and testing prototype solenoid magnets which are designed to operate at coil current densities in excess of 10 9 A m -2 with magnetic stored energies which are as high as 1.5 Megajoules per meter of solenoid length. The coils use intrinsically stable multifilament Nb--Ti superconductors. Control of the magnetic field quench is achieved by using a low resistance aluminum bore tube which is inductively coupled to the coil. The inner cryostat is replaced by a tubular cooling system which carries two phase liquid helium. The magnet coil, the cooling tubes, and aluminum bore tube are cast in epoxy to form a single unified magnet and cryogenic system which is about 2 centimeters thick. The results of the magnet coil tests are discussed

  5. Superconductivity

    International Nuclear Information System (INIS)

    Narlikar, A.V.

    1993-01-01

    Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig

  6. Designing of superconducting magnet for clinical MRI

    International Nuclear Information System (INIS)

    Kar, Soumen; Choudhury, A.; Sharma, R.G.; Datta, T.S.

    2015-01-01

    Superconducting technology of Magnetic Resonance Imaging (MRI) scanner is closely guarded technology as it has huge commercial application for clinical diagnostics. This is a rapidly evolving technology which requires innovative design of magnetic and cryogenic system. A project on the indigenous development of 1.5 T (B_0) MRI scanner has been initiated by SAMEER, Mumbai funded by DeitY, Gov. of India. IUAC is the collaborating institute for designing and developing the superconducting magnets and the cryostat for 1.5 T MRI scanner. The superconducting magnet is heart of the present day MRI system. The performance of the magnet has the highest impact on the overall image quality of the scanner. The stringent requirement of the spatial homogeneity (few parts per million within 50 cm diametrical spherical volume), the temporal stability (0.1 ppm/hr.) of the superconducting magnet and the safety standard (5 G in 5 m x 3 m ellipsoidal space) makes the designing of the superconducting magnet more complex. MRI consists of set of main coils and shielding coils. The large ratio between the diameter and the winding length of each coil makes the B_p_e_a_k/B_0 ratio much higher, which makes complexity in selecting the load line of the magnet. Superconducting magnets will be made of NbTi wire-in-channel (WIC) conductor with high copper to superconducting (NbTi) ratio. Multi-coil configuration on multi-bobbin architecture is though is cost effective but poses complexity in the mechanical integration to achieve desired homogeneity. Some of the major sources of inhomogeneities, in a multi-bobbin configuration, are the imperfect axial positioning and angular shift. We have simulated several factors which causes the homogeneity in six (main) coils configuration for a 1.5 T MRI magnet. Differential thermal shrinkage between the bobbin and superconducting winding is also a major source of inhomogeneity in a MRI magnet. This paper briefly present the different designing aspects of the

  7. William Brinkman (centre), Director of the Department of Energy, U.S.A. at the superconducting magnet test hall SM18 with (from left to right) Coordinator for External Relations F. Pauss, Advisor for Non-Member States J. Ellis, J. Strait from Fermilab and Deputy Head of Technology Department L. Rossi on 13 November 2009.

    CERN Multimedia

    Maximilien Brice; SM18

    2009-01-01

    William Brinkman (centre), Director of the Department of Energy, U.S.A. at the superconducting magnet test hall SM18 with (from left to right) Coordinator for External Relations F. Pauss, Advisor for Non-Member States J. Ellis, J. Strait from Fermilab and Deputy Head of Technology Department L. Rossi on 13 November 2009.

  8. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Rogers, J.D.

    1979-01-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility dirunal load leveling; however, such a device will function to meet much faster power demands including dynamic stabilization. The study has explored several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. The study examines aspects of the coil design; superconductor supported off of the dewar shell; the dewar shell, its configuration and stresses; the underground excavation and related construction for holding the superconducting coil and its dewar; the helium refrigeration system; the electrical converter system; the vacuum system; the guard coil; and the costs. The report is a condensation of the more comprehensive study which is in the process of being printed

  9. Accelerator technology for Los Alamos nuclear-waste-transmutation and energy-production concepts

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Jameson, R.A.; Schriber, S.O.

    1991-01-01

    Powerful proton linacs are being studied at Los Alamos as drivers for high-flux neutron sources that can transmute long-lived fission products and actinides in defense nuclear waste, and also as drivers of advanced fission-energy systems that could generate electric power with no long-term waste legacy. A transmuter fed by an 800-MeV, 140-mA cw conventional copper linac could destroy the accumulated 99 Tc and 129 I at the DOE's Hanford site within 30 years. A high-efficiency 1200-MeV, 140-mA niobium superconducting linac could drive an energy-producing system generating 1-GWe electric power. Preliminary design concepts for these different high-power linacs are discussed, along with the principal technical issues and the status of the technology base. 9 refs., 5 figs., 4 tabs

  10. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seino, H; Nagashima, K; Arai, Y [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)], E-mail: seino@rtri.or.jp

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  11. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    International Nuclear Information System (INIS)

    Seino, H; Nagashima, K; Arai, Y

    2008-01-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated

  12. Superconducting devices at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1978-04-01

    The various ongoing programs in applied superconductivity supported by BNL are summarized, including the development of high field ac and dc superconducting magnets for accelerators and other applications, of microwave deflecting cavities for high energy particle beam separators, and of cables for underground power transmission, and materials research on methods of fabricating new superconductors and on metallurgical properties affecting the performance of superconducting devices

  13. Terahertz Mixing Characteristics of NbN Superconducting Tunnel Junctions and Related Astronomical Observations

    Science.gov (United States)

    Li, J.

    2010-01-01

    High-sensitivity superconducting SIS (superconductor-insulator-superconductor) mixers are playing an increasingly important role in the terahertz (THz) astronomical observation, which is an emerging research frontier in modern astrophysics. Superconducting SIS mixers with niobium (Nb) tunnel junctions have reached a sensitivity close to the quantum limit, but have a frequency limit about 0.7 THz (i.e., gap frequency of Nb tunnel junctions). Beyond this frequency Nb superconducting films will absorb energetic photons (i.e., energy loss) to break Cooper pairs, thereby resulting in significant degradation of the mixer performance. Therefore, it is of particular interest to develop THz superconducting SIS mixers incorporating tunnel junctions with a larger energy gap. Niobium-nitride (NbN) superconducting tunnel junctions have been long known for their large energy gap, almost double that of Nb ones. With the introduction of epitaxially grown NbN films, the fabrication technology of NbN superconducting tunnel junctions has been considerably improved in the recent years. Nevertheless, their performances are still not as good as Nb ones, and furthermore they are not yet demonstrated in real astronomical applications. Given the facts mentioned above, in this paper we systematically study the quantum mixing behaviors of NbN superconducting tunnel junctions in the THz regime and demonstrate an astronomical testing observation with a 0.5 THz superconducting SIS mixer developed with NbN tunnel junctions. The main results of this study include: (1) successful design and fabrication of a 0.4˜0.6 THz waveguide mixing circuit with the high-dielectric-constant MgO substrate; (2) successful fabrication of NbN superconducting tunnel junctions with the gap voltage reaching 5.6 mV and the quality factor as high as 15; (3) demonstration of a 0.5 THz waveguide NbN superconducting SIS mixer with a measured receiver noise temperature (no correction) as low as five times the quantum limit

  14. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  15. The Application of High Temperature Superconducting Materials to Power Switches

    CERN Document Server

    March, S A; Ballarino, A

    2009-01-01

    Superconducting switches may find application in superconducting magnet systems that require energy extraction. Such superconducting switches could be bypass-switches that are operated in conjunction with a parallel resistor or dump-switches where all of the energy is dissipated in the switch itself. Bypass-switches are more suited to higher energy circuits as a portion of the energy can be dissipated in the external dump resistor. Dump- switches require less material and triggering energy as a lower switch resistance is needed to achieve the required total dump resistance. Both superconducting bypass-switches and superconducting dump-switches can be ther- mally activated. Switching times that are comparable to those obtained with mechanical bypass-switch systems can be achieved using a co-wound heater that is powered by a ca- pacitor discharge. Switches that have fast thermal diffusion times through the insulation can be modelled as a lumped system whereas those with slow thermal diffusion times were modelle...

  16. 7. Kassel symposium on energy systems technology: Renewable energy sources and efficient utilization of energy; 7. Kasseler Symposium Energie-Systemtechnik: Erneuerbare Energien und rationelle Energieverwendung

    Energy Technology Data Exchange (ETDEWEB)

    Caselitz, P. (comp.)

    2002-07-01

    This proceedings volume comprises 17 papers on the following subjects: Methane hydrates, compounds of gas and water; Compressed air stroage gas turbine power plants / Scheduled application for load levelling between varying wind power production and power demand; Modern pumped storage power stations in the GW range - the PSW Goldisthal example; Lead batteries - new developments and future applications; Alkaline battery systems for hybrid electric road vehicles; Lighium systems and their applications; Zinc/air cells; Hydrogen storage - metal hydride storage, compressed gas storage, LNG storage; Carbon nanofibres for hydrogen storage; Double-layer condensers - technology, cost, perslpectives; Supercondensers in motor vehicles; Superconducting magnetic energy stores; Flywheel storage - status report; Decentralized energy storage in the European integrated supply grid - the EU project DISPOWER; Intercontinental integration of power supply - perspectives of full-scale power supply on the basis of renewable energy sources in Europe; High-volgate direct-current transmission in the European power suppply grid; Superconductivity and energy transport - status and perspectives. [German] Dieser Tagungsband enthaelt 17 Vortraege mit folgenden Themen: Methanhydrate: Verbindung aus Gas und Wasser (Erwin Suess); Druckluftspeicher-Gasturbinen-Kraftwerke / Geplanter Einsatz beim Ausgleich flukturierender Windenergie-Produktion und aktuellem Strombedarf (Fritz Crotogino); Moderne Pumpspeicherwerke im Gigawattbereich - PSW Goldisthal (Wolfgang Bogenrieder); Bleibatterien - neue Entwicklungen und zukuenftige Einsatzbereiche (Reiner Wagner); Alkalische Batteriesysteme fuer Hybrid-Elektrostrassenfahrzeuge (Detlef Ohms, Gunter Schaedlich); Lithiumsysteme - Einsatzbereiche (Dietmar Rahner); Zink/Luft-Zellen (Michael Bruesewitz); Wasserstoffspeicher - Metallhydridspeicher, Druckgasspeicher, Fluessiggasspeicher (Andreas Otto); Kohlenstoff-Nanofasern zur Wasserstoffspeicherung (Juergen Garche

  17. Conference: Superconductivity, theory and practical challenges of a quantum phenonemon | 25 August | Uni Dufour

    CERN Multimedia

    2015-01-01

    On Tuesday, 25 August, J. Georg Bednorz (Nobel prize in physics 1987, IBM Research Zurich) and Louis Taillefer (physicist and professor at the University of Sherbrooke, Canada, and at the Canadian Institute for Advanced Research) will give a conference on the fascinating theme of superconductivity. "Superconductivity: theory and practical challenges of a quantum phenonemon" Uni Dufour Tuesday, 25 August at 7 p.m. This conference is organized by the Faculty of science of the University of Geneva, as part of the International Congress Materials and Mechanisms of Superconductivity (M2S - 2015). Discovered more than 100 years ago, superconductivity remains one of the most fascinating manifestations of the laws of physics, observable only at low temperatures. This phenomenon, which allows the transport of electricity without any loss of energy, leads to various technological applications, for example in magnetically levitated vehicles, in MRI and in ...

