WorldWideScience

Sample records for technology materials research

  1. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  2. Materials and Components Technology Division research summary, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

  3. Materials and Components Technology Division research summary, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  4. Materials and Components Technology Division research summary, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  5. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    Science.gov (United States)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  6. Research of Technological Characteristics of Dispersed Molding Materials

    Directory of Open Access Journals (Sweden)

    Vitaliy Kulikov

    2015-03-01

    Full Text Available One of the important problems of science and practice is to increase the productivity of manufacturing products from dispersed materials through the modernization of existing equipment and the introduction of new technological processes. The mathematical models of formation of disperse systems, applied to pressed and heated mixtures, are insufficiently developed so far.. The introduction of new mathematical models of formation of disperse mixtures and method s of manufacture of pressed products will increase the productivity, improve the quality of manufactured products, reduce production costs and increase the competitiveness of the products.

  7. Advanced Materials Technology

    Science.gov (United States)

    Blankenship, C. P. (Compiler); Teichman, L. A. (Compiler)

    1982-01-01

    Composites, polymer science, metallic materials (aluminum, titanium, and superalloys), materials processing technology, materials durability in the aerospace environment, ceramics, fatigue and fracture mechanics, tribology, and nondestructive evaluation (NDE) are discussed. Research and development activities are introduced to the nonaerospace industry. In order to provide a convenient means to help transfer aerospace technology to the commercial mainstream in a systematic manner.

  8. Assessment of research needs for wind turbine rotor materials technology

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  9. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G. (comp.)

    1990-07-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

  10. Aerospace materials and material technologies

    CERN Document Server

    Wanhill, R

    2017-01-01

    This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. A considerable amount of materials data is compiled and presented in appendices at the end of the book. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.

  11. Research progress on ultra-precision machining technologies for soft-brittle crystal materials

    Science.gov (United States)

    Gao, Hang; Wang, Xu; Guo, Dongming; Chen, Yuchuan

    2016-12-01

    Soft-brittle crystal materials are widely used in many fields, especially optics and microelectronics. However, these materials are difficult to machine through traditional machining methods because of their brittle, soft, and anisotropic nature. In this article, the characteristics and machining difficulties of soft-brittle and crystals are presented. Moreover, the latest research progress of novel machining technologies and their applications for softbrittle crystals are introduced by using some representative materials (e.g., potassium dihydrogen phosphate (KDP), cadmium zinc telluride (CZT)) as examples. This article reviews the research progress of soft-brittle crystals processing.

  12. News and Views: Perspectives on Graphene and Other 2D Materials Research and Technology Investments

    Science.gov (United States)

    Ribeiro-Soares, J.; Dresselhaus, M. S.

    2014-06-01

    With the actual experimental realization of graphene samples, it became possible not only to exploit the special physical properties of graphene but also to exploit its technological applications. As the field developed, the discovery of other 2D materials occurred and this opened up access to a plethora of combinations of a large variety of electrical, optical, mechanical, and chemical properties. Now there are large investments being made around the world to develop the graphene research area and to boost graphene use in technology. Here, we discuss current research and some future prospects for this area of layered nanomaterials.

  13. 1995 Federal Research and Development Program in Materials Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The

  14. PREFACE: 2nd International Meeting for Researchers in Materials and Plasma Technology

    Science.gov (United States)

    Niño, Ely Dannier V.

    2013-11-01

    These proceedings present the written contributions of the participants of the 2nd International Meeting for Researchers in Materials and Plasma Technology, 2nd IMRMPT, which was held from February 27 to March 2, 2013 at the Pontificia Bolivariana Bucaramanga-UPB and Santander and Industrial - UIS Universities, Bucaramanga, Colombia, organized by research groups from GINTEP-UPB, FITEK-UIS. The IMRMPT, was the second version of biennial meetings that began in 2011. The three-day scientific program of the 2nd IMRMPT consisted in 14 Magisterial Conferences, 42 Oral Presentations and 48 Poster Presentations, with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Russia, France, Venezuela, Brazil, Uruguay, Argentina, Peru, Mexico, United States, among others. Moreover, the objective of IMRMPT was to bring together national and international researchers in order to establish scientific cooperation in the field of materials science and plasma technology; introduce new techniques of surface treatment of materials to improve properties of metals in terms of the deterioration due to corrosion, hydrogen embrittlement, abrasion, hardness, among others; and establish cooperation agreements between universities and industry. The topics covered in the 2nd IMRMPT include New Materials, Surface Physics, Laser and Hybrid Processes, Characterization of Materials, Thin Films and Nanomaterials, Surface Hardening Processes, Wear and Corrosion / Oxidation, Modeling, Simulation and Diagnostics, Plasma Applications and Technologies, Biomedical Coatings and Surface Treatments, Non Destructive Evaluation and Online Process Control, Surface Modification (Ion Implantation, Ion Nitriding, PVD, CVD). The editors hope that those interested in the are of materials science and plasma technology, enjoy the reading that reflect a wide range of topics. It is a pleasure to thank the sponsors and all the participants and contributors for

  15. News and Views: Perspectives on Graphene and Other 2D Materials Research and Technology Investments

    OpenAIRE

    Dresselhaus, Mildred; Ribeiro Soares, Jenaina

    2013-01-01

    With the actual experimental realization of graphene samples, it became possible not only to exploit the special physical properties of graphene but also to exploit its technological applications. As the field developed, the discovery of other 2D materials occurred and this opened up access to a plethora of combinations of a large variety of electrical, optical, mechanical, and chemical properties. Now there are large investments being made around the world to develop the graphene research ar...

  16. IMPROVING TEACHERS’ PROFESSIONALISM THROUGH MATERIALS DEVELOPMENT, INFORMATION TECHNOLOGY AND CLASSROOM ACTION RESEARCH

    Directory of Open Access Journals (Sweden)

    Emalia Iragiliati Sukarni

    2009-01-01

    Full Text Available Abstract: One of the ways to promote the International standard schools’ teacher professionalism was to carry out weekly workshops on material development based on curriculum pathways of the National Plus High Schools using the Information Technology (IT facilities. This research developed teacher-made materials for the X grade. The materials were graded: narrative, recount, news item, descriptive, ranging from 250 to 500 words. The materials were then tried out in a Classroom Action Research (CAR at eight classes of X grades. Based on previous research, teachers’ preferences are made in line with the students’ choice of issues to be discussed. It aimed at knowing the feasibility of the materials, the students’ preference of exercises and students’ level of competencies of each class related to the understanding of the units. Results of the questionnaires showed that most of the materials were understood and liked by the students. Thus, professionalism was seen during the process of the CAR.

  17. Magnet Science and Technology for Basic Research at the High Field Laboratory for Superconducting Materials

    Institute of Scientific and Technical Information of China (English)

    渡辺和雄

    2007-01-01

    Since the first practical cryocooled superconducting magnet using a GM-cryocooler and high temperature superconducting current leads has been demonstrated successfully at the High Field Laboratory for Superconducting Materials (HFLSM), various kinds of cryocooled superconducting magnets in fields up to 15 T have been used to provide access for new research areas in fields of magneto-science. Recently, the HFLSM has succeeded in demonstrating a cryocooed 18 T high temperature superconducting magnet and a high field cryocooled 27.5 T hybrid magnet. Cryocooled magnet technology and basic research using high field magnets at the HFLSM are introduced.

  18. Application and Research Status of Alternative Materials for 3D-printing Technology

    OpenAIRE

    Wang, Yanqing; SHEN Jingxing; WU Haiquan

    2016-01-01

    Application features and research status of alternative 3D-printing materials for six typical 3D-printingtechniques were reviewed. From the point of view of physical forms, four kinds of materials of liquid photosensitive resin material, thin sheet material (paper or plastic film) , low melting point filament material and powder material are included. And from the composition point of view, nearly all kinds of materials in the production and life are included such as polymer materials: plasti...

  19. Basic research for nuclear energy. y Study on the nuclear materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, I. H.; Lee, H. S.; Jeong, Y. H.; Sung, K. W.; Han, J. H.; Lee, J. T.; Lee, H. K.; Kim, S. J.; Kang, H. S.; An, D. H.; Kim, K. R.; Park, S. D.; Han, C. H.; Jung, M. K.; Oh, Y. J.; Kim, K. H.; Kim, S. H.; Back, J. H.; Kim, C. H.; Lim, K. S.; Kim, Y. Y.; Na, J. W.; Ku, J. H.; Lee, D. H.

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs.

  20. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  1. Five Years of Research Into Technology-Enhanced Learning at the Faculty of Materials Science and Technology

    Science.gov (United States)

    Svetský, Štefan; Moravčík, Oliver; Rusková, Dagmar; Balog, Karol; Sakál, Peter; Tanuška, Pavol

    2011-01-01

    The article describes a five-year period of Technology Enhanced Learning (TEL) implementation at the Faculty of Materials Science and Technology (MTF) in Trnava. It is a part of the challenges put forward by the 7th Framework Programme (ICT research in FP7) focused on "how information and communication technologies can be used to support learning and teaching". The empirical research during the years 2006-2008 was focused on technology-driven support of teaching, i. e. the development of VLE (Virtual Learning Environment) and the development of database applications such as instruments developed simultaneously with the information support of the project, and tested and applied directly in the teaching of bachelor students. During this period, the MTF also participated in the administration of the FP7 KEPLER project proposal in the international consortium of 20 participants. In the following period of 2009-2010, the concept of educational activities automation systematically began to develop. Within this concept, the idea originated to develop a universal multi-purpose system BIKE based on the batch processing knowledge paradigm. This allowed to focus more on educational approach, i.e. TEL educational-driven and to finish the programming of the Internet application - network for feedback (communication between teachers and students). Thanks to this specialization, the results of applications in the teaching at MTF could gradually be presented at the international conferences focused on computer-enhanced engineering education. TEL was implemented at a detached workplace and four institutes involving more than 600 students-bachelors and teachers of technical subjects. Four study programmes were supported, including technical English language. Altogether, the results have been presented via 16 articles in five countries, including the EU level (IGIP-SEFI).

  2. Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials

    Energy Technology Data Exchange (ETDEWEB)

    Shackson, R.H.

    1991-10-09

    This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

  3. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  4. Mechanics for materials and technologies

    CERN Document Server

    Goldstein, Robert; Murashkin, Evgenii

    2017-01-01

    This book shows impressively how complex mathematical modeling of materials can be applied to technological problems. Top-class researchers present the theoretical approaches in modern mechanics and apply them to real-world problems in solid mechanics, creep, plasticity, fracture, impact, and friction. They show how they can be applied to technological challenges in various fields like aerospace technology, biological sciences and modern engineering materials.

  5. Application and Research Status of Alternative Materials for 3D-printing Technology

    Directory of Open Access Journals (Sweden)

    WANG Yanqing

    2016-08-01

    Full Text Available Application features and research status of alternative 3D-printing materials for six typical 3D-printingtechniques were reviewed. From the point of view of physical forms, four kinds of materials of liquid photosensitive resin material, thin sheet material (paper or plastic film , low melting point filament material and powder material are included. And from the composition point of view, nearly all kinds of materials in the production and life are included such as polymer materials: plastic, resin, wax; metal and alloy materials; ceramic materials. Liquid photosensitive resin material is used for stereo lithigraphy apparatus(SLA; thin sheet materials such as paper or plastic film are used for laminated object manufacturing(LOM; low melting point polymer filament materials such as wax filament, polyolefin resin filament, polyamide filament and ABS filament are used for fused deposition modeling(FDM; very wide variety powder materials including nylon powder, nylon-coated glass powder, polycarbonate powder, polyamide powder, wax powder, metal powder(Re-sintering and infiltration of copper are needed after sintering, wax-coated ceramic powder, wax-coated metal powder and thermosetting resin-coated fine sand are used for selective laser sintering(SLS. Nearly the same above powder materials are used for selective laser melting(SLM, but the printed parts own much more higher density and better mechanical properties. Powder materials are likewise used for threedimensional printing and gluing(3DP, however, the powders are stuck together by tricolor binder sprayed through nozzle and cross-section shape of the part is color-printed on it. Finally, the development direction in both quality and the yield of 3D-printing materials were pointed out to be a bottle-neck issue and a hot topic in the field of 3D-printing.

  6. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, P.T. [comp.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

  7. Research on the development of green chemistry technology assessment techniques: a material reutilization case

    Science.gov (United States)

    Hong, Seokpyo; Ahn, Kilsoo; Kim, Sungjune; Gong, Sungyong

    2015-01-01

    Objectives This study presents a methodology that enables a quantitative assessment of green chemistry technologies. Methods The study carries out a quantitative evaluation of a particular case of material reutilization by calculating the level of “greenness” i.e., the level of compliance with the principles of green chemistry that was achieved by implementing a green chemistry technology. Results The results indicate that the greenness level was enhanced by 42% compared to the pre-improvement level, thus demonstrating the economic feasibility of green chemistry. Conclusions The assessment technique established in this study will serve as a useful reference for setting the direction of industry-level and government-level technological R&D and for evaluating newly developed technologies, which can greatly contribute toward gaining a competitive advantage in the global market. PMID:26206363

  8. Research on the development of green chemistry technology assessment techniques: a material reutilization case.

    Science.gov (United States)

    Hong, Seokpyo; Ahn, Kilsoo; Kim, Sungjune; Gong, Sungyong

    2015-01-01

    This study presents a methodology that enables a quantitative assessment of green chemistry technologies. The study carries out a quantitative evaluation of a particular case of material reutilization by calculating the level of "greenness" i.e., the level of compliance with the principles of green chemistry that was achieved by implementing a green chemistry technology. The results indicate that the greenness level was enhanced by 42% compared to the pre-improvement level, thus demonstrating the economic feasibility of green chemistry. The assessment technique established in this study will serve as a useful reference for setting the direction of industry-level and government-level technological R&D and for evaluating newly developed technologies, which can greatly contribute toward gaining a competitive advantage in the global market.

  9. Materials research for fusion

    Science.gov (United States)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  10. Researches and studies about technological trend of `functionally gradient materials`; Keisha kino zairyo no gijutsu doko ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Morishima, H. [Information Center of Exploitation of Petroleum, Tokyo (Japan)

    1995-09-01

    Introduced herein is a summary of the technological research report about functionally gradient materials that was presented by Information Center of Exploration of Petroleum in fiscal 1994. The functionally gradient material was realized in the 1980s thanks to more than 30 technologies industrial or government sector bodies interested in science and technology, which effort was related to Japan`s recoverable manned spaceplane program. The material, equipped with the high thermal conductivity and mechanical strength required of a material to cover the spaceplane body, was born out of a innovative idea in which the constitution, etc., of two different materials should continuously change for the elimination of any boundary between the two now that a direct bondage of a metal and ceramics would after all experience separation or cracking. The new idea enabled a plurality of desired functions to be freely distributed within the material, creating hopes in various fields. It has been found that probabilities are high that the functionally gradient material will improve at a surprising rate the conversion rate in utilizing thermoelectricity, photoelectricity, or nuclear energy. In the oil industry, studies are under way to use the new material in petroleum exploration, etc., that have to be undertaken under severe conditions. 1 ref., 2 figs., 2 tabs.

  11. NATO Advanced Research Workshop on Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators

    CERN Document Server

    Gusev, Evgeni; Dideikin, Arthur

    2010-01-01

    The main goal of this book is to review recent progress and current status of MEMS/NEMS technologies and devices. Several important areas are discussed: history of research in the field, device physics, examples of sucessful applications, sensors, materials and processing aspects. The authors who have contributed to the book represent a diverse group of leading scientists from academic, industrial and governmental labs worldwide who bring a broad array of backgrounds such as device physics, technologists, electrical and mechanical engineering, surface chemistry and materials science). The contributions to this book are accessible to both expert scientists and engineers who need to keep up with leading edge research, and newcomers to the field who wish to learn more about the exciting basic and applied research issues relevant to micromechanical devices and technologies.

  12. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. (comps.)

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  13. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. [comps.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  14. Recovery technologies for building materials

    Science.gov (United States)

    Karu, Veiko; Nurme, Martin; Valgma, Ingo

    2015-04-01

    Mining industry provides building materials for construction. Civil engineers have settled the quality parameters for construction materials. When we produce high quality building materials from carbonate rock (limestone, dolostone), then the estimated waste share is 25% to 30%, depending on crushing principles and rock quality. The challenge is to find suitable technology for waste recovery. During international mining waste related cooperation project MIN-NOVATION (www.min-novation.eu), partners mapped possibilities for waste recovery in mining industry and pointed out good examples and case studies. One example from Estonia showed that when we produce limestone aggregate, then we produce up to 30% waste material (fines with size 0-4mm). This waste material we can see as secondary raw material for building materials. Recovery technology for this fine grained material has been achieved with CDE separation plant. During the process the plant washes out minus 63 micron material from the limestone fines. This technology allows us to use 92% of all limestone reserves. By-product from 63 microns to 4 mm we can use as filler in concrete or as fine limestone aggregate for building or building materials. MIN-NOVATION project partners also established four pilot stations to study other mineral waste recovery technologies and solutions. Main aims on this research are to find the technology for recovery of mineral wastes and usage for new by-products from mineral mining waste. Before industrial production, testing period or case studies are needed. This research is part of the study of Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  15. Research on Using Natural Coating Materials on the Storage Life of Mango Fruit cv. Nam Dok Mai and Technology Dissemination

    Directory of Open Access Journals (Sweden)

    Apiradee MUANGDECH

    2016-03-01

    Full Text Available This study was designed to assess the suitable type and concentration of 3 natural coating materials, namely, Aloe vera gel, chitosan and carnaubar wax, on postharvest storage life of mango (Mangifera indica L. cv. Nam Dok Mai. The experiment was divided into 3 treatments to compare the 3 types of coating materials and each appropriate concentration, to find the appropriate combination treatment, and to evaluate the benefit of this technology. The objectives of this research were to compare different concentrations and study the type of natural coating materials. At 20 % Aloe vera jelly, 1 % chitosan and 4 % carnaubar wax gave the longest storage life with good quality at 12 days at a storage temperature of 25 °C and 75±5 % relative humidity (p ≤ 0.05. Further investigation was done by using these optimal concentrations alone or in combination under 2 different conditions, 25 °C with 75±5 % relative humidity and 13 °C with 90±5 % relative humidity. It was found that coating with combination of 20 % Aloe vera jelly and 1 % chitosan gave the best result in alleviating the formation of brown spot and extended the storage life up to 12 days as well as slowing down the weight loss, changes in peel and pulp color, firmness, texture, quality such as concentrate by titratable acidity, total soluble solids and respiratory rate significantly compared to control and other treatment (p ≤ 0.05. The use of the coating materials did not alter the quality of the fruit when ripe. Technology dissemination to farmers and exporters was performed by using the training manuals created by the author. The results of the pre-test and after training post-test showed that farmers and exporters increased their knowledge, attitudes, awareness and skills in the use of the natural coating materials for prolonging storage life of mangos.

  16. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    Science.gov (United States)

    2016-07-07

    AM2A.2, 27 October - 01 November 2013, Paris Marriott Rive Gauche Hotel and Convention Center, Paris, France. 2) “ Development on advanced functional...DISTRIBUTION/AVAILABILITY STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT We have successfully developed a new...are very useful for scientific and industrial applications. 15. SUBJECT TERMS Fibre Lasers, Laser Dynamics, Nonlinear Optical Materials 16. SECURITY

  17. Research of developing and processing technology of new visual and optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Jae; Kim, K. H.; Rhee, C. K.; Lee, H. G.; Kim, W. W.; Jeon, C. J.; Park, S.; Kim, H. S

    2000-08-01

    Crystalline TiO{sub 2} powder with rutile phase for the plastic lens material was prepared by the homogeneous precipitation process at ambient or low temperatures (HPPLT) using simply heating aqueous TiOCl{sub 2} solution. The transparent TiO{sub 2} thin films and CR39/TiO{sub 2} composite lens were fabricated using dispersed TiO{sub 2} particle in the aqueous or organic solution. The monodisperse TiO{sub 2} ultrafine particles with the diameters of 40 {approx} 400 nm were obtained from aqueous TiOCl{sub 2} solution with an appropriate Ti{sup 4+} concentration by the HPPLT. The process was carried out under the conditions in the ranges of 17 {approx} 230 deg C to prevent H{sub 2}O evaporation completely and to make it freely or to prevent it thoroughly. The existence of SO{sub 4}{sup 2-} ion in aqueous TiOCl{sub 2} solution make the preferential growth of the acicular primary particles suppressed, resulting in the spherical or round primary particles with the anatase phase. The ultrafine TiO{sub 2} powder by the HPPLT was well dispersed with sizes of 20 {approx} 50 nm in n-butyl alcohol solution. The mixture of TiO{sub 2} particles with silica sol, corresponding to 1.0 wt.% SiO{sub 2} in 99 wt.% (TiO{sub 2} + H{sub 2}O) aqueous solution was coated with 40 {approx} 50 nm thickness on the substrate. The optical transmittance of CR39/TiO{sub 2} composite lens with increase in the addition of the ultrafine TiO{sub 2} powder decreases gradually although TiO{sub 2} particles were well dispersed in n-butyl alcohol solution. Thus, it can be thought that it is appropriate to add 0.3 mL of 1.0 g TiO{sub 2}/1000 mL n-butyl alcohol solution to the CR39 solution for the CR39/TiO2 composite lens with optical transmittances more than 90 %. It was also confirmed that PMMA/TiO{sub 2} composite thin films showed a similar transmittance like the CR39/TiO{sub 2} composite lens.

  18. Application Technology Research Unit

    Data.gov (United States)

    Federal Laboratory Consortium — To conduct fundamental and developmental research on new and improved application technologies to protect floricultural, nursery, landscape, turf, horticultural, and...

  19. Research and Technology Transfer Ion Implantation Technology for Specialty Materials: Proceedings of a Joint Workshop Held in Knoxville, Tennessee on 26-27 October 1989

    Science.gov (United States)

    1991-02-01

    Options from the Perspective of a SWall Business, Dr. Ralph B. Alexander, President, Ion Surface Tecnology , Inc. 9:45 &wort MedAniwm for Standards D[vel...implantation technologies, including the technology push /pull issue, psychological issues, competing technologies and relative costs; (2) implementation options...most advantageous method would depend on the specific ap- plication. The issue of technology push /pull, i.e. push from the develo- pers/researchers/ion

  20. Materials research at CMAM

    Science.gov (United States)

    Zucchiatti, Alessandro

    2013-07-01

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  1. Materials research at CMAM

    Energy Technology Data Exchange (ETDEWEB)

    Zucchiatti, Alessandro [Centro de Micro Analisis de Materiales CMAM, Universidad Autonoma de Madrid, c/ Faraday 3, 28049 Madrid (Spain)

    2013-07-18

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autonoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  2. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  3. The Materiality of Research

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    In this feature essay, Ninna Meier reflects on the materiality of the writing – and re-writing – process in academic research. She explores the ways in which our ever-accummulating thoughts come to form layers on the material objects in which we write our notes and discusses the pleasures of co-authorship....

  4. The Materiality of Research

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    In this feature essay, Ninna Meier reflects on the materiality of the writing – and re-writing – process in academic research. She explores the ways in which our ever-accummulating thoughts come to form layers on the material objects in which we write our notes and discusses the pleasures of co-authorship....

  5. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    Science.gov (United States)

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  6. A research project to develop and evaluate a technical education component on materials technology for orientation to space-age technology

    Science.gov (United States)

    Jacobs, J. A.

    1976-01-01

    A project was initiated to develop, implement, and evaluate a prototype component for self-pacing, individualized instruction on basic materials science. Results of this project indicate that systematically developed, self-paced instruction provides an effective means for orienting nontraditional college students and secondary students, especially minorities, to both engineering technology and basic materials science. In addition, students using such a system gain greater chances for mastering subject matter than with conventional modes of instruction.

  7. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  8. Research and Technology 1980

    Science.gov (United States)

    1980-01-01

    Topics are divided into three major areas: Earth resources, advanced development, and technology transfer. Topics include: aerial color infrared photography, fiber optics, lightning research, soil mechanics, corrosion prevention, image processing, and communication systems development.

  9. Materials Research Department Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Winther, Grethe; Hansen, N. [eds.

    1999-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1998 are described. The scientific work is presented in five chapters: Materials Science, Materials Engineering, Materials Technology, Materials Chemistry and Fusion Materials. A survey is given of the Departments collaboration with national and international industries and research institutions. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists and educational activities are included. (au) 165 refs.

  10. Advanced materials and technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, V.K.; Alander, T.K.R. [eds.] [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physical Metallurgy and Materials Science

    1995-12-31

    The contents of the proceedings consist of three chapters, of which, the first discusses common megatrends, both nationally and globally, in different fields of materials technology. The second chapter is dealing with novel production and processing of base metals and, finally, the third chapter is related with current achievements and future goals of electronic, magnetic, optical and coating materials and their processing

  11. Materials Research Department annual report 1999

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Hansen, Niels

    2000-01-01

    Selected activities of the Materials Research Department at Risø National Laboratory during 1999 are described. The scientific work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given ofthe Department's participation in collaboratio...

  12. Materials Research Department annual report 2000

    DEFF Research Database (Denmark)

    2001-01-01

    Selected activities of the Materials Research Department at Risø National Laboratory during 2000 are described. The scientific work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given ofthe Department's industrial collaboration, edu...

  13. Towards possible opportunities in nuclear materials science and technology at an X-ray free electron laser research facility

    Science.gov (United States)

    Froideval, A.; Badillo, A.; Bertsch, J.; Churakov, S.; Dähn, R.; Degueldre, C.; Lind, T.; Paladino, D.; Patterson, B. D.

    2011-09-01

    Spectroscopy and imaging of condensed matter have benefited greatly from the availability of intense X-ray beams from synchrotron sources, both in terms of spatial resolution and of elemental specificity. The advent of the X-ray free electron laser (X-ray FEL) provides the additional features of ultra-short pulses and high transverse coherence, which greatly expand possibilities to study dynamic processes and to image non-crystalline materials. The proposed SwissFEL facility at the Paul Scherrer Institute is one of at present four X-ray FEL projects worldwide and is scheduled to go into operation in the year 2017. This article describes a selection of problems in nuclear materials science and technology that would directly benefit from this and similar X-ray FEL sources. X-ray FEL-based experiments are proposed to be conducted on nuclear energy-related materials using single-shot X-ray spectroscopy, coherent X-ray scattering and/or X-ray photon correlation spectroscopy in order to address relevant scientific questions such as the evolution in time of the irradiation-induced damage processes, the deformation processes in nuclear materials, the ion diffusion processes in the barrier systems of geological repositories, the boiling heat transfer in nuclear reactors, as well as the structural characterization of graphite dust in advanced nuclear reactors and clay colloid aggregates in the groundwater near a radioactive waste repository.

  14. Research on microcapsules of phase change materials

    Institute of Scientific and Technical Information of China (English)

    DAI Xia; SHEN Xiaodong

    2006-01-01

    Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule technology of phase change materials and its main functions and the structural composition, preparation methods and characterization technology of microcapsule of phase change materials. The microcapsule of phase change materials is small in size and its temperature remains unchanged during the process of heat absorption and heat release. It is of great value in research and application prospect due to these characteristics.

  15. Advanced Materials for Exploration Task Research Results

    Science.gov (United States)

    Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.

    2008-01-01

    The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.

