WorldWideScience

Sample records for technology pasadena calif

  1. Handbook of Supersonic Aerodynamics. Section 20. Wind Tunnel Instrumentation and Operation

    Science.gov (United States)

    1961-01-01

    300 N. Sierra Madre Villa, Pasadena, Calif. 2. Electronic Engineering Associates, Ltd., 778 El Camino, San Carlos, Calif. 3. Statham Laboratories... Taller and Cooper, Brooklyn, N.Y.), and 2) the balance system (built by Boller and Chivins, Pasadena, Calif.). The model’s suspension system assembly is

  2. A generalization of the Pasadena puzzle

    NARCIS (Netherlands)

    Peterson, M.B.

    2013-01-01

    By generalizing the Pasadena puzzle introduced by Nover and Hájek (2004) we show that the sum total of value produced by an act can be made to converge to any real number by applying the Riemann rearrangement theorem, even if the scenario faced by the decision maker is non-probabilistic and fully

  3. 33 CFR 110.120 - San Luis Obispo Bay, Calif.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false San Luis Obispo Bay, Calif. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.120 San Luis Obispo Bay, Calif. (a) Area A-1. Area A-1 is the water area bounded by the San Luis Obispo County wharf, the shoreline, a line drawn...

  4. Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign

    Science.gov (United States)

    Hayes, P. L.; Ortega, A. M.; Cubison, M. J.; Froyd, K. D.; Zhao, Y.; Cliff, S. S.; Hu, W. W.; Toohey, D. W.; Flynn, J. H.; Lefer, B. L.; Grossberg, N.; Alvarez, S.; Rappenglück, B.; Taylor, J. W.; Allan, J. D.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Massoli, P.; Zhang, X.; Liu, J.; Weber, R. J.; Corrigan, A. L.; Russell, L. M.; Isaacman, G.; Worton, D. R.; Kreisberg, N. M.; Goldstein, A. H.; Thalman, R.; Waxman, E. M.; Volkamer, R.; Lin, Y. H.; Surratt, J. D.; Kleindienst, T. E.; Offenberg, J. H.; Dusanter, S.; Griffith, S.; Stevens, P. S.; Brioude, J.; Angevine, W. M.; Jimenez, J. L.

    2013-08-01

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) and two types of oxygenated OA (OOA). The Pasadena OA elemental composition when plotted as H : C versus O : C follows a line less steep than that observed for Riverside, CA. The OOA components from both locations follow a common line, however, indicating similar secondary organic aerosol (SOA) oxidation chemistry at the two sites such as fragmentation reactions leading to acid formation. In addition to the similar evolution of elemental composition, the dependence of SOA concentration on photochemical age displays quantitatively the same trends across several North American urban sites. First, the OA/ΔCO values for Pasadena increase with photochemical age exhibiting a slope identical to or slightly higher than those for Mexico City and the northeastern United States. Second, the ratios of OOA to odd-oxygen (a photochemical oxidation marker) for Pasadena, Mexico City, and Riverside are similar, suggesting a proportional relationship between SOA and odd-oxygen formation rates. Weekly cycles of the OA components are examined as well. HOA exhibits lower concentrations on Sundays versus weekdays, and the decrease in HOA matches that predicted for primary vehicle emissions using fuel sales data, traffic counts, and vehicle emission ratios. OOA does not display a weekly cycle—after accounting for differences in photochemical aging —which suggests the dominance of gasoline emissions in SOA formation under the assumption that most urban SOA precursors are from motor vehicles.

  5. A Conceptual Model of the Pasadena Housing System

    Science.gov (United States)

    Hirshberg, Alan S.; Barber, Thomas A.

    1971-01-01

    During the last 5 years, there have been several attempts at applying systems analysis to complex urban problems. This paper describes one such attempt by a multidisciplinary team of students, engineers, professors, and community representatives. The Project organization is discussed and the interaction of the different disciplines (the process) described. The two fundamental analysis questions posed by the Project were: "Why do houses deteriorate?" and "Why do people move?" The analysis of these questions led to the development of a conceptual system model of housing in Pasadena. The major elements of this model are described, and several conclusions drawn from it are presented.

  6. Organic Aerosol Composition and Sources in Pasadena, California during the 2010 CalNex Campaign

    Science.gov (United States)

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) ...

  7. Opportunity on 'Cabo Frio' (Simulated)

    Science.gov (United States)

    2006-01-01

    This image superimposes an artist's concept of the Mars Exploration Rover Opportunity atop the 'Cabo Frio' promontory on the rim of 'Victoria Crater' in the Meridiani Planum region of Mars. It is done to give a sense of scale. The underlying image was taken by Opportunity's panoramic camera during the rover's 952nd Martian day, or sol (Sept. 28, 2006). This synthetic image of NASA's Opportunity Mars Exploration Rover at Victoria Crater was produced using 'Virtual Presence in Space' technology. Developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif., this technology combines visualization and image processing tools with Hollywood-style special effects. The image was created using a photorealistic model of the rover and an approximately full-color mosaic.

  8. System Software and Tools for High Performance Computing Environments: A report on the findings of the Pasadena Workshop, April 14--16, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, T. [Universities Space Research Association, Washington, DC (United States); Messina, P. [Jet Propulsion Lab., Pasadena, CA (United States); Chen, M. [Yale Univ., New Haven, CT (United States)] [and others

    1993-04-01

    The Pasadena Workshop on System Software and Tools for High Performance Computing Environments was held at the Jet Propulsion Laboratory from April 14 through April 16, 1992. The workshop was sponsored by a number of Federal agencies committed to the advancement of high performance computing (HPC) both as a means to advance their respective missions and as a national resource to enhance American productivity and competitiveness. Over a hundred experts in related fields from industry, academia, and government were invited to participate in this effort to assess the current status of software technology in support of HPC systems. The overall objectives of the workshop were to understand the requirements and current limitations of HPC software technology and to contribute to a basis for establishing new directions in research and development for software technology in HPC environments. This report includes reports written by the participants of the workshop`s seven working groups. Materials presented at the workshop are reproduced in appendices. Additional chapters summarize the findings and analyze their implications for future directions in HPC software technology development.

  9. 33 CFR 334.870 - San Diego Harbor, Calif.; restricted area.

    Science.gov (United States)

    2010-07-01

    ..., Calif.; restricted area. (a) Restricted area at Bravo Pier, Naval Air Station—(1) The area. The water of... delay or loitering. On occasion, access to the bait barges may be delayed for intermittent periods not... Supply Center Pier—(1) The area. The waters of San Diego Bay extending approximately 100 feet out from...

  10. Preparing to Test Rover Mobility

    Science.gov (United States)

    2005-01-01

    Rover engineers prepare a mixture of sandy and powdery materials to simulate some difficult Mars driving conditions inside a facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The tests in early May 2005 were designed to help plan the best way for the rover Opportunity to drive off of a soft-sand dune that the rover dug itself into the previous week.

  11. 33 CFR 334.860 - San Diego Bay, Calif., Naval Amphibious Base; restricted area.

    Science.gov (United States)

    2010-07-01

    ... Amphibious Base; restricted area. 334.860 Section 334.860 Navigation and Navigable Waters CORPS OF ENGINEERS... Bay, Calif., Naval Amphibious Base; restricted area. (a) The Area. The water of the Pacific Ocean in Middle San Diego Bay in an area extending from the northern and eastern boundary of the Naval Amphibious...

  12. 77 FR 27436 - Stevens Institute of Technology, et al.; Notice of Consolidated Decision on Applications for Duty...

    Science.gov (United States)

    2012-05-10

    ... Number: 12-014. Applicant: California Institute of Technology, Pasadena, CA 91125. Instrument: Nova Nano... DEPARTMENT OF COMMERCE International Trade Administration Stevens Institute of Technology, et al... Constitution Avenue NW, Washington, DC Docket Number: 12-008. Applicant: Stevens Institute of Technology...

  13. Phoenix's Wet Chemistry Laboratory Units

    Science.gov (United States)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. 33 CFR 334.1160 - San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo.

    Science.gov (United States)

    2010-07-01

    ... practice area, Mare Island Naval Shipyard, Vallejo. 334.1160 Section 334.1160 Navigation and Navigable... REGULATIONS § 334.1160 San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo. (a..., Mare Island Naval Shipyard, Vallejo, California, will conduct target practice in the area at intervals...

  15. Uplift and Subsidence Associated with the Great Aceh-Andaman Earthquake of 2004

    Science.gov (United States)

    2006-01-01

    The magnitude 9.2 Indian Ocean earthquake of December 26, 2004, produced broad regions of uplift and subsidence. In order to define the lateral extent and the downdip limit of rupture, scientists from Caltech, Pasadena, Calif.; NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Scripps Institution of Oceanography, La Jolla, Calif.; the U.S. Geological Survey, Pasadena, Calif.; and the Research Center for Geotechnology, Indonesian Institute of Sciences, Bandung, Indonesia; first needed to define the pivot line separating those regions. Interpretation of satellite imagery and a tidal model were one of the key tools used to do this. These pre-Sumatra earthquake (a) and post-Sumatra earthquake (b) images of North Sentinel Island in the Indian Ocean, acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft, show emergence of the coral reef surrounding the island following the earthquake. The tide was 30 plus or minus 14 centimeters lower in the pre-earthquake image (acquired November 21, 2000) than in the post-earthquake image (acquired February 20, 2005), requiring a minimum of 30 centimeters of uplift at this locality. Observations from an Indian Coast Guard helicopter on the northwest coast of the island suggest that the actual uplift is on the order of 1 to 2 meters at this site. In figures (c) and (d), pre-earthquake and post-earthquake ASTER images of a small island off the northwest coast of Rutland Island, 38 kilometers east of North Sentinel Island, show submergence of the coral reef surrounding the island. The tide was higher in the pre-earthquake image (acquired January 1, 2004) than in the post-earthquake image (acquired February 4, 2005), requiring subsidence at this locality. The pivot line must run between North Sentinel and Rutland islands. Note that the scale for the North Sentinel Island images differs from that for the Rutland Island images. The tidal model used for this study was

  16. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    Science.gov (United States)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars. ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  17. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Science.gov (United States)

    2010-07-01

    ... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... (WSMC) at Vandenberg AFB, California. (3) The impacting of missile debris from launch operations will...

  18. Radar Image with Color as Height, Sman Teng, Temple, Cambodia

    Science.gov (United States)

    2002-01-01

    This image of Cambodia's Angkor region, taken by NASA's Airborne Synthetic Aperture Radar (AIRSAR), reveals a temple (upper-right) not depicted on early 19th Century French archeological survey maps and American topographic maps. The temple, known as 'Sman Teng,' was known to the local Khmer people, but had remained unknown to historians due to the remoteness of its location. The temple is thought to date to the 11th Century: the heyday of Angkor. It is an important indicator of the strategic and natural resource contributions of the area northwest of the capitol, to the urban center of Angkor. Sman Teng, the name designating one of the many types of rice enjoyed by the Khmer, was 'discovered' by a scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., working in collaboration with an archaeological expert on the Angkor region. Analysis of this remote area was a true collaboration of archaeology and technology. Locating the temple of Sman Teng required the skills of scientists trained to spot the types of topographic anomalies that only radar can reveal.This image, with a pixel spacing of 5 meters (16.4 feet), depicts an area of approximately 5 by 4.7 kilometers (3.1 by 2.9 miles). North is at top. Image brightness is from the P-band (68 centimeters, or 26.8 inches) wavelength radar backscatter, a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 25 meters (82 feet) of elevation change, so going from blue to red to yellow to green and back to blue again corresponds to 25 meters (82 feet) of elevation change.AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate elevation data. Built

  19. The Pasadena Aerosol Characterization Observatory (PACO: chemical and physical analysis of the Western Los Angeles basin aerosol

    Directory of Open Access Journals (Sweden)

    S. P. Hersey

    2011-08-01

    Full Text Available The Pasadena Aerosol Characterization Observatory (PACO represents the first major aerosol characterization experiment centered in the Western/Central Los Angeles Basin. The sampling site, located on the campus of the California Institute of Technology in Pasadena, was positioned to sample a continuous afternoon influx of transported urban aerosol with a photochemical age of 1–2 h and generally free from major local contributions. Sampling spanned 5 months during the summer of 2009, which were broken into 3 regimes on the basis of distinct meteorological conditions. Regime I was characterized by a series of low pressure systems, resulting in high humidity and rainy periods with clean conditions. Regime II typified early summer meteorology, with significant morning marine layers and warm, sunny afternoons. Regime III was characterized by hot, dry conditions with little marine layer influence. Regardless of regime, organic aerosol (OA is the most significant constituent of nonrefractory submicron Los Angeles aerosol (42, 43, and 55 % of total submicron mass in regimes I, II, and III, respectively. The overall oxidation state remains relatively constant on timescales of days to weeks (O:C = 0.44 ± 0.08, 0.55 ± 0.05, and 0.48 ± 0.08 during regimes I, II, and III, respectively, with no difference in O:C between morning and afternoon periods. Periods characterized by significant morning marine layer influence followed by photochemically favorable afternoons displayed significantly higher aerosol mass and O:C ratio, suggesting that aqueous processes may be important in the generation of secondary aerosol and oxidized organic aerosol (OOA in Los Angeles. Online analysis of water soluble organic carbon (WSOC indicates that water soluble organic mass (WSOM reaches maxima near 14:00–15:00 local time (LT, but the percentage of AMS organic mass contributed by WSOM remains relatively constant throughout the day. Sulfate and nitrate reside predominantly

  20. A Wet Chemistry Laboratory Cell

    Science.gov (United States)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2016-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  2. Frost on Mars

    Science.gov (United States)

    2008-01-01

    This image shows bluish-white frost seen on the Martian surface near NASA's Phoenix Mars Lander. The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). Frost is expected to continue to appear in images as fall, then winter approach Mars' northern plains. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Martian Surface as Seen by Phoenix

    Science.gov (United States)

    2008-01-01

    This anaglyph, acquired by NASA's Phoenix Lander's Surface Stereo Imager on Sol 36, the 36th Martian day of the mission (July 1, 2008), shows a stereoscopic 3D view of a trench informally called 'Snow White' dug by Phoenix's Robotic Arm. Phoenix's solar panel is seen in the bottom right corner of the image. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. La puerta califal del castillo de Gormaz

    Directory of Open Access Journals (Sweden)

    Almagro, Antonio

    2008-12-01

    Full Text Available This paper presents a partial analysis of an emblematic monument of the military architecture from al-Andalus. Although Gormaz has been mentioned many times as an example of the caliphate architecture, it still remains without a complete study using adequate methodology to identify the different phases of its construction. A new photogrammetric survey of the main gate is presented, and its structure and design composition rules used are both analysed. Furthermore, an issue never studied before is also examined: the remains from a previous fortress, built probably with mud walls, from which only the marks left on the structures dated to the 10th century have reached present times.Este artículo aborda el análisis parcial de un monumento emblemático de la arquitectura militar andalusí, muy citado como ejemplo de la arquitectura califal pero que aún hoy adolece de un estudio en profundidad y con metodología adecuada para identificar sus distintas fases. Se presenta una planimetría fotogramétrica nueva de su puerta, se analiza su estructura y los cánones compositivos que marcaron su diseño y se aborda un tema hasta ahora nunca observado como es la existencia de vestigios de una fortaleza anterior construida seguramente con tapias de tierra y de la que sólo ha llegado hasta nosotros la impronta que dejó en las estructuras del siglo X.

  5. Tests to Help Plan Opportunity Moves

    Science.gov (United States)

    2005-01-01

    Rover engineers check how a test rover moves in material chosen to simulate some difficult Mars driving conditions. The scene is inside the In-Situ Instrument Laboratory at NASA's Jet Propulsion Laboratory, Pasadena, Calif. These tests in early May 2005 were designed to help plan the best way for the rover Opportunity to drive off of a soft-sand dune that the rover dug itself into the previous week. The mixture of sandy and powdery material brought in for these specific tests matched the way the soil underneath Opportunity caked onto wheels, filling the spaces between the cleats on the wheels.

  6. HUBBLE'S 100,000TH EXPOSURE CAPTURES IMAGE OF DISTANT QUASAR

    Science.gov (United States)

    2002-01-01

    The Hubble Space Telescope achieved its 100,000th exposure June 22 with a snapshot of a quasar that is about 9 billion light-years from Earth. The Wide Field and Planetary Camera 2 clicked this image of the quasar, the bright object in the center of the photo. The fainter object just above it is an elliptical galaxy. Although the two objects appear to be close to each other, they are actually separated by about 2 billion light-years. Located about 7 billion light-years away, the galaxy is almost directly in front of the quasar. Astronomer Charles Steidel of the California Institute of Technology in Pasadena, Calif., indirectly discovered the galaxy when he examined the quasar's light, which contained information about the galaxy's chemical composition. The reason, Steidel found, was that the galaxy was absorbing the light at certain frequencies. The astronomer is examining other background quasars to determine which kinds of galaxies absorb light at the same frequencies. Steidel also was somewhat surprised to discover that the galaxy is an elliptical, rather than a spiral. Elliptical galaxies are generally believed to contain very little gas. However, this elliptical has a gaseous 'halo' and contains no visible stars. Part of the halo is directly in front of the quasar. The bright object to the right of the quasar is a foreground star. The quasar and star are separated by billions of light-years. The quasar looks as bright as the star because it produces a tremendous amount of light from a compact source. The 'disturbed-looking' double spiral galaxy above the quasar also is in the foreground. Credit: Charles Steidel (California Institute of Technology, Pasadena, CA) and NASA. Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  7. Extracting the building response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California

    Science.gov (United States)

    Snieder, R.; Safak, E.

    2006-01-01

    The motion of a building depends on the excitation, the coupling of the building to the ground, and the mechanical properties of the building. We separate the building response from the excitation and the ground coupling by deconvolving the motion recorded at different levels in the building and apply this to recordings of the motion in the Robert A. Millikan Library in Pasadena, California. This deconvolution allows for the separation of instrinsic attenuation and radiation damping. The waveforms obtained from deconvolution with the motion in the top floor show a superposition of one upgoing and one downgoing wave. The waveforms obtained by deconvolution with the motion in the basement can be formulated either as a sum of upgoing and downgoing waves, or as a sum over normal modes. Because these deconvolved waves for late time have a monochromatic character, they are most easily analyzed with normal-mode theory. For this building we estimate a shear velocity c = 322 m/sec and a quality factor Q = 20. These values explain both the propagating waves and the normal modes.

  8. Millennium Open Pit Mine, Alberta, Canada

    Science.gov (United States)

    2007-01-01

    Near Fort McMurray, Alberta, Canada, on the east bank of the Athabasca River, are found the Steepbank and Millennium mines. These open pit mines produce oil sands that are processed to recover bitumen, and then upgrade it to refinery-ready raw crude oil, and diesel fuel. The ASTER images were acquired September 22, 2000 and July 31, 2007, cover an area of 22.5 x 25.5 km, and are located near 57 degrees north latitude, 111.5 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  9. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Animated Optical Microscope Zoom in from Phoenix Launch to Martian Surface

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation This animated camera view zooms in from NASA's Phoenix Mars Lander launch site all the way to Phoenix's Microscopy and Electrochemistry and C Eonductivity Analyzer (MECA) aboard the spacecraft on the Martian surface. The final frame shows the soil sample delivered to MECA as viewed through the Optical Microscope (OM) on Sol 17 (June 11, 2008), or the 17th Martian day. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Geophysics in the public eye

    Science.gov (United States)

    The 1988 AGU Fall Meeting was attended by a record number of reporters from all types of media (see inset). Five news releases mailed before the meeting and seven scheduled news conferences drew reporters to the meeting, held December 5-9 in San Francisco. About 25 public information offices and individual scientists contributed 45 news releases for distribution at the meeting.Media liaisons were appointed by AGU section presidents to act as contacts between scientists and journalists. The liaisons assisted with news conferences, arranged interviews, and directed reporters to interesting papers. The section liaisons were Union, Christopher Harrison (Rosenstiel School of Marine & Atmospheric Science, Miami, Fla.); Atmospheric Sciences, William H. Beasley (National Science Foundation, Washington, D.C.); Geodesy, Randolph Ware (University of Colorado, Boulder); Geomagnetism and Paleomagnetism, Kenneth Verosub (University of Calfornia, Davis); Hydrology, George Leavesley (U.S. Geological Survey, Lakewood, Colo.); Planetology, Torrence Johnson (Jet Propulsion Lab, Pasadena, Calif.); Seismology, Jan Garmany (University of Texas, Austin); Solar- Planetary Relationships, Vincent Wickwar (Utah State University, Logan); and Tectonophysics, Paul Segall (U.S. Geological Survey, Menlo Park, Calif.).

  12. Votação online para iniciativas populares na Califórnia: coleta eletrônica de assinaturas

    Directory of Open Access Journals (Sweden)

    Walter S. Baer

    2012-05-01

    Full Text Available Este artigo discute o processo de coleta online de assinaturas para proposições legislativas, tendo por ponto de partida o processo vigente para iniciativa popular na Califórnia. Nele, descreve-se como a assinatura online de petições de iniciativa popular funcionaria, bem assim como questões de segurança e outras objeções à coleta de assinaturas via internet poderiam ser abordadas e, finalmente, os prós e contras de se aplicar este método de coleta de assinaturas às iniciativas populares.

  13. 2011 Einstein Fellows Chosen

    Science.gov (United States)

    2011-03-01

    ASA has announced the selection of the 2011 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2011. The new Einstein Fellows and their host institutions are listed below: * Akos Bogdan (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Samuel Gralla (University of Maryland, College Park, Md.) * Philip Hopkins (University of California at Berkeley) * Matthew Kunz (Princeton University, Princeton, N.J.) * Laura Lopez (Massachusetts Institute of Technology, Cambridge, Mass.) * Amy Reines (National Radio Astronomy Observatory, Charlottesville, Virg.) * Rubens Reis (University of Michigan, Ann Arbor) * Ken Shen (Lawrence Berkeley National Laboratory, Berkeley, Calif.) * Jennifer Siegal-Gaskins (California Institute of Technology, Pasadena) * Lorenzo Sironi (Harvard University, Cambridge, Mass.) NASA has two other astrophysics theme-based fellowship programs: the Sagan Fellowship Program, which supports research into exoplanet exploration, and the Hubble Fellowship Program, which supports research into cosmic origins. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/

  14. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign

    Science.gov (United States)

    Guo, Hongyu; Liu, Jiumeng; Froyd, Karl D.; Roberts, James M.; Veres, Patrick R.; Hayes, Patrick L.; Jimenez, Jose L.; Nenes, Athanasios; Weber, Rodney J.

    2017-05-01

    pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas-particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42--NO3--NH4+-HNO3-NH3 system. For PM2. 5, internal mixing of sea salt components (SO42--NO3--NH4+-Na+-Cl--K+-HNO3-NH3-HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3.

  15. Delivery to the Wet Chemistry Laboratory

    Science.gov (United States)

    2008-01-01

    This portion of a picture acquired by NASA's Phoenix Mars Lander's Robotic Arm Camera documents the delivery of soil to one of four Wet Chemistry Laboratory (WCL) cells on the 30th Martian day, or sol, of the mission. Approximately one cubic centimeter of this soil was then introduced into the cell and mixed with water for chemical analysis. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. First Dodo Trench with White Layer Visible in Dig Area

    Science.gov (United States)

    2008-01-01

    These color images were taken by NASA's Phoenix Mars Lander's Stereo Surface Imager on the ninth Martian day of the mission, or Sol 9 (June 3, 2008). The images of the trench shows a white layer that has been uncovered by the Robotic Arm (RA) scoop and is now visible in the wall of the trench. This trench was the first one dug by the RA to understand the Martian soil and plan the digging strategy. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Thomas J. Ahrens (1936-2010)

    Science.gov (United States)

    Jeanloz, Raymond

    2011-03-01

    Thomas J. Ahrens, a leader in the study of high-pressure shock wave and planetary impact phenomena, died at his home in Pasadena, Calif., on 24 November 2010 at the age of 74. He was the California Institute of Technology's Fletcher Jones Professor of Geophysics, emeritus since 2005 but professionally active to the end. He had been president of AGU's Tectonophysics section, editor of Journal of Geophysical Research, founding member of both the Mineral and Rock Physics and Study of the Earth's Deep Interior focus groups, and editor—more like key driving force—for AGU's Handbook of Physical Constants. Tom was a pioneer in experimental and numerical studies of the effects of projectiles hitting a target at velocities exceeding the speed of sound (hypervelocity impact), arguably the most important geophysical process in the formation, growth, and, in many cases, surface evolution of planets. As a professor at Caltech, he established the foremost university laboratory for shock wave experiments, where students and research associates from around the world pursued basic research in geophysics, planetary science, and other disciplines. Previously, high-pressure shock experiments were conducted primarily in national laboratories, where they were initially associated with the development of nuclear weapons.

  18. Total integrated energy system (TIES) feasibility analysis for the downtown redevelopment project, Pasadena, California

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-04-01

    The purpose of this study is to determine the most desirable method of serving the energy needs of a commercial development to be constructed in Pasadena, California. The factors that determine maximum desirability consist of the following: (1) maximum economic benefit to the energy user and to the surrounding community; (2) minimum usage of energy by both the energy user and the surrounding community; and (3) minimum introduction of pollutants into the community. The methods studied were the Total Integrated Energy System (TIES) concept in several configurations. The TIES concept differs from the ''total energy concept'' in the respect that the electric power output of the local power generation plant goes into the utility company distribution grid, rather than to the user. The user is served power from the grid, as with a conventional system, but also receives heating and cooling media produced from power generation by-product heat from the TIES plant. The effect of this concept is that a very large source-sink for electric energy is provided by the utility company grid. This, in turn, permits the plant to operate in response to instantaneous thermal demand, rather than instantaneous power demand. No auxiliary firing is ever required. No waste of unneeded by-product energy to atmosphere ever occurs. Balance is achieved by either delivering excess power into the grid or by withdrawing power production deficiency from the grid. Near-optimum efficiency is achieved during all operating conditions. There is no need whatsoever for the power-generating plant to be sized to meet the power demand, since it seldom, if ever, tracks the power demand. Sizing of the electric generation is solely a function of economics and the demand for waste heat.

  19. Solar Panel Buffeted by Wind at Phoenix Site

    Science.gov (United States)

    2008-01-01

    Winds were strong enough to cause about a half a centimeter (.19 inch) of motion of a solar panel on NASA's Phoenix Mars lander when the lander's Surface Stereo Imager took this picture on Aug. 31, 2008, during the 96th Martian day since landing. The lander's telltale wind gauge has been indicating wind speeds of about 4 meters per second (9 miles per hour) during late mornings at the site. These conditions were anticipated and the wind is not expected to do any harm to the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. SRTM Perspective View with Landsat Overlay: Mt. Pinos and San Joaquin Valley, California

    Science.gov (United States)

    2000-01-01

    Ask any astronomer where the best stargazing site in Southern California is, and chances are they'll say Mt. Pinos. In this perspective view generated from SRTM elevation data the snow-capped peak is seen rising to an elevation of 2,692 meters (8,831 feet), in stark contrast to the flat agricultural fields of the San Joaquin valley seen in the foreground. Below the summit, but still well away from city lights, the Mt. Pinos parking lot at 2,468 meters (8,100 feet) is a popular viewing area for both amateur and professional astronomers and astro-photographers. For visualization purposes, topographic heights displayed in this image are exaggerated two times.The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.Distance to Horizon: 176 kilometers (109 miles) Location: 34.83 deg. North lat., 119.25 deg. West lon. View: Toward the Southwest Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat

  1. Frost seen on Snow White Trench

    Science.gov (United States)

    2008-01-01

    The Surface Stereo Imager (SSI) on NASA's Phoenix Mars Lander took this shadow-enhanced false color image of the 'Snow White' trench, on the eastern end of Phoenix's digging area. The image was taken on Sol 144, or the 144th day of the mission, Oct. 20, 2008. Temperatures measured on Sol 151, the last day weather data were received, showed overnight lows of minus128 Fahrenheit (minus 89 Celsius) and day time highs in the minus 50 F (minus 46 C) range. The last communication from the spacecraft came on Nov. 2, 2008. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. 'Dodo' and 'Baby Bear' Trenches

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 11 (June 5, 2008), the eleventh day after landing. It shows the trenches dug by Phoenix's Robotic Arm. The trench on the left is informally called 'Dodo' and was dug as a test. The trench on the right is informally called 'Baby Bear.' The sample dug from Baby Bear will be delivered to the Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA. The Baby Bear trench is 9 centimeters (3.1 inches) wide and 4 centimeters (1.6 inches) deep. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Water Hammer Test

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for the animation This video shows the propulsion system on an engineering model of NASA's Phoenix Mars Lander being successfully tested. Instead of fuel, water is run through the propulsion system to make sure that the spacecraft holds up to vibrations caused by pressure oscillations. The test was performed very early in the development of the mission, in 2005, at Lockheed Martin Space Systems, Denver. Early testing was possible because Phoenix's main structure was already in place from the 2001 Mars Surveyor program. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Von Kármán between Aachen and Pasadena

    Science.gov (United States)

    Krause, Egon; Kalkmann, Ulrich

    2013-05-01

    In the Introduction the reader is referred back to the academic ceremonials held after Theodore von Kármán's death in Aachen in May 1963. His work as the first director of the Aerodynamisches Institut (Institute of Aerodynamics) of the RWTH Aachen University of Technology from 1913 on and his initiative to re-establish international cooperation after World War I, resulting in the International Union of Theoretical and Applied Mechanics (IUTAM), are commented on. The following chapter describes von Kármán's relation to his former teacher Ludwig Prandtl. Some of von Kármán's scientific contributions during his time in Aachen are briefly reviewed. Thereafter, his first contacts to the California Institute of Technology are covered. Finally, the scientific and political circumstances, which led to von Kármán's decision to leave Germany in the early thirties, are elucidated in some detail. The English translation of the titles of the Aachen papers is given in Appendix I.

  5. Animation of Panorama of Phoenix's Solar Panel and Robotic Arm

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation This is an animation of panorama images of NASA's Phoenix Mars Lander's solar panel and the lander's Robotic Arm with a sample in the scoop. The image was taken just before the sample was delivered to the Optical Microscope. The images making up this animation were taken by the lander's Surface Stereo Imager looking west during Phoenix's Sol 16 (June 10, 2008), or the 16th Martian day after landing. This view is a part of the 'mission success' panorama that will show the whole landing site in color. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Curonian Spit, Lithuania and Russia

    Science.gov (United States)

    2007-01-01

    The Curonian Spit in Lithuania and the Russian Federation was inscribed as a UNESCO World Heritage Site in 2000. Human habitation of this elongated sand dune peninsula, 98 km long and 0.4-4 km wide, dates back to prehistoric times. Throughout this period it has been threatened by the natural forces of wind and waves. Its survival to the present day has been made possible only as a result of ceaseless human efforts to combat erosion through stabilization and reforestation projects. The image covers an area of 55.8 x 109.5 km, was acquired on July 25, 2006, and is located near 55.3 degrees north latitude, 20.9 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  7. Polygon on Mars

    Science.gov (United States)

    2008-01-01

    This image shows a small-scale polygonal pattern in the ground near NASA's Phoenix Mars Lander. This pattern is similar in appearance to polygonal structures in icy ground in the arctic regions of Earth. Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis, at 68 degrees north latitude, 234 degrees east longitude. This image was acquired by the Surface Stereo Imager shortly after landing. On the Phoenix mission calendar, landing day is known as Sol 0, the first Martian day of the mission. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Canto livre? : o nativismo gaúcho e os poemas da Califórnia da Canção Nativa do Rio Grande do Sul

    OpenAIRE

    Álvaro Santi

    1999-01-01

    Este estudo aborda o “Nativismo” gaúcho, fenômeno regional originado no Movimento Tradicionalista Gaúcho (MTG), cujas manifestações artísticas mais importantes são os “festivais de música nativista”. O mais antigo desses festivais, a “Califórnia da Canção Nativa do Rio Grande do Sul”, realizado anualmente em Uruguaiana desde 1971, tornou-se modelo para eventos semelhantes, em outras cidades do Estado. O estudo divide-se em duas grandes partes. A primeira reconstitui, em síntese inédita de dep...

  9. Surveys and researches on trends of technologies related to hydrogen; Suiso ni kansuru gijutsu doko chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    This report covers surveys of the latest technological trends in relation to the production, storage, and transportation of hydrogen as energy. Also included in the report are surveys of hydrogen, fuel cells, and wind energy centering about Europe. At the 4th World Hydrogen Energy Conference (Pasadena, U.S., June 1982), a number of essays were presented concerning the utilization of hydrogen, production of hydrogen, thermochemical processes, hybrid processes, photochemical processes, photo/thermochemical processes, other processes, fuel cells, metallic hydrides, etc. This report particularly describes in detail the trends of technologies involving the production of hydrogen by the electrolysis of water and by thermochemical processes. As for the recent trend of the metallic hydride technology, reports are made on the International Symposium on the Properties and Applications of Metal Hydrides (Toba, Japan, June 1982) and on Japan's research on the application of metallic hydrides. Concerning the trends in Europe of technologies relative to hydrogen, fuel cells, and wind energy, the results of the research group's on-site investigations are reported. (NEDO)

  10. Surveys and researches on trends of technologies related to hydrogen; Suiso ni kansuru gijutsu doko chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    This report covers surveys of the latest technological trends in relation to the production, storage, and transportation of hydrogen as energy. Also included in the report are surveys of hydrogen, fuel cells, and wind energy centering about Europe. At the 4th World Hydrogen Energy Conference (Pasadena, U.S., June 1982), a number of essays were presented concerning the utilization of hydrogen, production of hydrogen, thermochemical processes, hybrid processes, photochemical processes, photo/thermochemical processes, other processes, fuel cells, metallic hydrides, etc. This report particularly describes in detail the trends of technologies involving the production of hydrogen by the electrolysis of water and by thermochemical processes. As for the recent trend of the metallic hydride technology, reports are made on the International Symposium on the Properties and Applications of Metal Hydrides (Toba, Japan, June 1982) and on Japan's research on the application of metallic hydrides. Concerning the trends in Europe of technologies relative to hydrogen, fuel cells, and wind energy, the results of the research group's on-site investigations are reported. (NEDO)

  11. Merger of Science Agencies Proposed

    Science.gov (United States)

    1992-07-01

    A bill proposing the establishment of a cabinet-level Department of Science, Space, Energy and Technology was introduced in the House of Representatives on July 1 by Robert Walker (R-Pa.), George Brown (D-Calif.), Ron Packard (R-Calif.), and Joe Kolter (D-Pa.). The department would be a conglomerate of existing civilian science and technology agencies, including NASA, the Environmental Protection Agency, the National Oceanic and Atmospheric Administration, the National Institute of Standards and Technology, the National Telecommunications and Information Administration, the National Technical Information Service, and research functions at the Department of Energy.

  12. Fulltext PDF

    Indian Academy of Sciences (India)

    Barbara, CA, USA. H. David Politzer, California Institute of Technology, Pasadena, CA, USA. Frank Wilczek, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. Chemistry - ''for the discovery of ubiquitin-mediated protein degradation" to. Aaron Ciechanover, Technion - Israel Institute of Technology, Haifa, ...

  13. Seven Possible Cave Skylights on Mars

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 Seven very dark holes on the north slope of a Martian volcano have been proposed as possible cave skylights, based on day-night temperature patterns suggesting they are openings to subsurface spaces. These six excerpts of images taken in visible-wavelength light by the Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter show the seven openings. Solar illumination comes from the left in each frame. The volcano is Arsia Mons, at 9 degrees south latitude, 239 degrees east longitude. The features have been given informal names to aid comparative discussion (see figure 1). They range in diameter from about 100 meters (328 feet) to about 225 meters (738 feet). The candidate cave skylights are (A) 'Dena,' (B) 'Chloe,' (C) 'Wendy,' (D) 'Annie,' (E) 'Abby' (left) and 'Nikki,' and (F) 'Jeanne.' Arrows signify north and the direction of illumination. Mars Odyssey is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The orbiter's Thermal Emission Imaging System was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing, Santa Barbara, Calif., and is operated by Arizona State University.