  18. Current leads for superconducting magnets

    International Nuclear Information System (INIS)

    Ishibashi, Kenji

    1989-01-01

    Current leads for superconducting magnets have been studied since 1960's. The technology of current leads may seem to have been established both in theory and experiment before the middle of 1970's. Nevertheless, a wide variety of superconducting magnets have been introduced in the last 15 years, and the demands for special current leads have increased in accordance to the variety. A steady advance has been made in the design theory and fabrication of current leads. This paper describes the recent current lead technology regarding the design theory, safety in accidents, and high current capability. (author)

  19. Status of superconducting RF test facility (STF)

    International Nuclear Information System (INIS)

    Hayano, Hitoshi

    2005-01-01

    A superconducting technology was recommended for the main linac design of the International Linear Collider (ILC) by the International Technology Recommendation Panel (ITRP). The basis for this design has been developed and tested at DESY, and R and D is progressing at many laboratories around the world including DESY, Orsay, KEK, FNAL, SLAC, Cornell, and JLAB. In order to promote Asian SC-technology for ILC, construction of a test facility in KEK was discussed and decided. The role and status of the superconducting RF test facility (STF) is reported in this paper. (author)

  20. US superconducting magnet data base assessment for INTOR

    International Nuclear Information System (INIS)

    Schultz, J.H.; Montgomery, D.B.

    1984-01-01

    Because of its size, performance requirements and exposure to neutron and gamma irradiation, the superconducting magnet system for INTOR would represent a significant advance in superconducting magnet technology. US programs such as LCP, MFTF-B and others provide a significant data base for the INTOR application. The assessment of the adequacy of the US data base for the INTOR magnets is largely generic, and applies to the superconducting magnet systems for other magnetic confinement fusion reactors. Assessments of the data base generated by other national magnet technology programs are being prepared by the other INTOR participants

  1. ESCAR superconducting magnet system

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Meuser, R.B.; Pope, W.L.; Green, M.A.

    1975-01-01

    Twenty-four superconducting dipoles, each about 1 meter long, provide the guide field for the Experimental Superconducting Accelerator Ring proton accelerator--storage ring. Injection of 50 MeV protons corresponds to a 3 kG central dipole field, and a peak proton energy of 4.2 GeV corresponds to a 46 kG central field. Thirty-two quadrupoles provide focusing. The 56 superconducting magnets are contained in 40 cryostats that are cryogenically connected in a novel series ''weir'' arrangement. A single 1500 W refrigeration plant is required. Design and testing of the magnet and cryostat system are described. (U.S.)

  2. RADIOFREQUENCY SUPERCONDUCTIVITY: Workshop

    International Nuclear Information System (INIS)

    Lengeler, Herbert

    1989-01-01

    Superconducting radiofrequency is already playing an important role in the beam acceleration system for the TRISTAN electron-positron collider at the Japanese KEK Laboratory and new such systems are being prepared for other major machines. Thus the fourth Workshop on Radiofrequency Superconductivity, organized by KEK under the chairmanship of local specialist Yuzo Kojima and held just before the International Conference on High Energy Accelerators, had much progress to review and even more to look forward to

  3. Energy transfer from a superconducting magnet to an inductive load

    International Nuclear Information System (INIS)

    Onishi, Toshitada; Miura, Akinori.

    1977-01-01

    Experiments on energy transfer between two superconducting magnets have been carried out using an inductive energy transfer system similar to the flying capacitor system developed at the Karlsruhe Institute. In the present system the capacitor is grounded and diodes are used instead of thyristors, and a fraction of stored energy is transferred to the capacitor only when the relay connected in parallel to the magnet is switched off. The capacitor is expected to have no constraint in size, while in the flying capacitor system the capacitor is required to exceed a threshold size. Consequently it is possible to shorten the transfer time to some extent in comparison with the one in the flying capacitor system. Transfer experiments have been carried out using a storage magnet with inductance of 1.2H and a load of 0.41H. The capacitance is 200μF. It is possible to transfer 80.1% of the stored energy of 221 J into the load in less than about 0.35 seconds. (auth.)

  4. Elliptical superconducting RF cavities for FRIB energy upgrade

    Science.gov (United States)

    Ostroumov, P. N.; Contreras, C.; Plastun, A. S.; Rathke, J.; Schultheiss, T.; Taylor, A.; Wei, J.; Xu, M.; Xu, T.; Zhao, Q.; Gonin, I. V.; Khabiboulline, T.; Pischalnikov, Y.; Yakovlev, V. P.

    2018-04-01

    The multi-physics design of a five cell, βG = 0 . 61, 644 MHz superconducting elliptical cavity being developed for an energy upgrade in the Facility for Rare Isotope Beams (FRIB) is presented. The FRIB energy upgrade from 200 MeV/u to 400 MeV/u for heaviest uranium ions will increase the intensities of rare isotope beams by nearly an order of magnitude. After studying three different frequencies, 1288 MHz, 805 MHz, and 644 MHz, the 644 MHz cavity was shown to provide the highest energy gain per cavity for both uranium and protons. The FRIB upgrade will include 11 cryomodules containing 5 cavities each and installed in 80-meter available space in the tunnel. The cavity development included extensive multi-physics optimization, mechanical and engineering analysis. The development of a niobium cavity is complete and two cavities are being fabricated in industry. The detailed design of the cavity sub-systems such as fundamental power coupler and dynamic tuner are currently being pursued. In the overall design of the cavity and its sub-systems we extensively applied experience gained during the development of 650 MHz low-beta cavities at Fermi National Accelerator Laboratory (FNAL) for the Proton Improvement Plan (PIP) II.

  5. Promoting renewable energy technologies

    International Nuclear Information System (INIS)

    Grenaa Jensen, S.

    2004-06-01

    Technologies using renewable energy sources are receiving increasing interest from both public authorities and power producing companies, mainly because of the environmental advantages they procure in comparison with conventional energy sources. These technologies can be substitution for conventional energy sources and limit damage to the environment. Furthermore, several of the renewable energy technologies satisfy an increasing political goal of self-sufficiency within energy production. The subject of this thesis is promotion of renewable technologies. The primary goal is to increase understanding on how technological development takes place, and establish a theoretical framework that can assist in the construction of policy strategies including instruments for promotion of renewable energy technologies. Technological development is analysed by through quantitative and qualitative methods. (BA)

  6. Commissioning of the Superconducting Linac at the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Campisi, Isidoro E.

    2007-01-01

    The use of superconducting radiofrequency (SRF) cavities in particle accelerator is becoming more widespread. Among the projects that make use of that technology is the Spallation Neutron Source, where H-ions are accelerated to about 1 GeV, mostly making use of niobium elliptical cavities. SNS will use the accelerated short (about 700 ns) sub-bunches of protons to generate neutrons by spallation, which will in turn allow probing structural and magnetic properties of new and existing materials. The SNS superconducting linac is the largest application of RF superconductivity to come on-line in the last decade. The SRF cavities, operated at 805 MHz, were designed, built and integrated into cryomodules at Jefferson Lab and installed and tested at SNS. SNS is also the first proton-like accelerator which uses SRF cavities in a pulse mode. Many of the details of the cavity performance are peculiar to this mode of operation, which is also being applied to lepton accelerators (TESLA test facility and X-FEL at DESY and the international linear collider project). Thanks to the low frequency of the SNS superconducting cavities, operation at 4.2 K has been possible without beam energy degradation, even though the cavities and cryogenic systems were originally designed for 2.1 K operation. The testing of the superconducting cavities, the operating experience with beam and the performance of the superconducting linac will be presented

  7. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  8. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  9. Conceptual design report for a superconducting coil suitable for use in the large solenoid detector at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Krebs, H.J.; Kephart, R.D.; Theriot, D.; Wands, R.H.

    1989-01-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) was done at Fermilab. The magnet will provide a magnetic field of 1.7 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictability of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Our conceptual design of the magnet and calorimeter has convinced us that this magnet is a reasonable extrapolation of present technology and is therefore feasible. The principal difficulties anticipated are those associated with the very large physical dimensions and stored energy of the magnet. 5 figs

  10. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  11. Technology spinoffs from the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    1984-02-01

    This document briefly describes eight new spin-offs from the fusion program: (1) cray timesharing system, (2) CRT touch panel, (3) magneform, (4) plasma separation process, (5) homopolar resistance welding, (6) plasma diagnostic development, (7) electrodeless microwave lamp, and (8) superconducting energy storage

  12. Two energy scales and two quasiparticle dynamics in the superconducting state of under-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Le Tacon, M.; Sacuto, A. [Paris-7 Univ., Lab. Mat riaux et Ph nom nes Quantiques (UMR 7162 CNRS), 75 (France); Laboratoire de Physique du Solide, ESPCI, 75 - Paris (France); Georges, A. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Kotliar, G. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Rutgers Univ., Serin Physics Lab. (United States); Gallais, Y. [Columbia Univ. New York, Dept. of Physics and Applied Physics, NY (United States); Colson, D.; Forget, A. [CEA Saclay, Service de Physique de l' Etat Condense, 91 - Gif-sur-Yvette (France)

    2006-07-01

    The superconducting state of under-doped cuprates is often described in terms of a single energy scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the under-doped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the under-doped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the gap and anti-nodal regions. While anti-nodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations. (authors)

  13. Metal forming technology for the fabrication of seamless Superconducting radiofrequency cavities for particle accelerators

    Directory of Open Access Journals (Sweden)

    Palmieri Vincenzo

    2015-01-01

    Full Text Available The world of Particle accelerators is rather unique, since in a few high-energy Physics great laboratories, such at CERN for example, there have been built the largest technological installations ever conceived by humankind. The Radiofrequency resonant cavities are the pulsing heart of an accelerator. In case of superconducting accelerators, bulk niobium cavities, able to perform accelerating gradients up to 40 MeV/m, are just a jewel of modern technology. The standard fabrication technology foresees the cutting of circular blanks, their deep-drawing into half-cells, and its further joining by electron beam welding under ultra high vacuum environment that takes several hours. However, proposals such as the International Linear Collider, to which more than 900 scientists from all over the world participate, foresee the installation of 20.000 cavities. In numbers, it means the electron beam weld one by one under Ultra High Vacuum of 360,000 hemi-cells. At a cost of 500 €/Kg of high purity Niobium, this will mean a couple of hundreds of millions of Euros only for the bare material. In this panorama it is evident that a cost reducing approach must be considered. In alternative the author has proposed a seamless and low cost fabrication method based on spinning of fully resonators. Preliminary RF tests at low temperatures have proved that high accelerating gradients are achievable and that they are not worse than those obtainable with the standard technology. Nevertheless up to when the next accelerator will be decided to be built there is still room for improvement.

  14. Superconductivity in doped two-leg ladder cuprates

    International Nuclear Information System (INIS)

    Qin Jihong; Yuan Feng; Feng Shiping

    2006-01-01

    Within the t-J ladder model, superconductivity with a modified d-wave symmetry in doped two-leg ladder cuprates is investigated based on the kinetic energy driven superconducting mechanism. It is shown that the spin-liquid ground-state at the half-filling evolves into the superconducting ground-state upon doping. In analogy to the doping dependence of the superconducting transition temperature in the planar cuprate superconductors, the superconducting transition temperature in doped two-leg ladder cuprates increases with increasing doping in the underdoped regime, and reaches a maximum in the optimal doping, then decreases in the overdoped regime

  15. Measuring the critical current in superconducting samples made of NT-50 under pulse irradiation by high-energy particles

    International Nuclear Information System (INIS)

    Vasilev, P.G.; Vladimirova, N.M.; Volkov, V.I.; Goncharov, I.N.; Zajtsev, L.N.; Zel'dich, B.D.; Ivanov, V.I.; Kleshchenko, E.D.; Khvostov, V.B.