  16. Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo

    Directory of Open Access Journals (Sweden)

    Gogina Elena

    2016-01-01

    Full Text Available The article deals with innovative methods, technologies and materials intended to reduce the adverse ecological impact of human waste and various industrial waste situated in municipal solid waste landfills (MSW, on water bodies, soil, and atmosphere. The existence of these factors makes the region less attractive for urban development. A comparison has been made of the methods intended to reduce the damage caused to the environment, in order to provide for sustainable development of cities, using the example of an actual landfill situated in the territory of Moscow. A scheme of reconstruction is recommended for the drainage water treatment plant at this landfill, which will lead to improvement of the environmental situation and contribute to the development of territories in the adjacent districts, and to reduction of pollution load on the river and atmosphere.

  17. Habitat Technology Research at DLR

    OpenAIRE

    Quantius, Dominik; Schubert, Daniel; Maiwald, Volker; Hauslage, Jens; Bornemann, Gerhild; Waßer, Kai; Hill, Jürgen; Henn, Norbert; Ruyters, Hans-Günter; Braun, Markus

    2013-01-01

    For long duration space missions a closed-loop system which can re-use of materials is mandatory. Also on Earth there are harsh environments or overpopulated areas where a sustainable handling of given goods is indispensable. Addressing these challenges the German Aerospace Center (DLR) conducts research in various fields of habitat technology development, which will be illustrated within this paper. There are various complementary topics, such as coordination and funding of building blocks f...

  18. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Research on Materials for the High Speed Civil Transport

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.

  19. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    Science.gov (United States)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  20. Research and technology, fiscal year 1982

    Science.gov (United States)

    1982-01-01

    Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.

  1. Materials Research Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B.F.; Hansen, N. [eds.

    1998-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1997 are described. The scientific work is presented in four chapters: Materials Science, Materials Chemistry, Materials Engineering and Materials Technology. A survey is given of the Department`s participation in international collaboration and of its activities within education and training. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists, publications and other Department activities are included. (au) 278 refs.

  2. Space Technology Research Grants Program

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Technology Research Grants Program will accelerate the development of "push" technologies to support the future space science and exploration...

  3. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  4. Critical technologies research: Opportunities for DOE

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  5. Critical technologies research: Opportunities for DOE

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  6. Nigerian Journal of Technological Research

    African Journals Online (AJOL)

    The Nigerian Journal of Technological Research is a pure scientific journal with a ... technology to its immediate environs and the international community. ... and communication Technology; Management and Entrepreneurship sciences.

  7. Joint research and development and exchange of technology on toxic material emergency response between LLNL and ENEA. 1985 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, M.H.; Caracciolo, R.

    1986-01-31

    For the past six years, the US Department of Energy, LLNL, and the ENEA, Rome, Italy, have participated in cooperative studies for improving a systems approach to an emergency response following nuclear accidents. Technology exchange between LLNL and the ENEA was initially confined to the development, application, and evaluation of atmospheric transport and diffusion models. With the emergence of compatible hardware configurations between LLNL and ENEA, exchanges of technology and ideas for improving the development and implementation of systems are beginning to emerge. This report describes cooperative work that has occurred during the past three years, the present state of each system, and recommendations for future exchanges of technology.

  8. Electronics materials research

    Science.gov (United States)

    1982-01-01

    The electronic materials and is aimed at the establishment of quantitative relationships underlying crystal growth parameters, materials properties, electronic characteristics and device applications. The overall program evolves about the following main thrust areas: (1) crystal growth novel approaches to engineering of semiconductor materials; (2) investigation of materials properties and electronic characteristics on a macro and microscale; (3) surface properties and surface interactions with the bulk and ambients; (4) electronic properties controlling device applications and device performance.

  9. Development of a dedicated beam forming system for material and bioscience research with high intensity, small field electron beam of LILLYPUT 3 accelerator at Wroclaw Technology Park

    CERN Document Server

    Adrich, Przemysław; Wilk, Piotr; Chorowski, Maciej; Poliński, Jarosław; Bogdan, Piotr

    2016-01-01

    The primary use of the LILLYPUT 3 accelerator at the Nondestructive Testing Laboratory at Wroclaw Technology Park is X-ray radiography for nondestructive testing, including R&D of novel techniques for industrial and medical imaging. The scope of possible applications could be greatly extended by providing a system for irradiation with electron beam. The purpose of this work was to design such a system, especially for high dose rate, small field irradiations under cryogenic conditions for material and bioscience research. In this work, two possible solutions, based either on beam scanning or scattering and collimation, were studied and compared. It was found that under existing conditions efficiency of both systems would be comparable. The latter one was adopted due to its simplicity and much lower cost. The system design was optimized by means of detailed Monte Carlo modeling. The system is being currently fabricated at National Centre for Nuclear Research in \\'Swierk.

  10. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  11. [Plasma technology for biomedical material applications].

    Science.gov (United States)

    Liu, Z; Li, X

    2000-03-01

    In this paper is introduced the plasma technology for the applications of several species biomaterial such as ophthalmological material, drug delivery system, tissue culture material, blood anticoagulant material as well as plasma surface clearing and plasma sterilization, and so on.

  12. Materials and Waste Management Research

    Science.gov (United States)

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  13. Instrumentation for Materials Research

    Science.gov (United States)

    Claassen, Richard S.

    1976-01-01

    Discusses how sophisticated instrumentation techniques yield practical results in three typical materials problems: fracture analysis, joining, and compatibility. Describes techniques such as scanning and transmission electron microscopy, and Auger spectroscopy. (MLH)

  14. Materials Research Department annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B.F.; Hansen, N. [eds.

    2000-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1999 are described. The scientific work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given of the Department's participation in collaboration with national and international industries and research institutions and of its actitivities within education and training. Furthermore, the main figures outlining the funding and expenditures of the Department are given. Lists of staff members, visiting scientists, publications and other Department activities are included. (au)

  15. Materials Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Winther, G.; Hansen, N. [eds.

    2001-03-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 2000 are described. The scientific work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given of the Department's industrial collaboration, educational activities and academic activities, such as collaboration with other research institutions, committee work and a list of publications. Furthermore, the main figures outlining the funding and expenditures of the Department are given. Lists of staff members and visiting scientists are included. (au)

  16. Instructional Technology: The Research Field.

    Science.gov (United States)

    Gagne, Robert M.

    1986-01-01

    Reflects upon opportunities for research in instructional technology provided by present state of media hardware technology and educational requirements. Prospects for research in incidental learning, including learning from television, are discussed, as well as traditional learning research on intentional learning, including possibilities for…

  17. Materials Research Society Symposium Proceedings, Volume 758 Held in Boston, Massachusetts on December 3-5, 2002. Rapid Prototyping Technologies

    Science.gov (United States)

    2003-04-01

    materials have been produced biologically, and biomineral species are limited in number to less than one hundred [2]. Although a huge range of organic...reactions for film fabrication by "Artificial Biomineralization " [11], where the interfacial reactions between solutions separated by membranes are used with...M. Gu and S. Kawata, submitted. 15. M. Gu, Advanced Optical Imaging Theory ( Springer , Heide lberg, 1999). 168 Tissue Engineering and Biomedical

  18. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  19. Smart Materials Research at NRL

    Science.gov (United States)

    Matic, Peter

    1996-01-01

    This presentation covers the use of smart materials in Naval Research Laboratory (NRL) research for sensors, actuators, and modeling and control. Emphasis is on optical fiber Bragg gratings, piezoelectric actuators, shape memory alloy actuators, and polymer matrix and interfaces.

  20. Materials, critical materials and clean-energy technologies

    Science.gov (United States)

    Eggert, R.

    2017-07-01

    Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess "what is critical" to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  1. Materials Sciences Research.

    Science.gov (United States)

    1974-07-01

    from 0.1 K up to 100 K. The calibration is stabl.e to better than 0.5 mK /2 days, it is independent of magnetic field up to at least 25 Kg and its total...Wirtz, Associate Professor Junior Staff: John J. Janecek, Research Assistant Vishwa N. Shukla , Research Assistant Chyang J. Yu, Research Assistant...control within + 1 mK ) have been constructed and tested. We are now learning to purify and control the liquid crystals so that measure- -" ments of

  2. Photocatalytic materials and technologies for air purification.

    Science.gov (United States)

    Ren, Hangjuan; Koshy, Pramod; Chen, Wen-Fan; Qi, Shaohua; Sorrell, Charles Christopher

    2017-03-05

    Since there is increasing concern for the impact of air quality on human health, the present work surveys the materials and technologies for air purification using photocatalytic materials. The coverage includes (1) current photocatalytic materials for the decomposition of chemical contaminants and disinfection of pathogens present in air and (2) photocatalytic air purification systems that are used currently and under development. The present work focuses on five main themes. First, the mechanisms of photodegradation and photodisinfection are explained. Second, system designs for photocatalytic air purification are surveyed. Third, the photocatalytic materials used for air purification and their characteristics are considered, including both conventional and more recently developed photocatalysts. Fourth, the methods used to fabricate these materials are discussed. Fifth, the most significant coverage is devoted to materials design strategies aimed at improving the performance of photocatalysts for air purification. The review concludes with a brief consideration of promising future directions for materials research in photocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Research in Materials Science

    Science.gov (United States)

    1975-05-31

    236. (1966) 836. 11. Noah Hendelsohn, S.B. Thesis, MIT (Physics, 1974) unpublished; Myron Hale Frommer , Ph.D. Thesis, MIT (Metallurgy and Materials...iiiK±\\fju\\mki^m\\IUW<MfW.imK-VlWW I 1 ■77- 12. J. Bostock, Kofi Agyeman, M.ll. Frommer , and M.L.A. MacVicar, J. Appl. Phys. 44 (1973) 5567. 13. W. N

  4. Roadmap for Process Equipment Materials Technology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-10-01

    This Technology Roadmap addresses the ever-changing material needs of the chemical and allied process industries, and the energy, economic and environmental burdens associated with corrosion and other materials performance and lifetime issues. This Technology Roadmap outlines the most critical of these R&D needs, and how they can impact the challenges facing today’s materials of construction.

  5. The Materiality of Research

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    In this feature essay, Ninna Meier explores the relationship between time, space and academic writing. She ponders the ‘portable magic’ of research: namely, the capacity for our thoughts to be both grounded in a particular point in time and space and yet simultaneously ‘free from these dimensions...

  6. The Materiality of Research

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    In this feature essay, Ninna Meier explores the relationship between time, space and academic writing. She ponders the ‘portable magic’ of research: namely, the capacity for our thoughts to be both grounded in a particular point in time and space and yet simultaneously ‘free from these dimensions...

  7. RAW MATERIAL DEWATERING ELECTROMAGNETIC TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Burdo O.G.

    2012-04-01

    Full Text Available Moisture transfer schemes and mechanisms of capillary-porous materials dehydration are considered. Mechanical, thermal and diffusive mechanisms for different moisture linkage forms are analyzed, driving forces and velocity coefficients of processes are estimated. Availability of dehydration in microwave frequencies range field is shown. A new generalized complex that takes into account a specificity of micro- and nanokinetics of moisture transfer in products is proposed. The explanation of barodiffusive moisture transfer process mechanism in a product is shown. The results of experimental researches, in which specific energy of 1,9 MJ per 1 kg of removed moisture is reached, are shown. The tests results of the band dryer with microwave and infrared energy generators are presented.

  8. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  9. [Technology transfer of building materials by ECOMAT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

  10. Materials Technology; 200 Years and the Future.

    Science.gov (United States)

    Yadon, James N.; Steeb, Ralph V.

    Focus in this paper is on the importance of materials technology, the matter and energy crises, and the interrelatedness of our increasing need for materials, and the implications for education. Following a short history of what materials have done for man and what man has done with materials, particularly in the development of various metals and…

  11. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  12. Low-cost forming method for aircraft ACM. 3. Low-cost forming technologies for thermoplastic resin based composite materials, textile technologies, and research proposals; Kokukiyo ACM no tei cost seikeiho. 3. Netsukasosei jushikei fukugo zairyo no tei cost seikei gijutsu to textile gijutsu kenkyu teigen

    Energy Technology Data Exchange (ETDEWEB)

    Taki, T. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Amaoka, K. [Fuji Heavy Industries, Ltd., Tokyo (Japan)

    1998-03-15

    This paper introduces trends inside and outside the country on low-cost forming technologies for thermoplastic resin based composite materials, and proposes future research and development themes. Thermoplastic resin based composite materials are characterized in that they have high tenacity, raw materials thereof can be stored in room temperature, and they require no chemical reactions for forming, but can be formed in a short time. Researches are continued because of the high possibility of forming them at low cost. Researches made to date include those on a direct consolidation technology, development of a fiber placement head, continuous filament winding and a powder coat towpreg technology. A technology is also studied recently, by which preform of a towpreg of a thermoplastic composite material is manufactured by using a textile technology, and then molded. Strength and rigidity data for the composite material formed from textile preform available at the present are too few to fully identify its mechanical properties. 20 refs., 12 figs.

  13. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  14. Structural materials for the next generation of technologies

    CERN Document Server

    Van de Voorde, Marcel Hubert

    1996-01-01

    1. Overview of advanced technologies; i.e. aerospace-aeronautics; automobile; energy technology; accelerator engineering etc. and the need for new structural materials. 2. Familiarisation with polymers, metals and alloys, structural ceramics, composites and surface engineering. The study of modern materials processing, generation of a materials data base, engineering properties includind NDE, radiation damage etc. 3. Development of new materials for the next generation of technologies; including the spin-off of materials developed for space and military purposes to industrial applications. 4. Materials selection for modern accelerator engineering. 5. Materials research in Europe, USA and Japan. Material R & D programmes sponsored by the European Union and the collaboration of CERN in EU sponsored programmes.

  15. Advanced materials research for long-haul aircraft turbine engines

    Science.gov (United States)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  16. Fiscal 1998 research report on the R and D on industrial science and technology for creating new industries. R and D on intelligent material and structure systems (Development of practical technology for rational use of energy); 1998 nendo shinki sangyo soshutsugata sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Chiteki zairyo kozo system no kenkyu kaihatsu (energy shiyo gorika kankei gijutsu jitsuyoka kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    As a part of development of intelligent material/structure systems, study was made on practical technology for rational use of energy. For resource saving and energy saving (smartening) for large and complex machines and structure systems, light-weight long-life materials/structures are indispensable. Study was thus made on the basic technology of material/structure systems equipped with realtime defect detection function, structural integrity diagnosis function and control function of noise and vibration through information processing and control by integrating composite material/structure and fiber or film sensor material/device. For development of smartening technology, sensing technology was studied to detect the interior structure of composite material/structure compacts. The basic fabrication technology of ceramic actuator materials/devices, and shape memory alloy system actuators were put into development. Smooth connection and cooperation among groups were promoted through the technical committee and research on domestic and overseas trends for forming common knowledge. (NEDO)

  17. User research & technology, pt.2

    CERN Document Server

    Greifeneder, Elke

    2011-01-01

    This e-book is Part 2 on the theme "User Research and Technology". The research covers the testing of online digital library resources using various methods. Library and information science as a field is changing and the requirements for top quality research are growing more stringent. This is typical of the experience of other professional fields as they have moved from practitioners advising practitioners to researchers building on past results. This e-book contains 12 papers on this theme.

  18. New Development and Research Area of Cementing Material and Technology%固井材料技术新进展及研究方向

    Institute of Scientific and Technical Information of China (English)

    齐奉忠; 杜建平; 魏群宝

    2015-01-01

    As the exploration and development work is extending into the fields of deep layers, low-pressure, low permeability and low abundance as well as offshore areas and non-conventional reservoirs, oil and gas well cementing becomes more and more difficult and calls for higher requirements on long-term cementing quality. Research and development of cementing materials face new challenges. This paper summarizes the technological achievements of cement slurry systems and materials made in recent years in the areas of ultra-high density cement slurry, ultra-low density cement slurry, large temperature difference cement slurry, salt-resistant latex cement slurry, lfexible cement, CO2 corrosion-resistant cement, phosphate cement, and low hydrate heat and low temperature cement. It also briefs about technological development of high temperature-resistant spacer lfuid, high-efifciency lfushing spacer lfuid and oil displacement high-density spacer lfuid. Based on the company’s cementing service business, the paper idienifes the future research areas –study of cementing material mechanism, improvement of cement slurry formula and additive performance, and development of new-type cementing materials.%随着勘探开发工作的逐步深入以及向“深(深层)、低(低压、低渗透、低丰度)、海(海洋)、非(非常规储层)”领域的拓展,油气井固井难度显著增加,对长期封固质量的要求越来越高,固井材料研发及应用面临新的挑战。文章从超高密度水泥浆、超低密度水泥浆、大温差水泥浆、抗盐胶乳水泥浆、韧性水泥、防C O2腐蚀水泥、磷酸盐水泥、低水化热低温水泥等方面总结了近来水泥浆体系和材料的技术进展,以及抗高温隔离液、高效冲洗隔离液、驱油型高密度隔离液等方面取得的技术进步。根据公司固井作业面临的形势,从固井材料机理研究、水泥浆配方及外加剂性能完善、新型固井

  19. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  20. Space and nuclear research and technology

    Science.gov (United States)

    1975-01-01

    A fact sheet is presented on the space and nuclear research and technology program consisting of a research and technology base, system studies, system technology programs, entry systems technology, and experimental programs.

  1. New developments in photon and materials research

    CERN Document Server

    2013-01-01

    This book presents the most recent updates in the field of photon and optical materials research. It is devoted to various interdisciplinary subjects such as fundamental photon physics, bio and medical photon physics, ultrafast non-linear optics, quasiparticle excitation and spectroscopy, coherent mid-infrared (IR) light sources, functional optoelectronic materials and optical fibres, and quantum nano-structured devices for various important technological applications. It contains 19 authoritative peer-reviewed chapters regarding experimental and theoretical research in these fields, contributed by young scientists and engineers (assistant or associate professor level) along with well-established experts. The response of materials to electromagnetic fields, namely light-matter interaction, has been of special concern in fundamental optical sciences. The ability to fabricate and/or engineer new materials and structures is giving rise to revolutionary changes in the field, which also includes soft condensed mat...

  2. Textile materials for lightweight constructions technologies, methods, materials, properties

    CERN Document Server

    2016-01-01

    In this book, experts on textile technologies convey both general and specific informa­tion on various aspects of textile engineering, ready-made technologies, and textile chemistry. They describe the entire process chain from fiber materials to various yarn constructions, 2D and 3D textile constructions, preforms, and interface layer design. In addition, the authors introduce testing methods, shaping and simulation techniques for the characterization of and structural mechanics calculations on anisotropic, pliable high-performance textiles, including specific examples from the fields of fiber plastic composites, textile concrete, and textile membranes. Readers will also be familiarized with the potential offered by increasingly popular textile structures, for instance in the fields of composite technology, construction technology, security technology, and membrane technology. Textile materials and semi-finished products have widely varied potential characteristics, and are commonly used as essential element...

  3. The New Technology of Composite Materials Repairing by Light Wave

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-min; CHEN Yu-ming; YU Xiao-lei; WANG Le-xin

    2004-01-01

    The repairing of damaged composite materials becomes a hot research subject in the late 1990s.In this paper a new technology of repairing composite materials is given on the basis of our previous research.The light wave of 675nm transmitted by optical fiber is used as repairing light source,special repairable adhesive which can be stimulated by the light is adopted.By comparing the stiffness of the composite material before and after being damaged,it can be concluded that the mechanical property will not be changed with the feasible repairing technology.

  4. Technology to Upgrade Magneto-Materials

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ CAS scientists have developed a new surface-coating technology to upgrade the product quality of China's permanent magnet materials. The success is appraised by an evaluation penal of the CAS Shenyang Branch in northeastern China' s Liaoning Province.

  5. Materials- the foundation for technology revolutions

    Institute of Scientific and Technical Information of China (English)

    Zhong Lin Wang

    2011-01-01

    It is my greatest honor to learn that Professor SHI Changxu was a recipient of the China's National Top Award in Science and Technology in 2010 owing to his pioneer and strategic contributions to the development of materials in China and world. This award represents the strongest endorsement of not onlythe society to the contribution made by Professor Shi in materials,

  6. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  7. Research Progress of Isotope Technology

    Institute of Scientific and Technical Information of China (English)

    Department; of; Isotope

    2015-01-01

    Radioactive isotope is one of the origins of nonnuclear power technology.In the 12th Five Year Plan period,CIAE made breakthrough progresses on several important fields such as research and development of preparation of radioactive nuclides,preparation of radioactive source and study of radiopharmaceuticals relied on different financial support,successfully

  8. Technology in Education: Research Says!!

    Science.gov (United States)

    Canuel, Ron

    2011-01-01

    A large amount of research existed in the field of technology in the classroom; however, almost all was focused on the impact of desktop computers and the infamous "school computer room". However, the activities in a classroom represent a multitude of behaviours and interventions, including personal dynamics, classroom management and…

  9. Research building demolition and reuse of materials technology%建筑拆解及材料再利用技术的研究

    Institute of Scientific and Technical Information of China (English)

    荆可歆

    2016-01-01

    随着我国城市化进程的加速,建筑不断被拆解和重建,但是旧的建筑材料的利用率比较低下,造成了相关的资源能源的浪费以及环境的污染。本文的研究从建筑拆解和材料再利用的相关概述出发,研究了循环经济以及循环经济思想的实践。并在基础上研究了建筑拆解及材料再利用技术的环境意义和社会意义。并着重研究了国内建筑拆解及材料再利用的现状和技术策略,废旧材料利用的经济效益,建筑材料拆除和再利用的环境影响评价等。%With the acceleration of urbanization process in China,building continue to be disassembled and rebuilt,but the utilization rate of the old building materials is relatively low,resulting in a pollution-related waste of resources and energy and the environment.This study outlines the construction dismantling and related materials recycling paper studies the practice of recycling economy and the cycle of economic thought.And on the basis of study of the building dismantling and material recycling technology,environmental and social significance.And focuses on the domestic construction dismantling and material recycling situation and technology strategy,the economic benefits of the use of waste materials, building materials removal and recycling of environmental impact assessment.

  10. 食品及软性材料3D打印技术的研究与应用进展%Research and Application Progress of Food and Soft Materials 3 D Printing Technology

    Institute of Scientific and Technical Information of China (English)

    刘天宇; 周惠兴; 张鑫; 兰海明; 刘焕宝; 吴小艳

    2016-01-01

    3D打印技术是当前的热门科技,食品及软性材料3D打印技术也取得了不断地进步与发展。总结了3D打印技术的原理、分类及3D打印机的构成,综述讨论了食品及软性材料3D打印技术的研究现状及应用中需要克服的技术难点,对未来食品及软性材料3D打印技术的前景作出了展望。%The 3 D printing technology is the current hot technology,food and soft materials 3 D printing technology is also making progress and development continuously.This paper summarized the principle and classification of 3 D printing technology,as well as the composition of the 3 D printer.The research status and technological difficulties in application of food and soft materials 3D printing technology were also discussed. Finally,an outlook on the development prospect of food and soft materials 3 D printing technology in the future was given.

  11. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  12. ION BEAM TECHNOLOGY IN MATERIALS SCIENCE

    Directory of Open Access Journals (Sweden)

    M.B. Dutt

    2009-07-01

    Full Text Available Ion beam processing of materials in general and semiconductors in particular, started with ion implantation in semiconductors; first used by Ohl at Bell Labs in 1952 toimprove the electrical characteristics of silicon point contact diodes by implanting H, He, N and Ar ions.The improvement was obvious but it was caused by surface damage and notthe ion implantation. However, in the process, ion implantation had an entry and slowly it became popular among the scientists and the technocrats. Thus, over the last six decades, demands continued for new and improved materials and devices that has pushed ion implanter to expand to ion beam technology. In the semiconductor industry alone, the processes have evolved so much so that in today’s world, there are morethan 4000 ion implanters in the IC fab lines apart from otherion beam-assisted processing machines. Ion beam deposition techniques, ion beam lithography, ion beam etching, ion beammilling are all ion beam beam-assisted techniques that arebeing extensively used in semiconductor industries. In this backdrop, it was thought that a compilation of uses of allthese techniques together with relevant tools of analysis toserve as a guide to the semiconductor scientists and technologists for a glimpse of the ongoing efforts being madein this direction. Fortunately enough, Indian research is not lagging in use of all these modern day technologies that will be evident as the reader will go from one article to the other of this special volume.Defence Science Journal, 2009, 59(4, pp.328-328, DOI:http://dx.doi.org/10.14429/dsj.59.1530

  13. Environmental TEM in Materials Research

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    Over the last decades, electron microscopy has played a large role in materials research. The increasing use of particularly environmental transmission electron microscopy (ETEM) in materials science provides new possibilities for investigating nanoscale components at work. Careful experimentation...... provides input for the development of new materials for e.g. energy production. In order to design experiments with the highest chance of a successful outcome, a detailed understanding of both the interaction of electrons with gas molecules, the effect of gas on high‐resolution imaging and the behavior...... in this environment is necessary. If data is to be interpreted quantitatively, interaction of the electrons with gas molecules must be taken into account. Whereas conventional TEM samples are usually thin (below 10‐20 nm), the dilute gas fills the entire gap between the pole pieces and is thus not spatially localized...

  14. Advances in geochemical research on nanometer materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Important advances have been made in the field of geochemistry since nanometer science and technology were introduced into the field of geoscience. The nanometer particulates have been discovered in naturally-occurring ore deposits, volcano-eruptive materials and geo-gases, and a more detailed exploration of the metallogenic mechanism of endogenic metallic ore deposits has been conducted. It is considered that some ore-forming metals may transport in the form of native particulates. Because they have very strong capabilities of adsorption, adsorption is always regarded as an important mechanism of metallogenesis under supergenic and low temperature conditions.Therefore, a new technology of ore exploration has also been developed. This paper attempts to review the new advances in geochemical research on nanometer materials, as well as its perspectivess.

  15. Space Research Results Purify Semiconductor Materials

    Science.gov (United States)

    2010-01-01

    While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.

  16. Research technology as a barrier to research

    Directory of Open Access Journals (Sweden)

    J. M. Scheepers

    1994-06-01

    Full Text Available There appears to be considerable concern regarding the progress which masters and doctoral students make in their studies and the underlying causes are thought to relate to the absence of a suitable research climate on campuses. The aim of this study was to identify factors which relate to the research output of tutors. With this in mind a questionnaire was developed and handed to 120 tutors in the human sciences for completion. The means and variances of the variables in the questionnaire were computed/ the variables were intercorrelated and subjected to a principal factor analysis. Four factors were extracted and identified as: knowledge of research technology research output/ knowledge of research methodology and ability to conduct research, and teaching experience in research methodology Two regression analyses were done. The first against a "soft" criterion (perceived ability to conduct empirical research and the second against a "hard" criterion (the real research output of tutors. Multiple correlation coefficients of 0,7257 and 0/5824 respectively, were obtained. Opsomming Die vordering van magister en doktorale studente skyn aansienlike kommer te wek, en die oorsake daarvan word in die afwesigheid van 'n gepaste navorsingsklimaat op kampusse, gesoek. Die doel van hierdie studie was om faktore te identifiseer wat verband hou met die navorsingsuitset van dosente. Met die oog hierop is 'n vraelys opgestel en aan 120 dosente in die geesteswetenskappe vir voltooiing oorhandig. Die gemiddeldes en variansies van die veranderlikes is bereken, die veranderlikes is gemterkorreleer en aan 'n hooffaktorontleding onderwerp. Vier faktore is onttrek en geidentifiseer as: kennis van navorsingstegnologie, navorsingsuitset, kennis van navor-singsmetodologie en die vermoe om navorsing te doen, en onderrigervaring m navorsingsmetodologie. Twee prcgressie-ontledings is gedoen. Die eerste teen 'n "sagte" kriterium (persepsie van dosente van hul vermoe om

  17. Carbon The Future Material for Advanced Technology Applications

    CERN Document Server

    Messina, Giacomo

    2006-01-01

    Carbon-based materials and their applications constitute a burgeoning topic of scientific research among scientists and engineers attracted from diverse areas such as applied physics, materials science, biology, mechanics, electronics and engineering. Further development of current materials, advances in their applications, and discovery of new forms of carbon are the themes addressed by the frontier research in these fields. This book covers all the fundamental topics concerned with amorphous and crystalline C-based materials, such as diamond, diamond-like carbon, carbon alloys, carbon nanotubes. The goal is, by coherently progressing from growth - and characterisation techniques to technological applications for each class of material, to fashion the first comprehensive state-of-the-art review of this fast evolving field of research in carbon materials.

