WorldWideScience

Sample records for technology nuclear medicine

  1. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  2. Nuclear Medicine.

    Science.gov (United States)

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  3. Nuclear Medicine Technology: A Suggested Postsecondary Curriculum.

    Science.gov (United States)

    Technical Education Research Center, Cambridge, MA.

    The purpose of this curriculum guide is to assist administrators and instructors in establishing nuclear medicine technician programs that will meet the accreditation standards of the American Medical Association (AMA) Council on Medical Education. The guide has been developed to prepare nuclear medicine technicians (NMT's) in two-year…

  4. Nuclear Medicine

    Science.gov (United States)

    ... for Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive ... NIBIB-funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that ...

  5. Technologists for Nuclear Medicine

    Science.gov (United States)

    Barnett, Huey D.

    1974-01-01

    Physicians need support personnel for work with radioisotopes in diagnosing dangerous diseases. The Nuclear Medicine Technology (NMT) Program at Hillsborough Community College in Tampa, Florida, is described. (MW)

  6. Nuclear Medicine Technology: A Suggested Two-Year Curriculum Manual.

    Science.gov (United States)

    Hunter, David

    This curriculum guide prescribes an educational program for training nuclear medicine technologists. Following a brief section on program development, the curriculum is both outlined and presented in detail. For each of the 44 courses, the following information is given: (1) sequential placement of the course in the curriculum; (2) course…

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging ... the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch ...

  9. General Nuclear Medicine

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z General Nuclear Medicine Nuclear medicine imaging uses small amounts of ... limitations of General Nuclear Medicine? What is General Nuclear Medicine? Nuclear medicine is a branch of medical ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small ... of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses ... limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  13. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine imaging uses small amounts ... Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a branch of medical imaging ...

  14. Nuclear medicine technology. Review questions for the board examinations. 3. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ramer, Karen [CNMT, Marianka (Slovakia); Alavi, Abass [Pennsylvania Univ., Philadelphia, PA (United States). Hospital

    2008-07-01

    This book prepares students and technologists for registry examinations in nuclear medicine technology by providing practice questions and answers with detailed explanations, as well as a mock registry exam. The questions are designed to test the basic knowledge required of nuclear medicine technologists, as well as the practical application of that knowledge. The topics covered closely follow the content specifications for the exam given by the American Registry of Radiologic Technologist and the components of preparedness published by the Nuclear Medicine Technology Certification Board. This third edition includes a new chapter on positron emission tomography. (orig.)

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... are the limitations of Children's Nuclear Medicine? What is Children's (Pediatric) Nuclear Medicine? Nuclear medicine is a ... of your child's body. top of page How is the procedure performed? Nuclear medicine imaging is usually ...

  16. The 2011 nuclear medicine technology job analysis project of the American Registry of Radiologic Technologists.

    Science.gov (United States)

    Anderson, Dan; Hubble, William; Press, Bret A; Hall, Scott K; Michels, Ann D; Koenen, Roxanne; Vespie, Alan W

    2010-12-01

    The American Registry of Radiologic Technologists (ARRT) conducts periodic job analysis projects to update the content and eligibility requirements for all certification examinations. In 2009, the ARRT conducted a comprehensive job analysis project to update the content specifications and clinical competency requirements for the nuclear medicine technology examination. ARRT staff and a committee of volunteer nuclear medicine technologists designed a job analysis survey that was sent to a random sample of 1,000 entry-level staff nuclear medicine technologists. Through analysis of the survey data and judgments of the committee, the project resulted in changes to the nuclear medicine technology examination task list, content specifications, and clinical competency requirements. The primary changes inspired by the project were the introduction of CT content to the examination and the expansion of the content covering cardiac procedures.

  17. Nuclear tele medicine; Telemedicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, L.; Hernandez, F.; Fernandez, R. [Departamento de Medicina Nuclear, Imagenologia Diagnostica, Xalapa, Veracruz (Mexico)

    2005-07-01

    The great majority of the digital images of nuclear medicine are susceptible of being sent through internet. This has allowed that the work in diagnosis cabinets by image it can benefit of this modern technology. We have presented in previous congresses works related with tele medicine, however, due to the speed in the evolution of the computer programs and the internet, becomes necessary to make a current position in this modality of work. (Author)

  18. Nuclear medicine technology. Review questions for the board examinations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ramer, K. [CNMT, Marianka (Slovakia); Alavi, A. [Pennsylvania Univ. Hospital, Philadelphia, PA (United States)

    2005-07-01

    This book prepares students and technologists for registry examinations in nuclear medicine technology by providing practice questions and answers and a mock registry exam. The questions test both subject comprehension of material and practical applications. The topics covered closely follow the content specifications for the exam given by the American Registry of Radiologic Technologist and the components of preparedness published by the Nuclear Medicine Technology Certification Board. Figure-related questions, similar to those on current registry examinations, are provided. Also included are up-to-date questions and answers regarding NRC regulations. (orig.)

  19. Nuclear medicine technology. Review questions for the board examinations. 4. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ramer, Karen [Ochotnicky Partners s.r.o., Marianka (Slovakia); Mantel, Eleanor [Pennsylvania Univ., Hammonton, NJ (United States). Nuclear Medicine/Molecular Imaging; Reddin, Janet S.; Alavi, Abass [Pennsylvania Univ., Philadelphia, PA (United States). Radiology/Nuclear Medicine; Cheng, Gang [Philadelphia VA Medical Center, PA (United States). Radiology

    2013-07-01

    The only comprehensive exam preparation guide on the market. Includes a mock registry exam. Provides expanded coverage of positron emission tomography and other new procedures and practices. This book prepares students and technologists for registry examinations in nuclear medicine technology by providing practice questions and answers with detailed explanations, as well as a mock registry exam. The questions are designed to test the basic knowledge required of nuclear medicine technologists, as well as the practical application of that knowledge. The topics covered closely follow the content specifications and the components of preparedness as published by the certification boards. This 4th edition includes expanded coverage of positron emission tomography and other new procedures and practices in the field of nuclear medicine and molecular imaging.

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is PET/MRI. top of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed to help diagnose childhood disorders ...

  1. Physics in nuclear medicine

    CERN Document Server

    Cherry, Simon R; Phelps, Michael E

    2012-01-01

    Physics in Nuclear Medicine - by Drs. Simon R. Cherry, James A. Sorenson, and Michael E. Phelps - provides current, comprehensive guidance on the physics underlying modern nuclear medicine and imaging using radioactively labeled tracers. This revised and updated fourth edition features a new full-color layout, as well as the latest information on instrumentation and technology. Stay current on crucial developments in hybrid imaging (PET/CT and SPECT/CT), and small animal imaging, and benefit from the new section on tracer kinetic modeling in neuroreceptor imaging.

  2. Proceedings of seventh symposium on sharing of computer programs and technology in nuclear medicine, computer assisted data processing

    Energy Technology Data Exchange (ETDEWEB)

    Howard, B.Y.; McClain, W.J.; Landay, M. (comps.)

    1977-01-01

    The Council on Computers (CC) of the Society of Nuclear Medicine (SNM) annually publishes the Proceedings of its Symposium on the Sharing of Computer Programs and Technology in Nuclear Medicine. This is the seventh such volume and has been organized by topic, with the exception of the invited papers and the discussion following them. An index arranged by author and by subject is included.

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material to ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Nuclear Medicine Children’s (pediatric) nuclear medicine ... physicians diagnose and evaluate medical conditions. These imaging scans use radioactive materials called radiopharmaceuticals or radiotracers . Depending ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... its earliest stages as well as a patient’s immediate response to therapeutic interventions. Children's (pediatric) nuclear medicine ... leaving the nuclear medicine facility. Through the natural process of radioactive decay, the small amount of radiotracer ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Tell your doctor about your child’s recent illnesses, medical conditions, medications and allergies. Depending on the type ... Nuclear Medicine? Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed ... the thyroid gland. top of page How does the nuclear medicine procedure work? With ordinary x-ray ...

  8. Gap analysis survey: an aid in transitioning to standardized curricula for nuclear medicine technology.

    Science.gov (United States)

    Bires, Angela Macci; Mason, Donna L; Gilmore, David; Pietrzyk, Carly

    2012-09-01

    This article discusses the process by which the Society of Nuclear Medicine Technology Section (SNMTS) is assisting educators as they transition to comply with the fourth edition of the Curriculum Guide for Educational Programs in Nuclear Medicine Technology. An electronic survey was sent to a list of nuclear medicine technology programs compiled by the educational division of the SNMTS. The collected data included committee member demographics, goals and objectives, conference call minutes, consultation discussions, transition examples, 4- and 2-y program curricula, and certificate program curricula. There were 56 responses to the survey. All respondents were program directors, with 3 respondents having more than one type of program, for a total of 59 programs. Of these, 19 (33.93%) were baccalaureate, 19 (28.57%) associate, and 21 (37.5%) certificate. Forty-eight respondents (85.71%) had accreditation through the Joint Review Commission on Educational Programs in Nuclear Medicine Technology, 6 (10.71%) had regional accreditation, and 2 (3.57%) were accredited through other entities. Thirteen categories of required general education courses were identified, and the existing program curricula of 9 (69.2%) courses were more than 50% compliant with the fourth edition Curriculum Guide. The fact that no measurable gap could be found within the didactic professional content across programs was due to the lack of a degree requirement and content standardization within the profession. The data indicated that the participating programs offer a minimum of 1-15 contact hours in emerging technology modalities. The required clinical hours ranged from 765 to 1,920 for degree or certificate completion. The average number of clinical hours required for all programs was 1,331.69. Standardization of the number and types of courses is needed both for current baccalaureate programs and for clinical education. This standardization will guide programs in transitioning from a

  9. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... scan being performed, you will receive specific preparation instructions for what your child may eat and drink before the exam, especially ... Epilepsy Images related to Children's (Pediatric) Nuclear Medicine ... Videos related to Children's (Pediatric) Nuclear Medicine Sponsored by Please note RadiologyInfo. ...

  11. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  12. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  13. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  14. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine. Nuclear medicine offers the potential to identify disease in its earliest stage, often before symptoms ... benefit of an accurate diagnosis far outweighs any risk. To learn more about nuclear medicine, visit Radiology ...

  15. Your Radiologist Explains Nuclear Medicine

    Science.gov (United States)

    ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  16. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2013-01-01

    The Fourth Edition of Dr. Gopal B. Saha’s Physics and Radiobiology of Nuclear Medicine was prompted by the need to provide up-to-date information to keep pace with the perpetual growth and improvement in the instrumentation and techniques employed in nuclear medicine since the last edition published in 2006. Like previous editions, the book is intended for radiology and nuclear medicine residents to prepare for the American Board of Nuclear Medicine, American Board of Radiology, and American Board of Science in Nuclear Medicine examinations, all of which require a strong physics background. Additionally, the book will serve as a textbook on nuclear medicine physics for nuclear medicine technologists taking the Nuclear Medicine Technology Certification Board examination.

  17. Practical nuclear medicine

    CERN Document Server

    Gemmell, Howard G; Sharp, Peter F

    2006-01-01

    Nuclear medicine plays a crucial role in patient care, and this book is an essential guide for all practitioners to the many techniques that inform clinical management. The first part covers the scientific basis of nuclear medicine, the rest of the book deals with clinical applications. Diagnostic imaging has an increasingly important role in patient management and, despite advances in other modalities (functional MRI and spiral CT), nuclear medicine continues to make its unique contribution by its ability to demonstrate physiological function. This book is also expanded by covering areas of d

  18. Nuclear Medicine Annual, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, L.M.; Weissmann, H.S.

    1989-01-01

    Among the highlights of Nuclear Medicine Annual, 1989 are a status report on the thyroid scan in clinical practice, a review of functional and structural brain imaging in dementia, an update on radionuclide renal imaging in children, and an article outlining a quality assurance program for SPECT instrumentation. Also included are discussions on current concepts in osseous sports and stress injury scintigraphy and on correlative magnetic resonance and radionuclide imaging of bone. Other contributors assess the role of nuclear medicine in clinical decision making and examine medicolegal and regulatory aspects of nuclear medicine.

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... beforehand, especially if sedation is to be used. Most nuclear medicine exams will involve an injection in ... PET/CT, SPECT/CT and PET/MR) are most often used in children with cancer, epilepsy and ...

  20. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... nuclear medicine imaging uses small amounts of radioactive materials called radiotracers, a special camera and a computer ... medical imaging that uses small amounts of radioactive material to diagnose and determine the severity of or ...

  1. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Children's (pediatric) nuclear medicine imaging is performed ... the thyroid gland. top of page How does the procedure work? With ordinary x-ray examinations, an ...

  2. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... necessitate sedation for your child. You will receive instructions prior to the exam if your child will ... child has been sedated, you will receive specific instructions to be followed after leaving the nuclear medicine ...

  3. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... of page How does the nuclear medicine procedure work? With ordinary x-ray examinations, an image is ... placed over the patient's body. SPECT involves the rotation of the gamma camera heads around the patient's ...

  4. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used ... gas via a mask, such as with a lung scan. Bladder: some exams require a catheter to ...

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the procedure. top of page Who interprets the results and how do we get them? A radiologist ... radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... to be followed after leaving the nuclear medicine facility. Through the natural process of radioactive decay, the ... Please note RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... body. jaundice in newborns and older children. epilepsy . location, anatomy and function of the thyroid gland. top ... to be followed after leaving the nuclear medicine facility. Through the natural process of radioactive decay, the ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... used. Most nuclear medicine exams will involve an injection in a vein in your child’s arm or ... are noninvasive and, with the exception of intravenous injections, are usually painless medical tests that help physicians ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits The information provided by nuclear medicine examinations ... diagnosis or to determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, ...

  10. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically used to help ... children. epilepsy . location, anatomy and function of the thyroid gland. top of page How does the procedure ...

  11. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... jaundice in newborns and older children. epilepsy . location, anatomy and function of the thyroid gland. top of ... full size with caption Related Articles and Media General Nuclear Medicine Children's (Pediatric) CT (Computed Tomography) Epilepsy ...

  12. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... organs and tissues in your body. Hybrid imaging techniques (PET/CT, SPECT/CT and PET/MR) are ... equipment look like? The special camera and imaging techniques used in nuclear medicine include the gamma camera ...

  13. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation risk ... long-term adverse effects from such low-dose exposure. For more information about safety in pediatric radiology ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic ... small hand-held device resembling a microphone that can detect and measure the amount of the radiotracer ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... painless medical tests that help physicians diagnose and evaluate medical conditions. These imaging scans use radioactive materials called radiopharmaceuticals or radiotracers . Depending on the type of nuclear medicine exam, the radiotracer is either ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because nuclear medicine procedures are able to pinpoint molecular activity within ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... variety of diseases, including many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities ... and bladder. bones. liver and gallbladder. gastrointestinal tract. heart. lungs. brain. thyroid. Nuclear medicine scans are typically ...

  18. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... will be inhaled as a gas via a mask, such as with a lung scan. Bladder: some ... A radiologist or other physician who has specialized training in nuclear medicine will interpret the images and ...

  19. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... determine appropriate treatment, if any. Risks Because the doses of radiotracer administered are small, diagnostic nuclear medicine procedures result in low radiation exposure, acceptable for diagnostic exams. Thus, the radiation ...

  20. Basic sciences of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Magdy M. (ed.) [Imperial College London (United Kingdom). Biological Imaging Centre

    2011-07-01

    Nuclear medicine has become an ever-changing and expanding diagnostic and therapeutic medical profession. The day-to-day innovations seen in the field are, in great part, due to the integration of many scientific bases with complex technologic advances. The aim of this reference book, Basic Sciences of Nuclear Medicine, is to provide the reader with a comprehensive and detailed discussion of the scientific bases of nuclear medicine, covering the different topics and concepts that underlie many of the investigations and procedures performed in the field. Topics include radiation and nuclear physics, Tc-99m chemistry, single-photon radiopharmaceuticals and PET chemistry, radiobiology and radiation dosimetry, image processing, image reconstruction, quantitative SPECT imaging, quantitative cardiac SPECT, small animal imaging (including multimodality hybrid imaging, e.g., PET/CT, SPECT/CT, and PET/MRI), compartmental modeling, and tracer kinetics. (orig.)

  1. Pediatric nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This symposium presented the latest techniques and approaches to the proper medical application of radionuclides in pediatrics. An expert faculty, comprised of specialists in the field of pediatric nuclear medicine, discussed the major indications as well as the advantages and potential hazards of nuclear medicine procedures compared to other diagnostic modalities. In recent years, newer radiopharmaceuticals labeled with technetium-99m and other short-lived radionuclides with relatively favorable radiation characteristics have permitted a variety of diagnostic studies that are very useful clinically and carry a substantially lower radiation burden then many comparable X-ray studies. This new battery of nuclear medicine procedures is now widely available for diagnosis and management of pediatric patients. Many recent research studies in children have yielded data concerning the effacacy of these procedures, and current recommendations will be presented by those involved in conducting such studies. Individual papers are processed separately for the Energy Data Base.

  2. Rare earth elements in nuclear medicine

    OpenAIRE

    Kodina G.E.; Kulakov V.N.; Sheino I.N.

    2014-01-01

    The review focuses on the key applications of stable and radioactive isotopes of rare earth elements in the technology of nuclear medicine, radionuclide diagnostics and therapy, as well as magnetic resonance imaging and binary radiotherapy technologies.

  3. Rare earth elements in nuclear medicine

    Directory of Open Access Journals (Sweden)

    Kodina G.E.

    2014-12-01

    Full Text Available The review focuses on the key applications of stable and radioactive isotopes of rare earth elements in the technology of nuclear medicine, radionuclide diagnostics and therapy, as well as magnetic resonance imaging and binary radiotherapy technologies.

  4. 2009 Mississippi Curriculum Framework: Postsecondary Nuclear Medicine Technology. (Program CIP: 51.0905 - Nuclear Medical Technology/Technologist)

    Science.gov (United States)

    Boney, Linda; Lee, Joanne; Pyles, Alice; Whitfield, Stacy

    2009-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... like? Special camera or imaging devices used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  6. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... diagnoses. In addition, manufacturers are now making single photon emission computed tomography/computed tomography (SPECT/CT) and ... nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also ...

  7. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... Most nuclear medicine exams will involve an injection in a vein in your child’s arm or hand. Your child should ... body, they offer the potential to identify disease in its earliest stages as well as a patient’s ...

  8. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... pictures and provides molecular information. In many centers, nuclear medicine images can be superimposed with computed tomography (CT) or magnetic resonance imaging (MRI) to produce special views, a practice known as image fusion or co-registration. These views allow the information ...

  9. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  10. Traceability in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, B.E. [National Institute of Standards and Technology, Ionizing Radiation Div., Gaithersburg MD (United States); Judge, St. [National Physical Laboratory, Hampton Road, Teddington, Middlesex (United Kingdom)

    2007-08-15

    Accurate, reproducible measurement of radioactivity in nuclear medicine applications is vital to ensure the safety and effectiveness of disease diagnosis and treatment using unsealed radioactive sources. The need to maintain a high degree of confidence in those measurements requires that they be carried out so as to be traceable to national and international standards. In addition, measurement traceability for radioactivity in medicine helps ensure international consistency in measurement at all levels of practice (national measurement laboratories, research institutions, isotope producers, radiopharmaceutical manufacturers and clinics). This paper explores the importance of radioactivity measurement in nuclear medicine and demonstrates how traceability can be extended from international standards to the quantity of the drug administered to the patient. (authors)

  11. Traceability in nuclear medicine

    Science.gov (United States)

    Zimmerman, Brian E.; Judge, Steven

    2007-08-01

    Accurate, reproducible measurement of radioactivity in nuclear medicine applications is vital to ensure the safety and effectiveness of disease diagnosis and treatment using unsealed radioactive sources. The need to maintain a high degree of confidence in those measurements requires that they be carried out so as to be traceable to national and international standards. In addition, measurement traceability for radioactivity in medicine helps ensure international consistency in measurement at all levels of practice (national measurement laboratories, research institutions, isotope producers, radiopharmaceutical manufacturers and clinics). This paper explores the importance of radioactivity measurement in nuclear medicine and demonstrates how traceability can be extended from international standards to the quantity of the drug administered to the patient.

  12. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... I-131 Therapy Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript ... an accurate diagnosis far outweighs any risk. To learn more about nuclear medicine, visit Radiology Info dot ...

  13. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... stage, often before symptoms occur or before abnormalities can be detected with other diagnostic tests. Nuclear medicine ... nuclear medicine exam, there are several things you can do to prepare. First, you may be asked ...

  14. Imaging in nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2013-01-01

    This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  15. Nuclear medicine therapy

    CERN Document Server

    Eary, Janet F

    2013-01-01

    One in three of the 30 million Americans who are hospitalized are diagnosed or treated with nuclear medicine techniques. This text provides a succinct overview and detailed set of procedures and considerations for patient therapy with unsealed radioactivity sources.  Serving as a complete literature reference for therapy with radiopharmaceuticals currently utilized in practice, this source covers the role of the physician in radionuclide therapy, and essential procedures and protocols required by health care personnel.

  16. Imaging in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Giussani, Augusto [BfS - Federal Office for Radiation Protection, Oberschleissheim (Germany). Dept. of Radiation Protection and Health; Hoeschen, Christoph (eds.) [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany). Research Unit Medical Raditation Physics and Diagnostics

    2013-08-01

    Presents the most recent developments in nuclear medicine imaging, with emphasis on the latest research findings. Considers the latest advances in imaging systems, image reconstruction, noise correction, and quality assurance. Discusses novel concepts, including those developed within the framework of the EURATOM FP7 MADEIRA project. Lists rules of thumb for imaging of use to both beginners and experienced researchers. This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.

  17. Nuclear medicine therapy principles and clinical applications

    CERN Document Server

    Aktolun, Cumali

    2012-01-01

    This book reviews nuclear medicine techniques and technology for therapy of malignant and benign diseases, covering scientific principles and clinical applications, and trials of experimental agents for treating tumors involving virtually every organ system.

  18. The opinions of radiographers, nuclear medicine technologists and radiation therapists regarding technology in health care: a qualitative study.

    Science.gov (United States)

    Aarts, Sil; Cornelis, Forra; Zevenboom, Yke; Brokken, Patrick; van de Griend, Nicole; Spoorenberg, Miriam; Ten Bokum, Wendy; Wouters, Eveline

    2017-03-01

    New technology is continuously introduced in health care. The aim of this study was (1) to collect the opinions and experiences of radiographers, nuclear medicine technologists and radiation therapists regarding the technology they use in their profession and (2) to acquire their views regarding the role of technology in their future practice. Participants were recruited from five departments in five hospitals in The Netherlands. All radiographers, nuclear medicine therapists and radiation therapists who were working in these departments were invited to participate (n = 252). The following topics were discussed: technology in daily work, training in using technology and the role of technology in future practice. The recorded interviews were transcribed verbatim and analysed using open and axial coding. A total of 52 participants (57.7% radiographer) were included, 19 men and 33 women (age range: 20-63). Four major themes emerged: (1) technology as an indispensable factor, (2) engagement, support and training in using technology, (3) transitions in work and (4) the radiographer of the future. All participants not only value technological developments to perform their occupations, but also aspects such as documentation and physical support. When asked about the future of their profession, contradictory answers were provided; while some expect less autonomy, others belief they will get more autonomy in their work. Technology plays a major role in all three occupations. All participants believe that technology should be in the best interests of patients. Being involved in the implementation of new technology is of utmost importance; courses and training, facilitated by the managers of the departments, should play a major role. Only when a constant dialogue exists between health care professionals and their managers, in which they discuss their experiences, needs and expectations, technology can be implemented in a safe and effective manner. This, in turn, might

  19. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  20. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  1. [Nuclear medicine in Europe: education].

    NARCIS (Netherlands)

    Hellwig, D.; Freudenberg, L.S.; Mottaghy, F.M.; Franzius, C.; Krause, T.; Garai, I.; Biermann, M.; Gruning, T.; Leitha, T.; Gotthardt, M.

    2012-01-01

    The technical developments that have taken place in the preceding years (PET, hybrid imaging) have changed nuclear medicine. The future cooperation with radiologists will be challenging as well as positioning nuclear medicine in an European context. It can also be expected that education in nuclear

  2. Nuclear medicine and AIDS

    Energy Technology Data Exchange (ETDEWEB)

    O' Doherty, M.J. (Saint Thomas' Hospital, London (United Kingdom) Kent and Canterbury Hospital, Canterbury (United Kingdom). Dept. of Nuclear Medicine); Nunan, T.O. (Saint Thomas' Hospital, London (United Kingdom). Dept. of Nuclear Medicine)

    1993-10-01

    The human immunodeficiency virus (HIV) infection and its associated illnesses in a relatively young population of patients provides an expanding role for nuclear medicine. The disease enforces a review of each department's infection control procedures. It has also resulted in an increase in the number of patients presenting with diseases such as Pneumocystis carinii pneumonia, Kaposi's sarcoma etc. which prior to the HIV epidemic were extremely rare. Thus in high risk patients the interpretation of abnormalities in nuclear medicine scans needs to include the spectrum of opportunistic infections and unusual tumours. The presence of opportunistic infections in the severely immunocompromised patient has led to the development of techniques not normally used, i.e. lung [sup 99]Tc[sup m]-diethylenetriamine pentaacetate (DTPA) transfer/clearance, donor leukocyte scanning to allow rapid diagnosis of an abnormality. Radionuclide techniques are also used to monitor the effect of therapy directed at the HIV itself or against opportunistic infections. This review covers aspects of infection control as well as the use of radionuclides to investigate specific problems related to HIV infection and therapy of the associated disease processes. (author).

  3. [Nuclear medicine and radiopharmaceuticals].

    Science.gov (United States)

    Sopena Novales, P; Plancha Mansanet, M C; Martinez Carsi, C; Sopena Monforte, R

    2014-06-01

    Nuclear Medicine is a medical specialty that allows modern diagnostics and treatments using radiopharmaceuticals original radiotracers (drugs linked to a radioactive isotope). In Europe, radiopharmaceuticals are considered a special group of drugs and thus their preparation and use are regulated by a set of policies that have been adopted by individual member countries. The radiopharmaceuticals used in diagnostic examinations are administered in very small doses. So, in general, they have no pharmacological action, side effects or serious adverse reactions. The biggest problem associated with their use are the alterations in their biodistribution that may cause diagnostic errors. Nuclear Medicine is growing considerably influenced by the appearance and development of new radiopharmaceuticals in both the diagnostic and therapeutic fields and primarily to the impact of new multimodality imaging techniques (SPECT-CT, PET-CT, PET-MRI, etc.). It's mandatory to know the limitations of these techniques, distribution and eventual physiological alterations of radiopharmaceuticals, contraindications and adverse reactions of radiological contrasts, and the possible interference of both.

  4. A Training Manual for Nuclear Medicine Technologists.

    Science.gov (United States)

    Simmons, Guy H.; Alexander, George W.

    This manual was prepared for a training program in Nuclear Medicine Technology at the University of Cincinnati. Instructional materials for students enrolled in these courses in the training program include: Nuclear Physics and Instrumentation, Radionuclide Measurements, Radiation Protection, and Tracer Methodology and Radiopharmaceuticals. (CS)

  5. Nuclear medicine in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Rothfeld, B. (ed.)

    1974-01-01

    The subject is discussed under the following main headings: crystal scintillation counting; liquid scintillation counting; activation analysis; the in vitro nuclear medicine laboratory; blood volume in clinical practice B/sub 12/ and folate deficiency; radionuclide studies associated with abnormalities of iron; basic principles of competitive radioassay; plasma cortisol; radioimmunoassays for T/sub 3/ and T/sub 4/; radioimmunoassay of estrogens; determination of androgens in biological fluids; radioimmunoassay of digitalis glycosides; growth hormone; thyrotropin; gonadotropins; radioimmunoassay of gastrin; glucagon; radioisotopic measurements of insulin; radioimmunoassay of the calcium-regulating hormones; the renin-angiotensin system and aldosterone; tumor antigens; fat absorption; protein-losing enteropathy; Australia antigen; bacteriologic cultures and sensitivities; and future pathways. (ERB)

  6. Nuclear Medicine in Pediatric Cardiology.

    Science.gov (United States)

    Milanesi, Ornella; Stellin, Giovanni; Zucchetta, Pietro

    2017-03-01

    Accurate cardiovascular imaging is essential for the successful management of patients with congenital heart disease (CHD). Echocardiography and angiography have been for long time the most important imaging modalities in pediatric cardiology, but nuclear medicine has contributed in many situations to the comprehension of physiological consequences of CHD, quantifying pulmonary blood flow symmetry or right-to-left shunting. In recent times, remarkable improvements in imaging equipments, particularly in multidetector computed tomography and magnetic resonance imaging, have led to the progressive integration of high resolution modalities in the clinical workup of children affected by CHD, reducing the role of diagnostic angiography. Technology has seen a parallel evolution in the field of nuclear medicine, with the advent of hybrid machines, as SPECT/CT and PET/CT scanners. Improved detectors, hugely increased computing power, and new reconstruction algorithms allow for a significant reduction of the injected dose, with a parallel relevant decrease in radiation exposure. Nuclear medicine retains its distinctive capability of exploring at the tissue level many functional aspects of CHD in a safe and reproducible way. The lack of invasiveness, the limited need for sedation, the low radiation burden, and the insensitivity to body habitus variations make nuclear medicine an ideal complement of echocardiography. This is particularly true during the follow-up of patients with CHD, whose increasing survival represent a great medical success and a challenge for the health system in the next decades. Metabolic imaging using (18)FDG PET/CT has expanded its role in the management of infection and inflammation in adult patients, particularly in cardiology. The same expansion is observed in pediatric cardiology, with an increasing rate of studies on the use of FDG PET for the evaluation of children with vasculitis, suspected valvular infection or infected prosthetic devices. The

  7. Nuclear medicine at a crossroads.

    Science.gov (United States)

    Schelbert, Heinrich R

    2011-12-01

    The growth of molecular imaging heightens the promise of clinical nuclear medicine as a tool for individualization of patient care and for improvement of health-care outcomes. Together with greater use of integrated structure-function imaging, clinical nuclear medicine reaches beyond traditional specialty borders into diagnostic radiology and oncology. Yet, there are concerns about the future of nuclear medicine, including progressively declining reimbursement, the competitive advantages of diagnostic radiology, limited translation of research accomplishments to clinical diagnostic imaging and patient care, and an insufficient pool of incoming highly qualified nuclear medicine clinicians. Thus, nuclear medicine views itself as being at a critical crossroads. What will be important is for nuclear medicine to be positioned as the quintessential molecular imaging modality more centrally within medical imaging and for the integration of nuclear medicine with primary care specialties to be driven more by patient needs than by specialty needs. In this way, the full potential of nuclear medicine as an effective and efficient tool for improving patient outcomes can be realized.

  8. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  9. Essentials of nuclear medicine imaging

    CERN Document Server

    Mettler, Fred A. Jr

    2012-01-01

    Essentials of Nuclear Medicine Imaging, by Drs. Fred A Mettler and Milton J Guiberteau, provides the practical and comprehensive guidance you need to master key nuclear imaging techniques. From physics, instrumentation, quality control, and legal requirements to hot topics such as sodium fluoride, radiopharmaceuticals, and recommended pediatric administered doses and guidelines, this sixth edition covers the fundamentals and recent developments in the practice of nuclear medicine.

  10. ANSTO: Australian Nuclear Science and Technology Organization

    Science.gov (United States)

    The Australian Nuclear Science and Technology Organization conducts or is engaged in collaborative research and development in the application of nuclear science and associated technology. Through its Australian radio-isotopes unit, it markets radioisotopes, their products and other services for the nuclear medicine industry and research. It also operates national nuclear facilities (HIFAR and Moata research reactors), promotes training, provides advice and disseminates information on nuclear science and technology. The booklet briefly outlines these activities.

  11. Nuclear Medicine National Headquarter System

    Data.gov (United States)

    Department of Veterans Affairs — The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all...

  12. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... CT Angiography Video: Myelography Video: CT of the Heart Video: Radioiodine I-131 Therapy Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ...

  13. Children's (Pediatric) Nuclear Medicine

    Science.gov (United States)

    ... medicine exams will involve an injection in a vein in your child’s arm or hand. Your child should wear loose, comfortable clothing and ... medicine exams will involve an injection into a vein in your child's arm or hand. Children should wear comfortable, loose-fitting clothing to ...

  14. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... the bladder, such as with a vesicoureteral reflux study. It can take several seconds to a few ... until the nuclear physician checks the images in case additional images are needed. top of page What ...

  15. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... help diagnose childhood disorders that are present at birth or that develop during childhood. It provides unique ... diagnose childhood disorders that are congenital (present at birth) or that develop during childhood. Physicians use nuclear ...

  16. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... placed over the patient's body. SPECT involves the rotation of the gamma camera heads around the patient's ... the child has been sedated, you will receive specific instructions to be followed after leaving the nuclear ...

  17. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... used in children with cancer, epilepsy and back pain. top of page What does the equipment look ... being recorded. Though nuclear imaging itself causes no pain, children may experience some discomfort from having to ...

  18. Introduction of nuclear medicine research in Japan.

    Science.gov (United States)

    Inubushi, Masayuki; Higashi, Tatsuya; Kuji, Ichiei; Sakamoto, Setsu; Tashiro, Manabu; Momose, Mitsuru

    2016-12-01

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan.

  19. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  20. Radiation physics for nuclear medicine

    CERN Document Server

    Hoeschen, Christoph

    2011-01-01

    The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.

  1. Historic images in nuclear medicine

    DEFF Research Database (Denmark)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-01-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution...... set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone...

  2. Nuclear medicine; La medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Sibille, L. [Hopital Lapeyronie CHU Montpellier, Medecine Nucleaire, 34 - Montpellier (France); Nalda, E.; Collombier, L.; Kotzki, P.O.; Boudousq, V. [CHU de Nimes, Service de Medecine Nucleaire et de biophysique, 30 - Nimes (France)

    2011-05-15

    Nuclear medicine is a medical specialty using the properties of radioactivity. Radioactive markers associated with vectors are used as a tracer or radiopharmaceutical for diagnostic purposes and/or therapy. Since its birth more than half a century ago, it has become essential in the care of many patients, particularly in oncology. After some definitions, this paper presents the main nuclear techniques - imaging for diagnostic, radiopharmaceuticals as therapeutic agents, intra-operative detection, technique of radioimmunoassay - and the future of this field. (authors)

  3. Technology and medicine.

    Science.gov (United States)

    Booth, C

    1985-05-22

    Technology, which is older than science, has been of vital importance in the development of modern medicine. Even so, there are voices of dissent to be heard. The disenchantment with technology expressed by Aldous Huxley in Brave new world has been echoed by contemporary writers on the technology of modern medicine. Medicine is seen by some to have been dehumanized by technology, and techniques that are expensive are thought to be consuming a greater proportion of health resources than they deserve. The practice of medicine has, nevertheless, been transformed by modern technology and diagnostic techniques and therapeutic measures undreamed of a few short decades ago are now commonplace. There is no reason why these developments should be any more dehumanizing than the use of similar techniques in modern transportation or communication, nor is their expense out of proportion when compared with other demands on the nation's purse. British workers have been at the forefront of many recent advances. Yet, even though the National Health Service provides a ready market for the products of British medical technology, the nation depends to an inordinate degree on imported products. In the development of appropriate medical technology there is an urgent need for better communication between inventors, scientists, industrialists and the National Health Service. At the same time there is an equal need for improved evaluation of untried techniques. The pressure for a central integrating body to coordinate resources could well be supported by the establishment of evaluation units in the different health authorities in this country.

  4. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  5. Children's (Pediatric) Nuclear Medicine

    Medline Plus

    Full Text Available ... exams at the same time. An emerging imaging technology, but not readily available at this time is ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  6. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  7. Radiation Safety in Nuclear Medicine Procedures.

    Science.gov (United States)

    Cho, Sang-Geon; Kim, Jahae; Song, Ho-Chun

    2017-03-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  8. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Therapy November 8 is the International Day of Radiology (IDoR) Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji ...

  9. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of ...

  10. Nuclear medicine at the crossroads

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.W. [Stanford Univ. Hospital, Div. of Nuclear Medicine, CA (United States)

    1996-06-01

    Many nuclear medicine procedures, originally developed more than 20 years ago, are now performed with new radiopharmaceuticals or instruments; it is therefore apposite to reappraise what we are doing and why we are doing it. The clinical utility of nuclear medicine is discussed with reference, by way of example, to gated blood pools scans and myocardial perfusion imaging; the importance of the referred population for the outcome of studies is stressed. Attention is drawn to the likelohood that the detection of ischemia would be enhanced by the administration of nitroglycerin prior to rest thallium injection. Emphasis is also placed on the increasing acceptance of dual-tracer studies. The significance of expression of p-glycoprotein by some tumors for sestamibi imaging is discussed, and advances in respect of fluorodeoxyglucose imaging are reviewed. The final section covers issues relating to the development of new procedures, such as the value of nuclear medicine in the detection and characterization of tissue oxygen levels and the possible future role of nuclear medicine in the management of sleeping and eating disorders. (orig.)

  11. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... through the area being examined and gives off energy in the form of gamma rays which are detected by a special camera and computer to create images of the inside of your body. If you’re scheduled for a nuclear medicine exam, there are several things you can ...

  12. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... before abnormalities can be detected with other diagnostic tests. Nuclear medicine imaging procedures use small amounts of ...

  13. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  14. Nuclear science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Science and Technology comprehends Nuclear and Condensed Matter Physics, Neutron Activation Analysis, Radiation Metrology, Radioprotection and Radioactive Waste Management. These activities are developed at the Research Reactor Center, the Radiation Metrology Center and the Radioactive Waste Management Laboratory. The Radioprotection activities are developed at all radioactive and nuclear facilities of IPEN-CNEN/SP. The Research Reactor Center at IPEN-CNEN/SP is responsible for the operation and maintenance of the Research Reactor IEA-R1 and has a three-fold mission: promoting basic and applied research in nuclear and neutron related sciences, providing educational opportunities for students in these fields and providing services and applications resulting from the reactor utilization. Specific research programs include nuclear structure study from beta and gamma decay of radioactive nuclei and nuclear reactions, nuclear and neutron metrology, neutron diffraction and neutron multiple-diffraction study for crystalline and magnetic structure determination, perturbed -angular correlation (PAC) using radioactive nuclear probes to study the nuclear hyperfine interactions in solids and instrumental neutron activation analysis, with comparative or ko standardization applied to the fields of health, agriculture, environment, archaeology, reference material production, geology and industry. The research in the areas of applied physics includes neutron radiography, scientific computation and nuclear instrumentation. During the last several years a special effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power. The primary objective was to modernize the IEA-R1 reactor for safe and sustainable operation to produce primary radioisotopes, such as {sup 99}Mo and {sup 131}I, among several others, used in nuclear medicine, by operating

  15. Nuclear medicine physics the basics

    CERN Document Server

    Chandra, Ramesh

    2012-01-01

    For decades this classic reference has been the book to review to master the complexities of nuclear-medicine physics. Part of the renowned The Basics series of medical physics books, Nuclear Medicine Physics has become an essential resource for radiology residents and practitioners, nuclear cardiologists, medical physicists, and radiologic technologists. This thoroughly revised Seventh Edition retains all the features that have made The Basics series a reliable and trusted partner for board review and reference. This handy manual contains key points at the end of each chapter that help to underscore principal concepts. You'll also find review questions at the end of each chapter—with detailed answers at the end of the book—to help you master the material. This edition includes useful appendices that elaborate on specific topics, such as physical characteristics of radionuclides and CGS and SI Units.

  16. The importance of HIFAR to nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Wood, N.R. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)

    1997-12-31

    Since its official opening on 26 January 1960, the HIFAR research reactor operated by the Australian Nuclear Science and Technology Organisation (ANSTO) at Lucas Heights near Sydney has been used to support an expanding nuclear medicine market. HIFAR has characteristics which make it very suitable for this role and the effect has been to make ANSTO the dominant supplier of reactor-based radiopharmaceuticals in Australia and a significant exporter. While HIFAR has capacity to support limited increased production, its future requires government decisions. The author concluded that the absence of an operational research reactor in Australia and the lack of another local source of neutrons could directly affect the practice of nuclear medicine in the country and the level of presently increasing exports. 1 fig.