  14. Jerusalem

    Science.gov (United States)

    2001-01-01

    This ASTER sub-image was acquired on April 3, 2000 and covers an area of 10.5 x 12 km centered on Jerusalem. The data were processed to create a simulated natural color image, with green vegetation and orange tile roofs. The old city is the lighter blue area in the right center of the image, surrounded by a 400-year-old wall built by the Ottoman Turks. Easily visible are the Dome of the Rock and the Al Aksa Mosque on the eastern side of the old city. Jerusalem is the source of three major religions Judaism, Christianity, and Islam and is considered holy by all three. The image is located at 31.7 degrees north latitude and 35.2 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  15. Phoenix Robotic Arm's Workspace After 90 Sols

    Science.gov (United States)

    2008-01-01

    During the first 90 Martian days, or sols, after its May 25, 2008, landing on an arctic plain of Mars, NASA's Phoenix Mars Lander dug several trenches in the workspace reachable with the lander's robotic arm. The lander's Surface Stereo Imager camera recorded this view of the workspace on Sol 90, early afternoon local Mars time (overnight Aug. 25 to Aug. 26, 2008). The shadow of the the camera itself, atop its mast, is just left of the center of the image and roughly a third of a meter (one foot) wide. The workspace is on the north side of the lander. The trench just to the right of center is called 'Neverland.' The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. 'Rosy Red' Soil in Phoenix's Scoop

    Science.gov (United States)

    2008-01-01

    This image shows fine-grained material inside the Robotic Arm scoop as seen by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander on June 25, 2008, the 30th Martian day, or sol, of the mission. The image shows fine, fluffy, red soil particles collected in a sample called 'Rosy Red.' The sample was dug from the trench named 'Snow White' in the area called 'Wonderland.' Some of the Rosy Red sample was delivered to Phoenix's Optical Microscope and Wet Chemistry Laboratory for analysis. The RAC provides its own illumination, so the color seen in RAC images is color as seen on Earth, not color as it would appear on Mars. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Color Views of Soil Scooped on Sol 9

    Science.gov (United States)

    2008-01-01

    These three color views show the Robotic Arm scoop from NASA's Phoenix Mars Lander. The image shows a handful of Martian soil dug from the digging site informally called 'Knave of Hearts,' from the trench informally called 'Dodo,' on the ninth Martian day of the mission, or Sol 9 (June 3, 2008). 'Dodo' is the same site as the earlier test trench dug on the seventh Martian day of the mission, or Sol 7 (June 1, 2008). The Robotic Arm Camera took the three color views at different focus positions. Scientists can better study soil structure and estimate how much soil was collected by taking multiple images at different foci. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Hawaii Lava Flows

    Science.gov (United States)

    2001-01-01

    This sequence of ASTER nighttime thermal images shows the Pu'u O'o lava flows entering the sea at Kamokuna on the southeast side of the Island of Hawaii. Each image covers an area of 9 x 12 km. The acquisition dates are April 4 2000, May 13 2000, May 22 2000 (upper row) and June 30 2000, August 1 2000 and January 1 2001 (lower row). Thermal band 14 has been color coded from black (coldest) through blue, red, yellow and white (hottest). The first 5 images show a time sequence of a single eruptive phase; the last image shows flows from a later eruptive phase. The images are located at 19.3 degrees north latitude, 155 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  19. Steady advance of stem cell therapies: report from the 2011 World Stem Cell Summit, Pasadena, California, October 3-5.

    Science.gov (United States)

    Swan, Melanie

    2011-12-01

    Stem cell research and related therapies (including regenerative medicine and cellular therapies) could have a significant near-term impact on worldwide public health and aging. One reason is the industry's strong linkage between policy, science, industry, and patient advocacy, as was clear in the attendance and programming at the 7(th) annual World Stem Cell Summit held in Pasadena, California, October 3-5, 2011. A special conference session sponsored by the SENS Foundation discussed how stem cell therapies are being used to extend healthy life span. Stem cells are useful not only in cell-replacement therapies, but also in disease modeling, drug discovery, and drug toxicity screening. Stem cell therapies are currently being applied to over 50 diseases, including heart, lung, neurodegenerative, and eye disease, cancer, and human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS). Dozens of companies are developing therapeutic solutions that are in different stages of clinical use and clinical trials. Some high-profile therapies include Dendreon's Provenge for prostate cancer, Geron's first-ever embryonic stem cell trials for spinal cord injury, Fibrocell's laViv cellular therapy for wrinkles, and well-established commercial skin substitutes (Organogenesis' Apligraf and Advanced BioHealing's Dermagraft). Stem cell policy issues under consideration include medical tourism, standards for large-scale stem cell manufacturing, and lingering ethical debates over the use of embryonic stem cells. Contemporary stem cell science advances include a focus on techniques for the direct reprogramming of cells from one lineage to another without returning to pluripotency as an intermediary step, improved means of generating and characterizing induced pluripotent cells, and progress in approaches to neurodegenerative disease.

  20. Uvs Nuur, Mongolia

    Science.gov (United States)

    2007-01-01

    The Uvs Nuur Basin in Mongolia and the Russian Federation is the northernmost of the enclosed basins of Central Asia. It takes its name from Uvs Nuur Lake, a large, shallow and very saline lake, very important for migrating birds. Inscribed as a UNESCO World Heritage Site in 2003, the site is made up of twelve protected areas representing major biomes of eastern Eurasia. The steppe ecosystem supports a rich diversity of birds and the desert is home to a number of rare gerbil, jerboas and the marbled polecat. The mountains are an important refuge for the endangered snow leopard, mountain sheep, and the Asiatic ibex. The image covers an area of 46 x 47.8 km, was acquired on September 4, 2001, and is located near 50.3 degrees north latitude, 90.7 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  1. Improved Coast Guard Communications Using Commercial Satellites and WWW Technology: Slide Presentation

    Science.gov (United States)

    1997-06-18

    The slides in this file amplify a paper that was presented at International Mobile Satellite Conference, (IMSC-97), Pasadena CA on 18 June 1997. The text of that presentation can be found at http://www.bts.gov/NTL/data/imsc.pdf.

  2. Ghost Head Nebula

    Science.gov (United States)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth. The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas. NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000. The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas. In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The

  3. Política missionária e secular em escritos jesuíticos sobre a Baixa Califórnia no século XVIII

    Directory of Open Access Journals (Sweden)

    Beatriz Helena Domingues

    2003-07-01

    Full Text Available O objetivo deste artigo é analisar a conjugação de preocupações espirituais e temporais nos escritos jesuíticos mexicanos referentes às missões da Baixa Califórnia em meados do século XVIII, período em que a Companhia de Jesus vinha se enfrentando com as reformas bourbônicas. Toma como exemplos os escritos de dois jesuítas: um missionário (Miguel Venegas e um educador (F. X. Clavijero. Venegas foi missionário na Baixa Califórnia e autor de Notícia de la California y de su conquista temporal y espiritual hasta el tiempo presente (1739. Clavijero foi principalmente um educador, mas envolvido com o desempenho das missões, conforme pode ser visto na sua Historia de la Antigua o Baja California (1790. Ambos são aqui considerados como representantes da geração de jesuítas mexicanos que, poucas décadas antes da expulsão da Cia de Jesus da Nova Espanha, que combinaram trabalho espiritual com o temporal, dos quais resultou uma bem sucedida experiência missionária e uma rica produção intelectual.The aim of this article is to analyse the coexistence of spiritual and temporal preoccupations in the Mexican Jesuit writings on the Low California missions by the middle of the eighteenth century, when the Society of Jesus were facing the Bourbon Reforms. It takes as examples the writings of two Jesuits: a missionary (Miguel Venegas and an educator (F.X. Clavijero. Venegas was a missionary in Low California and author of Notícia de la California y de su conquista temporal y espiritual hasta el tiempo presente (1739. Clavijero was mainly an educator, but involved with the performance of the missions as can be seen in his Historia de la Antigua or Baja California (1790. Both are here considered as representatives of a generation of Mexican Jesuits who, few decades before the expelling of the Society of Jesus from New Spain, combined their spiritual with their temporal works, whose result was a successful missionary enterprise and a rich

  4. A Fairy-Tale Landscape

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation Fun, fairy-tale nicknames have been assigned to features in this animated view of the workspace reachable by the robotic arm of NASA's Phoenix Mars Lander. For example, 'Sleepy Hollow' denotes a trench and 'Headless' designates a rock. A 'National Park,' marked by purple text and a purple arrow, has been set aside for protection until scientists and engineers have tested the operation of the robotic scoop. First touches with the scoop will be to the left of the 'National Park' line. Scientists use such informal names for easy identification of features of interest during the mission. In this view, rocks are circled in yellow, other areas of interest in green. The images were taken by the lander's 7-foot mast camera, called the Surface Stereo Imager. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Color View 'Dodo' and 'Baby Bear' Trenches

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 14 (June 8, 2008), the 14th Martian day after landing. It shows two trenches dug by Phoenix's Robotic Arm. Soil from the right trench, informally called 'Baby Bear,' was delivered to Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, on Sol 12 (June 6). The following several sols included repeated attempts to shake the screen over TEGA's oven number 4 to get fine soil particles through the screen and into the oven for analysis. The trench on the left is informally called 'Dodo' and was dug as a test. Each of the trenches is about 9 centimeters (3 inches) wide. This view is presented in approximately true color by combining separate exposures taken through different filters of the Surface Stereo Imager. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Color Image of Snow White Trenches and Scraping

    Science.gov (United States)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 31st Martian day of the mission, or Sol 31 (June 26, 2008), after the May 25, 2008 landing. This image shows the trenches informally called 'Snow White 1' (left), 'Snow White 2' (right), and within the Snow White 2 trench, the smaller scraping area called 'Snow White 3.' The Snow White 3 scraped area is about 5 centimeters (2 inches) deep. The dug and scraped areas are within the diggiing site called 'Wonderland.' The Snow White trenches and scraping prove that scientists can take surface soil samples, subsurface soil samples, and icy samples all from one unit. Scientists want to test samples to determine if some ice in the soil may have been liquid in the past during warmer climate cycles. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver

  7. 'Dodo-Goldilocks' Trench Dug by Phoenix

    Science.gov (United States)

    2008-01-01

    This color image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 19th day of the mission, or Sol 19 (June 13, 2008), after the May 25, 2008, landing. This image shows one trench informally called 'Dodo-Goldilocks' after two digs (dug on Sol 18, or June 12, 2008) by Phoenix's Robotic Arm. The trench is 22 centimeters (8.7 inches) wide and 35 centimeters (13.8 inches) long. At its deepest point, the trench is 7 to 8 centimeters (2.7 to 3 inches) deep. White material, possibly ice, is located only at the upper portion of the trench, indicating that it is not continuous throughout the excavated site. According to scientists, the trench might be exposing a ledge, or only a portion of a slab, of the white material. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. First Sample Delivery to Mars Microscope

    Science.gov (United States)

    2008-01-01

    The Robotic Arm on NASA's Phoenix Mars Lander has just delivered the first sample of dug-up soil to the spacecraft's microscope station in this image taken by the Surface Stereo Imager during the mission's Sol 17 (June 12), or 17th Martian day after landing. The scoop is positioned above the box containing key parts of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer, or MECA, instrument suite. It has sprinkled a small amount of soil into a notch in the MECA box where the microscope's sample wheel is exposed. The wheel turns to present sample particles on various substrates to the Optical Microscope for viewing. The scoop is about 8.5 centimeters (3.3 inches) wide. The top of the MECA box is 20 centimeters (7.9 inches) wide. This image has been lightened to make details more visible. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. 'Dodo-Goldilocks' Trench Elevation Map

    Science.gov (United States)

    2008-01-01

    This color-coded elevation map shows the 'Dodo-Goldilocks' trench dug by the Robotic Arm on NASA's Phoenix Mars Lander. The trench, originally two separate trenches nicknamed 'Dodo' (left) and 'Goldilocks' (right), became one after further digging on the 18th Martian day, or Sol 18, of the mission (June 12, 2008). The trench is 7 to 8 centimeters (2.7 to 3 inches) at its deepest (blue). Because the terrain itself is inclined at a 14-degree angle, the highest areas (pink) are about 20 centimeters (7.8 inches) above the lowest areas. The trench is 22 centimeters (8.7 inches) wide and 35 centimeters (13.8 inches) long. Its deepest portion is closest to the lander. This picture was taken by Phoenix's Surface Stereo Imager on Sol 19 (June 13, 2008). The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Madrid

    Science.gov (United States)

    2001-01-01

    This ASTER image was acquired on July 5, 2000 and covers an area of 25 by 24 km over Madrid, Spain. A historic capital city, Madrid is renowned for its unique charm and its exhilarating cultural life. In the 10th century, a Moorish fortress called Magerit was first built on the site, a plateau 656 meters (2,150 feet) above sea level. Spanish Christians seized the city a century later, although Madrid remained relatively unimportant until 1561. It was then that the Spanish king Philip II chose it as the national capital, largely because of its geographic location in the very heart of the country. Some historic structures from this and later periods still grace the narrow streets of the old section of Madrid, although the Spanish Civil War exacted a heavy toll on the city. The image is located at 40.4 degrees north latitude and 3.7 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  11. Advances in laser technology for the atmospheric sciences; Proceedings of the Seminar, San Diego, Calif., August 25, 26, 1977

    Science.gov (United States)

    Trolinger, J. D. (Editor); Moore, W. W.

    1977-01-01

    These papers deal with recent research, developments, and applications in laser and electrooptics technology, particularly with regard to atmospheric effects in imaging and propagation, laser instrumentation and measurements, and particle measurement. Specific topics include advanced imaging techniques, image resolution through atmospheric turbulence over the ocean, an efficient method for calculating transmittance profiles, a comparison of a corner-cube reflector and a plane mirror in folded-path and direct transmission through atmospheric turbulence, line-spread instrumentation for propagation measurements, scaling laws for thermal fluctuations in the layer adjacent to ocean waves, particle sizing by laser photography, and an optical Fourier transform analysis of satellite cloud imagery. Other papers discuss a subnanosecond photomultiplier tube for laser application, holography of solid propellant combustion, diagnostics of turbulence by holography, a camera for in situ photography of cloud particles from a hail research aircraft, and field testing of a long-path laser transmissometer designed for atmospheric visibility measurements.

  12. Global temperature estimates in the troposphere and stratosphere: a validation study of COSMIC/FORMOSAT-3 measurements

    CSIR Research Space (South Africa)

    Kishore, P

    2009-02-04

    Full Text Available and Communications Technology, Tokyo, Japan 3Jet Propulsion Laboratory, Pasadena, CA, USA 4National Laser Centre, CSIR, Pretoria, South Africa 5Department of Geography, Geoinformatics and Meteorology, University of Pretoria, South Africa Received: 13 November... and Communications Technology (NICT), for their financial support. J. H. Jiang thanks the support by Microwave Atmospheric Science Team at Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Edited by: W. Conant References...

  13. Seismic Discrimination of Earthquakes and Explosions, with Application to the Southwestern United States

    Science.gov (United States)

    1979-03-22

    multi-station discriminants than by those based on network averages. In spite of this situ - ation, average a posteriori probabilities were sometimes...Technology, Pasadena, California. Allen, C. R., L. T. Silver, and F. G. Stehi (1960). Agua Blanca fault - a major transverse structure of northern Baja

  14. Gravitational-Wave Astronomy

    Indian Academy of Sciences (India)

    Keywords. General relativity; gravitational waves; astrophysics; interferometry. Author Affiliations. P Ajith1 K G Arun2. LIGO Laboratory and Theoretical Astrophysics California Institute of Technology MS 18-34, Pasadena CA 91125, USA. Chennai Mathematical Institute Plot H1, SIPCOT IT Park Siruseri, Padur Post Chennai ...

  15. The effect of breed on fatty acid composition of subcutaneous ...

    African Journals Online (AJOL)

    User

    2015-02-23

    Agilent Auto Analyzer 7683 B series, Agilent Technologies, Santa Clara, Calif, USA) into ..... laboratory facilities and financial support. ... supplementation on fatty acid composition and gene expression in adipose tissue of growing ...

  16. Preliminary results for a semi-automated quantification of site effects ...

    Indian Academy of Sciences (India)

    Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA. 3. California ... In many regions of the world, local geologic information is either sparse or is ..... We use Definiens Professional 5.0 (eCognition) software to ..... addressing the issues found in traditional mapping.

  17. Glyoxal contribution to aerosols over Los Angeles

    Science.gov (United States)

    Balcerak, Ernie

    2012-01-01

    Laboratory and field studies have indicated that glyoxal (chemical formula OCHCHO), an atmospheric oxidation product of isoprene and aromatic compounds, may contribute to secondary organic aerosols in the atmosphere, which can block sunlight and affect atmospheric chemistry. Some aerosols are primary aerosols, emitted directly into the atmosphere, while others are secondary, formed through chemical reactions in the atmosphere. Washenfelder et al. describe in situ glyoxal measurements from Pasadena, Calif., near Los Angeles, made during summer 2010. They used three different methods to calculate the contribution of glyoxal to secondary atmospheric aerosol and found that it is responsible for 0-0.2 microgram per cubic meter, or 0-4%, of the secondary organic aerosol mass. The researchers also compared their results to those of a previous study that calculated the glyoxal contribution to aerosol for Mexico City. Mexico City had higher levels of organic aerosol mass from glyoxal. They suggest that the lower contribution of glyoxal to aerosol concentrations for Los Angeles may be due to differences in the composition or water content of the aerosols above the two cities. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD016314, 2011)

  18. Nasca Lines, Peru

    Science.gov (United States)

    2001-01-01

    The Nasca Lines are located in the Pampa region of Peru, the desolate plain of the Peruvian coast 400 km south of Lima. The Lines were first spotted when commercial airlines began flying across the Peruvian desert in the 1920's. Passengers reported seeing 'primitive landing strips' on the ground below. The Lines were made by removing the iron-oxide coated pebbles which cover the surface of the desert. When the gravel is removed, they contrast with the light color underneath. In this way the lines were drawn as furrows of a lighter color. On the pampa, south of the Nasca Lines, archaeologists have now uncovered the lost city of the line-builders, Cahuachi. It was built nearly two thousand years ago and was mysteriously abandoned 500 years later. This ASTER sub-image covers an area of 14 x 18 km, was acquired on December 22, 2000, and is located at 14.7 degrees south latitude and 75.1 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  19. COSIMA B2B - sales automation for e-procurement

    OpenAIRE

    Döring, Sven

    2004-01-01

    COSIMA B2B - sales automation for e-procurement / W. Kießling, S. Fischer, S. Döring. - In: International Conference on E-Commerce Technology : Proceedings / IEEE International Conference on E-Commerce Technology, CEC 2004 : 6 - 9 July 2004, San Diego, California / ed. by Martin Bichler ... - Los Alamitos, Calif. [u.a.] : IEEE Computer Society, 2004. - S. 59-68

  20. Cleome gynandra L.

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... INTRODUCTION. Spiderplant is an herbaceous .... 0.5% SDS; 0.1% dithiothreitol (DTT)] and a pinch (about 10 - 20 mg) of polyvinyl ... Operon Technologies, Alameda Calif., USA and ABgene, Epsom,. UK. Based on results of ...

  1. Escala de Aliança Psicoterápica da Califórnia na versão do paciente

    Directory of Open Access Journals (Sweden)

    Marcolino José Alvaro M

    2001-01-01

    Full Text Available OBJETIVO: A aliança terapêutica corresponde a um conceito central do processo psicoterápico. Este estudo produziu a tradução para o português e examinou a confiabilidade da Calpas-P (Escala de Aliança Psicoterápica da Califórnia - versão do paciente. MÉTODOS: Para a tradução, foi adotada a técnica da retrotradução, realizada por indivíduos bilíngües. Para o estudo de confiabilidade, uma amostra de profissionais de saúde mental, atendidos em psicoterapia individual, foi convidada para responder a versão em português da Calpas-P. RESULTADOS: Um total de 83 questionários foi devolvido. As médias das quatro escalas da Calpas-P foram: 5,66 para a PC; 5,20 para a PWC; 6,10 para a TUI; e 5,99 para a WSC. As escalas mostraram uma alta correlação entre si, com valores variando de 0,57 a 0,74. O Alpha de Cronbach para a Calpas-P também foi alto: 0,90 para todos os itens; 0,71 para a PC; 0,56 para a PWC; 0,71 para a TUI; e 0,84 para a WSC. CONCLUSÃO: Esses coeficientes apresentaram índices superiores, quando comparados àqueles do estudo original, na versão em inglês. A presente investigação, que tornou disponível a versão em português da Calpas-P e algumas de suas características psicométricas, pode contribuir para uma mensuração mais cuidadosa da aliança terapêutica por meio de sua inclusão em pesquisas futuras na psicoterapia.

  2. Lawrence Livermore Laboratory energy and technology review

    International Nuclear Information System (INIS)

    Carr, R.B.; Berlo, R.C.; McCaleb, C.S.; Prono, J.K.

    1975-06-01

    Preliminary calculations indicate that the gas-embedded Z-pinch as a fusion reactor may be feasible, and experiments are underway. An in-situ process, RISE (rubble in situ extraction), is being developed for recovering oil from thick deposits of moderately low-grade oil shale. A study was made of the accumulation of radioactive trace metals by oysters following low-level waste releases from the Humboldt Bay (Calif.) nuclear power plant; results indicate that suspended particulates and their resuspension from bottom sediment play an important role. (U.S.)

  3. Conference on Helicopter Structures Technology, Moffett Field, Calif., November 16-18, 1977, Proceedings

    Science.gov (United States)

    1978-01-01

    Work on advanced concepts for helicopter designs is reported. Emphasis is on use of advanced composites, damage-tolerant design, and load calculations. Topics covered include structural design flight maneuver loads using PDP-10 flight dynamics model, use of 3-D finite element analysis in design of helicopter mechanical components, damage-tolerant design of the YUH-61A main rotor system, survivability of helicopters to rotor blade ballistic damage, development of a multitubular spar composite main rotor blade, and a bearingless main rotor structural design approach using advanced composites.

  4. Context Evaluation of Historical Sites in the Prado Basin

    Science.gov (United States)

    1990-01-29

    Mendoza (452) Vega (455) Garcia (458) Morales (459) Padiga (460) Aguilar (461) Montes (461) Morales (462) Aquque [3] (468) Serana (477) Guerrero (479...Maine Lopera, Emilio " Schoolmaster Chile Velardez, Francisco 489 Hatter Mexico Macy, Oben 517 Physician No. Carolina Total number: 13 already well...Jose Innocenta 3 Calif. Rafael 18 -- laborer Calif. Miguel 14 Calif. Pedro 12 Calif. Refugia 9 Calif. Mariano 25 -- laborer Calif. Vittoriano Vega 40

  5. 76 FR 43342 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Science.gov (United States)

    2011-07-20

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NRNHL-0611-7822; 2280-665] National... 19th and Early 20th Century Development and Architecture in Pasadena MPS), 438-516 Cypress Ave... Architecture in Pasadena MPS), 510 Locke Haven St., Pasadena, 11000490. Denham, Mary E., House (Late 19th and...

  6. AIAA/NASA International Symposium on Space Information Systems, 2nd, Pasadena, CA, Sept. 17-19, 1990, Proceedings. Vols. 1 & 2

    Science.gov (United States)

    Tavenner, Leslie A. (Editor)

    1991-01-01

    These proceedings overview major space information system projects and lessons learned from current missions. Other topics include the science information system requirements for the 1990s, an information systems design approach for major programs, the technology needs and projections, the standards for space data information systems, the artificial intelligence technology and applications, international interoperability, and spacecraft data systems and architectures advanced communications. Other topics include the software engineering technology and applications, the multimission multidiscipline information system architectures, the distributed planning and scheduling systems and operations, and the computer and information systems architectures. Paper presented include prospects for scientific data analysis systems for solar-terrestrial physics in the 1990s, the Columbus data management system, data storage technologies for the future, the German aerospace research establishment, and launching artificial intelligence in NASA ground systems.

  7. Diomede Islands, Bering Straight

    Science.gov (United States)

    2008-01-01

    The Diomede Islands consisting of the western island Big Diomede (also known as Imaqliq, Nunarbuk or Ratmanov Island), and the eastern island Little Diomede (also known as Krusenstern Island or Inaliq), are two rocky islands located in the middle of the Bering Strait between Russia and Alaska. The islands are separated by an international border and the International Date Line which is approximately 1.5 km from each island; you can look from Alaska into tomorrow in Russia. At the closest land approach between the United States, which controls Little Diomede, and Russia, which controls Big Diomede, they are 3 km apart. Little Diomede Island constitutes the Alaskan City of Diomede, while Big Diomede Island is Russia's easternmost point. The first European to reach the islands was the Russian explorer Semyon Dezhnev in 1648. The text of the 1867 treaty finalizing the sale of Alaska uses the islands to designate the border between the two nations. The image was acquired July 8, 2000, covers an area of 13.5 x 10.8 km, and is located at 65.8 degrees north latitude, 169 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  8. Morning Frost in Trench Dug by Phoenix, Sol 113 (False Color)

    Science.gov (United States)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench. The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench. This image is presented in false color that enhances the visibility of the frost. The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide. Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  9. Morning Frost in Trench Dug by Phoenix, Sol 113

    Science.gov (United States)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench. The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench. This image is presented in approximately true color. The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide. Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  10. Reference Guide for Building Diagnostics Equipment and Techniques

    Science.gov (United States)

    1989-07-01

    imaging systems, can be cali- 6155 El Camino Real, Carlsbad, Calif. 92008, (619) brated in temperature and radiosity . 931-3617; FUR Systems Inc., 16505...of microproces- or ctigital) in degrees Celsius or Fahrenheit or a sor technology, state-of-the-art optical and sight- radiosity display in Btu/ft2

  11. Fine-Scale Volume Heterogeneity in a Mixed Sand/Mud Sediment Off Fort Walton Beach, FL

    Science.gov (United States)

    2010-07-01

    dark blue regions. The vertical and horizontal blue lines indicate the data points used in analysis, and the green circles show the locations of...strike. There are no data for the highest and lowest dark blue regions. The horizontal blue lines indicate the data points used in analysis, and the...fornia Institute of Technology (Caltech), Pasadena, in 1977. with a dissertation on the extraction of experimental predictions from quark -gluon theory

  12. Final Report: High Power Semiconductor Laser Sources,

    Science.gov (United States)

    1989-01-01

    Mittelstein, Yasuhiko Arakawa, ) Anders Larssonb) and Amnon Yariv California Institute of Technology, Pasadena, California 91 125~412 (Received 7 July...Electronics and Commu- nication Engineers of Japan. He is a member of the Institute of Electronics Yasuhiko Arakawa S󈨑-M󈨔) was born in Ai- and...Gain, Modulation Response, and Spectral Linewidth in AlGaAs Quantum Well Lasers YASUHIKO ARAKAWA. MEMBER, IEEE. AND AMNON YARIV. FELLOW. IEEE Abstract

  13. Women in Astronomy II: Ten Years After

    Science.gov (United States)

    Sargent, Wallace

    2004-01-01

    The meeting "Women in Astronomy II: Ten Years After" took place at the California Institute of Technology in Pasadena, CA June 27-28, 2003. The meeting was sponsored by the Committee on the Status of Women of the American Astronomical Society and was attended by about 155 participants. The purpose of the meeting was: "To review the current status of women in astronomy, understand their work environment, assess development since the 1992 Baltimore conference, and recommend future actions that will improve the environment for all astronomers." A description of the meeting and its background can be found at http://www.aas.org/%7Ecswa/WIA2003.html. The proceedings are being edited by Profs. Meg Urry (Yale University) and Ran Bagenal (University of Colorado). The principal outcome of WIAII was a series of recommendations, "The Pasadena Recommendations", which have been approved by the AAS Council and which can be found at http://www.aas.org/%7Ecswa/.

  14. 76 FR 54250 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Science.gov (United States)

    2011-08-31

    ..., 11000672 PUERTO RICO Orocovis Municipality Cueva La Espiral, (Prehistoric Rock Art of Puerto Rico MPS... Architecture of Pasadena: Influence of the Arts and Crafts Movement MPS) 1330 Hillcrest Ave., Pasadena...

  15. A Damage Mechanics Source Model for Underground Nuclear Explosions.

    Science.gov (United States)

    1991-08-01

    California Institute of Technology Reston, VA 22091 Pasadena, CA 91125 Mr. William J. Best Prof. F. A. Dahlen 907 Westwood Drive Geological and Geophysical...ENSCO, Inc. Department of Geological Sciences 445 Pineda Court . , -7’- 9 Meibcurr..e, F 3940 6 William Kikendall Prof. Amos Nur Teledyne Geotech...Teledyne Geotech Lawrence Livermore National Laboratory 3a¢,l Shiloh Road L-205 Garland, TX 75041 P. 0. Box 808 Livermore, CA 94550 Dr. Matthew Sibol

  16. Electromagnetic Pulse Weapons as an Emergent Technology and Their Place on Battlefields of the Future

    Science.gov (United States)

    2010-04-19

    GPOILPS 10 1707; http://www.empcmmnission.org/docs/ A24 73- EMP Commission-7MB.pdf. Fitts, Richard E., and Robert W. Burton. 1980. The strategy of...London: Commonwealth Secretariat. Iannini, Robert E. 2004. Electronic gadgets for the evil genius. New York: McGraw-Hill, http://www .loc. gov I...Calif. 13000 Raymer St., North Hollywood 91605: Western Periodicals Co. Schilling, William R. 2002. Nontraditional warfare : Twenty-first-century

  17. Collage of Saturn's smaller satellites

    Science.gov (United States)

    1981-01-01

    This family portrait shows the smaller satellites of Saturn as viewed by Voyager 2 during its swing through the Saturnian system. The following chart corresponds to this composite photograph (distance from the planet increases from left to right) and lists names, standard numerical designations and approximate dimensions (radii where indicated) in kilometers: 1980S26Outer F-ringshepherd120 X 100 1980S1Leadingco-orbital220 X 160 1980S25TrailingTethys trojanradii: 25 1980S28Outer Ashepherdradii: 20 1980S27Inner F-ringco-orbital145 X 70 1980S3TrailingTethys trojan140 X 100 1980S13LeadingTethys trojanradii: 30 1980S6LeadingDione trojanradii: 30 These images have been scaled to show the satellites in true relative sizes. This set of small objects ranges in size from small asteroidal scales to nearly the size of Saturn's moon Mimas. They are probably fragments of somewhat larger bodies broken up during the bombardment period that followed accretion of the Saturnian system. Scientists believe they may be mostly icy bodies with a mixture of meteorite rock. They are somewhat less reflective than the larger satellites, suggesting that thermal evolution of the larger moons 'cleaned up' their icy surfaces. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  18. Phoenix Trenches

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version [figure removed for brevity, see original site] Left-eye view of a stereo pair [figure removed for brevity, see original site] Right-eye view of a stereo pair This image is a stereo, panoramic view of various trenches dug by NASA's Phoenix Mars Lander. The images that make up this panorama were taken by Phoenix's Surface Stereo Imager at about 4 p.m., local solar time at the landing site, on the 131st, Martian day, or sol, of the mission (Oct. 7, 2008). In figure 1, the trenches are labeled in orange and other features are labeled in blue. Figures 2 and 3 are the left- and right-eye members of a stereo pair. For scale, the 'Pet Donkey' trench just to the right of center is approximately 38 centimeters (15 inches) long and 31 to 34 centimeters (12 to 13 inches) wide. In addition, the rock in front of it, 'Headless,' is about 11.5 by 8.5 centimeters (4.5 by 3.3 inches), and about 5 centimeters (2 inches) tall. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Digging Movie from Phoenix's Sol 18

    Science.gov (United States)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander recorded the images combined into this movie of the lander's Robotic Arm enlarging and combining the two trenches informally named 'Dodo' (left) and 'Goldilocks.' The 21 images in this sequence were taken over a period of about 2 hours during Phoenix's Sol 18 (June 13, 2008), or the 18th Martian day since landing. The main purpose of the Sol 18 dig was to dig deeper for learning the depth of a hard underlying layer. A bright layer, possibly ice, was increasingly exposed as the digging progressed. Further digging and scraping in the combined Dodo-Goldilocks trench was planned for subsequent sols. The combined trench is about 20 centimeters (about 8 inches) wide. The depth at the end of the Sol 18 digging is 5 to 6 centimeters (about 2 inches). The Goldilocks trench was the source of soil samples 'Baby Bear' and 'Mama Bear,' which were collected on earlier sols and delivered to instruments on the lander deck. The Dodo trench was originally dug for practice in collecting and depositing soil samples. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Digging of 'Snow White' Begins

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander began excavating a new trench, dubbed 'Snow White,' in a patch of Martian soil located near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The trench is about 2 centimeters (.8 inches) deep and 30 centimeters (about 12 inches) long. The 'dump pile' is located at the top of the trench, the side farthest away from the lander, and has been dubbed 'Croquet Ground.' The digging site has been named 'Wonderland.' At this early stage of digging, the Phoenix team did not expect to find any of the white material seen in the first trench, now called 'Dodo-Goldilocks.' That trench showed white material at a depth of about 5 centimeters (2 inches). More digging of Snow White is planned for coming sols, or Martian days. The dark portion of this image is the shadow of the lander's solar panel; the bright areas within this region are not in shadow. Snow White was dug on Sol 22 (June 17, 2008) with Phoenix's Robotic Arm. This picture was acquired on the same day by the lander's Surface Stereo Imager. This image has been enhanced to brighten shaded areas. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Phoenix's Workplace Map

    Science.gov (United States)

    2008-01-01

    This image from NASA's Phoenix Mars Lander shows the spacecraft's recent activity site as of the 23rd Martian day of the mission, or Sol 22 (June 16, 2008), after the spacecraft touched down on the Red Planet's northern polar plains. The mosaic was taken by the lander's Surface Stereo Imager (SSI). Phoenix's solar panels are seen in the foreground. The trench informally called 'Snow White' was dug by Phoenix's Robotic Arm in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The 'dump pile' is located at the top of the trench, and has been dubbed 'Croquet Ground.' The digging site has been nicknamed 'Wonderland.' Snow White, seen here in an SSI image from Sol 22 (June 16, 2008) is about 2 centimeters (.8 inches) deep and 30 centimeters (12 inches) long. As of Sol 24 (June 18, 2008), the trench is 5 centimeters (2 inches deep) and the trench has been renamed 'Snow White 1,' as a second trench has been dug to its right and nicknamed 'Snow White 2.' The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Accuracy, reproducibility, and time efficiency of dental measurements using different technologies.

    Science.gov (United States)

    Grünheid, Thorsten; Patel, Nishant; De Felippe, Nanci L; Wey, Andrew; Gaillard, Philippe R; Larson, Brent E

    2014-02-01

    Historically, orthodontists have taken dental measurements on plaster models. Technological advances now allow orthodontists to take these measurements on digital models. In this study, we aimed to assess the accuracy, reproducibility, and time efficiency of dental measurements taken on 3 types of digital models. emodels (GeoDigm, Falcon Heights, Minn), SureSmile models (OraMetrix, Richardson, Tex), and AnatoModels (Anatomage, San Jose, Calif) were made for 30 patients. Mesiodistal tooth-width measurements taken on these digital models were timed and compared with those on the corresponding plaster models, which were used as the gold standard. Accuracy and reproducibility were assessed using the Bland-Altman method. Differences in time efficiency were tested for statistical significance with 1-way analysis of variance. Measurements on SureSmile models were the most accurate, followed by those on emodels and AnatoModels. Measurements taken on SureSmile models were also the most reproducible. Measurements taken on SureSmile models and emodels were significantly faster than those taken on AnatoModels and plaster models. Tooth-width measurements on digital models can be as accurate as, and might be more reproducible and significantly faster than, those taken on plaster models. Of the models studied, the SureSmile models provided the best combination of accuracy, reproducibility, and time efficiency of measurement. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. White Dwarf Stars

    Science.gov (United States)

    1999-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe. Located in the globular cluster M4, these small, burned-out stars -- called white dwarfs -- are about 12 to 13 billion years old. By adding the one billion years it took the cluster to form after the Big Bang, astronomers found that the age of the white dwarfs agrees with previous estimates that the universe is 13 to 14 billion years old. The images, including some taken by Hubble's Wide Field and Planetary Camera 2, are available online at http://oposite.stsci.edu/pubinfo/pr/2002/10/ or http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's .9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles indicate the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within

  4. San Andreas Fault in the Carrizo Plain

    Science.gov (United States)

    2000-01-01

    meters (about 200 feet) long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif, for NASA's Earth Science Enterprise, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.Distance to Horizon: 73 kilometers (45.3 miles) Location: 35.42 deg. North lat., 119.5 deg. West lon. View: Toward the Southeast Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat Image: NASA/JPL/NIMA

  5. Personal comments on the history of nuclear astrophysics

    International Nuclear Information System (INIS)

    Hoyle, Fred.