  18. The nuclear materials control technology briefing book

    Energy Technology Data Exchange (ETDEWEB)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  19. Materials Science and Technology Teachers Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  20. Surface physics of materials materials science and technology

    CERN Document Server

    Blakely, J M

    2013-01-01

    Surface Physics of Materials presents accounts of the physical properties of solid surfaces. The book contains selected articles that deal with research emphasizing surface properties rather than experimental techniques in the field of surface physics. Topics discussed include transport of matter at surfaces; interaction of atoms and molecules with surfaces; chemical analysis of surfaces; and adhesion and friction. Research workers, teachers and graduate students in surface physics, and materials scientist will find the book highly useful.

  1. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  2. Rapid Prototyping: Technologies, Materials and Advances

    Directory of Open Access Journals (Sweden)

    Dudek P.

    2016-06-01

    Full Text Available In the context of product development, the term rapid prototyping (RP is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

  3. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  4. Evaluation for Applied Materials of Eco-technology

    Institute of Scientific and Technical Information of China (English)

    张俊斌; 梁大庆; 陈洁音; 翁韶良

    2005-01-01

    The eco-materials (include natural and artificial material) applied in the eco-technology in internal currently,usually lack of evaluation for applicative conditions.Hence,this study carry on the whole research and identifications to draft the eco-materials of eco-technology.The evaluation models of applied materials for eco-technology were proposed.The quantitative score were obtained by expert's person evaluation.Three models were proposed to quantify the effects of applied materials on the ecological environment.The statistical procedures were adopted to compare the performance of these materials for eco-technology.The results indicated that the comparison of applied materials can be treated by quantitative analysis.For the further analysis,more evaluated data from expert's experience need to be collected then the bias of person subject can be reduced.In addition to reach the benefits in the respects of ecosystem,society,economy and function,also practice the comprehensive effects in eco-technology.

  5. Accuracy Verification of Magnetic Resonance Imaging (MRI Technology for Lower-Limb Prosthetic Research: Utilising Animal Soft Tissue Specimen and Common Socket Casting Materials

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safari

    2012-01-01

    Full Text Available Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements.

  6. Accuracy verification of magnetic resonance imaging (MRI) technology for lower-limb prosthetic research: utilising animal soft tissue specimen and common socket casting materials.

    Science.gov (United States)

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2012-01-01

    Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements.

  7. Research Progress of Material Selection and Protection Technology on Oil and Gas Pipeline%油气管道选材及防护技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    孙方红; 马壮; 宋晓龙; 刘应瑞; 李福永

    2013-01-01

    The research progress of common materials on the oil and gas pipeline was summarized. The research results of macromolecular compound coating, glass coating, metal coating, corrosion inhibitor and cathodic protection were reviewed. The merits and demerits of different protection technologies were analyzed. The development trends of material selection and protection technology on oil and gas pipeline were proposed.%叙述了油气管道常用材料的研究现状;介绍了高分子化合物涂料、玻璃涂层和金属镀层、缓蚀剂、阴极保护等防护措施的研究成果;分析了各种防护技术的优缺点;展望了今后油气管道选材和防护措施的发展方向.

  8. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  9. Research in Antenna Technology, Radar Technology and Electromagnetic Scattering Phenomena

    Science.gov (United States)

    2015-04-06

    AFRL-OSR-VA-TR-2015-0081 Research in Antenna Technology John Schindler ARCON CORP Final Report 04/06/2015 DISTRIBUTION A: Distribution approved for...a group of six researchers in the fields of electromagnetics, radar and antenna technology. Research was conducted during this reporting period in...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 Research in Antenna technology, Radar Technology and Electromagnetic Scattering Phenomena

  10. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  11. Hydrogen Technology Research at SRNL

    Energy Technology Data Exchange (ETDEWEB)

    Danko, E.

    2011-02-13

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon

  12. Magnetic materials in Japan research, applications and potential

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This, the third report in Elsevier's Materials Technology in Japan series, concentrates on magnetic materials as a topic gaining worldwide attention, and each chapter looks not only at current research, but also describes the technology as it is being applied and its future potential. Magnetic-related research is the second largest field of research in Japan after semiconductors, with the estimated number of researchers and engineers engaged in magnetics-related activities currently at 20,000. This research report serves as both a review of

  13. BWR mechanics and materials technology update

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, E.

    1983-05-01

    This paper discusses technical results obtained from a variety of important programs underway at General Electric's Nuclear Engineering Division. The principal objective of these programs is to qualify and improve BWR product related technologies that fall broadly under the disciplines of Applied Mechanics and Materials Engineering. The paper identifies and deals with current technical issues that are of general importance to the LWR industry albeit the specific focus is directed to the development and qualification of analytical predictive methods and criteria, and improved materials for use in the design of the BWR. In this paper, specific results and accomplishments are summarized to provide a braod perspective of technology advances. Results are presented in sections which discuss: dynamic analysis and modeling; fatigue and fracture evaluation; materials engineering advances; and flow induced vibration.

  14. Public Law 96-479--National Materials and Minerals Policy, R & D Act of 1980 and Consideration of H.R. 4281 - Critical Materials Act of 1981. Hearings Before the Subcommittee on Transportation, Aviation and Materials and the Subcommittee on Science, Research and Technology of the Committee on Science and Technology U. S. House of Representatives, Ninety-Seventh Congress, Second Session. [No. 117

    Science.gov (United States)

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    Presented in this document are transcripts of hearings on the subject of national materials policy. The hearings focused on implementation of P.L. 96-479, the National Materials and Minerals Policy, Research and Development Act of 1980 (including the recent Presidential program plan and report made to Congress) and on H.R. 4281, the Critical…

  15. Automatic on-line detection system design research on internal defects of metal materials based on optical fiber F-P sensing technology

    Science.gov (United States)

    Xia, Liu; Shan, Ning; Chao, Ban; Caoshan, Wang

    2016-10-01

    Metal materials have been used in aerospace and other industrial fields widely because of its excellent characteristics, so its internal defects detection is very important. Ultrasound technology is used widely in the fields of nondestructive detection because of its excellent characteristic. But the conventional detection instrument for ultrasound, which has shortcomings such as low intelligent level and long development cycles, limits its development. In this paper, the theory of ultrasound detection is analyzed. A computational method of the defects distributional position is given. The non-contact type optical fiber F-P interference cavity structure is designed and the length of origin cavity is given. The real-time on-line ultrasound detecting experiment devices for internal defects of metal materials is established based on the optical fiber F-P sensing system. The virtual instrument of automation ultrasound detection internal defects is developed based on LabVIEW software and the experimental study is carried out. The results show that this system can be used in internal defect real-time on-line locating of engineering structures effectively. This system has higher measurement precision. Relative error is 6.7%. It can be met the requirement of engineering practice. The system is characterized by simple operation, easy realization. The software has a friendly interface, good expansibility, and high intelligent level.

  16. Research Agenda in Cloud Technologies

    CERN Document Server

    Sriram, Ilango

    2010-01-01

    Cloud computing is the latest effort in delivering computing resources as a service. It represents a shift away from computing as a product that is purchased, to computing as a service that is delivered to consumers over the internet from large-scale data centres - or "clouds". Whilst cloud computing is gaining growing popularity in the IT industry, academia appeared to be lagging behind the rapid developments in this field. This paper is the first systematic review of peer-reviewed academic research published in this field, and aims to provide an overview of the swiftly developing advances in the technical foundations of cloud computing and their research efforts. Structured along the technical aspects on the cloud agenda, we discuss lessons from related technologies; advances in the introduction of protocols, interfaces, and standards; techniques for modelling and building clouds; and new use-cases arising through cloud computing.

  17. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben

    2009-01-01

    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  18. Superhydrophobic Materials Technology-PVC Bonding Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Scott R. [Oak Ridge National Laboratory; Efird, Marty [VeloxFlow, LLC

    2013-05-03

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet-cleanable; anti-biofouling; waterproof; and anti-corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  19. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  20. Additive Technology: Update on Current Materials and Applications in Dentistry.

    Science.gov (United States)

    Barazanchi, Abdullah; Li, Kai Chun; Al-Amleh, Basil; Lyons, Karl; Waddell, J Neil

    2017-02-01

    Additive manufacturing or 3D printing is becoming an alternative to subtractive manufacturing or milling in the area of computer-aided manufacturing. Research on material for use in additive manufacturing is ongoing, and a wide variety of materials are being used or developed for use in dentistry. Some materials, however, such as cobalt chromium, still lack sufficient research to allow definite conclusions about the suitability of their use in clinical dental practice. Despite this, due to the wide variety of machines that use additive manufacturing, there is much more flexibility in the build material and geometry when building structures compared with subtractive manufacturing. Overall additive manufacturing produces little material waste and is energy efficient when compared to subtractive manufacturing, due to passivity and the additive layering nature of the build process. Such features make the technique suitable to be used with fabricating structures out of hard to handle materials such as cobalt chromium. The main limitations of this technology include the appearance of steps due to layering of material and difficulty in fabricating certain material generally used in dentistry for use in 3D printing such as ceramics. The current pace of technological development, however, promises exciting possibilities. © 2016 by the American College of Prosthodontists.

  1. 低成本材料技术在美国新型航母上的应用研究%Applied Research of Low Cost Materials and Technologies in American aircraft carrier

    Institute of Scientific and Technical Information of China (English)

    邓贤辉; 郭爱红; 廖志谦

    2012-01-01

    During the period of 2010-2011, NMC has participated in many research projects on low cost materials and technologies applied in American new aircraft carrier, including R&D of advanced material and manufacturing technology, advanced jointing technology, new surface and coating technology,and so on. The research progress of these projects are summarized in this article. The economic and social benefits of improving properties and reducing cost on the aircraft carrier building are expected, which may inspire us in the R&D of advanced material and manufacturing technology for shipbuilding.%本文概述了美国海军金属加工中心(NMC)在2010-2011年间参与开展的新型航空母舰用先进材料、先进制造技术、先进连接技术、新型表面涂装与处理技术等方面开展的低成本材料技术研发工作所取得的进展.预测了研究成果转让给海军应用时,给航空母舰建造提高性能、降低成本所带来的巨大经济效益和社会效益.这将对我国开展舰船用先进材料及制造技术方面的研究与开发工作起重要启示作用.

  2. Materials technology for Stirling space power converters

    Science.gov (United States)

    Baggenstoss, William; Mittendorf, Donald

    1992-01-01

    This program was conducted in support of the NASA LeRC development of the Stirling power converter (SPC) for space power applications. The objectives of this contract were: (1) to perform a technology review and analyses to support the evaluation of materials issues for the SPC; (2) to evaluate liquid metal compatibility issues of the SPC; (3) to evaluate and define a transient liquid phase diffusion bonding (TLPDB) process for the SPC joints to the Udimet 720 heater head; and (4) to evaluate alternative (to the TLPDB) joining techniques. In the technology review, several aspects of the current Stirling design were examined including the power converter assembly process, materials joining, gas bearings, and heat exchangers. The supporting analyses included GLIMPS power converter simulation in support of the materials studies, and system level analysis in support of the technology review. The liquid metal compatibility study evaluated process parameters for use in the Stirling power converter. The alternative joining techniques study looked at the applicability of various joining techniques to the Stirling power converter requirements.

  3. Research Supporting Satellite Communications Technology

    Science.gov (United States)

    Horan Stephen; Lyman, Raphael

    2005-01-01

    This report describes the second year of research effort under the grant Research Supporting Satellite Communications Technology. The research program consists of two major projects: Fault Tolerant Link Establishment and the design of an Auto-Configurable Receiver. The Fault Tolerant Link Establishment protocol is being developed to assist the designers of satellite clusters to manage the inter-satellite communications. During this second year, the basic protocol design was validated with an extensive testing program. After this testing was completed, a channel error model was added to the protocol to permit the effects of channel errors to be measured. This error generation was used to test the effects of channel errors on Heartbeat and Token message passing. The C-language source code for the protocol modules was delivered to Goddard Space Flight Center for integration with the GSFC testbed. The need for a receiver autoconfiguration capability arises when a satellite-to-ground transmission is interrupted due to an unexpected event, the satellite transponder may reset to an unknown state and begin transmitting in a new mode. During Year 2, we completed testing of these algorithms when noise-induced bit errors were introduced. We also developed and tested an algorithm for estimating the data rate, assuming an NRZ-formatted signal corrupted with additive white Gaussian noise, and we took initial steps in integrating both algorithms into the SDR test bed at GSFC.

  4. Project in fiscal 2000 of research and development of industrial and scientific technologies. Achievement report on 'research and development of ultimate atom and molecule operation technology' (development of technology to form high-function materials for electric power generating environment); 2000 nendo genshi bunshi kyokugen sosa gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden kankyoyo kokino sozai keisei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development has been performed with an intention of establishing an observation technology and an operation technology of atoms and molecules, as a common infrastructural technology in different industrial fields. This paper reports the achievements in fiscal 2000. In the research of an inorganic atom and molecule identification and operation technology, a composite device constructed of an STM and an electric field ion microscope/atom probe was used to draw out and identify two or three Ag atoms from Si:Ag surface and show clearly the correspondence with the original atomic positions. In the research of a technology to form and control nano-structures on surface and interface, Ge/Si hetero nano crystals with a size of 20 nm were formed on Si nano crystals formed on an opening in the atom layer oxide film on an Si substrate. Furthermore, hetero nano crystals of Si/Ge/Si, in which Ge nano crystals are embedded in Si nano crystals, were formed successfully. In the research of a spin electronics technology, research was performed, with regard to perovskite vanadium oxides, on decay of the orbital order due to changing the band filling, and insulating metal transition. (NEDO)

  5. Components of abstracts in materials science and technology

    Directory of Open Access Journals (Sweden)

    Alenka Šauperl

    2009-01-01

    Full Text Available We investigated the structure of abstracts in Slovenian and international journals in the field of materials and technology. The aim of the study was to analyze the adherence of the abstracts published in Materials and Technology (MIT and Materials Science and Technology (MST to two different instructions for the preparation of abstracts (scheme based on ISO 214:1976 and Spanring system. 25 abstracts from each journal were divided into sentences. We tried to place the sentences into one of the categories of the above mentioned schemes. The research was a part of the postgraduate study in the Department of Library and Information Science and Book Studies (Faculty of Arts, Ljubljana in September and October 2008. There are no important differences between MIT and MST. Spanring system seems more appropriate for the field of materials and technology. The place and the time of the research should be added to abstracts and the Hu-bit category should be distributed into two parts: Hu-M (method and Hu-R (results. The recommended Spanring system should be harmonized with authors, who publish in these serials and the effect of the instructions should be analyzed, too.

  6. Materials and Molecular Research Division annual report 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

  7. Research report of FY 1997 on the industrial science and technology development. Technology development of super-metal (technology development of nano-amorphous structural control materials); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku seika hokokusho. Super metal no gijutsu kaihatsu (nano-amorphous kozo seigyo zairyo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development of the innovative metals have been conducted, by which the weight reduction of members can be done by drastically improving the strength compared with conventional metals. For the high-rate cluster deposition and super plastic forming technologies, research and development of aluminum-based light-weight materials have been conducted, which provides excellent strength, toughness, and super plastic formability at room temperature. For the high-density energy utilization and control technology (amorphous-A), super-metals have been investigated as high dew point and corrosion resistance materials used for waste incinerators operated under the very severe conditions. These are expected to be applied to the apparatuses and equipment due to their excellent properties. For the controlled cooling technology (amorphous-B), super-metals with excellent soft magnetic characteristics and degree of shape freedom have been investigated for high performance and high efficiency devices including electric/electronic/communication devices, power transmission devices, and various industrial devices and parts. These are expected to contribute to the creation of new markets and the improvement of international competitive force. 123 refs., 160 figs., 33 tabs.

  8. `Technology for Advanced Treatment of High Melting Point Metal-Based Material,` local research and development of important technology for fiscal 1997. Development of materials creation technology for high efficiency power generator components; 1997 nendo juyo chiiki gijutsu kenkyu kaihatsu. `Koyuten kinzokukei buzai no kodo kako gijutsu` (kokoritsu hatsuden`yo buzai sosei gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Efforts are made for the creation of high melting point metal-base materials to replace the currently-used Ni-base superalloys for the turbine to withstand higher operating temperatures. The main efforts made in fiscal 1997 are outlined. As in fiscal 1996, Nb-base solution alloys, in which solution reinforcement elements such as Mo and W are alloyed, are manufactured by button arc melting and tested for mechanical properties and texture/characteristics. In the designing and evaluation for a strongest Nb-base composite material, Nb-base composite materials are manufactured by use of particle dispersion-strengthening attained by addition of intermetallic compounds or elements to contribute to the formation of oxides, carbides, or nitrides. Nb-base composite materials may also be manufactured by use of eutectic-strengthening attained by utilizing crystallization in the process of coagulation. The resultant Nb-base composite materials are evaluated for their dynamic characteristics at high temperatures. In the development and evaluation of technologies for creating Nb-base materials for high-temperature components, larger specimens as heavy as several kg are tested in line with small specimens for basic studies, and the results are utilized for alloy designing for high-temperature materials. 50 refs., 97 figs., 15 tabs.

  9. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Supplement: Research on Materials for the High Speed Civil Transport

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.

    1997-01-01

    This report documents the progress achieved over the past 6 to 12 months on four graduate student projects conducted within the NASA-UVA Light Aerospace Alloy and Structures Technology Program. These studies were aimed specifically at light metallic alloy issues relevant to the High Speed Civil Transport. Research on Hydrogen-Enhanced Fracture of High-Strength Titanium Alloy Sheet refined successfully the high resolution R-curve method necessary to characterize initiation and growth fracture toughnesses. For solution treated and aged Low Cost Beta without hydrogen precharging, fracture is by ductile transgranular processes at 25 C, but standardized initiation toughnesses are somewhat low and crack extension is resolved at still lower K-levels. This fracture resistance is degraded substantially, by between 700 and 1000 wppm of dissolved hydrogen, and a fracture mode change is affected. The surface oxide on P-titanium alloys hinders hydrogen uptake and complicates the electrochemical introduction of low hydrogen concentrations that are critical to applications of these alloys. Ti-15-3 sheet was obtained for study during the next reporting period. Research on Mechanisms of deformation and Fracture in High-Strength Titanium Alloys is examining the microstructure and fatigue resistance of very thin sheet. Aging experiments on 0. 14 mm thick (0.0055 inch) foil show microstructural agility that may be used to enhance fatigue performance. Fatigue testing of Ti-15-3 sheet has begun. The effects of various thermo-mechanical processing regimens on mechanical properties will be examined and deformation modes identified. Research on the Effect of Texture and Precipitates on Mechanical Property Anisotropy of Al-Cu-Mg-X and Al-Cu alloys demonstrated that models predict a minor influence of stress-induced alignment of Phi, caused by the application of a tensile stress during aging, on the yield stress anisotropy of both modified AA2519 and a model Al-Cu binary alloy. This project

  10. Rechargeable batteries materials, technologies and new trends

    CERN Document Server

    Zhang, Zhengcheng

    2015-01-01

    This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write

  11. Research and Practice in Green Chemical Technologies

    Institute of Scientific and Technical Information of China (English)

    Yin Yingwu

    2004-01-01

    Green chemistry is also called environment harmless or environment friendly chemistry.Green chemistry requires to use new synthetic methods, engineering technologies and processes to eliminate or reduce by-products, wastes or products that harmful to human health, community safety,and ecology environment. Green chemistry pursues to control the usage of the harmful and toxic materials, reduce waste emission, avoid necessity to treat the wastes; Green Chemistry advocates wastes management from the beginning, improving the efficiency of atoms, optimizing the use of resources and energy, lowering the cost of production. Green Chemistry technologies are the ultimate path to the clean chemical production in the future.Insight Co. takes "hospital of enterprises" and "bank of technologies" as our characteristics in business, and deems the development and spread of green chemistry as our mission. We developed an unique business model which combines education, research and production. In the past 8 years,we had applied and obtained more than 30 patents and received more than ten national and provincial awards in technology progress.We had made great progress in the manufacturing of organophosphorus pesticides, especially the production of omethoate, methamidophos, paraquat and glycyrrhizinic phosphor, etc., which made a stable foundation for INSIGHT's development. We had also achieved great success in the high efficiency low toxic pesticides, such as imidacloprid, etofenprox, metalaxyl and in the new synthetic methods in various amino acids as well as in the pharmaceutical intermediates. The new method of preparation indigo using N-phenylglycinonitrile is an advanced process in the world in terms of the clean production technology for Ferro cyanide and HCN's transformation rate improvement. We solved the pollution problem of the old route. The newly developed substituted product for indigo using a clean production technology which greatly reduced the material consumption and

  12. Materials dispersion and biodynamics project research

    Science.gov (United States)

    Lewis, Marian L.

    1992-01-01

    The Materials Dispersion and Biodynamics Project (MDBP) focuses on dispersion and mixing of various biological materials and the dynamics of cell-to-cell communication and intracellular molecular trafficking in microgravity. Research activities encompass biomedical applications, basic cell biology, biotechnology (products from cells), protein crystal development, ecological life support systems (involving algae and bacteria), drug delivery (microencapsulation), biofilm deposition by living organisms, and hardware development to support living cells on Space Station Freedom (SSF). Project goals are to expand the existing microgravity science database through experiments on sounding rockets, the Shuttle, and COMET program orbiters and to evolve,through current database acquisition and feasibility testing, to more mature and larger-scale commercial operations on SSF. Maximized utilization of SSF for these science applications will mean that service companies will have a role in providing equipment for use by a number of different customers. An example of a potential forerunner of such a service for SSF is the Materials Dispersion Apparatus (MDA) 'mini lab' of Instrumentation Technology Associates, Inc. (ITA) in use on the Shuttle for the Commercial MDAITA Experiments (CMIX) Project. The MDA wells provide the capability for a number of investigators to perform mixing and bioprocessing experiments in space. In the area of human adaptation to microgravity, a significant database has been obtained over the past three decades. Some low-g effects are similar to Earth-based disorders (anemia, osteoporosis, neuromuscular diseases, and immune system disorders). As new information targets potential profit-making processes, services and products from microgravity, commercial space ventures are expected to expand accordingly. Cooperative CCDS research in the above mentioned areas is essential for maturing SSF biotechnology and to ensure U.S. leadership in space technology

  13. Research and development of peripheral technology for photovoltaic power systems. Research and development of photovoltaic modules integrated with construction materials (detachable plane panel); Shuhen gijutsu no kenkyu kaihatsu. Kenzai ittaigata module no kenkyu kaihatsu (chakudatsushiki heiban panel)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on R and D of photovoltaic modules integrated with construction materials in fiscal 1994. (1) On development of technology for module structures, specifications of the horizontal muntin system module were newly determined in addition to the improved muntin system module, and the prototype pseudo-module integrated with construction material was prepared. The comparison results of the basic performance of both system modules clarified superior waterproofing and module temperature uniformity of the horizontal muntin system. Based on this specifications, integration technology of modules with back metal plates was studied. Formation of the integrated module close to final specifications was ascertained to be possible by use of passivation equipment to irregular form. (2) On development of construction and installation methods of modules, improvement of the waterproofing and workability of both system modules was studied. (3) On the study on practical use of modules, their design and ventilation/cooling structure were studied. 38 figs., 13 tabs.

  14. 低温相变贮能材料定形技术研究进展%Research Progress in Shape-Stabilizing Technology of Low Temperature Phase Change Materials for Energy Storage

    Institute of Scientific and Technical Information of China (English)

    张艳辉; 邓建国; 黄奕刚

    2011-01-01

    Low-temperature phase Change materials have been widely applied in the fields of energy conservation and thermal control. The synthesis, compound and shape-stabilizing technology of these materials keep developing and have been a highpoint of material researches. The methods and technologies of preparing shape-stabilized phase change materials are reviewed, and the progress of porous matrix adsorption method, polymer matrix eomposited method, micro-encapsulation technology and other shape-stabilizing technology are introduced in this paper. Three aspects are the focus of micro- encapsulation technology: in-situ polymerization, interfacial polymerization and coacervation. Additionally, the advantages and disadvantages on the preparation methods are analyzed. The prospective application and development in shape-stabilized PCMs were anticipated.%低温相变贮能材料广泛应用于节能和温控领域,其合成、复配及定形技术不断发展,已成为材料研究领域的热点之一。本文综述了低温相变材料的定形方法和技术,介绍了多孔基质吸附法、聚合物基复合法、微胶囊技术以及其它定形技术的国内外研究进展,重点介绍了原位聚合、界面聚合、凝聚法3种微胶囊技术。分析了各种制备方法的优缺点,并指出了制备低温定形相变材料中存在的问题及今后发展方向,最后展望了低温定形相变贮能材料的发展前景。

  15. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    Science.gov (United States)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  16. 1998 report on results of research and development on new venture type industrial science and technology. 'Technological development of super metal' (technological development of innovative metallic material); 1998 nendo super metal no gijutsu kaihatsu seika hokokusho. Kakushinteki kinzoku sokei zairyo no gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Results on 1998 research and development were summarized concerning the technological development of innovative metallic materials. In the research of particulate micro-diffusion technology, as a modeling of nano-structure holding process, Ag/Fe nano-crystal alloy was manufactured by inert gas vapor deposition, with the structural change at the time of rolling examined. In addition, a large-scale spark plasma sintering device was developed, with a 40mm diameter cylinder manufactured. In the research on crystal grain refining process by a stirring solidification method, crystal grain refining was achieved to 1{mu}m order. In the development of an advanced aluminum alloy forming method, concerning a high-speed superplastic molding technology, a basic evaluation test was carried out for the superplastic characteristics of rapidly solidified aluminum alloy continuously from fiscal 1997. Further, a calculator simulation was performed by the finite element method for the high-speed superplastic molding. From these results, knowledge was obtained necessary for the detailed design of a high-speed superplastic molding device. On the basis of this knowledge, manufacturing of the equipment was implemented, as were the introduction, rise, basic test, etc. (NEDO)

  17. [Research progress on biochar carbon sequestration technology].