    1981-01-01

    The results of tests of superconducting samples of an uninsulated wire of the 0.5 mm diameter, containing 1045 superconducting filaments of the 10 μm diameter made of NT-50 superconductor in a copper matrix, are given. The upper part of the sample (''closed'') is placed between two glass-cloth-base laminate plates of the 50 mm length, and the lower part (''open'') of the 45 mm length is immerged into liquid helium. The sample is located perpendicular to the magnetic field of a superconducting solenoid and it is irradiated by charged particle beams at the energy of several GeV. The measurement results of permissible energy release in the sample depending on subcriticality (I/Isub(c) where I is an operating current through the sample, and Isub(c) is a critical current for lack of the beam) and the particle flux density, as well as of the maximum permissible fluence depending on subcriticality. In case of the ''closed'' sample irradiated by short pulses (approximately 1 ms) for I/Isub(c) [ru

  16. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S

    2003-01-01

    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  17. Optimization of HTS superconducting magnetic energy storage magnet volume

    Science.gov (United States)

    Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto

    2003-08-01

    Nonlinear optimization problems in the field of electromagnetics have been successfully solved by means of sequential quadratic programming (SQP) and the finite element method (FEM). For example, the combination of SQP and FEM has been proven to be an efficient tool in the optimization of low temperature superconductors (LTS) superconducting magnetic energy storage (SMES) magnets. The procedure can also be applied for the optimization of HTS magnets. However, due to a strongly anisotropic material and a slanted electric field, current density characteristic high temperature superconductors HTS optimization is quite different from that of the LTS. In this paper the volumes of solenoidal conduction-cooled Bi-2223/Ag SMES magnets have been optimized at the operation temperature of 20 K. In addition to the electromagnetic constraints the stress caused by the tape bending has also been taken into account. Several optimization runs with different initial geometries were performed in order to find the best possible solution for a certain energy requirement. The optimization constraints describe the steady-state operation, thus the presented coil geometries are designed for slow ramping rates. Different energy requirements were investigated in order to find the energy dependence of the design parameters of optimized solenoidal HTS coils. According to the results, these dependences can be described with polynomial expressions.

  18. Low energy excitations in superconducting La1.86Sr0.14CuO4

    DEFF Research Database (Denmark)

    Mason, T.E.; Aeppli, G.; Hayden, S.M.

    1993-01-01

    We present magnetic neutron scattering and specific heat data on the high-T(c) superconductor La1.86Sr0.14CuO4. Even when the samples are superconducting and the magnetic response, chi'', is suppressed, there are excitations with energies well below 3.5k(B)T(c). The wave-vector dependence of chi...

  19. Beating liquid helium: the technologies of cryogen-free superconducting magnets

    Science.gov (United States)

    Burgoyne, John

    2015-03-01

    Cryogen-free superconducting magnets have been available now for almost 15 years, but have only become standard commercial products in more recent years. In this review we will consider the pros and cons of ``dry'' design including superconducting wire development and selection, thermal budgeting, and the alternative methods for achieving magnet cooling.

  20. Prototype superconducting radio-frequency cavity for LEP

    CERN Multimedia

    1985-01-01

    This niobium superconducting cavity was part of the prototype stages for an upgrade to LEP, known as LEP-2. Superconducting cavities would eventually replace the traditional copper cavities and allow beam energies of 100 GeV.

  1. ASC 84: applied superconductivity conference. Final program and abstracts

    International Nuclear Information System (INIS)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics

  2. ASC 84: applied superconductivity conference. Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  3. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Paul (ed.) [Jena Univ. (Germany). Inst. fuer Festkoerperphysik, AG Tieftemperaturphysik

    2015-07-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  4. Applied superconductivity. Handbook on devices and applications. Vol. 1 and 2

    International Nuclear Information System (INIS)

    Seidel, Paul

    2015-01-01

    The both volumes contain the following 12 chapters: 1. Fundamentals; 2. Superconducting Materials; 3. Technology, Preparation, and Characterization (bulk materials, thin films, multilayers, wires, tapes; cooling); 4, Superconducting Magnets; 5. Power Applications (superconducting cables, superconducting current leads, fault current limiters, transformers, SMES and flywheels; rotating machines; SmartGrids); 6. Superconductive Passive Devices (superconducting microwave components; cavities for accelerators; superconducting pickup coils; magnetic shields); 7. Applications in Quantum Metrology (superconducting hot electron bolometers; transition edge sensors; SIS Mixers; superconducting photon detectors; applications at Terahertz frequency; detector readout); 8. Superconducting Radiation and Particle Detectors; 9. Superconducting Quantum Interference (SQUIDs); 10. Superconductor Digital Electronics; 11. Other Applications (Josephson arrays as radiation sources. Tunable microwave devices) and 12. Summary and Outlook (of the superconducting devices).

  5. Vacuum system design for a superconducting X-ray lithography light source

    International Nuclear Information System (INIS)

    Schuchman, J.C.

    1990-01-01

    A superconducting electron storage ring for X-ray lithography (SXLS) is to be built at Brookhaven National Laboratory (BNL). The goal is to design and construct a light source specifically dedicated to X-ray lithography production and which would be used as a prototype in a technology transfer to American industry. The machine will be built in two phases: phase I, a low energy ring (200 MeV, 500 mA) using all room temperature magnets which will be used primarily for low energy injection studies. Phase II will be a full energy machine (690 MeV, 500 mA) where the room temperature 180 0 dipole magnets of phase I will be replaced with superconducting magnets. The machine, with a racetrack shape and a circumference of 8.5 m, is designed to be portable and replaceable as a single unit. This paper will discuss the vacuum system design for both phases; i.e. gas desorption, warm bore vs cold bore, ion trapping, clearing electrodes, and diagnostic instrumentation. (author)

  6. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  7. New technologies for a future superconducting proton collider

    International Nuclear Information System (INIS)

    Malamud, E.; Foster, G.W.

    1996-06-01

    New more economic approaches are required to continue the dramatic exponential rise in particle accelerator energies as represented by the well-known Livingston plot. The old idea of low-cost, low-field iron dominated magnets in a small diameter pipe may become feasible in the next decade with dramatic recent advances in technology: (1) high T c superconductors operating at liquid N 2 or H 2 temperatures, (2) advanced tunneling technologies for small diameter, non human accessible tunnels, (3) accurate remote guidance systems for boring machine steering, (4) industrial applications of remote manipulation and robotics, and (5) digitally multiplexed electronics to minimize cables There is an opportunity for mutually beneficial partnerships between the High Energy Physics community and the commercial sector to develop the necessary technology. This will gain public support, a necessary part of the challenge of building a new, very high energy collider

  8. Technology spin-offs from the magnetic fusion energy program

    International Nuclear Information System (INIS)

    1982-05-01

    A description is given of 138 possible spin-offs from the magnetic fusion program. The spin-offs cover the following areas: (1) superconducting magnets, (2) materials technology, (3) vacuum systems, (4) high frequency and high power rf, (5) electronics, (6) plasma diagnostics, (7) computers, and (8) particle beams

  9. Thermodynamic Green functions in theory of superconductivity

    Directory of Open Access Journals (Sweden)

    N.M.Plakida

    2006-01-01

    Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.

  10. Superconductivity at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, N B; Ginzburg, N I

    1969-07-01

    Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.

  11. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  12. Superconducting Generators for Airborne Applications and YBCO-Coated Conductors (Preprint)

    National Research Council Canada - National Science Library

    Barnes, Paul N; Levin, George A; Durkin, Edward B

    2008-01-01

    .... Superconducting generators can address this need. Recently, several successful rotating machinery projects demonstrated the practicality and feasibility of the technology using the high temperature superconducting BSCCO wire...

  13. Experimental studies on the thermal properties of fast pulsed superconducting accelerator magnets; Experimentelle Untersuchungen thermischer Eigenschaften schnell gepulster supraleitender Beschleunigermagnete

    Energy Technology Data Exchange (ETDEWEB)

    Bleile, Alexander

    2016-01-06

    The new Facility for Antiproton and Ion Research FAIR is being constructed at the GSI research center in Darmstadt (Germany). This wordwide unique accelerator facility will provide beams of ions and antiprotons at high intensities and high energies for the fundamental research in nuclear, atomic and plasma physics as well as for applied science. The superconducting synchrotron SIS100 with a magnetic rigidity of 100 T/m, the core component of the FAIR facility will provide primary ion beams of all types from hydrogen up to uranium. One of the key technical systems of a new synchrotron are fast ramped electromagnets for the generation of fast ramped magnetic fields for deflecting and focusing of the ion beams. To reduce the energy consumption and to keep the operating costs of the synchrotron as low as possible superconducting magnet technology is applied in the SIS100. Superconducting magnets have been developed at GSI within the scope of the FAIR project. Although the superconducting magnet technology promises high cost saving, the power consumption of the fast ramped superconducting magnets can't be completely neglected. The pulsed operation generates dynamic losses in the iron yokes as well as in the superconducting coils of the magnets. A forced two-phase helium flow provides effective cooling for supercounducting magnets exposed to a continous relative high heat flow. The subject of this PhD thesis is experimental investigations and analysis of the dynamic power losses in fast ramped superconducting magnets and their dependencies on the operation cycles of the synchrotron. This research was conducted on the the first series SIS100 dipole magnet. Based on the experimentally defined dynamic heat loads and helium mass flow rates in the dipole magnet the heat loads and helium consumption for all other types of superconducting magnet modules of the SIS100 have been estimated. These results are essential for the development of the cooling system for the the

  14. Superconducting magnet applications in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, P; Collan, H K; Lounasmaa, O V

    1983-01-01

    A short review of superconducting magnet applications in Finland is presented. The development work was done in areas that seem to offer potential for a significant break-through technology. So far our efforts have covered magnetic separation, electric DC machinery and medical NMR imaging, and it is now being extended to biological NMR on living tissue and to particle physics experiments. Our work has been facilitated by the recently started fabrication of domestic superconducting wire.

  15. Superconducting magnetic energy storage for the disposal of fast reserve energy at the electrical energy supply. Supraleitende Energiespeicher zur Bereitstellung schneller Reserveleistung in der elektrischen Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, W [Siemens AG, Erlangen (Germany); Bittihn, R [Varta AG, Hagen (Germany); Kuerten, H [Siemens AG, Erlangen (Germany); Radtke, U [PreussenElektra AG, Hannover (Germany); Taube, W [PreussenElektra AG, Hannover (Germany); Vollmar, H E [Siemens AG, Erlangen (Germany); Willmes, H [Varta Batterie AG, Hagen (Germany)

    1994-04-05

    The authors investigate the economic efficiency of the application of a superconducting magnetic energy storage (SMES) in the field of electrical energy supply taking as example a network of 10 000 MW which is operated in an European interconnected power system. In case of this network the supply of the second reserve energy has become an interesting example of application, especially combined with the disconnection of the pre-heater. The application of SMES could lead to a better utilisation of existing power stations and the fuels along with a reduction of emissions. (orig.)