  17. A concise guide to nuclear medicine

    CERN Document Server

    Elgazzar, Abdelhamid H

    2011-01-01

    Nuclear medicine is an important component of modern medicine. This easy-to-use book is designed to acquaint readers with the basic principles of nuclear medicine, the instrumentation used, the gamut of procedures available, and the basis for selecting specific diagnostic or therapeutic procedures and interpreting results. After an introductory chapter on the history, technical basis, and scope of nuclear medicine, a series of chapters are devoted to the application of nuclear medicine techniques in the different body systems. In addition, the use of nuclear medicine methods within oncology is

  18. Essentials of nuclear medicine physics and instrumentation

    CERN Document Server

    Powsner, Rachel A; Powsner, Edward R

    2013-01-01

    An excellent introduction to the basic concepts of nuclear medicine physics This Third Edition of Essentials of Nuclear Medicine Physics and Instrumentation expands the finely developed illustrated review and introductory guide to nuclear medicine physics and instrumentation. Along with simple, progressive, highly illustrated topics, the authors present nuclear medicine-related physics and engineering concepts clearly and concisely. Included in the text are introductory chapters on relevant atomic structure, methods of radionuclide production, and the interaction of radiation with matter. Fu

  19. Technology And Medicine

    OpenAIRE

    C. Ashokan Nambiar

    2014-01-01

    One is stuck at the amazing strides in technology as applied to medicine these days. When I had just finished school and was about to join college my seniors said if you learn zoology it is the stepping-stone for a career in medicine. However I was fascinated with chemistry, physics and maths. Later in medical college I soon realized knowledge in chemistry and physics was worthwhile. Zoology was not relevant. Much later while training in cardiology it was that the advantage of learning mathem...

  20. Industrialization of Nuclear Technology

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    1 Overview1.1 Income from operating activities Sale income from application of nuclear technology and non-nuclear products totaled 419million Yuan in 2015,an increase of 23.6%over the previous year,exceeding the target income set at the beginning of 2015.Of the total,sale incomes from iridium source,cobalt source,inspection system

  1. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  2. Converting Energy to Medical Progress [Nuclear Medicine

    Science.gov (United States)

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  3. Technology And Medicine

    Directory of Open Access Journals (Sweden)

    C. Ashokan Nambiar

    2014-01-01

    Full Text Available One is stuck at the amazing strides in technology as applied to medicine these days. When I had just finished school and was about to join college my seniors said if you learn zoology it is the stepping-stone for a career in medicine. However I was fascinated with chemistry, physics and maths. Later in medical college I soon realized knowledge in chemistry and physics was worthwhile. Zoology was not relevant. Much later while training in cardiology it was that the advantage of learning mathematics really helped. Calculations of cardiac output, valve areas, resistance, impedance and a host of other measurements were made easy. Principles of fluid-filled catheters or ultrasound transducers were understood better without any struggle. Of late we deal in strain, strain rate, fractional flow reserve and other advances.

  4. Empirical evidence of the effectiveness of concept mapping as a learning intervention for nuclear medicine technology students in a distance learning radiation protection and biology course.

    Science.gov (United States)

    Passmore, Gregory G; Owen, Mary Anne; Prabakaran, Krishnan

    2011-12-01

    Metacognitive learning strategies are based on instructional learning theory, which promotes deep, meaningful learning. Educators in a baccalaureate-level nuclear medicine technology program demonstrated that students enrolled in an online, distance learning section of an introductory radiation protection and radiobiology course performed better when traditional instruction was supplemented with nontraditional metacognitive learning strategies. The metacognitive learning strategy that was used is best known as concept mapping. The concept map, in addition to the standard homework problem assignment and opportunity for question-answer sessions, became the template for misconception identification and remediation interactions between the instructor and the student. The control group relied on traditional homework problems and question-answer sessions alone. Because students in both the "treatment" groups (i.e., students who used concept mapping) and the control group were distance learning students, all personal communications were conducted via e-mail or telephone. The final examination of the course was used to facilitate a quantitative comparison of the performance of students who used concept mapping and the performance of students who did not use concept mapping. The results demonstrated a significantly higher median final examination score for the concept mapping group than for the non-concept mapping group (z = -2.0381, P = 0.0415), with an appropriately large effect size (2.65). Concept mapping is a cognitive learning intervention that effectively enables meaningful learning and is suitable for use in the independent learner-oriented distance learning environments used by some nuclear medicine technology programs.

  5. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  6. Topics of nuclear medicine research in Europe.

    Science.gov (United States)

    Inubushi, Masayuki; Kaneta, Tomohiro; Ishimori, Takayoshi; Imabayashi, Etsuko; Okizaki, Atsutaka; Oku, Naohiko

    2017-07-25

    Last year in the European Journal of Nuclear Medicine and Molecular Imaging, we introduced some recent nuclear medicine research conducted in Japan. This was favorably received by European readers in the main. This year we wish to focus on the Annals of Nuclear Medicine on some of the fine nuclear medicine research work executed in Europe recently. In the current review article, we take up five topics: prostate-specific membrane antigen imaging, recent advances in radionuclide therapy, [(18)F]fluorodeoxyglucose positron-emission tomography (PET) for dementia, quantitative PET assessment of myocardial perfusion, and iodine-124 ((124)I). Just at the most recent annual meeting of the European Association of Nuclear Medicine 2016, Kyoto was selected as the host city for the 2022 Congress of the World Federation of Nuclear Medicine and Biology. We hope that our continuous efforts to strengthen scientific cooperation between Europe and Japan will bring many European friends and a great success to the Kyoto meeting.

  7. Diagnostic interventions in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Thrall, J.H.; Swanson, D.P.

    1989-01-01

    Diagnostic interventions in nuclear medicine may be defined as the coadministration of a nonradioactive drug or application of a physical stimulus or physiologic maneuver to enhance the diagnostic utility of a nuclear medicine test. The rationale for each interventional maneuver follows from the physiology or metabolism of the particular organ or organ system under evaluation. Diagnostic inference is drawn from the pattern of change in the biodistribution of the tracer in response to the intervention-induced change in metabolism or function. In current practice, the most commonly performed interventional maneuvers are aimed at studies of the heart, genitourinary system, hepatobiliary system, and gastrointestinal tract. The single most commonly performed interventional study in the United States is the stress Thallium-201 myocardial perfusion scan aimed at the diagnosis of coronary artery disease. The stress portion of the study is accomplished with dynamic leg exercise on a treadmill and is aimed at increasing myocardial oxygen demands. Areas of myocardium distal to hemodynamically significant lesions in the coronary arteries become ischemic at peak stress due to the inability of the stenotic vessel to respond to the oxygen demand/blood flow needs of the myocardium. Ischemic areas are readily recognized as photopenic defects on scans obtained immediately after exercise, with normalization upon delayed imaging. Diuresis renography is aimed at the differential diagnosis of hydroureteronephrosis. By challenging the urinary tract collecting structures with an augmented urine flow, dilated, unobstructed systems can be differentiated from systems with significant mechanical obstruction. 137 references.

  8. Nuclear medicine applications for the diabetic foot

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorne, M.F.; Peters, V.

    1987-04-01

    Although not frequently described in the podiatric literature, nuclear medicine imaging may be of great assistance to the clinical podiatrist. This report reviews in detail the use of modern nuclear medicine approaches to the diagnosis and management of the diabetic foot. Nuclear medicine techniques are helpful in evaluating possible osteomyelitis, in determining appropriate amputation levels, and in predicting response to conservative ulcer management. Specific indications for bone, gallium, and perfusion imaging are described.

  9. Physics technologies in medicine

    CERN Document Server

    CERN. Geneva. Audiovisual Unit; Kreis, Roland; Wildermuth, Simon; Buck, Alfred; Von Schulthess, Gustav K

    2002-01-01

    Modern medicine is a large consumer of physics technologies. The series of lectures covers medical imaging starting with an overview and the history of medical imaging. Then follows four lectures covering x-ray imaging positron emission tomography imaging blood flow by ultrasound magnetic resonance 10 June 2002 100 Years of Medical Imaging Pr. Gustav K. von Schulthess MD, PhD, University of Zurich History and overview of Medical Imaging 11 June 2002 X-rays: still going strong Dr. Simon Wildermuth, MD, University Hospital Zurich Multidetector computed tomography: New developments and applications Since its introduction in 1992, spiral computed tomography (CT) scanners constructed with a single row of detectors have revolutionized imaging of thoracic and abdominal diseases. Current state-of-the-art models use up to 16 detectors and are capable of acquiring 16 contiguous slices of data with each gantry rotation; systems with 32 data acquisition units (and more) are currently in development. The principal advan...

  10. ACCELERATIVE AND RADIONUCLIDE TECHNOLOGIES IN CLINICAL MEDICINE

    Directory of Open Access Journals (Sweden)

    A. P. Chernyaev

    2016-01-01

    Full Text Available Methods based on accelerative and radionuclide technologies are more and more invading clinical practice of modern medicine. The aim of this review is to demonstrate the role of nuclear physics techniques for treatment and diagnostics of various disorders. We analyzed data published in the last 50 years in research papers, reports and other open sources considering particulars of electron accelerators and heavy charged particles in radiation and nuclear medicine and presenting the information on prevalence of accelerators and other high-tech medical equipment in Russia and worldwide.

  11. Nuclear Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  12. Technology in respiratory medicine

    African Journals Online (AJOL)

    Repro

    Respiratory medicine is the subspecialty in medicine which ... The very nature of respiratory physiology ... of this essential step with resultant loss of accuracy in .... intensity of treatment, or for medicolegal .... likened to trying to manage dia-.

  13. Experience with Nuclear Medicine Information System

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salanci

    2012-12-01

    Full Text Available Objective: Radiology information system (RIS is basically evolved for the need of radiologists and ignores the vital steps needed for a proper work flow of Nuclear Medicine Department. Moreover, CT/MRI oriented classical PACS systems are far from satisfying Nuclear Physicians like storing dynamic data for reprocessing and quantitative analysis of colored images. Our purpose was to develop a workflow based Nuclear Medicine Information System (NMIS that fulfills the needs of Nuclear Medicine Department and its integration to hospital PACS system. Material and Methods: Workflow in NMIS uses HL7 (health level seven and steps include, patient scheduling and retrieving information from HIS (hospital information system, radiopharmacy, acquisition, digital reporting and approval of the reports using Nuclear Medicine specific diagnostic codes. Images and dynamic data from cameras of are sent to and retrieved from PACS system (Corttex© for reprocessing and quantitative analysis. Results: NMIS has additional functions to the RIS such as radiopharmaceutical management program which includes stock recording of both radioactive and non-radioactive substances, calculation of the radiopharmaceutical dose for individual patient according to body weight and maximum permissible activity, and calculation of radioactivity left per unit volume for each radionuclide according their half lives. Patient scheduling and gamma camera patient work list settings were arranged according to specific Nuclear Medicine procedures. Nuclear Medicine images and reports can be retrieved and viewed from HIS. Conclusion: NMIS provides functionality to standard RIS and PACS system according to the needs of Nuclear Medicine. (MIRT 2012;21:97-102

  14. Structure and Activities of Nuclear Medicine in Kuwait.

    Science.gov (United States)

    Elgazzar, Abdelhamid H; Owunwanne, Azuwuike; Alenezi, Saud

    2016-07-01

    The practice of nuclear medicine in Kuwait began in 1965 as a clinic for treating thyroid diseases. The practice developed gradually and until 1981 when the Faculty of Medicine established the Division of Nuclear Medicine in the Department of Radiology, which later became a separate department responsible for establishing and managing the practice in all hospitals of Kuwait. In 1987, a nuclear medicine residency program was begun and it is administered by Kuwait Institute for Medical Specializations originally as a 4-year but currently as a 5-year program. Currently there are 11 departments in the ministry of health hospitals staffed by 49 qualified attending physicians, mostly the diplomats of the Kuwait Institute for Medical Specializations nuclear medicine residency program, 4 academic physicians, 2 radiopharmacists, 2 physicists, and 130 technologists. These departments are equipped with 33 dual-head gamma cameras, 10 SPET/CT, 5 PET/CT, 2 cyclotrons, 1 breast-specific gamma imaging, 1 positron-emitting mammography, 10 thyroid uptake units, 8 technegas machines, 7 PET infusion systems, and 8 treadmills. Activities of nuclear medicine in Kuwait include education and training, clinical service, and research. Education includes nuclear medicine technology program in the Faculty of Allied Health Sciences, the 5-year residency program, medical school teaching distributed among different modules of the integrated curriculum with 14 didactic lecture, and other teaching sessions in nuclear medicine MSc program, which run concurrently with the first part of the residency program. The team of Nuclear Medicine in Kuwait has been active in research and has published more than 300 paper, 11 review articles, 12 book chapters, and 17 books in addition to 36 grants and 2 patents. A PhD program approved by Kuwait University Council would begin in 2016.

  15. Nuclear Medicine at Charles Sturt University

    Energy Technology Data Exchange (ETDEWEB)

    Swan, H. [Charles Sturt University, Wagga Wagga, NSW (Australia); Sinclair, P. [Charles Sturt University, Dubbo, NSW (Australia); Scollard, D. [Michener Institute, Toronto (Canada)

    1998-06-01

    Full text: A distance educational programme for upgrading of Certificate, Associate Diploma and Diploma to a Bachelor of Applied Science degree commenced in second semester of 1997 with approximately 15 Australian students and 15 Canadian students. The first graduation will occur in 1998. Formal links with the Michener Institute in Toronto have allowed Canadian students access to study resources during the course. All students entering the course are accredited or registered with their respective professional societies. The short conversion programme for those with three year diplomas includes Nuclear Medicine Physics and Instrumentation, Imaging Pathology, Clinical Neuroscience and Research Method subjects. An inaugural undergraduate degree programme in Nuclear Medicine Technology commences in first semester of 1998 on the Riverina Campus at Wagga Wagga. An intake of 15 students is anticipated. This small group of rural based students will have the benefits of international expertise. The programme has a strong clinical practice component including time on campus to supplement the practicum in departments. Physiology studies continue through to third year to complement the professional subjects. Active participation is solicited from those departments involved with aspects of the practicum well before students are placed. A fully functional teaching laboratory has been constructed containing a well equipped radiopharmacy, gamma camera room and computer laboratory using modern applications software to provide the students with a solid background in their chosen field

  16. Physics and radiobiology of nuclear medicine

    CERN Document Server

    Saha, Gopal B

    2010-01-01

    From a distinguished author comes this new edition for technologists, practitioners, residents, and students in radiology and nuclear medicine. Encompassing major topics in nuclear medicine from the basic physics of radioactive decay to instrumentation and radiobiology, it is an ideal review for Board and Registry examinations. The material is well organized and written with clarity. The book is supplemented with tables and illustrations throughout. It provides a quick reference book that is concise but comprehensive, and offers a complete discussion of topics for the nuclear medicine and radi

  17. Nuclear medicine training and practice in Portugal.

    Science.gov (United States)

    Vieira, Rosário; Costa, Gracinda

    2013-07-01

    Nuclear medicine in Portugal has been an autonomous speciality since 1984. In order to obtain the title of Nuclear Medicine Specialist, 5 years of training are necessary. The curriculum is very similar to the one approved under the auspices of the European Union of Medical Specialists, namely concerning the minimum recommended number of diagnostic and therapeutic procedures. There is a final assessment, and during the training the resident is in an approved continuing education programme. Departments are accredited by the Medical College in order to verify their capacity to host nuclear medicine residencies.

  18. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  19. Integrating cardiology for nuclear medicine physicians. A guide to nuclear medicine physicians

    Energy Technology Data Exchange (ETDEWEB)

    Movahed, Assad [East Carolina Univ., Greenville, NC (United States). Section of Cardiology; Gnanasegaran, Gopinath [Guy' s and St Thomas' Hospital NHS Foundation Trust, London (United Kingdom). Dept. of Nuclear Medicine; Buscombe, John R.; Hall, Margaret [Royal Free Hospital, London (United Kingdom). Dept. of Nuclear Medicine

    2009-07-01

    Nuclear cardiology is no longer a medical discipline residing solely in nuclear medicine. This is the first book to recognize this fact by integrating in-depth information from both the clinical cardiology and nuclear cardiology literature, and acknowledging cardiovascular medicine as the fundamental knowledge base needed for the practice of nuclear cardiology. The book is designed to increase the practitioner's knowledge of cardiovascular medicine, thereby enhancing the quality of interpretations through improved accuracy and clinical relevance.The text is divided into four sections covering all major topics in cardiology and nuclear cardiology: -Basic Sciences and Cardiovascular Diseases; -Conventional Diagnostic Modalities; -Nuclear Cardiology; -Management of Cardiovascular Diseases. (orig.)

  20. Nuclear medicine in the first year of life.

    Science.gov (United States)

    Treves, S Ted; Baker, Amanda; Fahey, Frederic H; Cao, Xinhua; Davis, Royal T; Drubach, Laura A; Grant, Frederick D; Zukotynski, Katherine

    2011-06-01

    Nuclear medicine has an important role in the care of newborns and children less than 1 y old. Patients in this age group present with a spectrum of diseases different from those of older children or adults. These patients can benefit from the full range of nuclear medicine studies. In these young children, nuclear medicine studies are more likely to be used to evaluate a wide range of congenital conditions but also can be helpful for evaluating acquired conditions such as infection, cancer, and trauma. This review first will cover the general aspects of nuclear medicine practice with these patients, including the special considerations that can help achieve successful diagnostic imaging. These topics will include clinical indications, imaging technology, instrumentation, software, positioning and immobilization, sedation, local and general anesthesia, radiopharmaceutical doses, radiation risk, and dose reduction. The review then will discuss the specific nuclear medicine studies that typically are obtained in patients in this age group. With extra care and attention to the special needs of this population, nuclear medicine departments can successfully study patients less than 1 y old.

  1. History and Perspectives of Nuclear Medicine in Bangladesh.

    Science.gov (United States)

    Hussain, Raihan

    2016-01-01

    Bangladesh is one of the smaller states in Asia. But it has a long and rich history of nuclear medicine for over sixty years. The progress in science and technology is always challenging in a developing country. In 1958, work for the first Nuclear Medicine facility was commenced in Dhaka in a tin-shed known as 'Radioisotope Centre' and was officially inaugurated in 1962. Since the late 50s of the last century nuclear medicine in Bangladesh has significantly progressed through the years in its course of development, but still the facilities are inadequate. At present there are 20 nuclear medicine establishments with 3 PET-CTs, 42 gamma camera/SPECTs with 95 physicians, 20 physicists, 10 radiochemists and 150 technologists. The Society of Nuclear Medicine, Bangladesh (SNMB) was formed in 1993 and publishing its official journal since 1997. Bangladesh also has close relationships with many international organizations like IAEA, ARCCNM, AOFNMB, ASNM, WFNMB and WARMTH. The history and the present scenario of the status of nuclear medicine in Bangladesh are being described here.

  2. Nuclear medicine training and practice in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Zehra [Ege University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey); Bozkurt, M. Fani; Erbas, Belkis [Hacettepe University School of Medicine, Department of Nuclear Medicine, Ankara (Turkey); Durak, Hatice [Dokuz Eyluel University School of Medicine, Department of Nuclear Medicine, Izmir (Turkey)

    2017-05-15

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before. (orig.)

  3. An overview of nuclear medicine imaging procedures.

    Science.gov (United States)

    Hogg, Peter; Lawson, Richard

    2015-11-25

    Nuclear medicine imaging is not generally well understood by nurses who work outside this area. Consequently, nurses can find themselves unable to answer patients' questions about nuclear medicine imaging procedures or give them proper information before they attend for a test. This article aims to explain what is involved in some common diagnostic nuclear medicine imaging procedures so that nurses are able to discuss this with patients. It also addresses some common issues about radiation protection that nurses might encounter in their usual working routine. The article includes links to videos showing some typical nuclear medicine imaging procedures from a patient's point of view and links to an e-Learning for Healthcare online resource that provides detailed information for nurses.

  4. Nuclear medicine training and practice in Turkey.

    Science.gov (United States)

    Ozcan, Zehra; Bozkurt, M Fani; Erbas, Belkıs; Durak, Hatice

    2017-01-31

    Nuclear medicine applications in Turkey started in the early 1950s, grew as an independent medical discipline and finally were recognized by the Ministry of Health in 1973. Later on, the professional organization of nuclear medicine physicians and other related professionals including radiopharmacists and technologists under the Turkish Society of Nuclear Medicine were established in 1975. Recently after completing more than a half century in Turkey, nuclear medicine has proved to be a strong and evolving medical field with more than 600 physicians serving for the changing needs of clinical practice throughout these years. This article describes past and present facts in this field and attempts to provide insights into the future which hopefully will be brighter than before.

  5. Nuclear medicine training and practice in Poland

    OpenAIRE

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-01-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which ac...

  6. Nuclear medicine training and practice in Poland

    OpenAIRE

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-01-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which ac...

  7. Trends in nuclear medicine in developing countries.

    Science.gov (United States)

    Dondi, Maurizio; Kashyap, Ravi; Paez, Diana; Pascual, Thomas; Zaknun, John; Bastos, Fernando Mut; Pynda, Yaroslav

    2011-12-01

    This article describes trends in nuclear medicine in the developing world as noted by nuclear medicine professionals at the International Atomic Energy Agency (IAEA). The trends identified are based on data gathered from several sources, including information gathered through a database maintained by the IAEA; evaluation of country program frameworks of various IAEA Member States; personal interactions with representatives in the nuclear medicine field from different regions of the world; official proceedings and meeting reports of the IAEA; participation in numerous national, regional, and international conferences; discussions with the leadership of major professional societies; and relevant literature. The information presented in this article relied on both objective and subjective observations. The aims of this article were to reflect on recent developments in the specialty of nuclear medicine and to envision the directions in which it is progressing. These issues are examined in terms of dimensions of practice, growth, and educational and training needs in the field of nuclear medicine. This article will enable readers to gain perspective on the status of nuclear medicine practice, with a specific focus on the developing world, and to examine needs and trends arising from the observations.

  8. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Science.gov (United States)

    2010-10-01

    ..., App. F Appendix F to Part 75—Standards for Licensing Radiographers, Nuclear Medicine Technologists... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take...

  9. Nuclear medicine consensus; Consenso sobre medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Edwaldo E.; Marin Neto, Jose Antonio; Naccarato, Alberto F.P.; Ramires, Jose Antonio F.; Castro, Iran de; Paiva, Eleuses Vieira; Thom, Anneliese F.; Barroso, Adelanir; Blum, Bernardo; Hollanda, Ricardo; Mansur, Antonio de Padua

    1995-04-01

    The use of nuclear methods in cardiovascular diseases is studied concerning diagnosis, risk, prognosis, indications and accuracy. Aspects concerning chronic coronary artery disease, myocardial ischemia, myocardial infarction, viable myocardium, valvular heart disease, ventricular dysfunction, heart transplant, congenital heart diseases in adults, are discussed.

  10. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... medicine offers the potential to identify disease in its earliest stage, often before symptoms occur or before ... from taking certain medications before the exam. Also, it’s best to leave any jewelry at home and ...

  11. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... medicine offers the potential to identify disease in its earliest stage, often before symptoms occur or before ... from taking certain medications before the exam. Also, it’s best to leave any jewelry at home and ...

  12. Festschrift. The Institute of Nuclear Medicine. 50 years

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The Institute of Nuclear Medicine, founded in 1961, celebrates with this Festschrift, its Golden Jubilee. It has been a remarkable 50 years of progress of the radionuclide tracer methodology. From initial, physiology based experimentation, a full independent medical discipline evolved, and with it, a comprehensive clinical service. Diagnosis and Treatment with radiotracers have established the basis for Nuclear Medicine. Technological advances have permeated the field like none other, its multidisciplinary character and its translational research are embedded in the history of the Institute and its success. Recent and latest advances in the field promise a future as bright as has been witnessed and documented in the last 50 years.

  13. Alternative nuclear technologies

    Science.gov (United States)

    Schubert, E.

    1981-10-01

    The lead times required to develop a select group of nuclear fission reactor types and fuel cycles to the point of readiness for full commercialization are compared. Along with lead times, fuel material requirements and comparative costs of producing electric power were estimated. A conservative approach and consistent criteria for all systems were used in estimates of the steps required and the times involved in developing each technology. The impact of the inevitable exhaustion of the low- or reasonable-cost uranium reserves in the United States on the desirability of completing the breeder reactor program, with its favorable long-term result on fission fuel supplies, is discussed. The long times projected to bring the most advanced alternative converter reactor technologies the heavy water reactor and the high-temperature gas-cooled reactor into commercial deployment when compared to the time projected to bring the breeder reactor into equivalent status suggest that the country's best choice is to develop the breeder. The perceived diversion-proliferation problems with the uranium plutonium fuel cycle have workable solutions that can be developed which will enable the use of those materials at substantially reduced levels of diversion risk.

  14. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.

    2013-01-01

    NuPECC (the Nuclear Physics European Collaboration Committee, an expert committee of the European Science Foundation) has the mission to strengthen European Collaboration in nuclear science through the promotion of nuclear physics and its trans-disciplinary use and application. NuPECC is currently...... working on a report on “Nuclear Physics for Medicine” and has set up a working group to review the present status and prospects of radionuclides for nuclear medicine. An interim report will be presented to seek comments and constructive input from EANM members. In particular it is investigated how nuclear...... physics Methods and nuclear physics facilities are supporting the development and supply of medical radionuclides and how this support could be further strengthened in future. Aspects that will be addressed: •In recent years, the reactor-based supply chain of 99Mo/99mTc generators was repeatedly...

  15. Role of nuclear medicine in melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Hoefnagel, C.A. [Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam (Netherlands)

    1998-11-01

    Melanoma is a malignant tumour of the melanocytes presenting characteristic metabolic and biological features, which remains a difficult and important issue in oncology. As a functional modality, nuclear medicine offers a variety of possibilities to assist in the clinical management of this disease. A brief survey of currently available techniques is presented for the diagnosis, staging and follow up, either by organ imaging or by using a great spectrum of tumour-seeking radiopharmaceuticals. The role of lymphoscintigraphy in melanoma is emphasized, as well as the supportive role of nuclear medicine in the surgical theater, enabling selective lymph node dissection by the sentinel node procedure and high dose regional chemotherapy by isolated limb perfusion. Although hardly used for metastatic melanoma so far, with all its tumour-seeking approaches nuclear medicine holds a therapeutic potential for this disease as well. (orig.) With 4 figs., 2 tabs., 47 refs.

  16. Applications of nuclear medicine in genitourinary imaging

    Energy Technology Data Exchange (ETDEWEB)

    Blaufox, M.D.; Kalika, V.; Scharf, S.; Milstein, D.

    1982-01-01

    Major advances in nuclear medicine instrumentation and radiopharmaceuticals for renal studies have occurred during the last decade. Current nuclear medicine methodology can be applied for accurate evaluation of renal function and for renal imaging in a wide variety of clinical situations. Total renal function can be estimated from the plasma clearance of agents excreted by glomerular filtration or tubular secretion, and individual function can be estimated by imaging combined with renography. A major area of radionuclide application is in the evaluation of obstructive uropathy. The introduction of diuretic renography and the use of computer-generated regions of interest offer the clinician added useful data which may aid in diagnosis and management. Imaging is of proven value also in trauma, renovascular hypertension, and acute and chronic renal failure. Methods for the evaluation of residual urine, vesicoureteral reflux, and testicular torsion have achieved increasing clinical use. These many procedures assure a meaningful and useful role for the application of nuclear medicine in genitourinary imaging.

  17. Dose Estimation in Pediatric Nuclear Medicine.

    Science.gov (United States)

    Fahey, Frederic H; Goodkind, Alison B; Plyku, Donika; Khamwan, Kitiwat; O'Reilly, Shannon E; Cao, Xinhua; Frey, Eric C; Li, Ye; Bolch, Wesley E; Sgouros, George; Treves, S Ted

    2017-03-01

    The practice of nuclear medicine in children is well established for imaging practically all physiologic systems but particularly in the fields of oncology, neurology, urology, and orthopedics. Pediatric nuclear medicine yields images of physiologic and molecular processes that can provide essential diagnostic information to the clinician. However, nuclear medicine involves the administration of radiopharmaceuticals that expose the patient to ionizing radiation and children are thought to be at a higher risk for adverse effects from radiation exposure than adults. Therefore it may be considered prudent to take extra care to optimize the radiation dose associated with pediatric nuclear medicine. This requires a solid understanding of the dosimetry associated with the administration of radiopharmaceuticals in children. Models for estimating the internal radiation dose from radiopharmaceuticals have been developed by the Medical Internal Radiation Dosimetry Committee of the Society of Nuclear Medicine and Molecular Imaging and other groups. But to use these models accurately in children, better pharmacokinetic data for the radiopharmaceuticals and anatomical models specifically for children need to be developed. The use of CT in the context of hybrid imaging has also increased significantly in the past 15 years, and thus CT dosimetry as it applies to children needs to be better understood. The concept of effective dose has been used to compare different practices involving radiation on a dosimetric level, but this approach may not be appropriate when applied to a population of children of different ages as the radiosensitivity weights utilized in the calculation of effective dose are not specific to children and may vary as a function of age on an organ-by-organ bias. As these gaps in knowledge of dosimetry and radiation risk as they apply to children are filled, more accurate models can be developed that allow for better approaches to dose optimization. In turn, this

  18. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET i

  19. Neuroimaging in nuclear medicine: drug addicted brain

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-An; Kim, Dae-Jin [The Catholic University of Korea, Seoul (Korea, Republic of)

    2006-02-15

    Addiction to illicit drugs in one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems in not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis . Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In addition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further.

  20. Collaborative environment for nuclear medicine training

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Claudia Regio; Dalpiaz, Gabriel Goulart; Giraffa, Lucia Maria, E-mail: claudinharb@gmail.co [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil); Silva, Ana Maria Marques da [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Dept. de Fisica; Silva Junior, Neivo da [Pontificia Universidade Catolica do Rio Grande do Sul (HSL-PUCRS), Porto Alegre, RS (Brazil). Hospital Sao Lucas; Ferreto, Tiago Coelho; Rose, Cesar Augusto Fonticielha de [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Inst. de Informatica; Silva, Vinicius Duval da [Pontificia Universidade Catolica do Rio Grande do Sul (FAMED/PUCRS), Porto Alegre, RS (Brazil). Escola de Medicina. Dept. de Patologia e Radiacoes

    2011-05-15

    Objective: To validate the proposal for development of a virtual collaborative environment for training of nuclear medicine personnel. Materials and Methods: Organizational assumptions, constraints and functionalities that should be offered to the professionals in this field were raised early in the development of the environment. The prototype was developed in the Moodle environment, including data storage and interaction functionalities. A pilot interaction study was developed with a sample of specialists in nuclear medicine. Users' opinions collected by means of semi-structured questionnaire were submitted to quantitative and content analysis. Results: The proposal of a collaborative environment was validated by a learning courses of nuclear medicine professionals and considered as an aid in the training in this field. Suggestions for improvements and new functionalities were made. There is a need to establish a program for education of moderators specifically for this environment, considering the different interaction characteristics as the online and conventional teaching methods are compared. Conclusion: The collaborative environment will allow the exchange of experiences and case discussions among professionals from institutions located in different regions all over the country, enhancing the collaboration among them. Thus, the environment can contribute in the early and continued education of nuclear medicine professionals. (author)

  1. A nuclear chocolate box: the periodic table of nuclear medicine.

    Science.gov (United States)

    Blower, Philip J

    2015-03-21

    Radioisotopes of elements from all parts of the periodic table find both clinical and research applications in radionuclide molecular imaging and therapy (nuclear medicine). This article provides an overview of these applications in relation to both the radiological properties of the radionuclides and the chemical properties of the elements, indicating past successes, current applications and future opportunities and challenges for inorganic chemistry.

  2. Specific filters applied in nuclear medicine services

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Vitor S.; Crispim, Verginia R., E-mail: verginia@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Brandao, Luis E.B. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ) Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In Nuclear Medicine, radioiodine, in various chemical forms, is a key tracer used in diagnostic practices and/or therapy. Due to its high volatility, medical professionals may incorporate radioactive iodine during the preparation of the dose to be administered to the patient. In radioactive iodine therapy doses ranging from 3.7 to 7.4 GBq per patient are employed. Thus, aiming at reducing the risk of occupational contamination, we developed a low cost filter to be installed at the exit of the exhaust system where doses of radioactive iodine are fractionated, using domestic technology. The effectiveness of radioactive iodine retention by silver impregnated silica [10%] crystals and natural activated carbon was verified using radiotracer techniques. The results showed that natural activated carbon is effective for I{sub 2} capture for a large or small amount of substrate but its use is restricted due to its low flash point (150 deg C). Besides, when poisoned by organic solvents, this flash point may become lower, causing explosions if absorbing large amounts of nitrates. To hold the CH{sub 3}I gas, it was necessary to increase the volume of natural activated carbon since it was not absorbed by SiO{sub 2} + Ag crystals. We concluded that, for an exhaust flow range of (306 {+-} 4) m{sup 3}/h, a double stage filter using SiO{sub 2} + Ag in the first stage and natural activated carbon in the second is sufficient to meet radiological safety requirements. (author)

  3. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  4. Nuclear Proliferation Technology Trends Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  5. Coded-aperture imaging in nuclear medicine

    Science.gov (United States)

    Smith, Warren E.; Barrett, Harrison H.; Aarsvold, John N.

    1989-01-01

    Coded-aperture imaging is a technique for imaging sources that emit high-energy radiation. This type of imaging involves shadow casting and not reflection or refraction. High-energy sources exist in x ray and gamma-ray astronomy, nuclear reactor fuel-rod imaging, and nuclear medicine. Of these three areas nuclear medicine is perhaps the most challenging because of the limited amount of radiation available and because a three-dimensional source distribution is to be determined. In nuclear medicine a radioactive pharmaceutical is administered to a patient. The pharmaceutical is designed to be taken up by a particular organ of interest, and its distribution provides clinical information about the function of the organ, or the presence of lesions within the organ. This distribution is determined from spatial measurements of the radiation emitted by the radiopharmaceutical. The principles of imaging radiopharmaceutical distributions with coded apertures are reviewed. Included is a discussion of linear shift-variant projection operators and the associated inverse problem. A system developed at the University of Arizona in Tucson consisting of small modular gamma-ray cameras fitted with coded apertures is described.

  6. Australian per caput dose from diagnostic imaging and nuclear medicine.

    Science.gov (United States)

    Hayton, A; Wallace, A; Marks, P; Edmonds, K; Tingey, D; Johnston, P

    2013-10-01

    The largest man-made contributor to the ionising radiation dose to the Australian population is from diagnostic imaging and nuclear medicine. The last estimation of this dose was made in 2004 (1.3 mSv), this paper describes a recent re-evaluation of this dose to reflect the changes in imaging trends and technology. The estimation was calculated by summing the dose from five modalities, computed tomography (CT), general radiography/fluoroscopy, interventional procedures, mammography and nuclear medicine. Estimates were made using Australian frequency data and dose data from a range of Australian and international sources of average effective dose values. The ionising radiation dose to the Australian population in 2010 from diagnostic imaging and nuclear medicine is estimated to be 1.7 mSv (1.11 mSv CT, 0.30 mSv general radiography/fluoroscopy, 0.17 mSv interventional procedures, 0.03 mSv mammography and 0.10 mSv nuclear medicine). This exceeds the estimate of 1.5 mSv per person from natural background and cosmic radiation.

  7. Focused technology: Nuclear propulsion

    Science.gov (United States)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  8. Nuclear safeguards technology handbook

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included. (LK)

  9. Directory of computer users in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, J.J.; Gurney, J.; McClain, W.J. (eds.)

    1979-09-01

    The Directory of Computer Users in Nuclear Medicine consists primarily of detailed descriptions and indexes to these descriptions. A typical Installation Description contains the name, address, type, and size of the institution and the names of persons within the institution who can be contacted for further information. If the department has access to a central computer facility for data analysis or timesharing, the type of equipment available and the method of access to that central computer is included. The dedicated data processing equipment used by the department in its nuclear medicine studies is described, including the peripherals, languages used, modes of data collection, and other pertinent information. Following the hardware descriptions are listed the types of studies for which the data processing equipment is used, including the language(s) used, the method of output, and an estimate of the frequency of the particular study. An Installation Index and an Organ Studies Index are also included. (PCS)

  10. The Predictive Value of Selected Extrinsic and Intrinsic Indicators of Overall Job Satisfaction in Diagnostic Radiological Technology, Radiation Therapy, and Nuclear Medicine Technology Allied Health Faculty

    Science.gov (United States)

    Beavers, Gregory S.

    2010-01-01

    Healthcare is the largest industry in the United States and 60 percent of its 14 million workers are in allied health jobs. The need to attract and retain allied health faculty is critical to preparing a competent workforce in healthcare. This study reports the results of a survey of 259 faculty members working in diagnostic radiologic technology,…

  11. The Predictive Value of Selected Extrinsic and Intrinsic Indicators of Overall Job Satisfaction in Diagnostic Radiological Technology, Radiation Therapy, and Nuclear Medicine Technology Allied Health Faculty

    Science.gov (United States)

    Beavers, Gregory S.

    2010-01-01

    Healthcare is the largest industry in the United States and 60 percent of its 14 million workers are in allied health jobs. The need to attract and retain allied health faculty is critical to preparing a competent workforce in healthcare. This study reports the results of a survey of 259 faculty members working in diagnostic radiologic technology,…

  12. Robotic technology in cardiovascular medicine.

    Science.gov (United States)

    Bonatti, Johannes; Vetrovec, George; Riga, Celia; Wazni, Oussama; Stadler, Petr

    2014-05-01

    Robotic technology has been used in cardiovascular medicine since the late 1990s. Interventional cardiology, electrophysiology, endovascular surgery, minimally invasive cardiac surgery, and laparoscopic vascular surgery are all fields of application. Robotic devices enable endoscopic reconstructive surgery in narrow spaces and fast, very precise placement of catheters and devices in catheter-based interventions. In all robotic systems, the operator manipulates the robotic arms from a control station or console. In the field of cardiac surgery, mitral valve repair, CABG surgery, atrial septal defect repair, and myxoma resection can be achieved using robotic technology. Furthermore, vascular surgeons can perform a variety of robotically assisted operations to treat aortic, visceral, and peripheral artery disease. In electrophysiology, ablation procedures for atrial fibrillation can be carried out with robotic support. In the past few years, robotically assisted percutaneous coronary intervention and abdominal aortic endovascular surgery techniques have been developed. The basic feasibility and safety of robotic approaches in cardiovascular medicine has been demonstrated, but learning curves and the high costs associated with this technology have limited its widespread use. Nonetheless, increased procedural speed, accuracy, and reduced exposure to radiation and contrast agent in robotically assisted catheter-based interventions, as well as reduced surgical trauma and shortened patient recovery times after robotic cardiovascular surgery are promising achievements in the field.

  13. ACADEMIC TRAINING: Physics Technologies in Medicine

    CERN Multimedia

    Françoise Benz

    2002-01-01

    10, 11, 12, 13, 14 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Physics Technologies in Medicine by G. K. Von Schulthess / Univ. of Zürich, S. Wildermuth, A. Buck / Univ. Hospital Zürich, K. Jäger / Univ. Hospital Basel, R. Kreis / Univ. Hospital Bern Modern medicine is a large consumer of physics technologies. The series of lectures covers medical imaging starting with an overview and the history of medical imaging. Then follows four lectures covering x-ray imaging positron emission tomography imaging blood flow by ultrasound magnetic resonance Monday 10 June 100 Years of Medical Imaging Pr. Gustav K. von Schulthess MD, PhD / University of Zurich History and overview of Medical Imaging Tuesday 11 June X-rays: still going strong Dr. Simon Wildermuth / MD, University Hospital Zurich Multidetector computed tomography: New developments and applications Wednesday 12 June Nuclear Medicine: PET Positron Emission Tomography Dr. Alfred Buck / MD, MSc, University...

  14. ACADEMIC TRAINING Physics Technologies in Medicine

    CERN Multimedia

    Françoise Benz

    2002-01-01

    10, 11, 12, 13, 14 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Physics Technologies in Medicine by G. K. Von Schulthess / Univ. of Z rich, S. Wildermuth, A. Buck / Univ. Hospital Z rich, K. Jäger / Univ. Hospital Basel, R. Kreis / Univ. Hospital Bern Modern medicine is a large consumer of physics technologies. The series of lectures covers medical imaging starting with an overview and the history of medical imaging. Then follows four lectures covering x-ray imaging positron emission tomography imaging blood flow by ultrasound magnetic resonance Monday 10 June 100 Years of Medical Imaging Pr. Gustav K. von Schulthess MD, PhD / University of Zurich History and overview of Medical Imaging Tuesday 11 June X-rays: still going strong Dr. Simon Wildermuth / MD, University Hospital Zurich Multidetector computed tomography: New developments and applications Wednesday 12 June Nuclear Medicine: PET Positron Emission Tomography Dr. Alfred Buck / MD, MSc, University Hospital Zurich Elucidati...