    Science.gov (United States)

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-08-01

    Biochar is a fine-grained and porous material, which is produced by pyrolyzing biomass under anaerobic or oxygen-limiting condition. Due to the aromatic structure, it is resistant to the biotic and abiotic degradation which makes biochar production a promising carbon sequestration technology, and it has attracted widespread attention. Factors including biochar production, biochar stability in soil and the response of plant growth and soil organic carbon to the biochar addition can influence the carbon sequestration potential of biochar. Through exploring the mechanisms of biochar carbon sequestration, the influence of these factors was studied. Furthermore, the research progress of carbon sequestration potential and its economic viability were examined. Finally, aiming at the knowledge gaps in the influencing factors as well as the relationship between these factors, some further research needs were proposed for better application of biochar in China.

  18. The Evaluation and Research of Curriculum Materials.

    Science.gov (United States)

    Eisner, Elliot W.

    The production and sale of instructional materials are now big business in this country. Hence it is desirable, and probably necessary, to establish standards for such materials. Research in the area of curriculum materials is basically virgin territory. The evaluation of different types of curriculum materials will require the application of…

  19. FY2012 Engineering Research & Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  20. Additive manufacturing of metals the technology, materials, design and production

    CERN Document Server

    Yang, Li; Baughman, Brian; Godfrey, Donald; Medina, Francisco; Menon, Mamballykalathil; Wiener, Soeren

    2017-01-01

    This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leadin...

  1. Material research for environmental sustainability in Thailand: current trends

    Science.gov (United States)

    Niranatlumpong, Panadda; Ramangul, Nudjarin; Dulyaprapan, Pongsak; Nivitchanyong, Siriluck; Udomkitdecha, Werasak

    2015-06-01

    This article covers recent developments of material research in Thailand with a focus on environmental sustainability. Data on Thailand’s consumption and economic growth are briefly discussed to present a relevant snapshot of its economy. A selection of research work is classified into three topics, namely, (a) resource utilization, (b) material engineering and manufacturing, and (c) life cycle efficiency. Material technologies have been developed and implemented to reduce the consumption of materials, energy, and other valuable resources, thus reducing the burden we place on our ecological system. At the same time, product life cycle study allows us to understand the extent of the environmental impact we impart to our planet.

  2. Material research for environmental sustainability in Thailand: current trends.

    Science.gov (United States)

    Niranatlumpong, Panadda; Ramangul, Nudjarin; Dulyaprapan, Pongsak; Nivitchanyong, Siriluck; Udomkitdecha, Werasak

    2015-06-01

    This article covers recent developments of material research in Thailand with a focus on environmental sustainability. Data on Thailand's consumption and economic growth are briefly discussed to present a relevant snapshot of its economy. A selection of research work is classified into three topics, namely, (a) resource utilization, (b) material engineering and manufacturing, and (c) life cycle efficiency. Material technologies have been developed and implemented to reduce the consumption of materials, energy, and other valuable resources, thus reducing the burden we place on our ecological system. At the same time, product life cycle study allows us to understand the extent of the environmental impact we impart to our planet.

  3. The Role of Technology in SLA Research

    Science.gov (United States)

    Chun, Dorothy M.

    2016-01-01

    In this review article for the 20th Anniversary Issue, I look back at research from the last two decades on the role of computer technology in understanding and facilitating second language acquisition (SLA) and forward to what future research might investigate. To be discussed are both how technology has been used to conduct research on SLA…

  4. The Role of Technology in SLA Research

    Science.gov (United States)

    Chun, Dorothy M.

    2016-01-01

    In this review article for the 20th Anniversary Issue, I look back at research from the last two decades on the role of computer technology in understanding and facilitating second language acquisition (SLA) and forward to what future research might investigate. To be discussed are both how technology has been used to conduct research on SLA…

  5. An overview of the Nuclear Materials Focus Area research program

    Energy Technology Data Exchange (ETDEWEB)

    ROBERSON,GARY D.; POLANSKY,GARY F.; OSBORNE,KEN K.; RANDALL,VIRGINIA

    2000-02-25

    The Nuclear Material Focus Area (NMFA) is responsible for providing comprehensive needs identification, integration of technology research and development activities, and technology deployment for stabilization, packaging, and interim storage of surplus nuclear materials within the DOE complex. The NMFA was chartered in April 1999 by the Office of Science and Technology (OST), an organizational component of the US Department of Energy's (DOE) Office of Environmental Management (EM). OST manages a national program to conduct basic and applied research, and technology development, demonstration, and deployment assistance that is essential to completing a timely and cost-effective cleanup of the DOE nuclear weapons complex. DOE/EM provides environmental research results, as well as cleanup technologies and systems, to meet high-priority end-user needs, reduce EM's major cost centers and technological risks, and accelerate technology deployments. The NMFA represents the segment of EM that focuses on technological solutions for re-using, transforming, and disposing excess nuclear materials and is jointly managed by the DOE Albuquerque Operations Office and the DOE Idaho Operations Office.

  6. Technology, relationships, and problems: a research synthesis.

    Science.gov (United States)

    Hertlein, Katherine M; Webster, Megan

    2008-10-01

    The advances in technology alter the ways we interact with each other. For some, the use of technology can facilitate a relationship; for others, technology can complicate aspects of a relationship. The purpose of this research synthesis is to summarize current research exploring the ways in which technology impacts relationships negatively. Eight studies were reviewed across the following areas: preoperational definitions, sample, methodology, control of extraneous variables, causal influence, generalizability, validity of statistical findings, and conclusions. Implications for authors, researchers, and therapists working with couples and families struggling with technology issues are discussed.

  7. [Research and development of artificial retina material].

    Science.gov (United States)

    Hu, Ning; Yang, Jun; Peng, Chenglin; Wang, Xing; Zhang, Sijie; Zhang, Ying; Zheng, Erxin

    2008-04-01

    The application of artificial retina was introduced. The principal characteristics of artificial retina material were reviewed in particular. Moreover, the recent research development and application prospect were discussed.

  8. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  9. High throughput materials research and development for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Parker Liu

    2017-09-01

    Full Text Available Development of next generation batteries requires a breakthrough in materials. Traditional one-by-one method, which is suitable for synthesizing large number of sing-composition material, is time-consuming and costly. High throughput and combinatorial experimentation, is an effective method to synthesize and characterize huge amount of materials over a broader compositional region in a short time, which enables to greatly speed up the discovery and optimization of materials with lower cost. In this work, high throughput and combinatorial materials synthesis technologies for lithium ion battery research are discussed, and our efforts on developing such instrumentations are introduced.

  10. Composite materials from new textile technologies

    Directory of Open Access Journals (Sweden)

    Jiménez, M. A.

    1997-12-01

    Full Text Available The present paper describes in a general way the most important of the advanced textile technologies which are oriented to the manufacturing of organic matrix composite materials, the paper presents their applications and the possibilities of future development. The use of these advanced weaving techniques allows the production of near-net-shaped preforms, which results in important savings in processing costs; moreover, these textile processes offer the possibility of introducing out-of plane reinforcing fibres, so there is an important increment of the impact strength and the damage tolerance of the final material.

    En el presente artículo se describen, de forma genérica, las más importantes de las tejedurías avanzadas destinadas a la fabricación de materiales compuestos de matriz orgánica, presentándose sus aplicaciones y futuras posibilidades de desarrollo. La utilización de estos procesos de tejeduría avanzados permite la elaboración de preformas cercanas a la forma final de la pieza, lo que se traduce en importantes reducciones en los costes de fabricación; además, estos procesos textiles ofrecen la posibilidad de introducir fibras de refuerzo fuera del plano, aumentando de forma considerable la resistencia a impacto y la tolerancia al daño del material final.

  11. Quantum technology: from research to application

    Science.gov (United States)

    Schleich, Wolfgang P.; Ranade, Kedar S.; Anton, Christian; Arndt, Markus; Aspelmeyer, Markus; Bayer, Manfred; Berg, Gunnar; Calarco, Tommaso; Fuchs, Harald; Giacobino, Elisabeth; Grassl, Markus; Hänggi, Peter; Heckl, Wolfgang M.; Hertel, Ingolf-Volker; Huelga, Susana; Jelezko, Fedor; Keimer, Bernhard; Kotthaus, Jörg P.; Leuchs, Gerd; Lütkenhaus, Norbert; Maurer, Ueli; Pfau, Tilman; Plenio, Martin B.; Rasel, Ernst Maria; Renn, Ortwin; Silberhorn, Christine; Schiedmayer, Jörg; Schmitt-Landsiedel, Doris; Schönhammer, Kurt; Ustinov, Alexey; Walther, Philip; Weinfurter, Harald; Welzl, Emo; Wiesendanger, Roland; Wolf, Stefan; Zeilinger, Anton; Zoller, Peter

    2016-05-01

    The term quantum physics refers to the phenomena and characteristics of atomic and subatomic systems which cannot be explained by classical physics. Quantum physics has had a long tradition in Germany, going back nearly 100 years. Quantum physics is the foundation of many modern technologies. The first generation of quantum technology provides the basis for key areas such as semiconductor and laser technology. The "new" quantum technology, based on influencing individual quantum systems, has been the subject of research for about the last 20 years. Quantum technology has great economic potential due to its extensive research programs conducted in specialized quantum technology centres throughout the world. To be a viable and active participant in the economic potential of this field, the research infrastructure in Germany should be improved to facilitate more investigations in quantum technology research.

  12. DNA technologies: what's next applied to microbiology research?

    Science.gov (United States)

    Trevors, J T; Masson, L

    2010-10-01

    This perspective discusses current DNA technologies used in basic and applied microbiology research and speculates on possible new future technologies. DNA remains one of the most fascinating molecules known to humans and will continue to revolutionize many areas ranging from medicine, food and forensics to robotics and new industrial bioproducts/biofuel from waste materials. What's next with DNA is not always obvious, but history shows the international microbiology research community will readily adopt it.

  13. Direct Digital Manufacturing of Integrated Naval Systems Using Ultrasonic Consolidation, Support Material Deposition and Direct Write Technologies

    Science.gov (United States)

    2012-02-17

    using fused deposition modeling technology • VTT Technical Research Center, Finland o focusing on direct write technologies and applications of...South Korea: focusing on multiple material process planning, and metal processing using fused deposition modeling technology • VTT Technical

  14. 2003 research briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2003-08-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems and Materials Modeling and Computational Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  15. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  16. 2005 Research Briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2005-05-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  17. Combined research effort on aggregate road materials

    Science.gov (United States)

    Kuznetsova, Elena; Hoff, Inge; Willy Danielsen, Svein; Wigum, Børge Johannes; Fladvad, Marit; Rieksts, Karlis; Loranger, Benoit; Barbieri, Diego

    2017-04-01

    In European countries, the average aggregate consumption per capita is 5 tons per year (European Aggregates Association 2016), while the corresponding number in Norway is 11 tons (Neeb 2015). Due to the increased demand for sand and gravel for construction purposes, e.g. in road construction, the last decade has seen a significant trend towards the use of crushed rock aggregates. Neeb (2015) reports that half of the Norwegian aggregate production (sand, gravel and crushed rock) is used for road construction, and 33 % of the overall sold tonnage of crushed rock is exported. This resource has been more and more preferred over sand and gravel due to the significant technological development of its process and utilization phase. In Norway, the development and implementation of crushed aggregate technology has been the main approach to solve natural resource scarcity (Danielsen and Kuznetsova 2015). In order to reduce aggregates transportation, it is aimed to use local aggregates and aggregates processed from rock excavations, tunneling, road cuts, etc. One issue focused in this research is the influence from blasting and processing on the final quality of the crushed aggregates, specifically relating to the properties for road construction purposes. It is therefor crucial to plan utilization of available materials for use in different road layers following the same production line. New developments and improved availability of mobile crushing and screening equipment could produce more sustainable and profitable sources of good quality aggregate materials from small volume deposits in proximity to construction sites. One of the biggest challenges today to use these materials is that the pavement design manual sets rigid requirements for pavement layers. Four research projects are being conducted in Norway to improve the use of local materials for road construction. Four aspects are to be covered by the research: a) geological characteristics of the materials, their b

  18. 纳米材料绿色制版技术的版材研究%Research on the Printing Plate of Green Plate Making Technology Based on Nano-Materials

    Institute of Scientific and Technical Information of China (English)

    周海华; 刘云霞; 宋延林

    2012-01-01

    Plate making is one of the key technologies in printing industry. So far there are mainly two technologies for plate making include laser phototypesetting technology and computer to plate technology. These technologies are based on photosensitive imaging principle, and need chemical treatment processes such as development, fixing etc. Green plate making technology based on nano-materials has many advantages such as pollution free and low cost, as it abandons the i- dea of sensitization imaging. The special nano and micro-structure of the plate will greatly influence the quality of printing products. In this paper, the research on the print plate is briefly introduced. Through optimizing the preparation process of the printing plate, the resolution and printability are greatly improved.%制版技术是印刷产业的关键技术之一。目前的印刷制版技术主要有激光照排制版技术和计算机直接制版技术。这两项制版技术是基于感光成像原理,需要显影、冲洗等化学处理过程。基于纳米材料的绿色制版技术无需感光成像,省略了显影、冲洗等化学处理过程,是一项环境友好、低成本的制版技术。其中,版材的纳微米结构对印刷质量有重要影响。简要介绍具有纳微米结构的版材的制备过程,通过优化版基制备条件,可以有效提高印版的分辨率和印刷适应性。

  19. Research needs of the new accelerator technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1982-08-01

    A review is given of some of the new accelerator technologies with a special eye to the requirements which they generate for research and development. Some remarks are made concerning the organizational needs of accelerator research.

  20. Novel technologies and materials for thermal management

    CERN Document Server

    Verlaat, B; The ATLAS collaboration

    2013-01-01

    Efficient thermal engineering solutions for the entire heat load path from source to sink (sensor to cooling plant) are crucial for the future silicon detectors, more than even before. The particularly demanding cooling requirements are coming from the extreme radiation environment, causing high leakage current in the silicon sensors, as well as from the high power dissipated in the front-end electronics, featuring enhanced functionality and high channel count. The need to carry out dedicated R&D has encouraged increased cooperation among the HEP experiments, to identify state-of-the-art materials and construction principles that can help fulfilling the requirements, and to develop more efficient active cooling systems like CO2 cooling, which is now widely accepted as an excellent detector cooling technology.

  1. Energetic materials research using scanning electron microscopy

    NARCIS (Netherlands)

    Elshout, J.J.M.H. van den; Duvalois, W.; Benedetto, G.L. Di; Bouma, R.H.B.; Heijden, A.E.D.M. van der

    2016-01-01

    A key-technique for the research of energetic materials is scanning electron microscopy. In this paper several examples are given of characterization studies on energetic materials, including a solid composite propellant formulation. Results of the characterization of energetic materials using scann

  2. Energetic materials research using scanning electron microscopy

    NARCIS (Netherlands)

    Elshout, J.J.M.H. van den; Duvalois, W.; Benedetto, G.L. Di; Bouma, R.H.B.; Heijden, A.E.D.M. van der

    2016-01-01

    A key-technique for the research of energetic materials is scanning electron microscopy. In this paper several examples are given of characterization studies on energetic materials, including a solid composite propellant formulation. Results of the characterization of energetic materials using

  3. Analysis of Research Data Management Instruction Materials

    OpenAIRE

    Dressel, Willow

    2015-01-01

    Poster given at the 2015 SLA - All Sciences Poster Session. Many academic libraries are developing research data management instruction programs including online guides and workshops. A wealth of materials are available to draw from. However, the quantity and variety can be overwhelming to someone just starting out. This poster examines and compares 17 publicly available research data management instruction materials.

  4. Material Identification Technology (MIT) concept technical feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.L.; Harker, Y.D.; Yoon, W.Y.; Johnson, L.O.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) has initiated the design and development of a novel pulsed accelerator-based, active interrogation concept. The proposed concept, referred to as the Material Identification Technology (MIT), enables rapid (between accelerator pulses), non-destructive, elemental composition analysis of both nuclear and non-nuclear materials. Applications of this technique include material monitoring in support of counter-proliferation activities, such as export controls (at domestic and international inspection locations), SNM controls, nuclear weapon dismantlement, and chemical weapon verification. Material Identification Technology combines a pulsed, X-ray source (an electron accelerator) and a gamma detection system. The accelerator must maximize neutron production (pulse width, beam current, beam energy, and repetition rate) and minimize photon dose to the object. Current available accelerator technology can meet these requirements. The detection system must include detectors which provide adequate gamma energy resolution capability, rapid recovery after the initial X-ray interrogation pulse, and multiple single gamma event detection between accelerator pulses. Further research is required to develop the detection system. This report provides the initial feasibility assessment of the MIT concept.

  5. Oil heat technology research and development

    Energy Technology Data Exchange (ETDEWEB)

    Kweller, E.R. [Department of Energy, Washington, DC (United States); McDonald, R.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    The purpose of this United States Department of Energy (DOE)/Brookhaven National Laboratory (BNL) program is to develop a technology base for advancing the state-of-the-art related to oilfired combustion equipment. The major thrust is through technology based research that will seek new knowledge leading to improved designs and equipment optimization. The Combustion Equipment space Conditioning Technology program currently deals exclusively with residential and small commercial building oil heat technology.

  6. Using Videotape Technology: Innovations in Behavioral Research.

    Science.gov (United States)

    Niebuhr, Robert E.; And Others

    1981-01-01

    Reviews present and potential uses of videotape technology in behavioral research. Emphasis is placed on research methodology and the value of incorporating videotape in current research practices, including behavior observation studies, in modeling research, and in perceptual attribution investigations. Concludes with an analysis of advantages…

  7. Korea-China Optical Technology Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Cha, H. K.; Rhee, Y. J. (and others)

    2007-04-15

    The main objectives of this project are to develop cooperative channel by personnel exchanges between industrial, educational and research partners of Korea and China on the fields of optical technologies which are the basis of optical industry and being spot-lighted as new industry of 21th century, and to raise the class of Korean optical technology up to world class by utilization of Chinese large facilities through the cooperative research between the optical technology institutions of both sides. To attain the goals mentioned above, we carried out the cooperative researches between the Korean and Chinese optical technology institutions in the following 7 fields; ? research cooperation between KAERI-SITP for the quantum structured far-IR sensor technology - research cooperation for the generation of femtosecond nuclear fusion induced neutrons - research cooperation between KAERI-AIOFM for laser environment analysis and remote sensing technology - research cooperation between KAERI-SIOM for advanced diode-pumped laser technology - cooperative research related on linear and nonlinear magneto-optical properties of advanced magnetic quantum structures - design of pico-second PW high power laser system and its simulation and - cooperative research related on the femto-second laser-plasma interaction physics.

  8. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Durkee, Jr., Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  9. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Argonne National Lab. (ANL), Argonne, IL (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  10. Research study of conjugate materials; Conjugate material no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper reported an introductory research on possibilities of new glass `conjugate materials.` The report took up the structure and synthetic process of conjugate materials to be researched/developed, classified them according to structural elements on molecular, nanometer and cluster levels, and introduced the structures and functions. Further, as glasses with new functions to be proposed, the paper introduced transparent and high-strength glass used for houses and vehicles, light modulation glass which realizes energy saving and optical data processing, and environmentally functional glass which realizes environmental cleaning or high performance biosensor. An initial survey was also conducted on rights of intellectual property to be taken notice of in Japan and abroad in the present situation. Reports were summed up and introduced of Osaka National Research Institute, Electrotechnical Laboratory, and National Industrial Research Institute of Nagoya which are all carrying out leading studies of conjugate materials. 235 refs., 135 figs., 6 tabs.

  11. New technologies in gastrointestinal research

    Institute of Scientific and Technical Information of China (English)

    Asbjφrn Mohr Drewes; Hans Gregersen

    2009-01-01

    This issue presents different new techniques aiming to increase our understanding of the gastrointestinal system and to improve treatment. The technologies cover selected methods to evoke and assess gut pain, new methods for imaging and physiological measurements, histochemistry, pharmacological modelling etc. There is no doubt that the methods will revolutionize the diagnostic approach in near future.

  12. Metrology For Emerging Research Materials And Devices

    Science.gov (United States)

    Garner, C. Michael; Herr, Dan

    2007-09-01

    The International Technology Roadmap for Semiconductors (ITRS) [1] identifies a number of potentially enabling device and materials technologies to extend and compliment CMOS. These emerging memory and logic devices employ alternate "states" including 1D charge state, molecular state, polarization, material phase, and spin. The improvement of these materials and devices depends on utilizing existing and new metrology methods to characterize their structure, composition and emerging critical properties at the nanometer scale. The metrology required to characterize nanomaterials, interfaces, and device structures will include existing structural metrology, such as TEM, SEM, and others, as well as metrology to characterize new "state" properties of the materials. The characterization of properties and correlations to nanostructure and composition are critical for these new devices and materials. Characterizing the properties of emerging logic technologies will be very difficult, as an applied stimulus is required to probe dynamic state changes. In many cases, it will be important simultaneously to measure the spatial variation of multiple state properties, such as charge and spin, as a function of time at high frequencies to develop an understanding of the interactions occurring in the materials and at interfaces. Furthermore, the challenge of characterizing interface structure/composition and "state" interactions likely will increase with device scaling. New metrology capabilities are needed to study the static and dynamic properties of potential alternate "state" materials and devices at small dimensions.

  13. Technology development of nuclear material safeguards for DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Sook; Kim, Ho Dong; Kang, Hee Young; Lee, Young Gil; Byeon, Kee Ho; Park, Young Soo; Cha, Hong Ryul; Park, Ho Joon; Lee, Byung Doo; Chung, Sang Tae; Choi, Hyung Rae; Park, Hyun Soo

    1997-07-01

    During the second phase of research and development program conducted from 1993 to 1996, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. By securing in advance a optimized safeguards system with domestically developed hardware and software, it will contribute not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author). 27 refs., 13 tabs., 89 figs.

  14. Achievement report for fiscal 1998. Research and development of ultimate atom/molecule manipulating technologies (Development of technology for formation of advanced function materials for use under power generation environment); 1998 nendo genshi bunshi kyokugen sosa gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden kankyoyo kokino sozai keisei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The aim is to establish atom/molecule observing and manipulating technologies commonly applicable as basic technologies to industrial fields of new materials, electronics, biotechnology, chemistry, etc. The technologies to be established involve atom level observation and manipulation by mechanically probing into organic molecules such as those of solid surface DNA, microstructure formation with atoms arbitrarily arranged by use of a microfine electron beam and surface chemical properties, simulation by the first principle calculation for the theoretical prediction atom/mole surface application in a process, and new materials to replace semiconductors. The subjects of research and development selected for this fiscal year are the study of silicon nanostructure formation and physical properties, study of nanostructure formation technology based on cluster manipulation, study of nanostructure formation processes using chemical reaction control and local structure analysis, study of new properties of correlation-intensive electron based new materials, study of spin measuring technology, and the study of theoretical analysis of atom/molecule dynamic processes. (NEDO)

  15. Propulsion and energetic materials research in the Netherlands

    NARCIS (Netherlands)

    Zevenbergen, J.F.; Pekalski, A.A.; Heijden, A.E.D.M. van der; Keizers, H.L.J.; Berg, R.P. van den; Maree, A.G.M.; Vliet, L.D. van; Welland, W.H.M.; Wierckx, F.J.M.

    2005-01-01

    Fundamental research on new and existing propellant formulations and energetic materials in the Netherlands is essentially carried out by the Delft University of Technology, Utrecht University, the Dutch Defense Laboratory ‘TNO Defense Security and Safety’ and the SME Aerospace Propulsion Products.

  16. Materials for hydrogen storage: current research trends and perspectives.

    Science.gov (United States)

    van den Berg, Annemieke W C; Areán, Carlos Otero

    2008-02-14

    Storage and transport of hydrogen constitutes a key enabling technology for the advent of a hydrogen-based energy transition. Main research trends on hydrogen storage materials, including metal hydrides, porous adsorbents and hydrogen clathrates, are reviewed with a focus on recent developments and an appraisal of the challenges ahead. .

  17. Technology meets research 60 years of CERN technology : selected highlights

    CERN Document Server

    Taylor, Thomas; Treille, Daniel; Wenninger, Horst

    2017-01-01

    "Big" science and advanced technology are known to cross-fertilize. This book emphasizes the interplay between particle physics and technology at CERN that has led to breakthroughs in both research and technology over the laboratory's first 60 years. The innovations, often the work of individuals or by small teams, are illustrated with highlights describing selected technologies from the domains of accelerators and detectors. The book also presents the framework and conditions prevailing at CERN that enabled spectacular advances in technology and contributed to propel the European organization into the league of leading research laboratories in the world. While the book is specifically aimed at providing information for the technically interested general public, more expert readers may also appreciate the broad variety of subjects presented. Ample references are given for those who wish to further explore a given topic.

  18. Constituting Information Technology Research: The Experience of IT Researchers

    Science.gov (United States)

    Pham, Binh; Bruce, Christine; Stoodley, Ian

    2005-01-01

    The collective consciousness of effective groups of researchers is characterized by shared understandings of their research object or territory. In this study, we adopted a phenomenographic approach to investigate information technology (IT) research, and its objects and territories, as they are constituted in the experience of IT researchers.…

  19. Solder joint technology materials, properties, and reliability

    CERN Document Server

    Tu, King-Ning

    2007-01-01

    Solder joints are ubiquitous in electronic consumer products. The European Union has a directive to ban the use of Pb-based solders in these products on July 1st, 2006. There is an urgent need for an increase in the research and development of Pb-free solders in electronic manufacturing. For example, spontaneous Sn whisker growth and electromigration induced failure in solder joints are serious issues. These reliability issues are quite complicated due to the combined effect of electrical, mechanical, chemical, and thermal forces on solder joints. To improve solder joint reliability, the science of solder joint behavior under various driving forces must be understood. In this book, the advanced materials reliability issues related to copper-tin reaction and electromigration in solder joints are emphasized and methods to prevent these reliability problems are discussed.

  20. Materials and technologies for soft implantable neuroprostheses

    Science.gov (United States)

    Lacour, Stéphanie P.; Courtine, Grégoire; Guck, Jochen

    2016-10-01

    Implantable neuroprostheses are engineered systems designed to restore or substitute function for individuals with neurological deficits or disabilities. These systems involve at least one uni- or bidirectional interface between a living neural tissue and a synthetic structure, through which information in the form of electrons, ions or photons flows. Despite a few notable exceptions, the clinical dissemination of implantable neuroprostheses remains limited, because many implants display inconsistent long-term stability and performance, and are ultimately rejected by the body. Intensive research is currently being conducted to untangle the complex interplay of failure mechanisms. In this Review, we emphasize the importance of minimizing the physical and mechanical mismatch between neural tissues and implantable interfaces. We explore possible materials solutions to design and manufacture neurointegrated prostheses, and outline their immense therapeutic potential.