    1986-01-01

    The author reviews his personal career in nuclear astrophysics from just before World War II to 1966. It concentrates on the work carried out in conjunction with colleagues, especially those in Cambridge and at the California Institute of Technology in Pasadena, on the development of various models to explain nucleosynthesis and the evaluation of stars. The paper also covers a wide variety of other topics, touching on isotope abundances, the helium abundance in particular, and the relict radiation. (UK)

  6. Adaptive-Wall Wind-Tunnel Investigations

    Science.gov (United States)

    1981-02-01

    December 1976 (University *AEDC-TR-79-55, November 1979 Microfilms No. 77-10777) 19. Sears, W.R. "Adaptive Wind Tunnels with 37. Ilrdelyi, A., Magnus , W...California Institute of Technology General Dynamics-CONVAIR Pasadena, CA 91109 P. O. Box 1128 San Diego, CA 92112 Mr. L. I. Chases , MUG-MD Lib. General...Electric Company Dr. R. Magnus Missile and Space Division General Dynamics-CONVAIR P. 0. Box 8555 Kearny Mesa Plant Philadelphia, PA 19101 P. 0. Box

  7. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    Science.gov (United States)

    Merlin, Peter W.

    2009-01-01

    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  8. Auditorio del Ambassador College - Pasadena – (EE. UU.

    Directory of Open Access Journals (Sweden)

    Daniel, -

    1975-09-01

    Full Text Available The construction is extremely modem both in view of its design as well as of equipment and systems. The shape of the plan form is rectangular and the building is surrounded on all sides by a lake and is accessible by means of bridges across the water. The auditorium consists of four levels. In the lowest are situated: storage and working premises; the mechanical and electrical equipment and the wardrobes. At the main level are located: the stage and the 900 seats for the audience the hall of which is entirely of glass. At a mezzanine floor are the WCs as well as the sound and light installations. Finally the top level comprises: the amphitheatre with 350 seats and the controls of the electronic equipment. Both inside and outside highest quality materials have been used which have been imported from all parts of the world.Se trata de una construcción sumamente moderna, tanto por su diseño como por los equipos y sistemas que en él se utilizan. Es de planta rectangular y se levanta sobre un lago artificial que lo rodea por todos sus lados, efectuándose el acceso mediante pasarelas que cruzan por encima del mismo. El auditorio consta de cuatro niveles. En el más bajo se sitúan: los locales de almacenaje y de trabajo; los equipos mecánicos y eléctricos y los vestuarios. En el nivel principal están el escenario y el patio de butacas, capaz para 900 asientos, al que se llega a través de un amplio vestíbulo totalmente acristalado. En un nivel intermedio se han dispuesto los servicios y aseos para hombres y mujeres, y los equipos de sonido e iluminación. Por último, en el nivel superior, se distribuyen: el anfiteatro, de 350 plazas, y los controles de los equipos electrónicos. En la construcción del edificio, tanto interior como exterior, se han empleado materiales de primera calidad, importados de todas las partes del mundo.

  9. 78 FR 68470 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Science.gov (United States)

    2013-11-14

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NRNHL-14338; PPWOCRADI0, PCU00RP14... County House at 1111 North Los Robles Avenue, (Residential Architecture of Pasadena: Influence of the... Robles Avenue, (Residential Architecture of Pasadena: Influence of the Arts and Crafts Movement MPS) 1121...

  10. Role Perceptions of Hispanic and Mainstream Navy Recruits.

    Science.gov (United States)

    1982-12-01

    is at p.05). There are no differences in behavor %l ’intentions towards LATINO NAVAL OFFICERS, or PROFESSIONAL MEN. To simplify the presentation we will...Quincy St. Arlington, VA 22217 List 2 - ONR Field Psychologist Office of Naval Research Detachment, Pasadena 1030 East Green St. Pasadena, CA 91106 Dr

  11. Distribuição espacial e lixiviação natural de sais em solos do Perímetro Irrigado Califórnia, em Sergipe

    Directory of Open Access Journals (Sweden)

    Ronaldo S. Resende

    Full Text Available RESUMO Em regiões áridas e semiáridas do planeta, a elevada demanda evaporativa e as características pedogenéticas dos solos, associadas a deficiências no sistema de drenagem de alguns perímetros irrigados, contribuem para um elevado potencial de salinização desses solos. Assim, constituíram objetivos deste estudo determinar o grau de salinização na área irrigada e avaliar o processo de acumulação de sais no período seco e o potencial de lixiviação destes pela água das chuvas no Perímetro Irrigado Califórnia, em Sergipe. Medidas da condutividade elétrica do extrato de saturação do solo (CEes, em dS m-1 a 25 ºC, foram efetuadas no início e final do período chuvoso dos anos de 2008 e 2009. A densidade amostral foi igualmente distribuída em toda área do Perímetro. Os dados foram submetidos à análise geoestatística e gerados mapas da distribuição espacial da CEes por meio do programa ArcGis®. Os valores médios da CEes obtidos revelaram que, apesar da prática de agricultura irrigada intensiva por longo período, o processo de acumulação de sais não foi significativo, tanto na camada superficial (0-0,20 m quanto em subsuperfície (0,20-0,40 m. Os valores médios da CEes em superfície variaram de 0,47 a 1,10 dS m-1, ficando abaixo de valores da salinidade limiar para a maioria das culturas anuais e perenes.

  12. L'Anse Aux Meadows, Newfoundland

    Science.gov (United States)

    2008-01-01

    L'Anse aux Meadows is a site on the northernmost tip of the island of Newfoundland, located in the Province of Newfoundland and Labrador, Canada, where the remains of a Viking village were discovered in 1960 by the Norwegians Helge and Anne Ingstad. The only authenticated Viking settlement in North America outside Greenland, it was the site of a multi-year archaeological dig that found dwellings, tools and implements that verified its time frame. The settlement, dating more than five hundred years before Christopher Columbus, contains the earliest European structures in North America. Named a World Heritage site by UNESCO, it is thought by many to be the semi-legendary 'Vinland' settlement of explorer Leif Ericson around AD 1000. The settlement at L'Anse aux Meadows consisted of at least eight buildings, including a forge and smelter, and a lumber yard that supported a shipyard. The largest house measured 28.8 by 15.6 m and consisted of several rooms. Sewing and knitting tools found at the site indicate women were present at L'Anse aux Meadows The image was acquired on September 14, 2007, covers an area of 14.2 x 14.6 km, and is located at 51.5 degrees north latitude, 55.6 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  13. Right there all along. Latest IOM report lays out how to deliver safer, more effective care by using existing strategies, technology.

    Science.gov (United States)

    McKinney, Maureen

    2012-09-10

    Want to make healthcare safer and more cost-effective? You already have the necessary tools, a new IOM report says. "To Err is Human made visible the tremendous problem we had with medical errors, but back then very few systems had this kind of data infrastructure," says Paul Tang, of the Palo Alto (Calif.) Medical Foundation. said. "We're in a much different spot now."

  14. Carter Stresses Importance of Innovation to Warfighters

    Science.gov (United States)

    2016-10-01

    other members at the summit. The board will include Reid Hoffman, the head of LinkedIn ; former U.S. Special Opera- tions Command chief retired Navy...manufacturing and other types of related ad- vanced manufacturing technology,” said Dr . Dennis Butcher, the America Makes program manager. The University of...Calif. DoD photo Defense AT&L: September-October 2016 8 In the News techniques to support sustainment activities,” said Dr . Mary Kinsella, the

  15. Patient safety trilogy: perspectives from clinical engineering.

    Science.gov (United States)

    Gieras, Izabella; Sherman, Paul; Minsent, Dennis

    2013-01-01

    This article examines the role a clinical engineering or healthcare technology management (HTM) department can play in promoting patient safety from three different perspectives: a community hospital, a national government health system, and an academic medical center. After a general overview, Izabella Gieras from Huntington Hospital in Pasadena, CA, leads off by examining the growing role of human factors in healthcare technology, and describing how her facility uses clinical simulations in medical equipment evaluations. A section by Paul Sherman follows, examining patient safety initiatives from the perspective of the Veterans Health Administration with a focus on hazard alerts and recalls. Dennis Minsent from Oregon Health & Science University writes about patient safety from an academic healthcare perspective, and details how clinical engineers can engage in multidisciplinary safety opportunities.

  16. GoPro HERO 4 Black recording of scleral buckle placement during retinal detachment repair.

    Science.gov (United States)

    Ho, Vincent Y; Shah, Vaishali G; Yates, David M; Shah, Gaurav K

    2017-08-01

    GoPro and Google Glass technology have previously been used to record procedures in ophthalmology and other medical fields. In this manuscript, GoPro's latest HERO 4 Black edition camera (GoPro Inc, San Mateo, Calif.) will be used to record the placement of a scleral buckle during retinal detachment surgery. GoPro HERO 4 Black edition camera, which records 4K-quality video with a resolution of 3840 (pixels) x 2160 (lines), was mounted on a head strap to record placement of a scleral buckle for a retinal detachment. Excellent video quality was achieved with the 4K SuperView setting. Bluetooth connection with an Apple iPad (Apple Inc, Cupertino, Calif.) provided live streaming and use of the GoPro App. Zoom, horizontal/vertical alignment, exposure, and contrast adjustments were made with postproduction editing on GoPro Studio software. Video recording with the GoPro HERO 4 Black edition camera is an excellent way to document extraocular procedures to improve medical education, self-training, or medicolegal documentation. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  17. Rock Moved by Mars Lander Arm

    Science.gov (United States)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location. 'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team. The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape. The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been. This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  18. Weighing Evidence: The Design and Comparison of Probability Thought Experiments.

    Science.gov (United States)

    1983-06-01

    ics and Other Logical Essays, R. G. Braithwaite (ed.), Routledge and Kegan Paul. Richardson, H. R., and Stone, L. D.: 1971, ’Operations analysis...Systems Department ONR Detachment Code 35 1030 East Green Street Naval Underwater Systems Center Pasadena, CA 91106 Newport, RI 02840 CDR James Offutt...Officer-in-Charge Human Factors Department ONR Detachment Code N-71 1030 East Green Street Naval Training Equipment Center Pasadena, CA 91106 Orlando

  19. Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Science.gov (United States)

    1994-01-01

    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments.

  20. Positive and Negative Reinforcement Effects on Behavior in a Three-Person Microsociety.

    Science.gov (United States)

    1983-12-01

    extinction following fized-ratio conditioning. Journal of the 1xg 1gMW Analysis of Behavor , 1970, 1, 391-394. lZeler, N.D. Nalnforolng the absence of...Technical Information 1 ONR Western Regional Office Center 1030 E. Green Street ATTN: DTIC: DDA-2 Pasadena, CA 91106 Selection & Preliminary Cataloging...Section 1 Psychologist Cameron Station OUR Western Regional Office Alexandria, VA 22314 1030 E. Green Street Pasadena, CA 91106 1 Library of Congress

  1. SMUD HIBRED Closeout Report

    Energy Technology Data Exchange (ETDEWEB)

    Sison-Lebrilla, Elaine [Sacramento Municipal Utility District, Sacremento, CA (United States); Beebe, Harold [Sacramento Municipal Utility District, Sacremento, CA (United States)

    2015-05-26

    In January 2013 SMUD, the electric utility of Sacramento Calif., began the conceptualization and pre-engineering for a small steam energy augmentation project that would use high temperature (1000 F) Concentrating Solar Power collection technology and thermal storage to increase output of its existing 527 MWe gas fired combined cycle power plant. SMUD generation technology planners worked together with NREL and the DOE SunShot Program to try to complete such a project. Though technical challenges ultimately prevented the project from going forward, several important lessons were learned along the way. This report is a summary of lessons learned and other information which may be of help for others contemplating an Integrated Solar Combined Cycle (ISCC) retrofit.

  2. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    vapor product as a region of depressed water vapor (brown in the images) migrating slowly Westward toward the Caribbean. The SAL phenomenon inhibits the formation of tropical cyclones and thus has given the West Indies and the East Coast of the US a respite from hurricanes. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  3. Galaxy Mission Completes Four Star-Studded Years in Space

    Science.gov (United States)

    2007-01-01

    's launch, the spacecraft is performing magnificently. The mission results have been simply amazing as it helps us to unlock the secrets of galaxies, the building blocks of our universe,' says Kerry Erickson, GALEX project manager. M81 and Holberg IX are located approximately 12 million light-years away in the northern constellation Ursa Major. In addition to leading the GALEX observations of M81, Huchra and his team also took observations of the region with NASA's Spitzer and Hubble space telescopes. By combining all these views of M81, Huchra hopes to gain a better understanding about how M81 has developed into the spiral galaxy we see today. The California Institute of Technology in Pasadena, Calif., leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, also in Pasadena, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. Researchers from South Korea and France collaborated on this mission.

  4. Pebbles, Cobbles, and Sockets

    Science.gov (United States)

    1997-01-01

    This Rover image of 'Shark' (upper left center), 'Half Dome' (upper right), and a small rock (right foreground) reveal textures and structures not visible in lander camera images. These rocks are interpreted as conglomerates because their surfaces have rounded protrusions up to several centimeters in size. It is suggested that the protrusions are pebbles and granules.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  5. Toe of Ganges Chasma Landslide ( 8.0 S, 44.4W)

    Science.gov (United States)

    2001-01-01

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows shear striations, dark dunes banked up against the toe of the slide and over-riding light-toned ripples and boulders on surface of slide. These features can be used to determine quantitative aspects of surface processes.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  6. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  7. Parâmetros genéticos para coelhos da raça Califórnia criados no Brasil Genetic parameters for Californian rabbits raised in Brazil

    Directory of Open Access Journals (Sweden)

    M.G. Paula

    2000-10-01

    Full Text Available Registros de pesos de 3.249 coelhos, nascidos de 1980 a 1996 e, dados de pedigree de 4.857 coelhos da raça Califórnia, criados no Campus da USP de Pirassununga, São Paulo, submetidos à seleção por três gerações, com base em valores genéticos de pesos à desmama (PD e à 10ª semana de idade (P10 e ganho de peso da desmama até 10 semanas de idade (GPD10, foram analisados pelo método de modelos mistos sob modelos animais para obter estimativas de parâmetros genéticos para as características consideradas como parte do critério de seleção. As estimativas do coeficiente de herdabilidade encontradas foram de 0,23 para PD, de 0,44 para P10 e 0,39 para GP10, mostrando ser possível haver ganhos genéticos se aplicados processos seletivos. A correlação genética entre PD e P10 foi de 0,66 e entre PD e GPD10 foi baixa, indicando que as variáveis são praticamente independentes. A proporção da variância fenotípica devida aos efeitos permanentes de ninhada foi importante para todas as características. Os resultados sugerem que a seleção para características ponderais pode ser eficiente.Genetic, phenotypic and environmental parameters of a population of Californian rabbits submitted to selection for three generations were studied. Traits analyzed were individual weaning weight (PD, weight at 10 weeks (P10 and average daily gain from weaning to 10 weeks of age (GPD10 using 3,249 records of weights of rabbits and pedigree information of 4,857 animals, born from 1980 to 1996, and selected based on an index of estimated breeding values for PD, P10 and GPD10. Permanent effects of litters were as important as additive genetic effects. Heritabilities for the three traits were .23 (PD, .44 (P10 and .39 (GPD10. Genetic correlations between PD and P10 and between PD and GPD10 were high (.66 and very low, respectively.

  8. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  9. Rock Moved by Mars Lander Arm, Stereo View

    Science.gov (United States)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location. 'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team. The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape. The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been. This left-eye and right-eye images for this stereo view were taken at about 12:30 p.m., local solar time on Mars. The scene appears three-dimensional when seen through blue-red glasses.The view is to the north northeast of the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  10. Perspective view over the Grand Canyon, Arizona

    Science.gov (United States)

    2001-01-01

    This simulated true color perspective view over the Grand Canyon was created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on May 12, 2000. The Grand Canyon Village is in the lower foreground; the Bright Angel Trail crosses the Tonto Platform, before dropping down to the Colorado Village and then to the Phantom Ranch (green area across the river). Bright Angel Canyon and the North Rim dominate the view. At the top center of the image the dark blue area with light blue haze is an active forest fire. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 5 km in foreground to 40 km Location: 36.3 degrees north latitude, 112 degrees west longitude Orientation: North-northeast at top Original Data Resolution: ASTER 15 meters Dates Acquired: May 12, 2000

  11. Easy Impossibility Proofs for Distributed Concensus Problems.

    Science.gov (United States)

    1985-07-01

    device F such that in any system t which u rums F, dhe behavor of each outedge (4.9) b Er In this case, we write FA(E.Ed for F. This axiom expmees a pom...node ad edO bebaiorn SylLSimilarly. Iflbasysm dien A is dwsystcmobtained byscwafteswaydock In 1y h. Intuitively, a scled dock or behavor is in the...Agency Branch Office, Pasadena ATTN: Program MonagemeIIIIIIntIMIS 1030 gast Green Street 1400 Wilson Boulevard Pasadena, CA 91106 Arlington, VA 22209 (1

  12. Role of Public Outreach in the University Science Mission: Publishing K-12 Curriculum, Organizing Tours, and Other Methods of Engagement

    Science.gov (United States)

    Dittrich, T. M.

    2015-12-01

    Much attention has been devoted in recent years to the importance of Science, Technology, Engineering, and Math (STEM) education in K-12 curriculum for developing a capable workforce. Equally important is the role of the voting public in understanding STEM-related issues that impact public policy debates such as the potential impacts of climate change, hydraulic fracturing in oil and gas exploration, mining impacts on water quality, and science funding. Since voted officials have a major impact on the future of these policies, it is imperative that the general public have an understanding of the basic science behind these issues. By engaging with the public in a more fundamental way, university students can play an important role in educating the public while at the same time enhancing their communication skills and gaining valuable teaching experience. I will talk about my own experiences in (1) evaluating and publishing water chemistry and hazardous waste cleanup curriculum on the K-12 engineering platform TeachEngineering.org, (2) organizing public tours of water and energy sites (e.g., abandoned mine sites, coal power plants, wastewater treatment plants, hazardous waste treatment facilities), and (3) other outreach and communication activities including public education of environmental issues through consultations with customers of a landscaping/lawn mowing company. The main focus of this presentation will be the role that graduate students can play in engaging and educating their local community and lessons learned from community projects (Dittrich, 2014; 2012; 2011). References: Dittrich, T.M. 2014. Adventures in STEM: Lessons in water chemistry from elementary school to graduate school. Abstract ED13E-07 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec. Dittrich, T.M. 2012. Collaboration between environmental water chemistry students and hazardous waste treatment specialists on the University of Colorado-Boulder campus. Abstract ED53C

  13. Chemistry of Volatile Organic Compounds in the Los Angeles basin: Nighttime Removal of Alkenes and Determination of Emission Ratios

    Science.gov (United States)

    de Gouw, J. A.; Gilman, J. B.; Kim, S.-W.; Lerner, B. M.; Isaacman-VanWertz, G.; McDonald, B. C.; Warneke, C.; Kuster, W. C.; Lefer, B. L.; Griffith, S. M.; Dusanter, S.; Stevens, P. S.; Stutz, J.

    2017-11-01

    We reanalyze a data set of hydrocarbons in ambient air obtained by gas chromatography-mass spectrometry at a surface site in Pasadena in the Los Angeles basin during the NOAA California Nexus study in 2010. The number of hydrocarbon compounds quantified from the chromatograms is expanded through the use of new peak-fitting data analysis software. We also reexamine hydrocarbon removal processes. For alkanes, small alkenes, and aromatics, the removal is determined by the reaction with hydroxyl (OH) radicals. For several highly reactive alkenes, the nighttime removal by ozone and nitrate (NO3) radicals is also significant. We discuss how this nighttime removal affects the determination of emission ratios versus carbon monoxide (CO) and show that previous estimates based on nighttime correlations with CO were too low. We analyze model output from the Weather Research and Forecasting-Chemistry model for hydrocarbons and radicals at the Pasadena location to evaluate our methods for determining emission ratios from the measurements. We find that our methods agree with the modeled emission ratios for the domain centered on Pasadena and that the modeled emission ratios vary by 23% across the wider South Coast basin. We compare the alkene emission ratios with published results from ambient measurements and from tunnel and dynamometer studies of motor vehicle emissions. We find that with few exceptions the composition of alkene emissions determined from the measurements in Pasadena closely resembles that of motor vehicle emissions.

  14. Photon technology. Laser process technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing laser process technology by interaction between substance and photon, the present state, system, R and D issues and proposal of such technology were summarized. Development of the photon technology aims at the modification of bonding conditions of substances by quantum energy of photon, and the new process technology for generating ultra- high temperature and pressure fields by concentrating photon on a minute region. Photon technology contributes to not only the conventional mechanical and thermal forming and removal machining but also function added machining (photon machining) in quantum level and new machining technology ranging from macro- to micro-machining, creating a new industrial field. This technology extends various fields from the basis of physics and chemistry to new bonding technology. Development of a compact high-quality high-power high-efficiency photon source, and advanced photon transmission technology are necessary. The basic explication of an unsolved physicochemical phenomenon related to photon and substance, and development of related application technologies are essential. 328 refs., 147 figs., 13 tabs.

  15. The SOFeX Group

    Science.gov (United States)

    Coale, K. H.

    2002-12-01

    The SOFeX Group is comprised of the following institutions and individuals, all of whose participation resulted in a successful experiment. Moss Landing Marine Laboratories: K. Coale, C. Hunter, M. Gordon, S. Tanner, W. Wang, N. Ladizinsky, D. Cooper, G. Smith, J. Brewster; Monterey Bay Aquarium Research Institute: K. Johnson, F. Chavez, S. Fitzwater, P. Strutton, G. Elrod, Z. Chase, E. Drake, J. Plant; Oregon State University: B. Hales, J. Barth, L.Bandstra, P. Covert, D. Hubbard, J. Jennings, S. Pierce, E. Scholz; Lamont Doherty Earth Observatory: T. Takahashi; Duke University: R. Barber, V. Lance, D. Stube, A. Hilting, M. Hiscock, A. Apprill, C. Van Hilst, ; Virginia Institute of Marine Science: W. Smith, H. Ducklow, L. Delizo, J. Oliver, E. Bailey, J. Peloquin, R. Daniels, J. Bauer; University Of Hawaii: M. Landry, R. Bidigare, S. Brown, N. Cassar, B. Twining, K. Selph, C. Sheridan; NOAA Atlantic Oceanographic and Meteorological Laboratory: R. Wanninkhof, K. Sullivan, C. Neill; University of Miami: F. Millero, X. Zhu, W. Hiscock, V. Koehler, A. Cabrera; University of Calif. Lawrence Berkeley National Laboratory: J. Bishop, T. Wood, C. Guay, P. Lam; Rutgers University: P. Falkowski, Z. Kolber, R. Nicolayson, S. Tozzi, M. Gorbunov, M. Koblizek; University of Massachusets: M. Altabet, M. McIlvan, D. Timothy; New Mexico Tech.: Oliver Wingenter; San Francisco State Univ. - Romberg Tiburon Center: W. Cochlan, J. Herndon; University of Calif. Santa Cruz: R. Kudela, A. Roberts; Univ. of Calif. Santa Barbara: M. Brezinski, J. Jones, M. Demarest; Massachusets Inst. of Technology: S. Chisolm, Z. Johnson; Woods Hole Oceanographic Institute: K. Buesseler, J. Andrews, G. Crossin, S. Pike, J. Tegeder, C. Herbold, K. Mahoney, M.Coggeshell ; University of East Anglia: L. Houghton, L. Goldson, A. Watson, J. Ledwell; Institute of Marine Research, Kiel: Peter Croot; University of Otago: R. Frew, E. Abraham, P. Boyd.

  16. Adaptive Fault Tolerance for Many-Core Based Space-Borne Computing

    Science.gov (United States)

    James, Mark; Springer, Paul; Zima, Hans

    2010-01-01

    This paper describes an approach to providing software fault tolerance for future deep-space robotic NASA missions, which will require a high degree of autonomy supported by an enhanced on-board computational capability. Such systems have become possible as a result of the emerging many-core technology, which is expected to offer 1024-core chips by 2015. We discuss the challenges and opportunities of this new technology, focusing on introspection-based adaptive fault tolerance that takes into account the specific requirements of applications, guided by a fault model. Introspection supports runtime monitoring of the program execution with the goal of identifying, locating, and analyzing errors. Fault tolerance assertions for the introspection system can be provided by the user, domain-specific knowledge, or via the results of static or dynamic program analysis. This work is part of an on-going project at the Jet Propulsion Laboratory in Pasadena, California.

  17. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  18. Morgantown Energy Technology Center, technology summary

    International Nuclear Information System (INIS)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. METC's R ampersand D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities

  19. Technology round and management of technology

    International Nuclear Information System (INIS)

    Park, Yong Tae

    1994-04-01

    This book deals with beginning of technology round with background of it, change of scientific technique paradigm with economy, management and policy, change of international political environment globalization of technical and economic environment, formation of strategic alliance, intensifying regionalism, new GATT system, UR and technology round, new international technique regulation and technology round of OECD, feature and meaning of technology round, assignment and scientific technique of Korea, past and present of scientific technology in Korea, correspondence for technology round.

  20. Environmental Projects. Volume 8: Modifications of wastewater evaporation ponds

    Science.gov (United States)

    1989-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 45 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of NASA's Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. The Goldstone Complex is managed, technically directed, and operated for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, California. Activities at the GDSCC are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards: use of hazardous chemicals, asbestos, and underground storage tanks as well as the generation of hazardous wastes and the disposal of wastewater. Federal, state, and local laws governing the management of hazardous substances, asbestos, underground storage tanks and wastewater disposal have become so complex there is a need to devise specific programs to comply with the many regulations that implement these laws. In support of the national goal of the preservation of the environment and the protection of human health and safety, NASA, JPL, and the GDSCC have adopted a position that their operating installations shall maintain a high level of compliance with these laws. One of the environmental problems at the GDSCC involved four active, operational, wastewater evaporation ponds designed to receive and evaporate sewage effluent from upstream septic tank systems. One pair of active wastewater evaporation ponds is located at Echo Site, while another operational pair is at Mars Site.

  1. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    OpenAIRE

    Durán-García Martín Enrique

    2014-01-01

    Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the ...

  2. World Cup Final

    Science.gov (United States)

    2006-01-01

    On July 9, hundreds of millions of fans worldwide will be glued to their television sets watching the final match of the 2006 FIFA World Cup, played in Berlin's Olympic stadium (Olympiastadion). The stadium was originally built for the 1936 Summer Olympics. The Olympic Stadium seats 76,000,; its roof rises 68 meters over the seats and is made up of transparent panels that allow sunlight to stream in during the day. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 12.1 by 15.9 kilometers (7.5 by 9.5 miles) Location: 52.5 degrees North latitude, 13.3 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: October 15, 2005

  3. Internal Ocean Waves

    Science.gov (United States)

    2006-01-01

    Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90

  4. Paris

    Science.gov (United States)

    2001-01-01

    [figure removed for brevity, see original site] Figure 1 This image of Paris was acquired on July 23, 2000 and covers an area of 23 by 20 km. Known as the City of Light, Paris has been extolled for centuries as one of the great cities of the world. Its location on the Seine River, at a strategic crossroads of land and river routes, has been the key to its expansion since the Parisii tribe first settled here in the 3rd century BC. Paris is an alluring city boasting many monumental landmarks, such as the Cathedral of Notre Dame, the Louvre, and the Eiffel Tower. Its beautiful gardens, world-class cuisine, high fashion, sidewalk cafes, and intellectual endeavors are well known. The city's cultural life is centered on the Left Bank of the Seine, while business and commerce dominate the Right Bank. The image is located at 48.8 degrees north latitude and 2.3 degrees east longitude. In figure 1, the 4 enlarged areas zoom in to some of the major buildings. In the UPPER LEFT, the Eiffel Tower and its shadow are seen. Based on the length of the shadow and the solar elevation angle of 59 degrees, we can calculate its height as 324 m (1054 ft), compared to its actual height of 303 m (985 ft). In the UPPER RIGHT, the Arc de Triomphe is at the center of the Place de L'etoile, from which radiate 12 major boulevards. In the LOWER LEFT is the Tuileries Garden and the Louvre Museum art its eastern end. In the LOWER RIGHT is the Invalides, the burial place and monument of Napoleon Bonaparte. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  5. How Technology Teachers Understand Technological Knowledge

    Science.gov (United States)

    Norström, Per

    2014-01-01

    Swedish technology teachers' views of technological knowledge are examined through a written survey and a series of interviews. The study indicates that technology teachers' understandings of what constitutes technological knowledge and how it is justified vary considerably. The philosophical discussions on the topic are unknown to them. This lack…

  6. CMHC's district heating work may lead to solar power-towers

    Energy Technology Data Exchange (ETDEWEB)

    Peters, W

    1979-11-01

    A four-year study of district heating systems by the Canada Mortgage and Housing Corporation (CMHC) may combine with leadership recognition by the International Energy Agency to allow Canada to join the U.S. as the center for power-tower technology. The application of central receivers to district heating evolved from the district heating study as heliostat technology developed and the economics improved with scale. Based on the Barstow, Calif. prototype, a commercial version is envisioned for the mid-1980s to generate steam for power generation, heating, and cooling. A proponent suggests applying it to a multi-fuel system as a retrofit after the technology is perfected. Land availability and the need for direct sunlight present problems for this type of application in Canada, where much of the light is diffuse. A cautious view is taken by those who feel that cost will be prohibitive and who point out that the U.S. tests have yet to prove viability. (DCK)

  7. Ground-water resources of the Houston district, Texas

    Science.gov (United States)

    White, Walter N.; Rose, N.A.; Guyton, William F.

    1944-01-01

    This report covers the current phase of an investigation of the supply of ground water available for the Houston district and adjacent region, Texas,- that has been in progress during the past 10 years. The field operations included routine inventories of pumpage, measurements of water levels in observation wells and collection of other hydrologic data, pumping tests on 21 city-owned wells to determine coefficients of permeability and storage, and the drilling of 13 deep test wells in unexplored parts of the district. Considerable attention has been given to studies of the location of areas or beds of sand that contain salt water. The ground water occurs in beds of sand, sandstone, and gravel of Miocene, Pliocene, and Pleistocene age. These formations crop out in belts that dip southeastward from their outcrop areas and are encountered by wells at progressively greater depths toward the southeast. The beds throughout the section are lithologically similar, and there is little agreement among geologists as to their correlation. -In this investigation, however, the sediments, penetrated by the wells are separated into six zones, chiefly on the basis of electrical logs. Most of the water occurs in zone 3, which ranges in thickness from 800 to 1,200 feet. Large quantities of ground water are pumped in three areas in the Houston district, as follows: The Houston tromping area, which includes Houston and the areas immediately adjacent; the Pasadena pumping area, which includes the industrial section extending along the ship channel from the Houston city limits eastward to Deer Park; and the Katy pumping area, an irregular-shaped area of several hundred square miles, which is roughly centered around the town of Katy, 30 miles west of Houston. In 1930 the total combined withdrawal of ground water in the Houston and Pasadena pumping areas averaged about 50 million gallons a day. It declined somewhat during 1932 and 1933 and then gradually increased, until in 1935 the total

  8. Bigger eyes in a wider universe: The American understanding of Earth in outer space, 1893--1941

    Science.gov (United States)

    Prosser, Jodicus Wayne

    Between 1893 and 1941, the understanding of the Milky Way galaxy within the American culture changed from a sphere to a spiral and Earth's location within it changed from the center to the periphery. These changes were based primarily upon scientific theories developed at Mount Wilson Observatory near Pasadena, California. This dissertation is an "astrosophy" that traces the history of changing depictions of the Milky Way in selected published sources and identifies key individuals, theories and technologies involved. It also demonstrates why the accepted depictions of the universe envisioned at Mount Wilson were cultural-scientific products created, in part, as the result of place. Southern California became the hearth of a culture that justified its superiority based upon its unique climate. Clear skies, remarkable visibility, and a perceived existence of intense natural light became the basis for the promotion of Mount Wilson as the premier location for astronomical observations. Conservation, en plein air paintings, and the concept of pays age moralisé are Southern Californian cultural products of the early 1900s that promoted an idealized society capable of exceptional intellectual endeavors and scientific accomplishments. The efforts of astronomers Hale, Shapley, Adams, Hubble and Ritchey resulted in the changing American understanding of the universe. This dissertation reveals how the diverse social interactions of these astronomers intersected Arroyo Seco meetings, women's organizations, the Valley Hunt Club elites, and philanthropic groups that comprised the schizophrenic culture of Pasadena. Their astronomical theories are compared to other aspects of the Southern Californian culture revealed in the writings of Raymond Chandler, Nathanael West and John Fante. The desire of astronomers to gain prestige from their discoveries is compared to competition in the creative processes of Hollywood. The theories created by astronomers and the films of the motion

  9. Appropriate Technology as Indian Technology.

    Science.gov (United States)

    Barry, Tom

    1979-01-01

    Describes the mounting enthusiasm of Indian communities for appropriate technology as an inexpensive means of providing much needed energy and job opportunities. Describes the development of several appropriate technology projects, and the goals and activities of groups involved in utilizing low scale solar technology for economic development on…

  10. Sockets and Pebbles

    Science.gov (United States)

    1997-01-01

    This close-up Sojourner rover image of a small rock shows that weathering has etched-out pebbles to produce sockets. In the image, sunlight is coming from the upper left. Sockets (with shadows on top) are visible at the lower left and pebbles (with bright tops and shadowed bases) are seen at the lower center and lower right. Two pebbles (about 0.5 cm across) are visible at the lower center.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  11. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer and user. This

  12. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer

  13. ODEX I - A new class of mobile robotics

    International Nuclear Information System (INIS)

    Bartholet, T.G.

    1984-01-01

    The world's first functionoid is a multifunctional, six-legged walking machine designed to demonstrate a variety of attributes unique to mobile, non-factory robotics, including unprecedented strength-to-weight ratios and agility. Dubbed ODEX I by its developers, Odetics, Inc., of Anaheim, Calif., it serves as the base technology for future generations of functionoids built for specific applications, particularly in environments dangerous or inaccessible to humans. The first commercial application for functionoids appears to be in the nuclear power industry, where it can reduce human exposure to radiation, increase plant availability and increase ability to deal with emergency and post-emergency situations as well as provide other benefits

  14. Living technology: exploiting life's principles in technology.

    Science.gov (United States)

    Bedau, Mark A; McCaskill, John S; Packard, Norman H; Rasmussen, Steen

    2010-01-01

    The concept of living technology-that is, technology that is based on the powerful core features of life-is explained and illustrated with examples from artificial life software, reconfigurable and evolvable hardware, autonomously self-reproducing robots, chemical protocells, and hybrid electronic-chemical systems. We define primary (secondary) living technology according as key material components and core systems are not (are) derived from living organisms. Primary living technology is currently emerging, distinctive, and potentially powerful, motivating this review. We trace living technology's connections with artificial life (soft, hard, and wet), synthetic biology (top-down and bottom-up), and the convergence of nano-, bio-, information, and cognitive (NBIC) technologies. We end with a brief look at the social and ethical questions generated by the prospect of living technology.

  15. Technology Transfer: Marketing Tomorrow's Technology

    Science.gov (United States)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers

  16. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  17. Thermally activated technologies: Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  18. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  19. Space Transportation Technology Workshop: Propulsion Research and Technology

    Science.gov (United States)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  20. 33 CFR 110.95 - Newport Bay Harbor, Calif.

    Science.gov (United States)

    2010-07-01

    ... 268° from Lido Isle East Light 2, this line being the northwest line of the main fairway; west of the... of a line bearing 268° from Newport Bay Channel Light 11, this line being the south line of the main... Channel Light 11, this line being the southerly line of the main fairway. Note: This area is reserved for...

  1. 33 CFR 110.212 - Newport Bay Harbor, Calif.

    Science.gov (United States)

    2010-07-01

    ... Anchorage C-2. A parallelogram-shaped area, 100 feet wide and 400 feet long, lying 100 feet bayward from and... parallelogram-shaped area, 100 feet wide and 500 feet long, lying 100 feet bayward from and parallel to the... grounds—(1) Temporary Anchorage C-1. Southeast of a line parallel to and 170 feet from the pierhead line...

  2. Emerging environmental technologies and environmental technology policy

    Science.gov (United States)

    Clarke, Leon Edward

    This dissertation explores the role and design of environmental technology policy when environmental innovation is embodied in emerging environmental technologies such as photovoltaic cells or fuel cells. The dissertation consists of three individual studies, all of which use a simplified, general model industry between an emerging environmental technology and an entrenched, more-polluting technology. It clarifies the situations in which environmental technology policy can achieve high welfare and those in which it cannot; and it separates the possible situations an emerging environmental technology might face into four scenarios, each with its own technology policy recommendations. The second study attempts to clarify which of two factors is having a larger limiting effect on private investment in photovoltaics: the failure to internalize the environmental costs of fossil fuel electricity generation or a broad set of innovation market failures that apply to innovation irrespective of environmental concerns. The study indicates that innovation market failures are probably having a significantly larger impact than incomplete internalization. The third study explores the effectiveness of adoption subsidies at encouraging private-sector innovation. The conclusion is that adoption subsidies probably have only a limited effect on long-term, private-sector research. Two important general conclusions of the dissertation are (1) that optimal technology policy should begin with technology-push measures and end with demand-pull measures; and (2) that the technological response to internalization instruments, such as emissions taxes, may be highly nonlinear.