  15. The Governance of Nuclear Technology

    Energy Technology Data Exchange (ETDEWEB)

    Vergino, E S; May, M

    2003-09-22

    Eisenhower's Atoms for Peace speech in 1953 is remembered for engaging the world, and the Soviet Union in particular, in a dialogue about arms control and the formulation of a nuclear regime in which national and international security concerns growing from this unprecedented emerging and frightening new weapons capability would be addressed while tapping the civilian promise of nuclear applications for the good of mankind. Out of it came a series of initiatives, leading fifteen years later to the NPT, intended to allow the growth and spread of the beneficial uses of nuclear know-how while constraining the incentives and capabilities for nuclear weapons. The last 50 years has seen a gradual spread in nations with nuclear weapons, other nations with nuclear knowledge and capabilities, and still others with nuclear weapon intentions. Still most nations of the world have forgone weapon development, most have signed and abided by the NPT, and some that have had programs or even weapons, have turned these capabilities off. Yet despite this experience, and despite a relatively successful record up to a few years ago, there is today a clear and generally recognized crisis in nuclear governance, a crisis that affects the future of all the cross-cutting civilian/security issues we have cited. The crux of this crisis is a lack of consensus among the major powers whose support of international efforts is necessary for effective governance of nuclear activities. The lack of consensus focuses on three challenges: what to do about non-compliance, what to do about non-adherence, and what to do about the possible leakage of nuclear materials and technologies to terrorist groups. Short of regaining consensus on the priority to be given to nuclear material and technology controls, it is unlikely that any international regime to control nuclear materials and technologies, let alone oversee a growth in the nuclear power sector, will be successful in the tough cases where it needs

  16. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  17. ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.

    Science.gov (United States)

    Guiberteau, Milton J; Graham, Michael M

    2011-06-01

    The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training.

  18. Development of Scintillators in Nuclear Medicine.

    Science.gov (United States)

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce "lutetium aluminum garnet activated by cerium" CRY018 "CRY019" lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality.

  19. Nuclear medicine training and practice in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Teresinska, Anna [Institute of Cardiology, Department of Nuclear Medicine, Warsaw (Poland); Birkenfeld, Bozena [Pomeranian Medical University, Department of Nuclear Medicine, Szczecin (Poland); Krolicki, Leszek [Warsaw Medical University, Department of Nuclear Medicine, Warsaw (Poland); Dziuk, Miroslaw [Military Institute of Medicine, Department of Nuclear Medicine, Warsaw (Poland)

    2014-10-15

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes

  20. Nuclear medicine applications and their mathematical basis

    CERN Document Server

    Goris, Michael

    2011-01-01

    This book reviews some principal applications of nuclear medicine, specifically from the viewpoint of the mathematical and physical analyses that support the interpretation. In contradistinction to other approaches, the mathematics does not precede the applications in introductory chapters, but is presented in the application chapters with various degrees of granularity. More details on mathematical derivations are illustrated in the last chapter for interested readers. A more detailed review of Bayes theorem can be found (in Chapter 7) explaining how the literature results were retabulated

  1. Nuclear medicine training and practice in Poland.

    Science.gov (United States)

    Teresińska, Anna; Birkenfeld, Bożena; Królicki, Leszek; Dziuk, Mirosław

    2014-10-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  2. Advancing Precision Nuclear Medicine and Molecular Imaging for Lymphoma.

    Science.gov (United States)

    Wright, Chadwick L; Maly, Joseph J; Zhang, Jun; Knopp, Michael V

    2017-01-01

    PET with fluorodeoxyglucose F 18 ((18)F FDG-PET) is a meaningful biomarker for the detection, targeted biopsy, and treatment of lymphoma. This article reviews the evolution of (18)F FDG-PET as a putative biomarker for lymphoma and addresses the current capabilities, challenges, and opportunities to enable precision medicine practices for lymphoma. Precision nuclear medicine is driven by new imaging technologies and methodologies to more accurately detect malignant disease. Although quantitative assessment of response is limited, such technologies will enable a more precise metabolic mapping with much higher definition image detail and thus may make it a robust and valid quantitative response assessment methodology. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Do we need a universal 'code of ethics' in nuclear medicine?

    Science.gov (United States)

    Ramesh, Chandakacharla N; Vinjamuri, Sobhan

    2010-06-01

    Recent years have seen huge advances in medicine and the science of medicine. Nuclear medicine has been no exception and there has been rapid acceptance of new concepts, new technologies and newer ways of working. Ethical principles have been traditionally considered as generic skills applicable to wide groups of scientists and doctors, with only token refinement at specialty level. Specialist bodies across the world representing wide groups of practitioners frequently have subgroups dealing exclusively with ethical issues. It could easily be argued that the basic principles of ethical practice adopted by specialist bodies closest to nuclear medicine practice, such as radiology and oncology, will also be applicable to nuclear medicine and that time and effort need not be spent on specifying a separate code for nuclear medicine. It could also be argued that nuclear medicine is an independent specialty and some (if not most) practitioners will not be aware of the guidelines adopted by other specialist societies, and that there is a need for re-iteration of ethical principles at the specialty level and on a worldwide scale.In this article we would like to present a brief history of medical ethics, discuss some of the advances in nuclear medicine and their associated ethical aspects, as well as list a framework of principles for consideration, should a specialist body deem it suitable to establish a 'code of ethics' for nuclear medicine.

  4. Display of nuclear medicine imaging studies

    CERN Document Server

    Singh, B; Samuel, A M

    2002-01-01

    Nuclear medicine imaging studies involve evaluation of a large amount of image data. Digital signal processing techniques have introduced processing algorithms that increase the information content of the display. Nuclear medicine imaging studies require interactive selection of suitable form of display and pre-display processing. Static imaging study requires pre-display processing to detect focal defects. Point operations (histogram modification) along with zoom and capability to display more than one image in one screen is essential. This album mode of display is also applicable to dynamic, MUGA and SPECT data. Isometric display or 3-D graph of the image data is helpful in some cases e.g. point spread function, flood field data. Cine display is used on a sequence of images e.g. dynamic, MUGA and SPECT imaging studies -to assess the spatial movement of tracer with time. Following methods are used at the investigator's discretion for inspection of the 3-D object. 1) Display of orthogonal projections, 2) Disp...

  5. Nuclear Medicine Physics: The Basics. 7th ed.

    Science.gov (United States)

    Mihailidis, Dimitris

    2012-10-01

    Nuclear Medicine Physics: The Basics. 7th ed. Ramesh Chandra, Lippincott Williams and Wilkins, a Wolters Kluwer Business. Philadelphia, 2012. Softbound, 224 pp. Price: $69.99. ISBN: 9781451109412. © 2012 American Association of Physicists in Medicine.

  6. Special monitoring in nuclear medicine; Monitoreo especial en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, C.C.; Puerta, J.A.; Morales, J. [Asociacion Colombiana de Proteccion Radiologica (Colombia)]. e-mail: ccbeltra@gmail.com

    2006-07-01

    Colombia counts with around 56 centers of Nuclear Medicine, 70 Nuclear Doctors and more of 100 Technologists in this area. The radioisotopes more used are the {sup 131} I and the {sup 99m} Tc. The radiological surveillance singular in the country is carried out for external dosimetry, being the surveillance by incorporation of radioactive materials very sporadic in our media. Given the necessity to implement monitoring programs in the incorporation of radionuclides of the occupationally exposed personnel, in the routine practice them routine of Nuclear Medicine, it was implemented a pilot program of Special Monitoring with two centers of importance in the city of Medellin. This program it was carried out with the purpose of educating, to stimulate and to establish a program of reference monitoring with base in the National Program of Monitoring in the radionuclides Incorporation that serves like base for its application at level of all the services of Nuclear Medicine in the country. This monitoring type was carried out with the purpose of obtaining information on the work routine in these centers, form of manipulation and dosage of the radionuclides, as well as the administration to the patient. The application of the program was carried out to define the frequency of Monitoring and analysis technique for the implementation of a program of routine monitoring, following the recommendations of the International Commission of Radiological Protection. For their application methods of activity evaluation were used in urine and in 7 workers thyroid, of those which only two deserve an analysis because they presented important activities. The measures were carried out during one month, every day by means in urine samples and to the most critic case is practiced two thyroid measures, one in the middle of the period and another when concluding the monitoring. To the other guy is practiced an activity count in thyroid when concluding the monitoring period. The obtained

  7. The role of general nuclear medicine in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Lacey R, E-mail: lgreene@csu.edu.au [Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales (Australia); Wilkinson, Deborah [Faculty of Health, Wheeling Jesuit University, Wheeling, West Virginia (United States); Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales (Australia)

    2015-03-15

    The rising incidence of breast cancer worldwide has prompted many improvements to current care. Routine nuclear medicine is a major contributor to a full gamut of clinical studies such as early lesion detection and stratification; guiding, monitoring, and predicting response to therapy; and monitoring progression, recurrence or metastases. Developments in instrumentation such as the high-resolution dedicated breast device coupled with the diagnostic versatility of conventional cameras have reinserted nuclear medicine as a valuable tool in the broader clinical setting. This review outlines the role of general nuclear medicine, concluding that targeted radiopharmaceuticals and versatile instrumentation position nuclear medicine as a powerful modality for patients with breast cancer.

  8. History and Perspectives of Nuclear Medicine in Thailand

    Directory of Open Access Journals (Sweden)

    Sombut Boonyaprapa

    2014-10-01

    Full Text Available In 1955, the first nuclear medicine division was established in Thailand by Professor Romsai Suwannik in the Department of Radiology, Siriraj Hospil, Mahidol University in Bangkok. In 1959 four years later, the second nuclear medicine division was established in the Department of Radiology, Chulalongkorn Hospital in Bangkok. The third nuclear medicine division was started in Rajvithi Hospital in Bangkok in 1961. The fourth nuclear medicine division was installed in Chiang Mai University which is the first University located outside of Bangkok in 1965 by Professor Dusadee Prabhasavat and Professor Sanan Simarak, ten years after the first nuclear medicine division in Siriraj Hospital. At the present in Thailand, there are twenty-five organizations providing clinical nuclear medicine services. Five medical faculties provide three years nuclear medicine residency training. There are eight companies which supply radiopharmaceuticals and/or nuclear medicine instruments one of these belongs to governmental office of atomic for peace (OAP of Thailand. In conclusion: Nuclear medicine researches and clinical practices in Thailand had been progressed from the past to the present time and will more progress in the near future, which certainly is the part of Asian countries and ARCCNM.

  9. Reexamining the Ethics of Nuclear Technology.

    Science.gov (United States)

    Andrianov, Andrei; Kanke, Victor; Kuptsov, Ilya; Murogov, Viktor

    2015-08-01

    This article analyzes the present status, development trends, and problems in the ethics of nuclear technology in light of a possible revision of its conceptual foundations. First, to better recognize the current state of nuclear technology ethics and related problems, this article focuses on presenting a picture of the evolution of the concepts and recent achievements related to technoethics, based on the ethics of responsibility. The term 'ethics of nuclear technology' describes a multidisciplinary endeavor to examine the problems associated with nuclear technology through ethical frameworks and paradigms. Second, to identify the reasons for the intensification of efforts to develop ethics in relation to nuclear technology, this article presents an analysis of the recent situation and future prospects of nuclear technology deployment. This includes contradictions that have aggravated nuclear dilemmas and debates stimulated by the shortcomings of nuclear technology, as well as the need for the further development of a nuclear culture paradigm that is able to provide a conceptual framework to overcome nuclear challenges. Third, efforts in the field of nuclear technology ethics are presented as a short overview of particular examples, and the major findings regarding obstacles to the development of nuclear technology ethics are also summarized. Finally, a potential methodological course is proposed to overcome inaction in this field; the proposed course provides for the further development of nuclear technology ethics, assuming the axiological multidisciplinary problematization of the main concepts in nuclear engineering through the basic ethical paradigms: analytical, hermeneutical, and poststructuralist.

  10. Space and nuclear research and technology

    Science.gov (United States)

    1975-01-01

    A fact sheet is presented on the space and nuclear research and technology program consisting of a research and technology base, system studies, system technology programs, entry systems technology, and experimental programs.

  11. Current research in nuclear medicine and molecular imaging: highlights of the 23rd Annual EANM Congress.

    Science.gov (United States)

    Carrió, Ignasi

    2011-02-01

    The most recent research developments in nuclear medicine and molecular imaging were presented at the 2010 Annual Congress of the EANM. This review summarizes some of the most relevant contributions made in the fields of oncology, cardiovascular science, neurology and psychiatry, technological innovation and novel tracers. Presentations covered basic and clinical research in nuclear medicine and molecular imaging, and diagnostic and therapeutic applications of radioisotopes and radiopharmaceuticals on a global scale. The results reported demonstrate that investigative strategies using nuclear medicine techniques facilitate effective diagnosis and management of patients with most prevalent disease states. At the same time novel tracers and technologies are being explored, which hold promise for future new applications of nuclear medicine and molecular imaging in research and clinical practice.

  12. The impact of nuclear science on medicine

    CERN Document Server

    Kraft, G

    1999-01-01

    From the very beginning, i.e. from the discovery of the natural radioactivity by H. Becquerel and the production of radium by M. Curie, nuclear physics had a strong impact on medicine: Radioactive sources were immediately made use of in tumor therapy long before the action mechanisms of ionizing radiation were understood. The invention of the tracer technique by G. Hevesy opened a new field for the study of chemokinetics as well as for the in-vivo measurement of various organ functions. In the percutane tumor therapy hadrons like neutrons, pions, protons and heavier ions were tested. Presently, proton therapy is a great success and is spreading all over the world. The new techniques of target-conform treatment using heavy ions for an improved tumor targeting and control represent the latest great improvement of radiation tumor therapy.

  13. Pediatric nuclear medicine: A practical approach

    Energy Technology Data Exchange (ETDEWEB)

    Pintelon, H.; Piepsz, A. [Academic Hospital VUB, Brussels (Belgium). Dept. of Nuclear Meidicine; Dejonckheere, M. [Erasme Hospital ULB, Brussels (Belgium). Dept. of Anesthesiology

    1997-12-01

    This paper is devoted to the practical aspects of pediatric nuclear medicine, particularly the controversy about drug sedation. The authors conclude that drug sedation should be exceptionally used. There is an alternative way, consisting in an adequate approach of the patient: good information to the parents and the child; taking care of the child`s environment, starting from the first contacts in the waiting room; specific education of technologists: this includes injections and blood sampling, but also proper handling of the child during the procedure and adequate psychological attitudes toward child and parents. Taking these factors into account, it is exceptional that a test has to be postponed because of the lack of collaboration of the patient; good quality images, using the recommended paediatric amounts of radioactivity can be achieved even for procedures of prolonged duration.

  14. Directory of computer users in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Henne, R.L.; Erickson, J.J.; McClain, W.J.; Kirch, D.L.

    1977-01-01

    The directory is composed of two major divisions, a Users' section and a Vendors' section. The Users' section consists of detailed installation descriptions and indexes to these descriptions. A typical description contains the name, address, type, and size of the institution as well as names of persons to contact. Following the hardware descriptions are listed the type of studies for which the computers are utilized, including the languages used, the method of output and an estimate of how often the study is performed. The Vendors' section contains short descriptions of current commercially available nuclear medicine systems as supplied by the vendors themselves. In order to reduce the amount of obsolete data and to include new institutions in future updates of the directory, a user questionnaire is included. (HLW)

  15. Nuclear medicine and radiopharmacy; Medicina nuclear y radiofarmacia

    Energy Technology Data Exchange (ETDEWEB)

    Leon A, M. C. [Sociedad Mexicana de Seguridad Radiologica A. C., Mexico D. F. (Mexico)

    2008-12-15

    In the areas of Nuclear Medicine and Radiopharmacy frequently happens that the personnel that is incorporated as a candidate to serve as personnel occupationally exposed have varied skills, not necessarily have an ingrained culture of safety and radiation protection, some are resistant to adoption a work discipline and have very limited notions of normalization, including the safety basic standards. In fact, referring to the safety basic standards, concepts such as practice justification, protection optimization and dose limitation, can be very abstract concepts for such personnel. In regard to training strategies, it was noted that training in the work is an effective tool although it is very demanding for the learner but mainly for the teaches. The experts number that can occur in this manner is limited because it is an individualized system; however those from the process usually acquire a good preparation, which certainly includes theoretical aspects. For greater efficiency it is necessary that hospitals account facilities, procedures and personnel that might have an exclusive dedication to education and training of human resources. This would create a safety culture, alleviating the burdens of the already existing expertise and improves the training conditions. The Mexican Society of Radiological Safety (SMSR) can help in these efforts through the publication of guides aimed at work training, coordination and articulation of the possible courses already on the market and own the courses organization, workshops and conferences with more frequency. It would also serves that the SMSR acts as speaker with political actors, advocating for the courses validation offered by higher learning institutions, coordinating and promoting postgraduates in Nuclear Medicine and Radiopharmacy. (Author)

  16. Nuclear medicine training and practice in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kaminek, Milan; Koranda, Pavel [University Hospital Olomouc, Department of Nuclear Medicine, Olomouc (Czech Republic)

    2014-08-15

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  17. Nuclear medicine training and practice in the Czech Republic.

    Science.gov (United States)

    Kamínek, Milan; Koranda, Pavel

    2014-08-01

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic.

  18. Career prospects for graduating nuclear medicine residents: survey of nuclear medicine program directors.

    Science.gov (United States)

    Harolds, Jay A; Guiberteau, Milton J; Metter, Darlene F; Oates, M Elizabeth

    2013-08-01

    There has been much consternation in the nuclear medicine (NM) community in recent years regarding the difficulty many NM graduates experience in securing initial employment. A survey designed to determine the extent and root causes behind the paucity of career opportunities was sent to all 2010-2011 NM residency program directors. The results of that survey and its implications for NM trainees and the profession are presented and discussed in this article.

  19. Source Book of Educational Materials for Nuclear Medicine.

    Science.gov (United States)

    Pijar, Mary Lou, Comp.; Lewis, Jeannine T., Comp.

    The contents of this sourcebook of educational materials are divided into the following sections: Anatomy and Physiology; Medical Terminology; Medical Ethics and Department Management; Patient Care and Medical Decision-Making; Basic Nuclear Medicine; Diagnostic in Vivo; Diagnostic in Vitro; Pediatric Nuclear Medicine; Radiation Detection and…

  20. History of nuclear technology development in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp [Visiting Professor, at the Faculty of Petroleum and Renewable Energy Engineering, University Teknologi Malaysia Johor Bahru 81310 (Malaysia); General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195 (Japan)

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  1. Estimated dose from diagnostic nuclear medicine patients to people outside the Nuclear Medicine department.

    Science.gov (United States)

    Bartlett, Marissa L

    2013-11-01

    Patients undergoing nuclear medicine scans can be a source of radiation exposure for staff, family and the public. In this paper, 12 common nuclear medicine scans are considered. Doses are estimated for a range of scenarios, to hospital staff, to the public and to the patients' co-workers and family. Estimates are based on dose rates measured as patients left the Nuclear Medicine department. Radiopharmaceutical clearance is calculated from biokinetic models described in International Commission on Radiological Protection publications 53, 80 and 106. For all scan types, and all scenarios, doses are estimated to be substantially less than the trigger level of 300 µSv. Within the hospital, Intensive Care Unit staff receive the highest dose (up to 80 µSv) from patients who have had a myocardial scan or a positron emission tomography scan. For out-patients, the highest doses (up to 100 µSv) are associated with travel on public transport (for 4 h) on the same day as the scan.

  2. Distribution of nuclear medicine service in Brazil; Distribuicao do servico de medicina nuclear no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Carolina Costa da; Duarte, Alessandro; Santos, Bianca Maciel dos [Faculdade Metodo de Sao Paulo (FAMESP), Sao Paulo, SP (Brazil)

    2011-10-26

    The Brazil does not posses a good distribution of nuclear medicine service por all his territory. This paper shows the difference among country regions as far the number of clinics of nuclear medicine as is concerning, and also doctors licensed in the area and radioprotection supervisors, both licensed by the Brazilian Nuclear Energy Commission (CNEN)

  3. Minimizing and communicating radiation risk in pediatric nuclear medicine.

    Science.gov (United States)

    Fahey, Frederic H; Treves, S Ted; Adelstein, S James

    2012-03-01

    The value of pediatric nuclear medicine is well established. Pediatric patients are referred to nuclear medicine from nearly all pediatric specialties including urology, oncology, cardiology, gastroenterology, and orthopedics. Radiation exposure is associated with a potential, small, risk of inducing cancer in the patient later in life and is higher in younger patients. Recently, there has been enhanced interest in exposure to radiation from medical imaging. Thus, it is incumbent on practitioners of pediatric nuclear medicine to have an understanding of dosimetry and radiation risk to communicate effectively with their patients and their families. This article reviews radiation dosimetry for radiopharmaceuticals and also CT given the recent proliferation of PET/CT and SPECT/CT. It also describes the scientific basis for radiation risk estimation in the context of pediatric nuclear medicine. Approaches for effective communication of risk to patients' families are discussed. Lastly, radiation dose reduction in pediatric nuclear medicine is explicated.

  4. Japanese consensus guidelines for pediatric nuclear medicine. Part 1: Pediatric radiopharmaceutical administered doses (JSNM pediatric dosage card). Part 2: Technical considerations for pediatric nuclear medicine imaging procedures.

    Science.gov (United States)

    Koizumi, Kiyoshi; Masaki, Hidekazu; Matsuda, Hiroshi; Uchiyama, Mayuki; Okuno, Mitsuo; Oguma, Eiji; Onuma, Hiroshi; Kanegawa, Kimio; Kanaya, Shinichi; Kamiyama, Hiroshi; Karasawa, Kensuke; Kitamura, Masayuki; Kida, Tetsuo; Kono, Tatsuo; Kondo, Chisato; Sasaki, Masayuki; Terada, Hitoshi; Nakanishi, Atsushi; Hashimoto, Teisuke; Hataya, Hiroshi; Hamano, Shin-ichiro; Hirono, Keishi; Fujita, Yukihiko; Hoshino, Ken; Yano, Masayuki; Watanabe, Seiichi

    2014-06-01

    The Japanese Society of Nuclear Medicine has recently published the consensus guidelines for pediatric nuclear medicine. This article is the English version of the guidelines. Part 1 proposes the dose optimization in pediatric nuclear medicine studies. Part 2 comprehensively discusses imaging techniques for the appropriate conduct of pediatric nuclear medicine procedures, considering the characteristics of imaging in children.

  5. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  6. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  7. IAEA programs in empowering the nuclear medicine profession through online educational resources.

    Science.gov (United States)

    Pascual, Thomas Nb; Dondi, Maurizio; Paez, Diana; Kashyap, Ravi; Nunez-Miller, Rodolfo

    2013-05-01

    The International Atomic Energy Agency's (IAEA) programme in human health aims to enhance the capabilities in Member States to address needs related to the prevention, diagnosis, and treatment of diseases through the application of nuclear techniques. It has the specific mission of fostering the application of nuclear medicine techniques as part of the clinical management of certain types of diseases. Attuned to the continuous evolution of this specialty as well as to the advancement and diversity of methods in delivering capacity building efforts in this digital age, the section of nuclear medicine of the IAEA has enhanced its program by incorporating online educational resources for nuclear medicine professionals into its repertoire of projects to further its commitment in addressing the needs of its Member States in the field of nuclear medicine. Through online educational resources such as the Human Health Campus website, e-learning modules, and scheduled interactive webinars, a validation of the commitment by the IAEA in addressing the needs of its Member States in the field of nuclear medicine is strengthened while utilizing the advanced internet and communications technology which is progressively becoming available worldwide. The Human Health Campus (www.humanhealth.iaea.org) is the online educational resources initiative of the Division of Human Health of the IAEA geared toward enhancing professional knowledge of health professionals in radiation medicine (nuclear medicine and diagnostic imaging, radiation oncology, and medical radiation physics), and nutrition. E-learning modules provide an interactive learning environment to its users while providing immediate feedback for each task accomplished. Webinars, unlike webcasts, offer the opportunity of enhanced interaction with the learners facilitated through slide shows where the presenter guides and engages the audience using video and live streaming. This paper explores the IAEA's available online

  8. The technological singularity and exponential medicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2016-01-01

    Full Text Available The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested that three revolutions in science and technology consisting genetic and molecular science, nanotechnology, and robotic (artificial intelligence provided an exponential growth rate for medicine. The "exponential medicine" is going to create more disruptive technologies in healthcare industry. The exponential medicine shifts the paradigm of medical philosophy and produces significant impacts on the healthcare system and patient-physician relationship.   

  9. Metabolic radiopharmaceutical therapy in nuclear medicine; Terapia metabolica mediante radiofarmacos en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, L.; Lozano, M. L.; Alonso, J. C.

    2016-08-01

    In 1986 the National Board of Medical Specialties defined the specialty of nuclear medicine as a medical specialty that uses radioisotopes for prevention, diagnosis, therapy and medical research. Nowadays, treatment with radiopharmaceuticals has reached a major importance within of nuclear medicine. The ability to treat tumors with radiopharmaceutical, Radiation selective therapy has become a first line alternative. In this paper, the current situation of the different therapies that are sued in nuclear medicine, is reviewed. (Author)

  10. What You Should Know About Pediatric Nuclear Medicine and Radiation Safety

    Science.gov (United States)

    What You Should Know About Pediatric Nuclear Medicine and Radiation Safety www.imagegently.org What is nuclear medicine? Nuclear medicine uses radioactive isotopes to create pictures of the human body. ...

  11. Nuclear oncology, a fast growing field of nuclear medicine

    Science.gov (United States)

    Olivier, Pierre

    2004-07-01

    Nuclear Medicine in oncology has been for a long time synonymous with bone scintigraphy, the first ever whole body imaging modality, and with treatment of thyroid cancer with iodine-131. More recently, somatostatin receptor scintigraphy (SRS) using peptides such as 111In-labelled octreotide became a reference imaging method in the detection and staging of neuroendocrine tumors while 131I- and 123I-MIBG remain the tracers of reference for pheochromocytomas and neuroblastomas. Lymphoscintigraphic imaging based on peritumoral injection of 99mTc-labelled colloids supports, in combination with per operative detection, the procedure of sentinel node identification in breast cancers and melanomas. Positron Emission Tomography (PET) is currently experiencing a considerable growth in oncology based on the use of 18F-FDG (fluorodeoxyglucose), a very sensitive, although non-specific, tumor tracer. Development of instrumentation is crucial in this expansion of PET imaging with new crystals being more sensitive and hybrid imagers that permit to reduce the acquisition time and offer fused PET-CT images. Current developments in therapy can be classified into three categories. Radioimmunotherapy (RIT) based on monoclonal antibodies (or fragments) labelled with beta-emitters. This technique has recently made its entrance in clinical practice with a 90Y-labelled anti-CD20 antibody ( 90Y-ibritumomab tiuxetan (Zevalin ®)) approved in US for the treatment of some subtypes of non-Hodgkin's lymphoma. Radionuclide-bone pain palliation has experienced developments with 153Sm-EDTMP, 186Re-HEDP or 89Sr, efficient in patients with widespread disease. Last, the same peptides, as those used in SRS, are being developed for therapy, labelled with 90Y, 111In or 177Lu in patients who failed to respond to other treatments. Overall, nuclear oncology is currently a fast growing field thanks to the combined developments of radiopharmaceuticals and instrumentation.

  12. Current status of respiratory nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Suga, Kazuyoshi [Yamaguchi Univ., Ube (Japan). School of Medicine

    2002-01-01

    aerosolized, therapeutic drugs. Newly developed radiotracers include L-3-{sup 123}I-{alpha}-methyl-tyrosine for evaluating amino acid metabolism of lung cancer on SPECT scanner, {sup 99m}Tc-labeled surfactant B for evaluating pulmonary surfactant system, Cu-DTS for imaging hypoxic tumor cells, and {sup 18}F-fluorocaptopril for evaluating the lung distribution of pulmonary angiotension converting enzyme. These will contribute to the further advancement and development of expiratory nuclear medicine. (author)

  13. Nuclear medicine imaging and therapy: gender biases in disease.

    Science.gov (United States)

    Moncayo, Valeria M; Aarsvold, John N; Alazraki, Naomi P

    2014-01-01

    Gender-based medicine is medical research and care conducted with conscious consideration of the sex and gender differences of subjects and patients. This issue of Seminars is focused on diseases for which nuclear medicine is part of routine management and for which the diseases have sex- or gender-based differences that affect incidence or pathophysiology and that thus have differences that can potentially affect the results of the relevant nuclear medicine studies. In this first article, we discuss neurologic diseases, certain gastrointestinal conditions, and thyroid conditions. The discussion is in the context of those sex- or gender-based aspects of these diseases that should be considered in the performance, interpretation, and reporting of the relevant nuclear medicine studies. Cardiovascular diseases, gynecologic diseases, bone conditions such as osteoporosis, pediatric occurrences of some diseases, human immunodeficiency virus-related conditions, and the radiation dose considerations of nuclear medicine studies are discussed in the other articles in this issue.

  14. Open Bibliography for Science, Technology, and Medicine

    Directory of Open Access Journals (Sweden)

    Jones Richard

    2011-10-01

    Full Text Available Abstract The concept of Open Bibliography in science, technology and medicine (STM is introduced as a combination of Open Source tools, Open specifications and Open bibliographic data. An Openly searchable and navigable network of bibliographic information and associated knowledge representations, a Bibliographic Knowledge Network, across all branches of Science, Technology and Medicine, has been designed and initiated. For this large scale endeavour, the engagement and cooperation of the multiple stakeholders in STM publishing - authors, librarians, publishers and administrators - is sought.

  15. Open bibliography for science, technology, and medicine.

    Science.gov (United States)

    Jones, Richard; Macgillivray, Mark; Murray-Rust, Peter; Pitman, Jim; Sefton, Peter; O'Steen, Ben; Waites, William

    2011-10-14

    The concept of Open Bibliography in science, technology and medicine (STM) is introduced as a combination of Open Source tools, Open specifications and Open bibliographic data. An Openly searchable and navigable network of bibliographic information and associated knowledge representations, a Bibliographic Knowledge Network, across all branches of Science, Technology and Medicine, has been designed and initiated. For this large scale endeavour, the engagement and cooperation of the multiple stakeholders in STM publishing - authors, librarians, publishers and administrators - is sought.

  16. Computer Generated Cardiac Model For Nuclear Medicine

    Science.gov (United States)

    Hills, John F.; Miller, Tom R.

    1981-07-01

    A computer generated mathematical model of a thallium-201 myocardial image is described which is based on realistic geometric and physiological assumptions. The left ventricle is represented by an ellipsoid truncated by aortic and mitral valve planes. Initially, an image of a motionless left ventricle is calculated with the location, size, and relative activity of perfusion defects selected by the designer. The calculation includes corrections for photon attenuation by overlying structures and the relative distribution of activity within the tissues. Motion of the ventricular walls is simulated either by a weighted sum of images at different stages in the cardiac cycle or by a blurring function whose width varies with position. Camera and collimator blurring are estimated by the MTF of the system measured at a representative depth in a phantom. Statistical noise is added using a Poisson random number generator. The usefulness of this model is due to two factors: the a priori characterization of location and extent of perfusion defects and the strong visual similarity of the images to actual clinical studies. These properties should permit systematic evaluation of image processing algorithms using this model. The principles employed in developing this cardiac image model can readily be applied to the simulation of other nuclear medicine studies and to other medical imaging modalities including computed tomography, ultrasound, and digital radiography.

  17. Nuclear medicine and the nursing mother

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, A.J.; Mountford, P.J. (Kent and Canterbury Hospital (UK))

    1985-07-20

    Many radiopharmaceuticals may be detected in breast milk, but differ from other drugs in that for diagnostic purposes they are used in tracer quantities and do not produce demonstrable pharmacological changes in mother or infant. Patients may also be given non-radioactive drugs to induce changes in the distribution of the radiopharmaceuticals and some of these, too, appear in milk (e.g. frusemide, potassium perchlorate, iodides, and cholecystokinin). Iodides are selectively concentrated in breast milk, and some consider them contra-indicated during lactation. A period of interruption of breast feeding, expression of milk, and reduction of close contact with the infant is usually recommended for mothers who have a nuclear medicine investigation. The inconvenience and disadvantages of interrupting breast feeding have to be balanced against the potential risk to the infant: the prolonged interruption of feeding advocated for some agents is often impracticable. Interruption for 24 hours for sup(99m)Tc compounds is excessive for doses used in Britain. Twelve hours leaves a wide range of safety for pertechnetate. No interruption is needed for sup(99m)Tc-macroaggregated albumin and sup(99m)Tc-diethylenetriamine-penta-acetic acid in order to remain below one tenth of the annual limit of intake.

  18. A Study on the Nuclear Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Lim, C. Y.; Yang, M. H. (and others)

    2008-03-15

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, changes of international nuclear energy policy environment and trends of nuclear technology development was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy environment surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed trends of nuclear technology policies and (2) developed the nuclear energy R and D innovation strategies. To put it in more detail, each subject was further explored as follows; (1) themes to analyze trends of nuclear policies: nuclear Renaissance and forecast for nuclear power plant, International collaboration for advanced nuclear technologies in GIF, INPRO and I-NERI, The present situation and outlook for world uranium market (2) themes to develop of nuclear energy R and D innovation strategies: The mid-term strategy plan of the KAERI, The technological innovation case of the KAERI.

  19. Annual congress of the European Association of Nuclear Medicine. EANM'14. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-10-15

    The proceedings of the annual congress of the European Association of Nuclear Medicine EANM'14 contain abstracts on the following issues: nuclear cardiology practices, PET in lymphoma, advances in nuclear cardiology, dosimetry for intra-arterial treatment in the liver, pediatric nuclear medicine, therapeutic nuclear medicine, SPECT/CT, prostate cancer, extended competencies for nuclear medicine technologists, neurosciences - neurodegeneration and neuroinflammation, radionuclide therapy and dosimetry - preclinical studies, physics and instrumentation, clinical molecular imaging, conventional and specialized nuclear medicine.

  20. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  1. Application of metabolomics technology in the research of Chinese medicine.

    Science.gov (United States)

    Liu, Ping; Wang, Ping

    2014-04-01

    In recent years, a novel analytical technology, metabolomics is widely used in the modern research of Chinese medicine (CM). Metabolomics adopts a "top-down" strategy to reflect the function of organisms from terminal symptoms of metabolic network and understand metabolic changes of a complete system caused by interventions. As a holistic approach, metabolomics technology, including nuclear magnetic resonance, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry, favorable to express the meaning of basic theories of CM, CM syndrome and Chinese herb. Therefore, we believe that metabolomics technology will greatly benefit to development for the research of CM in the light of modern sciences.

  2. Nuclear medicine imaging in the evaluation of endocrine hypertension

    Directory of Open Access Journals (Sweden)

    Punit Sharma

    2012-01-01

    Full Text Available Endocrine hypertension forms a small (< 5% but curable subset of patients with hypertension. Common endocrine causes of hypertension include pheochromocytoma, Cushing′s syndrome, primary hyperaldosteronism, and thyroid disorders. Nuclear medicine imaging plays an important role in evaluation of patients with endocrine hypertension. It has established role in patients of pheochromocytoma/paraganglioma, Cushing′s syndrome, aldosteronism, and thyroid disorders. We present a brief overview of role of nuclear medicine imaging in endocrine hypertension. Development of newer radiotracers might further broaden the role of nuclear medicine in these patients.

  3. Recommendations on Strengthening the Development of Nuclear Medicine in China

    Institute of Scientific and Technical Information of China (English)

    Shih-chen Wang

    2009-01-01

    @@ This paper outlines briefly the role of nuclear medicine in life sciences and health care. Molecular imaging by using isotopic tracers can noninvasively visualize the chemistry or hidden process in the cells and tissues inside the body, obtaining "functional" images to provide early information of any disease and revealing the secrets of life. The vitality of nuclear medicine is its ability to translate bench into new clinical application that can benefits the patients. Although nuclear medicine community in China has made significant achievement with a great effort since 1950s, there are many obstacles to future development. Recommended measures are proposed here in an attempt to solve our existing problems.

  4. Converging technologies: shaping the future of medicine

    Directory of Open Access Journals (Sweden)

    Iraj nabipour

    2015-01-01

    Full Text Available The miniaturization and virtualization processes drive converging technologies from interactions between the NBIC (Nano, Bio, Info, and Cogno technologies. The converging technologies stimulate innovation, promote research and development in different fields and produce revolutionary progresses in medicine. These technologies enable us to create contacts between brains and machines, the growth in molecular nanotechnology, the construction of respirocytes, chromallocytes, clottocytes, nanorobotic phagocytes, and nanobots. Nanobots would enter the nucleus of a cell and extract all of the genetic material and replace it with a synthetically produced copy of the original that has been manufactured in a laboratory to contain only non-defective base-pairs. It is predicted that “the regenerative medicine”, as a megatrend, will have an enormous effect on medical technologies and clinical sciences. Regenerative medicine is an application field of converging technologies in translational medicine. It attempts to translate the results of tissue engineering to construct 3D tissues and organs. Regenerative medicine is also an exciting field for induced pluripotent stem cell (iPSC and promises to bring about a paradigm shift to health care. Accumulating evidence indicates that converging technologies will offer great potentials for regenerative medicine to create innovative treatments for diseases that the traditional therapies have not been effective yet.

  5. Nuclear Technology for the Sustainable Development Goals

    Science.gov (United States)

    Darby, Iain

    2017-01-01

    Science, technology and innovation will play a crucial role in helping countries achieve the ambitious Sustainable Development Goals (SDGs). Since the discovery of nuclear fission in the 1930s, the peaceful applications of nuclear technology have helped many countries improve crops, fight pests, advance health, protect the environment and guarantee a stable supply of energy. Highlighting the goals related to health, hunger, energy and the environment, in this presentation I will discuss how nuclear technology contributes to the SDGs and how nuclear technology can further contribute to the well-being of people, help protect the planet and boost prosperity.

  6. Oncological nuclear medicine: from antibody to PET

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneo, Saga; Takako, Furukawa [National Institute of Radiological Sciences, Dept. of Diagnostic Imaging, Molecular Imaging Center, Inage-ku, Chiba (Japan)

    2006-07-01

    Department of Diagnostic Imaging has recently established in the Molecular Imaging Center of the National Institute of Radiological Sciences. The major aim of the department is to develop novel molecular imaging probes and to establish functional imaging methods of various cancers. The department consists of three sections; 1) biomolecule section (find out optimal biomolecule as the target of cancer imaging), 2) molecular diagnosis section (develop imaging method using specific molecular probe), and 3) clinical diagnosis section (applying molecular imaging modalities to cancer patients). In the present lecture, I would like to review my experiences in various aspects of cancer imaging using nuclear medicine procedures, which might be important in the research in the new department. The talk includes; 1) characteristics and limitations of cancer targeting with radiolabeled anti-cancer monoclonal antibodies and the attempts to overcome the limitations including pre-targeting strategy, 2 ) application of a newly synthesized polyamine (dendrimer) to the delivery and imaging of oligo-DNA and cancer treatment, 3) transfection of Na '/I - sym-porter gene to add iodide uptake mechanism to non-thyroid cancer cells for the wider application of radioiodine therapy, which is now also used as a promising reporter gene in gene therapy, and 4) basic and clinical study of PET metabolic imaging with fluorodeoxyglucose (FDG) and fluoro-thymidine (FLT) to evaluate the characteristics of various cancers. Although these modalities can not directly visualize molecular processes occurring in cancer cells, we can evaluate the imaging results with the insight of molecular biology, and the experiences of these modalities can be the bases for the future development of molecular imaging of malignant tumors. (author)

  7. Quality management in nuclear medicine for better patient care: the IAEA program.

    Science.gov (United States)

    Dondi, Maurizio; Kashyap, Ravi; Pascual, Thomas; Paez, Diana; Nunez-Miller, Rodolfo

    2013-05-01

    The International Atomic Energy Agency promotes the practice of nuclear medicine among its Member States with a focus on quality and safety. It considers quality culture as a part of the educational process and as a tool to reduce heterogeneity in the practice of nuclear medicine, and in turn, patient care. Sensitization about quality is incorporated in all its delivery mechanisms. The Agency has developed a structured peer-review process called quality management (QM) audits in nuclear medicine practices to help nuclear medicine facilities improve their quality through this voluntary comprehensive audit process. The process is multidisciplinary, covering all aspects of nuclear medicine practice with a focus on the patient. It complements other QM and accreditation approaches developed by professional societies or accreditation agencies. The Agency is committed to propagate its utility and assist in the implementation process. Similar auditing programs for practice in diagnostic radiology and radiotherapy, called QUADRIL and QUATRO, respectively, are also in place. Necessary amendments in the auditing process and content are incorporated based on technological and practice changes with time. The reader will become familiar with the approach of the Agency on QM in nuclear medicine and its implementation process to improve patient care.

  8. Nuclear medicine in oncology 2: Breast, prostate, and cervical ...

    African Journals Online (AJOL)

    Nuclear medicine approaches to cancer detection, staging and treatment. T Kotze, MB BCh, FCNP .... treatment response after chemo-radiation; and (iv) documenting recurrent cervical cancer, .... Small-cell lung cancer. Currently, the use of ...