  1. Levitation Technology in International Space Station Research

    Science.gov (United States)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    The International Space Station (ISS) is a unique multidisciplinary orbiting laboratory for science and technology research, enabling discoveries that benefit life on Earth and exploration of the universe. ISS facilities for containerless sample processing in Materials Science experiments include levitation devices with specimen positioning control while reducing containment vessel contamination. For example, ESA's EML (ElectroMagnetic Levitator), is used for melting and solidification of conductive metals, alloys, or semiconductors in ultra-high vacuum, or in high-purity gaseous atmospheres. Sample heating and positioning are accomplished through electromagnetic fields generated by a coil system. EML applications cover investigation of solidification and microstructural formation, evaluation of thermophysical properties of highly reactive metals (whose properties can be very sensitive to contamination), and examination of undercooled liquid metals to understand metastable phase convection and influence convection on structural changes. MSL utilization includes development of novel light-weight, high-performance materials. Another facility, JAXA's ELF (Electrostatic Levitation Furnace), is used to perform high temperature melting while avoiding chemical reactions with crucibles by levitating a sample through Coulomb force. ELF is capable of measuring density, surface tension, and viscosity of samples at high temperatures. One of the initial ELF investigations, Interfacial Energy-1, is aimed at clarification of interfacial phenomena between molten steels and oxide melts with industrial applications in control processes for liquid mixing. In addition to these Materials Science facilities, other ISS investigations that involve levitation employ it for biological research. For example, NASA's "Magnetic 3D Culturing and Bioprinting" investigation uses magnetic levitation for three-dimensional culturing and positioning of magnetized cells to generate spheroid assemblies

  2. Geo energy research and development: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  3. Overview of Stirling Technology Research at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  4. Computer science research and technology volume 3

    CERN Document Server

    Bauer, Janice P

    2011-01-01

    This book presents leading-edge research from across the globe in the field of computer science research, technology and applications. Each contribution has been carefully selected for inclusion based on the significance of the research to this fast-moving and diverse field. Some topics included are: network topology; agile programming; virtualization; and reconfigurable computing.

  5. PREFACE: MRS International Materials Research Conference (IMRC-2008)

    Science.gov (United States)

    Wang, Zhanguo; Qiu, Yong; Li, Yongxiang

    2009-03-01

    This volume contains selected papers presented at the MRS International Materials Research Conference (IMRC-2008) held in Chongqing, China, 9-12 June 2008. IMRC-2008 included 9 symposia of A. Eco/Environmental Materials, B. Sustainable Energy Materials, C. Electronic Packaging Materials, D. Electronic Materials, E. Materials and Processes for Flat-panel Displays, F. Functional Ceramics, G. Transportation Materials, H. Magnesium and I. Biomaterials for Medical Applications. Nearly 1200 participants from 33 countries attended the conference, and the conference organizers received more than 700 papers. After the peer review processes, 555 papers were selected to be published in 9 Journals or proceedings, including J. of Materials Research (JMR), Rare Metal Materials and Engineering, J. of Univ. Science and Technology Beijing, Biomedical Materials: Materials for Tissue Engineering and Regenerative Medicine, Chinese Journal of Aeronautics, Materials Science Forum, and Journal of Physics: Conference Series. Among the 555 selected papers, 91 papers are published in this volume, and the topics mainly cover electronic matrials, processes for flat-panel displays and functional ceramics. The editors would like to give special thanks to the graduate students Liwu Jiang, Ming Li and Di He from Beihang University for their hard work compiling and typesetting each paper in this volume. Zhanguo Wang, Yong Qiu and Yongxiang Li Editors

  6. KSC Education Technology Research and Development Plan

    Science.gov (United States)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  7. Research progress of the Superheated Steam Drying Technology

    OpenAIRE

    Shi, Yongchun; Li, Jie; Li, Xuanyou; Zhao, Gaiju; Wu, Maogang

    2012-01-01

    The superheated steam drying technology has lots of advantages such as safe, energy-saving, pollution-free and so on, so it causes more and more extensive concern. The superheated steam drying technology is introduced and its merits and faults are analyzed. The theoretical research progress of the superheated steam drying is summarized and the recent application of the materials including the food, wood, paper, sludge and lignite is stated. In brief, the superheated steam drying technol...

  8. 77 FR 2096 - Proposal Review Panel for Materials Research; Notice of Meeting

    Science.gov (United States)

    2012-01-13

    ... Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory...: Name: Site visit review of the Materials Research Science and Engineering Center (MRSEC) at Massachusetts Institute of Technology (MIT) by the Division of Materials Research (DMR) 1203. Dates and...

  9. 75 FR 4876 - Proposal Review Panel for Materials Research; Notice of Meeting

    Science.gov (United States)

    2010-01-29

    ... Proposal Review Panel for Materials Research; Notice of Meeting In accordance with the Federal Advisory...: Name: Site visit review of the Materials Research Science and Engineering Center (MRSEC) at the Georgia Institute of Technology by NSF Division of Materials Research (DMR) 1203. Dates & Times: March 2, 2010,...

  10. Materials with complex behaviour II properties, non-classical materials and new technologies

    CERN Document Server

    Oechsner, Andreas

    2012-01-01

    This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.

  11. Advanced Construction Technology Center Research

    Science.gov (United States)

    1993-03-19

    M.S., Ceramic Engineering, May 1989 RESEARCH ASSISTANTS: 1 J.M. Bukowski Ph.D., Ceramic Engineering, August 1993* Hung-Yuan Hsieh M.S., Civil...Parallel Processing (St. Charles , IL, August 1988) 204-211 (1988). 97 U LO, T.M. Data modeling of three-dimensional objects. M.S. thesis, J. Liu, advisor U

  12. Air Force Research Laboratory Technology Milestones 2008

    Science.gov (United States)

    2008-01-01

    develop a unique measurement platform employing tunable diode laser absorption spectroscopy ( TDLAS ). The TDLAS platform provides a novel approach to...conduct research in the exploration and development of fundamental hypersonic aerospace technologies. TDLAS experiments are scheduled for three of...team expects that the TDLAS measurement platform will achieve Technology Readiness Level 6 status (i.e., system/subsystem model or prototype

  13. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal ... Determination of Nutritive Value and Mineral Elements of Some Species of Genus Memecylon Linn. ... towards Gender and Intimate Partner Violence Against Women in Eastern Ethiopia: A ...

  14. The Europlanet Research Infrastructure and Technology Foresight

    Science.gov (United States)

    Grande, M.; Europlanet Community

    2016-10-01

    The Europlanet 2020 Research Infrastructure is a project to integrate and support planetary science activities across Europe. The project is funded under the European Commission's Horizon 2020 programme. Technology Foresight is a key activity.

  15. First Materials Science Research Rack Capabilities and Design Features

    Science.gov (United States)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  16. Materials technology assessment for a 1050 K Stirling Space Engine design

    Energy Technology Data Exchange (ETDEWEB)

    Scheuermann, C.M.; Dreshfield, R.L.; Gaydosh, D.J.; Kiser, J.D.; MacKay, R.A.; McDanels, D.L.; Petrasek, D.W.; Vannucci, R.D.; Bowles, K.J.; Watson, G.K.

    1988-10-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor; however, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  17. Proceedings of the international workshop on spallation materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Ullmaier, H. [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  18. Proceedings of the international workshop on spallation materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Ullmaier, H. [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  19. COMPLEX PROCESSING TECHNOLOGY OF TOMATO RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    A. M. Gadzhieva

    2015-01-01

    Full Text Available Tomatoes grown in the central and southern parts of the country, which contain 5-6 % of solids, including 0.13 % of pectin, 0.86 % of fat, 0.5 % of organic acids; 0.5 % minerals, etc. were used as a subject of research. These tomatoes, grown in the mountains, on soils with high salinity, contain high amounts of valuable components and have a long-term preservation. For the extraction of valuable components from dried tomato pomace CO2 extraction method was applied. Technological and environmental feasibility of tomatoes stage drying in the atmosphere of inert gas in solar dry kiln were evaluated; production scheme of dried tomatoes is improved; a system for tomato pomace drying is developed; a production scheme of powders of pulp, skin and seeds of tomatoes is developed. Combined method of tomato pomace drying involves the simultaneous use of the electromagnetic field of low and ultra-high frequency and blowing product surface with hot nitrogen. Conducting the drying process in an inert gas atmosphere of nitrogen intensified the process of moisture removing from tomatoes. The expediency of using tomato powder as enriching additive was proved. Based on the study of the chemical composition of the tomato powder made from Dagestan varieties of tomatoes, and on the organoleptic evaluation and physico-chemical studies of finished products, we have proved the best degree of recoverability of tomato powder during the production of reconstituted juice and tomato beverages.

  20. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  1. Materials compatibility and lubricants research on CFC-refrigerant substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Hourahan, G.C.; Szymurski, S.R.

    1993-01-01

    The materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC-refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. Under the current MCLR program the Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) is contracting and managing multiple research projects and a data collection and dissemination effort. Preliminary results from these projects are reported in technical progress reports prepared by each researcher.

  2. Application and prospect of computer technology in welding materials field

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper summarizes the application status of computer technology in welding materials field from three aspects: the CAD of welding materials, the date base system for welding materials and the expert system for welding materials .Besides, this paper explores and discusses the existing problems and the developing trend in the future.

  3. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  4. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  5. Novel omics technologies in nutrition research.

    Science.gov (United States)

    Zhang, Xuewu; Yap, Yeeleng; Wei, Dong; Chen, Gu; Chen, Feng

    2008-01-01

    A key scientific objective of nutrition research is to determine the role of diet in metabolic regulation and to improve health. There are many new opportunities and challenges for the nutrition research in post-genome era. Novel omics technologies and bioinformatics tools offer enormous potential to investigate the complex relationship between nutrition and metabolism. An overview of omics technologies in nutrition research is presented in this paper, which focuses on recent applications of nutritranscriptomics, nutriproteomics and nutrimetabolomics in nutrition research. The potential limitations and future prospects are also discussed. The combination of various omics technologies, systems biology, will greatly facilitate the discovery of new biomarkers associated with specific nutrients or other dietary factors. It can be expected that the future omics-based human nutrition research can provide personalized dietary recommendations for disease prevention.

  6. Social technologies and socialization of research

    Directory of Open Access Journals (Sweden)

    Jos Leijten

    2009-09-01

    Full Text Available Whether we like it or not, and how many difficulties this may pose, scientific research and technology are becoming the “property” of everybody and increasingly will become subject of public guidance and political decision making. Socialization happens because what people think, want and do has become central to the development of science and technology. Socialization of research is simply happening because it is the development characteristic of a society in which knowledge is becoming the main driving force. And just like in agricultural or industrial societies in the past it leads to (re-invent the institutions and mechanisms which allow the knowledge society to function properly.This note will further explore the developments contributing to the socialization of research and their impact on research and research institutes. It will focus more on technologies than on science per se, because applications and usage will become the main drivers.

  7. [Pharmaceutical technology: development and research].

    Science.gov (United States)

    Traisnel, M

    1994-06-01

    Production of pharmaceutics cannot be compared to the manufacture of consumer goods: pharmaceutical manufacturing is the study and bulk manufacture of the ingredients from which medicines are made, and is concerned with the mixing, preparing, packing, of the ingredients into a dosage form for the patient, in according to the good manufacturing practices (GMP). Development and manufacture are not discrete activities but links in a single chain of activity. Research and development, pharmaceutical training, regulatory requirements: these concepts are present with three ways: bioavailability, targeting and compliance.

  8. Materials research institute annual report FY98

    Energy Technology Data Exchange (ETDEWEB)

    Radousky, H

    1999-11-02

    The Materials Research Institute (MRI) is the newest of the University/LLNL Institutes and began operating in March 1997. The MRI is one of five Institutes reporting to the LLNL University Relations Program (URP), all of which have as their primary goal to facilitate university interactions at LLNL. This report covers the period from the opening of the MRI through the end of FY98 (September 30, 1998). The purpose of this report is to emphasize both the science that has been accomplished, as well as the LLNL and university people who were involved. The MRI is concentrating on projects, which highlight and utilize the Laboratory's unique facilities and expertise. Our goal is to enable the best university research to enhance Laboratory programs in the area of cutting-edge materials science. The MRI is focusing on three primary areas of materials research: Biomaterials (organic/inorganic interfaces, biomemetic processes, materials with improved biological response, DNA materials science); Electro/Optical Materials (laser materials and nonlinear optical materials, semiconductor devices, nanostructured materials); and Metals/Organics (equation of state of metals, synthesis of unique materials, high explosives/polymers). In particular we are supporting projects that will enable the MRI to begin to make a distinctive name for itself within the scientific community and will develop techniques applicable to LLNL's core mission. This report is organized along the lines of these three topic areas. A fundamental goal of the MRI is to nucleate discussion and interaction between Lab and university researchers, and among Lab researchers from different LLNL Directorates. This is accomplished through our weekly seminar series, special seminar series such as Biomaterials and Applications of High Pressure Science, conferences and workshops, our extensive visitors program and MRI lunches. We are especially pleased to have housed five graduate students who are performing their

  9. Composite Structures and Materials Research at NASA Langley Research Center

    Science.gov (United States)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  10. Nanoscale Materials and Devices - New Solutions for Information Technologies

    Science.gov (United States)

    Buhrman, Robert

    2003-03-01

    The continual scaling down of Si C-MOS circuits, the current annual doubling of magnetic storage density, and the regularly increasing capacity of fiber optic communications have resulted in enormous technological change, including a revolutionary transformation of all areas of science and engineering. Indeed the current capabilities of these information technologies both provide the quintessential demonstration that microtechnology, which is now transitioning to nanotechnology, can have tremendous societal impact, and provide essential means and methods by which other aspects of nanotechnology R can now be pursued. If the pace of advance in these information technologies is to be continued well into the future, new approaches and new solutions will be required to overcome the challenges this objective will entail. Nanoscaled material systems and new types of nanoscale devices have substantial promise for providing the basis for effective solutions to a number of these challenges. In this presentation I will briefly discuss research in the areas of nanoelectronics, nanophotonics and nanomagnetics that seeks to establish and develop some of these solutions. These include a radical new approach to Si electronics at the 10 nm scale, the use of nanoscaled materials to enable new photonic capabilities, and a new approach to manipulate nanomagnets for potential information storage and communication applications.

  11. Chemistry and materials science research report

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-31

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  12. A snapshot of research in learning technology

    Directory of Open Access Journals (Sweden)

    Rhona Sharpe

    2010-12-01

    Full Text Available The papers in this issue present a convenient snapshot of current research in learning technology, both in their coverage of the issues that concern us and the methods that are being used to investigate them. This issue shows that e-learning researchers are interested in: what technologies are available and explorations of their potential (Nie et al. explore the role of podcasting, how to design technology-mediated learning activities in ways which support specific learning outcomes (Simpson evaluates the role of ‘book raps' in supporting critical thinking, the identification of critical success factors in implementations (Cochrane's observation of three mobile learning projects and how such e-learning initiatives can be sustained within an institutional context (Gunn's examination of the challenges of embedding ‘grass roots' initiatives. Finally e-learning research is concerned with investigating the impact of emerging technologies on education – in this case Traxler's discussion of mobile, largely student-owned, devices. Together these five papers demonstrate the scope of research in learning technology and it is with this in mind that we will soon be referring to this journal by its subtitle: Research in Learning Technology.

  13. The latest progress in research of plastics processing technology

    Institute of Scientific and Technical Information of China (English)

    Qu Jinping

    2012-01-01

    According to the great demand for the" green" plastics processing technology of the low energy consumption, high efficiency and environmental protection in plastics industry, the plastics processing method and technology based on the elongation rheology, with continuing evolution and innovation of the plastics plasticating and conveying method, are presented and researched on the basis of the plastics dynamic processing method arid equipment, and the plastics plasticating and conveying process in the vane extrusion system, the technical characteristics and the applications of vane plasticating and conveying technology are discussed. The research results show that compared with the conventional processing equipment, this new technology and equipment shows many outstanding advantages, such as shortening the thermo-meehanical history of the plastics processing by more than 50 % , reducing the energy consumption by 30 % or so, improving the mixing and blending effects, improving the quality of the products and the adaptability to materials, etc. , and it is found that the new technology and equipment has special superiority in the fields of the processing for material systems, such as the multiphase and multicomponent composite materials, the shear heat sensitive macromolecular materials, etc.

  14. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  15. Joint research center activity in thermonuclear fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Rocco, P. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)

    1984-04-01

    A review of the activities in progress in the field of thermonuclear fusion technology at the Joint Research Centre of the European Communities is presented. The research areas are: (I) reactor studies, including conceptual design studies of experimental Tokamak reactors (INTOR/NET) and safety analyses; (II) experimental investigation on first wall and blanket materials and components. Emphasis has been given to those topics which are not reported in detail in the following articles of the issue.

  16. Engineering research, development and technology report

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R T

    1999-02-01

    Nineteen ninety-eight has been a transition year for Engineering, as we have moved from our traditional focus on thrust areas to a more focused approach with research centers. These five new centers of excellence collectively comprise Engineering's Science and Technology program. This publication summarizes our formative year under this new structure. Let me start by talking about the differences between a thrust area and a research center. The thrust area is more informal, combining an important technology with programmatic priorities. In contrast, a research center is directly linked to an Engineering core technology. It is the purer model, for it is more enduring yet has the scope to be able to adapt quickly to evolving programmatic priorities. To put it another way, the mission of a thrust area was often to grow the programs in conjunction with a technology, whereas the task of a research center is to vigorously grow our core technologies. By cultivating each core technology, we in turn enable long-term growth of new programs.

  17. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  18. Engineering Research, Development and Technology, FY95: Thrust area report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  19. JPRS Report, Science & Technology, USSR: Materials Science

    Science.gov (United States)

    2015-08-20

    JPRS-UPIS-90-Q03 1 MAY 1990 S#J1%\\ ■ ■■in FOREIGN BROADCAST INFORMATION SERVICE .JPRS Report — 19981021 129 Science & Technology USSR... entity , with average temperature of its own, engaged in heat exchange with the two-phase zone according to the convection law. However, such a model...it represents a definite technological complication and requires separate solution. 7. Problems of mechanizing the loading of the initial blank

  20. RESEARCH OF TECHNOLOGICAL AND MICROBIOLOGICAL PROPERTIES OF THE CRYOMILLED MEDICINAL PLANT RAW MATIRIAL

    OpenAIRE

    Soldatov DP; Chueshov VI; Koniukhov IV

    2012-01-01

    The technological parameters of the cryomilled plant raw matirial Calendula flowers, Taraxacum roots, Silybum fruit, Mentha leaves, Menyanthes grass, Agrimonia grass, Fumaria grass have been determined. Microbiological cleanness and antimicrobial activity of cryopowders and input material have been researched. It is established that use of cryomilling lead to microbiological contamination decrease, cryopowders of researched medicinal plant raw material can be used in tablets technology.

  1. NIF Optical Materials and Fabrication Technologies: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J H; Hawley-Fedder, R; Stolz, C J; Menapace, J A; Borden, M R; Whitman, P; Yu, J; Runkel, M; Riley, M; Feit, M; Hackel, R

    2004-02-23

    The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 {micro}m to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.

  2. NIF optical materials and fabrication technologies: an overview

    Science.gov (United States)

    Campbell, John H.; Hawley-Fedder, Ruth A.; Stolz, Christopher J.; Menapace, Joseph A.; Borden, Michael R.; Whitman, Pamela K.; Yu, June; Runkel, Michael J.; Riley, Michael O.; Feit, Michael D.; Hackel, Richard P.

    2004-05-01

    The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 μm to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.

  3. Textile Visual Materials: Appropriate Technology in Action.

    Science.gov (United States)

    Donoghue, Beverly Emerson

    An innovative educational medium--screenprinted visual aids on cloth--is one alternative to conventional media in Africa, where visual materials are important communication tools but conventional media and materials are often scarce. A production process for cloth visual aids was developed and evaluated in Ghana and Sudan through the…

  4. Office of Industrial Technologies research in progress

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  5. Concise encyclopedia of semiconducting materials and related technologies

    CERN Document Server

    Mahajan, S M

    1992-01-01

    The development of electronic materials and particularly advances in semiconductor technology have played a central role in the electronics revolution by allowing the production of increasingly cheap and powerful computing equipment and advanced telecommunications devices. This Concise Encyclopedia, which incorporates relevant articles from the acclaimed Encyclopedia of Materials Science and Engineering as well as newly commissioned articles, emphasizes the materials aspects of semiconductors and the technologies important in solid-state electronics. Growth of bulk crystals and epitaxial layer

  6. Engineering research, development and technology. Thrust area report, FY93

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  7. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials

    Directory of Open Access Journals (Sweden)

    Petre Badica, Adrian Crisan, Gheorghe Aldica, Kazuhiro Endo, Hanna Borodianska, Kazumasa Togano, Satoshi Awaji, Kazuo Watanabe, Yoshio Sakka and Oleg Vasylkiv

    2011-01-01

    Full Text Available Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering, nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  8. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials.

    Science.gov (United States)

    Badica, Petre; Crisan, Adrian; Aldica, Gheorghe; Endo, Kazuhiro; Borodianska, Hanna; Togano, Kazumasa; Awaji, Satoshi; Watanabe, Kazuo; Sakka, Yoshio; Vasylkiv, Oleg

    2011-02-01

    Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  9. Contributions of mobile technologies to addiction research.

    Science.gov (United States)

    Swendsen, Joel

    2016-06-01

    Mobile technologies are revolutionizing the field of mental health, and particular progress has been made in their application to addiction research and treatment. The use of smartphones and other mobile devices has been shown to be feasible with individuals addicted to any of a wide range of substances, with few biases being observed concerning the repeated monitoring of daily life experiences, craving, or substance use. From a methodological point of view, the use of mobile technologies overcomes longstanding limitations of traditional clinical research protocols, including the more accurate assessment of temporal relationships among variables, as well as the reduction in both contextual constraints and discipline-specific methodological isolation. The present article presents a conceptual review of these advances while using illustrations of research applications that are capable of overcoming specific methodological barriers. Finally, a brief review of both the benefits and risks of mobile technology use for the treatment of patients will be addressed.

  10. Sodium fast reactor fuels and materials : research needs.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R.; Porter, Douglas (Idaho National Laboratory, Idaho Falls, ID); Wright, Art (Argonne National Laboratory Argonne, IL); Lambert, John (Argonne National Laboratory Argonne, IL); Hayes, Steven (Idaho National Laboratory, Idaho Falls, ID); Natesan, Ken (Argonne National Laboratory Argonne, IL); Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Garner, Frank (Radiation Effects Consulting. Richland, WA); Walters, Leon (Advanced Reactor Concepts, Idaho Falls, ID); Yacout, Abdellatif (Argonne National Laboratory Argonne, IL)

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  11. Impact of Individualized Instructional Materials on Technology Education Programs.

    Science.gov (United States)

    Welty, Kenneth; Tsai, Wei-Kun

    1995-01-01

    A survey of technology instructors in junior and senior high schools determined the impact of adopting modular programs using individualized instructional materials (IIMs) on their teaching styles: teacher-directed methods decreased; use of student-oriented materials increased, while use of teacher-oriented materials decreased; frequency of…

  12. Impact of Individualized Instructional Materials on Technology Education Programs.

    Science.gov (United States)

    Welty, Kenneth; Tsai, Wei-Kun

    1995-01-01

    A survey of technology instructors in junior and senior high schools determined the impact of adopting modular programs using individualized instructional materials (IIMs) on their teaching styles: teacher-directed methods decreased; use of student-oriented materials increased, while use of teacher-oriented materials decreased; frequency of…

  13. Advanced research workshop: nuclear materials safety

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  14. JPRS Report, Science & Technology, USSR: Materials Science

    Science.gov (United States)

    1988-01-11

    material possess special heat-stability. The optical characteristics of metals usually used as selective solar cell absorbers (high absorbability in the...single-phase crystalline (spinel- perovskite -, garnet-like materials), as well as composite. Electrical, mechanical, optical, magnetic, and biological...Dielectrics Ferroelectries Piezoelectrics Semiconductors Electron-ion semiconductors Ion conductors AI2O3, BeO BaTi03, SrTi03 Pb (Ti, Zr)Oß

  15. Development and application of ferrite materials for low temperature co-fired ceramic technology

    Science.gov (United States)

    Zhang, Huai-Wu; Li, Jie; Su, Hua; Zhou, Ting-Chuan; Long, Yang; Zheng, Zong-Liang

    2013-11-01

    Development and application of ferrite materials for low temperature co-fired ceramic (LTCC) technology are discussed, specifically addressing several typical ferrite materials such as M-type barium ferrite, NiCuZn ferrite, YIG ferrite, and lithium ferrite. In order to permit co-firing with a silver internal electrode in LTCC process, the sintering temperature of ferrite materials should be less than 950 °C. These ferrite materials are research focuses and are applied in many ways in electronics.

  16. Research on Technology and Physics Education

    Science.gov (United States)

    Bonham, Scott

    2010-10-01

    From Facebook to smart phones, technology is an integral part of our student's lives. For better or for worse, technology has become nearly inescapable in the classroom, enhancing instruction, distracting students, or simply complicating life. As good teachers we want to harness the power we have available to impact our students, but it is getting harder as the pace of technological change accelerates. How can we make good choices in which technologies to invest time and resources in to use effectively? Do some technologies make more of a difference in student learning? In this talk we will look at research studies looking at technology use in the physics classroom---both my work and that of others---and their impact on student learning. Examples will include computers in the laboratory, web-based homework, and different forms of electronic communication. From these examples, I will draw some general principles for effective educational technology and physics education. Technology is simply a tool; the key is how we use those tools to help our students develop their abilities and understanding.

  17. Materials Research Department annual report 2002

    DEFF Research Database (Denmark)

    2003-01-01

    Selected activities of the Materials Research Department at Risø National Laboratory during 2002 are described. The scientific work is described in five chapters and a survey is given of the Department’s educational activities along with a list ofpublished work, patents, prizes, organized meetings...

  18. Materials Research Department annual report 2003

    DEFF Research Database (Denmark)

    2004-01-01

    Selected activities of the Materials Research Department at Risø National Laboratory during 2003 are described. The scientific work is described in five chapters and a survey is given of the Department’s educational activities along with a list ofpublished work, prizes, organized meetings, and me...

  19. Materials Research Department annual report 2001

    DEFF Research Database (Denmark)

    Carstensen, Jesper Vejlø; Lindgård, Per-Anker; Feidenhans'l, Robert Krarup

    2002-01-01

    Selected activities of the Materials Research Department at Risø National Laboratory during 2001 are described. The scientific work is described in 10 chapters and a survey is given of the Department's educational activities along with a list ofpublished work. Furthermore, the main figures outlin...

  20. Small Scale Turbopump Manufacturing Technology and Material Processes

    Science.gov (United States)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  1. FY06 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; Alves, S W; Anderson, A T; Bennett, C V; Brown, C G; Brown, W D; Chinn, D; Clague, D; Clark, G; Cook, E G; Davidson, J C; Deri, R J; Dougherty, G; Fasenfest, B J; Florando, J N; Fulkerson, E S; Haugen, P; Heebner, J E; Hickling, T; Huber, R; Hunter, S L; Javedani, J; Kallman, J S; Kegelmeyer, L M; Koning, J; Kosovic, B; Kroll, J J; LeBlanc, M; Lin, J; Mariella, R P; Miles, R; Nederbragt, W W; Ness, K D; Nikolic, R J; Paglieroni, D; Pannu, S; Pierce, E; Pocha, M D; Poland, D N; Puso, M A; Quarry, M J; Rhee, M; Romero, C E; Rose, K A; Sain, J D; Sharpe, R M; Spadaccini, C M; Stolken, J S; Van Buuren, A; Wemhoff, A; White, D; Yao, Y

    2007-01-22

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2006. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out primarily through two internal programs: the Laboratory Directed Research and Development (LDRD) program and the technology base, or ''Tech Base'', program. LDRD is the vehicle for creating technologies and competencies that are cutting-edge, or require discovery-class research to be fully understood. Tech Base is used to prepare those technologies to be more broadly applicable to a variety of Laboratory needs. The term commonly used for Tech Base projects is ''reduction to practice''. Thus, LDRD reports have a strong research emphasis, while Tech Base reports document discipline-oriented, core competency activities. This report combines the LDRD and Tech Base summaries into one volume, organized into six thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Precision Engineering; Engineering Systems for Knowledge and Inference; and Energy Manipulation.