  3. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  4. Mediated Effects of Technology Competencies and Experiences on Relations among Attitudes Towards Technology Use, Technology Ownership, and Self Efficacy about Technological Pedagogical Content Knowledge

    Science.gov (United States)

    Yerdelen-Damar, Sevda; Boz, Yezdan; Aydın-Günbatar, Sevgi

    2017-08-01

    This study examined the relations of preservice science teachers' attitudes towards technology use, technology ownership, technology competencies, and experiences to their self-efficacy beliefs about technological pedagogical content knowledge (TPACK). The present study also investigated interrelations among preservice teachers' attitudes towards technology use, technology ownership, technology competencies, and experiences. The participants of study were 665 elementary preservice science teachers (467 females, 198 males) from 7 colleges in Turkey. The proposed model based on educational technology literature was tested using structural equation modeling. The model testing results revealed that preservice teachers' technology competencies and experiences mediated the relation of technology ownership to their TPACK self efficacy beliefs. The direct relation of their possession of technology to their TPACK self efficacy beliefs was insignificant while the indirect relation through their technology competencies and experiences was significant. The results also indicated there were significant direct effects of preservice teachers' attitudes towards technology use, technology competencies, and experiences on their TPACK self efficacy beliefs.

  5. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  6. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  7. Environmental technology foresight : New horizons for technology management

    NARCIS (Netherlands)

    Den Hond, Frank; Groenewegen, Peter

    1996-01-01

    Decision-making in corporate technology management and government technology policy is increasingly influenced by the environmental impact of technologies. Technology foresight (TF) and environmental impact assessment (EIA) are analyzed with regard to the roles they can play in developing long-term

  8. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    International Nuclear Information System (INIS)

    Brockbank, B.R.

    1995-03-01

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges

  9. Technology and ecological economics. Promethean technology, Pandorian potential

    Energy Technology Data Exchange (ETDEWEB)

    Small, Bruce [AgResearch Ltd., Private Bag 3123, Hamilton (New Zealand); Jollands, Nigel [New Zealand Centre for Ecological Economics, Massey University and Landcare Research Ltd, Private Bag 11052, Palmerston North (New Zealand)

    2006-03-15

    In considering social, economic and ecological impacts of new technologies it is essential to start from an understanding of human nature. This paper explores this issue drawing out some implications for ecological and neoclassical economics. The paper presents two key arguments. First, we argue that there is a growing tension between our evolved human nature and social structures and our emerging technological prowess. Modern technologies give us increasing power to manipulate the very axes of nature: space, time, energy, matter, and life. Technologies are now so powerful they give us abilities our ancestors would consider godlike. The question is posed: Are humans ready to wield the power of the gods? We have the knowledge, but do we have the wisdom? The myth of Prometheus and Pandora is considered as a metaphor for the interaction between technology, nature and universal aspects of human nature developed over eons of evolution. Second, we argue that even a 'technologically optimistic' scenario (employed by some economists) may not actually deliver Utopian outcomes. With technological advancement and diffusion there is a 'technological trickle down effect' whereby potent technologies, once available only to governments and powerful elites, become available to greater numbers of groups and individuals. The more accessible a technology, the more likely its social and ecological impacts will be shaped by the full range and extremes of human nature. These issues have implications for the development and regulation of Promethean technologies such as nuclear energy, genetic engineering and nanotechnology; technologies with unprecedented power and reach through nature. Development and diffusion of such technologies may also have implications for the ethics of the social structure of society. (author)

  10. Science-Technology-Society or Technology-Society-Science? Insights from an Ancient Technology

    Science.gov (United States)

    Lee, Yeung Chung

    2010-01-01

    Current approaches to science-technology-society (STS) education focus primarily on the controversial socio-scientific issues that arise from the application of science in modern technology. This paper argues for an interdisciplinary approach to STS education that embraces science, technology, history, and social and cultural studies. By employing…

  11. Experiencias de mujeres mexicanas migrantes indocumentadas en California, Estados Unidos, en su acceso a los servicios de salud sexual y reproductiva: estudio de caso Experiências de mulheres mexicanas migrantes sem documentação na Califórnia, Estados Unidos, no acesso aos serviços de saúde sexual e reprodutiva: estudo de caso Experiences of undocumented Mexican migrant women when accessing sexual and reproductive health services in California, USA: a case study

    Directory of Open Access Journals (Sweden)

    Sandra G. García

    2013-05-01

    Full Text Available El objetivo de este estudio fue conocer la experiencia de mujeres mexicanas migrantes en California, Estados Unidos, en torno a la utilización de los servicios formales de salud para resolver problemas relacionados con su salud sexual y reproductiva. El diseño fue cualitativo, con enfoque teórico metodológico de antropología interpretativa. Las técnicas utilizadas fueron historias de vida con mujeres usuarias de los servicios de salud en California y entrevistas breves con informantes clave. Se encontraron tres tipos de barreras principales para el acceso al sistema de salud: condición migratoria, idioma y género. Los tiempos de espera, actitudes discriminatorias y costo del servicio se expresaron como características que más incomodaron a las migrantes. La percepción de calidad de atención estuvo relacionada con la condición de ilegalidad migratoria. La red de apoyo tanto en México, como en California, colabora en la resolución de enfermedades. Se debe incorporar la perspectiva intercultural en los servicios.O objetivo deste estudo foi conhecer a experiência de mulheres imigrantes mexicanas na Califórnia, Estados Unidos, sobre a utilização de serviços formais de saúde para resolver problemas relacionados com a saúde sexual e reprodutiva. O desenho foi qualitativo, com enfoque teórico-metodológico da Antropologia Interpretativa. As técnicas utilizadas foram relatos de histórias de vida de mulheres usuárias dos serviços de saúde na Califórnia e entrevistas breves com informantes-chave. Encontraram-se três tipos de barreiras principais para o acesso ao serviço de saúde: condições de imigração, idioma e gênero. Tempo de espera, atitudes discriminatórias e custo do serviço foram as características que mais incomodaram as imigrantes. A percepção de qualidade da atenção esteve relacionada com a condição de ilegalidade migratória. A rede de apoio, tanto no México quanto na Califórnia, colabora na resolu

  12. 78 FR 32245 - Notice of Receipt of Pesticide Products; Registration Applications To Register New Uses

    Science.gov (United States)

    2013-05-29

    ... Road, Pasadena, TX 77507-1041. Active ingredient: Novaluron. Product Type: Insecticide; Insect Growth... furniture, animal quarters, carpets, kennels, and poultry houses. Contact: Jennifer Gaines, (703) 305-5967...

  13. Technological economics: innovation, project management, and technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, F R

    1981-06-01

    The relationship between economics and technology, as well as their interaction in production, productivity, project management, and in technology transfer processes are reviewed. Over the last two decades there has been an increasing interest by economists in the technologist's view of technical change and its mechanisms. The author looks at the zone between technology and economics, the technological economics, and discusses the theory of innovation recently sketched out by Nelson and Winter. The relevance to project management and technology transfer of contemporary writing by economists leads to the view that there are welcome signs of a convergence of the conceptual models now emerging and the practical problems of technology management and movement. Economists now seem more willing to come to terms with technology than technologists with economics. The economic significance of the multitudes of technically unglamorous activities in development work is seriously neglected as a result of over-emphasis on the spectacular technological break. If economic elegance were to be admitted to the criteria of success, one might get a significant improvement in the engineering of technological change. 29 references, 4 figure.

  14. Spatial Dynamics of Technological Evolution: Technological Relatedness as Driver for Radical Emerging Technologies

    DEFF Research Database (Denmark)

    Tanner, Anne Nygaard

    and applied knowledge in firms, universities, research institutes etc., and 2) the existence of risk-taking actors who are willing and capable of implementing and exploiting radical technologies. This paper focuses on the former. Where evolutionary economics have been occupied by accumulation of knowledge......Despite the consent of the fundamental role technological change plays for economic growth, it seems that little attention has been paid to how new technologies come into being. In particular, an understanding of the spatial and dynamic processes driving the emergence of radical technology...... is lacking. This paper seeks to fill out this research gap by bridging the school of evolutionary economics and the school of economic geography. Following Dosi (1988) two factors are in particular important for technological change in emerging technological paradigms: 1) accumulation of scientific...

  15. Focus on Technologies: Worry or Technology?

    Directory of Open Access Journals (Sweden)

    Saulius Kanišauskas

    2015-10-01

    Full Text Available The paper analyses different attitudes towards technologies in contemporary philosophical discourses. It points out that classical notion of technology formulated by Martin Heidegger seems to be more and more often questioned and even forgotten. As a result, it is being replaced by the theory of determinism, according to which the change of technologies determines the changes in social systems, the human being including. This happens this way and not vice versa. Nowadays technē, or “technika” (in English: technology is mostly understood in the instrumental meaning or in the meaning of power. It is considered to be a powerful means, tool or mechanism to influence, change, control and manipulate human consciousness and human feelings. Despite the fact that technologies have already been tamed, the problem of huge responsibility for using and developing them arises. It is questioned whether the increasing society’s attention to modern technologies is not a particular “technology” of the postmodern capitalism to manipulate social consciousness. In parallel with “yes” answer to this question, Albert Borgmann’s idea that the causes of technological development have an ontological dimension, i.e. the causes are rooted in the nature of human beings themselves and their desire to adore own creativity, is discussed. Thus, it becomes necessary to probe deeper into the nature of creativity.

  16. Star Formation in Galaxies: Proceedings of a Conference Held in Pasadena, California

    Science.gov (United States)

    1987-05-01

    Spirals of the Virgo Cluster B. Guiderdoni 283 - 286 Molecular Gas and Star Formation in HI-Deficient Virgo Cluster Galaxies J.D. Kenney and J.S. Young...in developing the image processing tasks. The research described in this paper was carried out in part at the Jet Propul- sion Laboratory, California...of 34 SO galaxies in the Virgo cluster were detected by IRAS. The 60Pin/lOOPm color temperatures of these galaxies are similar to those of normal

  17. The technology vicinity: a location based view on technology

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Kocaoglu, D.F.; Anderson, T.R.

    2001-01-01

    The issue of technology transfer has been viewed from many different perspectives. In this case the focus is on the process of (production) technology transfer. One of the difficulties in studying international technology transfer is the definition of technology. The many technology definitions that

  18. Art technologies as possible propulsars in technological innovation

    DEFF Research Database (Denmark)

    Jørgensen, Lars Botin

    2003-01-01

    kind. This discussion, of general character, constitutes the initial part of this paper. Then it briefly looks into the final terms of the papertitle and try to relate to the diffuse and discussed technological innovation. Both aspects – art and technology and technological innovation – will be dealt...... with from a historical/hermeneutic and social constructivist point of view, as the paper moves from a general principal level to a more specific, exemplary level, where three different art technologies are presented as possible propulsars in technological innovation.......Art and technology has, as the German philosopher Martin Heidegger points out, the same etymological root. A thorough investigation of the relationship between art and technology will show how this same root has manifested itself in different times and spaces bringing results of the most variegated...

  19. Philosophy of Technology Assumptions in Educational Technology Leadership

    Science.gov (United States)

    Webster, Mark David

    2017-01-01

    A qualitative study using grounded theory methods was conducted to (a) examine what philosophy of technology assumptions are present in the thinking of K-12 technology leaders, (b) investigate how the assumptions may influence technology decision making, and (c) explore whether technological determinist assumptions are present. Subjects involved…

  20. Relations between the technological standards and technological appropriation

    Directory of Open Access Journals (Sweden)

    Carlos Alberto PRADO GUERRERO

    2010-06-01

    Full Text Available The objective of this study is to analyze the educational practices of using Blackboard in blended learning environments with students of higher education to understand the relationship between technological appropriation and standards of educational technology. To achieve that goal, the following research question was raised: ¿To what extent are the standards of education technology with the appropriation of technology in blended learning environments in higher educa­tion related? The contextual framework of this work includes the following topics: the institution, teaching, teachers and students. The design methodology that was used is of a correlation type. Correlations were carried out to determine the frequency and level in the technological standards as well as the appropriation of technology. In the comparison of the results obtained by the students, the teachers and the platform; we found that students in the school study showed a high degree of technology ownership and this was the same for the performance shown on the technological standards. It was established that teachers play a key role in developing the techno­logical appropriation of students and performance in technology standards.

  1. Emerging Technological Risk Underpinning the Risk of Technology Innovation

    CERN Document Server

    Anderson, Stuart

    2012-01-01

    Classes of socio-technical hazards allow a characterization of the risk in technology innovation and clarify the mechanisms underpinning emergent technological risk. Emerging Technological Risk provides an interdisciplinary account of risk in socio-technical systems including hazards which highlight: ·         How technological risk crosses organizational boundaries, ·         How technological trajectories and evolution develop from resolving tensions emerging between social aspects of organisations and technologies and ·         How social behaviour shapes, and is shaped by, technology. Addressing an audience from a range of academic and professional backgrounds, Emerging Technological Risk is a key source for those who wish to benefit from a detail and methodical exposure to multiple perspectives on technological risk. By providing a synthesis of recent work on risk that captures the complex mechanisms that characterize the emergence of risk in technology innovation, Emerging Tec...

  2. Hydrogen technologies and the technology learning curve

    International Nuclear Information System (INIS)

    Rogner, H.-H.

    1998-01-01

    On their bumpy road to commercialization, hydrogen production, delivery and conversion technologies not only require dedicated research, development and demonstration efforts, but also protected niche markets and early adopters. While niche markets utilize the unique technological properties of hydrogen, adopters exhibit a willingness to pay a premium for hydrogen fueled energy services. The concept of the technology learning curve is applied to estimate the capital requirements associated with the commercialization process of several hydrogen technologies. (author)

  3. The technology vicinity: a location based view on technology

    OpenAIRE

    Steenhuis, H.J.; de Bruijn, E.J.; Kocaoglu, D.F.; Anderson, T.R.

    2001-01-01

    The issue of technology transfer has been viewed from many different perspectives. In this case the focus is on the process of (production) technology transfer. One of the difficulties in studying international technology transfer is the definition of technology. The many technology definitions that exist are either too ‘loosely’ formulated or they require thorough expert knowledge. This results in difficulties with measuring technology and comparing different studies meaningfully. This study...

  4. Constructive Technology Assessmentand Technology Dynamics. The Case of Clean Technologies

    NARCIS (Netherlands)

    Schot, Johan

    1992-01-01

    A synthesis of neo-Schumpeterian evolutionary, sociological, and historical coevolution ary models could be used for constructive technology assessment, aimed at the active management of the process of technological change. This article proposes a synthetic quasi-evolutionary model, in which

  5. Technology assessment of thermal treatment technologies using ORWARE

    International Nuclear Information System (INIS)

    Assefa, G.; Eriksson, O.; Frostell, B.

    2005-01-01

    A technology assessment of thermal treatment technologies for wastes was performed in the form of scenarios of chains of technologies. The Swedish assessment tool, ORWARE, was used for the assessment. The scenarios of chains of thermal technologies assessed were gasification with catalytic combustion, gasification with flame combustion, incineration and landfilling. The landfilling scenario was used as a reference for comparison. The technologies were assessed from ecological and economic points of view. The results are presented in terms of global warming potential, acidification potential, eutrophication potential, consumption of primary energy carriers and welfare costs. From the simulations, gasification followed by catalytic combustion with energy recovery in a combined cycle appeared to be the most competitive technology from an ecological point of view. On the other hand, this alternative was more expensive than incineration. A sensitivity analysis was done regarding electricity prices to show which technology wins at what value of the unit price of electricity (SEK/kW h). Within this study, it was possible to make a comparison both between a combined cycle and a Rankine cycle (a system pair) and at the same time between flame combustion and catalytic combustion (a technology pair). To use gasification just as a treatment technology is not more appealing than incineration, but the possibility of combining gasification with a combined cycle is attractive in terms of electricity production. This research was done in connection with an empirical R and D work on both gasification of waste and catalytic combustion of the gasified waste at the Division of Chemical Technology, Royal Institute of Technology (KTH), Sweden

  6. Technology Games: Using Wittgenstein for Understanding and Evaluating Technology.

    Science.gov (United States)

    Coeckelbergh, Mark

    2017-08-15

    In the philosophy of technology after the empirical turn, little attention has been paid to language and its relation to technology. In this programmatic and explorative paper, it is proposed to use the later Wittgenstein, not only to pay more attention to language use in philosophy of technology, but also to rethink technology itself-at least technology in its aspect of tool, technology-in-use. This is done by outlining a working account of Wittgenstein's view of language (as articulated mainly in the Investigations) and by then applying that account to technology-turning around Wittgenstein's metaphor of the toolbox. Using Wittgenstein's concepts of language games and form of life and coining the term 'technology games', the paper proposes and argues for a use-oriented, holistic, transcendental, social, and historical approach to technology which is empirically but also normatively sensitive, and which takes into account implicit knowledge and know-how. It gives examples of interaction with social robots to support the relevance of this project for understanding and evaluating today's technologies, makes comparisons with authors in philosophy of technology such as Winner and Ihde, and sketches the contours of a phenomenology and hermeneutics of technology use that may help us to understand but also to gain a more critical relation to specific uses of concrete technologies in everyday contexts. Ultimately, given the holism argued for, it also promises a more critical relation to the games and forms of life technologies are embedded in-to the ways we do things.

  7. Clean coal technologies in Japan: technological innovation in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This brochure reviews the history clean coal technologies (CCT) in Japan and systematically describes the present state of CCT insofar. The brochure contains three parts. Part 1. CCT classifications; Part 2. CCT overview; and Part 3. Future outlook for CCT. The main section is part 2 which includes 1) technologies for coal resources development; 2) coal-fired power generation technologies - combustion technologies and gasification technologies; 3) iron making and general industry technologies; 4) multi-purpose coal utilization technologies - liquefaction technologies, pyrolysis technologies, powdering, fluidization, and co-utilisation technologies, and de-ashing and reforming technologies; 5) Environmental protection technologies - CO{sub 2} recovery technologies; flue gas treatment and gas cleaning technologies, and technologies to effectively use coal has; 6) basic technologies for advanced coal utilization; and 7) co-production systems.

  8. Technology Matters - When new technology reshape innovation

    DEFF Research Database (Denmark)

    Edwards, Kasper; Pedersen, Jørgen Lindgaard

    2004-01-01

    Management of innovation is an important issue for firms and being good at this may be the deciding difference between death and survival. This paper ar-gues, based on 12 case studies, that new technology influence the innovative ca-pability of firms and disturbingly the process appears...... not to be managed in the sense that aims, instruments and resources are unclear. It is observed that new technology is adopted with a limited scope and fo-cus – often to solve a particular technical problem e.g. the quality of specifica-tion are too low. For a single reason a new technology is introduced within...... the firm, which over time becomes a source of innovation. However, through adoption of this new technology firms engage in a mu-tual learning and forming process where the firm learn by using the new technol-ogy. When learning, the firm and the new technology is mutually formed as the firm tries to adopt...

  9. Subjective Technology Adaptivity Predicts Technology Use in Old Age.

    Science.gov (United States)

    Kamin, Stefan T; Lang, Frieder R; Beyer, Anja

    2017-01-01

    To date, not much is known about the psychological and motivational factors underlying technology use in late life. What are the interindividual determinants that lead older adults to invest in using technological innovations despite the age-related physiological changes that impose challenges on behavioral plasticity in everyday life? This research explores interindividual differences in subjective technology adaptivity - a general technology-related motivational resource that accounts for technology use in late life. More specifically, we investigate the influence of this factor relative to demographic characteristics, personality traits, and functional limitations in a longitudinal sample of community-dwelling older adults. We report results from a paper-and-pencil survey with 136 older adults between 59 and 92 years of age (mean = 71.4, SD = 7.4). Of those participants, 77 participated in a 2-year follow-up. We assessed self-reports of technology use, subjective technology adaptivity, functional limitations, and the personality traits openness to new experiences and neuroticism. Higher levels of subjective technology adaptivity were associated with technology use at the first measurement as well as increased use over the course of 2 years. Subjective technology adaptivity is a significant predictor of technology use in old age. Our findings contribute to improving the understanding of interindividual differences when using technological innovation in late life. Moreover, our findings have implications in the context of user involvement and may contribute to the successful development of innovative technology for older adults. © 2017 S. Karger AG, Basel.

  10. Water quality issues associated with agricultural drainage in semiarid regions

    Science.gov (United States)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  11. Living Technology

    DEFF Research Database (Denmark)

    2010-01-01

    This book is aimed at anyone who is interested in learning more about living technology, whether coming from business, the government, policy centers, academia, or anywhere else. Its purpose is to help people to learn what living technology is, what it might develop into, and how it might impact...... our lives. The phrase 'living technology' was coined to refer to technology that is alive as well as technology that is useful because it shares the fundamental properties of living systems. In particular, the invention of this phrase was called for to describe the trend of our technology becoming...... increasingly life-like or literally alive. Still, the phrase has different interpretations depending on how one views what life is. This book presents nineteen perspectives on living technology. Taken together, the interviews convey the collective wisdom on living technology's power and promise, as well as its...

  12. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  13. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  14. Technology '90

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report

  15. Sensemaking technologies

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    Research scope: The scope of the project is to study technological implementation processes by using Weick's sensemaking concept (Weick, 1995). The purpose of using a social constructivist approach to investigate technological implementation processes is to find out how new technologies transform......, Orlikowski 2000). Viewing the use of technology as a process of enactment opens up for investigating the social processes of interpreting new technology into the organisation (Orlikowski 2000). The scope of the PhD project will therefore be to gain a deeper understanding of how the enactment of new...... & Brass, 1990; Kling 1991; Orlikowski 2000). It also demonstrates that technology is a flexible variable adapted to the organisation's needs, culture, climate and management philosophy, thus leading to different uses and outcomes of the same technology in different organisations (Barley 1986; 1990...

  16. Technology roadmaps

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2003-07-01

    The purpose of a technology road map is to define the state of a current technology, relevant market issues, and future market needs; to develop a plan that industry can follow to provide these new products and services; and to map technology pathways and performance goals for bringing these products and services to market. The three stages (planning, implementation, and reviewing and updating), benefits, and status of the Clean Coal Technology Roadmap are outlined. Action Plan 2000, a $1.7 million 2000 Climate Change Technology and Innovation Program, which uses the technology roadmapping process, is described. The members of the management steering committee for the Clean Coal Technology Roadmap are listed. A flowsheet showing activities until November 2004, when the final clean coal road map is due, is included.

  17. Spirit's Winter Work Site

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Annotated Version This portion of an image acquired by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment camera shows the Spirit rover's winter campaign site. Spirit was parked on a slope tilted 11 degrees to the north to maximize sunlight during the southern winter season. 'Tyrone' is an area where the rover's wheels disturbed light-toned soils. Remote sensing and in-situ analyses found the light-toned soil at Tyrone to be sulfate rich and hydrated. The original picture is catalogued as PSP_001513_1655_red and was taken on Sept. 29, 2006. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  18. Technological entrepreneurship : technology transfer from academia to new firms

    NARCIS (Netherlands)

    Prodan, I.

    2007-01-01

    This doctoral dissertation aims to do the following: 1. Develop the conceptual model of technological entrepreneurship 2. Position technology transfer from academia to new firms in a newly developed conceptual model of technological entrepreneurship 3. Develop the model of technology transfer from

  19. International technology transfer

    International Nuclear Information System (INIS)

    Kwon, Won Gi

    1991-11-01

    This book introduces technology progress and economic growth, theoretical consideration of technology transfer, policy and mechanism on technology transfer of a developed country and a developing country, reality of international technology transfer technology transfer and industrial structure in Asia and the pacific region, technology transfer in Russia, China and Eastern Europe, cooperation of science and technology for development of Northeast Asia and strategy of technology transfer of Korea.

  20. Electronic technology

    International Nuclear Information System (INIS)

    Kim, Jin Su

    2010-07-01

    This book is composed of five chapters, which introduces electronic technology about understanding of electronic, electronic component, radio, electronic application, communication technology, semiconductor on its basic, free electron and hole, intrinsic semiconductor and semiconductor element, Diode such as PN junction diode, characteristic of junction diode, rectifier circuit and smoothing circuit, transistor on structure of transistor, characteristic of transistor and common emitter circuit, electronic application about electronic equipment, communication technology and education, robot technology and high electronic technology.

  1. Technology in the Classroom: Teachers and Technology--A Technological Divide

    Science.gov (United States)

    Clarke, Gregory, Sr.; Zagarell, Jesse

    2012-01-01

    The education system in the United States continues to grapple with adapting to change, especially when it comes to integrating technology in the curriculum. The United States needs to use its resources to stay competitive in the increasingly technological world, particularly in the classroom. Lefebvre, Deaudelin, and Loiselle (2006) posit that…

  2. Educational Technologies in Health Science Libraries: Teaching Technology Skills

    Science.gov (United States)

    Hurst, Emily J.

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting? PMID:24528269

  3. Educational technologies in health sciences libraries: teaching technology skills.

    Science.gov (United States)

    Hurst, Emily J

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many librarians. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting?

  4. 75 FR 54656 - Government-Owned Inventions, Available for Licensing

    Science.gov (United States)

    2010-09-08

    ... availability of inventions for licensing. SUMMARY: Patent applications on the inventions listed below assigned..., Pasadena, CA 91109; telephone (818) 354-7770. NASA Case No.: NPO-46771-1: Diamond Heat-Spreader for...

  5. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  6. Technology Acceptance of Augmented Reality and Wearable Technologies

    NARCIS (Netherlands)

    Wild, Fridolin; Klemke, Roland; Lefrere, Paul; Fominykh, Mikhail; Kuula, Timo

    2017-01-01

    Augmented Reality and Wearables are the recent media and computing technologies, similar, but different from established technologies, even mobile computing and virtual reality. Numerous proposals for measuring technology acceptance exist, but have not been applied, nor fine-tuned to such

  7. Technological Literacy Education and Technological and Vocational Education in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng Steven

    2010-01-01

    Technology education in Taiwan is categorized into the following two types: (1) technological literacy education (TLE)--the education for all people to become technological literates; and (2) technological specialty education (TSE)--the education for specific people to become technicians and professionals for technology-related jobs. This paper…

  8. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  9. Projecting technology change to improve space technology planning and systems management

    Science.gov (United States)

    Walk, Steven Robert

    2011-04-01

    Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.

  10. Technology for whom: an adequate technology

    Energy Technology Data Exchange (ETDEWEB)

    Alva, E N

    1978-01-01

    The concept of human settlements technology (HST) is described and applied to the unique needs of developing countries having different cultural and climatic conditions. These countries are experiencing rapid growth in population, and appropriate technology should not be assumed to be the same as that used in industrialized counties in temperate climates. A new world order is asking that emerging countries define their own living patterns and determine which technologies are suitable for their whole population's needs rather than limiting modern technology to an elite. The author describes how unconventional, but creative, energy can be tapped for housing construction that is low-cost, self-sufficient, and easy to service. A plurality of life styles in tune with the ecosystem could be adopted, but this will require politicians and architects to approach eco-design as a creative rather than imitative process.

  11. Human Spaceflight Technology Needs - A Foundation for JSC's Technology Strategy

    Science.gov (United States)

    Stecklein, Jonette M.

    2013-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation s primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (TechNeeds) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology

  12. Human spaceflight technology needs-a foundation for JSC's technology strategy

    Science.gov (United States)

    Stecklein, J. M.

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which added risks and became a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (Tech Needs) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. Th

  13. Examining Engineering & Technology Students' Acceptance of Network Virtualization Technology Using the Technology Acceptance Model

    Science.gov (United States)

    Yousif, Wael K.

    2010-01-01

    This causal and correlational study was designed to extend the Technology Acceptance Model (TAM) and to test its applicability to Valencia Community College (VCC) Engineering and Technology students as the target user group when investigating the factors influencing their decision to adopt and to utilize VMware as the target technology. In…

  14. The Technological Dimension of Educational Technology in Europe

    Science.gov (United States)

    Dimitriadis, Yannis

    2012-01-01

    This article describes some of the main technological trends and issues of the European landscape of research and innovation in educational technology. Although several innovative technologies (tools, architectures, platforms, or approaches) emerge, such as intelligent support to personalization, collaboration or adaptation in mobile, game-based,…

  15. Technology Catalogue

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy's Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM's Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM's Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department's clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD's applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina)

  16. The Center for Environmental Technology Innovative Technology Screening Process

    International Nuclear Information System (INIS)

    Bertrand, C.M.

    1995-02-01

    The Center for Environmental Technology's (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today's environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET's Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria

  17. NASA Technology Applications Team: Commercial applications of aerospace technology

    Science.gov (United States)

    1994-01-01

    The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  18. Cardiovascular imaging and image processing: Theory and practice - 1975; Proceedings of the Conference, Stanford University, Stanford, Calif., July 10-12, 1975

    Science.gov (United States)

    Harrison, D. C.; Sandler, H.; Miller, H. A.

    1975-01-01

    The present collection of papers outlines advances in ultrasonography, scintigraphy, and commercialization of medical technology as applied to cardiovascular diagnosis in research and clinical practice. Particular attention is given to instrumentation, image processing and display. As necessary concomitants to mathematical analysis, recently improved magnetic recording methods using tape or disks and high-speed computers of large capacity are coming into use. Major topics include Doppler ultrasonic techniques, high-speed cineradiography, three-dimensional imaging of the myocardium with isotopes, sector-scanning echocardiography, and commercialization of the echocardioscope. Individual items are announced in this issue.

  19. U.S.-Japan Quake Prediction Research

    Science.gov (United States)

    Kisslinger, Carl; Mikumo, Takeshi; Kanamori, Hiroo

    For the seventh time since 1964, a seminar on earthquake prediction has been convened under the U.S.-Japan Cooperation in Science Program. The purpose of the seminar was to provide an opportunity for researchers from the two countries to share recent progress and future plans in the continuing effort to develop the scientific basis for predicting earthquakes and practical means for implementing prediction technology as it emerges. Thirty-six contributors, 15 from Japan and 21 from the U.S., met in Morro Bay, Calif.September 12-14. The following day they traveled to nearby sections of the San Andreas fault, including the site of the Parkfield prediction experiment. The conveners of the seminar were Hiroo Kanamori, Seismological Laboratory, California Institute of Technology (Caltech), for the U.S., and Takeshi Mikumo, Disaster Prevention Research Institute, Kyoto University, for Japan . Funding for the participants came from the U.S. National Science Foundation and the Japan Society forthe Promotion of Science, supplemented by other agencies in both countries.

  20. Rhinoplasty perioperative database using a personal digital assistant.

    Science.gov (United States)

    Kotler, Howard S

    2004-01-01

    To construct a reliable, accurate, and easy-to-use handheld computer database that facilitates the point-of-care acquisition of perioperative text and image data specific to rhinoplasty. A user-modified database (Pendragon Forms [v.3.2]; Pendragon Software Corporation, Libertyville, Ill) and graphic image program (Tealpaint [v.4.87]; Tealpaint Software, San Rafael, Calif) were used to capture text and image data, respectively, on a Palm OS (v.4.11) handheld operating with 8 megabytes of memory. The handheld and desktop databases were maintained secure using PDASecure (v.2.0) and GoldSecure (v.3.0) (Trust Digital LLC, Fairfax, Va). The handheld data were then uploaded to a desktop database of either FileMaker Pro 5.0 (v.1) (FileMaker Inc, Santa Clara, Calif) or Microsoft Access 2000 (Microsoft Corp, Redmond, Wash). Patient data were collected from 15 patients undergoing rhinoplasty in a private practice outpatient ambulatory setting. Data integrity was assessed after 6 months' disk and hard drive storage. The handheld database was able to facilitate data collection and accurately record, transfer, and reliably maintain perioperative rhinoplasty data. Query capability allowed rapid search using a multitude of keyword search terms specific to the operative maneuvers performed in rhinoplasty. Handheld computer technology provides a method of reliably recording and storing perioperative rhinoplasty information. The handheld computer facilitates the reliable and accurate storage and query of perioperative data, assisting the retrospective review of one's own results and enhancement of surgical skills.

  1. Assistive Technology

    Science.gov (United States)

    ... Page Resize Text Printer Friendly Online Chat Assistive Technology Assistive technology (AT) is any service or tool that helps ... be difficult or impossible. For older adults, such technology may be a walker to improve mobility or ...

  2. Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-23

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  3. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne Leland [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  4. Nano technologies, technologies converging and potential biomedical applications

    International Nuclear Information System (INIS)

    Capuano, V.

    2005-01-01

    The applications of nano technology to biology and medicine appear really promising for diagnostics, for various therapeutic approaches and in medical instrumentations. The growing synergism among nano technology, biotechnology, information technology and cognitive sciences, their convergence (NBIC) from the nano scale, could involve on next decades great changes in medicine, from a reactive to a predictive and preventive approach. It is expected that NBIC converging technologies could achieve tremendous improvements in human abilities and enhance societal achievement of related social and ethical implications, in the framework of a constant dialogue between science and society [it

  5. THE CONNECTION BETWEEN MANAGEMENT AND TECHNOLOGY AND THE TECHNOLOGICAL MANAGEMENT

    Directory of Open Access Journals (Sweden)

    RAREŞ MUNTEANU

    2010-01-01

    Full Text Available In a new approach, the technology is taken into consideration as a resource of the business, in addition to the four traditional resources: material resources, financial resources, human resources and informational resources. This makes important for the managers to have solid technological knowledge, in addition to the economics. The research regarding the technological management (or the management of technology - MOT is lead by IAMOT (International Association in Management of Technology. There are a lot of connections between the technology on one side and the finances, the human resources, the marketing, the operational management on the other side. In our era the technology is more and more advanced and all the activities are strongly connected to it.

  6. Trends in Health Information Technology Safety: From Technology-Induced Errors to Current Approaches for Ensuring Technology Safety

    Science.gov (United States)

    2013-01-01

    Objectives Health information technology (HIT) research findings suggested that new healthcare technologies could reduce some types of medical errors while at the same time introducing classes of medical errors (i.e., technology-induced errors). Technology-induced errors have their origins in HIT, and/or HIT contribute to their occurrence. The objective of this paper is to review current trends in the published literature on HIT safety. Methods A review and synthesis of the medical and life sciences literature focusing on the area of technology-induced error was conducted. Results There were four main trends in the literature on technology-induced error. The following areas were addressed in the literature: definitions of technology-induced errors; models, frameworks and evidence for understanding how technology-induced errors occur; a discussion of monitoring; and methods for preventing and learning about technology-induced errors. Conclusions The literature focusing on technology-induced errors continues to grow. Research has focused on the defining what an error is, models and frameworks used to understand these new types of errors, monitoring of such errors and methods that can be used to prevent these errors. More research will be needed to better understand and mitigate these types of errors. PMID:23882411

  7. Obituary: Leonard Searle (1930-2010)

    Science.gov (United States)

    Preston, George

    2011-12-01

    models of certain spiral galaxies by careful measurements of surface brightness, and later he worked with colleagues in Pasadena to derive the abundances of chemical elements in primordial stars of our Milky Way Galaxy. His most successful venture was the formulation of a scheme for the assembly of the Milky Way Galaxy from "primordial fragments." This work, which he undertook with then-Carnegie Fellow Robert Zinn, has withstood the test of time. It has been quoted more than 1000 times since it was published in 1978. Searle accepted the Directorship of Carnegie Observatories in 1989 at a signal time in its history. Under his leadership an initial plan to build a single 8.4 meter telescope evolved finally into the construction of two 6.5 meter telescopes, operated since 2000 by a 5-institution consortium at Carnegie's Las Campanas Observatory in Chile. Searle's vital contribution to the Magellan project was his shrewd ability to hire good experts, and then to delegate authority in ways that invited their fruitful participation. All the while, Searle managed to maintain the Observatories' tradition of academic excellence, even as it was plunging into a new world of big-telescope technology. He pursued a visiting scholars program, and he used the important telescope time-allocation process to promote the intellectual growth of Carnegie scientists. His sympathy for the plight of financially strapped Eastern European astronomers took the form of support for the Polish OGLE telescope, to this day a shining success story at Carnegie's Las Campanas Observatory. Following retirement in 1996, Searle continued to follow the progress of the Observatories by frequent contact with his colleagues of many years. He and Eleanor wintered in Pasadena, and during hot Pasadena summers they escaped to their home at Somerset in the south of England. Searle maintained an avid interest in both British and American politics. He has no surviving relatives.