  9. 19. Brazilian congress on biology and nuclear medicine; 19. Congresso brasileiro de biologia e medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The issue contain 97 abstracts of 19 Brazilian congress on biology and nuclear medicine held in Pernambuco, Brazil, from November 4 to 8, 1998. The subjects addressed are diagnostic and therapy nuclear medicine techniques, especially scintiscanning, SPECT and PET and their uses. The main topics were as follows: cardiology, neuro-psychiatry, oncology, endocrinology, radiopharmacy, infectious diseases, radiobiology and others.

  10. Current Status of Imaging Physics and Instrumentation In Nuclear Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Joung [Institute of Health Science, Yonsei University, Seoul (Korea, Republic of)

    2008-04-15

    Diagnostic and functional imaging device have been developed independently. The recognition that combining of these two devices can provide better diagnostic outcomes by fusing anatomical and functional images. The representative examples of combining devices would be PET/CT and SPECT/CT. Development and their applications of animal imaging and instrumentation have been very active, as new drug development with advanced imaging device has been increased. The development of advanced imaging device resulted in researching and developing for detector technology and imaging systems. It also contributed to develop a new software, reconstruction algorithm, correction methods for physical factors, image quantitation, computer simulation, kinetic modeling, dosimetry, and correction for motion artifacts. Recently, development of MRI and PET by combining them together was reported. True integration of MRI and PET has been making the progress and their results were reported. The recent status of imaging and instrumentation in nuclear medicine is reported in this paper.

  11. The next few years: nuclear medicine and molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eil, P.J. [Middlesex Hospital Mortimer Street, Institute of Nuclear Medicine, London (United Kingdom)

    2002-10-01

    Nuclear medicine in the future will be integrated in best practice in diagnosis, staging and re-staging of disease, treatment monitoring and indeed specific new therapy. Routine multi modality imaging has clearly arrived whilst some image fusion is still required. Intra and inter modality special registration is in progress. The impact of image fusion especially PET/CT on radiotherapy planning will be major. There are major developments in therapy and especially the treatment of lymphoma with new tracers such as yttrium-90 and iodine 131 labelled anti-CD monoclonal antibodies. New registered tracers are impacting. Cancer profiling will be improved with molecular phenotype with biopsy and imaging and organ staging via imaging technology. (N.C.)

  12. The nuclear materials control technology briefing book

    Energy Technology Data Exchange (ETDEWEB)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  13. Developments in transgenic technology: applications for medicine.

    Science.gov (United States)

    Hunter, Cheryl V; Tiley, Laurence S; Sang, Helen M

    2005-06-01

    Recent advances in the efficiency of transgenic technology have important implications for medicine. The production of therapeutic proteins from animal bioreactors is well established and the first products are close to market. The genetic modification of pigs to improve their suitability as organ donors for xenotransplantation has been initiated, but many challenges remain. The use of transgenesis, in combination with the method of RNA interference to knock down gene expression, has been proposed as a method for making animals resistant to viral diseases, which could reduce the likelihood of transmission to humans. Here, the latest developments in transgenic technology and their applications relevant to medicine and human health will be discussed.

  14. Nuclear medicine in dentistry revisited: New avenues to explore

    Directory of Open Access Journals (Sweden)

    Vinita Boloor

    2013-01-01

    Full Text Available Nuclear medicine and radioactive tracers have considerable application in dental research, because they provide one of the few practical methods for studying the limited metabolic activities of bones and teeth. The ease with which minute amounts of these radioactive materials may be accurately measured and distinguished from the mass of inert element in the tooth is particularly valuable. They are useful in studying many problems of calcification and mineral exchange. There are also opportunities of their use in investigating fluorosis, caries protection, periodontal disease, micro leakage studies of dental materials, root resorption, nutritional, and endocrine effects, as well as numerous other dental problems. Other usages of nuclear medicine in dentistry are listed below: Age written in teeth by nuclear tests, scintigraphic evaluation of osteoblastic activity, and evaluation of osteoblastic activity around dental implants using bone scintigraphy. Nuclear medicine can be an indicator of "active" alveolar bone loss. Nuclear medicine techniques are used as an adjunct for the diagnosis of oral diseases (benign tumors and carcinomas and temporomandibular joint disease. This review article discusses these indications of nuclear medicine.

  15. IAEA support to medical physics in nuclear medicine.

    Science.gov (United States)

    Meghzifene, Ahmed; Sgouros, George

    2013-05-01

    Through its programmatic efforts and its publications, the International Atomic Energy Agency (IAEA) has helped define the role and responsibilities of the nuclear medicine physicist in the practice of nuclear medicine. This paper describes the initiatives that the IAEA has undertaken to support medical physics in nuclear medicine. In 1984, the IAEA provided guidance on how to ensure that the equipment used for detecting, imaging, and quantifying radioactivity is functioning properly (Technical Document [TECDOC]-137, "Quality Control of Nuclear Medicine Instruments"). An updated version of IAEA-TECDOC-137 was issued in 1991 as IAEA-TECDOC-602, and this included new chapters on scanner-computer systems and single-photon emission computed tomography systems. Nuclear medicine physics was introduced as a part of a project on radiation imaging and radioactivity measurements in the 2002-2003 IAEA biennium program in Dosimetry and Medical Radiation Physics. Ten years later, IAEA activities in this field have expanded to cover quality assurance (QA) and quality control (QC) of nuclear medicine equipment, education and clinical training, professional recognition of the role of medical physicists in nuclear medicine physics, and finally, the coordination of research and development activities in internal dosimetry. As a result of these activities, the IAEA has received numerous requests to support the development and implementation of QA or QC programs for radioactivity measurements in nuclear medicine in many Member States. During the last 5 years, support was provided to 20 Member States through the IAEA's technical cooperation programme. The IAEA has also supported education and clinical training of medical physicists. This type of support has been essential for the development and expansion of the Medical Physics profession, especially in low- and middle-income countries. The need for basic as well as specialized clinical training in medical physics was identified as a

  16. Computers in Diagnostic Nuclear Medicine Imaging - A Review

    Directory of Open Access Journals (Sweden)

    K. K. Kapoor

    1989-07-01

    Full Text Available Digital computers are becoming increasingly popular for a variety of purposes in nuclear medicine. They are particuiarly useful in the areas of nuclear imaging and gamma camera image processing,radionuclide inventory and patient record keeping. By far the most important use of the digital computer is in array processors which are commonly available with emission computed systems for fast reconstruction of images in transverse, coronal and sagittal views, particularly when the data to be handled is enormous and involves filtration and correction processes. The addition of array processors to computer systems has helped the clinicians in improving diagnostic nuclear medicine imaging capability. This paper reviews briefly therole of computers in the field of nuclear medicine imaging.

  17. Development of Career Opportunities for Technicians in the Nuclear Medicine Field. Final Report.

    Science.gov (United States)

    Technical Education Research Center, Cambridge, MA.

    This report describes a nationally coordinated program development project whose purpose was to catalyze the implementation of needed postsecondary educational programs in the field of nuclear medicine technology (NMT). The NMT project was carried out during the six year period 1968-74 in cooperation with more than 36 community/junior colleges and…

  18. Energy supply technologies. Nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, Bent.; Nonboel, E. [Risoe National Lab. - DTU (Denmark); Vuori, S. [VTT (Finland)

    2007-11-15

    Nuclear power has long been controversial, especially in Europe, with concerns over the safety of nuclear installations, radioactive waste, and proliferation of nuclear weapon materials. Globally, however, renewed interest in nuclear energy has been sparked by concerns for energy security, economic development, and commitment to reduce CO{sub 2} emissions. Nuclear fission is a major source of energy that is free from CO{sub 2} emissions. It provides 15 % of the world's electricity and 7 % of total primary energy consumption. Around 440 nuclear reactors are currently generating power in 31 countries, with largest capacity in Europe, the USA and Southeast Asia. Non-electricity applications are few at present, but include process heat, hydrogen production, ship propulsion, and desalination. Nuclear power is characterised by high construction costs and a relatively long construction period, but low operating and maintenance expenses, including fuel. Most nuclear power plants in the USA and Europe have second-generation light water reactors (LWRs), while the plants now being built in Southeast Asia are of third-generation design. The Evolutionary Power Reactor (EPR) under construction in Finland, and the Pebble Bed Modular Reactor (PBMR) being developed in South Africa, are both of types referred to as Generation III+. From 2020-30 onwards fourth-generation reactors are expected to provide improved fuel utilisation and economics. Nuclear power does not form part of the Danish energy mix and at present there seems to be little political will to change this position. As a result Denmark has relatively little expertise in nuclear power. However, since nuclear power provides a substantial share of Europe's electricity, Denmark should ensure that it has expertise to advise the government and the public on nuclear issues. (BA)

  19. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1972-01-01

    Advances in Nuclear Science and Technology, Volume 6 provides information pertinent to the fundamental aspects of nuclear science and technology. This book covers a variety of topics, including nuclear steam generator, oscillations, fast reactor fuel, gas centrifuge, thermal transport system, and fuel cycle.Organized into six chapters, this volume begins with an overview of the high standards of technical safety for Europe's first nuclear-propelled merchant ship. This text then examines the state of knowledge concerning qualitative results on the behavior of the solutions of the nonlinear poin

  20. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1976-01-01

    Advances in Nuclear Science and Technology, Volume 9 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of the possible consequences of a large-scale release of radioactivity from a nuclear reactor in the event of a serious accident. This text then discusses the extension of conventional perturbation techniques to multidimensional systems and to high-order approximations of the Boltzmann equation.

  1. Communicating with the public: space of nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, Patricia Martinez; Aquino, Afonso Rodrigues; Gordon, Ana Maria Pinho Leite; Oliveira, Rosana Lagua de; Padua, Rafael Vicente de; Vieira, Martha Marques Ferreira; Vicente, Roberto, E-mail: pmaffei@ipen.br, E-mail: araquino@usp.br, E-mail: amgordon@ipen.br, E-mail: rloliveira@ipen.br, E-mail: rpadua@ipen.br, E-mail: mmvieira@ipen.br, E-mail: rvicente@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    For two decades the Nuclear and Energy Research Institute (IPEN) has been developing activities for popularization of its R and D activities in the nuclear field. Some of the initiatives already undertaken by IPEN are lectures at schools, guided visits to IPEN facilities, printed informative material, FAQ page in the Web, and displays in annual meetings and technology fairs highlighting its achievements. In order to consolidate these initiatives, IPEN is planning to have a permanent Space of Nuclear Technology (SNT), aiming at introducing students, teachers and the general public to the current applications of nuclear technology in medicine, industry, research, electric power generation, etc. It is intended as an open room to the public and will have a permanent exhibit with historical, scientific, technical and cultural developments of nuclear technology and will also feature temporary exhibitions about specific themes. The space will display scientific material in different forms to allow conducting experiments to demonstrate some of the concepts associated with the properties of nuclear energy, hands-on programs and activities that can be customized to the students' grade level and curriculum. (author)

  2. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1962-01-01

    Advances in Nuclear Science and Technology, Volume 1 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book covers a variety of topics, including nuclear power stations, graft polymerization, diffusion in uranium alloys, and conventional power plants.Organized into seven chapters, this volume begins with an overview of the three stages of the operation of a power plant, either nuclear or conventionally fueled. This text then examines the major problems that face the successful development of commercial nuclear power plants. Other chapters consider

  3. Veterinary Medicine and Animal Health Technology Handbook.

    Science.gov (United States)

    New York State Education Dept., Albany. Office of the Professions.

    The laws, rules, and regulations of the New York State Education Department that govern professional veterinary medicine and animal health technology practice in the state are presented. Licensure requirements are described, and complete application forms and instructions for obtaining license and first registration as a licensed veterinarian and…

  4. Philosophy, medicine and its technologies.

    Science.gov (United States)

    Almond, B

    1988-12-01

    There is a need to bring ethics and medical practice closer together, despite the risk and problems this may involve. Deontological ethics may promote sanctity of life considerations against the quality of life considerations favoured by consequentialists or utilitarians; while talk of respect for life and the value of life may point to more qualified ethical positions. This paper argues for a respect-for-life position, dismissing a utilitarian cost-benefit outlook as too simplistic; but an unqualified fixed principles approach is also ruled out, both because of its unacceptable consequences in individual cases and also because of its reliance on the slippery slope argument which, it is argued, is logically and psychologically deficient. The case of genetic engineering provides an example in which the notion of respect may operate, but in which broad general principles also apply. A cautious conservatism towards accepted principles is recommended in the development of medical technologies.

  5. Comparative analysis of dosimetry parameters for nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Toohey, R.E.; Stabin, M.G. [Oak Ridge Inst. for Science and Education, TN (United States)

    1999-01-01

    For years many have employed the concept of ``total-body dose`` or ``whole-body dose,`` i.e., the total energy deposited in the body divided by the mass of the body, when evaluating the risks of different nuclear medicine procedures. The effective dose equivalent (H{sub E}), first described in ICRP Publication 26, has been accepted by some as a better quantity to use in evaluating the total risk of a procedure, but its use has been criticized by others primarily because the tissue weighting factors were intended for use in the radiation worker, rather than the nuclear medicine patient population. Nevertheless, in ICRP Publication 52, the ICRP has suggested that the H{sub E} may be used in nuclear medicine. The ICRP also has published a compendium of dose estimates, including H{sub E} values, for various nuclear medicine procedures at various ages in ICRP Publication 53. The effective dose (E) of ICRP Publication 60 is perhaps more suitable for use in nuclear medicine, with tissue weighting factors based on the entire population. Other comparisons of H{sub E} and E have been published. The authors have used the program MIRDOSE 3.1 to compute total-body dose, H{sub E}, and E for 62 radiopharmaceutical procedures, based on the best current biokinetic data available.

  6. Current research in nuclear medicine and molecular imaging in Italy: highlights of the 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging.

    Science.gov (United States)

    Cuocolo, A

    2011-06-01

    The 10th National Congress of the Italian Association of Nuclear Medicine and Molecular Imaging (AIMN) took place in Rimini on March 18-21, 2011 under the chairmanship of Professor Stefano Fanti. The program was of excellent quality and put a further step for the settlement of the standardized AIMN congress structure. A large industrial exhibition demonstrated the latest technological innovations and developments within the field. The congress was a great success with more than 1100 total participants and more than 360 abstracts received. Of these, 40 abstracts were accepted for oral and 285 for poster presentations. The original investigations presented were related to different areas of nuclear medicine and molecular imaging, with particular focus on advances in instrumentation and data processing, progress in radiochemistry and pharmacy, novel diagnostics and therapeutics, and new insights in well established areas of clinical application, such as oncology, cardiology, neurology, psychiatry, endocrinology, paediatrics, and infection and inflammation. Noteworthy, several presentations at this congress, focusing on quantitative interpretation of the imaging data and on pragmatic endpoints, such as adverse outcomes, identified when nuclear medicine procedures achieved clinical effectiveness for patient care and patient management and further demonstrated that nuclear medicine plays a crucial role in the contemporary medical scenario. This highlights lecture is only a brief summary of the large amount of data presented and discussed, which can be found in much greater detail in the congress abstract book, published as volume 55, supplement 1 of the Q J Nucl Med Mol Imaging in April 2011.

  7. The radiological protection in the nuclear medicine practice; La proteccion radiologica en la practica de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado M, H., E-mail: hmaldonado@cnsns.gob.m [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2010-09-15

    The nuclear medicine practice dates of the 1950 years, in this work the achievements reached as regards radiological protection are shown, although even lack a lot to make, the doses for the occupationally exposed personnel have decreased with lapsing of the years, thanks to the perception of the nuclear physicians to improve the administration techniques of the radioactive material, the decrease of administered activity and the unit doses use among the most remarkable advances. The changes in the equipment s technology to quantify the activity to administer, detection systems and image formation have demanded the development of the new professionals of the nuclear medicine that allows give protection to the patient. This improvement needs to consolidate with the appropriate normative development, the involved personnel qualification and the methods and procedures actualization to improve the protection of the occupationally exposed personnel, the public, the environment and the patient. (Author)

  8. [Legal implications of information to the patient in nuclear medicine].

    Science.gov (United States)

    Fernández Sánchez, J

    2004-01-01

    Every patient has the right to be informed about a medical procedure. The nuclear medicine physician has the duty to inform the patients and, if necessary, to obtain a reasonable written consent before some radioisotopic examinations. The following must be considered in every informed consent of a nuclear medicine procedure: the need for the patient information ("why"), the type of information given ("how"), the person who performs it ("who"), the moment in the time ("when") and the place ("where") where the consent is performed. It must always be kept in mind that, although the informed consent has a protection function from the medicolegal point of view, this function may be lost if the consent is not performed correctly. In this paper the importance and the medicolegal implications of the patient information in Nuclear Medicine are evaluated and discussed.

  9. Training requirements for chemists in radiotracer development for nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Finn, R.; Fowler, J.

    1988-01-01

    This panel was organized to address the current and anticipated future shortage of chemists with advanced training to fill positions in the nuclear medicine field. Although hard data and statistics are difficult to acquire, we will attempt to highlight the impact of chemistry on nuclear medicine and to describe the growth of the field which has led to an increasing need for chemists resulting in the current manpower shortage. We also will make recommendations for attracting Ph.D. chemists to careers in nuclear medicine research and possible mechanisms for postgraduate training. Solving this problem and establishing a long term committment and mechanism for advanced training is critically important to meet the current needs of the profession and to assure future growth and innovation. 3 tabs.

  10. ABB Combustion Engineering nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  11. Internal dosimetry in nuclear medicine procedures; Dosimetria interna por procedimientos en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Carrera Magarino, F.; Salgado Garcia, C.; Ruiz Manzano, P.; Rivas Ballarin, M. A.; Jimenez Hefernan, A.; Sanchez Segovia, J.

    2011-07-01

    The Department of Radio Physics and Radiation Protection, University Hospital Lozano Blesa Zaragoza presented a calculus textbook to estimate patient doses in diagnostic nuclear medicine. In this paper present an updated version referred Book of calculation.

  12. The IAEA technical cooperation programme and nuclear medicine in the developing world: objectives, trends, and contributions.

    Science.gov (United States)

    Casas-Zamora, Juan Antonio; Kashyap, Ridhi

    2013-05-01

    The International Atomic Energy Agency's technical cooperation (TC) programme helps Member States in the developing world with limited infrastructure and human resource capacity to harness the potential of nuclear technologies in meeting socioeconomic development challenges. As a part of its human health TC initiatives, the Agency, through the TC mechanism, has the unique role of promoting nuclear medicine applications of fellowships, scientific visits, and training courses, via technology procurement, and in the past decade has contributed nearly $54 million through 180 projects in supporting technology procurement and human resource capacity development among Member States from the developing world (low- and middle-income countries). There has been a growing demand in nuclear medicine TC, particularly in Africa and ex-Soviet Union States where limited infrastructure presently exists, based on cancer and cardiovascular disease management projects. African Member States received the greatest allocation of TC funds in the past 10 years dedicated to building new or rehabilitating obsolete nuclear medicine infrastructure through procurement support of single-photon emission computed tomography machines. Agency support in Asia and Latin America has emphasized human resource capacity building, as Member States in these regions have already acquired positron emission tomography and hybrid modalities (positron emission tomography/computed tomography and single-photon emission computed tomography/computed tomography) in their health systems. The strengthening of national nuclear medicine capacities among Member States across different regions has enabled stronger regional cooperation among developing countries who through the Agency's support and within the framework of regional cooperative agreements are sharing expertise and fostering the sustainability and productive integration of nuclear medicine within their health systems.

  13. Application of nuclear physics in medical physics and nuclear medicine

    Science.gov (United States)

    Hoehr, Cornelia

    2016-09-01

    Nuclear physics has a long history of influencing and advancing medical fields. At TRIUMF we use the applications of nuclear physics to diagnose several diseases via medical isotopes and treat cancer by using proton beams. The Life Science division has a long history of producing Positron Emission Tomography (PET) isotopes but we are also investigating the production of SPECT and PET isotopes with a potential shortage for clinical operation or otherwise limited access to chemists, biologists and medical researchers. New targets are being developed, aided by a simulation platform investigating the processes inside a target under proton irradiation - nuclear, thermodynamic, and chemical. Simulations also aid in the development of new beam-shaping devices for TRIUMF's Proton Therapy facility, Canada's only proton therapy facility, as well as new treatment testing systems. Both promise improved treatment delivery for cancer patients.

  14. Pioneers of nuclear medicine, Madame Curie.

    Science.gov (United States)

    Grammaticos, Philip C

    2004-01-01

    Among those who have made important discoveries in the field of radioactivity and thus helped in the development of nuclear medicine as an identical entity are: Heinrich Hertz who in 1886 demonstrated the existence of radiowaves. In 1895 Wilhelm Röntgen discovered the X-rays. In 1896 H. Becquerel described the phenomenon of radioactivity. He showed that a radioactive uranium salt was emitting radioactivity which passing through a metal foil darkened a photographic plate. An analogous experiment performed by S.Thomson in London was announced to the president of the Royal Society of London before the time H.Becquerel announced his discovery but Thomson never claimed priority for his discovery. Muarie Sklodowska Curie (1867-1934) was undoubtedly the most important person to attribute to the discovery of radioactivity. In 1898 she discovered radium as a natural radioactive element. This is how she describes the hard time she had, working with her husband Pierre Curie (1859-1906) for the discovery of radium and polonium: "During the first year we did not go to the theater or to a concert or visited friends. I miss my relatives, my father and my daughter that I see every morning and only for a little while. But I do not complain...". In presenting her discovery of radium, Madame Curie said: " ...in the hands of a criminal, radium is very dangerous. So we must often ask ourselves: will humanity earn or lose from this discovery? I, myself belong to those who believe the former...". The notebooks that Madame Curie had when she was working with radium and other radioactive elements like polonium, thorium and uranium are now kept in Paris. They are contaminated with radioactive materials having very long half-lives and for this reason anyone who wishes to have access to these notes should sign that he takes full responsibility. There are some more interesting points in Madame Curie's life which may not be widely known like: Although her full name is Maria Sklodowska

  15. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1973-01-01

    Advances in Nuclear Science and Technology, Volume 7 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of irradiation-induced void swelling in austenitic stainless steels. This text then examines the importance of various transport processes for fission product redistribution, which depends on the diffusion data, the vaporization properties, and the solubility in the fuel matrix. Other chapters co

  16. [Occupational medicine in nuclear industry and power engineering].

    Science.gov (United States)

    Gus'kova, A K

    2004-01-01

    The author analysed results of medical service in atomic industry and power engineering over 50 years. Those results are beneficial for management in occupational medicine for any new complicated and potentially dangerous technology and activity.

  17. A study on nuclear technology policy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, M. H.; Kim, H. J.; Chung, W. S.; Yun, S. W.; Kim, H. S

    2001-01-01

    This study was carried out as a part of institutional activities of KAERI. Major research area are as follows; Future directions and effects for national nuclear R and D to be resulted from restructuring of electricity industry are studied. Comparative study was carried out between nuclear energy and other energy sources from the point of views of environmental effects by introducing life cycle assessment(LCA) method. Japanese trends of reestablishment of nuclear policy such as restructuring of nuclear administration system and long-term plan of development and use of nuclear energy are also investigated, and Russian nuclear development program and Germany trends for phase-out of nuclear electricity generation are also investigated. And trends of the demand and supply of energy in eastern asian countries in from the point of view of energy security and tension in the south china sea are analyzed and investigation of policy trends of Vietnam and Egypt for the development and use of nuclear energy for the promotion of nuclear cooperation with these countries are also carried out. Due to the lack of energy resources and high dependence of imported energy, higher priority should be placed on the use of localized energy supply technology such as nuclear power. In this connection, technological development should be strengthened positively in order to improve economy and safety of nuclear energy and proliferation resistance of nuclear fuel cycle and wide ranged use of radiation and radioisotopes and should be reflected in re-establishment of national comprehensive promotion plan of nuclear energy in progress.

  18. Radionuclides for nuclear medicine: a nuclear physicists' view

    DEFF Research Database (Denmark)

    Cantone, M.; Haddad, F.; Harissopoulos, S.

    2013-01-01

    transport of individual doses lead to a renewed interest in radionuclide generators such as 68Ge/68Ga, 82Sr/82Rb or even 44Ti/44Sc. For long time such generator nuclides were mainly produced at non-European accelerators (BNL, LANL, TRIUMF, iThemba Labs) that are mainly devoted to support nuclear physics...... challenged by unforeseen outages. This triggered the proposition and development of complementary accelerator-based production Methods of 99mTc. Long-term prospects for 99mTc supply in Europe will be discussed. •The emergence of new applications as well as rising costs and regulations for radioactive...... facilities. The recent addition of ARRONAX, a dedicated production facility in Nantes, France, and the upcoming inauguration of a 70 MeV cyclotron at the nuclear physics facility SPES at Legnaro, Italy will greatly improve Europe’s production capabilities of these nuclides. •Ongoing accelerator R&D for new...

  19. Historic images in nuclear medicine: 1976: the first issue of clinical nuclear medicine and the first human FDG study.

    Science.gov (United States)

    Hess, Søren; Høilund-Carlsen, Poul Flemming; Alavi, Abass

    2014-08-01

    In 1976, 2 major molecular imaging events coincidentally took place: Clinical Nuclear Medicine was first published in June, and in August researchers at the Hospital of the University of Pennsylvania created the first images in humans with F-FDG. FDG was initially developed as part of an evolution set in motion by fundamental research studies with positron-emitting tracers in the 1950s by Michel Ter-Pegossian and coworkers at the Washington University. Today, Clinical Nuclear Medicine is a valued scientific contributor to the molecular imaging community, and FDG PET is considered the backbone of this evolving and exciting discipline.

  20. Development of Nuclear Analytical Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Joon; Kim, J. Y.; Sohn, S. C. (and others)

    2007-06-15

    The pre-treatment and handling techniques for the micro-particles in swipe samples were developed for the safeguards purpose. The development of screening technique for the swipe samples has been established using the nuclear fission track method as well as the alpha track method. The laser ablation system to take a nuclear particle present in swipe was designed and constructed for the determination of the enrichment factors for uranium or plutonium, and its performance was tested in atmosphere as well as in vacuum. The optimum conditions for the synthesis of silica based micro-particles were obtained for mass production. The optimum ion exchange resin was selected and the optimum conditions for the uranium adsorption in resin bead technique were established for the development of the enrichment factor for nuclear particles in swipe. The established technique was applied to the swipe taken directly from the nuclear facility and also to the archive samples of IAEA's environmental swipes. The evaluation of dose rate of neutron and secondary gamma-ray for the radiation shields were carried out to design the NIPS system, as well as the evaluation of the thermal neutron concentration effect by the various reflectors. D-D neutron generator was introduced as a neutron source for the NIPS system to have more advantages such as easier control and moderation capability than the {sup 252}Cf source. Simulated samples for explosive and chemical warfare were prepared to construct a prompt gamma-ray database. Based on the constructed database, a computer program for the detection of illicit chemical and nuclear materials was developed using the MATLAB software.

  1. Tropical medicine: Telecommunications and technology transfer

    Science.gov (United States)

    Legters, Llewellyn J.

    1991-01-01

    The potential for global outbreaks of tropical infectious diseases, and our ability to identify and respond to such outbreaks is a major concern. Rapid, efficient telecommunications is viewed as part of the solution to this set of problems - the means to link a network of epidemiological field stations via satellite with U.S. academic institutions and government agencies, for purposes of research, training in tropical medicine, and observation of and response to epidemic emergencies. At a workshop, telecommunications and technology transfer were addressed and applications of telecommunications technology in long-distance consultation, teaching and disaster relief were demonstrated. Applications in teaching and consultation in tropical infectious diseases is discussed.

  2. Wireless technology in disease management and medicine.

    Science.gov (United States)

    Clifford, Gari D; Clifton, David

    2012-01-01

    Healthcare information, and to some extent patient management, is progressing toward a wireless digital future. This change is driven partly by a desire to improve the current state of medicine using new technologies, partly by supply-and-demand economics, and partly by the utility of wireless devices. Wired technology can be cumbersome for patient monitoring and can restrict the behavior of the monitored patients, introducing bias or artifacts. However, wireless technologies, while mitigating some of these issues, have introduced new problems such as data dropout and "information overload" for the clinical team. This review provides an overview of current wireless technology used for patient monitoring and disease management. We identify some of the major related issues and describe some existing and possible solutions. In particular, we discuss the rapidly evolving fields of telemedicine and mHealth in the context of increasingly resource-constrained healthcare systems.

  3. Is there a place for music in nuclear medicine?

    Science.gov (United States)

    Giannouli, Vaitsa; Lytras, Nikolaos; Syrmos, Nikolaos

    2012-01-01

    Music, since the time of ancient Greek Asclepieia is well-known for its influence on men's behavior. Nuclear Medicine can study the effect of music in humans' brain. Positron emission tomography (PET) studies have shown brain areas to be activated after colored hearing vs after hearing to words. Furthermore, PET studies gave evidence that visual imagery of a musical stave is used by some musically untrained subjects in a pitch discrimination task. Listening to music combines intellect and emotion by intimate anatomical and functional connexions between temporal lobe, hippocampus and limbic system. Mozart's music is considered the best for bringing favorable music effects to men. This is called "the Mozart's effect" and by some is attributed to the fact that this kind of music's sequences tend to repeat regularly every 20-30sec, which is about the same length of time as brain-wave patterns. It may be useful to suggest that a certain kind of music played in the waiting room and/or in the examining room of a Nuclear Medicine Department may support patients ' cooperation with their physicians, especially in cardiac nuclear medicine. Furthermore, patients should be calm and not afraid of radioactivity. A long DVD program to be played during working hours can be decided between a music therapist and the Nuclear Medicine physician.

  4. Nuclear Medicine | RadTown USA | US EPA

    Science.gov (United States)

    2017-08-07

    >Nuclear medicine procedures can help detect and treat disease by using a small amount of radioactive material, called a radiopharmaceutical. Some radiopharmaceuticals are used with imaging equipment to detect diseases. Others are placed in or near a cancerous tumor to shrink or kill it.

  5. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  6. Proliferation Persuasion. Coercive Bargaining with Nuclear Technology

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, Tristan A. [George Washington Univ., Washington, DC (United States)

    2015-08-31

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits? My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the

  7. Quality Assessment of Research Articles in Nuclear Medicine Using STARD and QUADAS-2 Tools.

    Science.gov (United States)

    Roysri, Krisana; Chotipanich, Chanisa; Laopaiboon, Vallop; Khiewyoo, Jiraporn

    2014-01-01

    Diagnostic nuclear medicine is being increasingly employed in clinical practice with the advent of new technologies and radiopharmaceuticals. The report of the prevalence of a certain disease is important for assessing the quality of that article. Therefore, this study was performed to evaluate the quality of published nuclear medicine articles and determine the frequency of reporting the prevalence of studied diseases. We used Standards for Reporting of Diagnostic Accuracy (STARD) and Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklists for evaluating the quality of articles published in five nuclear medicine journals with the highest impact factors in 2012. The articles were retrieved from Scopus database and were selected and assessed independently by two nuclear medicine physicians. Decision concerning equivocal data was made by consensus between the reviewers. The average STARD score was approximately 17 points, and the highest score was 17.19±2.38 obtained by the European Journal of Nuclear Medicine. QUADAS-2 tool showed that all journals had low bias regarding study population. The Journal of Nuclear Medicine had the highest score in terms of index test, reference standard, and time interval. Lack of clarity regarding the index test, reference standard, and time interval was frequently observed in all journals including Clinical Nuclear Medicine, in which 64% of the studies were unclear regarding the index test. Journal of Nuclear Cardiology had the highest number of articles with appropriate reference standard (83.3%), though it had the lowest frequency of reporting disease prevalence (zero reports). All five journals had the same STARD score, while index test, reference standard, and time interval were very unclear according to QUADAS-2 tool. Unfortunately, data were too limited to determine which journal had the lowest risk of bias. In fact, it is the author's responsibility to provide details of research methodology so that the reader

  8. Quality Assessment of Research Articles in Nuclear Medicine Using STARD and QUADAS-2 Tools

    Directory of Open Access Journals (Sweden)

    Krisana Roysri

    2014-10-01

    Full Text Available Objective(s: Diagnostic nuclear medicine is being increasingly employed in clinical practice with the advent of new technologies and radiopharmaceuticals. The report of the prevalence of a certain disease is important for assessing the quality of that article. Therefore, this study was performed to evaluate the quality of published nuclear medicine articles and determine the frequency of reporting the prevalence of studied diseases. Methods: We used Standards for Reporting of Diagnostic Accuracy (STARD and Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2 checklists for evaluating the quality of articles published in five nuclear medicine journals with the highest impact factors in 2012. The articles were retrieved from Scopus database and were selected and assessed independently by two nuclear medicine physicians. Decision concerning equivocal data was made by consensus between the reviewers. Results: The average STARD score was approximately 17 points, and the highest score was 17.19±2.38 obtained by the European Journal of Nuclear Medicine. QUADAS-2 tool showed that all journals had low bias regarding study population. The Journal of Nuclear Medicine had the highest score in terms of index test, reference standard, and time interval. Lack of clarity regarding the index test, reference standard, and time interval was frequently observed in all journals including Clinical Nuclear Medicine, in which 64% of the studies were unclear regarding the index test. Journal of Nuclear Cardiology had the highest number of articles with appropriate reference standard (83.3%, though it had the lowest frequency of reporting disease prevalence (zero reports. All five journals had the same STARD score, while index test, reference standard, and time interval were very unclear according to QUADAS-2 tool. Unfortunately, data were too limited to determine which journal had the lowest risk of bias. In fact, it is the author’s responsibility to provide

  9. American College of Nuclear Physics 1991 DOE day symposium: Aids and nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    Since first described in 1981, the acquired immunodeficiency syndrome (AIDS) has become the medical dilemma of the century. AIDS retrovirus, and the economic consequences of this exposure are staggering. AIDS has been the topic of conferences and symposia worldwide. This symposium, to be held on January 25, 1991, at the 17th Annual Meeting and Scientific Sessions of the American College of Nuclear Physicians, will expose the Nuclear Medicine Physicians/Radiologists to their role in the diagnosis of AIDS, and will educate them on the socio-economic and ethical issues related to this problem. In addition, the Nuclear Medicine Physicians/Radiologists must be aware of their role in the management of their departments in order to adequately protect the health care professionals working in their laboratories. Strategies are currently being developed to control the spread of bloodborne diseases within the health care setting, and it is incumbent upon the Nuclear Medicine community to be aware of such strategies.

  10. Nuclear data for medicine and electronics

    Energy Technology Data Exchange (ETDEWEB)

    Pomp, S.; Blomgren, J.; Bergenwall, B.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Nilsson, L.; Oesterlund, M. [Dept. of Neutron Research, Uppsala Univ., Uppsala (Sweden); Dangtip, S.; Tippawan, U. [Dept. of Neutron Research, Uppsala Univ., Uppsala (Sweden)]|[Fast Neutron Research Facility, Chiang Mai Univ. (Thailand); Olsson, N. [Dept. of Neutron Research, Uppsala Univ., Uppsala (Sweden)]|[Swedish Defence Research Agency (FOI), Stockholm (Sweden); Prokofiev, A.V.; Renberg, P.U. [The Svedberg Lab., Uppsala Univ. (Sweden)

    2003-07-01

    Fast-neutron cancer therapy is now routinely performed at about a dozen facilities worldwide. Typical neutron energies for treatment are up to 70 MeV. Lately, it has been recognized that cosmic-ray neutrons, with energies up to many GeV, give significant dose contributions to airplane personnel. In fact, airplane personnel are the category, which receives the largest doses in civil work. These cosmic-ray neutrons also create a reliability problem in modern electronics. A neutron can cause a nuclear reaction inside or near a chip, thus releasing free charge, which in turn could, e.g., flip the memory content or change the result of a logical operation. For all these applications, improved knowledge of the underlying nuclear physics is of major importance. The MEDLEY setup, which has been extensively used for ADS related work, has been used for measurements of cross sections related to biomedicine and electronics reliability. Simulations of single-event upsets are described as well as accelerated device testing activities at neutron beams. (orig.)

  11. High Performance Organ-Specific Nuclear Medicine Imagers.

    Science.gov (United States)

    Majewski, Stan

    2006-04-01

    One of the exciting applications of nuclear science is nuclear medicine. Well-known diagnostic imaging tools such as PET and SPECT (as well as MRI) were developed as spin-offs of basic scientific research in atomic and nuclear physics. Development of modern instrumentation for applications in particle physics experiments offers an opportunity to contribute to development of improved nuclear medicine (gamma and positron) imagers, complementing the present set of standard imaging tools (PET, SPECT, MRI, ultrasound, fMRI, MEG, etc). Several examples of new high performance imagers developed in national laboratories in collaboration with academia will be given to demonstrate this spin-off activity. These imagers are designed to specifically image organs such as breast, heart, head (brain), or prostate. The remaining and potentially most important challenging application field for dedicated nuclear medicine imagers is to assist with cancer radiation treatments. Better control of radiation dose delivery requires development of new compact in-situ imagers becoming integral parts of the radiation delivery systems using either external beams or based on radiation delivery by inserting or injecting radioactive sources (gamma, beta or alpha emitters) into tumors.

  12. Nuclear medicine and radiologic imaging in sports injuries

    Energy Technology Data Exchange (ETDEWEB)

    Glaudermans, Andor W.J.M. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium); Gielen, Jan L.M.A. [Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Radiology; Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Sports Medicine; Antwerp Univ. Hospital, Edegem (Belgium). Dept. of Medicine; Zwerver, Johannes (ed.) [Groningen Univ. (Netherlands). Center for Sports Medicine

    2015-10-01

    This comprehensive book describes in detail how nuclear medicine and radiology can meet the needs of the sports medicine physician by assisting in precise diagnosis, clarification of pathophysiology, imaging of treatment outcome and monitoring of rehabilitation. Individual sections focus on nuclear medicine and radiologic imaging of injuries to the head and face, spine, chest, shoulder, elbow and forearm, wrist and hand, pelvic region, knee, lower leg, ankle and foot. The pathophysiology of sports injuries frequently encountered in different regions of the body is described from the perspective of each specialty, and the potential diagnostic and management benefits offered by the new hybrid imaging modalities - SPECT/CT, PET/CT, and PET/MRI - are explained. In addition, a range of basic and general issues are addressed, including imaging of the injuries characteristic of specific sports. It is hoped that this book will promote interdisciplinary awareness and communication and improve the management of injured recreational or elite athletes.

  13. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    CERN Document Server

    Sgouros, George

    2003-01-01

    This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...

  14. Application of Technetium and Rhenium in Nuclear Medicine

    Science.gov (United States)

    Alberto, Roger

    2012-06-01

    Technetium and Rhenium are the two lower elements in the manganese triad. Whereas rhenium is known as an important part of high resistance alloys, technetium is mostly known as a cumbersome product of nuclear fission. It is less known that its metastable isotope 99mTc is of utmost importance in nuclear medicine diagnosis. The technical application of elemental rhenium is currently complemented by investigations of its isotope 188Re, which could play a central role in the future for internal, targeted radiotherapy. This article will briefly describe the basic principles behind diagnostic methods with radionuclides for molecular imaging, review the 99mTc-based radiopharmaceuticals currently in clinical routine and focus on the chemical challenges and current developments towards improved, radiolabeled compounds for diagnosis and therapy in nuclear medicine.

  15. Production of gel {sup 99m}Tc generators for Nuclear Medicine at the Nuclear Power Institute of China, Chengdu

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R.E

    1996-07-01

    The development and testing of the gel-type {sup 99m}Tc generator technology has been going on for several years at the Nuclear Power Institute of China. This generator type has already been licensed by the Ministry of Health. With the co-operation of the IAEA, under Model Project CPR/2/006,it is intended to upgrade and optimise the existing facility for large scale production and continue to improve the generator performance in terms of quality and reliability of its use in nuclear medicine. The expert mission objective was to carry out final laboratory tests to assess the performance of the gel- type {sup 99m}Tc, locally produced, as well as to assess the suitability of the corresponding {sup 99m}Tc eluate for nuclear medicine studies. In particular, the expert tested the suitability of the {sup 99m}Tc for the labelling of sensitive biomolecules and its general performance in a nuclear medicine service

  16. A review of wearable technology in medicine.

    Science.gov (United States)

    Iqbal, Mohammed H; Aydin, Abdullatif; Brunckhorst, Oliver; Dasgupta, Prokar; Ahmed, Kamran

    2016-10-01

    With rapid advances in technology, wearable devices have evolved and been adopted for various uses, ranging from simple devices used in aiding fitness to more complex devices used in assisting surgery. Wearable technology is broadly divided into head-mounted displays and body sensors. A broad search of the current literature revealed a total of 13 different body sensors and 11 head-mounted display devices. The latter have been reported for use in surgery (n = 7), imaging (n = 3), simulation and education (n = 2) and as navigation tools (n = 1). Body sensors have been used as vital signs monitors (n = 9) and for posture-related devices for posture and fitness (n = 4). Body sensors were found to have excellent functionality in aiding patient posture and rehabilitation while head-mounted displays can provide information to surgeons to while maintaining sterility during operative procedures. There is a potential role for head-mounted wearable technology and body sensors in medicine and patient care. However, there is little scientific evidence available proving that the application of such technologies improves patient satisfaction or care. Further studies need to be conducted prior to a clear conclusion. © The Royal Society of Medicine.