  2. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  3. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  4. Manufacturing technology of the composite materials: nanocrystalline material – polymer type

    OpenAIRE

    B. Ziębowicz; D. Szewieczek; L.A. Dobrzański

    2005-01-01

    Purpose: This paper presents the material and technological solution which makes it possible to obtain the nanocrystalline, ferromagnetic powder material of Fe73.5Cu1Nb3Si13.5B9 alloy after its thermal nanocrystallization with the succeeding high-energy milling. Another aspect was to develop the technology to obtain the nanocrystalline composite materials made by binding the obtained powder material with the high density low-pressures polyethylene (PEHD) with the controlled ferromagnetic and ...

  5. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  6. Materials Science Research Rack-1 (MSRR-1)

    Science.gov (United States)

    2001-01-01

    This scale model depicts the Materials Science Research Rack-1 (MSRR-1) being developed by NASA's Marshall Space Flight Center and the European Space Agency (ESA) for placement in the Destiny laboratory module aboard the International Space Station. The rack is part of the plarned Materials Science Research Facility (MSRF) and is expected to include two furnace module inserts, a Quench Module Insert (being developed by NASA's Marshall Space Flight Center) to study directional solidification in rapidly cooled alloys and a Diffusion Module Insert (being developed by the European Space Agency) to study crystal growth, and a transparent furnace (being developed by NASA's Space Product Development program). Multi-user equipment in the rack is being developed under the auspices of NASA's Office of Biological and Physical Research (OBPR) and ESA. Key elements are labeled in other images (0101754, 0101829, 0101830, and TBD). This image is from a digital still camera; higher resolution is not available.

  7. Materials for high vacuum technology, an overview

    CERN Document Server

    Sgobba, Stefano

    2007-01-01

    In modern accelerators stringent requirements are placed on materials of vacuum systems. Their physical and mechanical properties, machinability, weldability or brazeability are key parameters. Adequate strength, ductility, magnetic properties at room as well as low temperatures are important factors for vacuum systems of accelerators working at cryogenic temperatures, such as the Large Hadron Collider (LHC) under construction at CERN. In addition, baking or activation of Non-Evaporable Getters (NEG) at high temperatures impose specific choices of material grades of suitable tensile and creep properties in a large temperature range. Today, stainless steels are the dominant materials of vacuum constructions. Their metallurgy is extensively treated. The reasons for specific requirements in terms of metallurgical processes are detailed, in view of obtaining adequate purity, inclusion cleanliness, and fineness of the microstructure. In many cases these requirements are crucial to guarantee the final leak tightnes...

  8. Overview of NASA's Microgravity Materials Research Program

    Science.gov (United States)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is

  9. Research review of dissolving natural polymer materials with ionic liquids and green spinning technology%离子液体溶解天然高分子材料及绿色纺丝技术研究综述

    Institute of Scientific and Technical Information of China (English)

    张锁江; 刘艳荣; 聂毅

    2016-01-01

    The structure-activity relationship,dissolution mechanism and spinning processes of dissolving cellu-lose,chitin /chitisan,keratin and other natural spinning polymer materials in ionic liquids (ILs)were re-viewed .It was concluded that ILs as a class of green and prominent solvents in dissolving natural spinning polymer materials and dry-jet wet spinning provided a new approach to the new generation of green spinning technology.But in order to realize wide industrial application some key scientific problems of ILs spinning should be solvedincluding thorough research of the dissolution mechanism,further design of the functionalized ILs,exploration of the conditions of rheological properties and spinnability,and the recycling of ILs.%针对离子液体溶解纤维素、甲壳素/壳聚糖、角蛋白及其他天然高分子化合物的构效关系、溶解机理及纺丝过程的研究现状进行了综述,认为,离子液体在溶解天然高分子材料及干喷湿纺纺丝方面显示出独特的优势,为发展新一代绿色纺丝技术提供了新途径。然而离子液体溶解纺丝要实现大规模工业化应用,尚需解决一些关键问题,如溶解机理的深入研究、功能化离子液体的设计、溶液流变性及可纺性的研究、离子液体的再生纯化等。

  10. Research and technology, fiscal year 1983

    Science.gov (United States)

    1983-01-01

    The responibilities and programs of the Goddard Space Flight Center are ranged from basic research in the space and Earth sciences through the management of numerous flight projects to operational responsibility for the tracking of and data acquisition from NASA's Earth orbiting satellites, Progress in the areas of spacecraft technology, sensor development and data system development, as well as in the basic and applied to research in the space and Earth sciences that they support is highlighted.

  11. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  12. Overview of materials research in South Africa

    CSIR Research Space (South Africa)

    Du Preez, W

    2011-09-01

    Full Text Available publishes South Africa?s 10 Year Innovation Plan ? Grand Challenges: (A mechanism to create focus and develop a research agenda with specific national outcomes) 1. Farmer to Pharma value chain to strengthen the bio-economy; 2. Space science & technology... 2011 World production: ca. 1 100 000 tonnes per annum South Africa 30 % Australia 36 % Other 14 % Indonesia 9 % USA 11 % South Africa is the second largest producer in the world Less than 5 % beneficiated locally World Production...

  13. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  14. Technology and religion: Islam, Christianity and materialism

    Directory of Open Access Journals (Sweden)

    E. Schuurman

    2011-06-01

    Full Text Available The Western world and the world of Islam share a history, but they also differ greatly. The rise of terrorism has once again made us fully aware of that. In these tense times I would like to consider a question that is rarely raised today, yet which may be very relevant and very revealing: What attitude do these two worlds take toward technology?

  15. Health effects of coal technologies: research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  16. Landmine detection technology research in the Netherlands

    NARCIS (Netherlands)

    Schleijpen, H.M.A.

    2003-01-01

    This paper gives an overview of the activities on research and development in the technology area for landmine detection in the Netherlands. The main players, their projects and the long term and short term project goals are presented. The projects cover the range from military applications to human

  17. Landmine Detection Technology Research Programme at TNO

    NARCIS (Netherlands)

    Schleijpen, H.M.A.

    2003-01-01

    This presentation gives an overview of most of the activities on research and development in the technology area for landmine detection at TNO in the Netherlands. The projects cover the range from military applications to humanitarian demining. In the “conventional” detection systems area the activi

  18. Educational Technology Research in a VUCA World

    Science.gov (United States)

    Reeves, Thomas C.; Reeves, Patricia M.

    2015-01-01

    The status of educational technology research in a VUCA world is examined. The acronym, VUCA, stands for "Volatility" (rapidly changing contexts and conditions), "Uncertainty" (information missing that is critical to problem solving), "Complexity" (multiple factors difficult to categorize or control), and…

  19. Present challenges of research and technology politics

    Science.gov (United States)

    Bulow, A. V.

    1982-01-01

    Research and technology in Germany are discussed. The rapid transfer of scientific knowledge and techniques from the laboratory to the manufacturing and industrial communities is identified as a priority. It is recommended that the government give maximum support to the aviation and space flight industries.

  20. Information Technology Investments in Research Libraries.

    Science.gov (United States)

    Rosenblatt, Susan

    1999-01-01

    Examines investments that will ensure that library information technology (IT) meets future academic needs. Looks back on the introduction of IT to research libraries. Assesses outcomes of IT investments in terms of cost and service benefits, and then focuses on developing new service models. (AEF)

  1. Research and Technology: Fiscal year 1982 report

    Science.gov (United States)

    1982-01-01

    Accomplishments and research objectives are described in the following areas: (1) space sciences; (2) space and terrestrial applications; (3) flight projects and mission definition studies; (4) space tracking and data systems; and (5) space technology. Data analysis efforts, instrument development, and measurement projects are among the aspects considered.

  2. Food irradiation: research and technology, preface

    Science.gov (United States)

    Many interesting and exciting developments have occurred in the field of food irradiation since the publication of the first edition of Food Irradiation: Research and Technology in 2006. The 2nd edition of the book reviews our latest knowledge on food irradiation, highlights the current developments...

  3. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    Science.gov (United States)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  4. Silk materials--a road to sustainable high technology.

    Science.gov (United States)

    Tao, Hu; Kaplan, David L; Omenetto, Fiorenzo G

    2012-06-01

    This review addresses the use of silk protein as a sustainable material in optics and photonics, electronics and optoelectronic applications. These options represent additional developments for this technology platform that compound the broad utility and impact of this material for medical needs that have been recently described in the literature. The favorable properties of the material certainly make a favorable case for the use of silk, yet serve as a broad inspiration to further develop biological foundries for both the synthesis and processing of Nature's materials for technological applications.

  5. Lead-acid battery technologies fundamentals, materials, and applications

    CERN Document Server

    Jung, Joey; Zhang, Jiujun

    2015-01-01

    Lead-Acid Battery Technologies: Fundamentals, Materials, and Applications offers a systematic and state-of-the-art overview of the materials, system design, and related issues for the development of lead-acid rechargeable battery technologies. Featuring contributions from leading scientists and engineers in industry and academia, this book:Describes the underlying science involved in the operation of lead-acid batteriesHighlights advances in materials science and engineering for materials fabricationDelivers a detailed discussion of the mathematical modeling of lead-acid batteriesAnalyzes the

  6. Landmine research: technology solutions looking for problems

    Science.gov (United States)

    Trevelyan, James P.

    2004-09-01

    The global landmine problem came to the attention of researchers in the mid 1990's and by 1997 several advanced and expensive sensor research programs had started. Yet, by the end of 2003, there is little sign of a major advance in the technology available to humanitarian demining programs. Given the motivation and dedication of researchers, public goodwill to support such programs, and substantial research resources devoted to the problem, it is worth asking why these programs do not seem to have had an impact on demining costs or casualty rates. Perhaps there are factors that have been overlooked. This paper reviews several research programs to gain a deeper understanding of the problem. A possible explanation is that researchers have accepted mistaken ideas on the nature of the landmine problems that need to be solved. The paper provides several examples where the realities of minefield conditions are quite different to what researchers have been led to believe. Another explanation may lie in the political and economic realities that drive the worldwide effort to eliminate landmines. Most of the resources devoted to landmine clearance programs come from humanitarian aid budgets: landmine affected countries often contribute only a small proportion because they have different priorities based on realistic risk-based assessment of needs and political views of local people. Some aid projects have been driven by the need to find a market for demining technologies rather than by user needs. Finally, there is a common misperception that costs in less developed countries are intrinsically low, reflecting low rates paid for almost all classes of skilled labour. When actual productivity is taken into account, real costs can be higher than industrialized countries. The costs of implementing technological solutions (even using simple technologies) are often significantly under-estimated. Some political decisions may have discouraged thorough investigation of cost

  7. Present and Future Automotive Composite Materials Research Efforts at DOE

    Energy Technology Data Exchange (ETDEWEB)

    Warren, C.D.

    1999-07-03

    Automobiles of the future will be forced to travel fi.uther on a tank of fuel while discharging lower levels of pollutants. Currently, the United States uses in excess of 16.4 million barrels of petroleum per day. Sixty-six percent of that petroleum is used in the transportation of people and goods. Automobiles currently account for just under two-thirds of the nation's gasoline consumptio~ and about one-third of the total United States energy usage. [1] By improving transportation related fiel efficiency, the United States can lessen the impact that emissions have on our environment and provide a cleaner environment for fiture generations. In 1992, The Department of Energy's (DOE) Office of Transportation Materials completed a comprehensive program plan entitled, The Lightweight MateriaIs (LWko Multi-Year Program Plan, for the development of technologies aimed at reducing vehicle mass [2]. This plan was followed in 1997 by the more comprehensive Office of Advanced Automotive Technologies research and development plan titled, Energy Eficient Vehicles for a Cleaner Environment [3] which outlines the department's plans for developing more efficient vehicles during the next ~een years. Both plans identi~ potential applications, technology needs, and R&D priorities. The goal of the Lightweight Materials Program is to develop materials and primary processing methods for the fabrication of lighter weight components which can be incorporated into automotive systems. These technologies are intended to reduce vehicle weight, increase fuel efficiency and decrease emissions. The Lightweight Materials program is jointly managed by the Department of Energy(DOE) and the United States Automotive Materials Partnership (USAMP). Composite materiak program work is coordinated by cooperative research efforts between the DOE and the Automotive Composites Consortium (ACC).

  8. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  9. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  10. JPRS Report, Science & Technology, Japan, Bio-Functional Materials.

    Science.gov (United States)

    1990-01-17

    BIO -Functional Materials Selected abstracts on the design, structure, and functions of bio -functional materials; "priority areas of research" sponsored by the Ministry of Education, Science and Culture

  11. Material Design and Technology of Cartonboard Packaging

    OpenAIRE

    Marttila, Erno

    2012-01-01

    This thesis explores the different types of cartonboard packages through the whole line of their manufacturing process from choosing the right materials for the board in to final converting processes. Producing efficient, environmentally friendly and most of all right kind of cartonboard package is the core theme in this work. This work is publicly available and can be used as a reference by anyone who needs to learn the basics and some of the more advanced things of cartonboard packaging....

  12. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing...... processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...

  13. Application of biophysical technologies in dental research

    Science.gov (United States)

    Higham, Susan M.; Pender, Neil; de Josselin de Jong, Elbert; Smith, Philip W.

    2009-05-01

    There is a wealth of evidence to indicate that if dental caries can be recognized at an early stage, it is possible to halt its progression or even reverse it. This has led to an increased interest in the development of diagnostic techniques capable of visualizing caries at an early stage in addition to providing clinicians with an aid to diagnosis. Several techniques are available for research and clinical applications for detecting early demineralization. This manuscript has reviewed some of the techniques currently available to determine their advantages, whether they have any limitations and their applicability to dental research and clinical dentistry. Not one method is the perfect choice in all situations, but what is clear is that the development and application of biophysical technologies have allowed major advances to be made in dental research as well as in clinical dentistry. With continued developments these technologies will play an important role in the future management of dental disease.

  14. Progress in advanced high temperature turbine materials, coatings, and technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1978-01-01

    Advanced materials, coatings, and cooling technology is assessed in terms of improved aircraft turbine engine performance. High cycle operating temperatures, lighter structural components, and adequate resistance to the various environmental factors associated with aircraft gas turbine engines are among the factors considered. Emphasis is placed on progress in development of high temperature materials for coating protection against oxidation, hot corrosion and erosion, and in turbine cooling technology. Specific topics discussed include metal matrix composites, superalloys, directionally solidified eutectics, and ceramics.

  15. 2015 Materials Research Society Spring Meeting

    Science.gov (United States)

    2016-05-12

    Italy; 2, Department of Chemical and Materials Engineering and Industrial Production, University of Naples " Federico II", Naples, Italy; 3...Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples " Federico II", Naples, Italy. Show Abstract 4:00 PM - GG4.07 ZnO-Binding Peptides...Albuquerque, New Mexico, United States. Show Abstract 8:00 PM - GG5.28 Facile Approach for Detection of Fungicide Residues from Grape Extract Jon Engel

  16. Materials Research Department. Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Cartensen, J.V.; Lindgaard, P.A.; Freidenhans' I, R. (eds.)

    2002-08-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 2001 are described. The scientific work is described in 10 chapters and a survey is given of the Department's educational activities along with a list of published work. Furthermore, the main figures outlining the funding and expenditures of the Department are given and a list of staff members is included. (au)

  17. Materials Research Department annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bentzen, J.J.; Lindgaerd, P.A.; Feidenhans' l, R. (eds.)

    2004-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 2003 are described. The Scientific work is described in five chapters and a survey is given of the Departments educational activities along with a list of published work, prizes, organized meetings, and membership of committees. Furthermore, the main figures outlining the funding and expenditures of the Department are given and a list of staff members is included. (au)

  18. Joining of HHF materials applying electroplating technology

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Wolfgang, E-mail: wolfgang.krauss@kit.edu; Lorenz, Julia; Konys, Jürgen

    2014-10-15

    Highlights: • Electroplating of fillers is industrially relevant for brazing in fusion. • Interlayers (Ni or Pd) improve adherence and reduce failure risks. • Tungsten and Eurofer joints successfully fabricated by electroplating. • Mechanical and non-destructive testing integrated into qualification. • Shear strength of W joints comparable with conventionally brazed steel. - Abstract: Tungsten will be used as armor material for blanket shielding and is designated as high heat flux material for divertors, beyond application of improved W composite alloys as structural material. Independent from design (water- or helium-cooled), a successful development is inherently correlated with joining of tungsten with functional components. Depending on the design variants, the fabricated joints have to guarantee specific functional or structural properties, e.g., good thermal conductivity or mechanical load transmission. Tungsten shows lacks in adapted joining due to its metallurgical behavior ranging from immiscibility over bad wetting to brittle intermetallic phase formation. Electroplating has shown to overcome such drawbacks and that homogeneous functional (e.g., Ni or Pd) and filler (e.g., Cu) layers can be deposited. In this paper the progress achieved in development of electroplating processes for joining W to W or steel to steel will be shown. The main focus will be the characterization of the processed joints applying metallurgical investigations including SEM/EDX analyses and non-destructive testing. The mechanical stability of the produced joints is demonstrated by presenting recent shear test data. The W–W joints failed due to cracking in W, whereas the steel–steel joints cracked in the brazing zone at about 200 N/mm{sup 2} load.

  19. JPRS Report, Science & Technology, USSR: Materials Science

    Science.gov (United States)

    2007-11-02

    structural materials and the formation of macroscopic and microscopic over- growth on them. Specimens measuring 100x50x2 mm were attached by PVC ...composition, in percent: 0.10 C; 0.39 Mn; 0.019 S; 0.020 P. A boron-containing slag-forming mixture was placed in the mold before pouring of one of the...steel making system consisting of oxygen converters, steel-pouring ladles, installations for blowing argon through the steel and continuous casting

  20. Control technology for surface treatment of materials using induction hardening

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, J.B.; Skocypec, R.D. [Sandia National Labs., NM (United States)

    1997-04-01

    In the industrial and automotive industries, induction case hardening is widely used to provide enhanced strength, wear resistance, and toughness in components made from medium and high carbon steels. The process uses significantly less energy than competing batch process, is environmentally benign, and is a very flexible in-line manufacturing process. As such, it can directly contribute to improved component reliability, and the manufacture of high-performance lightweight parts. However, induction hardening is not as widely used as it could be. Input material and unexplained process variations produce significant variation in product case depth and quality. This necessitates frequent inspection of product quality by destructive examination, creates higher than desired scrap rates, and causes de-rating of load stress sensitive components. In addition, process and tooling development are experience-based activities, accomplished by trial and error. This inhibits the use of induction hardening for new applications, and the resultant increase in energy efficiency in the industrial sectors. In FY96, a Cooperative Research and Development Agreement under the auspices of the Technology Transfer Initiative and the Partnership for a New Generation of Vehicles was completed. A multidisciplinary team from Sandia National Labs and Delphi Saginaw Steering Systems investigated the induction hardening by conducting research in the areas of process characterization, computational modeling, materials characterization, and high speed data acquisition and controller development. The goal was to demonstrate the feasibility of closed-loop control for a specific material, geometry, and process. Delphi Steering estimated annual savings of $2-3 million per year due to reduced scrap losses, inspection costs, and machine down time if reliable closed-loop control could be achieved. A factor of five improvement in process precision was demonstrated and is now operational on the factory floor.

  1. Designing Teaching Materials for Learning Problem Solving in Technology Education

    NARCIS (Netherlands)

    Doornekamp, B.G.

    2001-01-01

    In the process of designing teaching materials for learning problem solving in technology education, domain-specific design specifications are considered important elements to raise learning outcomes with these materials. Two domain-specific design specifications were drawn up using a four-step proc

  2. Designing Teaching Materials for Learning Problem Solving in Technology Education

    NARCIS (Netherlands)

    Doornekamp, B.G.

    2001-01-01

    In the process of designing teaching materials for learning problem solving in technology education, domain-specific design specifications are considered important elements to raise learning outcomes with these materials. Two domain-specific design specifications were drawn up using a four-step proc

  3. Designing Teaching Materials for Learning Problem Solving in Technology Education

    NARCIS (Netherlands)

    Doornekamp, B.G.

    In the process of designing teaching materials for learning problem solving in technology education, domain-specific design specifications are considered important elements to raise learning outcomes with these materials. Two domain-specific design specifications were drawn up using a four-step

  4. Nanofluid technology : current status and future research.

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. U.-S.

    1998-10-20

    Downscaling or miniaturization has been a recent major trend in modern science and technology. Engineers now fabricate microscale devices such as microchannel heat exchangers, and micropumps that are the size of dust specks. Further major advances would be obtained if the coolant flowing in the microchannels were to contain nanoscale particles to enhance heat transfer. Nanofluid technology will thus be an emerging and exciting technology of the 21st century. This paper gives a brief history of the Advanced Fluids Program at Argonne National Laboratory (ANL), discusses the concept of nanofluids, and provides an overview of the R and D program at ANL on the production, property characterization, and performance of nanofluids. It also describes examples of potential applications and benefits of nanofluids. Finally, future research on the fundamentals and applications of nanofluids is addressed.

  5. White LED visible light communication technology research

    Science.gov (United States)

    Yang, Chao

    2017-03-01

    Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.

  6. Metallic and Ceramic Materials Research. Task Order 0005: Metallic, Materials, Methods, Characterization and Testing Research

    Science.gov (United States)

    2015-10-01

    more efficient jet engines. The focus areas covered a broad range of technologies comprising thermal protection materials, fiber lasers for...in Mar-M247 region ~6 mm apart from the weld interface. (b-c) Higher magnification images illustrating (b) a blocky, faceted appearance of fracture... thermal stability, distortion tolerance, expected design life, and environmental resistance requirements vary significantly between these initiatives

  7. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  8. Soviet precision timekeeping research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Vessot, R.F.C.; Allan, D.W.; Crampton, S.J.B.; Cutler, L.S.; Kern, R.H.; McCoubrey, A.O.; White, J.D.

    1991-08-01

    This report is the result of a study of Soviet progress in precision timekeeping research and timekeeping capability during the last two decades. The study was conducted by a panel of seven US scientists who have expertise in timekeeping, frequency control, time dissemination, and the direct applications of these disciplines to scientific investigation. The following topics are addressed in this report: generation of time by atomic clocks at the present level of their technology, new and emerging technologies related to atomic clocks, time and frequency transfer technology, statistical processes involving metrological applications of time and frequency, applications of precise time and frequency to scientific investigations, supporting timekeeping technology, and a comparison of Soviet research efforts with those of the United States and the West. The number of Soviet professionals working in this field is roughly 10 times that in the United States. The Soviet Union has facilities for large-scale production of frequency standards and has concentrated its efforts on developing and producing rubidium gas cell devices (relatively compact, low-cost frequency standards of modest accuracy and stability) and atomic hydrogen masers (relatively large, high-cost standards of modest accuracy and high stability). 203 refs., 45 figs., 9 tabs.

  9. The socialisation of scientific and technological research

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available In the last decades, production of science and technology as well as science-society relationships started changing rapidly. Research is asked to be more effective, fast, accountable, trans-disciplinary, result-oriented, policy-driven and able to generate benefits for people and firms in the short and middle run. While a strong intensification of science-society relationships is occurring, an increasing number of actors and stakeholders are involved in research production. At the same time, pervasiveness of technology is rendering users an active part in technological development; economic and social interests on science and technology are growing on a global scale; new democratic and ethical issues emerge. Despite the European institutions’ efforts, all those trends and phenomena are occurring in an extremely fragmented way. In this scenario, a fairly balanced and consistent co-evolution between science and society can no longer be taken for granted. This is just the starting point of the following comment section that, through the Luciano d’Andrea, Sally Wyatt, Erik Aarden, Jos Lejten and Peter Sekloča’s writings, aims to analyse the different aspects and questions around the socialisation of science and technology’s matter.

  10. Joining Technology of Dissimilar Materials for Automotive Components(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Meung Ho Rhee; Jong Ho Song; Woo Young Chung; Young Myoung Kim

    2004-01-01

    Joining techniques of dissimilar materials for lightweight multi-material automotive body structure were discussed. The joining of 1 .4 mm thickness steel and 2 mm thickness of Al were performed by the new method that is hybrid laser welding system. After aluminum and steel were welded by laser hybrid welding process, the micro-structure investment and the micro-hardness test were carried out. Hybrid laser welding promises a bright future in joining technology of dissimilar materials for automotive components.

  11. Research Overview on Wireless Power Transmission Technology

    OpenAIRE

    Li Tao; Wu Liheng; Chen Zheng

    2015-01-01

    According to the latest researches, this paper outlines the development of wireless power transmission and introduces the latest applications of wireless power transmission in life. To describe the wireless power transmission technologies in detail, the paper presents the short-range, medium-range and remote wireless power transmission, respectively. In addition, the paper also depicts some unique properties of wireless power transmission system to make readers understand WPT system better. A...

  12. Research in the Division of Pharmaceutical Technology.

    Science.gov (United States)

    Junginger, H E

    1985-04-26

    Within the Center for Bio-Pharmaceutical Sciences the release characteristics of drugs form the major research object of the Division of Pharmaceutical Technology. Transdermal systems are being developed that can supply a drug during several days. Irritation of the skin may be avoided by using hydrogels. To enable long-term transdermal application also the colloidal structure of creams and ointments is investigated. As most drugs are to be taken orally, however, a research project was also started to make cheap and easy to produce controlled release tablets. The results with a microporous polypropylene polymer are promising.

  13. Transports of delight how technology materializes human imagination

    CERN Document Server

    Hancock, Peter

    2017-01-01

    This inspiring book shows how the spiritual side of life, with its thoughts, feelings, and aspirations, is intimately bound up with our material technologies. From the wonder of Gothic Cathedrals, to the quiet majesty of lighter than air flight, to the ultimate in luxury of the north Atlantic steamers, Peter Hancock explores how these sequential heights of technology have enabled our dreams of being transported to new and uncharted realms to become reality. Sometimes literally, sometimes figuratively, technology has always been there to make material the visions of our imagination. This book shows how this has essentially been true for all technologies from Stonehenge to space station. But technology is far from perfect. Indeed, the author argues here that some of the most public and tragic of its failures still remain instructive, emblematic, and even inspiring. He reports on examples such as a Cathedral of the Earth (Beauvais), a Cathedral of the Seas (Titanic), and a Cathedral of the Air (Hindenburg) and t...

  14. [New technologies: support opportunities for network research].

    Science.gov (United States)

    Rodríguez-Martín, A; Novalbos Ruiz, J P; Jiménez-Rodríguez, R; Jiménez-Rodríguez, A

    2012-11-01

    The consolidation of a support area for network research, which promotes collaborative research, training and the dissemination of knowledge through the use of ICTs, requires the organization of a work methodology to share and exchange resources in a specific network that is already running. The establishment of communication mechanisms between researchers from different groups will be necessary along with the introduction of the ICTs in the teaching and advanced environments of research training, different inventories of the research resources that are available for exchanges and shared use between groups and laboratories, and finally, a shared scientific documentation system with the appropriate maintenance of the previously listed tools. Large administrative structures and detailed plans are not needed to comply with all of the above functions. The availability of effective tools, however, to combine efforts and search for resources in all of these areas is needed, with the agility and flexibility that allow us to currently use new communication and information technologies. The results of this research support area should lead to an increase in the efficacy and quality of the network by increasing the flow of information and the inter-group collaboration in teaching, research and professional development, along with the transfer and dissemination of research results.