  16. JETC (Japanese Technology Evaluation Center) Panel Report on High Temperature Superconductivity in Japan

    Science.gov (United States)

    Shelton, Duane; Gamota, George

    1989-01-01

    The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States.

  17. Enhancing the utilization of photovoltaic power generation by superconductive magnetic energy storage

    International Nuclear Information System (INIS)

    Tam, K.S.; Kumar, P.; Foreman, M.

    1989-01-01

    This paper demonstrates that a superconductive magnetic energy storage (SMES) system can enhance large scale utilization of PV generation. With SMES support, power generated from PV arrays van be fully utilized under different weather conditions and PV penetrations can be increased to significant levels without causing adverse effects to the power system. Coupled with PV generation, a SMES system is even more effective in performing diurnal load leveling. A coordinated PV/SMES operation scheme is proposed and demonstrated under different weather conditions

  18. Development of superconducting ship propulsion system

    International Nuclear Information System (INIS)

    Sakuraba, Junji; Mori, Hiroyuki; Hata, Fumiaki; Sotooka, Koukichi

    1991-01-01

    When we plan displacement-type monohull high speed vessels, it is difficult to get the hull form with the wave-making resistance minimum, because the stern shape is restricted by arrangement of propulsive machines and shafts. A small-sized and light-weight propulsive machines will reduce the limit to full form design. Superconducting technology will have capability of realizing the small-sized and light-weight propulsion motor. The superconducting electric propulsion system which is composed of superconducting propulsion motors and generators, seems to be an ideal propulsion system for future vehicles. We have constructed a 480 kW superconducting DC homopolar laboratory test motor for developing this propulsion system. The characteristic of this motor is that it has a superconducting field winding and a segmented armature drum. The superconducting field winding which operates in the persistent current mode, is cooled by a condensation heat exchanger and helium refigerating system built into the cryostat of the superconducting field winding. The operating parameters of this motor agreed well with the design parameters. Using the design concepts of this motor, we have conceptually designed a 150,000-200,000 PS superconducting electric propulsive system for a displacement-type monohull high speed ship. (author)

  19. Evaluation of environmental control technologies for magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    The peripheral magnetic fields of several energy-related technologies are calculated, and shielding options are studied for three field intensities as possible exposure levels: 200 G, 10 G, and 0.3 G. Seven fusion reactor designs are studied. For a 200-G field level, shielding is not required. For the 10- and 0.3-G levels, land is the most economical shielding method, with shield coils an acceptable alternative at 0.3 G. Nonnuclear technologies studied are superconducting magnetic energy storage, magnetohydrodynamic (MHD) electric generators, magnetically levitated vehicles, superconducting ac generators, and underground transmission lines. Superconducting ac generators and underground transmission lines require no shielding. The superconducting magnetic energy storage coil requires no shielding for 200 G. Both a shield coil and land are needed to meet 10 G or 0.3 G. The MHD generator needs no shielding to 200 G and 10 G. Land is the most economical means of meeting the 0.3 G level. Most of the magnetically levitated vehicles require no shielding to 200 G. The field on-board can be reduced from 200 to 25 G, depending upon the vehicle design, with shield coils. The use of iron, or another permeable material, is necessary to reduce the field to 10 G or 0.3 G. However, iron introduces too much added weight to allow efficient operation.

  20. Universal transport characteristics of multiple topological superconducting wires with large charging energy

    Energy Technology Data Exchange (ETDEWEB)

    Kashuba, Oleksiy; Trauzettel, Bjoern [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Timm, Carsten [Institut fuer Theoretische Physik, TU Dresden, 01062 Dresden (Germany)

    2016-07-01

    The system with multiple Majorana states coupled to the normal lead can potentially support the interaction between Majorana fermions and electrons. Such system can be implemented by several floating topological superconducting wires with large charging energy asymmetrically coupled to two normal leads. The analysis of the renormalization flow shows that there is a single fixed point - the strong coupling limit of isotropic antiferromagnetic Kondo model. The topological Kondo-like interaction leads also to the selective renormalization of the tunneling coefficients, strongly enhancing one component and suppressing others. Thus, charging energy crucially changes the transport properties of the system leading to the universal single-channel conductance independently from the values of the initial leads-wires coupling.

  1. Small magnetic energy storage systems using high temperature superconductors

    International Nuclear Information System (INIS)

    Kumar, B.

    1991-01-01

    This paper reports on magnetic energy storage for power systems that has been considered for commercial utility power, air and ground mobile power sources, and spacecraft applications. Even at the current technology limits of energy storage (100 KJ/Kg*), superconducting magnetic energy storage inductors do not offer a strong advantage over state-of-the-art batteries. The commercial utility application does not have a weight and volume limitation, and is under intense study in several countries for diurnal cycle energy storage and high power delivery. The advent of high temperature superconductors has reduced one of the penalties of superconducting magnetic energy storage in that refrigeration and cryocontainers become greatly simplified. Still, structural and current density issues that limit the energy density and size of superconducting inductors do not change. Cold weather starting of aircraft engines is an application where these limitations are not as significant, and where current systems lack performance. The very cold environments make it difficult to achieve high power densities in state-of-the-art batteries and hydraulically activated starters. The same cold environments make it possible to cool superconducting systems for weeks using a single charge of liquid nitrogen. At the same, the ground carts can handle the size and weight of superconducting magnetic storage (SMES) devices

  2. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb$_{3}$Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  3. Large Superconducting Magnet Systems

    Energy Technology Data Exchange (ETDEWEB)

    Védrine, P [Saclay (France)

    2014-07-01

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  4. Experimental studies of current sharing in parallel driven Graetz bridge units for diurnal superconductive magnetic energy storage

    International Nuclear Information System (INIS)

    Kustom, R.L.; Akita, S.; Okada, H.; Skiles, J.

    1985-01-01

    Superconductive Magnetic Energy Storage (SMES) coils for diurnal load leveling and system peaking are envisioned to operate at hundreds of thousands of amperes and a few kilovolts. The interface between the SMES coil and the electric utility is envisioned to be Graetz bridges using SCR switches. Many parallel SCR switches or bridge units will have to operate in parallel because of the high operating current of the coil. Current balancing on parallel Graetz bridges driving a single 8-hy superconducting coil has been achieved on a laboratory model using delay-angle control with an LSI 11/2 microprocessor and external digital control hardware

  5. Exotic Magnetic Orders and Their Interplay with Superconductivity

    DEFF Research Database (Denmark)

    Christensen, Morten Holm

    Superconductivity represents one of the most important scientific discoveries of the 20th century. The practical applications are numerous ranging from clean energy storage and MRI machines to quantum computers. However, the low temperatures required for superconductivity prohibits many practical...... applications. The more recent discovery of high-temperature superconductors, with superconducting transition temperatures above 100~K, has led to the hope that superconductivity at room-temperature might be achievable, although a complete theoretical understanding of the high-temperature superconductors...

  6. State-of-the-art superconducting accelerator magnets

    CERN Document Server

    Rossi, L

    2002-01-01

    With the LHC the technology of NbTi-based accelerator magnets has been pushed to the limit. By operating in superfluid helium, magnetic fields in excess of 10 T have been reached in various one meter-long model magnets while full scale magnets, 15 meter-long dipoles, have demonstrated possibility of safe operation in the 8.3-9 tesla range, with the necessary, very tight, field accuracy. The paper reviews the key points of the technology that has permitted the construction of the largest existing superconducting installations (Fermilab, Desy and Brookhaven), highlighting the novelties of the design of the LHC dipoles, quadrupoles and other superconducting magnets. All together the LHC project will need more than 5000 km of fine filament superconducting cables capable of 14 kA @ 10 T, 1.9 K. (13 refs).

  7. Gauge Model of High-Tc Superconductivity

    International Nuclear Information System (INIS)

    Ng, Sze Kui

    2012-01-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-T c superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature T c is related to the ionization energies of elements and can be computed by a formula of T c . For the high-T c superconductors such as La 2-x Sr x CuO 4 , Y Ba 2 Cu 3 O 7 , and MgB 2 , the computational results of T c agree with the experimental results.

  8. Venture investing opportunities in superconductivity

    International Nuclear Information System (INIS)

    Zschau, E.

    1987-01-01

    The authors provide an assessment of the venture investing opportunities in superconductivity and some guidelines to follow. There were many elements that made Silicon Valley a leader in technology, not the least of which were the distinguished research universities located here. However, the application of the research results that they produced was done by groups of extraordinary people--people who had ideas, who were willing to take risks, and who inspired others to follow them into the unknown. They sometimes succeeded, but they often didn't. However, they never stopped trying. People like that will be the key to success in advancing and applying superconductivity technology just as they have been in semiconductors

  9. Transfer Efficiency and Cooling Cost by Thermal Loss based on Nitrogen Evaporation Method for Superconducting MAGLEV System

    Science.gov (United States)

    Chung, Y. D.; Kim, D. W.; Lee, C. Y.

    2017-07-01

    This paper presents the feasibility of technical fusion between wireless power transfer (WPT) and superconducting technology to improve the transfer efficiency and evaluate operating costs such as refrigerant consumption. Generally, in WPT technology, the various copper wires have been adopted. From this reason, the transfer efficiency is limited since the copper wires of Q value are intrinsically critical point. On the other hand, as superconducting wires keep larger current density and relatively higher Q value, the superconducting resonance coil can be expected as a reasonable option to deliver large transfer power as well as improve the transfer ratio since it exchanges energy at a much higher rate and keeps stronger magnetic fields out. However, since superconducting wires should be cooled indispensably, the cooling cost of consumed refrigerant for resonance HTS wires should be estimated. In this study, the transmission ratios using HTS resonance receiver (Rx) coil and various cooled and noncooled copper resonance Rx coils were presented under non cooled copper antenna within input power of 200 W of 370 kHz respectively. In addition, authors evaluated cooling cost of liquid nitrogen for HTS resonance coil and various cooled copper resonance coils based on nitrogen evaporation method.

  10. Transfer Efficiency and Cooling Cost by Thermal Loss based on Nitrogen Evaporation Method for Superconducting MAGLEV System

    International Nuclear Information System (INIS)

    Chung, Y D; Kim, D W; Lee, C Y

    2017-01-01

    This paper presents the feasibility of technical fusion between wireless power transfer (WPT) and superconducting technology to improve the transfer efficiency and evaluate operating costs such as refrigerant consumption. Generally, in WPT technology, the various copper wires have been adopted. From this reason, the transfer efficiency is limited since the copper wires of Q value are intrinsically critical point. On the other hand, as superconducting wires keep larger current density and relatively higher Q value, the superconducting resonance coil can be expected as a reasonable option to deliver large transfer power as well as improve the transfer ratio since it exchanges energy at a much higher rate and keeps stronger magnetic fields out. However, since superconducting wires should be cooled indispensably, the cooling cost of consumed refrigerant for resonance HTS wires should be estimated. In this study, the transmission ratios using HTS resonance receiver (Rx) coil and various cooled and noncooled copper resonance Rx coils were presented under non cooled copper antenna within input power of 200 W of 370 kHz respectively. In addition, authors evaluated cooling cost of liquid nitrogen for HTS resonance coil and various cooled copper resonance coils based on nitrogen evaporation method. (paper)

  11. Analytical and numerical study of New field emitter processing for superconducting cavities

    Science.gov (United States)

    Volkov, Vladimir; Petrov, Victor

    2018-02-01

    In this article a scientific prove for a new technology to maximize the accelerating gradient in superconducting cavities by processing on higher order mode frequencies is presented. As dominant energy source the heating of field emitters by an induced rf current (rf-heating) is considered. The field emitter structure is assumed to be a chain of conductive particles, which are formed by attractive forces.