  17. Current Abstracts Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  18. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  19. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1966-01-01

    Advances in Nuclear Science and Technology, Volume 3 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book presents the advances in the atomic energy field.Organized into six chapters, this volume begins with an overview of the use of pulsed neutron sources for the determination of the thermalization and diffusion properties of moderating as well as multiplying media. This text then examines the effect of nuclear radiation on electronic circuitry and its components. Other chapters consider radiation effects in various inorganic solids, with empha

  20. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1970-01-01

    Advances in Nuclear Science and Technology, Volume 5 presents the underlying principles and theory, as well as the practical applications of the advances in the nuclear field. This book reviews the specialized applications to such fields as space propulsion.Organized into six chapters, this volume begins with an overview of the design and objective of the Fast Flux Test Facility to provide fast flux irradiation testing facilities. This text then examines the problem in the design of nuclear reactors, which is the analysis of the spatial and temporal behavior of the neutron and temperature dist

  1. Overview of plasma technology used in medicine

    Science.gov (United States)

    Ryan, Thomas P.; Stalder, Kenneth R.; Woloszko, Jean

    2013-02-01

    Plasma Medicine is a growing field that is having an impact in several important areas in therapeutic patient care, combining plasma physics, biology, and clinical medicine. Historically, plasmas in medicine were used in electrosurgery for cautery and non-contact hemostasis. Presently, non-thermal plasmas have attained widespread use in medicine due to their effectiveness and compatibility with biological systems. The paper will give a general overview of how low temperature, non-equilibrium, gas plasmas operate, both from physics and biology perspectives. Plasma is commonly described as the fourth state of matter and is typically comprised of charged species, active molecules and atoms, as well as a source of UV and photons. The most active areas of plasma technology applications are in wound treatment; tissue regeneration; inactivation of pathogens, including biofilms; treating skin diseases; and sterilization. There are several means of generating plasmas for use in medical applications, including plasma jets, dielectric barrier discharges, capacitively or inductively coupled discharges, or microplasmas. These systems overcome the former constraints of high vacuum, high power requirements and bulky systems, into systems that use room air and other gases and liquids at low temperature, low power, and hand-held operation at atmospheric pressure. Systems will be discussed using a variety of energy sources: pulsed DC, AC, microwave and radiofrequency, as well as the range of frequency, pulse duration, and gas combinations in an air environment. The ionic clouds and reactive species will be covered in terms of effects on biological systems. Lastly, several commercial products will be overviewed in light of the technology utilized, health care problems being solved, and clinical trial results.

  2. 42 CFR 482.53 - Condition of participation: Nuclear medicine services.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Nuclear medicine... HOSPITALS Optional Hospital Services § 482.53 Condition of participation: Nuclear medicine services. If the hospital provides nuclear medicine services, those services must meet the needs of the patients...

  3. Swiss Society of Nuclear Medicine (SGNM/SSMN) 8th annual congress. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Program chart and compiled abstracts of the 8th annual congress of the Swiss Society of Nuclear Medicine (SGNM/SSMN). Session headers are: The role of imaging in primary prevention (screening); new technology, SPECT/CT; imaging in secondary prevention (patients at risk); oncology, new tracers; instrumentation/methodology; imaging in tertiary prevention (tumor staging); rTSH in managemnet of differentiated thyroid cancer moderation; cardiology, new perspectives; oncology, PET/CT. (uke)

  4. Development of nuclear equipment qualification technology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heon O; Kim, Wu Hyun; Kim, Jin Wuk; Kim, Jeong Hyun; Lee, Jeong Kyu; Kim, Yong Han; Jeong, Hang Keun [Korea Institute of Machinery and Materials, Taejon (Korea)

    1999-03-01

    In order to enhance testing and evaluation technologies, which is one of the main works of the Chanwon branch of KIMM(Korea Institute of Machinery and Materials), in addition to the present work scope of the testing and evaluation in the industrial facilities such as petroleum and chemical, plants, the qualification technologies of the equipments important to safety used in the key industrial facilities such as nuclear power plants should be localized: Equipments for testing and evaluation is to be set up and the related technologies must be developed. In the first year of this study, of vibration aging qualification technologies of equipments important to safety used in nuclear power plants have been performed. (author). 27 refs., 81 figs., 17 tabs.

  5. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  6. Small Nuclear Technology and Market Entry

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, J S; Schock, R N; Brown, N W; Smith, C F

    2002-05-31

    An overview of energy-system projections into the new century leads to the conclusion that nuclear power will play a significant role. How significant a role will be determined by the marketplace. Within the range of nuclear-power technologies available, small nuclear-power plants of innovative design appear to fit the needs of a number of developing nations and states. Under similar financing options used by the airline industry and others, the capital requirement barrier that puts the nuclear industry at a disadvantage in deregulated markets could be reduced. These plants have the potential advantage of modularity, are proliferation-resistant, incorporate passive safety features, minimize waste, and could be cost-competitive with fossil-fuel plants.

  7. Review of Current Nuclear Vacuum System Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  8. Compartmental analysis of dynamic nuclear medicine data: models and identifiability

    Science.gov (United States)

    Delbary, Fabrice; Garbarino, Sara; Vivaldi, Valentina

    2016-12-01

    Compartmental models based on tracer mass balance are extensively used in clinical and pre-clinical nuclear medicine in order to obtain quantitative information on tracer metabolism in the biological tissue. This paper is the first of a series of two that deal with the problem of tracer coefficient estimation via compartmental modelling in an inverse problem framework. Specifically, here we discuss the identifiability problem for a general n-dimension compartmental system and provide uniqueness results in the case of two-compartment and three-compartment compartmental models. The second paper will utilize this framework in order to show how nonlinear regularization schemes can be applied to obtain numerical estimates of the tracer coefficients in the case of nuclear medicine data corresponding to brain, liver and kidney physiology.

  9. Role of nuclear medicine in ischemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, Kohei; Nishimura, Tsunehiko; Uehara, Toshiisa; Naito, Hiroaki; Omine, Hiromi; Kozuka, Takahiro (National Cardiovascular Center, Suita, Osaka (Japan))

    1982-08-01

    With the progress in gamma camera and computer system, nuclear medicine has been applied for diagnostic tool in ischemic heart disease. There are two devices for cardiac images; (1) Radionuclide angiocardiography (RNA) by in vivo sup(99m)Tc-RBC labeling (2) Myocardial imaging by /sup 201/Tlcl. RNA can evaluate the kinesis of wall motion of left ventricle with gated pool scan and also detect reserve of cardiac function with exercise study. Myocardial imaging at rest can identify myocardial necrosis and the imaging in exercise can detect myocardial ischemia. The elaborateness and reproducibility of cardiac image in nuclear medicine will play the great role to evaluate clinical stage of ischemic heart disease by not only imaging but also functional diagnosis.

  10. Search of new scintillation materials for nuclear medicine application

    CERN Document Server

    Korzhik, M V

    2000-01-01

    Oxide crystals have a great potential to develop new advanced scintillation materials which are dense, fast, and bright. This combination of parameters, when combined to affordable price, gives a prospect for materials to be applied in nuclear medicine devices. Some of them have been developed for the last two decades along the line of rear-earth (RE) garnet (RE/sub 3/Al/sub 5/O/sub 12/) oxiorthosilicate (RE/sub 2/SiO/sub 5/) and perovskite (REAlO/sub 3/) crystals doped with Ce ions. Among recently developed oxide materials the lead tungstate scintillator (PWO) becomes the most used scintillation material in high energy physics experiments due to its application in CMS and ALICE experiments at LHC. In this paper we discuss scintillation properties of some new heavy compounds doped with Ce as well as light yield improvement of PWO crystals to apply them in low energy physics and nuclear medicine. (18 refs).

  11. Thorium nuclear fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Tae Yoon; Do, Jae Bum; Choi, Yoon Dong; Park, Kyoung Kyum; Choi, In Kyu; Lee, Jae Won; Song, Woong Sup; Kim, Heong Woo

    1998-03-01

    Since thorium produces relatively small amount of TRU elements after irradiation in the reactor, it is considered one of possible media to mix with the elements to be transmuted. Both solid and molten-salt thorium fuel cycles were investigated. Transmutation concepts being studied involved fast breeder reactor, accelerator-driven subcritical reactor, and energy amplifier with thorium. Long-lived radionuclides, especially TRU elements, could be separated from spent fuel by a pyrochemical process which is evaluated to be proliferation resistance. Pyrochemical processes of IFR, MSRE and ATW were reviewed and evaluated in detail, regarding technological feasibility, compatibility of thorium with TRU, proliferation resistance, their economy and safety. (author). 26 refs., 22 figs

  12. Forensic Medicine: Age Written in Teeth by Nuclear Bomb Tests

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2005-05-04

    Establishing the age of individuals is an important step in identification and a frequent challenge in forensic medicine. This can be done with high precision up to adolescence by analysis of dentition, but establishing the age of adults has remained difficult. Here we show that measuring {sup 14}C from nuclear bomb tests in tooth enamel provides a sensitive way to establish when a person was born.

  13. Basic principles in the radiation dosimetry of nuclear medicine.

    Science.gov (United States)

    Stabin, Michael; Xu, Xie George

    2014-05-01

    The basic principles of the use of radiation dosimetry in nuclear medicine are reviewed. The basic structure of the main mathematical equations are given and formal dosimetry systems are discussed. An extensive overview of the history and current status of anthropomorphic models (phantoms) is given. The sources and magnitudes of uncertainties in calculated internal dose estimates are reviewed. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Initial experience with a nuclear medicine viewing workstation

    Science.gov (United States)

    Witt, Robert M.; Burt, Robert W.

    1992-07-01

    Graphical User Interfaced (GUI) workstations are now available from commercial vendors. We recently installed a GUI workstation in our nuclear medicine reading room for exclusive use of staff and resident physicians. The system is built upon a Macintosh platform and has been available as a DELTAmanager from MedImage and more recently as an ICON V from Siemens Medical Systems. The workstation provides only display functions and connects to our existing nuclear medicine imaging system via ethernet. The system has some processing capabilities to create oblique, sagittal and coronal views from transverse tomographic views. Hard copy output is via a screen save device and a thermal color printer. The DELTAmanager replaced a MicroDELTA workstation which had both process and view functions. The mouse activated GUI has made remarkable changes to physicians'' use of the nuclear medicine viewing system. Training time to view and review studies has been reduced from hours to about 30-minutes. Generation of oblique views and display of brain and heart tomographic studies has been reduced from about 30-minutes of technician''s time to about 5-minutes of physician''s time. Overall operator functionality has been increased so that resident physicians with little prior computer experience can access all images on the image server and display pertinent patient images when consulting with other staff.

  15. Recent applications of nuclear medicine in diagnostics: II part

    Directory of Open Access Journals (Sweden)

    Giorgio Treglia

    2013-04-01

    Full Text Available Introduction: Positron-emission tomography (PET and single photon emission computed tomography (SPECT are effective diagnostic imaging tools in several clinical settings. The aim of this article (the second of a 2-part series is to examine some of the more recent applications of nuclear medicine imaging techniques, particularly in the fields of neurology, cardiology, and infection/inflammation. Discussion: A review of the literature reveals that in the field of neurology nuclear medicine techniques are most widely used to investigate cognitive deficits and dementia (particularly those associated with Alzheimer disease, epilepsy, and movement disorders. In cardiology, SPECT and PET also play important roles in the work-up of patients with coronary artery disease, providing accurate information on the state of the myocardium (perfusion, metabolism, and innervation. White blood cell scintigraphy and FDG-PET are widely used to investigate many infectious/inflammatory processes. In each of these areas, the review discusses the use of recently developed radiopharmaceuticals, the growth of tomographic nuclear medicine techniques, and the ways in which these advances are improving molecular imaging of biologic processes at the cellular level.

  16. Recent applications of nuclear medicine in diagnostics (I part

    Directory of Open Access Journals (Sweden)

    Giorgio Treglia

    2013-04-01

    Full Text Available Introduction: Aim of this review is to describe the recent applications of nuclear medicine techniques in diagnostics, particularly in oncology. Materials and methods: We reviewed scientific literature data searching for the current role of tomographic nuclear medicine techniques (SPECTand PET in oncology and summarized the main applications of these techniques. Results: Nuclear medicine techniques have a key role in oncology allowing early diagnosis of many tumours, an accurate staging of disease and evalutation of treatment response. Hybrid SPECT/CT and PET/CT imaging systems now provide metabolic and functional information from SPECTor PETcombined with the high spatial resolution and anatomic information of CT. The most frequent applications of SPECT/CT in oncology concern thyroid tumours, neuroendocrine tumours, bone metastases and lymph node mapping. Furthermore the evaluation of many tumours may benefit from PET/CT imaging. Discussion: The recent development of new radiopharmaceuticals and the growth of hybrid tomographic devices, such as SPECT/CT and PET/CT, now permits molecular imaging of biologic processes at the cellular level to improve both the diagnosis and treatment of many tumours.

  17. Functional genomics and proteomics - the role of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, U. [Heidelberg Univ. (Germany). Abt. fuer Klinische Nuklearmedizin; German Cancer Research Center, Heidelberg (Germany); Altmann, A. [German Cancer Research Center, Heidelberg (Germany); Eisenhut, M. [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiopharmacy

    2002-01-01

    Now that the sequencing of the human genome has been completed, the basic challenges are finding the genes, locating their coding regions and predicting their functions. This will result in a new understanding of human biology as well as in the design of new molecular structures as potential novel diagnostic or drug discovery targets. The assessment of gene function may be performed using the tools of the genome program. These tools represent high-throughput methods used to evaluate changes in the expression of many or all genes of an organism at the same time in order to investigate genetic pathways for normal development and disease. This will lead to a shift in the scientific paradigm: In the pre-proteomics era, functional assignments were derived from hypothesis-driven experiments designed to understand specific cellular processes. The new tools describe proteins on a proteome-wide scale, thereby creating a new way of doing cell research which results in the determination of three-dimensional protein structures and the description of protein networks. These descriptions may then be used for the design of new hypotheses and experiments in the traditional physiological, biochemical and pharmacological sense. The evaluation of genetically manipulated animals or newly designed biomolecules will require a thorough understanding of physiology, biochemistry and pharmacology and the experimental approaches will involve many new technologies, including in vivo imaging with single-photon emission tomography and positron emission tomography. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers or using in vivo reporter genes such as enzymes, receptors, antigens or transporters. Pharmacogenomics will identify new surrogate markers for therapy monitoring which may represent potential new tracers for imaging. Also, drug distribution studies for new therapeutic biomolecules are needed, at least

  18. Nuclear technology in research and everyday life; Kerntechnik in Forschung und Alltag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-12-15

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  19. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1975-01-01

    Advances in Nuclear Science and Technology, Volume 8 discusses the development of nuclear power in several countries throughout the world. This book discusses the world's largest program of land-based electricity production in the United States.Organized into six chapters, this volume begins with an overview of the phenomenon of quasi-exponential behavior by examining two mathematical models of the neutron field. This text then discusses the finite element method, which is a method for obtaining approximate solutions to integral or differential equations. Other chapters consider the status of

  20. Preserving competence in nuclear technology. Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Steinwarz, Wolfgang [Siempelkamp Behaeltertechnik GmbH, Krefeld (Germany)

    2015-10-15

    On the 17th workshop Preserving Competence in Nuclear Technology 21 young scientists presented the scientific results from their thesis work for a diploma, mastership or a PhD covering a broad spectrum of technical areas. This demonstrated again the strong engagement of the younger generation as part of the German nuclear society. Prof. Dr.-Ing. Eckart Laurin, Prof. Dr.-Ing. Marco K. Koch and Dr.-Ing. Wolfgang Steinwarz as members of the jury assessed the written compacts and the oral presentations to award the Siempelkamp Competence Price 2015 to Tobias Seidel from Helmholtz-Zentrum Dresden-Rossendorf e.V.

  1. [Membrane technologies in medicine and ecology].

    Science.gov (United States)

    Makarov, D A; Malyshev, V V; Kononova, S V

    2010-01-01

    The paper considers the state-of-the-art of membrane technologies, as applied to the needs of medicine and ecology, the major benefits of membranes for microfiltration and ultrafiltration, and perspectives for the application of new membranes based on new materials. A number of membranes based on aromatic polyamide imides (PAs) have been investigated using rotavirus models. Due to the good solubility of PAs in amide solvents, their based asymmetric membranes can be formed in one step, by applying a water setting bath. The one-stage procedure developed at the Institute of High Molecular Compounds, Russian Academy of Sciences, for the synthesis of aromatic PAs allows one to prepare polymers with required viscosity and strength characteristics. This gives rise to a membrane as porous films of digitiform morphology and asymmetric porous structure.

  2. Academic Training: Physics technologies in medicine

    CERN Multimedia

    Françoise benz

    2005-01-01

    24, 25, 26, 27 January 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 Physics technologies in medicine M. GILARDI / Univ. of Milano, I. - U. AMALDI / Univ. of Milano Bicocca and TERA Foundation - M. SCHOLZ / GSI, Darmstadt, D. - O. JÄKEL / Deutsches Krebsforschungszentrum, Heidelberg, D Monday 24 January The frontiers of medical imaging M. GILARDI / Univ. of Milano, I. Tuesday 25 January From the discovery of X-rays to CT/PET diagnostics and conformal radiation therapy U. AMALDI / Univ. of Milano Bicocca and TERA Foundation Wednesday 26 January The increased biological effectiveness of heavy charged particle radiation: from cell culture experiments to biophysics modelling M. SCHOLZ / GSI, Darmstadt, D. Thursday 27 January Medical Physics aspects of radiotherapy with ions O. JÄKEL / Deutsches Krebsforschungszentrum, Heidelberg, D The lectures are open to all those interested, without application. The abstract of the lectures...

  3. Academic Training: Physics technologies in medicine

    CERN Multimedia

    Françoise Benz

    2005-01-01

    24, 25, 26, 27 January 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 Physics technologies in medicine M. GILARDI / Univ. of Milano, I. - U. AMALDI / Univ. of Milano Bicocca and TERA Foundation - M. SCHOLZ / GSI, Darmstadt, D. - O. JÄKEL / Deutsches Krebsforschungszentrum, Heidelberg, D Monday 24 January The frontiers of medical imaging M. GILARDI / Univ. of Milano, I. The lecture will deal with the evolution of diagnostic imaging techniques, focussing on tomographic methods (x rays Computerized Tomography, CT, Magnetic Resonance Imaging. MRI, Positron Emission Tomography, PET). The physical parameters characterizing the performance of current generation scanners and their potential future improvement will be discussed. The clinical diagnostic value of multi modal imaging and the relevance of image fusion to image guided radiotherapy will be also presented. Tuesday 25 January From the discovery of X-rays to CT/PET diagnostics and co...

  4. Nuclear Systems (NS): Technology Demonstration Unit (TDU) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA’s Space Technology Mission Directorate. To this end,...

  5. Precision medicine, an approach for development of the future medicine technologies

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2016-04-01

    Full Text Available Precision medicine is an approach in medicine that takes into account individual differences in people's genes, environments, and lifestyle. This field of medicine redefines our understanding of disease onset and progression, treatment response, and health outcomes through the more precise measurement of molecular, environmental, and behavioral factors that contribute to health and disease. Undoubtedly, the advances in omics technologies including genomics, data collection and storage, computational analysis, and mobile health applications over the last decade produced significant progress for precision medicine. In fact, precision medicine is a platform for the growth of personalized medicine, wearable biosensors, mobile health, computational sciences, genomic singularity, and other omics technologies. In the pathway of precision medicine, mathematics and computational sciences will be revolutionized to overcome the challenges in Big Data. By the birth of precision medicine, novel therapeutic strategies for chronic complex diseases such as cardiovascular disease and cancers would be designed in Systems Medicine.

  6. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1968-01-01

    Advances in Nuclear Science and Technology Volume 4 provides information pertinent to the fundamental aspects of advanced reactor concepts. This book discusses the advances in various areas of general applicability, including modern perturbation theory, optimal control theory, and industrial application of ionizing radiations.Organized into seven chapters, this volume begins with an overview of the technology of sodium-cooled fast breeder power reactors and gas-cooled power reactors. This text then examines the key role of reactor safety in the development of fast breeder reactors. Other chapt

  7. Radiation exposure analysis of female nuclear medicine radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Young [Dept. of Biomedical Engineering Graduate School, Chungbuk National University, Cheongju (Korea, Republic of); Park, Hoon Hee [Dept. of Radiological Technologist, Shingu College, Sungnam (Korea, Republic of)

    2016-06-15

    In this study, radiation workers who work in nuclear medicine department were analyzed to find the cause of differences of radiation exposure from General Characteristic, Knowledge, Recognition and Conduct, especially females working on nuclear medicine radiation, in order to pave the way for positive defense against radiation exposure. The subjects were 106 radiation workers who were divided into two groups of sixty-four males and forty-two females answered questions about their General Characteristic, Knowledge, Recognition, Conduct, and radiation exposure dose which was measured by TLD (Thermo Luminescence Dosimeter). The results of the analysis revealed that as the higher score of knowledge and conduct was shown, the radiation exposure decreased in female groups, and as the higher score of conduct was shown, the radiation exposure decreased in male groups. In the correlation analysis of female groups, the non-experienced in pregnancy showed decreasing amount of radiation exposure as the score of knowledge and conduct was higher and the experienced in pregnancy showed decreasing amount of radiation exposure as the score of recognition and conduct was higher. In the regression analysis on related factors of radiation exposure dose of nuclear medicine radiation workers, the gender caused the meaningful result and the amount of radiation exposure of female groups compared to male groups. In the regression analysis on related factors of radiation exposure dose of female groups, the factor of conduct showed a meaningful result and the amount of radiation exposure of the experienced in pregnancy was lower compared to the non-experienced. The conclusion of this study revealed that radiation exposure of female groups was lower than that of male groups. Therefore, male groups need to more actively defend themselves against radiation exposure. Among the female groups, the experienced in pregnancy who have an active defense tendency showed a lower radiation exposure. Thus

  8. Characterization of iodinated adrenomedullin derivatives suitable for lung nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fu Yan; Letourneau, Myriam; Chatenet, David [Laboratoire d' etudes moleculaires et pharmacologiques des peptides, INRS-Institut Armand-Frappier, Ville de Laval, Qc, H7V 1B7 (Canada); Dupuis, Jocelyn [Research Center, Montreal Heart Institute, Montreal, Qc (Canada); Department of Medicine, University of Montreal, Montreal, Qc (Canada); Fournier, Alain, E-mail: alain.fournier@iaf.inrs.ca [Laboratoire d' etudes moleculaires et pharmacologiques des peptides, INRS-Institut Armand-Frappier, Ville de Laval, Qc, H7V 1B7 (Canada)

    2011-08-15

    Introduction: We have recently demonstrated the effectiveness of 99m-technetium adrenomedullin (AM) as a new molecular lung imaging agent that could provide significant advantages for the diagnosis and follow-up of disorders affecting the pulmonary circulation such as pulmonary embolism and pulmonary hypertension. Having the possibility to conjugate the targeting molecule with different radionuclides would offer more flexibility and potential advantages depending on clinical situations. Since various iodine isotopes are currently used in nuclear medicine and in pharmacological studies, we have evaluated which iodination method should be privileged in order to produce a good iodinated AM-derived nuclear medicine agent. Methods: Synthetic AM was labeled with iodine through chemical and lactoperoxidase oxidation methods. Position of the iodine atom on the peptide was determined by MALDI-TOF mass spectrometry analysis following cyanogen bromide cleavage and carboxypeptidase Y digestion. Binding affinity of iodinated AM analogues was evaluated by competition and saturation binding experiments on dog lung preparations. Results: In this study, we demonstrated that, upon lactoperoxidase oxidation, iodination occurred at Tyr{sup 1} and that this radioligand retained higher binding affinity and specificity over preparations obtained through chemical oxidation. Conclusions: These results emphasize the fact that even a small chemical modification, i.e. iodination, might deeply modify the pharmacological profile of a compound and support observations that the C-terminal tail of human AM plays an important role in the AM receptor binding process. Consequently, incorporation of a radionuclide to produce an AM-based nuclear medicine agent should privilege the N-terminus of the molecule.

  9. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  10. Management of radioactive waste generated in nuclear medicine; Gestion de los residuos radiactivos generados en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz Perez, P.

    2015-07-01

    Nuclear medicine is a clinical specialty in which radioactive material is used in non-encapsulated form, for the diagnosis and treatment of patients. Nuclear medicine involves administering to a patient a radioactive substance, usually liquid, both diagnostic and therapeutic purposes. This process generates solid radioactive waste (syringes, vials, gloves) and liquid (mainly the patient's urine). (Author)

  11. Image Reconstruction for Prostate Specific Nuclear Medicine imagers

    Energy Technology Data Exchange (ETDEWEB)

    Mark Smith

    2007-01-11

    There is increasing interest in the design and construction of nuclear medicine detectors for dedicated prostate imaging. These include detectors designed for imaging the biodistribution of radiopharmaceuticals labeled with single gamma as well as positron-emitting radionuclides. New detectors and acquisition geometries present challenges and opportunities for image reconstruction. In this contribution various strategies for image reconstruction for these special purpose imagers are reviewed. Iterative statistical algorithms provide a framework for reconstructing prostate images from a wide variety of detectors and acquisition geometries for PET and SPECT. The key to their success is modeling the physics of photon transport and data acquisition and the Poisson statistics of nuclear decay. Analytic image reconstruction methods can be fast and are useful for favorable acquisition geometries. Future perspectives on algorithm development and data analysis for prostate imaging are presented.

  12. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  13. 42 CFR Appendix D to Part 75 - Standards for Accreditation of Educational Programs for Nuclear Medicine Technologists

    Science.gov (United States)

    2010-10-01

    ... courses in the following areas: (1) Human anatomy and physiology; (2) Physics; (3) Mathematics; (4..., DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING STANDARDS FOR THE ACCREDITATION OF... of an integrated program in nuclear medicine technology (i.e., two to four years). E....

  14. Freeze Technology for Nuclear Applications - 13590

    Energy Technology Data Exchange (ETDEWEB)

    Rostmark, Susanne C.; Knutsson, Sven [Lulea University of Technology (Sweden); Lindberg, Maria [Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

  15. Implementation of Nuclear Medicine Methods for Assessment of Child Abuse and Neglec

    Directory of Open Access Journals (Sweden)

    Eser Kaya

    2010-05-01

    Full Text Available Child abuse and neglect are detrimental to a child’s health, physical and psychosocial development and result from inappropriate behavior or inattention on the part of those responsible for the child’s care and protection. Child abuse/neglect is a serious public problem encompassing medical, ethical and legal aspects. Imaging methods play an important role in investigating and documenting child abuse and neglect. Radiological imaging methods have particular priority. X-rays of the whole skeletal system are obtained for evaluation of the bone structure. Computerized tomography (CT, magnetic resonance imaging (MRI, and ultrasonography (US are used for the detection of cranial and internal organ damage. Due to the rapid developments in technology, diagnostic methods using nuclear medicine have also been initiated for use in identifying abuse and neglect. Detection of abuse and neglect carries ethical, judicial and moral liabilities as well as a responsibility for accurate diagnosis and treatment. Implementation of diagnostic methods of nuclear medicine in determining child abuse and neglect might contribute significantly in resolving court cases by providing objective evidence in medicolegal cases for realization of fair trials and in facilitating substantial conclusions. It is hoped that nuclear medicine methods will be helpful in terms of providing objective evidence for the experts. (Journal of Current Pediatrics 2010; 8: 30-5

  16. Necessity of Internal Monitoring for Nuclear Medicine Staff in a Large Specialized Chinese Hospital.

    Science.gov (United States)

    Wang, Hong-Bo; Zhang, Qing-Zhao; Zhang, Zhen; Hou, Chang-Song; Li, Wen-Liang; Yang, Hui; Sun, Quan-Fu

    2016-04-12

    This work intends to quantify the risk of internal contaminations in the nuclear medicine staff of one hospital in Henan province, China. For this purpose, the criteria proposed by the International Atomic Energy Agency (IAEA) to determine whether it is necessary to conduct internal individual monitoring was applied to all of the 18 nuclear medicine staff members who handled radionuclides. The activity of different radionuclides used during a whole calendar year and the protection measures adopted were collected for each staff member, and the decision as to whether nuclear medicine staff in the hospital should be subjected to internal monitoring was made on the basis of the criteria proposed by IAEA. It is concluded that for all 18 members of the nuclear medicine staff in the hospital, internal monitoring is required. Internal exposure received by nuclear medicine staff should not be ignored, and it is necessary to implement internal monitoring for nuclear medicine staff routinely.

  17. Avoidable challenges of a nuclear medicine facility in a developing nation.

    Science.gov (United States)

    Adedapo, Kayode Solomon; Onimode, Yetunde Ajoke; Ejeh, John Enyi; Adepoju, Adewale Oluwaseun

    2013-10-01

    The role of nuclear medicine in disease management in a developing nation is as impactful as it is in other regions of the world. However, in the developing world, the practice of nuclear medicine is faced with a myriad of challenges, which can be easily avoided. In this review, we examine the many avoidable challenges to the practice of nuclear medicine in a developing nation. The review is largely based on personal experiences of the authors who are the pioneers and current practitioners of nuclear medicine in a typical developing nation. If the challenges examined in this review are avoided, the practice of nuclear medicine in such a nation will be more effective and practitioners will be more efficient in service delivery. Hence, the huge benefits of nuclear medicine will be made available to patients in such a developing nation.

  18. Nuclear medicine and multimodality imaging of pediatric neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Wolfgang Peter; Pfluger, Thomas [Ludwig-Maximilians-University of Munich, Department of Nuclear Medicine, Munich (Germany); Coppenrath, Eva [Ludwig-Maximilians-University of Munich, Department of Radiology, Munich (Germany)

    2013-04-15

    Neuroblastoma is an embryonic tumor of the peripheral sympathetic nervous system and is metastatic or high risk for relapse in nearly 50% of cases. Therefore, exact staging with radiological and nuclear medicine imaging methods is crucial for defining the adequate therapeutic choice. Tumor cells express the norepinephrine transporter, which makes metaiodobenzylguanidine (MIBG), an analogue of norepinephrine, an ideal tumor specific agent for imaging. MIBG imaging has several disadvantages, such as limited spatial resolution, limited sensitivity in small lesions and the need for two or even more acquisition sessions. Most of these limitations can be overcome with positron emission tomography (PET) using [F-18]2-fluoro-2-deoxyglucose [FDG]. Furthermore, new tracers, such as fluorodopa or somatostatin receptor agonists, have been tested for imaging neuroblastoma recently. However, MIBG scintigraphy and PET alone are not sufficient for operative or biopsy planning. In this regard, a combination with morphological imaging is indispensable. This article will discuss strategies for primary and follow-up diagnosis in neuroblastoma using different nuclear medicine and radiological imaging methods as well as multimodality imaging. (orig.)

  19. Nuclear Medicine in Diagnosis of Prosthetic Valve Endocarditis: An Update

    Directory of Open Access Journals (Sweden)

    Maria Musso

    2015-01-01

    Full Text Available Over the past decades cardiovascular disease management has been substantially improved by the increasing introduction of medical devices as prosthetic valves. The yearly rate of infective endocarditis (IE in patient with a prosthetic valve is approximately 3 cases per 1,000 patients. The fatality rate of prosthetic valve endocarditis (PVE remains stable over the years, in part due to the aging of the population. The diagnostic value of echocardiography in diagnosis is operator-dependent and its sensitivity can decrease in presence of intracardiac devices and valvular prosthesis. The modified Duke criteria are considered the gold standard for diagnosing IE; their sensibility is 80%, but in clinical practice their diagnostic accuracy in PVE is lower, resulting inconclusively in nearly 30% of cases. In the last years, these new imaging modalities have gained an increasing attention because they make it possible to diagnose an IE earlier than the structural alterations occurring. Several studies have been conducted in order to assess the diagnostic accuracy of various nuclear medicine techniques in diagnosis of PVE. We performed a review of the literature to assess the available evidence on the role of nuclear medicine techniques in the diagnosis of PVE.

  20. Nuclear Medicine in Diagnosis of Prosthetic Valve Endocarditis: An Update

    Science.gov (United States)

    Musso, Maria; Petrosillo, Nicola

    2015-01-01

    Over the past decades cardiovascular disease management has been substantially improved by the increasing introduction of medical devices as prosthetic valves. The yearly rate of infective endocarditis (IE) in patient with a prosthetic valve is approximately 3 cases per 1,000 patients. The fatality rate of prosthetic valve endocarditis (PVE) remains stable over the years, in part due to the aging of the population. The diagnostic value of echocardiography in diagnosis is operator-dependent and its sensitivity can decrease in presence of intracardiac devices and valvular prosthesis. The modified Duke criteria are considered the gold standard for diagnosing IE; their sensibility is 80%, but in clinical practice their diagnostic accuracy in PVE is lower, resulting inconclusively in nearly 30% of cases. In the last years, these new imaging modalities have gained an increasing attention because they make it possible to diagnose an IE earlier than the structural alterations occurring. Several studies have been conducted in order to assess the diagnostic accuracy of various nuclear medicine techniques in diagnosis of PVE. We performed a review of the literature to assess the available evidence on the role of nuclear medicine techniques in the diagnosis of PVE. PMID:25695043

  1. Children in nuclear medicine; Kinder in der Nuklearmedizin

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S. [Klinik und Poliklinik fuer Nuklearmedizin, Ludwig-Maximilians-Univ. Muenchen (Germany)

    2002-07-01

    With each study in paediatric nuclear medicine one must try to reach a high quality standard with a minimum of radiation exposure to the child. This is true for the indication for the study and the interpretation of the results as well as the preparation, the image acquisition, the processing and the documentation. A continuous evaluation of all aspects is necessary to receive optimal, clinically relevant information. In addition it is important that the child keeps nuclear medicine in a good mind, especially when it has to come back for a control study. (orig.) [German] Bei jeder paediatrischen Untersuchung in der Nuklearmedizin muss versucht werden, eine optimale Aussage bei moeglichst niedriger Strahlenexposition des Kindes zu erreichen. Dieses gilt sowohl fuer die Indikationsstellung der Untersuchung sowie die Interpretation der Untersuchungsergebnisse, als auch fuer die Vorbereitung, die Durchfuehrung, die Auswertung und die Dokumentation. Eine staendige Ueberpruefung aller dieser Aspekte ist erforderlich, um durch die nuklearmedizinische Untersuchung optimale, klinisch relevante Informationen zu erhalten. Zusaetzlich soll erreicht werden, dass das Kind - auch im Hinblick auf Folgeuntersuchungen - die Nuklearmedizin in guter Erinnerung behaelt. (orig.)

  2. Fetal dose in radiology, nuclear medicine and radiotherapy; Dosis fetal en radiodiagnostico, medicina nuclear y radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, F. J.; Martinez, L. C.; Candela, C.

    2015-07-01

    Sometimes irradiation of the fetus in the mother's womb is inevitable in the field of diagnostic radiology, nuclear medicine and radiotherapy, either through ignorance a priori status of this pregnancy, either because for clinical reasons it is necessary to perform the radiological study or treatment. In the first cases, know the dose at which it has exposed the fetus is essential when assessing the associated risk, while in the second it is when assessing the justification of the test. (Author)

  3. Internal Mainland Nuclear Power Liquid Waste Treatment Technology

    Institute of Scientific and Technical Information of China (English)

    YOU; Xin-feng; ZHANG; Zhen-tao; ZHENG; Wen-jun; WANG; Lei; YANG; Lin-yue; HUA; Xiao-hui; ZHENG; Yu; YANG; Yong-gang; WU; Yan

    2013-01-01

    Taohuajiang power station is the first internal mainland nuclear power station,and it adopts AP1000nuclear technology belongs to the Westinghouse Electric Corporation.To ensure the safety of the environment around the station and satisfy the radio liquid waste discharge standards,our team has researched the liquid waste treatment technology for the internal mainland nuclear power plant.According

  4. Nuclear vapor thermal reactor propulsion technology

    Science.gov (United States)

    Maya, Isaac; Diaz, Nils J.; Dugan, Edward T.; Watanabe, Yoichi; McClanahan, James A.; Wen-Hsiung Tu, Carman, Robert L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF4) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (˜100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development.

  5. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of highly enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of {sup 233,235}U and {sup 239}Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL. The complete library, or any part of it, may be retrieved from www.nndc.bnl.gov.

  6. Prospect of nuclear application in food technology

    Energy Technology Data Exchange (ETDEWEB)

    Maha, M. (National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre)

    1982-04-01

    Irradiation changes the normal living process of cells and the structure of molecules. It is good for food preservation because it kills off many of the microorganisms in the product and makes the remainder more sensitive to antimicrobial factors prevailing after the radiation treatment. It offers more benefits than conventional preservation in that it increases storage stability and quality of foodstuffs with the minimum use of energy. Good storage quality gives way to wider distribution of food, alleviates the world's food shortage, and improves food supplies. Research proved that irradiation increased the quality of subtropical fruits, spices, fish, and meat. No refrigeration is needed to store meat, poultry and fish preserved by the combination of irradiation and mild heat treatment. Nuclear technology can also be applied to destroy harmful insects, to sterilize food, to inhibit the sprouting of root crops, and to control ripening in stored fruits and vegetables. Based on the above potentials of irradiation, the prospect of nuclear application in food technology is promising.

  7. Education and communication to increase public understanding of nuclear technology peaceful uses

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Denise S.; Passos, Igor S., E-mail: denise@omiccron.com.br [Omiccron Programacao Grafica, Atibaia, SP (Brazil)

    2014-07-01

    Nuclear technology helps to improve the quality of our everyday life. Nevertheless, there is still great misinformation and the issue divides public opinion. Several surveys were conducted over the past years to study public acceptance of Nuclear Technology in Brazil and worldwide. GlobeScan (2005), for the International Atomic Energy Agency (IAEA), and Eurobarometers (2010), published by the Nuclear Energy Agency (NEA) and the Organization for Economic Co-operation and development (OECD), report similar socio-demographic trends: the higher the education level, the more favorable is public opinion towards nuclear power. Taking into account education and communication are crucial to increase public knowledge and understanding of the benefits of Nuclear Technology and that Internet access has increased strongly all over the country, this educational project aims to take advantage of the potential of Information and Communication Technology (ICT) to disseminate the peaceful use of nuclear technology and its benefits, informing children and teenagers, as well as parents and teachers, who are most often unaware of the matter. Whereas Internet access has increased strongly for both public and private schools all over the country, this web-based educational project, entitled Radioatividades (Radioactivities), provides short courses, curiosities and interactive activities covering topics related to Nuclear Technology and its beneficial applications in several areas, such as medicine, agriculture, industry, art and electric power generation. The project uses the combination of multiple technologies and last generation internet resources. Our target is the dissemination of information, promoting the benefits of Nuclear Technology for new generations, contributing to public acceptance of Nuclear Technology, combating misinformation in our society, omission of the media and knowledge fragmentation. Education transforms old prejudices and inspires new thoughts, stimulating

  8. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training.

    Science.gov (United States)

    Harkness, Beth A; Allison, Jerry D; Clements, Jessica B; Coffey, Charles W; Fahey, Frederic H; Gress, Dustin A; Kinahan, Paul E; Nickoloff, Edward L; Mawlawi, Osama R; MacDougall, Robert D; Pizzutiello, Robert J

    2015-09-08

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear  medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics  Training. The mission of this task force was to assemble a representative group of stakeholders to:• Estimate the demand for board-certified nuclear medicine physicists in the next 5-10 years,• Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, and• Identify approaches that may be considered to facilitate the training of nuclear medicine physicists.As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face-to-face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission.