  15. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  16. 民勤防沙治沙新技术和新材料试验研究%New Technology and Material Experiment Research of Preventing and Controlling Sand in Minqin

    Institute of Scientific and Technical Information of China (English)

    安富博; 张锦春; 纪永福; 刘淑娟; 孙涛; 何芳兰

    2013-01-01

    通过固沙植物材料选育和新型机械沙障的研制开展民勤防沙治沙新技术、新材料研究,结果表明:①民勤梭梭(Haloxylon ammodendron)种源种子质量好,育苗造林成活率高,生长良好,苗木耐盐性较强,可作为民勤沙区固沙造林首选的种源梭梭材料;②固沙小灌木沙蒿(Artemisia arenaria)种子萌发期抗旱性较强,沙土出苗率最高,是沙区飞播造林较为理想的固沙伴生植物新材料;③研发的棉杆沙障具有良好的防风固沙效果,且沙障就地取材、无污染,设置形式灵活多样,可根据需要制成不同结构和规格的沙障进行设置.因此,棉杆沙障以其独有的特性成为干旱区工程治沙措施的有力补充.%Through the selection of sand-fixation plants and the research of a new type mechanical sand-barrier,new material and technology of sand preventing and controlling were developed.It showed that:Haloxylon Ammodendron could be the first choice to fix sand in Minqin,as the seeds of Minqin's H.ammodendron had a good quality with high survival rate,growing well,and a strong salt resistance; Artemisia arenaria was selected as small shrubs of sand-fixation,since the seeds had a strong drought resistance,the highest germination rate from sand,it was the effective material of sand-fixation for air sowing in desert area; The cotton stalk sand barrier provided a good effectiveness of wind prevention and sand-fixation.The sand barrier could be obtained in local area,with no pollution,and flexible type.It could be made different structure and qualification sand barrier according to requirements.Therefore,the cotton stalk sand barrier is powerful as the supplements for desert control project in arid area.

  17. Measuring Diagnostic Stand for Experimental Researches in Technology Machining

    Directory of Open Access Journals (Sweden)

    A. E. Dreval'

    2014-01-01

    Full Text Available The paper reviews applied techniques, methods, and structure of the control and measuring means to conduct experimental and scientific researches of cutting processes. Existing research methods in cutting the metals are divided by features, such as essence of methods, the number of records of physical indicators, the number of studied factors, duration of tests. The groups of methods are briefly characterized.The chair "Tool Engineering and Technologies" of BMSTU developed and made a diagnostic stand of control and measurements for conducting research activities in the field of materials processing technology by cutting to define rational technological decisions, when machining, and carry out an analysis of efficiency and economic feasibility of made decisions. The diagnostic stand contains modern the electronic equipment. Record of measuring parameters is made in real time with a possibility for visual representation of read results and mathematical and statistical processing of measurement results. The stand can be used in research laboratories of machine-building enterprises, laboratories of higher education institutions, and other scientific divisions.The paper presents a justification that the stand is reasonable to use for the following: completion and choice of rational cutting modes, workability assessment of new constructional materials, technical and operational characteristics of the processed surfaces, and operational properties of the cutting tools of various producers, choice of optimum geometrical parameters of the cutting tools and brands of the lubricant cooling technological means, as well as the energy consumption for the chosen machining process. The stand allows us to make an assessment of wear resistance and tribology-technical characteristics of tool materials, as well as an accuracy, rigidity, vibration stability of machines, both new and being in operation.

  18. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  19. Materials and Molecular Research Division annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Research is presented concerning materials science including metallurgy and ceramics; solid state physics; and materials chemistry; chemical sciences covering radiation science, chemical physics, and chemical energy; nuclear science; coal research; solar energy; magnetic fusion, conservation; and environmental research. (FS)

  20. Mechanics of materials an introduction to engineering technology

    CERN Document Server

    Ghavami, Parviz

    2015-01-01

    This book, framed in the processes of engineering analysis and design, presents concepts in mechanics of materials for students in two-year or four-year programs in engineering technology, architecture, and building construction, as well as for students in vocational schools and technical institutes. Using the principles and laws of mechanics, physics, and the fundamentals of engineering, Mechanics of Materials: An Introduction for Engineering Technology will help aspiring and practicing engineers and engineering technicians from across disciplines—mechanical, civil, chemical, and electrical—apply concepts of engineering mechanics for analysis and design of materials, structures, and machine components. The book is ideal for those seeking a rigorous, algebra/trigonometry-based text on the mechanics of materials. This book also: ·       Elucidates concepts of engineering mechanics in materials, including stress and strain, force systems on structures, moment of inertia, and shear and bending moments...

  1. Technology Estimating 2: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.

    2014-01-01

    As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.

  2. INJECTION TECHNOLOGY RESEARCH OF THE PROTECTIVE SCREEN

    Directory of Open Access Journals (Sweden)

    MENEJLYUK A. I.

    2016-12-01

    Full Text Available Formulation of the problem. This article contains information about the methods and the planning principles used in experimental research study of the injection technology of impervious screen. Today, there are ways to create impervious screens and curtains solve soil protection issues in the field impermeable layer arrangement at a shallow depth. However, for Ukraine, in the burial sites of radiation and other wastes is urgent issue of protection of underground space in places with deep impermeable layer. Classical methods can not fully solve such problems. To solve them, you need to develop innovative technology to create such a screen, which will lie authentic sole object to be protected, at the project depth. For the experiments, it is necessary to choose the most important indicator, and technological factors affecting it. This is due to the fact that the proposed technology provides for lesser known technical solutions, the use of which should ultimately result in impervious screens with desired properties. Goal. The aim of this study is the selection of technological parameters of injection, design of experiments and the selection of indicators characterizing the efficient operation of the screen. Such constructs must first have almost zero permeability. In this paper, it was of interest to study the influence of process parameters on the filtration rate of the protective screen. Conclusion. As a result of the design of experiments, the basic technological factors that have a significant effect on the studied parameters. varying levels of these factors are also identified, which in turn makes it possible to determine the optimum process parameters creating a screen that meets all the desired properties and characteristics. Based on a series of experiments it is possible to obtain optimal formulations for different types of soils.

  3. Polymer materials basic research needs for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Macknight, W.J.; Baer, E.; Nelson, R.D. (eds.)

    1978-08-01

    The larger field covered in the workshop consists of (1) synthesis and characterization, (2) physical chemistry, (3) physics, and (4) engineering. Polymeric materials are properly regarded as new materials in their own right, not as replacements for existing materials. As such they need to be studied to understand the properties which are unique to them by virtue of their particular molecular structures. Technological applications will rationally follow from such studies. It is the objective of this report to point out basic research needs in polymer materials related to energy. The development of sophisticated instrumentation makes the task of molecular characterization possible on a level hitherto unattainable. Many of these instruments because of their size and complexity must of necessity be located at the DOE National Laboratories. The importance of personnel trained in the polymer field located at these facilities is emphasized. In the past there has been relatively little concerted polymer research within the energy community. This report attempts to describe the present situation and point out some needs and future research directions. (GHT)

  4. Advanced Transmission Electron Microscopy Applications in Nano-Materials and Nano-Technology Developments

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Nano-technology development is nowadays a very hot topics in many research fields. Nano-materials are the foundations for developing this new technology. In order to fully understand the basic material science problems behind this topics, transmission electron microscopy (TEM) becomes the must and one of the most important technique to analyze the nano-size structure and composition using the most advanced high resolution TEM technique with nano-beam EDS and energy filter EELS to study the fine structures, crystallography, chemical composition, and optical properties of many different nano-materials in different industries applications.

  5. Advanced Transmission Electron Microscopy Applications in Nano-Materials and Nano-Technology Developments

    Institute of Scientific and Technical Information of China (English)

    KAI; J.J.

    2001-01-01

    Nano-technology development is nowadays a very hot topics in many research fields. Nano-materials are the foundations for developing this new technology. In order to fully understand the basic material science problems behind this topics, transmission electron microscopy (TEM) becomes the must and one of the most important technique to analyze the nano-size structure and composition using the most advanced high resolution TEM technique with nano-beam EDS and energy filter EELS to study the fine structures, crystallography, chemical composition, and optical properties of many different nano-materials in different industries applications.  ……

  6. Research and technology Fiscal Year 1985 report

    Science.gov (United States)

    Speer, F.

    1985-01-01

    A quarter of a century is but a moment on the cosmic calendar. Now that Marshall Space Flight Center has reached its 25th Anniversity, it seems just moments ago that President Dwight D. Eisenhower stood on these grounds and formally dedicated the George C. Marshall Space Flight Center in Huntsville, Alabama. The Fiscal Year 1985 Research and Technology Report reflects the wide spectrum of activities closely linked with the Center's mainstream spaceflight developments. Past accomplishments testify to the success of getting deeply involved in the science and technology of its projects - 32 Saturn launches, Pegasus, the Skylab missions, three High Energy Astronomy Observatory missions, the Apollo - Soyuz mission, and an accelerating schedule of successful Shuttle, Spacelab, and Shuttle payload missions. The Center continues to be involved in engineering development, scientific research, and technology. At the beginning of the second quarter century, the experience and dedication of the engineers and scientists, and the success of the collaboration with industry and academia will now be aimed at the next great endeavor, the Space Station.

  7. Qualitative Research Methods in Education and Educational Technology. Research Methods for Educational Technology

    Science.gov (United States)

    Willis, Jerry W.

    2008-01-01

    "Qualitative Research Methods in Education and Educational Technology" was written for students and scholars interested in exploring the many qualitative methods developed over the last 50 years in the social sciences. The book does not stop, however, at the boundaries of the social sciences. Social scientists now consume and use research methods…

  8. Review on the EFDA programme on tungsten materials technology and science

    Energy Technology Data Exchange (ETDEWEB)

    Rieth, M., E-mail: Michael.rieth@imf.fzk.de [Forschungszentrum Karlsruhe, Institute for Materials Research, Karlsruhe (Germany); Boutard, J.L. [EFDA-Close Support Unit, Garching (Germany); Dudarev, S.L. [Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Ahlgren, T. [University of Helsinki, Department of Physics, Helsinki (Finland); Antusch, S. [Forschungszentrum Karlsruhe, Institute for Materials Research, Karlsruhe (Germany); Baluc, N. [Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Barthe, M.-F. [CNRS, UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Universite d' Orleans, Polytech ou Faculte des Sciences, Avenue du Parc Floral, BP 6749, 45067 Orleans cedex 2 (France); Becquart, C.S. [Laboratoire de Metallurgie Physique et Genie des Materiaux, Villeneuve d' Ascq (France); Ciupinski, L. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Correia, J.B. [IST, Lisboa (Portugal); Domain, C. [Laboratoire de Metallurgie Physique et Genie des Materiaux, Villeneuve d' Ascq (France); Fikar, J. [Centre de Recherches en Physique des Plasmas (CRPP), Lausanne (Switzerland); Fortuna, E. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Fu, C.-C. [CEA, Service de Recherches de Metallurgie Physique, Saclay (France); Gaganidze, E. [Forschungszentrum Karlsruhe, Institute for Materials Research, Karlsruhe (Germany); Galan, T.L. [Universidad Rey Juan Carlos, Materials Science and Engineering, Madrid (Spain); Garcia-Rosales, C. [CEIT, San Sebastian (Spain); Gludovatz, B. [OAW, Erich Schmid Institute of Materials Science, Leoben (Austria); Greuner, H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Heinola, K. [University of Helsinki, Department of Physics, Helsinki (Finland)

    2011-10-01

    All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on 'Materials Science and Modeling'. This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.

  9. Neuromorphic Computing – From Materials Research to Systems Architecture Roundtable

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Univ. of California, San Diego, CA (United States); Stevens, Rick [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States); Pino, Robinson [Dept. of Energy (DOE) Office of Science, Washington, DC (United States); Pechan, Michael [Dept. of Energy (DOE) Office of Science, Washington, DC (United States)

    2015-10-29

    Computation in its many forms is the engine that fuels our modern civilization. Modern computation—based on the von Neumann architecture—has allowed, until now, the development of continuous improvements, as predicted by Moore’s law. However, computation using current architectures and materials will inevitably—within the next 10 years—reach a limit because of fundamental scientific reasons. DOE convened a roundtable of experts in neuromorphic computing systems, materials science, and computer science in Washington on October 29-30, 2015 to address the following basic questions: Can brain-like (“neuromorphic”) computing devices based on new material concepts and systems be developed to dramatically outperform conventional CMOS based technology? If so, what are the basic research challenges for materials sicence and computing? The overarching answer that emerged was: The development of novel functional materials and devices incorporated into unique architectures will allow a revolutionary technological leap toward the implementation of a fully “neuromorphic” computer. To address this challenge, the following issues were considered: The main differences between neuromorphic and conventional computing as related to: signaling models, timing/clock, non-volatile memory, architecture, fault tolerance, integrated memory and compute, noise tolerance, analog vs. digital, and in situ learning New neuromorphic architectures needed to: produce lower energy consumption, potential novel nanostructured materials, and enhanced computation Device and materials properties needed to implement functions such as: hysteresis, stability, and fault tolerance Comparisons of different implementations: spin torque, memristors, resistive switching, phase change, and optical schemes for enhanced breakthroughs in performance, cost, fault tolerance, and/or manufacturability.

  10. 2010 Membranes: Materials & Processes Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  11. Research on the Application of Two Dimensional Code Technology in the Settlement of Electric Power Materials%二维码技术在电力物资结算中的应用研究

    Institute of Scientific and Technical Information of China (English)

    刘金元; 陆野; 汪天睿

    2016-01-01

    This paper expounds the present situation of the two -dimensional code technology of power supplies in settlement,then explore the specific application of two-dimensional code technology in the related business process,finally the two-dimensional code technology in the material balance the next step in the direction of the application,to further improve the electric power material has an important guiding significance to the settlement system.%文中首先阐述了电力物资结算中二维码技术应用的现状,其次探索了二维码技术在相关业务流程中的具体应用,最后提出了二维码技术在物资结算中的下一步应用方向,对进一步完善电力物资结算体系具有重要的指导意义。

  12. Research and technology operating plan summary: Fiscal year 1975 research and technology program. [space programs, energy technology, and aerospace sciences

    Science.gov (United States)

    1975-01-01

    Summaries are presented of Research and Technology Operating Plans currently in progress throughout NASA. Citations and abstracts of the operating plans are presented along with a subject index, technical monitor index, and responsible NASA organization index. Research programs presented include those carried out in the Office of Aeronautics and Space Technology, Office of Energy Programs, Office of Applications, Office of Space Sciences, Office of Tracking and Data Acquisition, and the Office of Manned Space Flight.

  13. Research Progress on Biogas Production from Multiple Raw Materials with Co-Digestion Technology%多元原料混合发酵制备沼气技术研究进展

    Institute of Scientific and Technical Information of China (English)

    陈丽琴; 章伟伟; 谢君

    2016-01-01

    So far, livestock manure and agricultural straws are the main biogas production raw materials in China. With the development of anaerobic digestion technology, more types of waste have gradually drawn our attention. As a kind of renewable energy resource, various biomass materials are of great significance for biogas production in the construction of ecological civilization in China. In this paper, we reviewed the characteristics of biomass resources in China, such as livestock manure, crop straw, agricultural products processing waste, municipal organic waste and energy crop, and the advantages and disadvantages of them as biogas fermentation raw material, then compared the biogas potential of these raw materials. The anaerobic digestion technology of mixed raw materials and some important exogenous additives which can promote biogas production were discussed.%目前,我国沼气的发酵原料主要是禽畜粪便和农作物秸秆,随着厌氧发酵技术的发展,更多种类废弃物也逐步受到人们的关注。有机废弃物沼气化利用在我国生态文明建设中有着重大意义。论文综述了我国生物质资源,如禽畜粪便、农作物秸秆、农产品加工废弃物、市政有机废弃物和能源作物的特性和作为沼气发酵原料的优缺点,比较了这些原料的沼气生产潜力,探讨了混合原料发酵技术及重要的几种沼气发酵外源添加剂。

  14. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  15. Materials and Molecular Research Division annual report, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Progress in research in structure of materials, mechanical, and physical properties, solid state physics, and materials chemistry, including chemical structure, high temperature and surface chemistry, is reported. (FS)

  16. Learning about materials science and technology by deconstructing modern products

    DEFF Research Database (Denmark)

    Horsewell, Andy

    Get the attention of young engineering students, interest and inspire them. Encourage them to think about materials science and technology by looking at the consumer products and gadgets that interest them. Analyse what modern products are constructed of, and how and why the materials...... and the processes have been chosen in their manufacture i.e. deconstruct modern products. Suitable items can easily be found in personal communication and entertainment, including all manner of sports goods. Further, the current pace of materials product development ensures that using these objects to focus...... teaching encourages and demands constant modernisation of the course and the materials being presented. A consideration of material and process selection for components in a modern product can be a dynamic starting point for a course on materials science and engineering; providing inspiration and showing...

  17. Materials, Chemistry, and Simulation for Future Energy Technology.

    Science.gov (United States)

    Aguey-Zinsou, Kondo-Francois; Wang, Da-Wei; Su, Dang-Sheng

    2015-09-01

    Special Issue: The Future of Energy. The science and engineering of clean energy now is becoming a multidisciplinary area, typically when new materials, chemistry, or mechanisms are met. "Trial and error" is the past. Exploration of new concepts for future clean energy can be accomplished through computer-aided materials design and reaction simulation, thanks to innovations in information technologies. This special issue, a fruit of the Energy Future Conference organized by UNSW Australia, has compiled some excellent examples of such approaches.

  18. Low Gravity Materials Science Research for Space Exploration

    Science.gov (United States)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed

  19. Automatic Ration Material Distributions Based on GSM and RFID Technology

    Directory of Open Access Journals (Sweden)

    S.Valarmathy

    2013-10-01

    Full Text Available Now a day ration card is very important for every home and used for various field such as family members details, to get gas connection, it act as address proof for various purposes etc. All the people having a ration card to buy the various materials (sugar, rice, oil, kerosene, etc from the ration shops. But in this system having two draw backs, first one is weight of the material may be inaccurate due to human mistakes and secondly, if not buy the materials at the end of the month, they will sale to others without any intimation to the government and customers. In this paper, proposed an Automatic Ration Materials Distribution Based on GSM (Global System for Mobile and RFID (Radio Frequency Identification technology instead of ration cards. To get the materials in ration shops need to show the RFID tag into the RFID reader, then controller check the customer codes and details of amounts in the card. After verification, these systems show the amount details. Then customer need to enter they required materials by using keyboard, after receiving materials controller send the information to government office and customer through GSM technology. In this system provides the materials automatically without help of humans.

  20. Technologies used for research in intelligent buildings

    Science.gov (United States)

    Kolková, Zuzana; Matušov, Jozef; Mokrý, Marián

    2016-06-01

    The efficient use of primary energy and their impact on the environment is influenced in several ways. The key is implementation of modern low-energy structures and technologies in building construction, the use of high energy sources such fossil fuels and renewable energy, the optimal management, appropriate choice of sources of heat and cold. Optimal control of energy consumption in buildings and premises may be an appropriate choice of sources of heat and cold. Energy sources should be in addition to high efficiency and meet the requirement of minimizing the emission load environment. All this can be achieved by implementing the construction of intelligent buildings. University of Žilina in the project Research Centre of the University of Žilina decided to build such building. Use of this building will be addressing many research activities at the university with links to industry.

  1. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  2. Fiscal 1998 research report on the R and D on industrial science and technology for creating new industries. R and D on intelligent material and structure systems; 1998 nendo shinki sangyo soshutsugata sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Chiteki zairyo kozo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims at development of the basic technology of the structure system which has the same intelligent functions as living body such as perception, decision and response through information processing/control (brain) by integrating advanced complex material structure (skeleton), fiber or film sensor material/device (nerve) and actuator material/device (muscle). This report describes the fiscal 1998 research result. On health monitoring technology, study was made on development of high-performance sensors, and a damage detection and self-diagnosis system for structural integrity. On active adaptive structure technology, study was made on improvement of a quasi-elastic behavior model for shape memory alloys, and a candidate actuator for noise and vibration reduction. On actuator materials and devices, study was made on the relation between electronic properties and dielectric/electro-strictive characteristics of the latest advanced ceramic materials available. Creation of silent smart structure was also clarified. Smooth connection and cooperation among groups were promoted through the technical committee and research on domestic and overseas trends. (NEDO)

  3. Scalable Atomistic Simulation Algorithms for Materials Research

    Directory of Open Access Journals (Sweden)

    Aiichiro Nakano

    2002-01-01

    Full Text Available A suite of scalable atomistic simulation programs has been developed for materials research based on space-time multiresolution algorithms. Design and analysis of parallel algorithms are presented for molecular dynamics (MD simulations and quantum-mechanical (QM calculations based on the density functional theory. Performance tests have been carried out on 1,088-processor Cray T3E and 1,280-processor IBM SP3 computers. The linear-scaling algorithms have enabled 6.44-billion-atom MD and 111,000-atom QM calculations on 1,024 SP3 processors with parallel efficiency well over 90%. production-quality programs also feature wavelet-based computational-space decomposition for adaptive load balancing, spacefilling-curve-based adaptive data compression with user-defined error bound for scalable I/O, and octree-based fast visibility culling for immersive and interactive visualization of massive simulation data.

  4. Research on application of plastic materials in cars

    Institute of Scientific and Technical Information of China (English)

    Jin Jianwei; Ma Fangwu; Liu Qiang; Wu Tiannan; Dong Ningning; Zhao Fuguan; Ma Mingtu; Guo Yihui

    2012-01-01

    This paper gives analysis of application status and prospect of plastic materials from the aspects of applied ma- terial amount comparison, development of new materials & new technologies, lightweight, design conception of new components, recyclability, simplification and diversity of materials, standardization of material specification and pres- ents corresponding conclusions and suggestions.

  5. JPRS report: Science and technology. Central Eurasia: Materials science

    Science.gov (United States)

    1992-03-01

    A bibliography is given of Central Eurasian research in materials science. Topics covered include analysis and testing; corrosion resistance; ferrous metals; nonferrous alloys, brazes, and solders; heat treatment; welding, brazing, and soldering; and extractive metallurgy.

  6. Blockchain technology for improving clinical research quality.

    Science.gov (United States)

    Benchoufi, Mehdi; Ravaud, Philippe

    2017-07-19

    Reproducibility, data sharing, personal data privacy concerns and patient enrolment in clinical trials are huge medical challenges for contemporary clinical research. A new technology, Blockchain, may be a key to addressing these challenges and should draw the attention of the whole clinical research community.Blockchain brings the Internet to its definitive decentralisation goal. The core principle of Blockchain is that any service relying on trusted third parties can be built in a transparent, decentralised, secure "trustless" manner at the top of the Blockchain (in fact, there is trust, but it is hardcoded in the Blockchain protocol via a complex cryptographic algorithm). Therefore, users have a high degree of control over and autonomy and trust of the data and its integrity. Blockchain allows for reaching a substantial level of historicity and inviolability of data for the whole document flow in a clinical trial. Hence, it ensures traceability, prevents a posteriori reconstruction and allows for securely automating the clinical trial through what are called Smart Contracts. At the same time, the technology ensures fine-grained control of the data, its security and its shareable parameters, for a single patient or group of patients or clinical trial stakeholders.In this commentary article, we explore the core functionalities of Blockchain applied to clinical trials and we illustrate concretely its general principle in the context of consent to a trial protocol. Trying to figure out the potential impact of Blockchain implementations in the setting of clinical trials will shed new light on how modern clinical trial methods could evolve and benefit from Blockchain technologies in order to tackle the aforementioned challenges.

  7. Automation of Technology for Cancer Research.

    Science.gov (United States)

    van der Ent, Wietske; Veneman, Wouter J; Groenewoud, Arwin; Chen, Lanpeng; Tulotta, Claudia; Hogendoorn, Pancras C W; Spaink, Herman P; Snaar-Jagalska, B Ewa

    2016-01-01

    Zebrafish embryos can be obtained for research purposes in large numbers at low cost and embryos develop externally in limited space, making them highly suitable for high-throughput cancer studies and drug screens. Non-invasive live imaging of various processes within the larvae is possible due to their transparency during development, and a multitude of available fluorescent transgenic reporter lines.To perform high-throughput studies, handling large amounts of embryos and larvae is required. With such high number of individuals, even minute tasks may become time-consuming and arduous. In this chapter, an overview is given of the developments in the automation of various steps of large scale zebrafish cancer research for discovering important cancer pathways and drugs for the treatment of human disease. The focus lies on various tools developed for cancer cell implantation, embryo handling and sorting, microfluidic systems for imaging and drug treatment, and image acquisition and analysis. Examples will be given of employment of these technologies within the fields of toxicology research and cancer research.

  8. Education of the Strength of Materials in College of Technology

    Science.gov (United States)

    Shimaoka, Mitsuyoshi

    The Strength of Materials comprises not only mechanics of solids, which are not limited to elastic deformation, but also materials testing. Because the students who belong to the author's department have little knowledge about the materials' characteristics, they imagine that this subject is difficult. In this paper, it is discussed how to make the students understand the essential and some important points of this subject. For students in college of technology, the author points out that the lecture concentrating on the elastic deformation of solid members is most important and that the basic mathematics used in this subject must be explained once again early in this lesson.

  9. Thermochemical Treatment--Technologies for Recovery and Utilisation of Materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The arc furnace technology is an ideally suited process for the treatment of hazardous and problematic waste. The operation conditions of the furnace can be adapted for optimal transformation of the waste material input into raw materials and usable products. The process can significantly reduce the impact of contaminated wastes and industrial residues, and enable material conversion and separation. Thus, the products of the process have various applications. The capability of the process is illustrated with three examples, the treatment of bottom ash and filter ash from waste incineration plants, of stainless steel slags and of chromium-containing residues from the refractory industry.

  10. Technology-Enhanced EFL Syllabus Design and Materials Development

    Science.gov (United States)

    Nguyen, Long V.

    2008-01-01

    In this paper, I am going to look at the issues of TESOL from one major critical point of view: How the use of the Internet technology might influence TESOL syllabus design and materials development. The article attempts to investigate some possibilities and opportunities provided by the Internet, focusing on the World Wide Web (WWW) as credible…

  11. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1985-01-01

    A systematic study of the properties of various polymer pottant materials and of the electrochemical corrosion mechanisms in solar cell materials is required for advancing the technology of terrestrial photovoltaic modules. The items of specific concern in this sponsored research activity involve: (1) kinetics of plasticizer loss in PVB, (2) kinetics of water absorption and desorption in PVB, (3) kinetics of water absorption and desorption in EVA, (4) the electrical properties at PVB as a function of temperature and humidity, (5) the electrical properties of EVA as a function of temperature and humidity, (6) solar cell corrosion characteristics, (7) water absorption effects in PVB and EVA, and (8) ion implantation and radiation effects in PVB and EVA.