  8. Copper Cable Recycling Technology. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  9. Educational technology and the new technologies

    NARCIS (Netherlands)

    Verhagen, Pleunes Willem; Plomp, T.

    1989-01-01

    Like everywhere in our culture, new technologies gradually penetrate the field of education. This may be seen as a problem area, which asks for appropriate, actions by teachers, curriculum experts, instructional designers and others. As "technology" seems to be the main issue,one may quation whether

  10. Soulful Technologies

    DEFF Research Database (Denmark)

    Fausing, Bent

    2010-01-01

    Samsung introduced in 2008 a mobile phone called "Soul" made with a human touch and including itself a "magic touch". Through the analysis of a Nokia mobile phone TV-commercials I want to examine the function and form of digital technology in everyday images. The mobile phone and its digital camera...... and other devices are depicted by everyday aesthetics as capable of producing a unique human presence and interaction. The medium, the technology is a necessary helper of this very special and lost humanity. Without the technology, no special humanity, no soul - such is the prophecy. This personification...... or anthropomorphism is important for the branding of new technology. Technology is seen as creating a techno-transcendence towards a more qualified humanity which is in contact with fundamental human values like intuition, vision, and sensing; all the qualities that technology, industrialization, and rationalization...

  11. Sport Technology

    CSIR Research Space (South Africa)

    Kirkbride, T

    2007-11-01

    Full Text Available Technology is transforming the games themselves and at times with dire consequences. Tony Kirkbride, Head: CSIR Technology Centre said there are a variety of sports technologies and there have been advances in material sciences and advances...

  12. Alien Sunset (Artist Concept)

    Science.gov (United States)

    2007-01-01

    the sun. And the disks in these systems were found to circumnavigate both members of the star pair, rather than just one. Though follow-up studies are needed, the results could mean that planet formation is more common around extra-tight binary stars than single stars. Since these types of systems would experience double sunsets, the artistic view portrayed here might not be fiction. The original sunset photo used in this artist's concept was taken by Robert Hurt of the Spitzer Science Center at the California Institute of Technology, Pasadena, Calif.

  13. Technology Transfer Report

    Science.gov (United States)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  14. How does technological regime affect performance of technology development projects?

    NARCIS (Netherlands)

    Song, Michael; Hooshangi, Soheil; Zhao, Y. Lisa; Halman, Johannes I.M.

    2014-01-01

    In this study, we examine how technological regime affects the performance of technology development projects (i.e., project quality, sales, and profit). Technological regime is defined as the set of attributes of a technological environment where the innovative activities of firms take place.

  15. Managing Technology Resourcefully: Part I--Technology and Instruction

    Science.gov (United States)

    Weeks, Richard

    2009-01-01

    The transformative powers of digital technology to improve student learning and the resulting effect of that technology to make the business of education more cost-effective are two of the more exciting dynamics in schooling today. Before the current school year ends, new products and upgrades will be available to replace much of the technology.…

  16. Technology Tiers

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    A technology tier is a level in a product system: final product, system, subsystem, component, or part. As a concept, it contrasts traditional “vertical” special technologies (for example, mechanics and electronics) and focuses “horizontal” feature technologies such as product characteristics...

  17. Industrial Arts Test Development, Book III. Resource Items for Graphics Technology, Power Technology, Production Technology.

    Science.gov (United States)

    New York State Education Dept., Albany.

    This booklet is designed to assist teachers in developing examinations for classroom use. It is a collection of 955 objective test questions, mostly multiple choice, for industrial arts students in the three areas of graphics technology, power technology, and production technology. Scoring keys are provided. There are no copyright restrictions,…

  18. Earthing Technology

    NARCIS (Netherlands)

    Blok, Vincent

    2017-01-01

    In this article, we reflect on the conditions under which new technologies emerge in the Anthropocene and raise the question of how to conceptualize sustainable technologies therein. To this end, we explore an eco-centric approach to technology development, called biomimicry. We discuss opposing

  19. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    International Nuclear Information System (INIS)

    Moe, Wayne Leland

    2015-01-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a ''critical path'' for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain ''minimum'' levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial ''first step'' in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by

  20. The Ultimate Technology

    DEFF Research Database (Denmark)

    Riis, Søren

    2013-01-01

    One of the most influential philosophers of the 20th century, Martin Heidegger (1889-1976), died prior to the remarkable cloning of the sheep Dolly and before Dr. Venter started his experiments on creating synthetic life, and he never explicitly discussed living technologies. However, by reinterp......One of the most influential philosophers of the 20th century, Martin Heidegger (1889-1976), died prior to the remarkable cloning of the sheep Dolly and before Dr. Venter started his experiments on creating synthetic life, and he never explicitly discussed living technologies. However......, by reinterpreting his notion of "modern technology," this article shows how it is possible to philosophically assess living technologies and to recognize ways in which Heidegger anticipated this phenomenon with his notion of cybernetics. The interpretation elucidates the fundamental process of technology becoming...... living and simultaneously presents living technology as the ultimate technology. The thesis of this article is that living technology is not just one more technology; rather, it is the perfection of technology as understood by Aristotle. Aristotle's thinking is in this way a key example of a profound...

  1. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  2. New Technologies of Information and Communications from a Science, Technology and Society.

    Directory of Open Access Journals (Sweden)

    Manuel Martín Rodríguez

    2012-03-01

    Full Text Available With this work we want to make a short analysis of the New Technologies of Information and Communications in basic aspects of interest to technology education, refered to it from a Science Technology and Society (CTS. Based on different conceptions of technology and technological literacy, considers issues such as beliefs about the nature of technological knowledge, relationships and differences between scientific knowledge and the interactions between technology and society, the interests and attitudes of teachers and students to technology and learning from the perspective of education and, finally, various approaches to technology education programs following the approaches Science, Technology and Society.

  3. The Impact of In-Service Technology Training Programmes on Technology Teachers

    Science.gov (United States)

    Gumbo, Mishack; Makgato, Moses; Muller, Helene

    2012-01-01

    The aim of this paper is to assess the impact the Advanced Certificate in Education (ACE) in-service technology training program has on technology teachers' knowledge and understanding of technology. The training of technology teachers is an initiative toward teachers' professional development within the mathematics, science, and technology sphere…

  4. The Impact of Experience and Technology Change on Task-Technology Fit of a Collaborative Technology

    Science.gov (United States)

    Iversen, Jakob H.; Eierman, Michael A.

    2018-01-01

    This study continues a long running effort to examine collaborative writing and editing tools and the factors that impact Task-Technology Fit and Technology Acceptance. Previous studies found that MS Word/email performed better than technologies such as Twiki, Google Docs, and Office Live. The current study seeks to examine specifically the impact…

  5. Plasma technology directory

    International Nuclear Information System (INIS)

    Ward, P.P.; Dybwad, G.L.

    1995-01-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling

  6. Understanding Technology Literacy: A Framework for Evaluating Educational Technology Integration

    Science.gov (United States)

    Davies, Randall S.

    2011-01-01

    Federal legislation in the United States currently mandates that technology be integrated into school curricula because of the popular belief that learning is enhanced through the use of technology. The challenge for educators is to understand how best to teach with technology while developing the technological expertise of their students. This…

  7. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  8. "Obligatory Technologies": Explaining Why People Feel Compelled to Use Certain Technologies

    Science.gov (United States)

    Chandler, Jennifer A.

    2012-01-01

    The ideas of technological determinism and the autonomy of technology are long-standing and widespread. This article explores why the use of certain technologies is perceived to be obligatory, thus fueling the fatalism of technological determinism and undermining our sense of freedom vis-a-vis the use of technologies. Three main mechanisms that…

  9. Sensemaking technology

    DEFF Research Database (Denmark)

    Madsen, Charlotte Øland

    Research objective: The object of the LOK research project is to gain a better understanding of the technological strategic processes in organisations by using the concept/metaphor of sensemaking. The project will investigate the technological strategies in organisations in order to gain a deeper...... understanding of the cognitive competencies and barriers towards implementing new technology in organisations. The research will therefore concentrate on researching the development process in the organisation's perception of the external environmental elements of customers, suppliers, competitors, internal...... and external technology and legislation and the internal environmental elements of structure, power relations and political arenas. All of these variables have influence on which/how technologies are implemented thus creating different outcomes all depending on the social dynamics that are triggered by changes...

  10. Conventional Oil and Gas Technologies. IEA ETSAP technology brief P01

    Energy Technology Data Exchange (ETDEWEB)

    Seljom, Pernille [IFE (Norway)], E-mail: pernille.seljom@ife.no

    2010-05-15

    This technology brief on conventional oil and gas technologies is part of a series produced by the IEA ETSAP agreement called the energy technology data source (E-Tech-DS). The E-Tech-DS series consists of a number of 5-10 page technology briefs similar to the IEA Energy Technology Essentials. Based on the data collected for the models that the Energy Technology Systems Analysis Programme (ETSAP) is known for, ETSAP also prepares technology briefs, called E-TechDS. The E-TechDS briefs are standardized presentations of basic information (process, status, performance, costs, potential, and barriers) for key energy technology clusters. Each brief includes an overview of the technology, charts and graphs, and a summary data table, and usually ending with some key references and further information. The E TechDS briefs are intended to offer essential, reliable and quantitative information to energy analysts, experts, policymakers, investors and media from both developed and developing countries. This specific brief focuses on the state of oil and gas exploration, development, and production/recovery technologies.

  11. Science, technology, and pedagogy: Exploring secondary science teachers' effective uses of technology

    Science.gov (United States)

    Guzey, Siddika Selcen

    Technology has become a vital part of our professional and personal lives. Today we cannot imagine living without many technological tools such as computers. For the last two decades technology has become inseparable from several areas, such as science. However, it has not been fully integrated into the field of education. The integration of technology in teaching and learning is still challenging even though there has been a historical growth of Internet access and available technology tools in schools (U.S. Department of Education, National Center for Education Statistics, 2006). Most teachers have not incorporated technology into their teaching for various reasons such as lack of knowledge of educational technology tools and having unfavorable beliefs about the effectiveness of technology on student learning. In this study, three beginning science teachers who have achieved successful technology integration were followed to investigate how their beliefs, knowledge, and identity contribute to their uses of technology in their classroom instruction. Extensive classroom observations and interviews were conducted. The findings demonstrate that the participating teachers are all intrinsically motivated to use technology in their teaching and this motivation allows them to enjoy using technology in their instruction and keeps them engaged in technology use. These teachers use a variety of technology tools in their instruction while also allowing students to use them, and they posit a belief set in favor of technology. The major findings of the study are displayed in a model which indicates that teachers' use of technology in classroom instruction was constructed jointly by their technology, pedagogy, and content knowledge; identity; beliefs; and the resources that are available to them and that the internalization of the technology use comes from reflection. The study has implications for teachers, teacher educators, and school administrators for successful technology

  12. Mini Technology Manual for Schools: An Introduction to Technology Integration

    Science.gov (United States)

    Grismore, Brian A.

    2012-01-01

    The purpose of this manual is to assist school leaders in beginning or developing the use of educational technology within their school or district. The manual covers topics: 1) advantages of educational technology; 2) types of technology used for learning and teaching; 3) how to make good decisions about the use of technology in schools; 4) the…

  13. Evaluating Technology Resistance and Technology Satisfaction on Students' Performance

    Science.gov (United States)

    Norzaidi, Mohd Daud; Salwani, Mohamed Intan

    2009-01-01

    Purpose: Using the extended task-technology fit (TTF) model, this paper aims to examine technology resistance, technology satisfaction and internet usage on students' performance. Design/methodology/approach: The study was conducted at Universiti Teknologi MARA, Johor, Malaysia and questionnaires were distributed to 354 undergraduate students.…

  14. Digital Actuator Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  15. Technology as a Time Challenge: Study, Concept and Types of Technology

    Directory of Open Access Journals (Sweden)

    Vadim M. Rozin

    2017-09-01

    Full Text Available In the article divorce the concepts of engineering and technology. Designated four stages of technological development: the fi rst phase — “pilot technique”, it is characterized by magical conceptualization, the second — engineering (rational conceptualization, third design, fourth technology. For technical equipment is characterized by four features: technology is the artifacts, the technique can be considered as a “social body” of a person or society, technology is a useful way to use the forces of nature, and fi nally, the mediation in the form of tools, machines, and material environment that allows you to implement the ideas of man. It is argued that the conceptualization of technology is the essential characteristic of the concept. If you write, for example, about the technology of the Neolithic age or era of construction of the Egyptian pyramids, then we are talking about retrospective interpretation, from the point of view of modern understanding of technology. It’s not useless, for example, to determine preconditions of formation technology, but in terms of thinking creates problems and contradictions. The author argues that technology develops in the second half of the eighteenth century as a new reality, which describes the industrial activities in language operations and their conditions of division of labor and management. At the same time, technology is being characterized by the installation of quality, savings, standardization, and rational description of the production processes, their optimization for the training of new technologists. Discusses three stages of development of the technology and features of the main types of technology: production technology, engineering, large techno-social projects, global technology. Considering the author and the conditions of the development of new technologies. These include “technological zone of proximal development”, as well as two situation — relevant issues and

  16. Decontamination and decommissioning technology tree and the current status of the technologies

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H.J.; Kim, G.N.; Lee, K.W.; Chol, W.K.; Jung, C.H.; Kim, C.J.; Kim, S.H.; Kwon, S.O.; Chung, C.M

    2001-03-01

    A technology tree diagram was developed on the basis of the necessary technologies applicable to the decontamination and decommissioning of nuclear facilities. The technology tree diagram is consist of 6 main areas such as characterization, decontamination, decommissioning and remote technology, radwaste management, site restoration, and decommissioning plan and engineering. Characterization is divided into 4 regions such as sampling and data collection, general characterization, chemical analysis and radiological analysis. Decontamination is also divided into 4 regions such as chemical decontamination, mechanical decontamination, the other decontamination technologies and new decontamination technologies. Decommissioning and remote technology area is divided into 4 regions such as cutting techniques, decommissioning technologies, new developing technologies and remote technologies. Radwaste management area is divided into 5 regions such as solid waste treatment, sludge treatment, liquid waste treatment, gas waste treatment and thermal treatment. Site restoration area is divided into 3 regions such as the evaluation of site contamination, soil decontamination and ground water decontamination. Finally, permission, decommissioning process, cost evaluation, quality assurance and the estimation of radionuclide inventory were mentioned in the decommissioning plan and engineering area. The estimated items for each technology are applicable domestic D and D facilities, D and D problem area and contamination/requirement, classification of D and D technology, similar technology, principle and overview of technology, status, science technology needs, implementation needs, reference and contact point.

  17. Decontamination and decommissioning technology tree and the current status of the technologies

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Kim, G. N.; Lee, K. W.; Chol, W. K.; Jung, C. H.; Kim, C. J.; Kim, S. H.; Kwon, S. O.; Chung, C. M.

    2001-03-01

    A technology tree diagram was developed on the basis of the necessary technologies applicable to the decontamination and decommissioning of nuclear facilities. The technology tree diagram is consist of 6 main areas such as characterization, decontamination, decommissioning and remote technology, radwaste management, site restoration, and decommissioning plan and engineering. Characterization is divided into 4 regions such as sampling and data collection, general characterization, chemical analysis and radiological analysis. Decontamination is also divided into 4 regions such as chemical decontamination, mechanical decontamination, the other decontamination technologies and new decontamination technologies. Decommissioning and remote technology area is divided into 4 regions such as cutting techniques, decommissioning technologies, new developing technologies and remote technologies. Radwaste management area is divided into 5 regions such as solid waste treatment, sludge treatment, liquid waste treatment, gas waste treatment and thermal treatment. Site restoration area is divided into 3 regions such as the evaluation of site contamination, soil decontamination and ground water decontamination. Finally, permission, decommissioning process, cost evaluation, quality assurance and the estimation of radionuclide inventory were mentioned in the decommissioning plan and engineering area. The estimated items for each technology are applicable domestic D and D facilities, D and D problem area and contamination/requirement, classification of D and D technology, similar technology, principle and overview of technology, status, science technology needs, implementation needs, reference and contact point

  18. 77 FR 31651 - Texas Gamma Ray, LLC, Pasadena, TX; Confirmatory Order (Effective Immediately)

    Science.gov (United States)

    2012-05-29

    ..., will maintain training records, including attendees and test results for 5 years. The records will be..., will maintain training records, including attendees and test results for 5 years. The records will [email protected] , or by telephone at 301-415-1677, to request (1) a digital identification (ID...

  19. Technological Determinism in Educational Technology Research: Some Alternative Ways of Thinking about the Relationship between Learning and Technology

    Science.gov (United States)

    Oliver, M.

    2011-01-01

    This paper argues that research on the educational uses of technology frequently overemphasizes the influence of technology. Research in the field is considered a form of critical perspective, and assumptions about technology are questioned. Technological determinism is introduced, and different positions on this concept are identified. These are…

  20. SUSTAINABILITY LOGISTICS BASING SCIENCE AND TECHNOLOGY OBJECTIVE DEMONSTRATION; SELECTED TECHNOLOGY ASSESSMENT

    Science.gov (United States)

    2018-03-22

    BASING SCIENCE AND TECHNOLOGY OBJECTIVE – DEMONSTRATION; SELECTED TECHNOLOGY ASSESSMENT by Gregg J. Gildea Paul D. Carpenter Benjamin J...Campbell William F. Harris* Michael A. McCluskey** and José A. Miletti*** *General Dynamics Information Technology Fairfax, VA 22030 **Maneuver...SCIENCE AND TECHNOLOGY OBJECTIVE – DEMONSTRATION; SELECTED TECHNOLOGY ASSESSMENT 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  1. EPA'S ENVIRONMENTAL TECHNOLOGIES

    Science.gov (United States)

    The use of innovative technology is impeded by the lack of independent, credible information as to how the technology performs. Such data is needed by technology buyers and regulatory decision makers to make informed decisions on technologies that represent good financial invest...

  2. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Stern, T.

    1989-09-01

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  3. Technology and Nursing

    OpenAIRE

    Maria Vera Lúcia Moreira Leitão Cardoso

    2012-01-01

    In the present age we cannot disassociate from emerging issues, which involve science, communication, health and technology, the influence of media, technological advances, and the use of computers in all spheres of life. The concepts created for technology cover various evaluation approaches, which depend upon which type of technology, approaches, usefulness and influences in a particular area of knowledge. Technological advances cover several areas, figuring quantum physics, nanotechnology,...

  4. Modeling technological learning and its application for clean coal technologies in Japan

    International Nuclear Information System (INIS)

    Nakata, Toshihiko; Sato, Takemi; Wang, Hao; Kusunoki, Tomoya; Furubayashi, Takaaki

    2011-01-01

    Estimating technological progress of emerging technologies such as renewables and clean coal technologies becomes important for designing low carbon energy systems in future and drawing effective energy policies. Learning curve is an analytical approach for describing the decline rate of cost and production caused by technological progress as well as learning. In the study, a bottom-up energy-economic model including an endogenous technological learning function has been designed. The model deals with technological learning in energy conversion technologies and its spillover effect. It is applied as a feasibility study of clean coal technologies such as IGCC (Integrated Coal Gasification Combined Cycle) and IGFC (Integrated Coal Gasification Fuel Cell System) in Japan. As the results of analysis, it is found that technological progress by learning has a positive impact on the penetration of clean coal technologies in the electricity market, and the learning model has a potential for assessing upcoming technologies in future.

  5. Sustainability of University Technology Transfer: Mediating Effect of Inventor’s Technology Service

    Directory of Open Access Journals (Sweden)

    Fang Li

    2018-06-01

    Full Text Available Based on the perspective of knowledge transfer and the technology acceptance model (TAM, this paper constructs a university technology transfer sustainable development model that considers the inventor’s technology service from the perspective of the long-term cooperation of enterprise, and analyzes the mediating effect of the inventor’s technology service on university technology transfer sustainability. By using 270 questionnaires as survey data, it is found that the availability of an inventor’s technology service has a significant positive impact on the attitude tendency and practice tendency of enterprise long-term technological cooperation; enterprise technology absorption capacity and trust between a university and an enterprise also have significant influence on an inventor’s technical service availability. Therefore, the inventor’s technology service acts as a mediator in the relationship between university technology transfer sustainability and influence factors. Universities ought to establish the technology transfer model, which focuses on the inventor’s tacit knowledge transfer service, and promotes the sustainable development of the university.

  6. Technology '90

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  7. Aftermath of Hurricane Ike along Texas Coast

    Science.gov (United States)

    2008-01-01

    Three weeks after Hurricane Ike came ashore near Galveston, TX, residents returned to find their houses in ruins. From the coast to over 15 km inland, salt water saturated the soil as a result of the 7m storm surge pushed ashore by the force of the hurricane. The right image was acquired on September 28; the left image was acquired August 15, 2006. Vegetation is displayed in red, and inundated areas are in blue-green. Within the inundated area are several small 'red islands' of high ground where salt domes raised the level of the land, and protected the vegetation. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 37 by 49.5 kilometers (22.8 by 30.6 miles) Location: 29.8 degrees North latitude, 94.4 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and

  8. Picking up Clues from the Discard Pile

    Science.gov (United States)

    2008-01-01

    As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil. On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through red, green and blue filters that have been combined into this approximately true-color image. This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench. Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches. For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench. The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed

  9. Picking up Clues from the Discard Pile (Stereo)

    Science.gov (United States)

    2008-01-01

    , Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Los Angeles from Space

    Science.gov (United States)

    2001-01-01

    This ASTER image was acquired on July 23, 2001 and covers an area of 64 x 72 km. The data were processed to create a simulated natural color image. From its start as a sleepy Spanish pueblo in 1781, LA and its metropolitan area has grown to become an ethnically diverse, semitropical megalopolis, laying claim as the principal center of the western US and the nation's second largest urban area. The city's economy is based on international trade, aerospace, agriculture, tourism, and filmmaking. LA provides a glimpse of the typically cosmopolitan and global city of the future.The image is located at 34.1 degrees north latitude and 118.2 degrees west longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring

  11. World in Mercator Projection, Shaded Relief and Colored Height

    Science.gov (United States)

    2003-01-01

    This image of the world was generated with data from the Shuttle Radar Topography Mission (SRTM). The SRTM Project has recently released a new global data set called SRTM30, where the original one arcsecond of latitude and longitude resolution (about 30 meters, or 98 feet, at the equator) was reduced to 30 arcseconds (about 928 meters, or 1496 feet.) This image was created from that data set and shows the world between 60 degrees south and 60 degrees north latitude, covering 80% of the Earth's land mass. The image is in the Mercator Projection commonly used for maps of the world.Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.Orientation: North toward the top, Mercator projection Image Data: shaded and colored SRTM

  12. World Globes, Shaded Relief and Colored Height

    Science.gov (United States)

    2003-01-01

    These images of the world were generated with data from the Shuttle Radar Topography Mission (SRTM). The SRTM Project has recently released a new global data set called SRTM30, where the original one arcsecond of latitude and longitude resolution (about 30 meters, or 98 feet, at the equator) was reduced to 30 arcseconds (about 928 meters, or 1496 feet.) These images were created from that data set and show the Earth as it would be viewed from a point in space centered over the Americas, Africa and the western Pacific.Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.Orientation: North toward the top Image Data: shaded and colored SRTM elevation model Original Data Resolution: SRTM 1 arcsecond (about 30 meters or 98 feet

  13. Leading Wave Amplitude of a Tsunami

    Science.gov (United States)

    Kanoglu, U.

    2015-12-01

    Okal and Synolakis (EGU General Assembly 2015, Geophysical Research Abstracts-Vol. 17-7622) recently discussed that why the maximum amplitude of a tsunami might not occur for the first wave. Okal and Synolakis list observations from 2011 Japan tsunami, which reached to Papeete, Tahiti with a fourth wave being largest and 72 min later after the first wave; 1960 Chilean tsunami reached Hilo, Hawaii with a maximum wave arriving 1 hour later with a height of 5m, first wave being only 1.2m. Largest later waves is a problem not only for local authorities both in terms of warning to the public and rescue efforts but also mislead the public thinking that it is safe to return shoreline or evacuated site after arrival of the first wave. Okal and Synolakis considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) linear dispersive analytical solution with a tsunami generation through an uplifting of a circular plug on the ocean floor. They performed parametric study for the radius of the plug and the depth of the ocean since these are the independent scaling lengths in the problem. They identified transition distance, as the second wave being larger, regarding the parameters of the problem. Here, we extend their analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave as presented by Tadepalli and Synolakis (1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112). We compare our results with non-dispersive linear shallow water wave results as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015), investigating focusing feature. We discuss the results both in terms of leading wave amplitude and tsunami focusing. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk

  14. Phoenix's Lay of the Land

    Science.gov (United States)

    2008-01-01

    This image from NASA's Phoenix Mars Lander shows the spacecraft's recent activity site as of the 23rd Martian day of the mission, or Sol 22 (June 16, 2008), after the spacecraft touched down on the Red Planet's northern polar plains. The mosaic was taken by the lander's Surface Stereo Imager (SSI). Parts of Phoenix can be seen in the foreground. The first two trenches dug by the lander's Robotic Arm, called 'Dodo' and 'Goldilocks,' were enlarged on the 19th Martian day of the mission, or Sol 18 (June 12, 2008), to form one trench, dubbed 'Dodo-Goldilocks.' Scoops of material taken from those trenches are informally called 'Baby Bear' and 'Mama Bear.' Baby Bear was carried to Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, instrument for analysis, while Mama Bear was delivered to Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument suite, or MECA, for a closer look. The color inset picture of the Dodo-Goldilocks trench, also taken with Phoenix's SSI, reveals white material thought to be ice. More recently, on Sol 22 (June 16, 2008), Phoenix's Robotic Arm began digging a trench, dubbed 'Snow White,' in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The 'dump pile' is located at the top of the trench, and has been dubbed 'Croquet Ground.' The digging site has been nicknamed 'Wonderland.' The Snow White trench, seen here in an SSI image from Sol 22 (June 16, 2008) is about 2 centimeters (.8 inches) deep and 30 centimeters (12 inches) long. As of Sol 25 (June 19, 2008), the trench is 5 centimeters (2 inches deep) and the trench has been renamed 'Snow White 1,' as a second trench has been dug to its right and nicknamed 'Snow White 2.' The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. FY-95 technology catalog. Technology development for buried waste remediation

    International Nuclear Information System (INIS)

    1995-01-01

    The US Department of Energy's (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described

  16. FY-95 technology catalog. Technology development for buried waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  17. Technology cycles and technology revolutions

    Energy Technology Data Exchange (ETDEWEB)

    Paganetto, Luigi; Scandizzo, Pasquale Lucio

    2010-09-15

    Technological cycles have been characterized as the basis of long and continuous periods economic growth through sustained changes in total factor productivity. While this hypothesis is in part consistent with several theories of growth, the sheer magnitude and length of the economic revolutions experienced by humankind seems to indicate surmise that more attention should be given to the origin of major technological and economic changes, with reference to one crucial question: role of production and use of energy in economic development.

  18. Mars Technology Program: Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  19. This damned technology

    International Nuclear Information System (INIS)

    Steinbuch, K.

    1982-01-01

    Technology is not an end in itself, but a means to an end for human existence. If it does not serve this purpose it must be adapted or changed. Criticism of technology is necessary in view of the various positive and negative consequences of technology, it must however be based on judgement and sense of responsibility. It is however often claimed that technology and industry are the tools of the evil and that the technical intelligentsia do not feel responsible for psychological, social and political consequences of their doing. By contributions of several authors and of different periods this book elucidates the often grotesque contradictions between demagogic accusation of technology and the reality of technology; this book presents principal considerations on an acceptable assessment of technology. (HSCH) [de

  20. Technology-Use Mediation

    DEFF Research Database (Denmark)

    Bansler, Jørgen P.; Havn, Erling C.

    2003-01-01

    This study analyzes how a group of ‘mediators’ in a large, multinational company adapted a computer-mediated communication technology (a ‘virtual workspace’) to the organizational context (and vice versa) by modifying features of the technology, providing ongoing support for users, and promoting...... appropriate conventions of use. Our findings corroborate earlier research on technology-use mediation, which suggests that such mediators can exert considerable influence on how a particular technology will be established and used in an organization. However, this study also indicates that the process...... of technology-use mediation is more complex and indeterminate than earlier literature suggests. In particular, we want to draw attention to the fact that advanced computer-mediated communication technologies are equivocal and that technology-use mediation consequently requires ongoing sensemaking (Weick 1995)....

  1. Key technologies book

    International Nuclear Information System (INIS)

    1997-01-01

    In this book can be found all the useful information on the French industry key technologies of the years 2000-2005. 136 technologies at the junction of the science advances and of the markets expectations are divided into 9 sectors. Among them, only 4 are interesting here: the environment, the transports, the materials and the energy. In 1995, the secretary's office of State for industry has published a first synthesis book on these key technologies. This 1997 new key technologies book extends and completes the initial study. For each key technology, an encyclopedic sheet is given. Each sheet combines thus some exact and practical information on: advance state of the technology, market characteristics, development forecasts, occupation and involved sectors, technology acquisition cost, research programs but also contacts of the main concerned efficiency poles. (O.M.)

  2. Hackers against technology: Critique and recuperation in technological cycles.

    Science.gov (United States)

    Maxigas

    2017-12-01

    I offer an interpretation of hackers' technological choices through a theoretical framework of critique and recuperation in technological cycles, building on prior research that brings the pragmatic sociology of Boltanski and Chiapello to bear on matters in Science and Technology Studies. I argue that contextualizing technology choices in the development of capitalism through innovation illuminates their political significance. I start with the counterintuitive observation that some browser extensions popular with hackers, like RequestPolicy, make it considerably harder for them to look at websites. This observation showcases the Luddite aspects of hackerdom, in that they are willing to 'break' popular websites that would otherwise cheat on the user. In line with an undercurrent of hacker studies, in this case study I find hackers fighting technological progress they see as social decline.

  3. Search Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  4. Available Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  5. On technology blending.

    OpenAIRE

    Rosenberg N

    1986-01-01

    ILO pub-WEP pub. Working paper on the blending of traditional technology and technological change in developing countries - argues that choice of technology should be compatible with labour intensive requirements and local level management and economic conditions; considers employment creation and economic implications; concludes that technology transfer should be selective. References.

  6. Different Perspectives on Technology Acceptance: The Role of Technology Type and Age

    Science.gov (United States)

    Arning, Katrin; Ziefle, Martina

    Although eHealth technologies offer an enormous potential to improve healthcare, the knowledge about key determinants of acceptance for eHealth technology is restricted. While the underlying technology of eHealth technologies and Information and Communication technology (ICT) is quite similar, utilization contexts and using motives are quite different. In order to explore the role of technology type on acceptance, we contrasted central application characteristics of both technology types using the scenario technique. A questionnaire was administered (n = 104) measuring individual variables (age, gender) and attitudes regarding an eHealth application (blood sugar meter) in contrast to an ICT device (Personal Digital Assistant, PDA). Older users basically approved the utilization of health-related technologies and perceived lower usability barriers. In addition, we identified main utilization motives of eHealth technology and technology-specific acceptance patterns, especially regarding issues of data safety in the eHealth context. Effects of age and gender in acceptance ratings suggest a differential perspective on eHealth acceptance. Finally, practical interventions were derived in order to support eHealth device design and to promote acceptance of eHealth technology.

  7. Technology transfer and development: a preliminary look at Chinese technology in Guyana

    Energy Technology Data Exchange (ETDEWEB)

    Long, F

    1982-05-01

    Technology is regarded as a vital ingredient for development. Since developing countries can hardly fill their technological requirements indigenously, such countries tend to acquire the bulk of technology applied to their production systems from abroad. However, the transfer of technology tends to be associated with a series of problems: foreign exchange, inappropriateness, the generation of limited inter-sectorial linkages, limited use of raw materials, and other inputs associated with technology dependency. The study points to the fact that technology transfer need not necessarily be associated with the disadvantages identified in the literature. The study which essentially looks at the use of Chinese technology in clay-brick manufacturing in Guyana, shows that the country was able to reap several development benefits from the technology-transfer arrangement. At the same time, certain problems arising from the technology-transfer package such as the transfer of critical skills in key areas of production, and maintenance and servicing, are discussed. But these, the author argues, are not a function of restrictive conditions found in technology-transfer clauses, but rather of improper technology-transfer management. 2 tables.

  8. Technological risks

    International Nuclear Information System (INIS)

    Klinke, A.; Renn, O.

    1998-01-01

    The empirical part about the technological risks deals with different technologies: nuclear energy, early warning systems of nuclear weapons and NBC-weapons, and electromagnetic fields. The potential of damage, the contemporary management strategies and the relevant characteristics will be described for each technology: risks of nuclear energy; risks of early warning systems of nuclear weapons and NBC-weapons; risks of electromagnetic fields. (authors)

  9. Technological risks

    Energy Technology Data Exchange (ETDEWEB)

    Klinke, A.; Renn, O. [Center of Technology Assessment in Baden-Wuerttemberg, Stuttgart (Germany)

    1998-07-01

    The empirical part about the technological risks deals with different technologies: nuclear energy, early warning systems of nuclear weapons and NBC-weapons, and electromagnetic fields. The potential of damage, the contemporary management strategies and the relevant characteristics will be described for each technology: risks of nuclear energy; risks of early warning systems of nuclear weapons and NBC-weapons; risks of electromagnetic fields. (authors)

  10. Inter-technology knowledge spillovers for energy technologies

    International Nuclear Information System (INIS)

    Nemet, Gregory F.

    2012-01-01

    Both anecdotal evidence and the innovation literature indicate that important advances in energy technology have made use of knowledge originating in other technological areas. This study uses the set of U.S. patents granted from 1976 to 2006 to assess the role of knowledge acquired from outside each energy patent's technological classification. It identifies the effect of external knowledge on the forward citation frequency of energy patents. The results support the claim above. Regression coefficients on citations to external prior art are positive and significant. Further, the effect of external citations is significantly larger than that of other types of citations. Conversely, citations to prior art that is technologically near have a negative effect on forward citation frequency. These results are robust across several alternative specifications and definitions of whether each flow of knowledge is external. Important energy patents have drawn heavily from external prior art categorized as chemical, electronics, and electrical; they cite very little prior art from computers, communications, and medical inventions.

  11. Technology in the Montessori Classroom: Teachers' Beliefs and Technology Use

    Science.gov (United States)

    Jones, Sara J.

    2017-01-01

    As technology becomes ubiquitous in society, there is increasing momentum to incorporate it into education. Montessori education is not immune to this push for technology integration. This qualitative study investigates four Upper Elementary Montessori teachers' attitudes toward technology and technology integration in a public school setting.…

  12. Optical instrumentation engineering in science, technology and society; Proceedings of the Sixteenth Annual Technical Meeting, San Mateo, Calif., October 16-18, 1972

    Science.gov (United States)

    Katz, Y. H.

    1973-01-01

    Visual tracking performance in instrumentation is discussed together with photographic pyrometry in an aeroballistic range, optical characteristics of spherical vapor bubbles in liquids, and the automatic detection and control of surface roughness by coherent diffraction patterns. Other subjects explored are related to instruments, sensors, systems, holography, and pattern recognition. Questions of data handling are also investigated, taking into account minicomputer image storage for holographic interferometry analysis, the design of a video amplifier for a 90 MHz bandwidth, and autostereoscopic screens. Individual items are announced in this issue.

  13. 2017 Technology Showcase | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The 2017 Technology Showcase is an inaugural, half-day event showcased technologies developed by the National Cancer Institute's Center for Cancer Research (CCR) and the Frederick National Laboratory for Cancer Research (FNLCR).

  14. Technology in geriatrics.

    Science.gov (United States)

    Pilotto, Alberto; Boi, Raffaella; Petermans, Jean

    2018-03-13

    Recently, the interest of industry, government agencies and healthcare professionals in technology for aging people has increased. The challenge is whether technology may play a role in enhancing independence and quality of life and in reducing individual and societal costs of caring. Information and communication technologies, i.e. tools aimed at communicating and informing, assistive technologies designed to maintain older peoples' independence and increasing safety, and human-computer interaction technologies for supporting older people with motility and cognitive impairments as humanoid robots, exoskeletons, rehabilitation robots, service robots and companion-type are interdisciplinary topics both in research and in clinical practice. The most promising clinical applications of technologies are housing and safety to guarantee older people remaining in their own homes and communities, mobility and rehabilitation to improve mobility and gait and communication and quality of life by reducing isolation, improve management of medications and transportation. Many factors impair a broad use of technology in older age, including psychosocial and ethical issues, costs and fear of losing human interaction. A substantial lack of appropriate clinical trials to establish the clinical role of technologies to improve physical or cognitive performances and/or quality of life of subjects and their caregivers may suggest that the classical biomedical research model may not be the optimal choice to evaluate technologies in older people. In conclusion, successful technology development requires a great effort in interdisciplinary collaboration to integrate technologies into the existing health and social service systems with the aim to fit into the older adults' everyday life.