  9. Space nuclear power, propulsion, and related technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government

  10. Guidance for nuclear medicine staff on radiopharmaceuticals drug interaction

    Directory of Open Access Journals (Sweden)

    Ralph Santos-Oliveira

    2009-12-01

    Full Text Available Numerous drug interactions related to radiopharmaceuticals take place every day in hospitals many of which are not reported or detected. Information concerning this kind of reaction is not abundant, and nuclear medicine staff are usually overwhelmed by this information. To better understand this type of reaction, and to help nuclear medicine staff deal with it, a review of the literature was conducted. The results show that almost all of radiopharmaceuticals marketed around the world present drug interactions with a large variety of compounds. This suggests that a logical framework to make decisions based on reviews incorporating adverse reactions must be created. The review also showed that researchers undertaking a review of literature, or even a systematic review that incorporates drug interactions, must understand the rationale for the suggested methods and be able to implement them in their review. Additionally, a global effort should be made to report as many cases of drug interaction with radiopharmaceuticals as possible. With this, a complete picture of drug interactions with radiopharmaceuticals can be drawn.Diversos casos de interações medicamentosas com radiofármacos ocorrem diariamente na rotina hospitalar, contudo muitos deles não são notificados ou mesmo percebidos. Informações a respeito desse tipo de reação não é abundante e os profissionais da medicina nuclear muitas vezes estão assoberbados por essas informações. De modo a entender esse tipo de reação e auxiliar a medicina nuclear a lidar com essa situação uma revisão da literatura foi realizada. Os resultados mostraram que a totalidade dos radiofármacos comercializados no mundo apresentam interação medicamentosa com uma enorme variedade de outros medicamentos. Dessa forma sugere-se que revisões sobre radiofármacos inclua um capítulo sobre efeitos adversos. Além disso, um esforço mundial para notificar efeitos adversos deve ser realizado, pois somente

  11. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    Science.gov (United States)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  12. Epigenetic stochasticity, nuclear structure and cancer: the implications for medicine.

    Science.gov (United States)

    Feinberg, A P

    2014-07-01

    The aim of this review is to summarize an evolution of thinking about the epigenetic basis of human cancer, from the earliest studies of altered DNA methylation in cancer to the modern comprehensive epigenomic era. Converging data from epigenetic studies of primary cancers and from experimental studies of chromatin in development and epithelial-mesenchymal transition suggest a role for epigenetic stochasticity as a driving force of cancer, with Darwinian selection of tumour cells at the expense of the host. This increased epigenetic stochasticity appears to be mediated by large-scale changes in DNA methylation and chromatin in domains associated with the nuclear lamina. The implications for diagnosis include the potential to identify stochastically disrupted progenitor cells years before cancer develops, and to target drugs to epigenetic drivers of gene expression instability rather than to mean effects per se. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  13. Breast cancer: an overview of nuclear medicine imaging and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Munro, P. [QEII/Dalhousie School of Health Sciences, Halifax, Nova Scotia (Canada)

    2005-01-01

    The purpose of this overview is to introduce the diagnostic and therapeutic procedures routinely used in the management of the patient with breast cancer and includes what some may consider being the future of nuclear medicine, positron emission tomography. Imaging the breast with {sup 99m}Tc MIBI to lymphatic mapping and the search for the sentinel lymph node for biopsy purposes, as well as bone scans used in the search for metastases will be discussed. Wall motion and ejection fraction studies are discussed as a monitoring tool for patients requiring cardiotoxic chemotherapy. The final section of the synopsis deals with the treatment of bone metastases for the purpose of palliation of this often debilitating disease. (author)

  14. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  15. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    Science.gov (United States)

    Cerqueira, R. A. D.; Maia, A. F.

    2014-02-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers.

  16. Diffusion processes in tumors: A nuclear medicine approach

    Science.gov (United States)

    Amaya, Helman

    2016-07-01

    The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and 18F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer software was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical 18F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.

  17. Nuclear medicine external individual occupational doses in Rio de Janeiro

    Energy Technology Data Exchange (ETDEWEB)

    Mauricio, Claudia L.P.; Lima, Ana Luiza S.; Silva, Herica L.R. da; Santos, Denison Souza [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], e-mail: claudia@ird.gov.br, e-mail: analuslima@yahoo.com.br, e-mail: herica@ird.gov.br, e-mail: santosd@ird.gov.br; Silva, Claudio Ribeiro da [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Ciencia e Tecnologia da Informacao (CGTI)(Brazil)], e-mail: claudio@cnen.gov.br

    2009-07-01

    According to the Brazilian National Database there are about 300 Nuclear Medicine Services (NMS) in Brazil, 44 of them located in the State of Rio de Janeiro (RJ). Individual dose measurements are an important input for the evaluation of occupational exposure in order to demonstrate the effectiveness of radioprotection implementation and to keep individual doses as low as possible. In Brazil, most nuclear medicine (NM) staff is routinely monitored for external dose. The internal committed dose is estimated only in abnormal conditions. This paper makes a statistics analysis of all the RJ NMS annual external occupational doses in year 2005. A study of the evolution of monthly external individual doses higher than 4.00 mSv from 2004 to 2008 is also presented. The number of registered thorax monthly dose higher than 4.0 mSv is increasing, as its value. In this period the highest dose measured reaches 56.9 mSv, in one month, in 2008. About 50% of the annual doses are smaller than the monthly record level of 0.20 mSv. In 2005, around 100 professionals of RJ NMS received annual doses higher than 4.0 mSv, considering only external doses, but no one receives doses higher than 20.0 mSv. Extremities dosimeters are used by about 15% of the staff. In some cases, these doses are more than 10 times higher than the dose in thorax. This study shows the importance to improve radiation protection procedures in NM. (author)

  18. Special Radiation Protection Precautions in Therapeutic Nuclear Medicine

    Science.gov (United States)

    Stefanoyiannis, A. P.; Gerogiannis, J.

    2010-01-01

    Therapeutic Nuclear Medicine concerns the administration of appropriate amounts of radioactivity of certain isotopes, in order to achieve internal localized irradiation of neoplasmatic cells. Due to the increased level and the specific isotope characteristics of administered radioactivity, special Radiation Protection precautions must be taken. This study addresses such issues, based on national as well as international legislation and guidelines. Application of the principle of optimization is of outmost importance and is based on individual dose planning. The decision about the release of Nuclear Medicine patients after therapy is determined on an individual basis, taking into account patients' pattern of contact with other people, their age and that of persons in the home environment, in addition to other factors. Estimation of the absorbed dose given to the treated organ is based on uptake measurements and other biokinetic data, as well as on the mass of the treated tissue or organ. Concerning pregnant women, the rule of thumb is that they should not be treated, unless the radionuclide therapy is required to save their lives. In that case, the potential absorbed dose and risk to the foetus should be estimated and conveyed to the patient. After radionuclide therapy, a female should be advised to avoid pregnancy for the period of time depending on the specific radionuclide. This is to ensure that the dose to a conceptus/foetus would probably not exceed 1 mGy (the member of the public dose limit). The radiation risk for relatives and caregivers is small and unlikely to exceed the legal dose constraints during the period of the patient's treatment. Solid waste from the patient's stay in hospital is a different matter, and is normally incinerated or held for a period until radioactive decay brings the activity to an acceptable level.

  19. Nuclear data for fusion technology – the European approach

    Directory of Open Access Journals (Sweden)

    Fischer Ulrich

    2017-01-01

    Full Text Available The European approach for the development of nuclear data for fusion technology applications is presented. Related R&D activities are conducted by the Consortium on Nuclear Data Development and Analysis for Fusion to satisfy the nuclear data needs of the major projects including ITER, the Early Neutron Source (ENS and DEMO. Recent achievements are presented in the area of nuclear data evaluations, benchmarking and validation, nuclear model improvements, and uncertainty assessments.

  20. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Science.gov (United States)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    agreement for simulations of thermal high-enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of 233,235U and 239Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, fusion, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL, and can be retrieved from www.nndc.bnl.gov.

  1. Standardization of Administered Activities in Pediatric Nuclear Medicine: A Report of the First Nuclear Medicine Global Initiative Project, Part 2-Current Standards and the Path Toward Global Standardization.

    Science.gov (United States)

    Fahey, Frederic H; Bom, Henry Hee-Seung; Chiti, Arturo; Choi, Yun Young; Huang, Gang; Lassmann, Michael; Laurin, Norman; Mut, Fernando; Nuñez-Miller, Rodolfo; O'Keeffe, Darin; Pradhan, Prasanta; Scott, Andrew M; Song, Shaoli; Soni, Nischal; Uchiyama, Mayuki; Vargas, Luis

    2016-07-01

    The Nuclear Medicine Global Initiative (NMGI) was formed in 2012 and consists of 13 international organizations with direct involvement in nuclear medicine. The underlying objectives of the NMGI are to promote human health by advancing the field of nuclear medicine and molecular imaging, encourage global collaboration in education, and harmonize procedure guidelines and other policies that ultimately lead to improvements in quality and safety in the field throughout the world. For its first project, the NMGI decided to consider the issues involved in the standardization of administered activities in pediatric nuclear medicine. It was decided to divide the final report of this project into 2 parts. Part 1 was published in this journal in the spring of 2015. This article presents part 2 of the final report. It discusses current standards for administered activities in children and adolescents that have been developed by various professional organizations. It also presents an evaluation of the current practice of pediatric nuclear medicine specifically with regard to administered activities as determined by an international survey of 313 nuclear medicine clinics and centers from 29 countries. Lastly, it provides recommendations for a path toward global standardization of the administration of radiopharmaceuticals in children.

  2. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  3. Strategies for CT tissue segmentation for Monte Carlo calculations in nuclear medicine dosimetry

    DEFF Research Database (Denmark)

    Braad, Poul-Erik; Andersen, Thomas; Hansen, Søren Baarsgaard;

    2016-01-01

    Purpose: CT images are used for patient specific Monte Carlo treatment planning in radionuclide therapy. The authors investigated the impact of tissue classification, CT image segmentation, and CT errors on Monte Carlo calculated absorbed dose estimates in nuclear medicine. Methods: CT errors...... patient specific dosimetry in nuclear medicine. Accurate dosimetry was obtained with a 13-tissue ramp that included five different bone types....

  4. Highlights lecture EANM 2015: the search for nuclear medicine's superheroes.

    Science.gov (United States)

    Buck, Andreas; Decristoforo, Clemens

    2016-09-01

    The EANM 2015 Annual Congress, held from October 10th to 14th in Hamburg, Germany, was outstanding in many respects. With 5550 participants, this was by far the largest European congress concerning nuclear medicine. More than 1750 scientific presentations were submitted, with more than 250 abstracts from young scientists, indicating that the future success of our discipline is fuelled by a high number of young individuals becoming involved in a multitude of scientific activities. Significant improvements have been made in molecular imaging of cancer, particularly in prostate cancer. PSMA-directed PET/CT appears to become a new gold standard for staging and restaging purposes. Novel tumour specific compounds have shown their potential for target identification also in other solid neoplasms and further our understanding of tumour biology and heterogeneity. In addition, a variety of nuclear imaging techniques guiding surgical interventions have been introduced. A particular focus of the congress was put on targeted, radionuclide based therapies. Novel theranostic concepts addressing also tumour entities with high incidence rates such as prostate cancer, melanoma, and lymphoma, have shown effective anti-tumour activity. Strategies have been presented to improve further already established therapeutic regimens such as somatostatin receptor based radio receptor therapy for treating advanced neuroendocrine tumours. Significant contributions were presented also in the neurosciences track. An increasing number of target structures of high interest in neurology and psychiatry are now available for PET and SPECT imaging, facilitating specific imaging of different subtypes of dementia and movement disorders as well as neuroinflammation. Major contributions in the cardiovascular track focused on further optimization of cardiac perfusion imaging by reducing radiation exposure, reducing scanning time, and improving motion correction. Besides coronary artery disease, many

  5. Links between nuclear medicine and radiopharmacy; Structuration des liens entre medecine nucleaire et radiopharmacie

    Energy Technology Data Exchange (ETDEWEB)

    Pelegrin, M. [Inserm, U896, CRLC Val-d' Aurelle-Paul-Lamarque, institut de recherche en cancerologie de Montpellier (IRCM), universite Montpellier 1, 34 - Montpellier (France); Francois-Joubert, A. [Service de medecine nucleaire, centre hospitalier de Chambery, 73 - Chambery (France); Chassel, M.L. [Radiopharmacie, service de pharmacie, centre hospitalier de Chambery, 73 - Chambrry (France); Desruet, M.D. [Service de radiopharmacie et service pharmaceutique, clinique universitaire de medecine nucleaire, CHU de Grenoble, 38 - Grenoble (France); Bolot, C. [Service de radiopharmacie, service pharmaceutique, centre de medecine nucleaire, groupement hospitalier Est, 69 - Bron (France); Lao, S. [Service de radiopharmacie, medecine nucleaire, hopital de l' Archet, 06 - Nice (France)

    2010-11-15

    Radiopharmaceuticals are nowadays under the responsibility of the radio-pharmacist because of their medicinal product status. Radiopharmacy belongs to the hospital pharmacy department, nevertheless, interactions with nuclear medicine department are important: rooms are included or located near nuclear medicine departments in order to respect radiation protection rules, more over staff, a part of the material and some activities are shared between the two departments. Consequently, it seems essential to formalize links between the radiopharmacy and the nuclear medicine department, setting the goals to avoid conflicts and to ensure patients' security. Modalities chosen for this formalization will depend on the establishment's organization. (authors)

  6. Handbook of nuclear medicine and molecular imaging principles and clinical applications

    CERN Document Server

    Kim, Edmund E; Tateishi, Ukihide; Baum, Richard P

    2012-01-01

    This handbook will provide updated information on nuclear medicine and molecular imaging techniques as well as its clinical applications, including radionuclide therapy, to trainees and practitioners of nuclear medicine, radiology and general medicine. Updated information on nuclear medicine and molecular imaging are vitally important and useful to both trainees and existing practitioners. Imaging techniques and agents are advancing and changing so rapidly that concise and pertinent information are absolutely necessary and helpful. It is hoped that this handbook will help readers be better equipped for the utilization of new imaging methods and treatments using radiopharmaceuticals.

  7. The broad view of nuclear technology for aerospace

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D. (Center for Nuclear Engineering and Technology, Idaho National Engineering Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415-2516 (US)); Angelo, J.A. Jr. (Science Applications International Corp., 700 South Babcock Street, Suite 300, Melbourne, Florida 32901 (US))

    1991-01-01

    Nuclear technologies can directly support advanced space initiatives. For near-Earth missions, nuclear technology can be used to power air traffic control, communications and manufacturing platforms, provide emergency power for manned platforms, provide power for maneuvering units, move asteroids for mining, measure the natural radiation environment, provide radiation protection instruments, and design radiation hardened robotic systems. For the Lunar and Mars surfaces, nuclear technology can be used for base stationary, mobile, and emergency power, energy storage, process heat, nuclear thermal and electric rocket propulsion, excavation and underground engineering, water and sewage treatment and sterilization, food processing and preservation, mineral exploration, self-luminous systems, radiation protection instrumentation, radiation environmental warning systems, and habitat shielding design. Outer planet missions can make use of nuclear technology for power and propulsion. Programs need to be initiated to ensure the full beneficial use of nuclear technologies in advanced space missions.

  8. Nuclear Technology Series. Course 19: Radiation Shielding.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Nuclear Technology Series. Course 8: Reactor Safety.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutians in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Nuclear Technology Series. Course l: Radiation Physics.

    Science.gov (United States)

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Nuclear Technology Series. Course 28: Welding Inspection.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  12. Nuclear Technology Series. Course 27: Metrology.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Nuclear Technology Series. Course 12: Reactor Physics.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. [The invention of personalized medicine, between technological upheavals and utopia].

    Science.gov (United States)

    Billaud, Marc; Guchet, Xavier

    2015-01-01

    The idea of personalized medicine raises a series of questions. If one considers that the physician takes into account the uniqueness of his patient in the frame of the medical consultation, is the definition of medicine as "personalized" not a pleonasm? If not, why has this ambiguous denomination been adopted? In addition, is this form of medicine a novel discipline capable of revolutionizing therapeutic approaches as claimed in its accompanying discourses or is it in continuity with the molecular conception of biomedicine? Rather than attempting to directly answer these questions, we focused our attention on the organizing concepts, the technological breakthroughs and the transformations in medical practices that characterize this medicine. Following this brief analysis, it appears that the choice of a term as equivocal as personalized medicine and the emphasis on the antagonistic notions of revolution and continuity in medicine are the signs of reshuffling that is emerging between actors in the health care system, in academia and in pharmaceutical companies.

  15. PREFACE: International Conference on Image Optimisation in Nuclear Medicine (OptiNM)

    Science.gov (United States)

    Christofides, Stelios; Parpottas, Yiannis

    2011-09-01

    Conference logo The International Conference on Image Optimisation in Nuclear Medicine was held at the Atlantica Aeneas Resort in Ayia Napa, Cyprus between 23-26 March 2011. It was organised in the framework of the research project "Optimising Diagnostic Value in SPECT Myocardial Perfusion Imaging" (YΓΕΙΑ/ΔYΓΕΙΑ/0308/11), funded by the Cyprus Research Promotion Foundation and the European Regional Development Fund, to present the highlights of the project, discuss the progress and results, and define future related goals. The aim of this International Conference was to concentrate on image optimization approaches in Nuclear Medicine. Experts in the field of nuclear medicine presented their latest research results, exchanged experiences and set future goals for image optimisation while balancing patient dose and diagnostic value. The conference was jointly organized by the Frederick Research Centre in Cyprus, the Department of Medical and Public Health Services of the Cyprus Ministry of Health, the Biomedical Research Foundation in Cyprus and the AGH University of Science and Technology in Poland. It was supported by the Cyprus Association of Medical Physics and Biomedical Engineering, and the Cyprus Society of Nuclear Medicine. The conference was held under the auspices of the European Federation of Organisations for Medical Physics and the European Association of Nuclear Medicine. The conference scientific programme covered several important topics such as functional imaging; image optimization; quantification for diagnosis; justification; simulations; patient dosimetry, staff exposures and radiation risks; quality assurance and clinical audit; education, training and radiation protection culture; hybrid systems and image registration; and new and competing technologies. The programme consisted of 13 invited and keynote presentations as well as workshops, round table discussions and a number of scientific sessions. A total of 51 speakers presented their

  16. Recent NASA aerospace medicine technology developments

    Science.gov (United States)

    Jones, W. L.

    1973-01-01

    Areas of life science are being studied to obtain baseline data, strategies, and technology to permit life research in the space environment. The reactions of the cardiovascular system to prolonged weightlessness are also being investigated. Particle deposition in the human lung, independent respiratory support system, food technology, and remotely controlled manipulators are mentioned briefly.

  17. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  18. Mineral-PET Kimberlite sorting by nuclear-medical technology

    CERN Document Server

    Ballestrero, S; Cafferty, L; Caveney, R; Connell, SH; Cook, M; Dalton, M; Gopal, H; Ives, N; Lee, C A; Mampe, W; Phoku, M; Roodt, A; Sibande, W; Sellschop, J P F; Topkin, J; Unwucholaa, D A

    2010-01-01

    A revolutionary new technology for diamond bearing rock sorting which has its roots in medical-nuclear physics has been taken through a substantial part of the R&D phase. This has led to the construction of the technology demonstrator. Experiments using the technology demonstrator and experiments at a hospital have established the scientific and technological viability of the project.

  19. Nuclear medicine in the 1990s: a quantitative physiological approach.

    Science.gov (United States)

    Ott, R J

    1989-05-01

    This paper describes the potential advantages to medical diagnosis and treatment that might be obtained from the wider application of positron emission tomography as a clinical tool. Developments along the lines suggested here will require a radical change in thinking from both clinicians and the medically related scientific community in the UK and some enlightened and resourceful funding from a mixture of charitable, industrial and government sources. If these ideas are to be pursued successfully, then the work must start now on a much wider scale than is presently perceived in the UK, and close collaboration between physicists, engineers, chemists, biochemists, clinicians and industrialists is needed. Furthermore, it is imperative that the scientific developments now underway in silicon technology, parallel data processors, biochemical and pharmacological processes and even high-temperature superconductors be kept under close and constant review by those associated with the technological advancements of medicine, so that the value of such developments is rapidly transferred to applications to medicine. This must include closer relationships between academic medicine and science than is the general rule in the UK at present. In conclusion, the scenario presented here includes the installation of regional cyclotron facilities to provide a large number of institutions in the UK with positron-emitter labelled radiopharmaceuticals. Additionally, agents labelled with radionuclides from in-house generators and other already existing higher-energy cyclotrons will provide a versatile and valuable range of radiopharmaceuticals for the study of human disease. These developments must be supported by the manufacture of lower-cost positron camera systems, as suggested here, connected to high-data-rate parallel processors to provide images of body function and to determine the effects brought about by disease. These images may then be processed using algorithms based on kinetic

  20. Curriculum for education and training of Medical Physicists in Nuclear Medicine

    DEFF Research Database (Denmark)

    Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola;

    2013-01-01

    PURPOSE: To provide a guideline curriculum covering theoretical and practical aspects of education and training for Medical Physicists in Nuclear Medicine within Europe. MATERIAL AND METHODS: National training programmes of Medical Physics, Radiation Physics and Nuclear Medicine physics from...... experience required to practice as a Medical Physicist in Nuclear Medicine in Europe. It is assumed that the precondition for the beginning of the training is a good initial degree in Medical Physics at master level (or equivalent). The Learning Outcomes are categorised using the Knowledge, Skill...... Medicine. CONCLUSIONS: This new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula...

  1. Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers

    Science.gov (United States)

    Lapi, Suzanne

    2016-09-01

    The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.

  2. Therapeutic radionuclides in nuclear medicine: current and future prospects.

    Science.gov (United States)

    Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong

    2014-10-01

    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 ((131)I), phosphorous-32 ((32)P), strontium-90 ((90)Sr), and yttrium-90 ((90)Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies.

  3. Diffusion processes in tumors: A nuclear medicine approach

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, Helman, E-mail: haamayae@unal.edu.co [Grupo de Física Nuclear, Universidad Nacional de Colombia (Colombia)

    2016-07-07

    The number of counts used in nuclear medicine imaging techniques, only provides physical information about the desintegration of the nucleus present in the the radiotracer molecules that were uptaken in a particular anatomical region, but that information is not a real metabolic information. For this reason a mathematical method was used to find a correlation between number of counts and {sup 18}F-FDG mass concentration. This correlation allows a better interpretation of the results obtained in the study of diffusive processes in an agar phantom, and based on it, an image from the PETCETIX DICOM sample image set from OsiriX-viewer software was processed. PET-CT gradient magnitude and Laplacian images could show direct information on diffusive processes for radiopharmaceuticals that enter into the cells by simple diffusion. In the case of the radiopharmaceutical {sup 18}F-FDG is necessary to include pharmacokinetic models, to make a correct interpretation of the gradient magnitude and Laplacian of counts images.

  4. Applying activity-based costing to the nuclear medicine unit.

    Science.gov (United States)

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better.

  5. The role of nuclear medicine in acute gastrointestinal bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, P. (Saint James' s Hospital, Leeds (United Kingdom). Dept. of Radiology)

    1993-10-01

    In most patients with upper gastrointestinal (GI) bleeding, endoscopy will locate the site and cause of bleeding, and also provide an opportunity for local therapy. The cause of lower GI bleeding is often difficult to attribute, even when pathology is found by colonoscopy or barium enema. Nuclear medicine techniques can be used to identify the site of bleeding in those patients in whom the initial diagnostic procedures are negative or inconclusive. Methods using transient labelling of blood (e.g. [sup 99]Tc[sup m]-sulphur colloid) produce a high target-to-background ratio in positive cases, give quick results and localize bleeding sites accurately, but depend upon bleeding being active at the time of injection. Techniques using stable blood labelling (e.g. [sup 99]Tc[sup m]-labelled red blood cells) may be positive even with intermittent bleeding but may take several hours to produce a result and are less precise in localization. The most useful application is in patients with recurrent or prolonged bleeding, those with inconclusive endoscopy or barium studies, and those who are high-risk surgical candidates. (author).

  6. Importance of Bladder Radioactivity for Radiation Safety in Nuclear Medicine

    Directory of Open Access Journals (Sweden)

    Salih Sinan Gültekin

    2013-12-01

    Full Text Available Objective: Most of the radiopharmaceuticals used in nuclear medicine are excreted via the urinary system. This study evaluated the importance of a reduction in bladder radioactivity for radiation safety. Methods: The study group of 135 patients underwent several organ scintigraphies [40/135; thyroid scintigraphy (TS, 30/135; whole body bone scintigraphy (WBS, 35/135; myocardial perfusion scintigraphy (MPS and 30/135; renal scintigraphy (RS] by a technologist within 1 month. In full and empty conditions, static bladder images and external dose rate measurements at 0.25, 0.50, 1, 1.5 and 2 m distances were obtained and decline ratios were calculated from these two data sets. Results: External radiation dose rates were highest in patients undergoing MPS. External dose rates at 0.25 m distance for TS, TKS, MPS and BS were measured to be 56, 106, 191 and 72 μSv h-1 for full bladder and 29, 55, 103 and 37 μSv h-1 for empty bladder, respectively. For TS, WBS, MPS and RS, respectively, average decline ratios were calculated to be 52%, 55%, 53% and 54% in the scintigraphic assessment and 49%, 51%, 49%, 50% and 50% in the assessment with Geiger counter. Conclusion: Decline in bladder radioactivity is important in terms of radiation safety. Patients should be encouraged for micturition after each scintigraphic test. Spending time together with radioactive patients at distances less than 1 m should be kept to a minimum where possible.

  7. On the safety of persons accompanying nuclear medicine patients.

    Science.gov (United States)

    Díaz Barreto, Marlenin; López Bejerano, Gladys M; Varela Corona, Consuelo; Fleitas Estévez, Ileana

    2012-12-01

    The presence of caretakers/comforters during nuclear medicine examinations is relatively common. These caretakers receive higher doses than the general public, who receive only environmental/background exposure. The aim of this research was to know about the doses received by two significant groups of caretakers: comforters of cancer patients (Group I) and mothers of small children (Group II). The patients were scheduled to undergo two different diagnostic studies: Inmuno-Scintigraphy using a monoclonal antibody bound to (99m)Tc (for adults) and Renal Scintigraphy using (99m)Tc-dimercaptosuccinic acid (for children). The average effective doses were 0.27 and 0.29 mSv for Groups I and II, respectively. Additionally, environmental monitoring was performed in the waiting room for injected patients (Room I) and inside the procedure room (Room II). Equivalent environmental doses of 0.28 and 0.24 mSv for Rooms 1 and II, respectively, were found, which are similar to values reported by other authors.

  8. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Johansson, Lennart; Fernlund, Per; Nosslin, Bertil

    2007-04-15

    The Swedish radiation protection authority, (SSI), has supported work on estimates of radiation doses to patients from nuclear medicine examinations since more than 20 years. A number of projects have been reported. The results are put together and published under the name 'Doskatalogen' which contains data on doses to different organs and tissues from radiopharmaceuticals used for diagnostics and research. This new report contains data on: {sup 11}C-labelled substances (realistic maximum model), amino acids labelled with {sup 11}C, {sup 18}F or {sup 75}Se, {sup 99m}Tc-apcitide, {sup 123}I-labelled fatty acids ({sup 123}I- BMIPP and {sup 123}I-IPPA) and revised models for previously reported {sup 15}O-labelled water, {sup 99m}Tc-tetrofosmin (rest as well as exercise) and {sup 201}Tl-ion Data for almost 200 substances and radionuclides are included in the 'Doskatalogen' today. Since the year 2001 the 'Doskatalogen' is available on the authority's home page (www.ssi.se)

  9. Nuclear medicine in problems of fertility and impotence.

    Science.gov (United States)

    Zuckier, L S; Strober, M D

    1992-04-01

    Nuclear medicine techniques may be used to test fallopian tube patency and penile vascular inflow and outflow. Radionuclide hysterosalpingography (HSP) is a readily performed method of evaluating fallopian tube patency, and is believed to be more physiologic and functionally informative than the accepted radiologic method of contrast HSP. The test is simple to perform and interpret and offers an accurate alternative to the contrast examination. For scintigraphic evaluation of impotence, blood pool studies are most useful in assessing the integrity of arterial inflow, but may also be used to generate indices of venous leak. Washout of xenon after subcutaneous injection, in the flaccid state, has been used as a measure of baseline penile perfusion, as has intracavernosal injections in the flaccid penis. Intracavernosal xenon washout during erection seems the most useful method of testing venous integrity. Washout using technetium-99m (99mTc)-labeled red blood cells (99mTc-RBC) may emerge as a convenient alternative to the more technically difficult xenon examinations.

  10. Examining Quality Management Audits in Nuclear Medicine Practice as a lifelong learning process: opportunities and challenges to the nuclear medicine professional and beyond.

    Science.gov (United States)

    Pascual, Thomas N B

    2016-08-01

    This essay will explore the critical issues and challenges surrounding lifelong learning for professionals, initially exploring within the profession and organizational context of nuclear medicine practice. It will critically examine how the peer-review process called Quality Management Audits in Nuclear Medicine Practice (QUANUM) of the International Atomic Energy Agency (IAEA) can be considered a lifelong learning opportunity to instill a culture of quality to improve patient care and elevate the status of the nuclear medicine profession and practice within the demands of social changes, policy, and globalization. This will be explored initially by providing contextual background to the identity of the IAEA as an organization responsible for nuclear medicine professionals, followed by the benefits that QUANUM can offer. Further key debates surrounding lifelong learning, such as compulsification of lifelong learning and impact on professional change, will then be weaved through the discussion using theoretical grounding through a qualitative review of the literature. Keeping in mind that there is very limited literature focusing on the implications of QUANUM as a lifelong learning process for nuclear medicine professionals, this essay uses select narratives and observations of QUANUM as a lifelong learning process from an auditor's perspective and will further provide a comparative perspective of QUANUM on the basis of other lifelong learning opportunities such as continuing professional development activities and observe parallelisms on its benefits and challenges that it will offer to other professionals in other medical speciality fields and in the teaching profession.

  11. On Heidegger, medicine, and the modernity of modern medical technology.

    Science.gov (United States)

    Brassington, Iain

    2007-06-01

    This paper examines medicine's use of technology in a manner from a standpoint inspired by Heidegger's thinking on technology. In the first part of the paper, I shall suggest an interpretation of Heidegger's thinking on the topic, and attempt to show why he associates modern technology with danger. However, I shall also claim that there is little evidence that medicine's appropriation of modern technology is dangerous in Heidegger's sense, although there is no prima facie reason why it mightn't be. The explanation for this, I claim, is ethical. There is an initial attraction to the thought that Heidegger's thought echoes Kantian moral thinking, but I shall dismiss this. Instead, I shall suggest that the considerations that make modern technology dangerous for Heidegger are simply not in the character - the ethos - of medicine properly understood. This is because there is a distinction to be drawn between chronological and historical modernity, and that even up-to-date medicine, empowered by technology, retains in its ethos crucial aspects of a historically pre-modern understanding of technology. A large part of the latter half of the paper will be concerned with explaining the difference.

  12. [Costicartilage analysis inspection technology in the application of forensic medicine].

    Science.gov (United States)

    Meng, Hang; Xiao, Bi; Yan, Jian-Jun; Ma, Kai-Jun

    2011-10-01

    The traditional costicartilage analysis inspection is limited to morphological inspection. In recent years, with the development of forensic radiology and molecular genetics, the costicartilage analysis inspection technology has been further enriched and developed. At present, the costicartilage analysis inspection technology have been able to be used in the practice of forensic medicine. This paper reviews the research advances about the costicartilage analysis inspection technology in the identification of human gender, age and so on in order to provide the references for forensic appraisers.

  13. Nuclear Science Technology and Nano Science Technology%核技术与纳米技术

    Institute of Scientific and Technical Information of China (English)

    柴之芳

    2007-01-01

    Nuclear science and technology can play a unique role in nano-science and technology, due to its nuclear characteristics and properties. In many cases nuclear science and technology can acquire intriguing results to help solve some basic scientific problems in nano science and technology, which are often difficult or even impossible for non-nuclear routes. In this review some latest achievements made in this aspect will be selectively introduced with the emphasis on the work done in our laboratory. The work includes (1) nuclear reactions for synthesis of novel nanomaterials; (2) nuclear spectroscopy for characterization of nanomaterials; and (3) nuclear analytical techniques for study of nanosafety and nanotoxicology. Some practical examples to demonstrate the roles of nuclear science and technology will be briefly described.

  14. The role of ultrasound and nuclear medicine methods in the preoperative diagnostics of primary hyperparathyroidism

    Science.gov (United States)

    Cacko, Marek; Królicki, Leszek

    2015-01-01

    Primary hyperparathyroidism (PH) represents one of the most common endocrine diseases. In most cases, the disorder is caused by parathyroid adenomas. Bilateral neck exploration has been a widely used treatment method for adenomas since the 20's of the twentieth century. In the last decade, however, it has been increasingly replaced by a minimally invasive surgical treatment. Smaller extent, shorter duration and lower complication rate of such a procedure are emphasized. Its efficacy depends on a precise location of parathyroid tissue during the preoperative imaging. Scintigraphy and ultrasound play a major role in the diagnostic algorithms. The efficacy of both methods has been repeatedly verified and compared. The still-current guidelines of the European Association of Nuclear Medicine (2009) emphasize the complementary role of scintigraphy and ultrasonography in the preoperative diagnostics in patients with primary hyperparathyroidism. At the same time, attempts are made to improve both these techniques by implementing new study protocols or innovative technologies. Publications have emerged in the recent years in the field of ultrasonography, whose authors pointed out the usefulness of elastography and contrast media. Nuclear medicine studies, on the other hand, focus mainly on the assessment of new radiotracers used in the positron emission tomography (PET). The aim of this article is to present, based on literature data, the possibilities of ultrasound and scintigraphy in the preoperative diagnostics in patients with primary hyperparathyroidism. Furthermore, the main directions in the development of imaging techniques in PH patients were evaluated. PMID:26807297

  15. [Personalized medicine and individual healthcare : Medical and information technology aspects].

    Science.gov (United States)

    Niederlag, W; Lemke, H U; Rienhoff, O

    2010-08-01

    The individualization of medicine and healthcare appears to be following a general societal trend. The terms "personalized medicine" and "personal health" are used to describe this process. Here it must be emphasized that personalized medicine is not limited to pharmacogenomics, but that the spectrum of personalized medicine is much broader. Applications range from individualized diagnostics, patient-specific pharmacological therapy, therapy with individual prostheses and implants to therapy approaches using autologous cells, and from patient model-based therapy in the operating room, electronic patient records through to the individual care of patients in their home environment with the use of technical systems and services. Although in some areas practical solutions have already been found, most applications will not be fully developed for many years to come. Medical and information technology are essential to personalized medicine and personal health, each driving the other forward.

  16. Advancing pig cloning technologies towards application in regenerative medicine.

    Science.gov (United States)

    Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M

    2012-08-01

    Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine.

  17. Up-to-date review of nuclear medicine applications in pediatric thoracic imaging.

    Science.gov (United States)

    Kwatra, Neha S; Grant, Frederick D; Lim, Ruth; Lee, Edward Y

    2017-10-01

    Nuclear medicine has an important role in the evaluation of various congenital and acquired pediatric chest diseases. Although the radiopharmaceuticals and nuclear medicine examinations used in children are broadly the same as in adults, there are some key differences in clinical indications and underlying disorders. This article provides the reader with an up-to-date review of practice of nuclear medicine as it relates to the pediatric chest, including its current role and future applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Atomic Information Technology Safety and Economy of Nuclear Power Plants

    CERN Document Server

    Woo, Taeho

    2012-01-01

    Atomic Information Technology revaluates current conceptions of the information technology aspects of the nuclear industry. Economic and safety research in the nuclear energy sector are explored, considering statistical methods which incorporate Monte-Carlo simulations for practical applications. Divided into three sections, Atomic Information Technology covers: • Atomic economics and management, • Atomic safety and reliability, and • Atomic safeguarding and security. Either as a standalone volume or as a companion to conventional nuclear safety and reliability books, Atomic Information Technology acts as a concise and thorough reference on statistical assessment technology in the nuclear industry. Students and industry professionals alike will find this a key tool in expanding and updating their understanding of this industry and the applications of information technology within it.

  19. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  20. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    Science.gov (United States)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  1. Priority setting for new technologies in medicine: A transdisciplinary study

    Science.gov (United States)

    Gibson, Jennifer L; Martin, Douglas K; Singer, Peter A

    2002-01-01

    Background Decision makers in health care organizations struggle with how to set priorities for new technologies in medicine. Traditional approaches to priority setting for new technologies in medicine are insufficient and there is no widely accepted model that can guide decision makers. Discussion Daniels and Sabin have developed an ethically based account about how priority setting decisions should be made. We have developed an empirically based account of how priority setting decisions are made. In this paper, we integrate these two accounts into a transdisciplinary model of priority setting for new technologies in medicine that is both ethically and empirically based. Summary We have developed a transdisciplinary model of priority setting that provides guidance to decision makers that they can operationalize to help address priority setting problems in their institution. PMID:12126482

  2. Priority setting for new technologies in medicine: A transdisciplinary study

    Directory of Open Access Journals (Sweden)

    Gibson Jennifer L

    2002-07-01

    Full Text Available Abstract Background Decision makers in health care organizations struggle with how to set priorities for new technologies in medicine. Traditional approaches to priority setting for new technologies in medicine are insufficient and there is no widely accepted model that can guide decision makers. Discussion Daniels and Sabin have developed an ethically based account about how priority setting decisions should be made. We have developed an empirically based account of how priority setting decisions are made. In this paper, we integrate these two accounts into a transdisciplinary model of priority setting for new technologies in medicine that is both ethically and empirically based. Summary We have developed a transdisciplinary model of priority setting that provides guidance to decision makers that they can operationalize to help address priority setting problems in their institution.

  3. BIG DATA TECHNOLOGY ACCELERATE GENOMICS PRECISION MEDICINE

    Directory of Open Access Journals (Sweden)

    HAO LI

    2017-01-01

    Full Text Available During genomics life science research, the data volume of whole genomics and life science algorithm is going bigger and bigger, which is calculated as TB, PB or EB etc. The key problem will be how to store and analyze the data with optimized way. This paper demonstrates how Intel Big Data Technology and Architecture help to facilitate and accelerate the genomics life science research in data store and utilization. Intel defines high performance GenomicsDB for variant call data query and Lustre filesystem with Hierarchal Storage Management for genomics data store. Based on these great technology, Intel defines genomics knowledge share and exchange architecture, which is landed and validated in BGI China and Shanghai Children Hospital with very positive feedback. And these big data technology can definitely be scaled to much more genomics life science partners in the world

  4. Configuration and technology implications of potential nuclear hydrogen system applications.

    Energy Technology Data Exchange (ETDEWEB)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options

  5. Evaluations of Molecular Nuclear Medicine in pediatric urgencies; Evaluaciones de Medicina Nuclear Molecular en urgencias pediatricas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Duncker R, C. [Departamento de Medicina Nuclear Molecular, Hospital Infantil de Mexico, Mexico D.F. (Mexico)

    2000-07-01

    Several diagnostic procedures of Molecular Nuclear Medicine are considered in first choice in clinical evaluation of patients with different illnesses. So, the gammagraphy is the diagnostic form more sensitive to detect alterations of the perfusion on organs and systems such as bones, heart, brain, lungs or kidneys. Also is possible to identify, localize, evaluate the activity of inflammatory processes such as cellulitis, arthritis, osteomyelitis, the abscesses and several primary or metastatic tumours before each other diagnostic technique. In this work is treated about the importance of treatments with radioactive materials have been an important reappearance in last years since with the present capacity to localize specifically intracellular processes (for example, synthesis of DNA) new gateways are opened to research which in coming years would be of great utility. (Author)

  6. New technologies in medicine: biotechnology and nanotechnology.

    Science.gov (United States)

    Zajtchuk, R

    1999-11-01

    In February 1997, researchers created Dolly, a lamb cloned from the DNA of an adult sheep. This was supposed to be impossible (or at least generations away), but suddenly it was here--a clone of a higher mammal. Whatever Dolly's ultimate significance, she conclusively demonstrated the growing power of biotechnology. Many have come to the conclusion that advances in biotechnology will fundamentally transform medicine during the coming decade. Society is in the midst of a technical revolution that will have the same relevance as the development of the printing press, the internal combustion engine, and the microprocessor. Computers have become the key tools in the accelerating progress that is occurring in the field of biotechnology. At the same time, genetic, evolutionary, and other biologic processes are providing new models for the development of computer hardware and software. Today represents the early stages of what has been called the "bionic convergence": the convergence of the biologic revolution with the information revolution, the joining of biology with electronics. Virtually everything that is important to health care practitioners and patients--diagnostic techniques, means of understanding disease causes, methods of treatment, approaches to prevention, health care facility design, medical education, and legal and ethical issues--will be changed by the revolutions currently underway in the fields of biotechnology and genetic medicine. The following monograph includes several forecasts about a range of possible opportunities that may have enormous effects on health care during the next century. These forecasts address the potential impacts of biotechnology on disease detection and diagnosis, treatment, prevention, nanotechnology, and other areas of medical significance. Every area of beneficiary care will be affected as the changes implied by these forecasts begin to develop. Beneficiary care will continue to see the emergence of a "forecast, prevent, and

  7. Technological paternalism: on how medicine has reformed ethics and how technology can refine moral theory.

    Science.gov (United States)

    Hofmann, Bjørn

    2003-07-01

    The objective of this article is to investigate ethical aspects of technology through the moral term "paternalism". The field of investigation is medicine. The reason for this is twofold. Firstly, "paternalism" has gained moral relevance through modern medicine, where physicians have been accused of behaving paternalistic and threatening patients' autonomy. Secondly, medicine is a brilliant area to scrutinise the evaluative aspects of technology. It is argued that paternalism is a morally relevant term for the ethics of technology, but that its traditional conception is not adequate to address the challenges of modern technology. A modification towards a "technological paternalism" is necessary. That is, "technological paternalism" is a fruitful term in the ethics of technology. Moreover, it is suited to point out the deficiencies of the traditional concept of paternalism and to reform and vitalise the conception of paternalism in ethics in order to handle the challenges of technology.