  12. Superconducting wind turbine generators

    International Nuclear Information System (INIS)

    Abrahamsen, A B; Seiler, E; Zirngibl, T; Andersen, N H; Mijatovic, N; Traeholt, C; Pedersen, N F; Oestergaard, J; Noergaard, P B

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  13. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)], E-mail: heydari@iust.ac.ir, E-mail: faramarz_faghihi@ee.iust.ac.ir, E-mail: reza_sharifi@ee.iust.ac.ir, E-mail: amirhosseinp@ee.iust.ac.ir

    2008-09-15

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.

  14. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    Science.gov (United States)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein

    2008-09-01

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.

  15. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    International Nuclear Information System (INIS)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein

    2008-01-01

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT

  16. Energy technologies at the cutting edge: international energy technology collaboration IEA Implementing Agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pottinger, C. (ed.)

    2007-05-15

    Ensuring energy security and addressing climate change issues in a cost-effective way are the main challenges of energy policies and in the longer term will be solved only through technology cooperation. To encourage collaborative efforts to meet these energy challenges, the IEA created a legal contract - Implementing Agreement - and a system of standard rules and regulations. This allows interested member and non-member governments or other organisations to pool resources and to foster the research, development and deployment of particular technologies. For more than 30 years, this international technology collaboration has been a fundamental building block in facilitating progress of new or improved energy technologies. There are now 41 Implementing Agreements. This is the third in the series of publications highlighting the recent results and achievements of the IEA Implementing Agreements. This document is arranged in the following sections: Cross-cutting activities (sub-sectioned: Climate technology initiative; Energy Technology Data Eexchange; and Energy technology systems analysis programme); End-use technologies (sub-sectioned: Buildings; Electricity; Industry; and Transport; Fossil fuels (sub-sectioned: Clean Coal Centre; Enhanced oil recovery Fluidized bed conversion; Greenhouse Gas R & D; Multiphase flow sciences); Fusion power; Renewable energies and hydrogen; and For more information (including detail on the IEA energy technology network; IEA Secretariat Implementing Agreement support; and IEA framework. Addresses are given for the Implementing Agreements. The publication is based on core input from the Implementing Agreement Executive Committee.

  17. 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage system reference design

    International Nuclear Information System (INIS)

    Rogers, J.D.; Hassenzahl, W.V.; Schermer, R.I.

    1979-09-01

    A point reference design has been completed for a 1-GWh Superconducting Magnetic Energy Storage system. The system is for electric utility diurnal load-leveling but can also function to meet much faster power demands including dynamic stabilization. This study explores several concepts of design not previously considered in the same detail as treated here. Because the study is for a point design, optimization in all respects is not complete. This report examines aspects of the coil, the superconductor supported off of the dewar shell, the dewar shell, and its configuration and stresses, the underground excavation and construction for holding the superconducting coil and its dewar, the helium refrigeration system, the electrical converter system, the vacuum system, the guard coil, and the costs. This report is divided into two major portions. The first is a general treatment of the work and the second is seven detailed technical appendices issued as separate reports. The information presented on the aluminum stabilizer for the conductor, on the excavation, and on the converter is based upon industrial studies contracted for this work

  18. A low energy muon spin rotation and point contact tunneling study of niobium films prepared for superconducting cavities

    Science.gov (United States)

    Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.

    2017-12-01

    Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.

  19. Superconducting RF activities at Cornell University

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.; Shu, Q.S.

    1990-01-01

    This paper outlines the RF superconductivity research and development work that has taken place at Cornell Laboratory of Nuclear Studies over the past years. The work that has been performed since the last RF superconductivity workshop is emphasized together with a discussion of the direction of future efforts. Past work is summarized first, focusing on research and development activities in the area of RF superconductivity. Superconducting TeV linear collider is then discussed focusing on the application of superconducting RF to a future TeV linear collider. Linear collider structure development is then described centering on the development of a simpler (thereby cheaper) structure for a TeV linear collider. B-factory with superconducting RF is outlined focusing on the formulation of a conceptual design for a B-factory. B-factory structure development is discussed in relation to the advancement in the capability of SC cavities to carry beam currents of several amperes necessary for a high luminosity storage ring. High gradients are discussed as the key to the realization of a high energy superconducting linac or a superconducting RF B-factory. (N.K.)

  20. Superconducting magnet development in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.

    1983-01-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration

  1. Design study of superconducting inductive energy storages for tokamak fusion reactor

    International Nuclear Information System (INIS)

    1977-08-01

    Design of the superconducting inductive energy storages (SC-IES) has been studied. One SC-IES is for the power supply system in a experimental tokamak fusion reactor, and the other in a future practical reactor. Study started with definition of the requirements of SC-IES, followed by optimization of the coil shape and determination of major parameters. Then, the coil and the vessel were designed, including the following: for SC-IES of the experimental reactor, stored energy 10 GJ, B max 8 T, conductor NbTi and size 18 m diameter x 10 m height; for SC-IES of the practical reactor, stored energy 56 GJ, B max 10.5 T, conductor Nb 3 Sn and size 26 m diameter x 15 m height. Design of the coil protection system and an outline of the auxiliary systems (for refrigeration and evacuation) are also given, and further, problems and usefullness of SC-IES. (auth.)

  2. A modified BCS theory of heavy fermion superconductivity

    International Nuclear Information System (INIS)

    Baral, P.C.; Rout, G.C.

    2012-01-01

    In this paper we derive an expression for the superconducting gap equation for U and Ce based heavy fermion (HF) systems within a modified weak coupling theory of superconductivity. The calculated gap equation presents a mixture of pairing amplitudes of two different quasi-particle bands α and β. These two gap equations are solved numerically and self-consistently within the cut-off energy which arises due to the Kondo energy. It is found that the energy dependence of the enhanced density of states for the HF systems clearly manifests itself in the theory and the Kondo energy naturally takes the role of cut-off energy (ω c ), as long as the effective cut-off energy is large in comparison with the Kondo energy. The numerical analysis confirms this result and shows that superconducting transition temperature is independent of effective cut-off energy employed within this approach. The temperature dependence of gap equations are studied by varying the model parameters like positions of f-level, hybridization and coupling constants of the HF systems. (author)

  3. Thermal expansion of coexistence of ferromagnetism and superconductivity

    International Nuclear Information System (INIS)

    Hatayama, Nobukuni; Konno, Rikio

    2010-01-01

    The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature T cu of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.

  4. A superconducting large-angle magnetic suspension. Final report

    International Nuclear Information System (INIS)

    Downer, J.R.; Anastas, G.V. Jr.; Bushko, D.A.; Flynn, F.J.; Goldie, J.H.; Gondhalekar, V.; Hawkey, T.J.; Hockney, R.L.; Torti, R.P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible

  5. Review of the superconducting approach to linear colliders

    International Nuclear Information System (INIS)

    Padamsee, H.

    1992-01-01

    For the next linear collider of 500 GeV CM energy, the beam energy needs to be increased by a factor of 5 over the SLC, but the luminosity needs to be increased by 5 orders of magnitude. The superconducting (SRF) approach offers multiple relief from the many pressing challenges of achieving high luminosity. The major challenges for the SRF approach are to raise the gradients well above 5 MV/m possible today and at the same time to lower the costs. Progress in SRF technology is presented. A collaborative venture on a TESLA TEST FACILITY is now taking shape, these activities are summarized. (R.P.) 19 refs.; 4 figs.; 3 tabs

  6. Development of new-concept superconducting power equipment; Shinkino chodendo denryoku kiki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hamajima, T.; Tsurunaga, K.; Urata, M. [Toshiba Corp., Tokyo (Japan)

    1998-01-01

    The superconducting magnet energy storage (SMES) system has a function by which magnetic energy is stored in a superconducting coil without loss and discharged very rapidly into the power line when needed. The fault current limiter has a function by which transport current is passed without impedance and excessive fault current is restricted by generating large impedance in an emergency. These are the functions of new power equipment, which can not be realized by the conventional equipment. In the small-scale SMES project, Toshiba has fabricated 100 kWh-class element coils and 1 kWh/1 MW modules as the first step of practical application for power system control. For the superconducting fault current limiter, Toshiba has developed a 6.6 kV-1 kA class fault current limiter without supplying cooling medium such as helium, and limiting tests of fault current have been successfully conducted. Through the long-term tests of element coils for SMES and the system interconnection tests of module-type SMES, it is expected that the technological development for practical application is accelerated. 4 refs., 7 figs., 3 tabs.

  7. Superconducting magnet and conductor research activities in the US fusion program

    International Nuclear Information System (INIS)

    Michael, P.C.; Schultz, J.H.; Antaya, T.A.; Ballinger, R.; Chiesa, L.; Feng, J.; Gung, C.-Y.; Harris, D.; Kim, J.-H.; Lee, P.; Martovetsky, N.; Minervini, J.V.; Radovinsky, A.; Salvetti, M.; Takayasu, M.; Titus, P.

    2006-01-01

    Fusion research in the United States is sponsored by the Department of Energy's Office of Fusion Energy Sciences (OFES). The OFES sponsors a wide range of programs to advance fusion science, fusion technology, and basic plasma science. Most experimental devices in the US fusion program are constructed using conventional technologies; however, a small portion of the fusion research program is directed towards large scale commercial power generation, which typically relies on superconductor technology to facilitate steady-state operation with high fusion power gain, Q. The superconductor portion of the US fusion research program is limited to a small number of laboratories including the Plasma Science and Fusion Center at MIT, Lawrence Livermore National Laboratory (LLNL), and the Applied Superconductivity Center at University of Wisconsin, Madison. Although Brookhaven National Laboratory (BNL) and Lawrence Berkeley National Laboratory (LBNL) are primarily sponsored by the US's High Energy Physics program, both have made significant contributions to advance the superconductor technology needed for the US fusion program. This paper summarizes recent superconductor activities in the US fusion program

  8. Superconducting cavities developments efforts at RRCAT

    International Nuclear Information System (INIS)

    Puntambekar, A.; Bagre, M.; Dwivedi, J.; Shrivastava, P.; Mundra, G.; Joshi, S.C.; Potukuchi, P.N.

    2011-01-01

    Superconducting RE cavities are the work-horse for many existing and proposed linear accelerators. Raja Ramanna Centre for Advanced Technology (RRCAT) has initiated a comprehensive R and D program for development of Superconducting RF cavities suitable for high energy accelerator application like SNS and ADS. For the initial phase of technology demonstration several prototype 1.3 GHz single cell-cavities have been developed. The work began with development of prototype single cell cavities in aluminum and copper. This helped in development of cavity manufacturing process, proving various tooling and learning on various mechanical and RF qualification processes. The parts manufacturing was done at RRCAT and Electron beam welding was carried out at Indian industry. These cavities further served during commissioning trials for various cavity processing infrastructure being developed at RRCAT and are also a potential candidate for Niobium thin film deposition R and D. Based on the above experience, few single cell cavities were developed in fine grain niobium. The critical technology of forming and machining of niobium and the intermediate RF qualification were developed at RRCAT. The EB welding of bulk niobium cavities was carried out in collaboration with IUAC, New Delhi at their facility. As a next logical step efforts are now on for development of multicell cavities. The prototype dumbbells and end group made of aluminium, comprising of RF and HOM couplers ports have also been developed, with their LB welding done at Indian industry. In this paper we shall present the development efforts towards manufacturing of 1.3 GHz single cell cavities and their initial processing and qualification. (author)

  9. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  10. Comparison of superconducting generators and permanent magnet generators for 10-MW direct-drive wind turbines

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2016-01-01

    Large offshore direct-drive wind turbines of 10-MW power levels are being extensively proposed and studied because of a reduced cost of energy. Conventional permanent magnet generators currently dominating the direct-drive wind turbine market are still under consideration for such large wind...... turbines. In the meantime, superconducting generators (SCSGs) have been of particular interest to become a significant competitor because of their compactness and light weight. This paper compares the performance indicators of these two direct-drive generator types in the same 10-MW wind turbine under...... the same design and optimization method. Such comparisons will be interesting and insightful for commercialization of superconducting generators and for development of future wind energy industry, although SCSGs are still far from a high technology readiness level. The results show that the SCSGs may...