  15. GENERAL ENVIRONMENTAL CORPORATION; CURE ELECTROCOAGULATION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The CURE electrocoagulation technology was demonstrated under the Superfund Innovative Technology Evaluation (SITE) program at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS), where water from the solar evaporation ponds (SEPs) was contaminat...

  16. Technology transfer and commercialization of in situ vitrification technology

    International Nuclear Information System (INIS)

    Williams, L.D.; Hansen, J.E.

    1992-01-01

    In situ vitrification (ISV) technology was conceived and an initial proof-of-principle test was conducted in 1980 by Battelle Memorial Institute for the U.S. Department of Energy (DOE) at Pacific Northwest Laboratory (PNL). The technology was rapidly developed through bench, engineering pilot, and large scales in the following years. In 1986, DOE granted rights to the basic ISV patent to Battelle in exchange for a commitment to commercialize the technology. Geosafe Corporation was established as the operating entity to accomplish the commercialization objective. This paper describes and provides status information on the technology transfer and commercialization effort

  17. When technology, science and culture meet: insights from ancient Chinese technology

    Science.gov (United States)

    Lee, Yeung Chung

    2017-10-01

    This paper draws together two important agendas in science education. The first is making science education more inclusive such that students from non-Western or indigenous cultures can benefit from culturally relevant curricula. The second is integrating technology into the curriculum under the umbrella of Science-Technology-Society (STS) education to embrace the social aspects of science, with technology serving as a bridge. The advancement of the first agenda is hindered by the pursuance by both Western and non-Western societies of narrow cultural and practical goals without considering the development of science and technology from a cross-cultural perspective. The second agenda is limited by the misconception that technology is applied science, leading to the exclusion from STS discussions of pre-science or indigenous technologies developed by non-Western cultures. Through selected case studies of the evolution of Chinese traditional technologies and their interaction with science, this paper offers a perspective from the Far East, and argues for situating culturally responsive science education in broader historical and cross-cultural contexts to acknowledge the multi-cultural contributions to science and technology. A form of cross-cultural STS education is advanced, encompassing the cultural basis of technological developments, technology diffusion, interactions of traditional technology with science, and the potential development of traditional or indigenous technologies. This approach provides a bridge between the existing universal science education paradigm promoted in the West and the different forms of multi-cultural education advocated by indigenous science educators. To translate theory into practice, a conceptual framework is proposed in which the essential transdisciplinary knowledge base, curricular goals, and pedagogical approaches are embedded.

  18. Trends in R and D reflect strategies for deregulation

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Whether the electric power industry is technology-driven or market-driven, research and development (R and D) will play a critical role in fomenting and cementing a utility's long-term competitive position. And as competition heats up, so will the drive for proprietary technologies, thus limiting the number of potential collaborators. From the private side of investment, R and D spending is constrained by an unpredictable future for the electric power industry. And the news is even worse for generation than other sectors of the industry. R and D money, which in the past was more narrowly focused on power generation, transmission, and distribution technologies, will be more widely spread to include technologies outside of the core business. At the very least, only those entities that plan to generate electricity can be expected to fund R and D for that purpose. Electric Power Research Institute (EPRI, Palo Alto, Calif.), the Gas Research Institute (GRI), and others are putting funds into distributed generation. GRI in particular is involved in collaborative advanced gas-turbine (CAGT) projects that studies ways to use intercooled aeroderivative-type machines. GRI sees a market for gas turbine with costs and efficiencies somewhere between today's simple- and combined-cycle configurations

  19. The Human Technology

    DEFF Research Database (Denmark)

    Fausing, Bent

     Bent Fausing  "The Humane Technology", abstract (for The Two Cultures: Balancing Choices and Effects Oxford University July 20-26, 2008). The paper will investigate the use of technology in everyday aesthetics such as TV-commercials for mobile phones for Nokia, which slogan is, as it is well known......, "Nokia - connecting people". Which function does this technology get in narratives, images, interactions and affects here?      The mobile phone and its digital camera are depicted as being able to make a unique human presence and interaction. The medium, the technology is a necessary helper to get...... towards this very special and lost humanity. Without the technology, no special humanity is the prophecy. This personification or anthropomorphism is important for the branding of new technology. The technology is seen as creating a technotranscendens towards a more qualified humanity, which is in contact...

  20. Physics and high technology

    International Nuclear Information System (INIS)

    Shao Liqin; Ma Junru.

    1992-01-01

    At present, the development of high technology has opened a new chapter in world's history of science and technology. This review describes the great impact of physics on high technology in six different fields (energy technology, new materials, information technology, biotechnology, space technology, and Ocean technology). It is shown that the new concepts and new methods created in physics and the special conditions and measurements established for physics researches not only deepen human's knowledge about nature but also point out new directions for engineering and technology. The achievements in physics have been more and more applied to high technology, while the development of high technology has explored some new research areas and raised many novel, important projects for physics. Therefore, it is important for us to strengthen the research on these major problems in physics

  1. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  2. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    International Nuclear Information System (INIS)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. WETO's environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies

  3. Plaadid / Lauri Sommer

    Index Scriptorium Estoniae

    Sommer, Lauri, 1973-

    2002-01-01

    Uutest plaatidest Shannon Lawson "Chase The Sun", Queens of the Stone Age "Songs For The Deaf, "Soundtrack. Pulp Fiction", John Adams "Naive and Sentimental Music", paul Weller "Illumination", Avril Lavigne "Let Go", Pasadena "Vastu taevast", nils Landgren "sentimental Journey"

  4. Electron Beam Technology and Other Irradiation Technology Applications in the Food Industry.

    Science.gov (United States)

    Pillai, Suresh D; Shayanfar, Shima

    2017-02-01

    Food irradiation is over 100 years old, with the original patent for X-ray treatment of foods being issued in early 1905, 20 years after there discovery by W. C. Roentgen in 1885. Since then, food irradiation technology has become one of the most extensively studied food processing technologies in the history of mankind. Unfortunately, it is the one of the most misunderstood technologies with the result that there are rampant misunderstandings of the core technology, the ideal applications, and how to use it effectively to derive the maximum benefits. There are a number of books, book chapters, and review articles that provide overviews of this technology [25, 32, 36, 39]. Over the last decade or so, the technology has come into greater focus because many of the other pathogen intervention technologies have been unable to provide sustainable solutions on how to address pathogen contamination in foods. The uniqueness of food irradiation is that this technology is a non-thermal food processing technology, which unto itself is a clear high-value differentiator from other competing technologies.

  5. Emerging Technologies Integrating Technology into Study Abroad

    Science.gov (United States)

    Godwin-Jones, Robert

    2016-01-01

    "Ready access to travel and to technology-enhanced social networking (e.g., Facebook or Skype) has changed the nature of study abroad to the point where today's experiences are fundamentally different from those of earlier eras" (Kinginger, 2013a, p. 345). In addition to more travel options and greater technology availability, study…

  6. Army Technology

    Science.gov (United States)

    2015-02-01

    that allows them to perform applied research under the Institute for Biotechnology research team 1 2 3 20 | ARMY TECHNOLOGY MAGAZINE ...DASA(R&T) Deputy Assistant Secretary of the Army for Research and Technology Download the magazine , view online or read each individual story with...Army photo by Conrad Johnson) Front and back cover designs by Joe Stephens EXECUTIVE DEPUTY TO THE COMMANDING GENERAL Army Technology Magazine is an

  7. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented

  8. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  9. Advanced Communication Technology Satellite (ACTS) multibeam antenna technology verification experiments

    Science.gov (United States)

    Acosta, Roberto J.; Larko, Jeffrey M.; Lagin, Alan R.

    1992-01-01

    The Advanced Communication Technology Satellite (ACTS) is a key to reaching NASA's goal of developing high-risk, advanced communications technology using multiple frequency bands to support the nation's future communication needs. Using the multiple, dynamic hopping spot beams, and advanced on board switching and processing systems, ACTS will open a new era in communications satellite technology. One of the key technologies to be validated as part of the ACTS program is the multibeam antenna with rapidly reconfigurable hopping and fixed spot beam to serve users equipped with small-aperature terminals within the coverage areas. The proposed antenna technology experiments are designed to evaluate in-orbit ACTS multibeam antenna performance (radiation pattern, gain, cross pol levels, etc.).

  10. Institutionalized Technological Foresight

    DEFF Research Database (Denmark)

    Koch, Christian; Hansen, Hans Henrik; Stissing Jensen, Jens

    2008-01-01

    , and they become dependent of national and other institutional foresights. Since 2000 the Danish ministry of Science, Technology and Innovation has tendered nine technology foresights. These could be used by SMEs as supplementary to internal decision making. One also expects to see these foresights placed firmly...... in the national strategy of coordinating and strengthening policy on research, technology and innovation in one superministry. The paper evaluates the methods, impact and role in policy making of these technological foresights. The particular role of institutionalized public foresight in relation to enterprise......Technology and knowledge monitoring is a continual challenge especially for small and medium size enterprises. Technological foresight seemingly offers important parts of this crucial monitoring. The SMEs rarely possess sufficient resources to do systematic foresights, or forecasts however...

  11. Rover Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and mature rover technologies supporting robotic exploration including rover design, controlling rovers over time delay and for exploring . Technology...

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: GREEN BUILDING TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) Program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techno...

  13. NASA Technology Transfer System

    Science.gov (United States)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  14. LIEKKI 2 - Combustion technology is environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. [Aabo Akademi, Turku (Finland)

    1996-12-31

    Finland has wide experience in applications of various combustion technologies and fuels and in supplying energy to industry and municipalities. Furthermore, combustion hardware and equipment are amongst our most important export products. Above all, fluidized bed boilers, recovery boilers for pulp mills and heavy diesel engines and diesel power plants have achieved excellent success in the world markets. Exports of these products alone have amounted to several billions of Finnish marks of annual sales in recent years. Within modern combustion technology, the objective is to control flue gas emissions as far as possible in the process itself, thus doing away with the need for the separate scrubbing of flue gases. To accomplish this it has been necessary to conduct a large amount of research on the details of the chemistry of combustion emissions and the flows in furnaces and engine cylinders. A host of completely new products are being developed for the combustion technology field. The LIEKKI programme has been particularly interested in so-called combined-cycle processes based on pressurized fluidized bed technology

  15. Technology Strategy for 'Environmental Technology for the Future'; Technology Target Areas; TTA1 - environmental technology for the future

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The OG21 Technology Target Area 1 (TTA 1) group has produced a strategy for 'Environmental Technology for the Future'. A key aim of this work is to ensure that the operators on the Norwegian Continental Shelf (NCS) remain in a leading position with respect to environmental performance, while contributing to optimised resource recovery and value creation. This strategy focuses on environmental technology, which includes hardware, methods, software and knowledge. The TTA 1 group has agreed on a common vision: 'Norwegian oil and gas activities shall be leading in environmental performance, and Norway shall have the world leading knowledge and technology cluster within environmental technologies to support the zero harmful impact goals of the oil and gas industry.' Priorities have been made with emphasis on gaps that are considered most important to close and that will benefit from public research and development funding either for initialisation (primarily via the Petromaks and Climit programs) or acceleration (via Petromaks / Climit and particularly Demo 2000 where demonstration or piloting is required). The priorities aim to avoid technology gaps that are expected to be closed adequately through existing projects / programs or which are covered in other TTA strategies. The priority areas as identified are: Environmental impact and risk identification / quantification for new areas: Make quality assured environmental baseline data available on the web. Develop competence necessary to quantify and monitor the risks and risk reductions to the marine environment in new area ecosystems; Carbon capture and storage: Quantify environmental risks and waste management issues associated with bi-products from carbon capture processes and storage solutions. Develop and demonstrate effective carbon storage risk management, monitoring and mitigation technologies. Develop more cost and energy efficient power-from-shore solutions to reduce / eliminate CO{sub 2

  16. Technological Knowledge and Reasoning in Finnish and Estonian Technology Education

    Science.gov (United States)

    Autio, Ossi; Soobik, Mart

    2017-01-01

    The main idea of this research was to find out if there is a relationship between students' undertakings within Craft and Technology education and their ability to understand technological concepts. Study participants' technological knowledge and reasoning was measured with a questionnaire regarding mechanical systems connected with simple…

  17. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  18. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  19. New Mobile Technologies

    DEFF Research Database (Denmark)

    Tan, Su-En; Henten, Anders

    2006-01-01

    This paper takes a look at Clayton Christensen 's theory of disruptive technologies and how Christensen's theory relates to other innovation theories. It also proposes a new layer of analysis to this theory to better link the technology analysis to the market analysis of any given technology...... product. This layer suggests that complementarity and substitutability are important criteria for technologies to be market disruptions or sustaining changes....

  20. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  1. Technology in the Rear-View Mirror: How to Better Incorporate the History of Technology into Technology Education

    Science.gov (United States)

    Hallstrom, Jonas; Gyberg, Per

    2011-01-01

    The history of technology can play an important role in illuminating the fundamentals of technological change, but it is important that technology teachers, teacher educators, curriculum developers and researchers can be provided with good analytical tools for this purpose. In this article, we propose a model of techno-historical interplay, as a…

  2. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    Directory of Open Access Journals (Sweden)

    M. C. Woody

    2016-03-01

    Full Text Available Community Multiscale Air Quality (CMAQ model simulations utilizing the traditional organic aerosol (OA treatment (CMAQ-AE6 and a volatility basis set (VBS treatment for OA (CMAQ-VBS were evaluated against measurements collected at routine monitoring networks (Chemical Speciation Network (CSN and Interagency Monitoring of Protected Visual Environments (IMPROVE and those collected during the 2010 California at the Nexus of Air Quality and Climate Change (CalNex field campaign to examine important sources of OA in southern California. Traditionally, CMAQ treats primary organic aerosol (POA as nonvolatile and uses a two-product framework to represent secondary organic aerosol (SOA formation. CMAQ-VBS instead treats POA as semivolatile and lumps OA using volatility bins spaced an order of magnitude apart. The CMAQ-VBS approach underpredicted organic carbon (OC at IMPROVE and CSN sites to a greater degree than CMAQ-AE6 due to the semivolatile POA treatment. However, comparisons to aerosol mass spectrometer (AMS measurements collected at Pasadena, CA, indicated that CMAQ-VBS better represented the diurnal profile and primary/secondary split of OA. CMAQ-VBS SOA underpredicted the average measured AMS oxygenated organic aerosol (OOA, a surrogate for SOA concentration by a factor of 5.2, representing a considerable improvement to CMAQ-AE6 SOA predictions (factor of 24 lower than AMS. We use two new methods, one based on species ratios (SOA/ΔCO and SOA/Ox and another on a simplified SOA parameterization, to apportion the SOA underprediction for CMAQ-VBS to slow photochemical oxidation (estimated as 1.5 ×  lower than observed at Pasadena using −log(NOx : NOy, low intrinsic SOA formation efficiency (low by 1.6 to 2 ×  for Pasadena, and low emissions or excessive dispersion for the Pasadena site (estimated to be 1.6 to 2.3 ×  too low/excessive. The first and third factors are common to CMAQ-AE6, while the intrinsic SOA formation efficiency

  3. Discourses of Technology

    DEFF Research Database (Denmark)

    Sommer, Jannek K.; Knudsen, Gry Høngsmark

    In this poster we address consumption of technology from the perspective of failure. A large body of studies of consumption of technology have focused on consumer acceptance (Kozinets, 2008). These studies have identified particular narratives about social and economic progress, and pleasure...... (Kozinets, 2008) as drivers of consumer acceptance of new technology. Similarly, Giesler (2008) has conceptualized consumer acceptance of technology as a form of marketplace drama, in which market ideologies are negotiated between consumers and media discourses. We suggest to study discourses around failed...... technology products to explore the negotiation of the familiar and alien that makes consumers reject or embrace a new technology. Thus, this particular project sets out to analyze consumer discourses surrounding the Google Glass video “How it Feels [through Google Glass]” on YouTube, because we want...

  4. Technology transfer packages

    International Nuclear Information System (INIS)

    Mizon, G.A.; Bleasdale, P.A.

    1994-01-01

    Nuclear power is firmly established in many developed countries'energy policies and is being adopted by emerging nations as an attractive way of gaining energy self sufficiency. The early users of nuclear power had to develop the technology that they needed, which now, through increasing world wide experience, has been rationalised to meet demanding economic and environmental pressures. These justifiable pressures, can lead to existing suppliers of nuclear services to consider changing to more appropriate technologies and for new suppliers to consider licensing proven technology rather then incurring the cost of developing new alternatives. The transfer of technology, under license, is made more straight forward if the owner conveniently groups appropriate technology into packages. This paper gives examples of 'Technology Packages' and suggests criteria for the specification, selection and contractual requirements to ensure successful licensing

  5. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY

    Science.gov (United States)

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface waters and porous waters by absorbing d...

  6. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER™ SPONGE TECHNOLOGY

    Science.gov (United States)

    The Forager™ Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. The technology treats contaminated groundwater, surface waters, and process waters by absorbi...

  7. Technological Style is History

    DEFF Research Database (Denmark)

    Blond, Lasse

    The effort to comprehend innovation across cultures and time highlights the importance of the explicating factors external to technology. It becomes relevant to nuance or differentiate the understanding of social and cultural responses to adopted technologies by recognizing that technology shapes...... culture, and just as importantly that culture shapes technology. By looking at a recent transfer of technology this reciprocal exchange is elaborated by considering the cultural or contextual influence in the adaptation of technology. In this connection the notion of technological style is revisited...... by questioning whether it pays due attention to the non-technical factors of the process? In order to compensate for the deficiencies of the technological style as a sensitizing device the concept of sociotechnical style is introduced – a concept more in tune with resent research in technology studies....

  8. Tailings technology. Decommissioning and rehabilitation remedial action technology development

    International Nuclear Information System (INIS)

    Ramsey, R.W. Jr.

    1982-01-01

    This paper is to provide an overview of technology requirements for long-term uranium mill tailings disposal and remedial actions for existing tailings to ensure their adequate disposal. The paper examines the scientific disciplines that are the basis for the technology of uranium mill tailings stabilization and the design of barriers to control radiological exposure or environmental degradation at the location of tailings disposal. The discussion is presented as a hypothetical course of instruction at a fictitious university. Features of six mechanisms of dispersal or intrusion are examined with brief discussion of the applicable technology development for each. The paper serves as an introduction to subsequent specific technology development papers in the session. (author)

  9. User behavior and technology development. Shaping sustainable relations between consumers and technologies

    NARCIS (Netherlands)

    Slob, A.F.L.; Verbeek, P.P.

    2006-01-01

    Environmental policy has long been determined by a dichotomy between technology and behavior. Some approaches stress the importance of technology and technological innovation, while others focus on behavioral change. Each approach has its limitations, however, since technology and behavior often

  10. An Introduction to Biometrics Technology: Its Place in Technology Education

    Science.gov (United States)

    Elliott, Stephen J.; Peters, Jerry L.; Rishel, Teresa J.

    2004-01-01

    The increased utilization of biometrics technology in the past few years has contributed to a strong growth pattern as the technology is used in a variety of facilities, including schools. Due to media exposure, students' familiarity with technology will continue to increase proportionately, which will result in an increased curiosity about…

  11. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    Science.gov (United States)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  12. Genealogies of Modern Technology

    DEFF Research Database (Denmark)

    Riis, Søren

    2008-01-01

    Does modern technology differ from ancient technology and does it have a unique essence? This twofold question opens one of Martin Heidegger's most influential philosophical inquiries, The Question Concerning Technology. The answer Heidegger offers has inspired various critiques and appraisals from...... a vast number of contemporary scholars of technology.1 Heidegger's answer is traditionally thought to suggest a great difference between ancient and modern technology. However, by re-examining Heidegger's text, it is possible to discover previously ignored or misunderstood lines of thoughts that affirm...... a multi-stable interpretation of the origin of modern technology. In what follows, we shall see how The Question Concerning Technology in fact supports three different genealogies of modern technology...

  13. Globalization & technology

    DEFF Research Database (Denmark)

    Narula, Rajneesh

    Technology and globalization are interdependent processes. Globalization has a fundamental influence on the creation and diffusion of technology, which, in turn, affects the interdependence of firms and locations. This volume examines the international aspect of this interdependence at two levels...... of innovation" understanding of learning. Narula and Smith reconcile an important paradox. On the one hand, locations and firms are increasingly interdependent through supranational organisations, regional integration, strategic alliances, and the flow of investments, technologies, ideas and people...

  14. Technology alliances

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Boczar, P.G.; Kugler, G.

    1991-10-01

    In the field of nuclear technology, Canada and Korea developed a highly successful relationship that could serve as a model for other high-technology industries. This is particularly significant when one considers the complexity and technical depth required to design, build and operate a nuclear reactor. This paper will outline the overall framework for technology transfer and cooperation between Canada and Korea, and will focus on cooperation in nuclear R and D between the two countries

  15. Accuracy of 3-dimensional curvilinear measurements on digital models with intraoral scanners.

    Science.gov (United States)

    Mack, Spencer; Bonilla, Tammy; English, Jeryl D; Cozad, Benjamin; Akyalcin, Sercan

    2017-09-01

    Our objectives were to evaluate and compare the digital dental models generated from 2 commercial intraoral scanners with manual measurements when performing 3-dimensional surface measurements along a curved line (curvilinear). Dry mandibles (n = 61) with intact dentition were used. The mandibles were digitized using 2 chair-side intraoral scanners: Cadent iTero (Align Technology, San Jose, Calif) and Lythos Digital Impression system (Ormco, Orange, Calif). Digitized 3-dimensional models were converted to individual stereolithography files and used with commercial software to obtain the curvilinear measurements. Manual measurements were carried out directly on the mandibular teeth. Measurements were made on different locations on the dental arch in various directions. One-sample t tests and linear regression analyses were performed. To further graphically examine the accuracy between the different methods, Bland-Altman plots were computed. The level of significance was set at P 0.05). Bland-Altman analysis showed no fixed bias of 1 approach vs the other, and random errors were detected in all comparisons. Although the mean biases of the digital models obtained by the iTero and Lythos scanners, when compared with direct caliper measurements, were low, the comparison of the 2 intraoral scanners yielded the lowest mean bias. No comparison displayed statistical significance for the t scores; this indicated the absence of proportional bias in these comparisons. The intraoral scanners tested in this study produced digital dental models that were comparatively accurate when performing direct surface measurements along a curved line in 3 dimensions. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  16. SHARED TECHNOLOGY TRANSFER PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  17. General survey of technology management

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong Ha; Jang Dong Hun; Lee, In Woo

    1999-02-15

    The content of this book are technology and management, conception of technology management, feature and model of technology management system, elements of technology management, performance measurement of technology management, connectivity between technology and business function, system management of technology, manpower management, readership and technology management, motivation and technology management, management of technical investment evaluation, new item development and marketing, product liability management, intellectual property rights and transfer of technology.

  18. General survey of technology management

    International Nuclear Information System (INIS)

    Shin, Yong Ha; Jang Dong Hun; Lee, In Woo

    1999-02-01

    The content of this book are technology and management, conception of technology management, feature and model of technology management system, elements of technology management, performance measurement of technology management, connectivity between technology and business function, system management of technology, manpower management, readership and technology management, motivation and technology management, management of technical investment evaluation, new item development and marketing, product liability management, intellectual property rights and transfer of technology.

  19. Responsible technology acceptance

    DEFF Research Database (Denmark)

    Toft, Madeleine Broman; Schuitema, Geertje; Thøgersen, John

    2014-01-01

    As a response to climate change and the desire to gain independence from imported fossil fuels, there is a pressure to increase the proportion of electricity from renewable sources which is one of the reasons why electricity grids are currently being turned into Smart Grids. In this paper, we focus...... on private consumers’ acceptance of having Smart Grid technology installed in their home. We analyse acceptance in a combined framework of the Technology Acceptance Model and the Norm Activation Model. We propose that individuals are only likely to accept Smart Grid technology if they assess usefulness...... in terms of a positive impact for society and the environment. Therefore, we expect that Smart Grid technology acceptance can be better explained when the well-known technology acceptance parameters included in the Technology Acceptance Model are supplemented by moral norms as suggested by the Norm...

  20. Technology transfer by multinationals

    OpenAIRE

    Kostyantyn Zuzik

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  1. Robotics Technology Crosscutting Program. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  2. Robotics Technology Crosscutting Program. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  3. Transferable site remediation technologies developed by U.S. DOE Office of Science and Technology

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1996-01-01

    To provide needed technologies for site remediation, the US Department of Energy's Office of Environmental Management, Office of Science and Technology (OST) is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater. The Technology Investment Decision model serves as a framework for technology management in OST. Seven technology maturation stages are used in the model. These stages run from basic research through implementation. The Innovative Technology Summary Reports (ITSRs) provide a technical synopsis of an individual technology that has been developed. An ITSR is prepared for each technology that is successfully demonstrated in the field. The information required to produce an ITSR is collected as the technology matures through the Technology Investment Decision Process. As of July 1996 there have been thirteen ITSRs completed. This paper describes those thirteen technologies

  4. Technology readiness levels and technology status for selected long term/high payoff technologies on the RLV program

    Science.gov (United States)

    Rosmait, Russell L.

    1996-01-01

    The development of a new space transportation system in a climate of constant budget cuts and staff reductions can be and is a difficult task. It is no secret that NASA's current launching system consumes a very large portion of NASA funding and requires a large army of people to operate & maintain the system. The new Reusable Launch Vehicle (RLV) project and it's programs are faced with a monumental task of making the cost of access to space dramatically lower and more efficient than NASA's current system. With pressures from congressional budget cutters and also increased competition and loss of market share from international agencies RLV's first priority is to develop a 'low-cost, reliable transportation to earth orbit.' One of the RLV's major focus in achieving low-cost, reliable transportation to earth orbit is to rely on the maturing of advanced technologies. The technologies for the RLV are numerous and varied. Trying to assess their current status, within the RLV development program is paramount. There are several ways to assess these technologies. One way is through the use of Technology Readiness Levels (TRL's). This project focused on establishing current (summer 95) 'worst case' TRL's for six selected technologies that are under consideration for use within the RLV program. The six technologies evaluated were Concurrent Engineering, Embedded Sensor Technology, Rapid Prototyping, Friction Stir Welding, Thermal Spray Coatings, and VPPA Welding.

  5. NASA technology applications team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    This report covers the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1992 through 30 September 1993. The work reported herein was supported by the National Aeronautics and Space Administration (NASA), Contract No. NASW-4367. Highlights of the RTI Applications Team activities over the past year are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. Appendix B includes Technology Opportunity Announcements and Spinoff! Sheets prepared by the Team while Appendix C contains a series of technology transfer articles prepared by the Team.

  6. IT-BT convergence technology

    International Nuclear Information System (INIS)

    2012-12-01

    This book explains IT-BT convergence technology as the future technology, which includes a prolog, easy IT-BT convergence technology that has infinite potentials for new value, policy of IT-BT convergence technology showing the potential of smart Korea, IT-BT convergence opening happy future, for the new future of IT powerful nation Korea with IT-BT convergence technology and an epilogue. This book reveals the conception, policy, performance and future of IT-BT convergence technology.

  7. Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries

    International Nuclear Information System (INIS)

    Kounetas, Konstantinos

    2015-01-01

    This paper measures technology (TG) and environmental efficiency technology gaps (EETGs) in 25 European countries over two distinct periods 2002 and 2008 examining the possible effect of adopted environmental regulations and the Kyoto protocol commitments on environmental efficiency technology gaps. However, the introduction of the metafrontier in our analysis puts into our discussion the role of heterogeneous technologies and its effect on the above-mentioned measures. Employing a directional distance function, we investigate whether there is an actual difference, in terms of environmental efficiency and efficiency performance, among European countries considering the technological frontiers under which they operate. The construction of individual frontiers has been realized employing a large number of variables that are highly correlated with countries' learning and absorbing capacity, new technological knowledge and using economic theory and classical frontier discrimination like developed vs. developing, North vs. South and participation in the Eurozone or not. The overall results indicate a crucial role of heterogeneous technologies for technology gaps in both periods. Moreover, a significant decrease for both measures, although in different percent, has been recorded emphasizing the key role of knowledge spillovers. -- Highlights: •We estimate technology gaps (TGs) for 25 EU countries in two distinct periods. •We estimate environmental efficiency technology gaps (EETGs). •We consider countries' technological capabilities with R&D, innovation and eco-innovation. •We test the effect of different frontier constitutions on TGs-EETGs. •We denote the specific role of knowledge spillovers

  8. The Complete Picture: "Standards for Technological Literacy" and "Advancing Excellence in Technological Literacy."

    Science.gov (United States)

    Technology Teacher, 2003

    2003-01-01

    Provides an overview of the "Standards for Technological Literacy: Content for the Study of Technology" (STL) and "Advancing Excellence in Technological Literacy: Student Assessment, Professional Development, and Program Standards" (AETL). Shows how the documents work together to advance the technological literacy of technology educators and K-12…

  9. Plasma technology

    International Nuclear Information System (INIS)

    Drouet, M.G.

    1984-03-01

    IREQ was contracted by the Canadian Electrical Association to review plasma technology and assess the potential for application of this technology in Canada. A team of experts in the various aspects of this technology was assembled and each team member was asked to contribute to this report on the applications of plasma pertinent to his or her particular field of expertise. The following areas were examined in detail: iron, steel and strategic-metals production; surface treatment by spraying; welding and cutting; chemical processing; drying; and low-temperature treatment. A large market for the penetration of electricity has been identified. To build up confidence in the technology, support should be provided for selected R and D projects, plasma torch demonstrations at full power, and large-scale plasma process testing

  10. Technology transfer and international development: Materials and manufacturing technology

    Science.gov (United States)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  11. Large Deployable Reflector (LDR) system concept and technology definition study. Volume 2: Technology assessment and technology development plan

    Science.gov (United States)

    Agnew, Donald L.; Jones, Peter A.

    1989-01-01

    A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.

  12. Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity

    Directory of Open Access Journals (Sweden)

    S. Newman

    2016-03-01

    Full Text Available Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013 and coastal Palos Verdes peninsula (autumn 2009–2013, we have determined time series for CO2 contributions from fossil fuel combustion (Cff for both sites and broken those down into contributions from petroleum and/or gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena Cff during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. The trend of CO2 contributions to the atmosphere from natural gas combustion is out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but is consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 contributions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare Cff from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in autumn and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub

  13. NASA/JPL CLIMATE DAY: Middle and High School Students Get the Facts about Global Climate Change

    Science.gov (United States)

    Richardson, Annie; Callery, Susan; Srinivasan, Margaret

    2013-04-01

    In 2007, NASA Headquarters requested that Earth Science outreach teams brainstorm new education and public outreach activities that would focus on the topic of global climate change. At the Jet Propulsion Laboratory (JPL), Annie Richardson, outreach lead for the Ocean Surface Topography missions came up with the idea of a "Climate Day", capitalizing on the popular Earth Day name and events held annually throughout the world. JPL Climate Day would be an education and public outreach event whose objectives are to provide the latest scientific facts about global climate change - including the role the ocean plays in it, the contributions that NASA/JPL satellites and scientists make to the body of knowledge on the topic, and what we as individuals can do to promote global sustainability. The primary goal is that participants get this information in a fun and exciting environment, and walk away feeling empowered and capable of confidently engaging in the global climate debate. In March 2008, JPL and its partners held the first Climate Day event. 950 students from seven school districts heard from five scientists; visited exhibits, and participated in hands-on-activities. Pleased with the outcome, we organized JPL Climate Day 2010 at the Pasadena Convention Center in Pasadena, California, reaching more than 1700 students, teachers, and members of the general public over two days. Taking note of this successful model, NASA funded a multi-center, NASA Climate Day proposal in 2010 to expand Climate Day nation-wide. The NASA Climate Day proposal is a three-pronged project consisting of a cadre of Earth Ambassadors selected from among NASA-affiliated informal educators; a "Climate Day Kit" consisting of climate-related electronic resources available to the Earth Ambassadors; and NASA Climate Day events to be held in Earth Ambassador communities across the United States. NASA/JPL continues to host the original Climate Day event and in 2012 held its 4th event, at the Pasadena

  14. Soil washing technology evaluation

    International Nuclear Information System (INIS)

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis

  15. Advancement in Engineering Technology

    DEFF Research Database (Denmark)

    Kalia, Kartik; Rehman, M. Atiqur; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper we will be discussing about the impact of technology on our daily lives. How everybody is dependent upon technology in one or other way. Methods/Statistical Analysis: Technology has played a significant role in the evolution of the society. Science has produced many new ideas...... but to harvest those ideas, technology is a must. With the huge requirement of engineering equipment's, the industry needs specialists who can manage and operate these technologies. Detailed information about the merits and demerits of technology is also mentioned in this paper. Findings: Technology has affected...... the environment on a great scale; in some cases, technology is even replacing human being or use of manpower. So proper counter measures have been mentioned, which can be used to control and limit harmful effect....

  16. Technology licensing in China

    DEFF Research Database (Denmark)

    Wang, Yuandi; Li-Ying, Jason; Chen, Jin

    2015-01-01

    We explore the landscape of technology licensing among Chinese entities in the period 2000–12, using a unique database on technological licensing from the State Intellectual Property Office of China. We find that: first, among Chinese licensee organizations, firms have dominated in terms...... of the number of licensed technologies; second, the geographical distribution of licensed technologies among the provinces has gradually reached a new quantitative balance; third, utility models are the most popular technologies to be licensed and the majority of technology licensing in China has been between...... Chinese entities, and most transactions have been local within provinces; and finally, Chinese firms have gradually in-licensed newer and newer technologies, but the technologies in-licensed from foreign sources are by no means state-of-the-art. We make several suggestions for innovation policy...

  17. Technology Applications Team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.

  18. Sustainable technology transfer

    NARCIS (Netherlands)

    Punter, H.T.; Krikhaar, R.L.; Bril, R.J.

    2006-01-01

    In this position paper we address the issue of transferring a technology from research into an industrial organization by presenting a refined process for technology transfer. Based on over two decades of industrial experience, we identified the need for a dedicated technology engineering phase for

  19. Casting Technology.

    Science.gov (United States)

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  20. Technology meets research 60 years of CERN technology : selected highlights

    CERN Document Server

    Taylor, Thomas; Treille, Daniel; Wenninger, Horst

    2017-01-01

    "Big" science and advanced technology are known to cross-fertilize. This book emphasizes the interplay between particle physics and technology at CERN that has led to breakthroughs in both research and technology over the laboratory's first 60 years. The innovations, often the work of individuals or by small teams, are illustrated with highlights describing selected technologies from the domains of accelerators and detectors. The book also presents the framework and conditions prevailing at CERN that enabled spectacular advances in technology and contributed to propel the European organization into the league of leading research laboratories in the world. While the book is specifically aimed at providing information for the technically interested general public, more expert readers may also appreciate the broad variety of subjects presented. Ample references are given for those who wish to further explore a given topic.

  1. Tropical Cyclone Report, 1990.

    Science.gov (United States)

    1990-01-01

    organization as system underwent increased vertical wind shear and loss of latent and sensible heat. HI. TRACK AND MOTION After initially tracking...PASADENA CIUDAD UNIVERSITARIA. MEXICO LISD CAMP SPRINGS CENTER, MD CIVIL DEFENSE, BELAU LOS ANGELES PUBLIC LIBRARY CIVIL DEFENSE, MAJURO MAURITIUS

  2. 77 FR 75447 - Worley Parsons, Accounts Payable, a Subsidiary of Worley Parsons Corporation, Including On-Site...

    Science.gov (United States)

    2012-12-20

    ..., Pasadena, Texas. The workers firm provides engineering and design services. The Account Payable Group... services to Malaysia. Information from the company also shows that leased workers from Tatum LLC were... were adversely affected by a shift in services to Malaysia. [[Page 75448

  3. AGU Cinema: Festival of short science films at Fall Meeting

    Science.gov (United States)

    Harned, Douglas A.