  8. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  9. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    Energy Technology Data Exchange (ETDEWEB)

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  10. Radiation exposure in nuclear medicine: real-time measurement

    Directory of Open Access Journals (Sweden)

    Iara Sylvain

    2002-09-01

    Full Text Available French regulations have introduced the use of electronic dosimeters for personal monitoring of workers. In order to evaluate the exposure from diagnostic procedures to nuclear medicine staff, individual whole-body doses were measured daily with electronic (digital personal dosimeters during 20 consecutive weeks and correlated with the work load of each day. Personal doses remained always below 20 µSv/d under normal working conditions. Radiation exposure levels were highest to tech staff, nurses and stretcher-bearers. The extrapolated annual cumulative doses for all staff remained less than 10 % of the maximum legal limit for exposed workers (2 mSv/yr. Electronic dosimeters are not technically justified for routine survey of staff. The high sensitivity and immediate reading of electronic semiconductor dosimeters may become very useful for exposure control under risky working conditions. It may become an important help for optimising radiation protection.A legislação francesa introduziu o uso de dosímetros eletrônicos para monitoração da exposição do trabalhador. Afim de avaliar a exposição do trabalhador proveniente de exames diagnósticos em medicina nuclear, doses individuais do corpo inteiro foram medidas diariamente com dosímetros eletrônicos (digitais durante 20 semanas consecutivas e correlatas com as atividades de trabalho de cada dia. As doses foram sempre inferiores à 20 µSv por dia em condições normais de trabalho. Os níveis de exposição de radiação mais elevados foram para os enfermeiros, manipuladores e maqueiros. A extrapolação da dose anual para todos os trabalhadores foi menos que 10 % do limite máximo legal para os trabalhadores expostos (2 mSv/ano. Dosímetros eletrônicos não são tecnicamente justificados para a o controle de rotina da exposição dos trabalhadores, mas a alta sensibilidade e a leitura imediata desses dosímetros podem vir a serem muito úteis para o controle da exposição em condi

  11. Learning gestures and ethical issues in oncology and nuclear medicine

    Directory of Open Access Journals (Sweden)

    Aboubakr Matrane

    2014-01-01

    Full Text Available Purpose: The purpose of this study is to show the importance of learning gestures in three medical procedures (chemotherapy, brachytherapy, and bone scan. It allows us to assess complications, lack of benefit, and ethical questions to which resident physicians are confronted in their training. Materials and Methods: The study is based on a questionnaire divided into two parts distributed to 70 resident physicians and 90 patients: 60 physicians radiation oncologists and 10 nuclear physicians completed the first part of 24 items. It concerned the learning of medical practices. The second part of 18 items was completed by 90 patients (30 patients in the chemotherapy unit, 30 patients in the brachytherapy unit, and 30 patients in the nuclear medicine department; it was related to patients′ information prior to the completion (performance of the gesture. Results: The training of medical residents physicians took place mainly during the first year on conscious and well-informed patients, with the exception of brachytherapy taught later in the second year. It was preceded by a theoretical education in 56.7%, 43.3%, and 100%, respectively, in case of chemotherapy, brachytherapy, and bone scan unit, but the previous observation by a senior had failed in 16.7% in case of chemotherapy and in 36.7% in case of brachytherapy unit. Despite the almost constant presence of a senior, four incidents were associated with the first acts of chemotherapy and brachytherapy unit and one incident with the bone scan unit. These incidents had been generated, respectively, from 23.4%, 26.7%, and 20% of resident physicians surveyed (in chemotherapy, in brachytherapy, and in bone scan and had a consequence of a loss of opportunity for patient, in 20%, 13.3%, and 40%, respectively. Most patients were informed before the completion of the medical procedure, and cause ethical problems. Alternative ways of learning were known by most of the resident physicians in training

  12. A project in support of Nuclear Technology Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Jung; Choi, Pyong Hoon; Yi, Ji Ho (and others)

    2005-12-15

    Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing. - Promotion of domestic nuclear energy technology by utilizing nuclear energy informations and computer software developed in the advanced countries. - Establish strategies of international cooperation in an effort to promote our nation's Leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate.

  13. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  14. Comprehensive Auditing in Nuclear Medicine Through the International Atomic Energy Agency Quality Management Audits in Nuclear Medicine (QUANUM) Program. Part 1: the QUANUM Program and Methodology.

    Science.gov (United States)

    Dondi, Maurizio; Torres, Leonel; Marengo, Mario; Massardo, Teresa; Mishani, Eyal; Van Zyl Ellmann, Annare; Solanki, Kishor; Bischof Delaloye, Angelika; Lobato, Enrique Estrada; Miller, Rodolfo Nunez; Paez, Diana; Pascual, Thomas

    2017-11-01

    An effective management system that integrates quality management is essential for a modern nuclear medicine practice. The Nuclear Medicine and Diagnostic Imaging Section of the International Atomic Energy Agency (IAEA) has the mission of supporting nuclear medicine practice in low- and middle-income countries and of helping them introduce it in their health-care system, when not yet present. The experience gathered over several years has shown diversified levels of development and varying degrees of quality of practice, among others because of limited professional networking and limited or no opportunities for exchange of experiences. Those findings triggered the development of a program named Quality Management Audits in Nuclear Medicine (QUANUM), aimed at improving the standards of NM practice in low- and middle-income countries to internationally accepted standards through the introduction of a culture of quality management and systematic auditing programs. QUANUM takes into account the diversity of nuclear medicine services around the world and multidisciplinary contributions to the practice. Those contributions include clinical, technical, radiopharmaceutical, and medical physics procedures. Aspects of radiation safety and patient protection are also integral to the process. Such an approach ensures consistency in providing safe services of superior quality to patients. The level of conformance is assessed using standards based on publications of the IAEA and the International Commission on Radiological Protection, and guidelines from scientific societies such as Society of Nuclear Medicine and Molecular Imaging (SNMMI) and European Association of Nuclear Medicine (EANM). Following QUANUM guidelines and by means of a specific assessment tool developed by the IAEA, auditors, both internal and external, will be able to evaluate the level of conformance. Nonconformances will then be prioritized and recommendations will be provided during an exit briefing. The

  15. Radiation dose study in nuclear medicine using GATE

    Science.gov (United States)

    Aguwa, Kasarachi

    Dose as a result of radiation exposure is the notion generally used to disclose the imparted energy in a volume of tissue to a potential biological effect. The basic unit defined by the international system of units (SI system) is the radiation absorbed dose, which is expressed as the mean imparted energy in a mass element of the tissue known as "gray" (Gy) or J/kg. The procedure for ascertaining the absorbed dose is complicated since it involves the radiation transport of numerous types of charged particles and coupled photon interactions. The most precise method is to perform a full 3D Monte Carlo simulation of the radiation transport. There are various Monte Carlo toolkits that have tool compartments for dose calculations and measurements. The dose studies in this thesis were performed using the GEANT4 Application for Emission Tomography (GATE) software (Jan et al., 2011) GATE simulation toolkit has been used extensively in the medical imaging community, due to the fact that it uses the full capabilities of GEANT4. It also utilizes an easy to-learn GATE macro language, which is more accessible than learning the GEANT4/C++ programming language. This work combines GATE with digital phantoms generated using the NCAT (NURBS-based cardiac-torso phantom) toolkit (Segars et al., 2004) to allow efficient and effective estimation of 3D radiation dose maps. The GATE simulation tool has developed into a beneficial tool for Monte Carlo simulations involving both radiotherapy and imaging experiments. This work will present an overview of absorbed dose of common radionuclides used in nuclear medicine and serve as a guide to a user who is setting up a GATE simulation for a PET and SPECT study.

  16. Intercomparison and calibration of dose calibrators used in nuclear medicine facilities

    CERN Document Server

    Costa, A M D

    2003-01-01

    The aim of this work was to establish a working standard for intercomparison and calibration of dose calibrators used in most of nuclear medicine facilities for the determination of the activity of radionuclides administered to patients in specific examinations or therapeutic procedures. A commercial dose calibrator, a set of standard radioactive sources, and syringes, vials and ampoules with radionuclide solutions used in nuclear medicine were utilized in this work. The commercial dose calibrator was calibrated for radionuclide solutions used in nuclear medicine. Simple instrument tests, such as linearity response and variation response with the source volume at a constant source activity concentration were performed. This instrument may be used as a reference system for intercomparison and calibration of other activity meters, as a method of quality control of dose calibrators utilized in nuclear medicine facilities.

  17. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques

    NARCIS (Netherlands)

    Signore, Alberto; Glaudemans, Andor W. J. M.

    2011-01-01

    Inflammatory and infectious diseases are a heterogeneous class of diseases that may be divided into infections, acute inflammation and chronic inflammation. Radiological imaging techniques have, with the exception of functional MRI, high sensitivity but lack in specificity. Nuclear medicine techniqu

  18. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques

    NARCIS (Netherlands)

    Signore, Alberto; Glaudemans, Andor W. J. M.

    2011-01-01

    Inflammatory and infectious diseases are a heterogeneous class of diseases that may be divided into infections, acute inflammation and chronic inflammation. Radiological imaging techniques have, with the exception of functional MRI, high sensitivity but lack in specificity. Nuclear medicine

  19. NCRP report 160 and what it means for medical imaging and nuclear medicine.

    Science.gov (United States)

    Bolus, Norman E

    2013-12-01

    The purpose of this paper is to briefly explain report 160 of the National Council on Radiation Protection and Measurement and the significance of the report to medical imaging as a whole and nuclear medicine specifically. The implications of the findings of report 160 have had repercussions and will continue to affect all of ionizing radiation medical imaging. The nuclear medicine community should have an understanding of why and how report 160 is important. After reading this article, the nuclear medicine technologist will be familiar with the main focus of report 160, the significant change that has occurred since the 1980s in the ionizing radiation exposure of people in the United States, the primary background source of ionizing radiation in the United States, the primary medical exposure to ionizing radiation in the United States, trends in nuclear medicine procedures and patient exposure, and a comparison of population doses between 2006 and the early 1980s as outlined in report 160.

  20. Where wilderness, medicine, technology, and religion collide.

    Science.gov (United States)

    Weichenthal, Lori; Alhadi, Sameir

    2014-03-01

    We report a case of a man injured in Yosemite National Park (YNP) whose use of technology and refusal of medical care, based on his Christian Science religious beliefs, created multiple challenges to the providers working to rescue and care for him. This case illustrates how our increasingly diverse and complex world requires flexibility and openness to provide the optimal care, both in the wilderness and in the front country. © 2013 Wilderness Medical Society Published by Wilderness Medical Society All rights reserved.

  1. A study on the nuclear technology policy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Maeng Ho; Ham, C. H.; Kim, H. J.; Chung, W. S.; Lee, T. J.; Lee, B. O.; Yun, S. W.; Choi, Y. M.; Eom, T. Y

    1998-01-01

    This study analyzed the major issues as the research activities for the support of establishment and implementation of national policy. The analyses were focused on the recommendations of the responsive direction of national policy in positive and effective manners in accordance with the changes of international nuclear affairs. This study also analyzed the creation of environmental foundation for effective implementation of the national policy and national R and D investment such as securing national consensus and openings of policy information to the public. The major results of the role and position of nuclear policy, trends of nuclear policy and nuclear R and D activities of USA, France, Japan, Asian developing countries etc. and international trends of small- and medium-sized reactor as well as spin-offs of nuclear R and D activities, were analyzed. (author). 66 refs., 27 tabs., 15 figs

  2. Advances in computer technology: impact on the practice of medicine.

    Science.gov (United States)

    Groth-Vasselli, B; Singh, K; Farnsworth, P N

    1995-01-01

    Advances in computer technology provide a wide range of applications which are revolutionizing the practice of medicine. The development of new software for the office creates a web of communication among physicians, staff members, health care facilities and associated agencies. This provides the physician with the prospect of a paperless office. At the other end of the spectrum, the development of 3D work stations and software based on computational chemistry permits visualization of protein molecules involved in disease. Computer assisted molecular modeling has been used to construct working 3D models of lens alpha-crystallin. The 3D structure of alpha-crystallin is basic to our understanding of the molecular mechanisms involved in lens fiber cell maturation, stabilization of the inner nuclear region, the maintenance of lens transparency and cataractogenesis. The major component of the high molecular weight aggregates that occur during cataractogenesis is alpha-crystallin subunits. Subunits of alpha-crystallin occur in other tissues of the body. In the central nervous system accumulation of these subunits in the form of dense inclusion bodies occurs in pathological conditions such as Alzheimer's disease, Huntington's disease, multiple sclerosis and toxoplasmosis (Iwaki, Wisniewski et al., 1992), as well as neoplasms of astrocyte origin (Iwaki, Iwaki, et al., 1991). Also cardiac ischemia is associated with an increased alpha B synthesis (Chiesi, Longoni et al., 1990). On a more global level, the molecular structure of alpha-crystallin may provide information pertaining to the function of small heat shock proteins, hsp, in maintaining cell stability under the stress of disease.

  3. The role of nuclear medicine in the diagnosis of cancer of unknown origin

    DEFF Research Database (Denmark)

    Demir, H; Berk, F; Raderer, M;

    2004-01-01

    is directed at the identification of treatable subset. Accurate diagnostic workup is crucial because both prognosis and survival rates depend mainly on detection of the primary tumor site. Although these patients undergo extensive imaging procedures, nuclear medicine techniques are under-utilized despite...... their ability of providing molecular information. Positron emission tomography has an emerging role in this clinical challenge along with other nuclear medicine methods including, bone scan, thyroid scintigraphy....

  4. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L. [Valladolid Univ., Dept. de Quimica Analitica, Facultad de Ciencias (Spain); Garcia-Talavera, P.; Singi, G.M.; Martin, E. [Hospital Clinico Univ., Servicio de Medicina Nuclear, Salamanca (Spain)

    2006-07-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of {sup 131}I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  5. Nuclear medicine methods in the assessment of acupuncture effects: a short review

    OpenAIRE

    Deise Elisabete Souza; Bernardo Machado Rebello; Reginaldo de Carvalho Silva Filho; Raquel Terra Agostinho; Bastos,Sohaku R. C.; Mario Bernardo-Filho

    2007-01-01

    The mechanisms of acupuncture are poorly understood. In consequence, numerous investigators have conducted clinical trials to test the efficacy of acupuncture in various conditions. We have used PubMed database system to evaluate the number of publications in acupuncture and nuclear medicine procedures in the period from 1964 to 2007, using the keywords: "nuclear medicine and acupuncture", "SPECT and acupuncture", "PET and acupuncture", "scintigraphy and acupuncture", "radionuclide and acupun...

  6. Manufacturing road map for tissue engineering and regenerative medicine technologies.

    Science.gov (United States)

    Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James; Atala, Anthony

    2015-02-01

    The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM.

  7. Measuring Public Acceptance of Nuclear Technology with Big data

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Seugkook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Surveys can be conducted only on people in specific region and time interval, and it may be misleading to generalize the results to represent the attitude of the public. For example, opinions of a person living in metropolitan area, far from the dangers of nuclear reactors and enjoying cheap electricity produced by the reactors, and a person living in proximity of nuclear power plants, subject to tremendous damage should nuclear meltdown occur, certainly differs for the topic of nuclear generation. To conclude, big data is a useful tool to measure the public acceptance of nuclear technology efficiently (i.e., saves cost, time, and effort of measurement and analysis) and this research was able to provide a case for using big data to analyze public acceptance of nuclear technology. Finally, the analysis identified opinion leaders, which allows target-marketing when policy is executed.

  8. Investigation of gaseous nuclear rocket technology

    Science.gov (United States)

    Kendall, J. S.

    1972-01-01

    The experimental and theoretical investigations conducted during the period from September 1969 through September 1972 are reported which were directed toward obtaining information necessary to determine the feasibility of the full-scale nuclear light bulb engine, and of small-scale nuclear tests involving fissioning uranium plasmas in a unit cell installed in a driver reactor, such as the Nuclear Furnace. Emphasis was placed on development of RF simulations of conditions expected in nuclear tests in the Nuclear Furnace. The work included investigations of the following: (1) the fluid mechanics and containment characteristics of one-component and two-component vortex flows, both unheated and RF-induction heated; (2) heating of particle-seeded streams by thermal radiation from a dc arc to simulate propellant heating; (3) condensation and separation phenomena for metal-vapor/heated-gas mixtures to provide information for conceptual designs of components of fuel exhaust and recycle systems; (4) the characteristics of the radiant energy spectrum emitted from the fuel region, with emphasis on definition of fuel and buffer-gas region seed systems to reduce the ultraviolet radiation emitted from the nuclear fuel; and (5) the effects of nuclear radiation on the optical transmission characteristics of transparent materials.

  9. Personalized medicine: risk prediction, targeted therapies and mobile health technology.

    Science.gov (United States)

    Hayes, Daniel F; Markus, Hugh S; Leslie, R David; Topol, Eric J

    2014-02-28

    Personalized medicine is increasingly being employed across many areas of clinical practice, as genes associated with specific diseases are discovered and targeted therapies are developed. Mobile apps are also beginning to be used in medicine with the aim of providing a personalized approach to disease management. In some areas of medicine, patient-tailored risk prediction and treatment are applied routinely in the clinic, whereas in other fields, more work is required to translate scientific advances into individualized treatment. In this forum article, we asked specialists in oncology, neurology, endocrinology and mobile health technology to discuss where we are in terms of personalized medicine, and address their visions for the future and the challenges that remain in their respective fields.

  10. Sketching together the modern histories of science, technology, and medicine.

    Science.gov (United States)

    Pickstone, John V

    2011-03-01

    This essay explores ways to "write together" the awkwardly jointed histories of "science" and "me dicine"--but it also includes other "arts" (in the old sense) and technologies. It draws especially on the historiography of medicine, but I try to use terms that are applicable across all of science, technology, and medicine (STM). I stress the variety of knowledges and practices in play at any time and the ways in which the ensembles change. I focus on the various relations of "science" and "medicine," as they were understood for a succession of periods--from mainly agricultural societies, through industrial societies, to our biomedical present--trying to sketch a history that encompasses daily practices and understandings as well as major conceptual and technical innovations. The model is meant to facilitate inquiry across topics and across times, including those to come.

  11. Designer Babies? Teacher Views on Gene Technology and Human Medicine.

    Science.gov (United States)

    Schibeci, Renato

    1999-01-01

    Summarizes the views of a sample of primary and high school teachers on the application of gene technology to human medicine. In general, high school teachers are more positive about these developments than primary teachers, and both groups of teachers are more positive than interested lay publics. Highlights ways in which this topic can be…

  12. Project to demonstrate key technologies for native medicines

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Aresearch project on the demonstration of key technologies for developing medicines and pharmacy of Chinese minorities will soon be started at the CAS Northwest Institute of Plateau Biology (NWIPB). From 3 to 5 November, 2008, a forum to appraise its implementation approaches was held in Xining, capital of northwest China's Qinghai Province.

  13. Detectors in Medicine and Biology: Applications of Detectors in Technology, Medicine and Other Fields

    CERN Document Server

    Lecoq, P

    2011-01-01

    Detectors in Medicine and Biology in 'Applications of Detectors in Technology, Medicine and Other Fields', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B2: Detectors for Particles and Radiation. Part 2: Systems and Applications'. This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.1 Detectors in Medicine and Biology' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content: 7.1 Detectors in Medicine and Biology 7.1.1 Dosimetry and medical imaging 7.1.1.1 Radiotherapy and dosimetry 7.1.1.2 Status of medical imaging 7.1.1.3 Towards in-vivo molecular imaging 7.1.2 X-Ray radiography and computed tomography (CT) 7.1.2.1 Different X-Ray imaging modalities 7.1.2.2 Detec...

  14. The use of communication technology in medicine

    Science.gov (United States)

    Reis, Howard P.

    1991-01-01

    NYNEX Science and Technology is engineering a multi-layered approach to multimedia communications by combining high-resolution images, video, voice, and text into a new fiber-optic service. The service, Media Broadband Service (MBS), is a network-based visual communications capability. It permits real time sharing of images in support of collaborative work among geographically dispersed locations. The health care industry was identified as a primary target market due to their need for high resolution images, the need to transport these images over great distances, and the need to achieve the transport in a short amount of time. The NYNEX Corporation, the current state of the MBS project, including the market needs driving the development of MBS, the overall design of the service, its current implementation and development status, and the progress of MBS projects underway for various customers participating in the initial service offering are described.

  15. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    Energy Technology Data Exchange (ETDEWEB)

    David Shropshire

    2009-09-01

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.

  16. Nuclear technologies in a sustainable energy system

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.; Mc Donald, A.

    1983-01-01

    This book presents papers on nuclear and thermonuclear reactors. Topics considered include energy strategies and nuclear power, self-sustaining systems of reactors, sustainable minireactors, small reactors, fast breeders and fusion-fission hybrids, the tokamak as a candidate for a D-T fusion reactor, the fusion breeder, hydrogen production through fusion, hydrogen production by means of electrolysis, the dense plasma focus, and radioactive waste management.

  17. A study on future nuclear reactor technology and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels.

  18. The social shaping of nuclear energy technology in South Africa

    OpenAIRE

    2016-01-01

    This paper analyses the question why the South African government intends to procure nuclear energy technology, despite affordable and accessible fossil and renewable energy alternatives. We analyse the social shaping of nuclear energy technology based on the statements of political actors in the public media. We combine a discourse network analysis with qualitative analysis to establish the coalitions in support and opposition of the programme. The central arguments in the debate are cost, s...

  19. Current Status of Nuclear Medicine Practice in the Middle East.

    Science.gov (United States)

    Paez, Diana; Becic, Tarik; Bhonsle, Uday; Jalilian, Amir R; Nuñez-Miller, Rodolfo; Osso, Joao Alberto

    2016-07-01

    The practice of nuclear medicine (NM) in the Middle East region has experienced an important growth in the last 2 decades and has become crucial in providing healthcare to the region's population of about 395 million people. Even though there are some countries in which the services provided are limited to basic coverage of studies with (99m)Tc and (131)I, most have well-established practices covering most of the available studies in this medical specialty; this is the case in for example, Iran, Israel, Kuwait, Saudi Arabia, and Turkey. According to data provided by the NM professionals in the 17 countries included in the present publication, which was collected by the International Atomic Energy Agency in 2015, the total number of gamma cameras in the region is 910 with an average of 2.3 gamma cameras per million inhabitants. Out of these, 107 cameras, or 12%, are SPECT/CT cameras. There are 194 operating PET/CT scanners, translating to one PET/CT scanner for 2.04 million people on average. The availability of PET/CT scanners in relation to population is the highest in Lebanon and Kuwait, with 2.2 and 1.7 scanners per million people, respectively. There is a total of 628 NM centers in the 17 countries, whereas most NM centers belong to the public healthcare system and in most of the countries are widely spread and not confined exclusively to capital cities. As for the radionuclide therapies, (131)I is used regularly in diagnostic workup as well as in therapeutic applications in all the countries included in this analysis. Only five countries have the capability of assembling (99)Mo-(99m)Tc generators (Egypt, Iran, Saudi Arabia, Israel, and Turkey), and cold kits are produced in several countries. Although there are no capabilities in the region to produce (99)Mo from nuclear reactors, a total of 46 cyclotrons are operated for production of PET radionuclides. The most widely used PET tracer in the region is (18)F-FDG followed by (18)F-NaF; concomitantly, the

  20. Malpractice liability, technology choice and negative defensive medicine.

    Science.gov (United States)

    Feess, Eberhard

    2012-04-01

    We extend the theoretical literature on the impact of malpractice liability by allowing for two treatment technologies, a safe and a risky one. The safe technology bears no failure risk, but leads to patient-specific disutility since it cannot completely solve the health problems. By contrast, the risky technology (for instance a surgery) may entirely cure patients, but fail with some probability depending on the hospital's care level. Tight malpractice liability increases care levels if the risky technology is chosen at all, but also leads to excessively high incentives for avoiding the liability exposure by adopting the safe technology. We refer to this distortion toward the safe technology as negative defensive medicine. Taking the problem of negative defensive medicine seriously, the second best optimal liability needs to balance between the over-incentive for the safe technology in case of tough liability and the incentive to adopt little care for the risky technology in case of weak liability. In a model with errors in court, we find that gross negligence where hospitals are held liable only for very low care levels outperforms standard negligence, even though standard negligence would implement the first best efficient care level.

  1. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Frederick D.; Drubach, Laura A.; Treves, S. Ted; Fahey, Frederic H. [Boston Children' s Hospital, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston, MA (United States); Harvard Medical School, Joint Program in Nuclear Medicine, Department of Radiology, Boston, MA (United States); Gelfand, Michael J. [Cincinnati Children' s Hospital Medical Center, Section of Nuclear Medicine, Department of Radiology, Cincinnati, OH (United States)

    2015-05-01

    Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients

  2. CERN technology in the service of medicine

    CERN Document Server

    2001-01-01

    The prototype of the first module of the LInac BOster (LIBO) has been constructed and tested at CERN. This new medical accelerator offers new perspectives in deep-seated tumour treatment.   Accelerator technology developed at CERN is set to bring about important advances in cancer therapy. The linac booster - LIBO - project aims to build a 3GHz proton linear accelerator to boost to 200 MeV the energy of the beam from 50-70 MeV cyclotrons, existing in several hospitals and laboratories. This will allow deep-seated tumours to be treated (see box). The prototype of the first LIBO module has just passed high power RF tests at CERN. Two members of the LIBO collaboration, Riccardo Zennaro and Paolo Berra, with the first LIBO module installed in the LIL tunnel. The LIBO idea goes back to 1993 when it was conceived by CERN's Ugo Amaldi, founder of Italy's TERA foundation. From the beginning, Mario Weiss, a former CERN staff member has led the project. A decisive step was taken in 1998 when a collaboration...

  3. Applications of aerospace technology in biology and medicine

    Science.gov (United States)

    Brown, J. N.

    1974-01-01

    The results of the medically related activities of the NASA Application Team Program at the Research Triangle Institute are presented. The RTI team, a multidisciplinary team of scientists and engineers, acted as an information and technology interface between NASA and individuals, institutions, and agencies involved in biomedical research and clinical medicine. The Team has identified 40 new problems for investigation, has accomplished 7 technology applications, 6 potential technology application, 4 impacts, has closed 54 old problems, and has a total of 47 problems under active investigation.

  4. Application of virtual reality technology in clinical medicine

    Science.gov (United States)

    Li, Lan; Yu, Fei; Shi, Dongquan; Shi, Jianping; Tian, Zongjun; Yang, Jiquan; Wang, Xingsong; Jiang, Qing

    2017-01-01

    The present review discusses the application of virtual reality (VR) technology in clinical medicine, especially in surgical training, pain management and therapeutic treatment of mental illness. We introduce the common types of VR simulators and their operational principles in aforementioned fields. The clinical effects are also discussed. In almost every study that dealt with VR simulators, researchers have arrived at the same conclusion that both doctors and patients could benefit from this novel technology. Moreover, advantages and disadvantages of the utilization of VR technology in each field were discussed, and the future research directions were proposed. PMID:28979666

  5. Telemedicine technologies information technologies in medicine and telehealth

    CERN Document Server

    Fong, Bernard; Li, CK

    2010-01-01

    This book brings together a broad range of topics demonstrating how information and wireless technologies can be used in healthcare. In this book, the authors focus on how medical information can be reliably transmitted through wireless communication networks. It explains how they can be optimized to carry medical information in various situations by utilizing readily available traditional wireless local area network (WLAN) and broadband wireless access (BWA) systems. In addition, the authors discuss consumer healthcare technology, which is becoming more popular as reduction in manufacturing c

  6. Radiological Justification for and Optimization of Nuclear Medicine Practices in Korea.

    Science.gov (United States)

    Kim, Byung Il

    2016-02-01

    Nuclear medicine is a rapidly growing discipline that employs advanced novel hybrid techniques that provide unique anatomical and functional information, as well as targets for molecular therapy. Concomitantly, there has been an increase in the attention paid to medical radiation exposure. A radiological justification for the practice of nuclear medicine has been implemented mainly through referral guidelines based on research results such as prospective randomized clinical trials. The International Commission on Radiological Protection recommends diagnostic reference levels as a practical mechanism to optimize medical radiation exposure in order to be commensurate with the medical purpose. The Korean Society of Nuclear Medicine has been implementing radiological optimization through a survey of the protocols on how each hospital determines the dose of administration of each radiopharmaceutical. In the case of nuclear medicine, radiation exposure of caregivers and comforters of patients discharged after administration of therapeutic radiopharmaceuticals can occur; therefore, optimization has been implemented through written instructions for patients, based on international recommendations. The development of patient-radiation-dose monitoring software, and a national registry and management system of patient-radiation-dose is needed to implement radiological optimization through diagnostic reference levels. This management system must work in agreement with the "Institute for Quality Management of Nuclear Medicine", and must take into account the medical reality of Korea, such as low medicine fee, in order to implement reasonable radiological justification and optimization.

  7. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  8. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    Science.gov (United States)

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed.

  9. 20. Brazilian congress on biology and nuclear medicine. Abstracts; 20. Congresso brasileiro de biologia e medicina nuclear. Resumos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Several aspects concerning the use of nuclear medicine in cardiology, oncology, neurology, endocrinology among other areas are studied. Various topics related to diagnosis and treatment of diseases are presented, e.g. radiotracers use, radiopharmaceuticals (mainly associated with technetium 99), development and standardization of radionuclides, structural chemical analysis, metabolism, biological functions. The scintiscanning is the most reported diagnostic technique.

  10. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

    Science.gov (United States)

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A.

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  11. Nuclear medicine comes of age: its present and future roles in diagnosis.

    Science.gov (United States)

    McAfee, J G; Kopecky, R T; Frymoyer, P A

    1990-03-01

    The current role of nuclear medicine in clinical diagnosis was surveyed in a retrospective review of medical records by two internists. About one radiologic imaging study in 20 was a radionuclide procedure, and a somewhat larger fraction was performed in outpatients. The internists found that diagnostic screening procedures in nuclear medicine influenced patient management in 63% of hospital inpatients, and quantitative/monitoring types of tests influenced management in 56%. Of the projected health care costs in the United States of $490 billion, all imaging procedures will account for only $12 billion, and nuclear medicine procedures will account for about $1 billion. Nuclear medicine research continues to blossom. The National Institutes of Health budget for diagnostic imaging research in fiscal year 1988 totaled $86.6 million; nuclear medicine projects represented 43% of this total, all other projects in radiology represented 30%, and projects outside radiology represented 30%. Research with positron emitters and positron emission tomography totaled $20.5 million, and research with radiolabeled monoclonal antibodies totaled $6.2 million. Two major problems may hinder the future practice of nuclear medicine in the United States compared with that in other developed countries: (a) the serious time lag in the approval process for new radiopharmaceuticals by the U.S. Food and Drug Administration and other agencies and (b) the lack of a facility dedicated to the continuous production of radionuclides for biomedical research. Now, there is sporadic production permitted only during high-energy physics experiments. The recent developments which will probably induce the greatest changes in clinical nuclear medicine in the near future are the improvements in design and utilization of single photon emission computed tomographic devices and prolific generation of new radiopharmaceuticals, especially technetium-99m agents for cerebral and myocardial imaging and tumor agents.

  12. Basic research for nuclear energy. y Study on the nuclear materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, I. H.; Lee, H. S.; Jeong, Y. H.; Sung, K. W.; Han, J. H.; Lee, J. T.; Lee, H. K.; Kim, S. J.; Kang, H. S.; An, D. H.; Kim, K. R.; Park, S. D.; Han, C. H.; Jung, M. K.; Oh, Y. J.; Kim, K. H.; Kim, S. H.; Back, J. H.; Kim, C. H.; Lim, K. S.; Kim, Y. Y.; Na, J. W.; Ku, J. H.; Lee, D. H.

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs.

  13. Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database.

    Science.gov (United States)

    Nakajima, Kenichi; Matsumoto, Naoya; Kasai, Tokuo; Matsuo, Shinro; Kiso, Keisuke; Okuda, Koichi

    2016-04-01

    As a 2-year project of the Japanese Society of Nuclear Medicine working group activity, normal myocardial imaging databases were accumulated and summarized. Stress-rest with gated and non-gated image sets were accumulated for myocardial perfusion imaging and could be used for perfusion defect scoring and normal left ventricular (LV) function analysis. For single-photon emission computed tomography (SPECT) with multi-focal collimator design, databases of supine and prone positions and computed tomography (CT)-based attenuation correction were created. The CT-based correction provided similar perfusion patterns between genders. In phase analysis of gated myocardial perfusion SPECT, a new approach for analyzing dyssynchrony, normal ranges of parameters for phase bandwidth, standard deviation and entropy were determined in four software programs. Although the results were not interchangeable, dependency on gender, ejection fraction and volumes were common characteristics of these parameters. Standardization of (123)I-MIBG sympathetic imaging was performed regarding heart-to-mediastinum ratio (HMR) using a calibration phantom method. The HMRs from any collimator types could be converted to the value with medium-energy comparable collimators. Appropriate quantification based on common normal databases and standard technology could play a pivotal role for clinical practice and researches.

  14. ABB Combustion Engineering`s nuclear experience and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Matzie, R.A.

    1994-12-31

    ABB Combustion Engineering`s nuclear experience and technologies are outlined. The following topics are discussed: evolutionary approach using proven technology, substantial improvement to plant safety, utility perspective up front in developing design, integrated design, competitive plant cost, operability and maintainability, standardization, and completion of US NRC technical review.

  15. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1987-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  16. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  17. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  18. A decade of 3C technologies: insights into nuclear organization

    NARCIS (Netherlands)

    de Wit, E.; de Laat, W.

    2012-01-01

    Over the past 10 years, the development of chromosome conformation capture (3C) technology and the subsequent genomic variants thereof have enabled the analysis of nuclear organization at an unprecedented resolution and throughput. The technology relies on the original and, in hindsight, remarkably

  19. Medicine authentication technology as a counterfeit medicine-detection tool: a Delphi method study to establish expert opinion on manual medicine authentication technology in secondary care.

    Science.gov (United States)

    Naughton, Bernard; Roberts, Lindsey; Dopson, Sue; Brindley, David; Chapman, Stephen

    2017-05-06

    This study aims to establish expert opinion and potential improvements for the Falsified Medicines Directive mandated medicines authentication technology. A two-round Delphi method study using an online questionnaire. Large National Health Service (NHS) foundation trust teaching hospital. Secondary care pharmacists and accredited checking technicians. Seven-point rating scale answers which reached a consensus of 70-80% with a standard deviation (SD) of technology as quick and user friendly and suggested the inclusion of an audio signal to further support the detection of counterfeit medicines in secondary care (70% consensus, 0.9 SD); other important consensus with a SD of medicines. This paper informs key opinion leaders and decision makers as to the positives and negatives of medicines authentication technology from an operator's perspective and suggests the adjustments which may be required to improve operator compliance and the detection of counterfeit medicines in the secondary care sector. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. MO-AB-207-00: ACR Update in MR, CT, Nuclear Medicine, and Mammography

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.

  1. MO-AB-207-03: ACR Update in Nuclear Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, B. [Henry Ford Hospital System (United States)

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.

  2. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  3. Regenerative medicine: advances in new methods and technologies.

    Science.gov (United States)

    Park, Dong-Hyuk; Eve, David J

    2009-11-01

    The articles published in the journal Cell Transplantation - The Regenerative Medicine Journal over the last two years reveal the recent and future cutting-edge research in the fields of regenerative and transplantation medicine. 437 articles were published from 2007 to 2008, a 17% increase compared to the 373 articles in 2006-2007. Neuroscience was still the most common section in both the number of articles and the percentage of all manuscripts published. The increasing interest and rapid advance in bioengineering technology is highlighted by tissue engineering and bioartificial organs being ranked second again. For a similar reason, the methods and new technologies section increased significantly compared to the last period. Articles focusing on the transplantation of stem cell lineages encompassed almost 20% of all articles published. By contrast, the non-stem cell transplantation group which is made up primarily of islet cells, followed by biomaterials and fetal neural tissue, etc. comprised less than 15%. Transplantation of cells pre-treated with medicine or gene transfection to prolong graft survival or promote differentiation into the needed phenotype, was prevalent in the transplantation articles regardless of the kind of cells used. Meanwhile, the majority of non-transplantation-based articles were related to new devices for various purposes, characterization of unknown cells, medicines, cell preparation and/or optimization for transplantation (e.g. isolation and culture), and disease pathology.

  4. [Survey questionnaire of pediatric nuclear medicine examinations in 14 Japanese institutes].

    Science.gov (United States)

    Karasawa, Kensuke; Kamiyama, Hiroshi; Hashimoto, Teisuke; Koizumi, Kiyoshi

    2013-05-01

    Under the auspices of the Japanese Society of Pediatric Nuclear Medicine, an annual aggregate from a 5-year period, 2007 to 2011, of a survey questionnaire of pediatric nuclear medicine examinations performed at 14 institutes in the Kanto region was conducted. The subjects were pediatric patients 15 years old or younger. The survey questions included the determination method for administered dose of radiopharmaceuticals, the items examined and number of examinations. Of 14 institutes, 11 determined administered doses using the formula: adult dose X (age +1) / (age+7), while the remaining 3 used the adult dose as the maximum dose and used a conversion formula based on age and physical condition. In 2011, in a total of 3,884 pediatric patients, renoscintigraphy accounted for 41.5%, brain 14.4%, pulmonary scintigraphy 12.9%, oncology 9.0%, hepatobiliary scintigraphy 6.3%, gastrointestinal scintigraphy 4.8%, musculoskeletal scintigraphy 4.3%, cardiology 2.5%, and other 4.9% of all nuclear medicine examinations. Pediatric nuclear medicine examinations in general hospitals accounted for only 3.4% of all examinations. A similar trend was observed in previous years. Since pediatric patients have a longer reproductive term and higher sensitivity to radiation exposure, pediatric nuclear medicine requires a strict selection of appropriate studies and administered dose. These results show the current practice and would warrant further consideration.

  5. Global Nuclear Energy Partnership Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  6. Advanced maintenance, inspection & repair technology for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  7. The principles of Health Technology Assessment in laboratory medicine.

    Science.gov (United States)

    Liguori, Giorgio; Belfiore, Patrizia; D'Amora, Maurizio; Liguori, Renato; Plebani, Mario

    2017-01-01

    The Health Technology Assessment (HTA) is a multi-professional and multidisciplinary evaluation approach designed to assess health technology in the broadest sense of the term, from its instruments to the rearranging of its organizational structures. It is by now an established methodology at national and international levels that involves several medical disciplines thanks to its versatility. Laboratory medicine is one of these disciplines. Such specialization was subjected, in recent years, to deep changes even from an organizational standpoint, in order to meet the health needs of the population, making them as effective and cost-effective as possible. In this regard, HTA was the tool used to assess implications in different areas.

  8. High-technology medicine and the old: the dialysis example.

    Science.gov (United States)

    Kjellstrand, C M

    1996-03-01

    High-technology medicine, which is often expensive, and most often very useful for old people, whose numbers are rapidly increasing, is presenting huge moral problems for physicians. There are now pressures to make physicians salaried employees rather than professionals, and this will decrease or obliterate their efficiency as advocates for patients. Advocacy is a previously non-described duty, which is an important ethical principle for physicians, in addition to the four universally recognized principles: beneficence, non-maleficence, respect for autonomy, and justice. Not-so-subtle economic pressure by managed care, government, administrators, and politicians, is already in force. If physicians, by advocating expensive treatment for many, irritate those with economic power, they may violently retaliate. Chronic dialysis illustrates well the dilemma of high-technology medicine because acceptance numbers are accurate and widely known, most patients are old, the treatment is rationed everywhere by age, and, as patients die if excluded, it can be used to analyse reactions to an ongoing age rationing. Post-modern bioethics and moral philosophy appears helpless and, in some regards, irrelevant in elucidating and solving the concrete moral conflict posed by high-technology medicine and the old. Administrators and politicians wish physicians to be society's economic gatekeepers; however, this is incompatible with classical ethical concepts of the profession of physicians. Physicians and their professional organizations had better realize this in order to map out defensive strategies so that physicians, as a profession, do not disappear.