  11. A design study of superconducting energy storage system for a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Ueda, Kazuo

    1979-01-01

    A design study of a superconducting inductive energy storage system (SC-IES) has been carried out in commission with JAERI. The SC-IES is to be applied to the power supply system for a tokamak experimental fusion reactor. The study was initiated with the definition of the requirement for the SC-IES and selection of the coil shape. The design of the coil and the cryostat has been followed. The design parameters are: stored energy 10 GJ, B max 8 T, conductor Nb-Ti, overall size 18 m (diameter) x 10 m (height). Technical problems and usefullness of SC-IES are discussed also. (author)

  12. Application of superconductivity to pulse fields

    International Nuclear Information System (INIS)

    Saito, Shigeo; Suzawa, Chizuru; Ohkura, Kengo; Nagata, Masayuki; Kawashima, Masao

    1984-01-01

    Numerous attempts to apply the superconductive phenomena of zero electrical resistivity to AC (pulsed) magnets in addition to conventional DC magnet fields are being made in the areas of poloidal coils of nuclear fusion, energy storage, rotary machines, and induction for stabilization of electric power systems. In pulsed superconductive magnets, the stability of the superconductivity and the generation of heat due to AC loss are serious problems. Based on the knowledge obtained through the development of various types of superconductors, magnets, cryostats, and other superconductive-related products, Cu-Ni/Cu/Nb-Ti mixed-matrix fine multifilamentary superconductor wire and the stable, low AC loss superconductors used therein, magnets, and FRP cryostats are developed and manufactured. (author)

  13. The role of local repulsion in superconductivity in the Hubbard–Holstein model

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chungwei, E-mail: clin@merl.com; Wang, Bingnan; Teo, Koon Hoo

    2017-01-15

    Highlights: • There exists an optimal Boson energy for superconductivity in Hubbard–Holstein model. • The electron-Boson coupling is essential for superconductivity, but the same coupling can lead to polaron insulator, which is against superconductivity. • The local Coulomb repulsion can sometimes enhance superconductivity. - Abstract: We examine the superconducting solution in the Hubbard–Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard–Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizes the S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  14. LHC Report: superconducting circuit powering tests

    CERN Multimedia

    Mirko Pojer

    2015-01-01

    After the long maintenance and consolidation campaign carried out during LS1, the machine is getting ready to start operation with beam at 6.5 TeV… the physics community can’t wait! Prior to this, all hardware and software systems have to be tested to assess their correct and safe operation.   Most of the cold circuits (those with high current/stored energy) possess a sophisticated magnet protection system that is crucial to detect a transition of the coil from the superconducting to the normal state (a quench) and safely extract the energy stored in the circuits (about 1 GJ per dipole circuit at nominal current). LHC operation relies on 1232 superconducting dipoles with a field of up to 8.33 T operating in superfluid helium at 1.9 K, along with more than 500 superconducting quadrupoles operating at 4.2 or 1.9 K. Besides, many other superconducting and normal resistive magnets are used to guarantee the possibility of correcting all beam parameters, for a total of mo...

  15. Design of Anti-windup Compensator for Superconducting Magnetic Energy Storage

    DEFF Research Database (Denmark)

    Fang, Jiakun; Chen, Zhe; Su, Chi

    2013-01-01

    -windup compensator (AWC) is applied to the controller of the superconducting magnetic energy storage (SMES) system to improve power system stability. First, power system with actuator saturation is described to formulate the problem mathematically. Then, uniform anti-windup scheme is studied and compensator...... is designed with method of linear matrix inequality (LMI). Instead of replacing the original controller with a new one, the anti-windup compensation make use of the difference between the controller’s and the actuator’s output to mitigate the adverse influence of saturation, which leaves the original...... controller unaffected. Hence, this method can be used to enhance power system stability under the same capacity with its unsaturated controller so that SMES is utilized more efficiently....

  16. Applied superconductivity and cryogenic research activities in NIFS

    International Nuclear Information System (INIS)

    Mito, T.; Sagara, A.; Imagawa, S.; Yamada, S.; Takahata, K.; Yanagi, N.; Chikaraishi, H.; Maekawa, R.; Iwamoto, A.; Hamaguchi, S.; Sato, M.; Noda, N.; Yamauchi, K.; Komori, A.; Motojima, O.

    2006-01-01

    Since the foundation of National Institute for Fusion Science (NIFS) in 1989, the primary mission of the applied superconductivity and cryogenic researches has been focused on the development of the large helical device (LHD): the largest fusion experimental apparatus exclusively utilizing superconducting technologies. The applied superconductivity and cryogenics group in NIFS was organized to be responsible for this activity. As a result of extensive research activities, the construction of LHD was completed in 1997. Since then, the LHD superconducting system has been demonstrating high availability of more than 97% during eight years operation and it keeps proving high reliability of large-scale superconducting systems. This paper describes the extensive activities of the applied superconductivity and cryogenic researches in NIFS during and after the development of LHD and the fundamental researches that aim at realizing a helical-type fusion reactor

  17. A New Understanding of the Heat Treatment of Nb-Sn Superconducting Wires

    Science.gov (United States)

    Sanabria, Charlie

    Enhancing the beam energy of particle accelerators like the Large Hadron Collider (LHC), at CERN, can increase our probability of finding new fundamental particles of matter beyond those predicted by the standard model. Such discoveries could improve our understanding of the birth of universe, the universe itself, and/or many other mysteries of matter--that have been unresolved for decades--such as dark matter and dark energy. This is obviously a very exciting field of research, and therefore a worldwide collaboration (of universities, laboratories, and the industry) is attempting to increase the beam energy in the LHC. One of the most challenging requirements for an energy increase is the production of a magnetic field homogeneous enough and strong enough to bend the high energy particle beam to keep it inside the accelerating ring. In the current LHC design, these beam bending magnets are made of Nb Ti superconductors, reaching peak fields of 8 T. However, in order to move to higher fields, future magnets will have to use different and more advanced superconducting materials. Among the most viable superconductor wire technologies for future particle accelerator magnets is Nb3Sn, a technology that has been used in high field magnets for many decades. However, Nb3Sn magnet fabrication has an important challenge: the fact the wire fabrication and the coil assembly itself must be done using ductile metallic components (Nb, Sn, and Cu) before the superconducting compound (Nb3 Sn) is activated inside the wires through a heat treatment. The studies presented in this thesis work have found that the heat treatment schedule used on the most advanced Nb3Sn wire technology (the Restacked Rod Process wires, RRPRTM) can still undergo significant improvements. These improvements have already led to an increase of the figure of merit of these wires (critical current density) by 28%.

  18. Energy technology evaluation report: Energy security

    Science.gov (United States)

    Koopman, R.; Lamont, A.; Schock, R.

    1992-09-01

    Energy security was identified in the National Energy Strategy (NES) as a major issue for the Department of Energy (DOE). As part of a process designed by the DOE to identify technologies important to implementing the NES, an expert working group was convened to consider which technologies can best contribute to reducing the nation's economic vulnerability to future disruptions of world oil supplies, the working definition of energy security. Other working groups were established to deal with economic growth, environmental quality, and technical foundations. Energy Security working group members were chosen to represent as broad a spectrum of energy supply and end-use technologies as possible and were selected for their established reputations as experienced experts with an ability to be objective. The time available for this evaluation was very short. The group evaluated technologies using criteria taken from the NES which can be summarized for energy security as follows: diversifying sources of world oil supply so as to decrease the increasing monopoly status of the Persian Gulf region; reducing the importance of oil use in the US economy to diminish the impact of future disruptions in oil supply; and increasing the preparedness of the US to deal with oil supply disruptions by having alternatives available at a known price. The result of the first phase of the evaluation process was the identification of technology groups determined to be clearly important for reducing US vulnerability to oil supply disruptions. The important technologies were mostly within the high leverage areas of oil and gas supply and transportation demand but also included hydrogen utilization, biomass, diversion resistant nuclear power, and substitute industrial feedstocks.

  19. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  20. The quest for high-gradient superconducting cavities

    International Nuclear Information System (INIS)

    Padamsee, H.

    1999-01-01

    Superconducting RF cavities excel in applications requiring continuous waves or long pulse voltages. Since power losses in the walls of the cavity increase as the square of the accelerating voltage, copper cavities become uneconomical as demand for high continuous wave voltage grows with particle energy. For these reasons, RF superconductivity has become an important technology for high energy and high luminosity accelerators. The state of art in performance of sheet metal niobium cavities is best represented by the statistics of more than 300 5-cell, 1.5-GHz cavities built for CEBAF. Key aspects responsible for the outstanding performance of the CEBAF cavities set are the anti-multipactor, elliptical cell shape, good fabrication and welding techniques, high thermal conductivity niobium, and clean surface preparation. On average, field emission starts at the electric field of 8.7 MV/m, but there is a large spread, even though the cavities received nominally the same surface treatment and assembly procedures. In some cavities, field emission was detected as low as 3 MV/m. In others, it was found to be as high as 19 MV/m. As we will discuss, the reason for the large spread in the gradients is the large spread in emitter characteristics and the random occurrence of emitters on the surface. One important phenomenon that limits the achievable RF magnetic field is thermal breakdown of superconductivity, originating at sub-millimeter-size regions of high RF loss, called defects. Simulation reveal that if the defect is a normal conducting region of 200 mm radius, it will break down at 5 MV/m. Producing high gradients and high Q in superconducting cavities demands excellent control of material properties and surface cleanliness. The spread in gradients that arises from the random occurrence of defects and emitters must be reduced. It will be important to improve installation procedures to preserve the excellent gradients now obtained in laboratory test in vertical cryostats

  1. Frontier applications of rf superconductivity for high energy physics in the TeV range

    International Nuclear Information System (INIS)

    Tigner, M.; Padamsee, H.

    1988-01-01

    The authors present understanding of the fundamental nature of matter is embodied in the standard theory. This theory views all matter as composed of families of quarks and leptons with their interactions mediated by the family of force-carrying particles. Progress in particle accelerators has been a vital element in bringing about this level of understanding. Although the standard theory is successful in relating a wide range of phenomena, it raises deeper questions about the basic nature of matter and energy. Among these are: why are the masses of the various elementary particles and the strengths of the basic forces what they are? It is expected that over the next decade a new generation of accelerators spanning the 100 Gev mass range will shed light on some of these questions. These accelerators, will provide the means to thoroughly explore the energy regime corresponding to the mass scale of the weak interactions to reveal intimate details of the force carrying particles, the weak bosons, Z0 and W+-. Superconducting rf technology will feature in a major way in the electron storage rings. Current theoretical ideas predict that to make further progress towards a more fundamental theory of matter, it will be necessary to penetrate the TeV energy regime. At this scale a whole new range of phenomena will manifest the nature of the symmetry breaking mechanism that must be responsible for the differences they observe in the familiar weak and electromagnetic forces. History has shown that unexpected discoveries made in a new energy regime have proven to be the main engine of progress. The experimental challenge to accelerator designers and builders is clear. 11 references, 3 figures, 1 table

  2. Development of 50 MVA superconducting generator

    International Nuclear Information System (INIS)

    Ueda, Kiyotaka; Maki, Naoki; Takahashi, Noriyoshi; Ogata, Hisanao; Sanematsu, Toshihiro.