    2012-11-01

    New technologies have revolutionized the use of video as a means of science communication and have made it easier to create, distribute, and view. With video having become omnipresent in our culture, it sometime supplements or even replaces writing in many science and education applications. An inaugural science film festival sponsored by AGU at the 2012 Fall Meeting in San Francisco, Calif., in December will showcase short videos—30 minutes or less in length—developed to disseminate scientific results to various audiences and to enhance learning in the classroom. AGU Cinema will feature professionally produced, big budget films alongside low-budget videos aimed at niche audiences and made by amateurs. The latter category includes videos made by governmental agency scientists, educators, communications specialists within scientific organizations, and Fall Meeting oral and poster presenters.

  4. Robotics Technology Development Program Cross Cutting and Advanced Technology

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Horschel, D.S.

    1994-01-01

    Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy's complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems

  5. Theme: Emerging Technologies.

    Science.gov (United States)

    Malpiedi, Barbara J.; And Others

    1989-01-01

    Consists of six articles discussing the effect of emerging technologies on agriculture. Specific topics include (1) agriscience programs, (2) the National Conference on Agriscience and Emerging Occupations and Technologies, (3) biotechnology, (4) program improvement through technology, (5) the Agriscience Teacher of the Year program, and (6)…

  6. Moralizing Food Technology

    DEFF Research Database (Denmark)

    Coff, Christian Eyde

    2015-01-01

    Food technologies are common on many levels in society and used by both food professionals and consumers. Food technologies are not neutral. They inform and shape the behaviour of people. This paper presents a theoretical framework for analysing the mediating role of food technology and its influ...

  7. The role of surgeons in identifying emerging technologies for health technology assessment.

    Science.gov (United States)

    Stafinski, Tania; Topfer, Leigh-Ann; Zakariasen, Ken; Menon, Devidas

    2010-04-01

    Health technology assessment (HTA) is a tool intended to help policy-makers decide which technologies to fund. However, given the proliferation of new technologies, it is not possible to undertake an HTA of each one before it becomes funded. Consequently, "horizon-scanning" processes have been developed to identify emerging technologies that are likely to have a substantial impact on clinical practice. Although the importance of physicians in the adoption of new technologies is well recognized, their role in horizon scanning in Canada has been limited. The purpose of this project was to pilot an approach to engage physicians, specifically surgeons, in provincial horizon-scanning activities. We invited 18 surgeons from Alberta's 2 medical schools to a horizon-scanning workshop to solicit their views on emerging technologies expected to impact surgical practice within the next 5 years and/or the importance of different attributes or characteristics of new technologies. Surgeons, regardless of specialty, identified developments designed to enhance existing minimally invasive surgical techniques, such as endoscopic, robotic and image-guided surgery. Several nonsurgical areas, including molecular genetics and nano technology, were also identified. Of the 13 technology attributes discussed, safety or risk, effectiveness and feasibility were rated as most important. Lastly, participating surgeons expressed an interest in becoming further involved in local HTA initiatives. Surgeons, as adopters and users of health technologies, represent an important and accessible information source for identifying emerging technologies for HTA. A more formal, ongoing relationship between the government, HTA and surgeons may help to optimize the use of HTA resources.

  8. Technology Transition for Hybrid Warfare

    Science.gov (United States)

    2010-02-16

    and Iraq. At the same time, the science and technology base must provide the disruptive technologies to defeat future conventional enemies. This... disruptive technologies will be needed to retain long-term technological superiority in conventional warfare. Incremental improvement is the most...technology to be missed. Disruptive technologies are the second type of technological change and involve revolutionary concepts involving large technological

  9. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  10. Technology transfer

    International Nuclear Information System (INIS)

    1998-01-01

    On the base of technological opportunities and of the environmental target of the various sectors of energy system this paper intend to conjugate the opportunity/objective with economic and social development through technology transfer and information dissemination [it

  11. Technology transfer for adaptation

    Science.gov (United States)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  12. Editorial: Advanced learning technologies

    Directory of Open Access Journals (Sweden)

    Yu-Ju Lan

    2012-03-01

    Full Text Available Recent rapid development of advanced information technology brings high expectations of its potential to improvement and innovations in learning. This special issue is devoted to using some of the emerging technologies issues related to the topic of education and knowledge sharing, involving several cutting edge research outcomes from recent advancement of learning technologies. Advanced learning technologies are the composition of various related technologies and concepts such as mobile technologies and social media towards learner centered learning. This editorial note provides an overview of relevant issues discussed in this special issue.

  13. Environmental Technologies Summary Book

    International Nuclear Information System (INIS)

    2009-02-01

    This book lists the companies and their technology, which have new excellent technology authentication and technology verification. They are as in the following : sewage advanced treatment technology using a three-stage Bio-Ceramic Filtration by Shinwoo engineering.co.kr, Twist Filter by Sungshin engineering.co.kr, Sewage advanced treatment technology using CIMEN-DOC by Taeyeong/CI biotech.co.kr, DeNipho using pump ejector and Bio Green Media by Green Technology.co.kr, Automatic integrated management system using Envi-SIS by Sallasanup.com Kozone.co.kr and Geoworks.co.kr.

  14. A Study on the Linkage between Nano Fusion Technology and Nuclear Technology

    International Nuclear Information System (INIS)

    Jeong, Ik; Lim, Chae Young; Lee, Jong Hee

    2009-02-01

    1) A survey of national energy policy trends in major nation - to secure renewal energy in the level of making a plan to supply national energy in the future - Tendency of energy policy based on Europe 2) A survey of the nano technology development - Status of major nano technology development - Developmental direction of nano technology related to nuclear energy 3) the nano technology development related with nuclear - high-temperature nuclear reactor by applying nano science and technology under quick development - materials required to high-level radioactive wastes treatment facility - develop materials of nuclear fusion facility in the long-term view 4) Innovation system of nano technology - Energy source -> conversion to energy -> distribution of energy -> energy storage -> energy use

  15. Teaching with Technology

    Science.gov (United States)

    Attard, Catherine

    2011-01-01

    New technologies continue to change every aspect of home, life and work: the way people communicate, calculate, analyse, shop, make presentations and socialise. "The Australian Curriculum" acknowledges the importance of teaching and learning with technology by including the use of information and communication technology (ICT) as one of…

  16. DECISION ANALYSIS AND TECHNOLOGY ASSESSMENTS FOR METAL AND MASONRY DECONTAMINATION TECHNOLOGIES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    The purpose of this investigation was to conduct a comparative analysis of innovative technologies for the non-aggressive removal of coatings from metal and masonry surfaces and the aggressive removal of one-quarter to one-inch thickness of surface from structural masonry. The technologies tested should be capable of being used in nuclear facilities. Innovative decontamination technologies are being evaluated under standard, non-nuclear conditions at the FIU-HCET technology assessment site in Miami, Florida. This study is being performed to support the OST, the Deactivation and Decommissioning (D and D) Focus Area, and the environmental restoration of DOE facilities throughout the DOE complex by providing objective evaluations of currently available decontamination technologies

  17. Moralizing Food Technology

    DEFF Research Database (Denmark)

    Coff, Christian Eyde

    2015-01-01

    Food technologies are common on many levels in society and used by both food professionals and consumers. Food technologies are not neutral. They inform and shape the behaviour of people. This paper presents a theoretical framework for analysing the mediating role of food technology and its...... influence on food ethics. Post-phenomenology and the idea of a technologically mediated morality are central theoretical approaches. Four elements are included in the analytical framework: perception, interpretation, intentionality, and mediated morality. The framework is applied to two cases; food safety...

  18. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  19. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  20. Designing Human Technologies

    DEFF Research Database (Denmark)

    Simonsen, Jesper

    and the design process, in ethical and society-related concerns, and in evaluating how designs fulfill needs and solve problems. Designing Human Technologies subscribes to a broad technology concept including information and communication, mobile, environmental/sustainable and energy technologies......Design is increasingly becoming a part of the university curriculum and research agenda. The keynote present and discuss Designing Human Technologies – an initiative aiming at establishing a design oriented main subject area alongside traditional main subject areas such as Natural Science......, the Humanities, and Social Science. The initiative broadens the perspective of IS and recognize reflections on aesthetics, ethics, values, connections to politics, and strategies for enabling a better future as legitimate parts of the research agenda. Designing Human Technologies is a design-oriented Strategic...

  1. Technology Partnership Agreements | NREL

    Science.gov (United States)

    Partnership Agreements Technology Partnership Agreements Looking for Funding? We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and, in using technology partnership agreements. See a summary of our Fiscal Year 2017 technology partnership

  2. Colagem ortodôntica em esmalte com presença ou ausência de contaminação salivar: é necessário o uso de adesivo auto-condicionante ou de adesivo hidrofílico? Orthodontic bonding in dry and saliva contaminated enamel: is a self-etching primer or a moisture-insensitive primer necessary?

    Directory of Open Access Journals (Sweden)

    Cristiane Becher Rosa

    2008-06-01

    Full Text Available OBJETIVO: o objetivo deste trabalho foi avaliar a resistência ao cisalhamento da colagem ortodôntica de um adesivo hidrofílico (Transbond Moisture-Insensitive Primer, 3M Unitek, Monrovia, Califórnia, de um adesivo auto-condicionante (Transbond Self-Etching Primer, 3M Unitek, Monrovia, Califórnia, e sem uso de adesivo, em superfícies de esmalte secas ou contaminadas por saliva. METODOLOGIA: incisivos bovinos (60 foram divididos em 6 grupos: (1 controle sem contaminação salivar (sem adesivo, (2 controle com contaminação salivar (sem adesivo, (3 adesivo auto-condicionante sem contaminação salivar, (4 adesivo auto-condicionante com contaminação salivar antes do adesivo, (5 adesivo hidrofílico sem contaminação salivar e (6 adesivo hidrofílico com contaminação salivar antes do adesivo. Braquetes metálicos foram colados com compósito (Transbond XT, 3M Unitek, Monrovia, Califórnia. Após a colagem, os corpos-de prova foram armazenados a 37±1ºC em ambiente úmido até a realização do teste de cisalhamento. Diferença estatística foi determinada com valor de probabilidade de 0,05 ou menos (p AIM: The purpose of this study was to evaluate the shear bond strength of orthodontic bonding with the use of a hydrophilic primer (Transbond Moisture-Insensitive Primer, 3M Unitek, Monrovia, Calif., a self-etching primer (Transbond Plus Self-etching Primer, 3M Unitek, Monrovia, Calif. and without primer application, in dry and saliva contaminated enamel surfaces. METHODS: Bovine incisors (60 were divided into 6 groups: (1 uncontaminated control (no primer, (2 control with saliva contamination (no primer, (3 uncontaminated self-etching primer, (4 saliva contamination before self-etching primer, (5 uncontaminated hydrophilic primer and (6 saliva contamination before hydrophilic primer. Stainless steel brackets were bonded with composite resin (Transbond XT, 3M Unitek, Monrovia, Calif.. After bonding, all samples were stored at 37±1°C in a

  3. Maritime Technology

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text.......Elementary introduction to the subject "Maritime Technology".The contents include drawings, sketches and references in English without any supplementary text....

  4. Technology Innovations from NASA's Next Generation Launch Technology Program

    Science.gov (United States)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  5. Education Technology Transformation

    Science.gov (United States)

    Kennedy, Mike

    2012-01-01

    Years ago, as personal computers and other technological advancements began to find their way into classrooms and other educational settings, teachers and administrators sought ways to use new technology to benefit students. The potential for improving education was clear, but the limitations of the available education technology made it difficult…

  6. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  7. 78 FR 24241 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2013-04-24

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology.... SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National Science and...

  8. 77 FR 61448 - Nanoscale Science, Engineering and Technology Subcommittee Committee on Technology, National...

    Science.gov (United States)

    2012-10-09

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering and Technology Subcommittee...: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National Science and...

  9. Technology images and concepts of technology in transition. An analysis in the philosophy of technology and general technology; Technikbilder und Technikkonzepte im Wandel. Eine technikphilosophische und allgemeintechnische Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Banse, G. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (DE). Inst. fuer Technikfolgen-Abschaetzung und Systemanalyse (ITAS); Meier, B. [Potsdam Univ. (Germany). Inst. fuer Arbeitslehre/Technik; Wolffgramm, H. (eds.)

    2002-02-01

    This volume contains contributions resulting from an expert discussion on 'Technology Images and Concepts of Technology in Transition - an analysis in the philosophy of technology and general technology. This expert discussion took place on 6 October 2000 at the State Pedagogical Institute Brandenburg in Ludwigsfelde-Struveshof and was conceived and organized co-operatively by the Forschungszentrum Karlsruhe, Institute for Technology Assessment and Systems Analysis, the University of Potsdam, Institute for the Theory of Work/Technology and Professor Horst Wolffgramm, Frankfurt (Oder). It was the aim of the expert discussion to compile, compare and relate the various positions in the philosophy of technology, general technology science, the history of technology and the didactics of technology of the 'conceptualisation' of technology as a basis for generally understanding technology or for a scientifically based 'image of technology' to each other, and then to make them accessible for curricula within a framework of conceiving general technical education at all school levels. The contributions are grouped according to the two main foci of the event: On the one hand they are concerned with determining a contemporary concept of technology ('Image of technology'). One of the aims is to characterize technological change from the historical-genetic perspective and in this way to access technology as a work of mankind, as an important element of our culture. At the same time it is necessary to forecast future developments or to make future paths of development visible to enable the indication of change by basic innovations. Second, on this basis and supported by educational theory, conclusions are drawn for future-oriented technical general education for all students. The main focus in this is on the linkage between goals, content and subject-specific methods. In order to enable the determination of competence of any individual

  10. Promoting renewable energy technologies

    International Nuclear Information System (INIS)

    Grenaa Jensen, S.

    2004-06-01

    Technologies using renewable energy sources are receiving increasing interest from both public authorities and power producing companies, mainly because of the environmental advantages they procure in comparison with conventional energy sources. These technologies can be substitution for conventional energy sources and limit damage to the environment. Furthermore, several of the renewable energy technologies satisfy an increasing political goal of self-sufficiency within energy production. The subject of this thesis is promotion of renewable technologies. The primary goal is to increase understanding on how technological development takes place, and establish a theoretical framework that can assist in the construction of policy strategies including instruments for promotion of renewable energy technologies. Technological development is analysed by through quantitative and qualitative methods. (BA)

  11. 77 FR 56681 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2012-09-13

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology...: Notice of webinar. SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  12. Marketing technologically advanced products

    NARCIS (Netherlands)

    Bender, Horst

    1989-01-01

    This paper calls for a merger of technology and marketing under a customer value perspective; for an enhancement of the traditional technological innovation orientation of the technology-based firm with a market thrust. It establishes technology-based products as product-service offerings that are

  13. 7th Annual Science and Engineering Technology Conference/DoD Technology Exposition Volume 1

    Science.gov (United States)

    2006-04-20

    Disruptive Technologies • Army Approach to Disruptive Technologies and Transition Mr. Dennis Schmidt, Director, Science & Technology Integration, Office of...the Assistant Secretary of the Army for Research and Technology • Navy Approach to Disruptive Technologies and Transition Mr. Lewis DeSandre, Program...Manager, ONR 351 • Air Force Approach to Disruptive Technologies and Transition Colonel Mark Stephen, Associate Deputy Assistant Secretary (Science

  14. Examining the Relationship among High-School Teachers' Technology Self-Efficacy, Attitudes towards Technology Integration, and Quality of Technology Integration

    Science.gov (United States)

    Gonzales, Stacey

    2013-01-01

    This quantitative study explored the relationships among high-school teachers' (n = 74) technology self-efficacy, teachers' attitudes towards technology integration, and quality of teachers' technology integration into instruction. This study offered the unique perspectives of in-service high-school teachers as they have first-hand experience…

  15. 75 FR 39044 - Unisys Corporation, Technology Business Segment, Unisys Information Technology Division, Formerly...

    Science.gov (United States)

    2010-07-07

    ..., Technology Business Segment, Unisys Information Technology Division, Formerly Known as BETT, Including... Assistance on April 29, 2010, applicable to workers of Unisys Corporation, Technology Business Segment... employees under the control of the Plymouth, Michigan location of Unisys Corporation, Technology Business...

  16. Superconducting radio frequency technology: Expanding the horizons of physics and technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Leemann, C.W.; Sundelin, R.M.; Hartline, B.K.

    1986-01-01

    This paper describes a major new technology supporting the further evolution of accelerators: superconducting radio frequency (SRF) technology, which is today on the verge of large-scale application in accelerators. Originally foreseen in the early 1960s as a promising technology, SRF only recently has overcome several technological and practical hurdles. SRF accelerating structures promise low rf losses and high gradients under cw operation. High-quality, intense cw beams can be accelerated without risk of melting the structure and without requiring enormous amounts of input rf power

  17. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  18. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    International Nuclear Information System (INIS)

    1996-03-01

    This document has been prepared by the US Department of Energy's (DOE's) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT ampersand E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE's Operations Office and Energy Technology Centers

  19. Industrial technology transfer

    International Nuclear Information System (INIS)

    Bulger, W.

    1982-06-01

    The transfer of industrial technology is an essential part of the CANDU export marketing program. Potential customers require the opportunity to become self-sufficient in the supply of nuclear plant and equipment in the long term and they require local participation to the maximum extent possible. The Organization of CANDU Industries is working closely with Atomic Energy of Canada Ltd. in developing comprehensive programs for the transfer of manufacturing technology. The objectives of this program are: 1) to make available to the purchasing country all nuclear component manufacturing technology that exists in Canada; and 2) to assure that the transfer of technology takes place in an efficient and effective way. Technology transfer agreements may be in the form of joint ventures or license agreements, depending upon the requirements of the recipient

  20. Making technology public

    DEFF Research Database (Denmark)

    Winthereik, Brit Ross; Johannsen, Nis; Strand, Dixi Louise

    2008-01-01

    the transformative potential of the portal presentation for reconfiguring relationships between citizens, health care systems, and information and communication technology (ICT). The analysis is guided by Haraway's notion of diffraction. Findings – The analysis demonstrates the particular way in which the user...... secure the future of the technology and organisation behind it. Research limitations/implications – The paper extends the script metaphor beyond a limited designer-technology-user configuration and argues that scripts in the paraphernalia of technologies also can and should be “de......Purpose – Through an analysis of a demonstration video presenting a new national e-health portal, this paper aims to explore the assumptions and limitations of the concept of “script” and suggests a different approach to analysing the moral order of technology design. Design...

  1. Working around technologies

    DEFF Research Database (Denmark)

    Dupret, Katia

    2017-01-01

    in Denmark. The aim and contribution of the study is twofold. First, it attempts to revitalise the discussion on technology workaround strategies as responsible professionalism. Second, it will direct attention to and contribute to an understanding of how the normativity embedded in technological development...... expressions of professionals’ active encounter with the complexity of work situations, and can therefore be important signs of professional ethical judgement. Drawing on science and technology studies and the concept of invisible work, the study discusses workaround situations that arise in health care work......This study discusses how professionalism and work ethics influence how health care professionals work around new technologies. When people avoid using technologies, they are not necessarily ceasing to engage in their work activities. The workaround strategies presented here are rather practical...

  2. Authoritative knowledge, the technological imperative and women's responses to prenatal diagnostic technologies.

    Science.gov (United States)

    McCoyd, Judith L M

    2010-12-01

    Theories about authoritative knowledge (AK) and the technological imperative have received varying levels of interest in anthropological, feminist and science and technology studies. Although the anthropological literature abounds with empirical considerations of authoritative knowledge, few have considered both theories through an empirical, inductive lens. Data extracted from an earlier study of 30 women's responses to termination for fetal anomaly are reanalyzed to consider the women's views of, and responses to, prenatal diagnostic technologies (PNDTs). Findings indicate that a small minority embrace the societal portrayal of technology as univalently positive, while the majority have nuanced and ambivalent responses to the use of PNDTs. Further, the interface of authoritative knowledge and the technological imperative suggests that AK derives not only from medical provider status and technology use, but also from the adequacy and trustworthiness of the information. The issue of timing and uncertainty of the information also are interrogated for their impact on women's lives and what that can illuminate about the theories of AK and the technological imperative.

  3. Technology as a factor of identity transformation: development of HOMO TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Vadim A. Emelin

    2016-03-01

    Full Text Available Based on the understanding of identity as an individual’s identity with the self within the cultural historical chronotope, and experienced as the feeling of belonging/ non-belonging to some communities, controllability/uncontrollability of situations and predictability/non-predictability of events, the paper describes the processes of identity transformation in the course of a technological development. Taken as the initial point, the idea of organ-extension (K. Marx, E. Kapp and technological extension of man (S. Freud, M. McLuhan means that technologies are the extension of a human body and its organs. The processes of technological extension assume a particular scale under condition of information society development, within which computer-, telecommunication-, transport-, bio-, nano- and other high technologies have become an actual cultural historical force that has a power to transform a human. Special attention is paid to the fact that unlike the precedent technologies that have just facilitated some or other human performance, modern technologies of information society do not only change the human topology, widen and expand human natural abilities but also really transform higher mental functions and mediate mental processes and relations between human individuals. Man becomes not only a biological and social creature but also a technological one, i.e. so called HOMO TECHNOLOGICUS. The scale and speed of cultural historical changes make the study of the technological extensions role in the transformation of identity a key point for developing ways of comprehending their role in the life of a modern person, and also for forecasting the evolution of relationship between man and machines in the future.

  4. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    Science.gov (United States)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  5. Does internationalisation of technology determine technological diversification in large firms?

    OpenAIRE

    Christian Le Bas; Pari Patel

    2005-01-01

    The purpose of the paper is to examine the relationship between technological diversification and internationalisation of technology for large multinational firms, operating at the world technological frontier. More precisely we address the question as to whether internationalisation determines diversification. The analysis is based on a rich database of the European patenting activity of 345 large multinational firms with the highest levels of patenting over two periods of time (1988-1990 an...

  6. Green technology foresight of high technology: a social shaping of technology approach to the analysis of hopes and hypes

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Jørgensen, Ulrik

    2009-01-01

    Protection Agency with the purpose of acquiring knowledge about the environmental potentials and risks related to the three areas of technology. The foresight was organized with a social shaping of technology (SST) approach to the field in order to cater for the complex relationship between societal demands......, technology options, innovation dynamics and environmental impacts. The approach involved studying actor-networks, laboratory programs and technology trajectories as well as deconstructing different stakeholders’ high tech visions. The identified environmental potentials and risks related to the three areas...

  7. DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface voters and porous waters by absorbing d...

  8. Teaching With(out) Technology: Secondary English Teachers and Classroom Technology Use

    Science.gov (United States)

    Flanagan, Sara; Shoffner, Melanie

    2013-01-01

    Technology plays an integral role in the English Language Arts (ELA) classroom today, yet teachers and teacher educators continue to develop understandings of how technology influences pedagogy. This qualitative study explored how and why two ELA teachers used different technologies in the secondary English classroom to plan for and deliver…

  9. Legitimation problems of participatory processes in technology assessment and technology policy.

    Science.gov (United States)

    Saretzki, Thomas

    2012-11-01

    Since James Carroll (1971) made a strong case for "participatory technology", scientists, engineers, policy-makers and the public at large have seen quite a number of different approaches to design and implement participatory processes in technology assessment and technology policy. As these participatory experiments and practices spread over the last two decades, one could easily get the impression that participation turned from a theoretical normative claim to a working practice that goes without saying. Looking beyond the well-known forerunners and considering the ambivalent experiences that have been made under different conditions in various places, however, the "if" and "how" of participation are still contested issues when questions of technology are on the agenda. Legitimation problems indicate that attempts to justify participation in a given case have not been entirely successful in the eyes of relevant groups among the sponsors, participants, organizers or observers. Legitimation problems of participatory processes in technology assessment and technology policy vary considerably, and they do so not only with the two domains and the ways of their interrelation or the specific features of the participatory processes. If we ask whether or not participation is seen as problematic in technology assessment and technology policy-making and in what sense it is being evaluated as problematic, then we find that the answer depends also on the approaches and criteria that have been used to legitimize or delegitimize the call for a specific design of participation.

  10. Educational Technology in China

    Science.gov (United States)

    Meifeng, Liu; Jinjiao, Lv; Cui, Kang

    2010-01-01

    This paper elaborates the two different academic views of the identity of educational technology in China at the current time--advanced-technology-oriented cognition, known as Electrifying Education, and problem-solving-oriented cognition, known as Educational Technology. It addresses five main modes of educational technology in China: as a…

  11. Impact of Underwater Explosions on Concrete Bridge Foundations

    Science.gov (United States)

    2016-06-01

    structural component. Because of the curved structure, arch bridges have a high bending force resistance. When the bridge is loaded, a horizontal force...V. Kedrinskii, “ Rarefaction waves and bubbly cavitation in real liquid,” presented at the Fourth International Symposium on Cavitation, Pasadena

  12. 78 FR 2688 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Science.gov (United States)

    2013-01-14

    ... Inglewood, 115 N. Market St., Inglewood, 12001163 Merwin House, (Residential Architecture of Pasadena... Hall, 24 Perry Ave., Bourne, 12001169 Bourne, Jonathan, Public Library, 30 Keene St., Bourne, 12001168...., Willmar, 12001174 St. Louis County Lincoln Branch Library, 2229 W. 2nd St., Duluth, 12001175 MISSOURI...

  13. 78 FR 5179 - Change in Bank Control Notices; Acquisitions of Shares of a Bank or Bank Holding Company

    Science.gov (United States)

    2013-01-24

    ... February 11, 2013. A. Federal Reserve Bank of Chicago (Colette A. Fried, Assistant Vice President) 230..., as independent trustee of Trust, Kurt Bosshard, Kapaa, Hawaii, John Bosshard III, McCarthy, Alaska..., California, Elizabeth Bosshard-Blakely, South Pasadena, California, Alexandra Bosshard, Sandy, Utah, and John...

  14. Ergonomics technology

    Science.gov (United States)

    Jones, W. L.

    1977-01-01

    Major areas of research and development in ergonomics technology for space environments are discussed. Attention is given to possible applications of the technology developed by NASA in industrial settings. A group of mass spectrometers for gas analysis capable of fully automatic operation has been developed for atmosphere control on spacecraft; a version for industrial use has been constructed. Advances have been made in personal cooling technology, remote monitoring of medical information, and aerosol particle control. Experience gained by NASA during the design and development of portable life support units has recently been applied to improve breathing equipment used by fire fighters.

  15. Technology in Education

    Science.gov (United States)

    Roden, Kasi

    2011-01-01

    This paper was written to support a position on using technology in education. The purpose of this study was to support the use of technology in education by synthesizing previous research. A variety of sources including books and journal articles were studied in order to compile an overview of the benefits of using technology in elementary,…

  16. Avionics systems integration technology

    Science.gov (United States)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  17. ACR-700 advanced technologies

    International Nuclear Information System (INIS)

    Tapping, R.L.; Turner, C.W.; Yu, S.K.W.; Olmstead, R.; Speranzini, R.A.

    2004-01-01

    A successful advanced reactor plant will have optimized economics including reduced operating and maintenance costs, improved performance, and enhanced safety. Incorporating improvements based on advanced technologies ensures cost, safety and operational competitiveness of the ACR-700. These advanced technologies include modern configuration management; construction technologies; operational technology for the control centre and information systems for plant monitoring and analysis. This paper summarizes the advanced technologies used to achieve construction and operational improvements to enhance plant economic competitiveness, advances in the operational technology used for reactor control, and presents the development of the Smart CANDU suite of tools and its application to existing operating reactors and to the ACR-700. (author)

  18. Competitiveness through cooperation between electricity and information technology. TESLA - Information technology and electric power systems technology programme 1998-2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The electricity markets are being opened up to competition all round the world. To succeed in competition electricity sellers want new information technology tools to use in managing the sale of electricity. The network companies are aiming to step up utilization of their distribution capacity and to optimize power quality and the reliability of supply. Consumers need solutions with which they can manage their own power consumption and tendering sellers. The Nordic countries have been the first to deregulate their electricity markets. This head start in time is being made use of to generate a head start in technology. Tekes has initiated a technology programme for the years 1998 to 2002, named TESLA - Information Technology and Electric Power Systems, to promote the competitiveness of the Finnish electricity industry in changing conditions. The objective of the programme is to adapt information technology extensively to power distribution and thus develop the potential for Finland`s electricity industry to succeed on world markets. At the moment power distribution technology forms about one third of Finland`s energy technology exports. The programme is also aimed at developing new data transfer and data processing applications for companies in information technology clusters. For Finnish parties in the electricity markets the programme will produce ways and means of (1) improving management and use of distribution networks, (2) implementing competition in electricity sales, and (3) increasing the efficiency of electricity use

  19. Teacher Educator Technology Competencies

    Science.gov (United States)

    Foulger, Teresa S.; Graziano, Kevin J.; Schmidt-Crawford, Denise A.; Slykhuis, David A.

    2017-01-01

    The U.S. National Educational Technology Plan recommends the need to have a common set of technology competencies specifically for teacher educators who prepare teacher candidates to teach with technology (U.S. Department of Education, Office of Educational Technology, 2017). This study facilitated the co-creation of the Teacher Educator…

  20. Technology in Education: Technology Integration into the School's Curriculum

    Science.gov (United States)

    Culver, Bobby L., Jr.

    2017-01-01

    Integrating technology into the school's curriculum is a very contentious issue. However, it is an important issue that schools need to consider and assess. The purpose of this study was to examine the relationship between K-5th grade teachers' perceptions of proficiency of technology equipment, experience with technology in education, and…

  1. Wasting the Future: The Technological Sublime, Communications Technologies, and E-waste

    Directory of Open Access Journals (Sweden)

    Sebine Label

    2012-08-01

    Full Text Available Literally speaking, e-waste is the future of communications. E-waste is the fastest growing waste stream in the world, much of it communications technologies from cell phones to laptops, televisions to peripherals. As a result of policies of planned obsolescence working computers, cell phones, and tablets are routinely trashed. One of the most powerful and enduring discourses associated with emerging technologies is the technological sublime, in which technology is seen as intellectually, emotionally, or spiritually transcendent. It comprises a contradictory impulse that elevates technology with an almost religious fervor, while simultaneously overlooking some of the consequences of industrialism, as well as ignoring the necessity of social, economic, and governmental infrastructures necessary to the implementation and development of new technologies. The idea that a new technology will not pollute or harm the environment is a persistent, though often quickly passed over, theme in the technological sublime, echoed in discourses about emerging technologies such as the silicon chip, the internet, and other ICTs. In this paper, I make connections between the discourse of newness, the practice of planned obsolescence, and the mountains of trashed components and devices globally. Considering the global context demonstrates the realities of the penetration of ICTs and their enduring pollution and negative implications for the health of humans and nonhumans, including plants, animals, waterways, soil, air and so on. I use the discourse of the technological sublime to open up and consider the future of communications, to argue that this discourse not only stays with us but also contains within it two important and related components, the promise of ecological harmony and a future orientation. I argue that these lingering elements keep us from considering the real future of communications – e-waste – and that, as communications scholars, we must also

  2. History of science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong Ju

    1986-04-15

    This book shows origin of technology and development of civilization, origin of science and dissemination of ironware, accumulation of science and technology in the Middle Age society, the era of the Renaissance and science, factory-made manual industry and mechanistic nature view, the era of scientific enlightenment, industrial revolution, science and technology of Korea, formation of modern science and technology, modern technology and approach to science and technology, science and technology in the twenty century such as biochemistry and physics, and cooperation of science and technology.

  3. History of science and technology

    International Nuclear Information System (INIS)

    Jang, Byeong Ju

    1986-04-01

    This book shows origin of technology and development of civilization, origin of science and dissemination of ironware, accumulation of science and technology in the Middle Age society, the era of the Renaissance and science, factory-made manual industry and mechanistic nature view, the era of scientific enlightenment, industrial revolution, science and technology of Korea, formation of modern science and technology, modern technology and approach to science and technology, science and technology in the twenty century such as biochemistry and physics, and cooperation of science and technology.

  4. Stimulating R and D of industrial energy-efficient technology. Policy lessons--impulse technology

    International Nuclear Information System (INIS)

    Luiten, Esther; Blok, Kornelis

    2004-01-01

    Stimulating research and development (R and D) of innovative energy-efficient technologies for industry is an attractive option for reducing greenhouse gas emissions. Impulse technology, an innovative papermaking technology, is always included in studies assessing the long-term potential of industrial energy efficiency. Aim of this article is to analyse the R and D trajectory of impulse technology in order to explore how government can stimulate the development of industrial energy-efficient technology. The concept of 'momentum' is used to characterise the network of actors and to understand the effect of government R and D support in this particular case study. The network analysis convincingly shows that although marketed as an energy-efficient technology, other benefits were in fact driving forces. Researchers at various national pulp and paper research institutes were successful in attracting government R and D support by claiming an improved energy efficiency. The momentum of the technology network was modest between 1980 and 1990. Therefore, government R and D support accelerated the development of impulse technology in this period. However, when the perspectives of the technology deteriorated--momentum decreased--researchers at national research institutes continued to attract government R and D support successfully. But 25 years of R and D--and over 15 years government R and D support--have not yet resulted in a proven technology. The case study illustrates the risk of continuing R and D support too long without taking into account actors' drivers to invest in R and D. Once momentum decreased, government should have been more circumspect in evaluating the (energy efficiency) promise of impulse technology. The major policy lesson is that government has to look beyond claimed energy efficiencies; government has to value (qualitative) information on (changing) technology networks in deciding upon starting, continuing or pulling out financial R and D support to

  5. Future Information Technology

    CERN Document Server

    Stojmenovic, Ivan; Choi, Min; Xhafa, Fatos; FutureTech 2013

    2014-01-01

    Future technology information technology stands for all of continuously evolving and converging information technologies, including digital convergence, multimedia convergence, intelligent applications, embedded systems, mobile and wireless communications, bio-inspired computing, grid and cloud computing, semantic web, user experience and HCI, security and trust computing and so on, for satisfying our ever-changing needs. In past twenty five years or so, Information Technology (IT) influenced and changed every aspect of our lives and our cultures. These proceedings foster the dissemination of state-of-the-art research in all future IT areas, including their models, services, and novel applications associated with their utilization.

  6. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    .After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies......This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... seem a core issue when dealing with technology for boundaries....

  7. Globalization and Technology

    Directory of Open Access Journals (Sweden)

    Traian-Alexandru Miu

    2016-01-01

    Full Text Available Globalization, very complex phenomenon, involves overcoming the barriers between different states, which allowed the rapid transfer of capital, technology, information, and the "toxins" from one country to another. First, the technology formed the basis of rapid expansion of great ideas promoted by globalization. Undeniable progress in the field of technology and science, has conferred to the man extraordinary powers that have been used most often to the detriment of his spiritual progress. We must not deny that science and technology have brought many benefits to human, and he could expand the knowledge horizon upon the world in which he lives, exploiting information acquired and share them with others. Science and technology must become for postmodern man ways of talk and communion between human and divinity, all to the praise of God and the perfection of the creature.

  8. Democratization of philosophy of technologies

    OpenAIRE

    Arun Kumar Tripathi

    2015-01-01

    Technology is a form of culture. Technology is shaping the theoretical framework of our social existence. The technological form of life is part and parcel of culture, just as culture in the human sense inescapably implies technologies. There are unfathomable effects of technology on human culture and society. This paper presents the background and the editorial introduction to the special issue: symposium on Education, Technology, & Democracy: Democratization of Technologies.

  9. Newnes communications technology handbook

    CERN Document Server

    Lewis, Geoff

    1994-01-01

    Newnes Communications Technology Handbook provides a discussion on different topics relevant to communications technology. The book is comprised of 39 chapters that tackle a wide variety of concern in communications technology. The coverage of the text includes technologies, such as analog digital communications systems, radio frequency receiver, and satellite systems. The book also discusses some methods and techniques used in communications technology, including mixer signal processing, modulation and demodulation, and spread spectrum techniques. The text will be of great use to engineers, t

  10. Technology Empowerment: Security Challenges.

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Drake Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Wendell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nelson, Thomas R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skocypec, Russell D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Technology empowerment” means that innovation is increasingly accessible to ordinary people of limited means. As powerful technologies become more affordable and accessible, and as people are increasingly connected around the world, ordinary people are empowered to participate in the process of innovation and share the fruits of collaborative innovation. This annotated briefing describes technology empowerment and focuses on how empowerment may create challenges to U.S. national security. U.S. defense research as a share of global innovation has dwindled in recent years. With technology empowerment, the role of U.S. defense research is likely to shrink even further while technology empowerment will continue to increase the speed of innovation. To avoid falling too far behind potential technology threats to U.S. national security, U.S. national security institutions will need to adopt many of the tools of technology empowerment.