  9. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. O' Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  10. Annual meeting on nuclear technology 2013. Pt. 2. Section reports

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, U.; Hoehne, Thomas [Forschungszentrum Dresden-Rossendorf (FZD) e.V., Dresden (Germany); Seidl, Marcus [E.ON Kernkraft GmbH, Hannover (Germany); Rossbach, Detlev [AREVA GmbH, Erlangen (Germany); Skrzyppek, Juergen [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Klute, Stefan [Siempelkamp Nukleartechnik GmbH, Heidelberg (Germany); Willmann, Frank [Toshiba International Europe Ltd., Uxbridge (United Kingdom)

    2013-10-15

    Summary report on 4 out of 12 sessions of the Annual Conference on Nuclear Technology held in Berlin, 14 to 16 May 2013: - Reactor physics and methods of calculation (Section 1), - Thermodynamics and fluid dynamics (Section 2), - Radioactive waste management, Storage (Section 5), and - Decommissioning of nuclear installations (Section 8). The Session Education, Expert knowledge, Know-how-transfer (Section 12) was covered in atw 8/9 (2013). The other sessions (Safety of nuclear installations - methods, analysis, Front end of the fuel cycle, fuel elements and core components, Operation of nuclear installations, Fusion technology, New build and innovations, Energy industry and Economics, and Radiation protection) will be covered in further issues of atw. (orig.)

  11. Annual meeting on nuclear technology 2013. Section report. Pt. 6

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Klaus [NUKEM Technologies GmbH, Alzenau (Germany). Dept. Process Engineering; Reimann, Peter [AREVA GmbH, Erlangen (Germany). Fuel Germany F-G; Vallentin, Roger [WTI GmbH, Juelich (Germany)

    2014-02-15

    Summary report on 2 out of 12 sessions of the Annual Conference on Nuclear Technology held in Berlin, 14 to 16 May 2013: - Radioactive waste management, Storage (Section 5), and - Decommissioning of nuclear installations (Section 8). The Sessions Reactor physics and methods of calculation (Section 1), Thermodynamics and fluid dynamics (Section 2), Safety of nuclear installations - methods, analysis, results (Section 3), Front End of the Fuel Cycle, Fuel Elements and Core Components (Section 4), Operation of nuclear installations (Section 6), New build and innovations (Section 7), and Education, Fusion technology (Section 9), Radiation protection (Section 11), and Expert knowledge, Know-how-transfer (Section 12) have been covered in atw 8/9 to 12 (2013) and 1 (2014). The other sessions (Front end of the fuel cycle, fuel elements and core components; and Energy industry and Economics) will be covered in further issues of atw. (orig.)

  12. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  13. Radioactive waste management of the nuclear medicine services; Gestao de rejeitos radioativos em servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Alex

    2009-07-01

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  14. Tecnatom virtual reality experience in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Baeza, Guillermo; Cabrera, Esteban; Salve, Ricardo

    2004-07-01

    TECNATOM is a Spanish company focused in providing support to the energy sector. Training, operation engineering and inspection services in nuclear environments are the main business of the company. Emerging applications based on Virtual Reality (VR) are being demanded by the market as a response to the current cost reduction trend and to the new challenges arising in decommissioning of NPP's, human factors analysis and training of personnel in high risk tasks. On this respect, Tecnatom has launched several initiatives to consolidate its internal capabilities in VR and to acquire consulting skills for the Tecnatom market. The results of theses actions will be shown in this paper. (Author)

  15. Current Status of Nuclear Medicine Practice in Latin America and the Caribbean.

    Science.gov (United States)

    Páez, Diana; Orellana, Pilar; Gutiérrez, Claudia; Ramirez, Raúl; Mut, Fernando; Torres, Leonel

    2015-10-01

    The practice of nuclear medicine (NM) in the Latin American and Caribbean region has experienced important growth in the last decade. However, there is great heterogeneity among countries regarding the availability of technology and human resources. According to data collected through June 2014 by the International Atomic Energy Agency (IAEA), the total number of γ cameras in the region is 1,231, with an average of 2.16 per million inhabitants. Over 90% of the equipment is SPECT cameras; 7.6% of which have hybrid technology. There are 161 operating PET or PET/CT cameras in 12 member states, representing a rate of 0.3 per million people. Most NM centers belong to the private health system and are in capitals or major cities. Only 4 countries have the capability of assembling 99Mo-99mTc generators, and 2 countries produce 99mTc from nuclear reactors. Cold kits are produced in some countries, and therapeutic agents are mostly imported from outside the region. There are 35 operative cyclotrons. In relation to human resources: there is 1 physician per γ camera, 1.6 technologists per γ camera, 0.1 medical physicist per center, and approximately 0.1 radiochemist or radiopharmacist per center. Nearly 94% of the procedures are diagnostic. PET studies represent about 4% of the total. The future of NM in the Latin American and Caribbean region is promising, with great potential and possibilities. Some of the most important factors driving the region toward greater homogeneity in the availability and application of NM, and bridging the gaps between countries, are clinician awareness of the importance of NM in managing diseases prevalent in the region, increased building of capacity, continuous and strong support from international organizations such as the IAEA through national and regional projects, and strong public-private partnerships and government commitment.

  16. A Project in Support of Nuclear Technology Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Deok Ku; Kim, Kyoung Pyo; Ko, Young Chel (and others)

    2006-12-15

    Establish strategies of international cooperation in an effect to promote our nation's leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate. Using the INIS output data, it has provided domestic users with searching. Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing.

  17. Report: dosimetry of diagnostic exams in nuclear medicine; Rapport: dosimetrie des explorations diagnostiques en medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Touzery, C. [Centre Regional de Lutte Contre le Cancer de Bourgogne, Centre Georges-Francois Leclerc, 21 - Dijon (France); Aubert, B. [Institut Gustave Roussy, 94 - Villejuif (France); Caselles, O. [Centre Claudius-Regaud, 31 - Toulouse (France); Gardin, I. [Centre Henri Becquerel, 76 - Rouen (France); Guilhem, M.Th. [Centre Hospitalier Regional de la Source, 45 - Orleans (France); Laffont, S. [Centre Eugene-Marquis, 35 - Rennes (France); Lisbona, A. [Centre Regional de Lutte Contre le Cancer Rene-Gauducheau, 44 - Nantes (France)

    2002-07-01

    A compilation about dosimetry of diagnosis explorations in nuclear medicine is presented in this issue. Dosimetry tables of the different radiopharmaceuticals used in nuclear medicine give indications on absorbed and efficient doses according the patients age from one year to adult age. The doses received by a fetus during a lung scintigraphy realized for the pregnant woman susceptible to suffer of pulmonary emboli is presented. A table of efficient doses for the infants until the age of six months for the principal scintigraphy explorations realized in nuclear medicine are given. A chapter of theoretical headlines is devoted to dosimetry and the calculations methods of absorbed and efficient doses in function of patients age. A short chapter concerns the recommendations to explore nursing mothers by scintigraphy. A last chapter treats the efficient doses received during explorations using ionizing radiations in radiology and their place in annual natural irradiation scale. (N.C.)

  18. Comparative study on storage and disposal of liquid waste in nuclear medicine diagnostic; Estudio comparativo sobre almacenamiento y eliminacion de residuos liquidos para diagnostico en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Vazquez, R.; Sanchez Garcia, M.; Santamarina Vazquez, F.; Soto Bua, M.; Montoya Pastor, A.; Luna Vega, V.; Mosquera Suueiro, J.; Otero Martinez, C.; Lobato Busto, R.; Pombar Camean, M.

    2011-07-01

    The aim of this paper presents a comparative study on the total activity of material discharge to public sewers and the activity concentration in the final point of discharge, for a typical installation of Nuclear Medicine, in the case of having no deposit or storage of liquid radioactive waste from diagnostic techniques, based on actual data from the Nuclear Medicine Department of our hospital.

  19. Bridging the gap between the technological singularity and mainstream medicine: highlighting a course on technology and the future of medicine.

    Science.gov (United States)

    Solez, Kim; Bernier, Ashlyn; Crichton, Joel; Graves, Heather; Kuttikat, Preeti; Lockwood, Ross; Marovitz, William F; Monroe, Damon; Pallen, Mark; Pandya, Shawna; Pearce, David; Saleh, Abdullah; Sandhu, Neelam; Sergi, Consolato; Tuszynski, Jack; Waugh, Earle; White, Jonathan; Woodside, Michael; Wyndham, Roger; Zaiane, Osmar; Zakus, David

    2013-09-09

    The "technological singularity" is defined as that putative point in time forecasted to occur in the mid twenty-first century when machines will become smarter than humans, leading humans and machines to merge. It is hypothesized that this event will have a profound influence on medicine and population health. This work describes a new course on Technology and the Future of Medicine developed by a diverse, multi-disciplinary group of faculty members at a Canadian university. The course began as a continuous professional learning course and was later established as a recognized graduate course. We describe the philosophy of the course, the barriers encountered in course development, and some of the idiosyncratic solutions that were developed to overcome these, including the use of YouTube audience retention analytics. We hope that this report might provide a useful template for other institutions attempting to set up similar programs.

  20. Development of Curricula for Nuclear Radiation Protection, Nuclear Instrumentation, and Nuclear Materials Processing Technologies. Final Report.

    Science.gov (United States)

    Hull, Daniel M.

    A study was conducted to assist two-year postsecondary educational institutions in providing technical specialty courses for preparing nuclear technicians. As a result of project activities, curricula have been developed for five categories of nuclear technicians and operators: (1) radiation protection technician, (2) nuclear instrumentation and…

  1. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance

  2. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  3. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    Science.gov (United States)

    Yunus, N. A.; Abdullah, M. H. R. O.; Said, M. A.; Ch'ng, P. E.

    2014-11-01

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia.

  4. Nuclear medicine in the acute clinical setting: indications, imaging findings, and potential pitfalls.

    Science.gov (United States)

    Uliel, Livnat; Mellnick, Vincent M; Menias, Christine O; Holz, Andrew L; McConathy, Jonathan

    2013-01-01

    Nuclear medicine imaging provides valuable functional information that complements information obtained with anatomic imaging techniques in the evaluation of patients with specific acute clinical manifestations. Nuclear medicine studies are most often used in conjunction with other imaging modalities and as a problem-solving tool. Under certain circumstances a nuclear medicine study may be indicated as the first-line imaging modality, as in the case of renal scintigraphy for transplant dysfunction in the early postoperative period. Nuclear imaging may be preferred when a conventional first-line study is contraindicated or when it is important to minimize radiation exposure. The portability of nuclear imaging offers particular advantages for the evaluation of critically ill patients whose clinical condition is unstable and who cannot be safely transported out of the intensive care unit. The ability to visualize physiologic and pathophysiologic processes over relatively long time periods without adding to the patient's radiation exposure contributes to the high diagnostic sensitivity of several types of nuclear medicine studies. Viewing the acquired images in the cine mode adds to the value of these studies for diagnosing and characterizing dynamic abnormalities such as intermittent internal bleeding and bile or urine leakage. In this pictorial review, the spectrum of nuclear medicine studies commonly performed in the acute care setting is reviewed according to body systems and organs, with detailed descriptions of the indications, technical considerations, findings, and potential pitfalls of each type of study. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.332125098/-/DC1.

  5. The Role of Nuclear Medicine in The Diagnosis and Management of Solitary Pulmonary Nodules

    Directory of Open Access Journals (Sweden)

    Farzaneh Shariati

    2013-10-01

    Full Text Available   Solitary pulmonary nodule (SPN is a frequent finding on the chest x-ray and computed tomography. Nuclear medicine techniques play an important role in the diagnosis and management of SPN. In the current review, we briefly will explain the different nuclear medicine modalities in this regard including positron emission tomography (PET using 18-F-FDG, and 11-C-Methionine, and single photon emission computerized tomography (SPECT using somatostatin receptor scintigraphy, 201-Thallium, and 99m-Tc-MIBI.  

  6. Economic issue in pediatric nuclear medicine: Cortical scanning of acute pyelonephritis

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, G. A. [Pont Hospital for Children, Wilmington (United States). Dept. of Medical Imaging

    1997-12-01

    Pediatric nuclear medicine must be innovative in finding ways of competing with other pediatric imagining subspecialties for the health care dollars. Newer radiopharmaceuticals and imagining methods that are time-effective in answering clinical problems and cost-effective in attracting the health care providers are ways of accomplishing this difficult task. Renal cortical scanning for the diagnosis of acute pyelonephritis is presented as an example of an existing nuclear medicine study that is accurate and cost-effective, but has not yet taken a major place in the imaging `armamentarium`. In this discussion, the cortical scan is endorsed as the primary imaging tool for children presenting with acute urinary infection.

  7. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    Science.gov (United States)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-01

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors. Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat. The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  8. A methodology for evaluating ``new`` technologies in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K.; Clark, R.L.; Holcomb, D.E.

    1994-06-01

    As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

  9. Tracking patient radiation exposure: challenges to integrating nuclear medicine with other modalities

    Science.gov (United States)

    Mercuri, Mathew; Rehani, Madan M.; Einstein, Andrew J.

    2013-01-01

    The cumulative radiation exposure to the patient from multiple radiological procedures can place some individuals at significantly increased risk for stochastic effects and tissue reactions. Approaches, such as those in the International Atomic Energy Agency’s Smart Card program, have been developed to track cumulative radiation exposures to individuals. These strategies often rely on the availability of structured dose reports, typically found in the DICOM header. Dosimetry information is currently readily available for many individual x-ray based procedures. Nuclear medicine, of which nuclear cardiology constitutes the majority of the radiation burden in the U.S., currently lags behind x-ray based procedures with respect to reporting of radiation dosimetric information. This paper discusses qualitative differences between nuclear medicine and x-ray based procedures, including differences in the radiation source and measurement of its strength, the impact of biokinetics on dosimetry, and the capability of current scanners to record dosimetry information. These differences create challenges in applying monitoring and reporting strategies used in x-ray based procedures to nuclear medicine, and integrating dosimetry information across modalities. A concerted effort by the medical imaging community, dosimetry specialists and manufacturers of imaging equipment is required to develop strategies to improve the reporting of radiation dosimetry data in nuclear medicine. Some ideas on how to address this issue are suggested. PMID:22695788

  10. Nuclear transfer technology in mammalian cloning.

    Science.gov (United States)

    Wolf, D P; Mitalipov, S; Norgren, R B

    2001-01-01

    The past several years have witnessed remarkable progress in mammalian cloning using nuclear transfer (NT). Until 1997 and the announcement of the successful cloning of sheep from adult mammary gland or fetal fibroblast cells, our working assumption was that cloning by NT could only be accomplished with relatively undifferentiated embryonic cells. Indeed, live offspring were first produced by NT over 15 years ago from totipotent, embryonic blastomeres derived from early cleavage-stage embryos. However, once begun, the progression to somatic cell cloning or NT employing differentiated cells as the source of donor nuclei was meteoric, initially involving differentiated embryonic cell cultures in sheep in 1996 and quickly thereafter, fetal or adult somatic cells in sheep, cow, mouse, goat, and pig. Several recent reviews provide a background for and discussion of these successes. Here we will focus on the potential uses of reproductive cloning along with recent activities in the field and a discussion concerning current interests in human reproductive and therapeutic cloning.

  11. [Application of digital earth technology in research of traditional Chinese medicine resources].

    Science.gov (United States)

    Liu, Jinxin; Liu, Xinxin; Gao, Lu; Wei, Yingqin; Meng, Fanyun; Wang, Yongyan

    2011-02-01

    This paper describes the digital earth technology and its core technology-"3S" integration technology. The advance and promotion of the "3S" technology provide more favorable means and technical support for Chinese medicine resources survey, evaluation and appropriate zoning. Grid is a mature and popular technology that can connect all kinds of information resources. The author sums up the application of digital earth technology in the research of traditional Chinese medicine resources in recent years, and proposes the new method and technical route of investigation in traditional Chinese medicine resources, traditional Chinese medicine zoning and suitability assessment by combining the digital earth technology and grid.

  12. Rationale for the combination of nuclear medicine with magnetic resonance for pre-clinical imaging.

    Science.gov (United States)

    Wagenaar, Douglas J; Kapusta, Maciej; Li, Junqiang; Patt, Bradley E

    2006-08-01

    Multi-modality combinations of SPECT/CT and PET/CT have proven to be highly successful in the clinic and small animal SPECT/CT and PET/CT are becoming the norm in the research and drug development setting. However, the use of ionizing radiation from a high-resolution CT scanner is undesirable in any setting and particularly in small animal imaging (SAI), in laboratory experiments where it can result in radiation doses of sufficient magnitude that the experimental results can be influenced by the organism's response to radiation. The alternative use of magnetic resonance (MR) would offer a high-resolution, non-ionizing method for anatomical imaging of laboratory animals. MR brings considerably more than its 3D anatomical capability, especially regarding the imaging of laboratory animals. Dynamic MR imaging techniques can facilitate studies of perfusion, oxygenation, and diffusion amongst others. Further, MR spectroscopy can provide images that can be related to the concentration of endogenous molecules in vivo. MR imaging of injected contrast agents extends MR into the domain of molecular imaging. In combination with nuclear medicine (NM) SPECT and PET modalities in small animal imaging, MR would facilitate studies of dynamic processes such as biodistribution, pharmacokinetics, and pharmacodynamics. However, the detectors for nearly all PET and SPECT systems are still based on vacuum tube technology, namely: photomultiplier tubes (PMT's) in which the signal is generated by transporting electrons over a substantial distance within an evacuated glass tube, making them inoperable in even small magnetic fields. Thus the combination of SPECT or PET with MR has not been practical until the recent availability of semiconductor detectors such as silicon avalanche photodiodes (APD's) for PET and CdZnTe (CZT) detectors for SPECT coupled with the availability of high-density low noise ASIC electronics to read out the semiconductor detectors. The strong advantage of these

  13. Technology Teachers' Attitudes toward Nuclear Energy and Their Implications for Technology Education

    Science.gov (United States)

    Lee, Lung-Sheng; Yang, Hsiu-Chuan

    2013-01-01

    The purpose of this paper was to explore high-school (grades 10-12) technology teachers' attitudes toward nuclear energy and their implications to technology education. A questionnaire was developed to solicit 323 high-school technology teachers' responses in June 2013 and 132 (or 41%) valid questionnaires returned. Consequently, the following…

  14. Application study of nuclear technologies for dual use

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Gon; Chung, W. S.; Park, W. S.; Lee, K. W.; Cha, H. K.; Han, M. H.; Yoon, J. S.; Honh, D. H.; Park, J. Y.; Lee, C. H.; Yeo, J. W.; Jung, M.; Ra, G. H

    2000-02-01

    The projects for the joint development of technology common to the civilian and military sectors are being carried out at national level to maximize the utilization of limited resources. The technologies have been identified through a process which considered whether they are duplicates of the present military technology, whether they are necessary, and whether their realization is feasible. In addition, the problems surfaced during the identification process have been analyzed and suggestions to vitalize the military application of civilian nuclear technology are presented in the contexts of personal channel, institutional networking, R and D information exchange, and budgetary support. (author)

  15. Haptics - touchfeedback technology widening the horizon of medicine.

    Science.gov (United States)

    Kapoor, Shalini; Arora, Pallak; Kapoor, Vikas; Jayachandran, Mahesh; Tiwari, Manish

    2014-03-01

    Haptics, or touchsense haptic technology is a major breakthrough in medical and dental interventions. Haptic perception is the process of recognizing objects through touch. Haptic sensations are created by actuators or motors which generate vibrations to the users and are controlled by embedded software which is integrated into the device. It takes the advantage of a combination of somatosensory pattern of skin and proprioception of hand position. Anatomical and diagnostic knowledge, when it is combined with this touch sense technology, has revolutionized medical education. This amalgamation of the worlds of diagnosis and surgical intervention adds precise robotic touch to the skill of the surgeon. A systematic literature review was done by using MEDLINE, GOOGLE SEARCH AND PubMed. The aim of this article was to introduce the fundamentals of haptic technology, its current applications in medical training and robotic surgeries, limitations of haptics and future aspects of haptics in medicine.

  16. [Industry of traditional Chinese patent medicine science and technology development and review].

    Science.gov (United States)

    Lu, Jianwei; Wang, Fang; Yan, Dongmei; Luo, Yun; Yang, Ming

    2012-01-01

    "Fifteen" since, our country Chinese traditional medicine industry science and technology has made remarkable achievements. In this paper, the development of science and technology policy, Chinese medicine industry, platform construction and other aspects were analyzed, showing 10 years of Chinese traditional medicine industry development of science and technology innovation achievement and development, and on the current development of traditional Chinese medicine industry facing the main tasks and guarantee measures are analyzed.

  17. Chemistry of nuclear resources, technology, and waste

    Energy Technology Data Exchange (ETDEWEB)

    Keller, O.L. Jr.

    1978-01-01

    Chemistry is being called on today to obtain useful results in areas that have been found very difficult for it in the past, but new instrumentation and new theories are allowing much progress. The area of hydrolytic phenomena and colloid chemistry, as exemplified by the plutonium polymer problem, is clearly entering a new phase in which it can be studied in a much more controlled and understandable manner. The same is true of the little studied interfacial regions, where so much important chemistry occurs in solvent extraction and other systems. The studies of the adsorption phenomena on clays are an illustration of the new and useful modeling of geochemical phenomena that is now possible. And finally, the chemist is called upon to participate in the developement and evaluation of models for nuclear waste isolation requiring extrapolations of hundreds to hundreds of thousands of years into the future. It is shown that chemistry may be useful in keeping the extrapolations in the shorter time spans, and also in selecting the best materials for containment. 36 figures.

  18. Applications of aerospace technology in biology and medicine

    Science.gov (United States)

    Rouse, D. J.

    1983-01-01

    Utilization of NASA technology and its application to medicine is discussed. The introduction of new or improved commercially available medical products and incorporation of aerospace technology is outlined. A biopolar donor-recipient model of medical technology transfer is presented to provide a basis for the methodology. The methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the ocular screening device, a system for quick detection of vision problems in preschool children, and Porta-Fib III, a hospital monitoring unit. Two institutional transfers were completed: implant materials testing, the application of NASA fracture control technology to improve reliability of metallic prostheses, and incinerator monitoring, a quadrupole mass spectrometer to monitor combustion products of municipal incinerators. Mobility aids for the blind and ultrasound diagnosis of burn depth are also studied.

  19. Systematization of nuclear fuel facility decommissioning technology

    Energy Technology Data Exchange (ETDEWEB)

    Sugitsue, Noritake [Japan Nuclear Cycle Development Inst., Ningyo Toge Environmental Engineering Center, Kamisaibara, Okayama (Japan)

    2001-09-01

    In the Ningyo-Toge Environmental Engineering Center, the nature of all decommissioning works is clarified and, as an information base for planning the promotion of efficiency of a work, the Decommissioning Engineering System is being developed. The Decommissioning Engineering System consists of a function for performing work support for a decommissioning, a function for gathering information results of the decommissioning technology and a general evaluation function for the decommissioning plan on the basis of facilities information collected by three-dimensional CAD. (author)

  20. Comparison of the activity measurements in nuclear medicine services in the Brazilian northeast region.

    Science.gov (United States)

    de Farias Fragoso, Maria da Conceição; de Albuquerque, Antônio Morais; de Oliveira, Mércia L; de Lima, Fabiana Farias; Barreto, Flávio Chiappetta Paes; de Andrade Lima, Ricardo

    2013-12-01

    The Northeastern Regional Centre for Nuclear Sciences (CRCN-NE), National Nuclear Energy Commission, has organized for the first time in nuclear medicine services (NMSs) in the Brazilian northeast region a comparison of activity measurements for (99m)Tc, (131)I, (67)Ga, (201)Tl and (57)Co. This tool is widely utilized to evaluate not only the accuracy of radionuclide calibrators, but also the competence of NMSs to measure the activity of the radiopharmaceuticals and the performance of the personnel involved in these measurements. The comparison results showed that 90% of the results received from participants are within the ±10% limit established by the Brazilian Norm.

  1. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2002-03-15

    This project focuses on developing reliable life evaluation technology for nuclear power plant components, and is divided into two parts, development of a life evaluation system for nuclear pressure vessels and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered in this project: defect assessment method for steam generator tubes, development of fatigue monitoring system, assessment of corroded pipes, domestic round robin analysis for constructing P-T limit curve for RPV, development of probabilistic integrity assessment technique, effect of aging on strength of dissimilar welds, applicability of LBB to cast stainless steel, and development of probabilistic piping fracture mechanics.

  2. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  3. Electroporation-based technologies for medicine: principles, applications, and challenges.

    Science.gov (United States)

    Yarmush, Martin L; Golberg, Alexander; Serša, Gregor; Kotnik, Tadej; Miklavčič, Damijan

    2014-07-11

    When high-amplitude, short-duration pulsed electric fields are applied to cells and tissues, the permeability of the cell membranes and tissue is increased. This increase in permeability is currently explained by the temporary appearance of aqueous pores within the cell membrane, a phenomenon termed electroporation. During the past four decades, advances in fundamental and experimental electroporation research have allowed for the translation of electroporation-based technologies to the clinic. In this review, we describe the theory and current applications of electroporation in medicine and then discuss current challenges in electroporation research and barriers to a more extensive spread of these clinical applications.

  4. Application of DNA Typing Technologies in Forensic Medicine

    Directory of Open Access Journals (Sweden)

    Batool Mutar Mahdi

    2013-06-01

    Full Text Available Nuclear DNA markers are widely used for crime investigation and paternity testing. Parentage testing interpretation relies on the fact that Short Tandem Repeats are inherited in a true Mendelian fashion and express a codominant nature of allelic variants. DNA microsatellites or Short Tandem Repeats are short, tandemly repeated sequences of a bi-, tri- or tetranucleotide unit with a random distribution throughout the genome. They have been used extensively in applications as diverse as diagnosis of inherited diseases and forensic medicine for DNA fingerprinting and parentage testing. The success of this last application is due to the fact that Short Tandem Repeats are highly polymorphic and, at the same time, they are sufficiently stable to be inherited unaltered from one generation to the next. [Archives Medical Review Journal 2013; 22(3.000: 335-346

  5. Contamination, a Major Problem in Nuclear Medicine Imaging: How to Investigate, Handle, and Avoid It.

    Science.gov (United States)

    Kumar, Narvesh; Verma, Shashwat; Singh, Rani Kunti R; Datta, Deepanksha; Kheruka, Subhash Chandra; Gambhir, Sanjay

    2017-09-01

    We present a case study in which artifacts from collimator contamination and patient motion were seen on a bone scan. Any identified artifact must be further investigated and documented so as to detect its source and thus prevent its future occurrence. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  6. Impact of waiting on the perception of service quality in nuclear medicine

    NARCIS (Netherlands)

    De Man, S; Vlerick, P; Gemmel, P; De Bondt, P; Matthys, D; Dierckx, RA

    2005-01-01

    Background This is the first study examining the link between waiting and various dimensions of perceived service quality in nuclear medicine. Methods We tested the impact of selected waiting experience variables on the evaluation of service quality, measured using the Servqual tool, of 406 patients

  7. Development of RadRob15, A Robot for Detecting Radioactive Contamination in Nuclear Medicine Departments

    Directory of Open Access Journals (Sweden)

    Shafe A.

    2016-09-01

    Full Text Available Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC. The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination.

  8. Development of RadRob15, A Robot for Detecting Radioactive Contamination in Nuclear Medicine Departments.

    Science.gov (United States)

    Shafe, A; Mortazavi, S M J; Joharnia, A; Safaeyan, Gh H

    2016-09-01

    Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC). The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination.

  9. Radiation exposure and dosimetry in transplant patients due to Nuclear Medicine studies

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghraby, T. A. F. [Leiden Univ., Leiden (Netherlands). Dept. of Radiology, Div. of Nuclear Medicine; Cairo Univ., Cairo (Egypt). Faculty of Medicine, Dept. of Oncology and Nuclear Medicine; Camps, J. A. J.; Geleyns, J.; Pauwels, E. K. J. [Leiden Univ., Leiden (Netherlands). Dept. of Radiology, Div. of Nuclear Medicine

    2000-12-01

    Organ transplantation is now an accepted method of therapy for treating patients with end stage failure of kidneys, liver, heart or lung. Nuclear Medicine may provide functional data and semi-quantitative parameters. However, one serious factor that hampers the use of nuclear medicine procedures in transplant patients is the general clinical concern about radiation exposure to the patient. This lead the researcher to discuss the effective doses and radiation dosimetry associated with radionuclide procedures used in the management and follow-up of transplant patients. A simple way to place the risk associated with Nuclear Medicine studies in an appropriate context is to compare the dose with that received from more familiar source of exposure such as from a diagnostic X-ray procedure. The radiation dose for the different radiopharmaceuticals used to study transplant organ function ranges between 0.1 and 5.3 mSv which is comparable to X-ray procedures with the exception of {sup 201}Tl and {sup 111}In-antimyosin. Thus Nuclear Medicine studies do not bear a higher radiation risk than the often used X-ray studies in transplant patients.

  10. Nuclear medicine methods in the assessment of acupuncture effects: a short review

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Deise Elisabete; Rebello, Bernardo Machado; Agostinho, Raquel Terra [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Lab. de Radiofarmacia Experimental; Academia Brasileira de Arte e Ciencia Oriental, Rio de Janeiro, RJ (Brazil); E-mail: deise_desouza@yahoo.com.br; Silva Filho, Reginaldo de Carvalho [Escola Brasileira de Medicina Chinesa, Sao Paulo, SP (Brazil). Centro Avancado de Pesquisas em Ciencias Orientais; Bastos, Sohaku R.C. [Academia Brasileira de Arte e Ciencia Oriental, Rio de Janeiro, RJ (Brazil); Bernardo-Filho, Mario [Instituto Nacional de Cancer (INCa), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa Basica

    2007-09-15

    The mechanisms of acupuncture are poorly understood. In consequence, numerous investigators have conducted clinical trials to test the efficacy of acupuncture in various conditions. We have used PubMed database system to evaluate the number of publications in acupuncture and nuclear medicine procedures in the period from 1964 to 2007, using the keywords: 'nuclear medicine and acupuncture', 'SPECT and acupuncture, 'PET and acupuncture', 'scintigraphy and acupuncture, 'radionuclide and acupuncture', 'radiopharmaceutical and acupuncture', 'radioisotope and acupuncture' and {sup 99m}Tc and acupuncture'. Some papers published in English language were selected and a short review is presented The analysis of the number of publications shows that when a method is well accepted by the scientific community, as the methods used in nuclear medicine, the interest in the development of research increases. Moreover, important findings are presented when the nuclear medicine image is used to evaluate the effect of the acupuncture. (author)

  11. A survey of incidents in radiology and nuclear medicine in the West of Scotland.

    Science.gov (United States)

    Martin, C J

    2005-10-01

    Data on 606 incidents in radiology and nuclear medicine departments reported to a central health physics service have been analysed and causes reviewed. 85% of incidents in radiology departments and 37% in nuclear medicine were overexposures of patients. 80% of these resulted from human error or procedural failure, and of these 32% were mistakes by the referrer. Other incidents in nuclear medicine were contamination events (49%) and failure in management of radioactive materials (10%). Effective doses for patient overexposures covered a broad range with those for CT being 1 mSv and above, while those for other radiology examinations were mostly less than 2 mSv. Reporting of patient overexposure incidents in radiology has increased by four-fold in recent years. The average numbers reported during the last 3 years were 91 per year in radiology and 12 per year in nuclear medicine, for hospitals with a population base of 2.8 million. Incident investigations demonstrated the importance of robust procedures and defences to identify mistakes that could lead to incidents. The central incident reporting and investigation system has raised the awareness of staff about the type of mistakes which could lead to incidents and promoted the introduction of recommended actions to reduce these risks.

  12. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kouzes, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peerani, P. [European Commission, Ispra (Italy). Joint Research Centre; Aspinall, M. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Baird, K. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Bakel, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Borella, M. [SCK.CEN, Mol (Belgium); Bourne, M. [Univ. of Michigan, Ann Arbor, MI (United States); Bourva, L. [Canberra Ltd., Oxford (United Kingdom); Cave, F. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Chandra, R. [Arktis Radiation Detectors Ltd., Zurich (Sweden); Chernikova, D. [Chalmers Univ. of Technology (Sweden); Croft, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dermody, G. [Symetrica Inc., Maynard, MA (United States); Dougan, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Ely, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fanchini, E. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Gavron, Victor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kureta, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ishiyama, K. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Lee, T. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Martin, Ch. [Symetrica Inc., Maynard, MA (United States); McKinny, K. [GE Reuter-Stokes, Twinsburg, OH (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Orton, Ch. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Pappalardo, A. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Pedersen, B. [European Commission, Ispra (Italy). Joint Research Centre; Peranteau, D. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Plenteda, R. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Pozzi, S. [Univ. of Michigan, Ann Arbor, MI (United States); Schear, M. [Symetrica Inc., Maynard, MA (United States); Seya, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Siciliano, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, L. [Proportional Technologies Inc., Houston, TX (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tagziria, H. [European Commission, Ispra (Italy). Joint Research Centre; Vaccaro, S. [DG Energy (Luxembourg); Takamine, J. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Weber, A. -L. [Inst. for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (France); Yamaguchi, T. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Zhu, H. [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3

  13. Nuclear fission technology in Spain: History and social concerns.

    Science.gov (United States)

    Aliende Urtasun, Ana; Luquin, Asunción; Garrido, Julián J

    2016-07-19

    This research examines the evolution of nuclear technology in Spain from the early years of the Franco dictatorship to the global financial crisis and technology's influence on Spanish culture. To this end, we take a sociological perspective, with science culture and social perceptions of risk in knowledge societies serving as the two elements of focus in this work. In this sense, this article analyses the transformation of social relationships in light of technological changes. We propose technology as a strategic place to observe the institutional and organisational dynamics of technologic-scientific risks, the expert role and Spain's science culture. In addition, more specifically, within the language of co-production, we 'follow the actor' and favour new forms of citizen participation that promote ethics to discuss technological issues.

  14. Regulation and quality in nuclear medicine 2 october 1998; Reglementation et qualite en medecine nucleaire 2 octobre 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kouchner, B. [Secretariat d' Etat a la Sante, 75 - Paris (France); Huriet, C. [Commission des Affaires Sociales du Senat, 75 - Paris (France); Le Deaut, J.Y. [Office Parlementaire d' Evaluation des Choix Scientifiques et Technologiques du Senat, 75 - Paris (France)

    1999-07-01

    The aim of this meeting is to examine how the regulations are liable to decrease the patient taking charge. The problem of the public information and opinion in the nuclear medicine domain is also presented. The nineteen presentations are proposed in 2 sessions. The first one deals with the state of the art of the nuclear medicine in France (techniques and regulations). The second one deals with the environment of the nuclear medicine (irradiation limits, public opinion, doctors and medicine quality). (A.L.B.)

  15. Applications of aerospace technology in biology and medicine

    Science.gov (United States)

    Bass, B.; Beall, H. C.; Brown, J. N., Jr.; Clingman, W. H.; Eakes, R. E.; Kizakevich, P. N.; Mccartney, M.; Rouse, D. J.

    1982-01-01

    Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects.

  16. The development of new radionuclide generator systems for nuclear medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Callahan, A.P.; Mirzadeh, S. (Oak Ridge National Lab., TN (USA)); Brihaye, C.; Guillaume, M. (Liege Univ. (Belgium). Cyclotron Research Center)

    1991-01-01

    Radioisotope generator systems have traditionally played a central role in nuclear medicine in providing radioisotopes for both research and clinical applications. In this paper, the development of several tungsten-188/rhenium-188 prototype generators which provide rhenium-188 for radioimmunotherapy (RAIT) is discussed. The authors have recently demonstrated that carrier-free iridium-194 can be obtained from the activated carbon system from decay of reactor-produced osmium-194 for potential RAIT applications. Instrumentation advances such as the new generation of high-count-rate (fast) gamma camera systems for first-pass technology require the availability of generator-produced ultra short-lived radioisotopes for radionuclide angiography (RNA). The activated carbon generator is an efficient system to obtain ultra short-lived iridium-191 m from osmium-191 for RNA. In addition, the growing number of PET centers has stimulated research in generators which provide positron-emitting radioisotopes. Copper-62, obtained from the zinc-62 generator, is currently used for PET evaluation of organ perfusion. The availability of the parent radioisotopes, the fabrication and use of these generators, and the practical factors for use of these systems in the radiopharmacy are discussed. 74 refs., 6 figs., 5 tabs.

  17. Image fusion in open-architecture quality-oriented nuclear medicine and radiology departments

    Energy Technology Data Exchange (ETDEWEB)

    Pohjonen, H

    1997-12-31

    Imaging examinations of patients belong to the most widely used diagnostic procedures in hospitals. Multimodal digital imaging is becoming increasingly common in many fields of diagnosis and therapy planning. Patients are frequently examined with magnetic resonance imaging (MRI), X-ray computed tomography (CT) or ultrasound imaging (US) in addition to single photon (SPET) or positron emission tomography (PET). The aim of the study was to provide means for improving the quality of the whole imaging and viewing chain in nuclear medicine and radiology. The specific aims were: (1) to construct and test a model for a quality assurance system in radiology based on ISO standards, (2) to plan a Dicom based image network for fusion purposes using ATM and Ethernet technologies, (3) to test different segmentation methods in quantitative SPET, (4) to study and implement a registration and visualisation method for multimodal imaging, (5) to apply the developed method in selected clinical brain and abdominal images, and (6) to investigate the accuracy of the registration procedure for brain SPET and MRI 90 refs. The thesis includes also six previous publications by author

  18. Scene setting: criteria for acceptability and suspension levels in diagnostic radiology, nuclear medicine and radiotherapy.

    Science.gov (United States)

    Malone, Jim; Faulkner, Keith; Christofides, Stelios; Lillicrap, Stephen; Horton, Patrick

    2013-02-01

    The EC (European Commission) Directive on radiation protection of patients requires that Criteria for Acceptability of Equipment in Diagnostic Radiology, Nuclear Medicine and Radiotherapy be established throughout the member states. This paper reviews the background to this requirement and to its implementation in practice. It notes parallel requirements in the EC medical devices directive and International Electrotechnical Commission standards. It is also important to be aware and that both sets of requirements should ideally be harmonised due to the global nature of the equipment industry. The paper further reviews the type of criteria that can be well applied for the above purposes, and defines qualitative criteria and suspension levels suitable for application. Both are defined and relationships with other acceptance processes are considered (including acceptance testing at the time of purchase, commissioning and the issue of second-hand equipment). Suspension levels are divided into four types, A, B, C and D, depending on the quality of evidence and consensus on which they are based. Exceptional situations involving, for example, new or rapidly evolving technology are also considered. The publication and paper focuses on the role of the holder of the equipment and related staff, particularly the medical physics expert and the practitioner. Advice on how the criteria should be created and implemented and how this might be coordinated with the supplier is provided for these groups. Additional advice on the role of the regulator is provided.

  19. Bone imaging in prostate cancer: the evolving roles of nuclear medicine and radiology.

    Science.gov (United States)

    Cook, Gary J R; Azad, Gurdip; Padhani, Anwar R

    2016-01-01

    The bone scan continues to be recommended for both the staging and therapy response assessment of skeletal metastases from prostate cancer. However, it is widely recognised that bone scans have limited sensitivity for disease detection and is both insensitive and non-specific for determining treatment response, at an early enough time point to be clinically useful. We, therefore, review the evolving roles of nuclear medicine and radiology for this application. We have reviewed the published literature reporting recent developments in imaging bone metastases in prostate cancer, and provide a balanced synopsis of the state of the art. The development of single-photon emission computed tomography combined with computed tomography has improved detection sensitivity and specificity but has not yet been shown to lead to improvements in monitoring therapy. A number of bone-specific and tumour-specific tracers for positron emission tomography/computed tomography (PET/CT) are now available for advanced prostate cancer that show promise in both clinical settings. At the same time, the development of whole-body magnetic resonance imaging (WB-MRI) that incorporates diffusion-weighted imaging also offers significant improvements for detection and therapy response assessment. There are emerging data showing comparative SPECT/CT, PET/CT, and WB-MRI test performance for disease detection, but no compelling data on the usefulness of these technologies in response assessment have yet emerged.

  20. Science and technology as strategic way for nuclear activities; A C e T como fator estrategico para as atividades nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Paiano, Silvestre

    2000-07-01

    The article brings few instructive examples on the interaction between nuclear energy and other areas of science and technology, Microelectronics, computer technology, and new materials are among the many technologies which are crucial for developing nuclear energy technology. On the other way round, nuclear energy presents also a wide range of new demands and opportunities for several areas of science and technology. The problem is that such a relationship is not well understood by the society, and to a large extent it brings about the very process of legitimating the use of nuclear energy (author)