    1984-01-01

    Superconducting synchronous generators are expected to be the large capacity turbogenerators of next generation, but they have the structural features considerably different from conventional generators, such as low temperature multiple cylinder rotors and air gap armature winding. For the purpose of grasping the performance of superconducting generators and establishing the fundamental technology for their practical use, Hitachi Ltd. manufactured a 50 MVA superconducting generator. As the results of test, the precooling operation was smoothly finished for about 40 hours, and the superconducting rotor rotated stably at 3000 rpm. The steady and transient electrical characteristics were able to be grasped. It is intended to reflect these results to the development of a practical generator of 500 MVA class expected as the next step. When the superconducting exciting winding cooled by liquid helium is used, the reduction of weight, the improvement of efficiency and the improvement of the stability of power system can be expected. The structural features and the function of superconducting generators, the present state of the development in the world, the outline of the 50 MVA generator, the test results and the problems and the prospect hereafter are reported. The superconducting winding was made of NbTiZr alloy multicore wires. (Kako, I.)

  3. Superconducting current generators

    International Nuclear Information System (INIS)

    Genevey, P.

    1970-01-01

    After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr

  4. Low AC-Loss Superconducting Cable Technology for Electric Aircraft Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The availability of low AC loss magnesium diboride (MgB2) superconducting wires enables much lighter weight superconducting stator coils than with any other metal or...

  5. Finnish energy technology programmes 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Finnish Technology Development Centre (Tekes) is responsible for the financing of research and development in the field of energy production technology. A considerable part of the financing goes to technology programmes. Each technology programme involves major Finnish institutions - companies, research institutes, universities and other relevant interests. Many of the energy technology programmes running in 1998 were launched collectively in 1993 and will be completed at the end of 1998. They are complemented by a number of other energy-related technology programmes, each with a timetable of its own. Because energy production technology is horizontal by nature, it is closely connected with research and development in other fields, too, and is an important aspect in several other Tekes technology programmes. For this reason this brochure also presents technology programmes where energy is only one of the aspects considered but which nevertheless contribute considerably to research and development in the energy production sector

  6. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  7. Superconducting magnets for ISABELLE

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1976-01-01

    The application of superconducting magnet technology to high-energy accelerators has been studied at BNL for many years. Recently this effort has focused on the magnet system for the proposed Intersecting Storage Accelerator, ISABELLE. Several full-sized dipole and quadrupole magnets were fabricated and tested. A dipole was successfully operated using a high pressure forced circulation refrigeration system similar to that proposed for the accelerator. This magnet reached a maximum central field of 4.9 T, considerably above the design field of 3.9 T. A quadrupole of similar design was equally successful, achieving a gradient of 71 T/m compared to the design value of 53 T/m. A summary is given of the present status of the magnet development program, and the direction of future work is outlined

  8. Computation of Superconducting Generators for Wind Turbine Applications

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel

    The idea of introducing a superconducting generator for offshore wind turbine applications has received increasing support. It has been proposed as a way to meet energy market requirements and policies demanding clean energy sources in the near future. However, design considerations have to take......, to the actual generators in the KW (MW) class with an expected cross section in the order of decimeters (meters). This thesis work presents cumulative results intended to create a bottom-up model of a synchronous generator with superconducting rotor windings. In a first approach, multiscale meshes with large...... of the generator including ramp-up of rotor coils, load connection and change was simulated. Hence, transient hysteresis losses in the superconducting coils were computed. This allowed addressing several important design and performance issues such as critical current of the superconducting coils, electric load...

  9. The elbe accelerator facility starts operation with the superconducting rf gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schneider, C; Schurig, R; Staufenbiel, F; Teichert, J; Kamps, T; Rudolph, J; Schenk, M; Klemz, G; Will, I

    2010-01-01

    As the first superconducting rf photo-injector (SRF gun) in practice, the FZD 3+1/2 cell SRF gun is successfully connected to the superconducting linac ELBE. This setting will improve the beam quality for ELBE users. It is the first example for an accelerator facility fully based on superconducting RF technology. For high average power FEL and ERL sources, the combination of SRF linac and SRF gun provides a new chance to produce beams of high average current and low emittance with relative low power consumption. The main parameters achieved from the present SRF gun are the final electron energy of 3 MeV, 16 μA average current, and rms transverse normalized emittances of 3 mm mrad at 77 pC bunch charge. A modified 3+1/2 cell niobium cavity has been fabricated and tested, which will increase the rf gradient in the gun and thus better the beam parameters further. In this paper the status of the integration of the SRF gun with the ELBE linac will be presented, and the latest results of the beam experiments will ...

  10. Experimental Observation of Non-'S-Wave' Superconducting Behavior in Bulk Superconducting Tunneling Junctions of Yba2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Jose Guerra

    1998-06-01

    Full Text Available Evidence of non-s-wave superconductivity from normal tunneling experiments in bulk tunneling junctions of YBa2Cu3O7-δ is presented. The I-V and dI/dV characteristics of bulk superconducting tunneling junctions of YBa2Cu3O7-δ have been measured at 77.0K and clear deviation from s-wave superconducting behavior has been observed. The result agrees with d-wave symmetry, and interpreting the data in this way, the magnitude of the superconducting energy gap, 2Δ, is found to be (0.038 ± 0.002 eV. Comparing this energy gap with Tc (2Δ/kB Tc = 5.735, indicates that these high-Tc superconductors are strongly correlated materials, which in contrast with BCS-superconductors are believed to be weakly correlated.

  11. Tunnelling determined superconducting energy gap of bulk single crystal aluminum

    International Nuclear Information System (INIS)

    Civiak, R.L.

    1974-01-01

    A procedure has been developed for fabricating Giaver tunnel junctions on bulk aluminum. Al-I-Ag junctions were prepared, where I is the naturally formed oxide on the polished, chemically treated aluminum surface. The aluminum energy gap was determined from tunneling conductance curves obtained from samples oriented in three different crystal directions, and as a function of magnetic field in each of these orientations. In contrast to the results of microwave absorption measurements on superconducting aluminum, no magnetic field dependence could be measured for either the average gap or the spread in gap values of the tunneling electrons. This is consistent with commonly accepted tunneling selection rules, and Garfunkel's interpretation of the microwave behavior which depended upon adjusting the energy spectrum of only the electrons traveling parallel to the surface in the presence of a magnetic field. The energy gaps measured for samples oriented in the 100, 110 and 111 directions are 3.52, 3.50 and 3.39 kT/sub c/, respectively. The trend in the anisotropy is the same as in the calculation of Leavens and Carbotte, however, the magnitude of the anisotropy is smaller than in their calculation and that which previous measurements have indicated

  12. Melt formed superconducting joint between superconducting tapes

    International Nuclear Information System (INIS)

    Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.

    1992-01-01

    This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes

  13. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  14. Superconducting DC homopolar motors for ship propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Heiberger, M.; Reed, M.R.; Creedon, W.P.; O' Hea, B.J. [General Atomic (United States)

    2000-07-01

    Superconducting DC homopolar motors have undergone recent advances in technology, warranting serious consideration of their use for ship propulsion. Homopolar motor propulsion is now practical because of two key technology developments: cryogen-free superconducting refrigeration and high performance motor fiber brushes. These compact motors are ideal for podded applications, where reduced drag and fuel consumption are predicted. In addition, the simple DC motor controller is more efficient and reliable compared with AC motor controllers. Military ships also benefit from increased stealth implicit in homopolar DC excitation, which also allows the option for direct hull or pod mounting. (authors)

  15. Application of Superconducting Power Cables to DC Electric Railway Systems

    Science.gov (United States)

    Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru

    For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.

  16. Design of a superconducting wiggler system

    International Nuclear Information System (INIS)

    Shen, S.S.; Miller, J.R.; Heim, J.R.; Slack, D.S.

    1988-01-01

    We present a wiggler system based on currently available superconducting technology. The system is designed to provide maximum central field of 4.4 tesla with a specified period length of 160 mm and a gap of 40 mm, while meeting the field quality requirements along all axes. Also included are preliminary cost estimates and a survey of world-wide RandD efforts on superconducting wiggler systems. 12 refs., 6 figs., 3 tabs

  17. Radiation effects on superconducting fusion magnet components

    International Nuclear Information System (INIS)

    Weber, H.W.

    2011-01-01

    Nuclear fusion devices based on the magnetic confinement principle heavily rely on the existence and performance of superconducting magnets and have always significantly contributed to advancing superconductor and magnet technology to their limits. In view of the presently ongoing construction of the tokamak device ITER and the stellerator device Wendelstein 7X and their record breaking parameters concerning size, complexity of design, stored energy, amperage, mechanical and magnetic forces, critical current densities and stability requirements, it is deemed timely to review another critical parameter that is practically unique to these devices, namely the radiation response of all magnet components to the lifetime fluence of fast neutrons and gamma rays produced by the fusion reactions of deuterium and tritium. I will review these radiation effects in turn for the currently employed standard "technical" low temperature superconductors NbTi and Nb 3 Sn, the stabilizing material (Cu) as well as the magnet insulation materials and conclude by discussing the potential of high temperature superconducting materials for future generations of fusion devices, such as DEMO. (author)

  18. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  19. Status of the Fermilab Energy Doubler/Saver project

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The possibility of building a ring of superconducting magnets was considered very early in the design of the Fermilab main accelerator. It was concluded that the technology of superconducting magnets was not at that time, sufficiently advanced. Therefore, the main ring was designed and built with conventional magnets. However, space was left in the main-ring tunnel for a future ring of superconducting magnets. The Energy Doubler/Saver (ED/S) was initiated in 1972 as a project to build a ring of superconducting magnets with the objective of dramatically increasing the research potential of the Fermilab accelerators. This was to be accomplished at a moderate cost and in such a manner as to make possible a significant saving of electrical energy. A description is given of the evolution of this program as well as give a status report of the Ed/S research and development program.

  20. Status of the Fermilab Energy Doubler/Saver project

    International Nuclear Information System (INIS)

    1977-01-01

    The possibility of building a ring of superconducting magnets was considered very early in the design of the Fermilab main accelerator. It was concluded that the technology of superconducting magnets was not at that time, sufficiently advanced. Therefore, the main ring was designed and built with conventional magnets. However, space was left in the main-ring tunnel for a future ring of superconducting magnets. The Energy Doubler/Saver (ED/S) was initiated in 1972 as a project to build a ring of superconducting magnets with the objective of dramatically increasing the research potential of the Fermilab accelerators. This was to be accomplished at a moderate cost and in such a manner as to make possible a significant saving of electrical energy. A description is given of the evolution of this program as well as give a status report of the Ed/S research and development program

  1. Photoemission and the origin of high temperature superconductivity

    International Nuclear Information System (INIS)

    Norman, M. R.; Randeria, M.; Janko, B.; Campuzano, J. C.