  11. Technology Museums in Denmark

    DEFF Research Database (Denmark)

    Søndergaard, Morten Karnøe

    2012-01-01

    This article presents an exhibit review of some of the major technology museums in Denmark. First comes an introduction to the Danish museum ”landscape”. Second a total of six museums and their technology focused exhibits are presented. Among the museums are the Fisheries and Maritime Museum...... in Esbjerg, housing one of the most impressive and representative exhibitions on the technology behind the strong Danish maritime sector. Another museum being mentioned is the Energy Museum, which covers the background for some of the major breakthroughs performed in Denmark within this area; particularly...... within wind power technology. Finally special attention is devoted to the Danish Technological Museum. A museum which is the oldest and most elaborate of all the technology museums. The museum covers virtually every technological breakthrough with any relevance in a Danish section, with a special focus...

  12. Bridging the Gap: Technology Trends and Use of Technology in Schools

    Science.gov (United States)

    Lim, Cher Ping; Zhao, Yong; Tondeur, Jo; Chai, Ching Sing; Tsai, Chin-Chung

    2013-01-01

    Considerable investment has been made to bring technology to schools and these investments have indeed resulted in many "success stories." However there are two significant gaps in educational uses of technology that must be addressed. The first is a usage gap. Compared to how and how much today's students use technology outside…

  13. Nuclear technology and societal needs

    International Nuclear Information System (INIS)

    2004-11-01

    This volume aims to review the present status of development of nuclear technologies and their applications in the country and also to make projections for future requirements. This will also cover state-of-the-art technologies in these areas. The following topics are covered in detail: nuclear technologies for water desalination, water resources development and management using nuclear technology, industrial applications of isotopes and radiation technology, radiation technology in health care, nuclear technology for food preservation, agricultural applications of nuclear technology. Papers relevant to INIS are indexed separately

  14. Basic Principle of Advanced Oxidation Technology : Hybrid Technology Based on Ozone and Titania

    International Nuclear Information System (INIS)

    Widdi Usada; Agus Purwadi

    2007-01-01

    One of problems in health environment is organic liquid waste from many pollutant resources. Environmental friendly technology for degrading this waste is ozone which produced by plasma discharge technology, but its capability is limited. However, it is needed a new environmental friendly technology which has stronger capability. This new technology is so called advanced oxidation technology. Advanced oxidation technology is a hybrid of ozone, peroxide, UV light and photo catalyst. In this paper, it is introduced basic principle of hybrid of ozone and titania photo catalyst semiconductor. The capability of organic liquid degradation will be stronger because there is new radical which is produced by chemical reaction between electron-hole pair from photo catalyst titania and water or oxygen. This new radical then degrades this organic pollutant. This technology is used to degrade phenol. (author)

  15. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  16. Materials and technology

    International Nuclear Information System (INIS)

    Gockel, E.; Simon, J.

    1998-01-01

    New materials and the processes for their economical fabrication and use are the factors which drive innovation in totally different fields of technology, such as energy engineering, transport, and information. But they also open up new fields of technology such as micro systems or medicine technology. Five out of a total of twelve articles are separately listed in the ENERGY database [de

  17. Modeling Intercultural Collaboration and Negotiation (MICON) Workshop in Pasadena, CA on 13 Jul 2009

    Science.gov (United States)

    2009-07-13

    future; individualism versus collectivism, which is related to the integration of individuals into primary groups; masculinity versus femininity...institution (e.g., medical school). 36 5.3 The Impact of Ideology On June 23, 2005 the Circulatory Systems Devices Panel held a meeting to determine...gains. Negotiators generally leave gains, and negotiators from some cultures, like India , tend to leave significantly more gains than negotiators

  18. Information Technology Resources Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Information Technology Resources Assessment (ITRA) is being published as a companion document to the Department of Energy (DOE) FY 1994--FY 1998 Information Resources Management Long-Range Plan. This document represents a collaborative effort between the Office of Information Resources Management and the Office of Energy Research that was undertaken to achieve, in part, the Technology Strategic Objective of IRM Vision 21. An integral part of this objective, technology forecasting provides an understanding of the information technology horizon and presents a perspective and focus on technologies of particular interest to DOE program activities. Specifically, this document provides site planners with an overview of the status and use of new information technology for their planning consideration.

  19. The Impact of Technological and Non-Technological Innovations on Firm Growth

    OpenAIRE

    Ali-Yrkkö, Jyrki; Martikainen, Olli

    2008-01-01

    This study investigates the relationship between innovations and firm growth, based on the data of Finnish firms operating in the software industry. We find that in terms of turnover and employment, firms with only technological innovations do not grow more rapidly than other firms. However, firm growth is positively associated with the combination of technological and non-technological innovations.

  20. Application study of nuclear technologies for integration chemical, biological and radiological technology

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Kon; Han, M. H.; Kim, Y. H.; Yang, J. E.; Jung, K. S.; Cha, H. K.; Moon, J.; La, K. H

    2001-02-01

    The projects are suggested the method to maximize the technology and research results which are being carried out by KAERI on the nuclear field. The study presents 1)the technology to rapidly and accurately determine and the nature of contamination, 2) the technology to predict the spread of contaminant and the magnitude of damage, and 3) the expert-aided decision making technology to identify the optimum counter-measures. And the solutions are also suggested the application to military technology in Chemical, Biological and Radiation field. In addition, I hope this kind of cooperation model come to be the good case of military civilian research harmony to improve the national competition capability.

  1. Educational technology in medical education.

    Science.gov (United States)

    Han, Heeyoung; Resch, David S; Kovach, Regina A

    2013-01-01

    This article aims to review the past practices of educational technology and envision future directions for medical education. The discussion starts with a historical review of definitions and perspectives of educational technology, in which the authors propose that educators adopt a broader process-oriented understanding of educational technology. Future directions of e-learning, simulation, and health information technology are discussed based on a systems view of the technological process. As new technologies continue to arise, this process-oriented understanding and outcome-based expectations of educational technology should be embraced. With this view, educational technology should be valued in terms of how well the technological process informs and facilitates learning, and the acquisition and maintenance of clinical expertise.

  2. The Next Technology Revolution - Nano Electronic Technology

    Science.gov (United States)

    Turlik, Iwona

    2004-03-01

    Nanotechnology is a revolutionary engine that will engender enormous changes in a vast majority of today's industries and markets, while potentially creating whole new industries. The impact of nanotechnology is particularly significant in the electronics industry, which is constantly driven by the need for higher performance, increased functionality, smaller size and lower cost. Nanotechnology can influence many of the hundreds of components that are typically assembled to manufacture modern electronic devices. Motorola manufactures electronics for a wide range of industries and communication products. In this presentation, the typical components of a cellular phone are outlined and technology requirements for future products, the customer benefits, and the potential impact of nanotechnology on many of the components are discussed. Technology needs include reliable materials supply, processes for high volume production, experimental and simulation tools, etc. For example, even routine procedures such as failure characterization may require the development of new tools for investigating nano-scale phenomena. Business needs include the development of an effective, high volume supply chain for nano-materials and devices, disruptive product platforms, and visible performance impact on the end consumer. An equally significant long-term industry need is the availability of science and engineering graduates with a multidisciplinary focus and a deep understanding of the fundamentals of nano-technology, that can harness the technology to create revolutionary products.

  3. Communication technology update and fundamentals

    CERN Document Server

    Grant, August E

    2010-01-01

    New communication technologies are being introduced at an astonishing rate. Making sense of these technologies is increasingly difficult. Communication Technology Update and Fundamentals is the single best source for the latest developments, trends, and issues in communication technology. Featuring the fundamental framework along with the history and background of communication technologies, Communication Technology Update and Fundamentals, 12th edition helps you stay ahead of these ever-changing and emerging technologies.As always, every chapter ha

  4. White paper on future technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This book describes the role of technology and challenge of future like why we focus on future technologies and future, human being and technology, methodology on development for future technologies such as global monitoring system for investigation on environmental change, investigation of research front for paper and patent and COMPAS, and domestic and foreign organization for discover on future technologies. It also introduces KISTI selection future technologies 500 : healthy society, smart society, safety society, and future technologies 500.

  5. Does Technology Acceptance Affect E-Learning in a Non-Technology-Intensive Course?

    Science.gov (United States)

    Buche, Mari W.; Davis, Larry R.; Vician, Chelley

    2012-01-01

    Prior research suggests that individuals' technology acceptance levels may affect their work and learning performance outcomes when activities are conducted through information technology usage. Most previous research investigating the relationship between individual attitudes towards technology and learning has been conducted in…

  6. Technology Management within Product Lines in High Technology Markets

    Science.gov (United States)

    Sarangee, Kumar R.

    2009-01-01

    Understanding the nuances of product line management has been of great interest to business scholars and practitioners. This assumes greater significance for firms conducting business in technologically dynamic industries, where they face certain challenges regarding the management of multiple, overlapping technologies within their product lines.…

  7. Technology Transformation

    Science.gov (United States)

    Scott, Heather; McGilll, Toria

    2011-01-01

    Social networking and other technologies, if used judiciously, present the means to integrate 21st century skills into the classroom curriculum. But they also introduce challenges that educators must overcome. Increased concerns about plagiarism and access to technology can test educators' creativity and school resources. Air Academy High School,…

  8. Mars Technology Program Planetary Protection Technology Development

    Science.gov (United States)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  9. Advanced PWR technology development -Development of advanced PWR system analysis technology-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Moon Heui; Hwang, Yung Dong; Kim, Sung Oh; Yoon, Joo Hyun; Jung, Bub Dong; Choi, Chul Jin; Lee, Yung Jin; Song, Jin Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The primary scope of this study is to establish the analysis technology for the advanced reactor designed on the basis of the passive and inherent safety concepts. This study is extended to the application of these technology to the safety analysis of the passive reactor. The study was performed for the small and medium sized reactor and the large sized reactor by focusing on the development of the analysis technology for the passive components. Among the identified concepts the once-through steam generator, the natural circulation of the integral reactor, heat pipe for containment cooling, and hydraulic valve were selected as the high priority items to be developed and the related studies are being performed for these items. For the large sized passive reactor, the study plans to extend the applicability of the best estimate computer code RELAP5/MOD3 which is widely used for the safety analyses of the reactor system. The improvement and supplementation study of the analysis modeling and the methodology is planned to be carried out for these purpose. The newly developed technologies are expected to be applied to the domestic advanced reactor design and analysis and these technologies will play a key role in extending the domestic nuclear base technology and consolidating self-reliance in the essential nuclear technology. 72 figs, 15 tabs, 124 refs. (Author).

  10. Applied Semantic Web Technologies

    CERN Document Server

    Sugumaran, Vijayan

    2011-01-01

    The rapid advancement of semantic web technologies, along with the fact that they are at various levels of maturity, has left many practitioners confused about the current state of these technologies. Focusing on the most mature technologies, Applied Semantic Web Technologies integrates theory with case studies to illustrate the history, current state, and future direction of the semantic web. It maintains an emphasis on real-world applications and examines the technical and practical issues related to the use of semantic technologies in intelligent information management. The book starts with

  11. Encouraging environmentally strategic technologies

    International Nuclear Information System (INIS)

    Heaton, G.R.

    1994-01-01

    Having moved beyond its initial absorption with controlling new technology, environmental policy today must focus more strongly on promoting the development and adoption of new technologies. World Resource Institute's (WRI) ongoing study of 'environmentally strategic technology' is addressed to this fundamental policy issue. The study proposes criteria for identifying such technology, offers a specific list, suggests the kinds of public policy changes necessary to encourage their development and finally presents a comparison of critical technology lists (from the White House, the European Community, Japan and the US Department of Defense). (TEC)

  12. STREAMS - Technology Programme. Yearbook 2003

    International Nuclear Information System (INIS)

    2003-01-01

    The STREAMS Technology Programme addresses municipal waste. Municipal waste is composed of waste from households and small businesses. The programme focuses on five areas Waste prevention, Collection, transportation, and management of waste streams, Waste treatment technologies, Waste recycling into raw materials and new products, Landfill technologies. The development projects of the STREAMS Programme utilize a number of different technologies, such as biotechnology, information technology, materials technology, measurement and analysis, and automation technology. Finnish expertise in materials recycling technologies and related electronics and information technology is extremely high on a worldwide scale even though the companies represent SMEs. Started in 2001, the STREAMS programme has a total volume of 27 million euros, half of which is funded by Tekes. The programme runs through the end of 2004. (author)

  13. Marketing technology in macroeconomics.

    Science.gov (United States)

    Tamegawa, Kenichi

    2012-01-01

    In this paper, we incorporate a marketing technology into a dynamic stochastic general equilibrium model by assuming a matching friction for consumption. An improvement in matching can be interpreted as an increase in matching technology, which we call marketing technology because of similar properties. Using a simulation analysis, we confirm that a positive matching technology shock can increase output and consumption.

  14. Emerging technology and ethics

    CERN Document Server

    Wakunuma, Kutoma

    2011-01-01

    This e-book on Emerging Technologies and Ethics includes a collection of essays which explore the future and ethics of emerging information and communication technologies. Articles in the collection include an overview of the legal implications which may be relevant to the ethical aspects of emerging technologies and also ethical issues arising from the mass-take up of mobile technologies.

  15. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. High spectral resolution image of Barnacle Bill

    Science.gov (United States)

    1997-01-01

    The rover Sojourner's first target for measurement by the Alpha-Proton-Xray Spectrometer (APXS) was the rock named Barnacle Bill, located close to the ramp down which the rover made its egress from the lander. The full spectral capability of the Imager for Mars Pathfinder (IMP), consisting of 13 wavelength filters, was used to characterize the rock's surface. The measured area is relatively dark, and is shown in blue. Nearby on the rock surface, soil material is trapped in pits (shown in red).Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  17. Technology transfer - the role of AEA Technology

    International Nuclear Information System (INIS)

    Hughes, A.E.; Bullough, R.; Mason, J.P.

    1989-01-01

    This paper concentrates mostly on examples of spin offs which have arisen from the more basic research carried out by the AEA. However, it should not be inferred from this that the only examples of successful technology transfer by the AEA are of a similar, often unforeseen nature. The most outstanding example of technology transfer by the AEA must surely be that achieved through the applied research which has enabled the establishment of a successful civil nuclear power programme in the UK. The natural transfer of technology here, achieved by virtue of the unique bridging position of the AEA with respect to universities and the nuclear industry, means that its success can easily be overlooked; to do so would be a mistake. However, by including spin off examples, we hope to illustrate how the AEA has also succeeded in bridging to more difficult areas where the special relationship which it shares with the nuclear industry is absent. (author)

  18. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    International Nuclear Information System (INIS)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-01

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO 2 prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a review

  19. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-15

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO{sub 2} prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a

  20. Beliefs, acceptances and technological knowledge

    NARCIS (Netherlands)

    Vries, de M.J.; Meijers, A.W.M.; Vries, de M.J.; Hansson, S.O.; Meijers, A.W.M.

    2013-01-01

    One of the four ways of conceptualizing technology that Carl Mitcham distinguished in his book Thinking Through Technology is technology as knowledge. His description of technology as knowledge showed that not much philosophical literature on the nature of technological knowledge was available at

  1. Climbing Up the Technology Ladder? High-Technology Exports in China and Latin America

    OpenAIRE

    Gallagher, Kevin P.; Porzecanski, Roberto

    2008-01-01

    In this paper we determine the “dynamic revealed competitiveness position” (DRCP) of nations for high technology exports between 1980 and 2005. We find that the developed world has lost significant market share in high technology and that China has climbed the high technology ladder during this period. In 1980 China was ranked 99th of all nations in terms of the percentage of global exports in high technology. By 2005 China climbed to second place in the world, first place if high technology ...

  2. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  3. Higher education technological knowledge and patterns of technology adoptions in undergraduate STEM courses

    Science.gov (United States)

    Ali, Zarka Asghar

    Identifying, examining, and understanding faculty members' technological knowledge development and the process of technology adoption in higher education is a multifaceted process. Past studies have used Rogers (1995, 2003) diffusion of innovation theoretical framework to delineate the technology adoption process. These studies, however, have frequently reported the influencing factors based on the statistical analysis such as regression analysis-based approach, and have not focused on the emerging process of technology adoptions or the developing process of technological knowledge and pedagogical knowledge. A mixed method study was designed to see how faculty members acquire different technologies and develop technological knowledge that might help them adopt technologies in their classrooms and online using different pedagogies. A sample of STEM teaching faculty members with different ranks, tenure, teaching experience, and varied degree of experience in the use of educational technologies participated in the study. A survey was designed to identify internal and external factors affecting technology adoption and its effective use in different teaching activities. To elaborate survey results, the study also included class observations as well as pre- and post-observation interviews. Online classrooms used by the faculty via Blackboard learning management system, online flipped classrooms, or other websites such as Piazza were also examined for data triangulation. The findings of the study indicate that faculty members are influenced by their own professional motivations and student learning to improve their teaching methods and to enhance student interactions and learning through the use of different educational technologies. The adoption process was identified as spreading over a period of time and it looked at how faculty members' developed their technological knowledge and pedagogical knowledge. With the recognition of the social, organizational, and

  4. Technological learning for carbon capture and sequestration technologies

    International Nuclear Information System (INIS)

    Riahi, Keywan; Rubin, Edward S.; Taylor, Margaret R.; Schrattenholzer, Leo; Hounshell, David

    2004-01-01

    This paper analyzes potentials of carbon capture and sequestration technologies (CCT) in a set of long-term energy-economic-environmental scenarios based on alternative assumptions for technological progress of CCT. In order to get a reasonable guide to future technological progress in managing CO 2 emissions, we review past experience in controlling sulfur dioxide (SO 2 ) emissions from power plants. By doing so, we quantify a 'learning curve' for CCT, which describes the relationship between the improvement of costs due to accumulation of experience in CCT construction. We incorporate the learning curve into the energy-modeling framework MESSAGE-MACRO and develop greenhouse gas emissions scenarios of economic, demographic, and energy demand development, where alternative policy cases lead to the stabilization of atmospheric CO 2 concentrations at 550 parts per million by volume (ppmv) by the end of the 21st century. We quantify three types of contributors to the carbon emissions mitigation: (1) demand reductions due to the increased price of energy, (2) fuel switching primarily away from coal, and (3) carbon capture and sequestration from fossil fuels. Due to the assumed technological learning, costs of the emissions reduction for CCT drop rapidly and in parallel with the massive introduction of CCT on the global scale. Compared to scenarios based on static cost assumptions for CCT, the contribution of carbon sequestration is about 50% higher in the case of learning, resulting in cumulative sequestration of CO 2 ranging from 150 to 250 billion (10 9 ) tons with carbon during the 21st century. Also, carbon values (tax) across scenarios (to meet the 550 ppmv carbon concentration constraint) are between 2% and 10% lower in the case of learning for CCT by 2100. The results illustrate that assumptions on technological change are a critical determinant of future characteristics of the energy system, indicating the importance of long-term technology policies in

  5. Development of Korea telecommunication technology

    International Nuclear Information System (INIS)

    1992-06-01

    It concentrates on development of Korea telecommunication technology, which is made up seven chapters. It gives description of manual central telephone exchange or private automatic telephone exchange, transmission technology on wire line and cable line technology and optical transmission, radio communication technology on mobile and natural satellite communication, network technology with intelligent network, broadband ISDN and packet switched Data Network, terminal technology with telephone and data communication terminal and development of Information Technology in Korea. It has an appendix about development of military communication system.

  6. Technologies for a sustainable development; Technologies pour un developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The European Event on Technology (EET), a recurrent annual event since 1992, is a major meeting opportunity for researchers and engineers as well as private and public decision-makers, on technologies, their evolution and their industrial and social implications. In less than a decade, sustainable development has become both an economic and a political priority. It was urgent and legitimate that those who are the mainsprings should take hold of the subject and give it technological content, estimate its costs and define clear timetables. The debates consist of: plenary sessions on environmental, social and economic stakes of sustainable development and the challenges for, and commitment of engineers, managers and politicians with respect to these goals; and workshops, which provide an overview of recently acquired or upcoming technologies developed by sector: energy, transports, new information technologies, new industrial manufacturing technologies (materials, products, services), waste management, global environment monitoring, water management, bio-technologies, and innovation management. This document brings together the different talks given by the participants. Among these, the following ones fall into the energy and environment scope: energy efficiency of buildings: towards energy autonomy; superconductors enable in new millennium for electric power industry; advanced gas micro-turbine-driven generator technology; environmental and technical challenges of an offshore wind farm; future nuclear energy systems; modelling combustion in engines: progress and prospects for reducing emissions; on-board computers: reduction in consumption and emissions of engine-transmission units for vehicles; polymer-lithium batteries: perspectives for zero-emission traction; hybrid vehicles and energy/environmental optimization: paths and opportunities; fuel cells and zero-emission: perspectives and developments; global change: causes, modeling and economic issues; the GMES

  7. Development of National Technology Audit Policy

    Directory of Open Access Journals (Sweden)

    Subiyanto Subiyanto

    2017-07-01

    Full Text Available The Laws have mandated implementation of technology audit, nevertheless such implementation needs an additional policy that is more technical. The concept of national audit technology policy shall make technology audit as a tool to ensure the benefit of technology application for society and technology advance for nation independency. This article discusses on technology audit policy concept especially infrastructure requirement, with emphasis on regulation, implementation tools, and related institution. The development of technology audit policy for national interest requires provision of mandatory audit implementation, accompanied by tools for developing technology auditor’s competence and technology audit institutional’s mechanism. To guide technology auditor’s competence, concept of national audit technology policy shall classify object of technology audit into product technology, production technology, and management of technology, accompanied by related parameters of technology performance evaluation.

  8. The dual role of external technology sourcing in technological exploration

    DEFF Research Database (Denmark)

    Vanhaverbeke, Wim; Li-Ying, Jason; van de Vrande, Vareska

    2013-01-01

    from non-partners, partners may play a role because of whom they know. That is, they inform the firm about technological opportunities beyond its corporate venturing network. The empirical analysis supports the dual role of venturing partners in facilitating the two types of explorative learning.......We refine the concept of boundary-spanning exploration, by making a distinction between explorative learning from partners and from non-partners (Partners are organizations with whom a focal firm has some kind of external venturing relations, i.e. technological alliances, corporate venturing...... capital, or M&As). These partners play a dual role: in explorative learning from partners, a firm teams up with external venturing partners to co-develop or transfer technology. Partners’ technology base (what they know) is driving explorative learning from partners. In contrast, in explorative learning...

  9. INFORMATION TECHNOLOGY, INTERNET, AND MARKETING

    OpenAIRE

    Mihane Berisha-Namani

    2013-01-01

    Information technology developed very fast, and today's marketing activities are not possible without the help of information technology. Furthermore, it is difficult to think of a policy domain not affected by usage of information technology. Information technology is making possible and creating connections between businesses and organizations. The implications of information technology usage in marketing activities are profound too. Using information technology, companies possess the poten...

  10. From Technology Teacher to Technology Integration Specialist: Preparing for a Paradigm Shift

    Science.gov (United States)

    Dalrymple, Jennifer Lynn Penry

    2017-01-01

    This dissertation examines the effectiveness of a professional development program designed specifically to provide foundational knowledge and skills to Technology Teachers in preparation for a transition to a Technology Integration Specialist position. Specifically, it evaluates the Technology Teachers' changes in knowledge and beliefs as a…

  11. Assessing medical technologies in development; a new paradigm of medical technology assessment

    NARCIS (Netherlands)

    Hummel, J. Marjan; van Rossum, Wouter; Verkerke, Gijsbertus Jacob; Rakhorst, Gerhard

    2000-01-01

    Objective: Our study aims to provide a practical contribution to the field of medical technology assessment within a new paradigm. This paradigm indicates the need for more comprehensive technology assessments in the development stage of a new technology. - Method: We introduce a method, based on

  12. Assessing medical technologies in development - A new paradigm of medical technology assessment

    NARCIS (Netherlands)

    Hummel, MJM; van Rossum, W; Verkerke, GJ; Rakhorst, G

    2000-01-01

    Objective: Our study aims to provide a practical contribution to the field of medical technology assessment within a new paradigm. This paradigm indicates the need for more comprehensive technology assessments in the development stage of a new technology. Method: We introduce a method, based on

  13. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Science.gov (United States)

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology... public meeting. SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  14. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  15. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1984-04-01

    KfK participates to the Fusion Technology Programme of the European Community. Most of the work in progress addresses the Next European Torus (NET) and the long term technology aspects as defined in the 82/86 programme. A minor part serves to preparation of future contributions and to design studies on fusion concepts in a wider perspective. The Fusion Technology Programme of Euratom covers mainly aspects of nuclear engineering. Plasma engineering, heating, refueling and vacuum technology are at present part of the Physics Programme. In view of NET, integration of the different areas of work will be mandatory. KfK is therefore prepared to address technical aspects beyond the actual scope of the physics experiments. The technology tasks are reported project wise under title and code of the Euratom programme. Most of the projects described here are shared with other European fusion laboratories as indicated in the table annexed to this report. (orig./GG)

  16. Decontamination technology assessment

    International Nuclear Information System (INIS)

    Allen, R.P.; Konzek, G.J.; Schneider, K.R.; Smith, R.I.

    1988-10-01

    This study identifies and technically assesses foreign decontamination and decommissioning (D and D) technology developments that may represent significant improvements over D and D technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign D and D technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of D and D literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in D and D costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs. 4 refs

  17. Technician Shawn Warren carefully smoothes out the composite skin of an instrument fairing atop the

    Science.gov (United States)

    2002-01-01

    Technician Shawn Warren carefully smoothes out the composite skin of an instrument fairing atop the upper fuselage of the Altair unmanned aerial vehicle (UAV) at General Atomics Aeronautical Systems, Inc., facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  18. Technician Dave Brown installs a drilling template during construction of the all-composite left win

    Science.gov (United States)

    2002-01-01

    Technician Dave Brown installs a drilling template during construction of the all-composite left wing of NASA's Altair aircraft at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  19. Immersive Learning Technologies

    Science.gov (United States)

    2009-08-20

    Immersive Learning Technologies Mr. Peter Smith Lead, ADL Immersive Learning Team 08/20/2009 Report Documentation Page Form ApprovedOMB No. 0704...to 00-00-2009 4. TITLE AND SUBTITLE Immersive Learning Technologies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Why Immersive Learning Technologies

  20. HETEROGENEOUS INTEGRATION TECHNOLOGY

    Science.gov (United States)

    2017-08-24

    AFRL-RY-WP-TR-2017-0168 HETEROGENEOUS INTEGRATION TECHNOLOGY Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...Final September 1, 2016 – May 1, 2017 4. TITLE AND SUBTITLE HETEROGENEOUS INTEGRATION TECHNOLOGY 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A...provide a structure for this review. The history and the current status of integration technologies in each category are examined and product examples are

  1. Water Technology Lecture 1: Introducing Water Technology

    OpenAIRE

    Gray, Nicholas Frederick

    2017-01-01

    This is a full set of PowerPoint lectures for a course in Water Technology currently given at Trinity College, University of Dublin by professor N.F. Gray. The lectures cover all aspects of water and wastewater treatment and are available for use to lecturers or those interested in the subject. The lecture series is to be used in conjunction with the new textbook ?Water Science and Technology? (4th edition) published by CRC Press in 2017. Lecture 1 is an introduction to the water indust...

  2. The international nuclear technology

    International Nuclear Information System (INIS)

    Remick, F.J.

    1992-01-01

    With today's technology, isolationism is virtually impossible. The world's economies are so strongly intertwined that what affects one country will, in some way, influence another. Nuclear technology is no exception. If anything, nuclear technology is a catalyst for international cooperation. In the United States of America, nuclear technology is undergoing significant changes. Many of these changes are being greatly influenced by programs of international cooperation

  3. Annual Science and Engineering Technology Conference/DOD Technology Exposition (7th). Volume 2. Wednesday - Thursday

    Science.gov (United States)

    2006-04-20

    Disruptive Technologies • Army Approach to Disruptive Technologies and Transition Mr. Dennis Schmidt, Director, Science & Technology Integration, Office of...the Assistant Secretary of the Army for Research and Technology • Navy Approach to Disruptive Technologies and Transition Mr. Lewis DeSandre, Program...Manager, ONR 351 • Air Force Approach to Disruptive Technologies and Transition Colonel Mark Stephen, Associate Deputy Assistant Secretary (Science

  4. Technology Catalogue. First edition

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  5. CONDITIONS AND ORGANIZATION OF THE TRANSITION TO BASIC TECHNOLOGIES OF A NEW TECHNOLOGICAL STRUCTURE

    Directory of Open Access Journals (Sweden)

    B. L. Bourov

    2011-01-01

    Full Text Available With due account for the coming new (VI-th world technological structure, future creation of new types of industrial production is both possible and necessary. Economic environment conditions favorable for such development are designated. In reference to Russian technological environment particulars, self-developing economic-technological microenvironment of a new quality level should be created in zones where controlled «technological chains» function. Possibilities of creation of the VI-th technological structure level basic technologies are shown for industrial and household waste processing techniques as an example.

  6. MINERGY CORPORATION GLASS FURNACE TECHNOLOGY EVALUATION: INNOVATION TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report presents performance and economic data for a U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program demonstration of the Minergy Corporation (Minergy) Glass Furnace Technology (GFT). The demonstration evaluated the techno...

  7. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    Science.gov (United States)

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  8. Digital Technology Entrepreneurship

    DEFF Research Database (Denmark)

    Giones, Ferran; Brem, Alexander

    2017-01-01

    Technology entrepreneurship is an established concept in academia. However, recent developments in the context of digital entrepreneurship call for revision and advance- ment. The multiple possible combinations of technology and entrepreneurship have res- ulted in a diversity of phenomena...... with significantly different characteristics and socio-economic impact. This article is focused on the identification and description of technology entrepreneurship in times of digitization. Based on current examples, we identify and describe characterizations of technology entrepreneurship, digital techno- logy...... entrepreneurship, and digital entrepreneurship. With this new delineation of terms, we would like to foster discussion between researchers, entrepreneurs, and policy makers on the impact of digitization on entrepreneurship, and set a future research agenda....

  9. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  10. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  11. Buildings R&D Breakthroughs. Technologies and Products Supported by the Building Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-04-01

    This report identifies and characterizes commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects sponsored by BTP’s Emerging Technologies subprogram from 2005-2009.

  12. Use of Payment Technology

    DEFF Research Database (Denmark)

    Xiao, Xiao; Hedman, Jonas; Runnemark, Emma

    2015-01-01

    Drawing on the theory of consumption value, this research-in-progress strives to provide a theoretical explanation of payment technology use by investigating the relationship between consumers’ perceptions of different consumption values associated with a certain payment technology and their choice...... to use the technology. We conducted the study in the context of Denmark, a Northern European country, with three well established payment technologies: cash, payment cards, and Internet banking. Following a focus group of identifying and defining four types of consumption values associated with each...... payment technology, a survey was then conducted by a national statistics agency in the country. Preliminary results have shown that different consumption values matter for the use of different payment technologies. The findings will potentially contribute to a better understanding of consumer payment...

  13. Technology monitoring; Technologie-Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Rigassi, R. [Eicher und Pauli AG, Liestal (Switzerland); Ott, W. [Econcept AG, Zuerich (Switzerland)

    2003-07-01

    This study made for the Swiss Federal Office of Energy (SFOE) examines ways of systematically monitoring energy technology development and the cost of such technologies in order to pave the way to a basis for judging the economic development of new energy technologies. Initial results of a survey of the past development of these technologies are presented and estimates are made of future developments in the areas of motor-based combined heat and power systems, fuel-cell heating units for single-family homes and apartment buildings, air/water heat pumps for new housing projects and high-performance thermal insulation. The methodology used for the monitoring and analysis of the various technologies is described. Tables and diagrams illustrate the present situation and development potential of various fields of technology.

  14. Nuclear technology and beyond

    International Nuclear Information System (INIS)

    Akiyama, Mamoru

    1997-01-01

    After the confrontation of East and West, and the problem of North and South, we are now facing the era of Globalization in the presence of twenty-first century. Tracing the history of civilization, human being has progressed along with the accumulation of experience, and the development of science and technology. Science and technology bloomed in modern ages, especially, energy technology showed the giant leap in this century. Nuclear science and technology has been developed for peaceful purposes, and for the benefit of humanity. As a result, today, its progress led nuclear science and technology to have the great applicability to the development of the society. Toward the twenty-first century and Globalization, the science and technology developed in nuclear field is hoped to play a great contribution in various area of the society. (author)

  15. Technology Push, Demand Pull And The Shaping Of Technological Paradigms - Patterns In The Development Of Computing Technology

    NARCIS (Netherlands)

    J.C.M. van den Ende (Jan); W.A. Dolfsma (Wilfred)

    2002-01-01

    textabstractAn assumption generally subscribed in evolutionary economics is that new technological paradigms arise from advances is science and developments in technological knowledge. Demand only influences the selection among competing paradigms, and the course the paradigm after its inception. In

  16. Disruptive Technology: An Uncertain Future

    Science.gov (United States)

    2005-05-21

    Technology that overturns market -- Military - Technology that causes a fundamental change in force structure, basing, and capability balance * Disruptive Technologies may arise from systems or enabling technology.

  17. Demonstrating and implementing innovative technologies: Case studies from the USDOE Office of Technology Development

    International Nuclear Information System (INIS)

    Brouns, T.M.; Koegler, K.J.; Mamiya, L.S.

    1995-02-01

    This paper describes elements of success for demonstration, evaluation, and transfer for deployment of innovative technologies for environmental restoration. They have been compiled from lessons learned through the US Department of Energy (DOE) Office of Technology Development's Volatile Organic Compounds in Arid Soil Integrated Demonstration (VOC-Arid ID). The success of the VOC-Arid ID program was determined by the rapid development demonstration, and transfer for deployment of technologies to operational sites that improve on safety, cost, and/or schedule of performance over baseline technologies. The VOC-Arid ID successfully fielded more than 25 innovative technology field demonstrations; several of the technologies demonstrated have been successfully transferred for deployment Field demonstration is a critical element in the successful transfer of innovative technologies into environmental restoration operations. The measures of success for technology demonstrations include conducting the demonstration in a safe and controlled environment and generating the appropriate information by which to evaluate the technology. However, field demonstrations alone do not guarantee successful transfer for deployment There are many key elements throughout the development and demonstration process that have a significant impact on the success of a technology. This paper presents key elements for a successful technology demonstration and transfer for deployment identified through the experiences of the VOC-Arid ID. Also, several case studies are provided as examples

  18. JPRS Report, Science & Technology, USSR: Science & Technology Policy

    Science.gov (United States)

    1990-09-18

    urgent and vital problems that faced the United States of America at that time. This discussion was of a completely free nature, and, although at...imeni M.O. Auezov, and the Sociology Center attached to the Institute of Eco- nomics, which took part in sociolinguistic studies of the language...development of advanced technologies. In the United States of America , for example, a special fund of these technologies was estab- lished. An

  19. EPA [Environmental Protection Agency] SITE [Superfund Innovative Technology Evaluation] program seeks technology proposals

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    EPA will issue an RFP to initiate the SITE-005 solicitation for demonstration of technologies under the Superfund Innovative Technology Evaluation (SITE) Program. This portion of the SITE program offers a mechanism for conducting a joint technology demonstration between EPA and the private sector. The goal of the demonstration program is to provide an opportunity for developers to demonstrate the performance of their technologies on actual hazardous wastes at Superfund sites, and to provide accurate and reliable data on that performance. Technologies selected must be of commercial scale and provide solutions to problems encountered at Superfund Sites. Primary emphasis in the RFP is on technologies that address: treatment of mixed, low level radioactive wastes in soils and groundwater; treatment of soils and sludges contaminated with organics and/or inorganics, materials handling as a preliminary step to treatment or further processing, treatment trains designed to handle specific wastes, are in situ technologies, especially those processes providing alternatives to conventional groundwater pump and treat techniques

  20. Technology Foresight on Emerging Technologies: Implications for a National Innovation Initiative in Brazil

    Directory of Open Access Journals (Sweden)

    Maria Fatima Ludovico de Almeida

    2015-07-01

    Full Text Available Prospective studies about emerging technologies and their implications for public policy formulation indicate critical choices ranging from global to national level, even to the individual firm or institution. Emerging technologies have been shaping the future of some industries and transforming many others. In many cases, these technologies will determine the restructuring of industries as never before. Specially designed for enabling better planning and future decisions, technology foresight (TF methods are used to foresee diffusion of innovations, mapping out commercially viable roadmaps for technological development. This paper is concerned with a methodological instrument adopted in Brazil as support for building the Agenda for a National Innovation Initiative (NII, which was articulated by government, universities, R&D institutions, and private firms. It presents and discusses an integrated methodological approach for a TF study, specially designed for the purpose of this Brazilian innovation policy instrument, concerning three emerging technologies – nanotechnology, biotechnology, and information and communication technologies (ICT.