    2000-01-01

    The condensation energy can be shown to be a moment of the change in the occupied part of the spectral function when going from the normal to the superconducting state. As a consequence, there is a one to one correspondence between the energy gain associated with forming the superconducting ground state, and the dramatic changes seen in angle resolved photoemission spectra. Some implications this observation has are offered

  2. Superconducting energy gap of BaPb/sub 1-//sub x/Bi/sub x/O3

    International Nuclear Information System (INIS)

    Schlesinger, Z.; Collins, R.T.; Scott, B.A.; Calise, J.A.

    1988-01-01

    We report the first infrared measurement of the superconducting energy gap of BaPb/sub 1-//sub x/Bi/sub x/O 3 . In our polycrystalline samples with T/sub c/≅9.5 K (x≅0.2) we obtain 2Δ≅3.2kT/sub c/, roughly in agreement with the weak-coupling Bardeen-Cooper-Schrieffer prediction, 2Δ = 3.5kT/sub c/, and with tunneling measurements of the gap. We do not observe any structure above the gap energy associated with strong coupling

  3. Coupling between magnetic and superconducting order parameters and evidence for the spin excitation gap in the superconducting state of a heavy fermion superconductor UPd2Al3

    International Nuclear Information System (INIS)

    Metoki, Naoto; Haga, Yoshinori; Koike, Yoshihiro; Aso, Naofumi; Onuki, Yoshichika

    1997-01-01

    Neutron scattering experiments have been carried out in order to study the interplay between magnetism and superconductivity in a heavy fermion superconductor, UPd 2 Al 3 . We have observed 1% suppression of the (0 0 0.5) magnetic peak intensity below the superconducting transition temperature T c . This is direct evidence for the coupling of the magnetic order parameter with the superconducting one. Furthermore, we have observed a spin excitation gap associated with superconductivity. The gap energy ΔE g increases continuously from ΔE g =0 to 0.4 meV with decreasing temperature from T c to 0.4 K. This gap energy corresponds to 2k B T c , which is smaller than the superconducting gap expected from the BCS theory (3.5k B T c ). These results are indicative of the strong interplay between magnetism and superconductivity. (author)

  4. Superconducting magnets advanced in particle physics

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2000-01-01

    Superconducting magnet technology for particle detectors has been advanced to provide large-scale magnetic fields in particle physics experiments. The technology has been progressed to meet physics goals and the detector requirement of having maximum magnetic field with minimum material and space. This paper includes an overview of the advances of particle detector magnets and discusses key technologies

  5. The science of superconductivity and new materials

    International Nuclear Information System (INIS)

    Nakajima, S.

    1989-01-01

    The authors have set as the objective of this symposium the full-scale evaluation of the present state of research and development in the theoretical fields of superconductivity and new materials; two fields which the entire world's attention is focused and which a great number of researchers are presently putting in their maximum efforts. Their symposium consists of two workshops respectively dealing with superconductivity and new materials. It is needless to say that physical science and material development move forward hand in hand. And they see a recent tendency worldwide that inventions and discoveries in both science and technology are touted fashionably as news topics. The search for new materials that have high critical temperature for use in the field of developing superconductivity has become the focus of social attention around the world. Yet they must not forget that the true important lies in the fundamental study of the mechanism of superconductivity and of its applications. The quantum leap of the Industrial Revolution in England brought forth increased productivity through the development of new technology and locomotive power, eventually leading to the establishment of a new production system, and subsequently, an industrial society in which we live now

  6. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  7. Introduction to superconductivity and high-Tc materials

    International Nuclear Information System (INIS)

    Cyrot, M.; Pavuna, D.

    1991-01-01

    What sets this book apart from other introductions to superconductivity and high-T c materials is its pragmatic approach. In this book the authors describe all relevant superconducting phenomena and rely on the macroscopic Ginzburg-Landau theory to derive the most important results. Examples are chosen from selected conventional superconductors like NbTi and compared to those high-T c materials. The text should be of interest to non-specialists in superconductivity either as a textbook for those entering the field (one semester course) or as researchers in advanced technologies and even some managers of interdisciplinary research projects

  8. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  9. New technology of lead-tin plating of superconducting RF resonators for the ANU LINAC

    International Nuclear Information System (INIS)

    Lobanov, N.R.; Weisser, D.C.

    2003-01-01

    The RF accelerating resonators for the ANU superconducting LINAC have been re-plated with lead-tin and their performance substantially improved. The re-plating was at first derailed by the appearance of dendrites on the surface. This problem was overcome by a new combination of two techniques. Rather than the standard process of chemically stripping the old Pb and hand polishing the Cu substrate the unsatisfactory Pb surface was mechanically polished and then re-plated. This is enormously easier, faster and doesn't put at risk the thin cosmetic electron beam welds or the repaired ones. Reverse pulse plating was then used to re-establish an excellent superconducting surface. Average acceleration fields of 3.5 to 3.9 MV/m have been achieved. The re-plated resonators will double the energy gain of the accelerator significantly extending capability of the facility research. Lead-tin plating provides fast adequate results with modest equipment and at relatively low cost. SUNY re-plated six high-beta SLRs with 2 microns of Pb-Sn using a modern, commercial, methane-sulfonate process (Lea Ronal Solderon MHS-L) and a simple open-air procedure. This proven success motivated ANU to adopt MSA chemistry and to re-plate the first SLR in November 1998 followed by re-plating all twelve SLRs by November 2002. This increased the booster energy gain by almost 100%

  10. A superconducting shield to protect astronauts

    CERN Document Server

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  11. Superconductivity in gallium-implanted silicon; Supraleitung in Gallium-implantiertem Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Skrotzki, Richard

    2016-07-12

    The following thesis is devoted to the electrical characterization of 10 nm thin layers consisting of amorphous Ga nanoclusters embedded in Ga-doped polycrystalline Si. The preparation of the layers is realized via ion implantation in Si wafers plus subsequent thermal annealing. Electrical-transport measurements in magnetic fields of up to 50 T show that the layers undergo two structural superconductor-insulator transitions upon variation of the annealing parameters. Structural analyzes based on TEM investigations reveal an underlying transformation of the size and distance of the clusters. This influences the interplay of the superconducting cluster coupling and capacitive charging energy as well as the extent of thermal and quantum fluctuations. In the superconducting regime (Tc ∼ 7 K) a double-reentrant phenomenon is observed. Here, magnetic fields of several Tesla facilitate superconductivity in an anisotropic way. A qualitative explanation is given via a self-developed theoretical model based on phase-slip events for Josephson-junction arrays. With respect to applications regarding sensor technology and quantum logic circuits the layers are successfully micro- and nanostructured via photolithography and FIB. This allows for the first observation of the Little-Parks effect in a nanostructure of amorphous Ga.

  12. FY 2000 report on the results of the R and D of fundamental technologies of superconductivity applications. Development of technology to process low consumption power ultra high speed signals; 2000 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho. Teishohi denryoku chokosoku shingo shori gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    In relation to the project on the R and D of fundamental technologies of superconductivity applications, the FY 2000 results of the design/fabrication of superconducting circuits were summarized. As to the development of technology to design superconducting circuits, an increase in circuit scale was tried targeting AD converter use modulator and decimation filter. As a result, operation was confirmed in element circuits of flux quantum multiplier circuit, feed back driver, DC isolator, etc. Concerning the development of technology for standard junction and integration, RHEED observations on the thin film surface before/after etching and YBa{sub 2}Cu{sub 3}O{sub 7-x} re-deposition were tried to be made, and the potentiality as monitoring technology was indicated. With respect to the fabrication of small scale circuits for demonstration, the design/trial fabrication were made of the basic pattern of SFQ circuit elements such as DC-SFQ, T-FF and SQUID for inductance rating. In regard to the development of technology to measure characteristics of superconducting circuits, a system was fabricated for processing and measuring output signals from {sigma}-{delta} modulators by semiconductor circuits, and it made the evaluation of AD converter performance possible. (NEDO)

  13. Generation and detection of high-energy phonons by superconducting junctions

    International Nuclear Information System (INIS)

    Singer, I.L.

    1976-01-01

    Superconducting tunnel junctions are used to investigate the dynamics of energy exchange that takes place in superconductors driven out of equilibrium. In a Sn junction biased at a voltage V much greater than 2Δ(Sn)/e, the tunneling current sustains a continual energy exchange amongst the quasiparticles, phonons, and Cooper pairs. Repeatedly, high-energy quasiparticles decay, emitting phonons; and phonons with energy greater than 2Δ(Sn) break pairs, producing quasiparticles. The phonon-induced component of the current is recovered by synchronously detecting the full tunneling current with respect to a small modulation current in the generator. Sharp onsets observed at intervals of the gap energies require that the escaping phonons are produced by the direct decay of the injected quasiparticles and are not merely the high-energy tail of the thermalized phonons. Both primary and secondary phonons can be abserved distinctly. Theoretical transconductance curves have been computed. The experimental and theoretical curves are in good qualitative agreement. A more detailed comparison suggests that the escape rate of high-energy phonons depends on the energy of the phonons. The dependence of the observed transconductance signal on the temperature and the total junction thickness suggests that the presence of quasiparticles plays a major role in the escape of high-energy phonons. The dependence on temperature can be fitted to exp(b/kT), 0.74 less than b less than 1.05 MeV. It is speculated that the excitation energy is first transported across the superconductor and then carried out of the film by the phonons. It is concluded that high-energy phonons are a sensitive probe of the very reabsorption effects that make their escape so unlikely, and analysis of the detected phonons rich details of the behavior of superconductors removed from equilibrium

  14. The modified high-energy transport code, HETC, and design calculations for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Gabriel, T.A.; Hermann, O.W.; Bishop, B.L.

    1988-01-01

    The proposed Superconducting Super Collider (SSC) will have two circulating proton beams, each with an energy of 20 TeV. In order to perform detector and shield design calculations at these higher energies that are as accurate as possible, it is necessary to incorporate in the calculations the best available information on differential particle production from hadron-nucleus collisions. In this paper, the manner in which this has been done in the High-Energy Transport Code HETC will be described and calculated results obtained with the modified code will be compared with experimental data. 10 refs., 1 fig

  15. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  16. Superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject

  17. Two-fluid model of the superconductivity in the BCS's theory

    International Nuclear Information System (INIS)

    Rangelov, J.

    1977-01-01

    The coefficients of Bogolubov-Valatin's transformation are chosen in accordance with the two-fluid model of superconductivity. The energy spectrum of superconducting quasi-particles is obtained as a solution of the linearized equation of motion of interacting particles. The energy distribution of the superconducting and normal quasi-particles is discussed from a new view-point. The correlation between the quasi-particles forming the Cooper's pair is discussed in accordance with the proposed ideas. The tunnelling of the normal quasi-particles in systems M-I-S and S 1 -I-S 2 is investigated qualitatively

  18. Key energy technologies for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO{sub 2} capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  19. Key energy technologies for Europe

    International Nuclear Information System (INIS)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO 2 capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  20. Superconducting magnets

    International Nuclear Information System (INIS)

    Willen, E.

    1996-01-01

    Superconducting dipole magnets for high energy colliders are discussed. As an example, the magnets recently built for the Relativistic Heavy Ion Collider at Brookhaven are reviewed. Their technical performance and the cost for the industry-built production dipoles are given. The cost data is generalized in order to extrapolate the cost of magnets for a new machine