  12. Architectural quality: innovation, technological research and design

    Directory of Open Access Journals (Sweden)

    Andrea Campioli

    2011-04-01

    Full Text Available Architectural redevelopment and the revival of the construction sector are conditional on the incentivisation and bolstering of innovation processes. Thus the partial declensions that have been attached to these processes over the last few years have seen research and experimentation being tailored to the spectacularisation of shapes or the hidden performance optimisation of materials and components. Genuine improvement in the quality of architecture and its construction in this day and age depends on the abilities of designers to adopt the entire life cycle of buildings as a reference framework and on the willingness of all those working in the construction supply chain to activate virtuous cooperation.

  13. Research and technology activities at Ames Research Center's Biomedical Research Division

    Science.gov (United States)

    Martello, N.

    1985-01-01

    Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.

  14. Two-dimensional oxides: multifunctional materials for advanced technologies.

    Science.gov (United States)

    Pacchioni, Gianfranco

    2012-08-13

    The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Composition, Processing Technology and Property of Ceramic Die Materials Containing Rare Earth Additives

    Institute of Scientific and Technical Information of China (English)

    Xiao Guangchun; Xu Chonghai; Fang Bin

    2007-01-01

    Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.

  16. Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications

    CERN Document Server

    Kijima, Tsuyoshi

    2010-01-01

    This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It cover a wide variety of nanotubular materials excluding carbon nanotubes, ranging from metal oxides, sulfides and nitrides such as titanium oxide, tungsten sulfide, and boron nitride, as well as platinum and other noble-metals to unique nanotubes consisting of water, graphene or fullerene. Based on their structural and compositional characteristics, these nanotubular materials are of importance for their potential applications in electronic devices, photocatalysts, dye-sensitized solar cells, nanothermometers, electrodes for fuel cells and batteries, sensors, and reinforcing fillers for plastics, among others. Such materials are also having a great impact on future developments, including renewable-energy sources as well as highly efficient energy-conversion and energy-saving technologies. This book will be of particular interest to experts in the fields of nanotechnology, material science ...

  17. Overview of materials technologies for space nuclear power and propulsion

    Science.gov (United States)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  18. The Attitudes of the Prospective Mathematics Teachers towards Instructional Technologies and Material Development Course

    Science.gov (United States)

    Uyangor, Sevinc Mert; Ece, Denizhan Karaca

    2010-01-01

    This study aims to determine the attitudes of prospective teachers of Secondary Mathematics Education toward Instructional Technologies and Material Development (ITMD) Course. The participants of this descriptive research include 44 students, who take ITMD Course at Department of Secondary Mathematics at Necatibey Faculty of Education in Balikesir…

  19. A Research on Investment Casting Technology of Ti Alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this research, the materials and the compositions of the surface slurries were chosen by considering the characteristics of Ti investment casting. The effects of solid-liquid ratios on the properties of the slurry and the effects of baking temperatures on the flexural strength have also been investigated. Flawless shells having smooth inner surface were manufactured with proper technology. Ti and its alloys were melted and poured by water-cooled Cu crucible vacuum induction furnace. The qualities of the investment castings made accordingly were studied and analyzed.

  20. Emerging boom in nano magnetic particle incorporated high-Tc superconducting materials and technologies - A South African perspective

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2009-01-01

    Full Text Available With a strategy to establish and embrace the emerging nano particle incorporated superconductivity technology (based on the HTS materials and nano magnetic particles) in South Africa, the author has initiated the following research activity in South...

  1. PREFACE: 2nd International Conference on Competitive Materials and Technological Processes (IC-CMTP2)

    Science.gov (United States)

    László, Gömze A.

    2013-12-01

    Competitiveness is one of the most important factors in our life and it plays a key role in the efficiency both of organizations and societies. The more scientifically supported and prepared organizations develop more competitive materials with better physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Competitive Materials and Technology Processes (ic-cmtp2) are the following: Promote new methods and results of scientific research in the fields of material, biological, environmental and technology sciences; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication between the scientist of different nations, countries and continents. Among the major fields of interest are materials with extreme physical, chemical, biological, medical, thermal, mechanical properties and dynamic strength; including their crystalline and nano-structures, phase transformations as well as methods of their technological processes, tests and measurements. Multidisciplinary applications of materials science and technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industry, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance to the program of the conference ic-cmtp2, more than 250 inquiries and registrations from different organizations were received. Researchers from 36 countries in Asia, Europe, Africa, North and South America arrived at the venue of conference. Including co-authors, the research work of more than 500 scientists are presented in this volume. Professor Dr Gömze A László Chair, ic-cmtp2 The PDF also contains lists of the boards, session chairs and sponsors.

  2. FY03 Engineering Technology Reports Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C

    2004-03-05

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2003, and exemplifies Engineering's 50-year history of researching and developing the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Engineering's investment in technologies is carried out through two programs, the LDRD program and the ''Tech Base'' program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2003, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the science and technology investments for the Directorate. The Centers represent technology

  3. JPRS Report, Science & Technology, USSR: Materials Science, Mechanics and Technology of Metal and Metal Ceramic Composite Material Products

    Science.gov (United States)

    1990-09-27

    produced, their phase composition and bending strength, as well as investigation of the promise of adding niobium carbide NbC to these materials. The...time increases, NbC does not inhibit shrink- niobium carbide was the same — 3 %. This content of age, which is a technological advantage. NbC is

  4. In Situ Resource Utilization Technology Research and Facilities Supporting the NASA's Human Systems Research and Technology Life Support Program

    Science.gov (United States)

    Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck

    2005-01-01

    The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.

  5. In Situ Resource Utilization Technology Research and Facilities Supporting the NASA's Human Systems Research and Technology Life Support Program

    Science.gov (United States)

    Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck

    2005-01-01

    The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.

  6. Energy Technologies Research and Education Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Abbas [New Mexico State Univ., Las Cruces, NM (United States); Ranade, Satish [New Mexico State Univ., Las Cruces, NM (United States)

    2014-12-31

    For this project, the intended goal of the microgrid component was to investigate issues in policy and technology that would drive higher penetration of renewable energy, and to demonstrate implementation in a utility system. The work accomplished on modeling the dynamics of photovoltaic (PV) penetration can be expanded for practical application. Using such a tool those involved in public policy can examine what the effect of a particular policy initiative, e.g., renewable portfolio standards (RPS) requirements, might be in terms of the desired targets. The work in the area of microgrid design, protection, and operation is fundamental to the development of microgrids. In particular the “Energy Delivery” paradigm provides new opportunities and business models for utilities. Ultimately, Energy Delivery could accrue significant benefits in terms of costs and resiliency. The experimental microgrid will support continued research and allow the demonstration of technology for better integration of renewables. The algal biofuels component of the project was developed to enhance the test facility and to investigate the technical and economic feasibility of a commercial-scale geothermal algal biofuels operation for replication elsewhere in the arid Southwest. The project was housed at New Mexico State University’s (NMSU’s) Geothermal Aquaculture Facility (GAF) and a design for the inoculation train and algae grow-out process was developed. The facility was upgraded with modifications to existing electrical, plumbing and structural components on the GAF and surrounding grounds. The research work was conducted on biomass-processing, harvesting, dewatering, and extraction. Additionally, research was conducted to determine viability of using low-cost, wastewater from municipal treatment plants in the cultivation units as make-up water and as a source of nutrients, including nitrogen and soluble phosphorus. Data was collected on inputs and outputs, growth evaluation and

  7. Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project

    Science.gov (United States)

    Hurst, Janet

    2011-01-01

    A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.

  8. Representations of disability and normality in rehabilitation technology promotional materials.

    Science.gov (United States)

    Phelan, Shanon K; Wright, Virginia; Gibson, Barbara E

    2014-01-01

    To explore the ways in which promotional materials for two rehabilitation technologies reproduce commonly held perspectives about disability and rehabilitation. Our analysis was informed by critical disability studies using techniques from discourse analysis to examine texts (words and images) and their relation to social practices and power. Using this approach, promotional materials for (a) hearing aid and (b) robotic gait training technologies were interrogated using three central questions: (1) Who are represented? (2) What is promised? and (3) Who has authority? Messages of normalization pervaded representations of disabled children and their families, and the promises offered by the technologies. The latter included efficiency and effectiveness, progress and improvement, success and inclusion, and opportunities for a normal life. Normalization discourses construct childhood disability through texts and images. These discourses reinforce pervasive negative messages about disability that are taken up by children and families and have ethical implications for clinical practice. Rehabilitation has largely focused on "fixing" the individual, whereas broadening the clinical gaze to the social dimensions of disablement may lead to a more sensitive and informed approach within family-clinician discussions surrounding these advanced technologies and the use they make of promotional materials. Implications for Rehabilitation Awareness of the potential effects of implicit and explicit messages about disability in promotional materials may lead to a more sensitive and informed approach within family-clinician discussions surrounding rehabilitation technologies. In practice, it is important for rehabilitation professionals to remember that parents' and children's values and beliefs are shaped over time, and parents' and professionals' perspectives on disability strongly influence how disabled children internalize what disability means to them.

  9. Research progress of Si-based germanium materials and devices

    Science.gov (United States)

    Buwen, Cheng; Cheng, Li; Zhi, Liu; Chunlai, Xue

    2016-08-01

    Si-based germanium is considered to be a promising platform for the integration of electronic and photonic devices due to its high carrier mobility, good optical properties, and compatibility with Si CMOS technology. However, some great challenges have to be confronted, such as: (1) the nature of indirect band gap of Ge; (2) the epitaxy of dislocation-free Ge layers on Si substrate; and (3) the immature technology for Ge devices. The aim of this paper is to give a review of the recent progress made in the field of epitaxy and optical properties of Ge heterostructures on Si substrate, as well as some key technologies on Ge devices. High crystal quality Ge epilayers, as well as Ge/SiGe multiple quantum wells with high Ge content, were successfully grown on Si substrate with a low-temperature Ge buffer layer. A local Ge condensation technique was proposed to prepare germanium-on-insulator (GOI) materials with high tensile strain for enhanced Ge direct band photoluminescence. The advances in formation of Ge n+p shallow junctions and the modulation of Schottky barrier height of metal/Ge contacts were a significant progress in Ge technology. Finally, the progress of Si-based Ge light emitters, photodetectors, and MOSFETs was briefly introduced. These results show that Si-based Ge heterostructure materials are promising for use in the next-generation of integrated circuits and optoelectronic circuits. Project supported in part by the National Natural Science Foundation (Nos. 61036003, 61435013) and the Major State Basic Research Development Program of China (No. 2013CB632103).

  10. Application Research of Special High Pressure Material Performance Tracking Based on Two Dimensional Code Technology%基于二维码技术的特高压物资履约跟踪应用研究

    Institute of Scientific and Technical Information of China (English)

    韩飞; 薛劭节; 宋纪恩

    2016-01-01

    With the in-depth work related to the construction of UHV,UHV materials by categories and specifications of various types,affecting performance supervision difficult constraints,Jiangsu province electric power company supplies the in-creasing pressure of uhv.This paper mainly by citing the concept of modern logistics management,in-depth study of the two-dimensional code technology,the use of two-dimensional code technology innovation of the effective management of UHV electric power supplies,explore the “standard”management mode,clear UHV supplies customized performance tracking process and scheme,supplemented by the development of the material performance visual tracking system,the material will be two-dimen-sional code the basic information and dynamic information display in the system,the formation of visual effect,realize the tracking of material supply,enhance UHV supply management level.%随着深入开展特高压建设相关工作以来,受特高压物资品类、规格型号繁多,履约监管难度大等制约因素影响,江苏省电力公司特高压物资供应压力日益增大。文中主要通过引用现代物流管理理念,深入研究二维码技术,创新性的运用二维码技术对电力特高压物资进行有效管理,探索“标准件”管理模式,明确特高压物资客户化履约跟踪流程及方案,同时辅以开发物资可视化履约跟踪系统,将物资二维码基础信息和动态信息展示在系统内,形成可视化效果,实现对物资供应的全程跟踪,全面提升特高压物资供应管理水平。

  11. A Dual-beam Implanter for Research of Material Irradiation Effect

    Institute of Scientific and Technical Information of China (English)

    TANG; Bing; CUI; Bao-qun; MA; Ying-jun; MA; Rui-gang; CHEN; Li-hua; HUANG; Qing-hua; MA; Xie

    2015-01-01

    With the development of reactor technology,the researches on the effect of material irradiation are becoming more and more interesting and expanding.To understand and model the aging caused by atomic displacements,helium and hydrogen production,material scientists and reactor

  12. Research activities on structure materials of spallation neutron source at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.; Dai, Y. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    With the growing interests on powerful spallation neutron sources, especially with liquid metal targets, and accelerator driven energy systems, spallation materials science and technology have been received wide attention. At SINQ, material research activities are focused on: a) liquid metal corrosion; b) radiation damage; and c) interaction of corrosion and radiation damage. (author) 1 fig., refs.

  13. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as

  14. Solar Wear Tattoo: New Technology Through the use of Different Material Behaviours

    Directory of Open Access Journals (Sweden)

    Mendes Vanessa da Graça

    2017-01-01

    Full Text Available This study comes within the framework of a PhD course in Design, which is the continuation of a Masters Degree research in Fashion Design, searching for wardrobe technology and innovation through material behaviour. The intent of this project is to present solutions that promote a new and versatile product allowing for a different kind of aesthetic. This will be achieved through different materials with different behaviours that when put together create an innovative technology thus creating a new practice of body art, through the use of fashionable beachwear created with this technology. This technology allows the transformation of the suntan marks left by female swimwear. This will result in the creation of designs and drawings on the body, using shapes inspired by the Oriental Zodiac Signs, as well as colours drawn from the five elements of Feng Shui, which are also present in the Western Astrological Signs.

  15. Balanced technology initiative on computational mechanics of materials

    Science.gov (United States)

    Asaro, Robert J.

    1993-04-01

    The goal of this project, which was part of the DARPA Balanced Technology Initiative on Computational Mechanics, was to develop a comprehensive approach to the numerical modeling of the mechanical behavior of materials. Particular areas for focus in the project were the inelastic deformation of highly anisotropic materials such as single crystals and textured polycrystals, as well as evolving microstructural damage in ceramics and ductile metals in both slow and high rate deformation processes. While the contract was awarded for a period of three years, it was actually funded only for the first year. Nonetheless, significant progress can be reported as a direct result of this project.

  16. Neutron scattering treatise on materials science and technology

    CERN Document Server

    Kostorz, G

    1979-01-01

    Treatise on Materials Science and Technology, Volume 15: Neutron Scattering shows how neutron scattering methods can be used to obtain important information on materials. The book discusses the general principles of neutron scattering; the techniques used in neutron crystallography; and the applications of nuclear and magnetic scattering. The text also describes the measurement of phonons, their role in phase transformations, and their behavior in the presence of crystal defects; and quasi-elastic scattering, with its special merits in the study of microscopic dynamical phenomena in solids and

  17. A preliminary investigation of materialism and impulsiveness as predictors of technological addictions among young adults.

    Science.gov (United States)

    Roberts, James A; Pirog, Stephen F

    2013-03-01

    Background and aims The primary objective of the present research is to investigate the drivers of technological addiction in college students - heavy users of Information and Communication Technology (ICT). The study places cell phone and instant messaging addiction in the broader context of consumption pathologies, investigating the influence of materialism and impulsiveness on these two technologies. Clearly, cell phones serve more than just a utilitarian purpose. Cell phones are used in public and play a vital role in the lives of young adults. The accessibility of new technologies, like cell phones, which have the advantages of portability and an ever increasing array of functions, makes their over-use increasingly likely. Methods College undergraduates (N = 191) from two U.S. universities completed a paper and pencil survey instrument during class. The questionnaire took approximately 15-20 minutes to complete and contained scales that measured materialism, impulsiveness, and mobile phone and instant messaging addiction. Results Factor analysis supported the discriminant validity of Ehrenberg, Juckes, White and Walsh's (2008) Mobile Phone and Instant Messaging Addictive Tendencies Scale. The path model indicates that both materialism and impulsiveness impact the two addictive tendencies, and that materialism's direct impact on these addictions has a noticeably larger effect on cell phone use than instant messaging. Conclusions The present study finds that materialism and impulsiveness drive both a dependence on cell phones and instant messaging. As Griffiths (2012) rightly warns, however, researchers must be aware that one's addiction may not simply be to the cell phone, but to a particular activity or function of the cell phone. The emergence of multi-function smart phones requires that research must dig beneath the technology being used to the activities that draw the user to the particular technology.

  18. Research trends in electrochemical technology for water and wastewater treatment

    Science.gov (United States)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2017-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  19. Research trends in electrochemical technology for water and wastewater treatment

    Science.gov (United States)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2015-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  20. Development of phase change materials based microencapsulated technology for buildings: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, V.V.; Kaushik, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tyagi, S.K. [School of Infrastructure Technology and Resource Management, Shri Mata Vaishno Devi University, Katra 182320, J and K (India); Akiyama, T. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-86283 (Japan)

    2011-02-15

    Thermal energy storage (TES) systems using phase change material (PCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. Now the research is focus on suitable method to incorporate PCMs with building. There are several methods to use phase change materials (PCMs) in thermal energy storage (TES) for different applications. Microencapsulation is one of the well known and advanced technologies for better utilization of PCMs with building parts, such as, wall, roof and floor besides, within the building materials. Phase change materials based microencapsulation for latent heat thermal storage (LHTS) systems for building application offers a challenging option to be employed as effective thermal energy storage and a retrieval device. Since the particular interest in using microencapsulation PCMs for concrete and wall/wallboards, the specific research efforts on both subjects are reviewed separately. This paper presents an overview of the previous research work on microencapsulation technology for thermal energy storage incorporating the phase change materials (PCMs) in the building applications, along with few useful conclusive remarks concluded from the available literature. (author)

  1. VZLUSAT-1: verification of new materials and technologies for space

    Science.gov (United States)

    Daniel, Vladimir; Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika

    2016-09-01

    CubeSats are a good opportunity to test new technologies and materials on orbit. These innovations can be later used for improving of properties and life length of Cubesat or other satellites as well. VZLUSAT-1 is a small satellite from the CubeSat family, which will carry a wide scale of payloads with different purposes. The poster is focused on measuring of degradation and properties measurement of new radiation hardened composite material in orbit due to space environment. Material properties changes can be studied by many methods and in many disciplines. One payload measures mechanical changes in dependence on Young's modulus of elasticity which is got from non-destructive testing by mechanical vibrations. The natural frequencies we get using Fast Fourier Transform. The material is tested also by several thermometers which measure heat distribution through the composite, as well as reflectivity in dependence on different coatings. The satellite also will measure the material radiation shielding properties. There are PIN diodes which measure the relative shielding efficiency of composite and how it will change in time in space environment. Last one of material space testing is measurement of outgassing from tested composite material. It could be very dangerous for other parts of satellite, like detectors, when anything was outgassing, for example water steam. There are several humidity sensors which are sensitive to steam and other gases and measures temperatures as well.

  2. "JEAB" at 50: Coevolution of Research and Technology

    Science.gov (United States)

    Lattal, Kennon A.

    2008-01-01

    Evidence of how behavioral research and technology have evolved together abounds in the history of the "Journal of the Experimental Analysis of Behavior" ("JEAB"). Technology from outside the discipline (exogenous) from such disciplines as electronics and computer science has been adapted for use in behavioral research. Technology from within the…

  3. "JEAB" at 50: Coevolution of Research and Technology

    Science.gov (United States)

    Lattal, Kennon A.

    2008-01-01

    Evidence of how behavioral research and technology have evolved together abounds in the history of the "Journal of the Experimental Analysis of Behavior" ("JEAB"). Technology from outside the discipline (exogenous) from such disciplines as electronics and computer science has been adapted for use in behavioral research. Technology from within the…

  4. Materials Technology Support for Radioisotope Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Kramer; Chadwick D. Barklay

    2008-10-07

    Over the period of this sponsored research, UDRI performed a number of materials related tasks that helped to facilitate increased understanding of the properties and applications of a number of candidate program related materials including; effects of neutron irradiation on tantalum alloys using a 500kW reactor, thermodynamic based modeling of the chemical species in weld pools, and the application of candidate coatings for increased oxidation resistance of FWPF (Fine Weave Pierced Fabric) modules.

  5. Research on the Method of Technology Readiness Levels Evaluation in the Material Development%装备研制中的技术成熟度评价方法研究

    Institute of Scientific and Technical Information of China (English)

    徐吉辉; 梁颖; 亓尧

    2016-01-01

    Technology readiness levels have been an effective tool to control the risk of material development and played an important role in American major weapon and equipment acquisition projects since National Aeronautics and Space Adminis-tration of America first put forward the concept of it in the 1 970s.But the application of this tool in China is not mature without a scientific and systematic evaluation method.An index system was created to characterize completely the situation of a technology when transformed to material.A method of determining index weight based on Analytic Hierarchy Process, the information entropy and grey correlation clustering was also designed to excavate and make full use of the information in experts’decisions.An example proved the feasibility and effectiveness of the method in application.The aim is to provide a reference for further working of technology readiness levels management.%自20世纪70年代美国国家航空航天局首次提出技术成熟度的概念以来,技术成熟度评价作为一种控制研制风险的有效工具,在美国的重大武器装备采办项目管理中发挥了重要的作用。但目前该工具在我国的应用尚不成熟,没有形成科学、系统的评价方法。针对该现状,提出一个技术成熟度评价的指标体系,用以全面刻画技术在向装备实物转化过程中的状态;同时提出基于层次分析法、信息熵和灰色关联聚类的指标权重确定方法,使得专家的决策信息得以充分挖掘利用。通过一个算例验证该方法在应用中的可行性和有效性,旨在为进一步开展技术成熟度管理工作提供借鉴。

  6. Alternative technology of nanoparticles consolidation in the bulk material

    OpenAIRE

    VOLKOV Georgiy Michailovich

    2016-01-01

    Theoretical bases and technological principles of single-stages nanoparticles conso-lidation into bulk material were offered. The theory was implemented on the model system of carbon-carbon in the process of high-temperature pyrolysis of hydrocar-bons. The bulk carbon nanomaterial with unique technical properties was produced. That made it possible to create engineering products which technical characteristics are higher than the existing level in the world. The proposed theory can be ada...

  7. Electrochemical materials and processes in Si integrated circuit technology

    Energy Technology Data Exchange (ETDEWEB)

    Dubin, V.M. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States)]. E-mail: valery.m.dubin@intel.com; Akolkar, R. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States); Cheng, C.C. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States); Chebiam, R. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States); Fajardo, A. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States); Gstrein, F. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States)

    2007-02-10

    Various technical issues related to feature scaling and recent electrochemical technologies advances for on-chip copper interconnects at Intel are reviewed. Effects of additives on electroplating, as well as performance of novel Cu direct plating on ruthenium liner are discussed. An electroless cobalt capping layer of Cu lines, which led to increased electromigration resistance, has been characterized. The potential application of carbon nanotubes as future interconnects materials, their properties and controlled placement by using dielectrophoresis are also reviewed.

  8. Innovative Information Technology for Space Weather Research

    Science.gov (United States)

    Wang, H.; Qu, M.; Shih, F.; Denker, C.; Gerbessiotis, A.; Lofdahl, M.; Rees, D.; Keller, C.

    2004-05-01

    Solar activity is closely related to the near earth environment -- summarized descriptively as space weather. Changes in space weather have adverse effect on many aspects of life and systems on earth and in space. Real-time, high-quality data and data processing would be a key element to forecast space weather promptly and accurately. Recently, we obtained a funding from US National Science Foundation to apply innovative information technology for space weather prediction. (1) We use the technologies of image processing and pattern recognition, such as image morphology segmentation, Support Vector Machines (SVMs), and neural networks to detect and characterize three important solar activities in real-time: filament eruptions, flares, and emerging flux regions (EFRs). Combining the real time detection with the recent statistical study on the relationship among filament eruptions, flares, EFRs, coronal mass ejections (CMEs), and geomagnetic storms, we are establishing real time report of solar events and automatic forecasting of earth directed CMEs and subsequent geomagnetic storms. (2) We combine state-of-art parallel computing techniques with phase diverse speckle imaging techniques, to yield near real-time diffraction limited images with a cadence of approximately 10 sec. We utilize the multiplicity of parallel paradigms to optimize the calculation of phase diverse speckle imaging to improve calculation speed. With such data, we can monitor flare producing active regions continuously and carry out targeted studies of the evolution and flows in flare producing active regions. (3) We are developing Web based software tools to post our processed data, events and forecasting in real time, and to be integrated with current solar activity and space weather prediction Web pages at BBSO. This will also be a part of Virtual Solar Observatory (VSO) being developed by the solar physics community. This research is supported by NSF ITR program.

  9. Center for Semiconductor Materials and Device Modeling: expanding collaborative research opportunities between government, academia, and industry

    Science.gov (United States)

    Perconti, Philip; Bedair, Sarah S.; Bajaj, Jagmohan; Schuster, Jonathan; Reed, Meredith

    2016-09-01

    To increase Soldier readiness and enhance situational understanding in ever-changing and complex environments, there is a need for rapid development and deployment of Army technologies utilizing sensors, photonics, and electronics. Fundamental aspects of these technologies include the research and development of semiconductor materials and devices which are ubiquitous in numerous applications. Since many Army technologies are considered niche, there is a lack of significant industry investment in the fundamental research and understanding of semiconductor technologies relevant to the Army. To address this issue, the US Army Research Laboratory is establishing a Center for Semiconductor Materials and Device Modeling and seeks to leverage expertise and resources across academia, government and industry. Several key research areas—highlighted and addressed in this paper—have been identified by ARL and external partners and will be pursued in a collaborative fashion by this Center. This paper will also address the mechanisms by which the Center is being established and will operate.

  10. Recent trends in physics of material science and technology

    CERN Document Server

    Shrivastava, Keshav; Akhtar, Jamil

    2015-01-01

    This book discusses in detail the recent trends in Computational Physics, Nano-physics and Devices Technology. Numerous modern devices with very high accuracy, are explored In conditions such as longevity and extended possibilities to work in wide temperature and pressure ranges, aggressive media, etc. This edited volume presents 32 selected papers  of the 2013 International Conference on Science & Engineering in Mathematics, Chemistry and Physics . The book is divided into three  scientific Sections: (i) Computational Physics, (ii) Nanophysics and Technology, (iii) Devices and Systems and is addressed to Professors, post-graduate students, scientists and engineers taking part in R&D of nano-materials, ferro-piezoelectrics, computational Physics and devices system, and also different devices based on broad applications in different areas of modern science and technology.

  11. Research progress of terahertz wave technology in food inspection

    Science.gov (United States)

    Yan, Zhanke; Ying, Yibin; Zhang, Hongjian; Yu, Haiyan

    2006-10-01

    Food safety and quality concern have become more and more significant in recent years. There is therefore an increasing focus on new technologies that can be applied to food quality evaluation or safety inspection, either to simplify or speed up the checking process, or to provide additional functionality. For example, the technique of near infrared (NIR) spectroscopy has been used for the authentication of agricultural products and food samples. Terahertz (THz) radiation, or THz wave, is electromagnetic wave lies between mid-infrared and microwave radiation. During the past decade, THz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials. The main two applications in which THz fields involved are THz spectroscopy and THz imaging. Terahertz wave technology, as a new area of research, has shown its wide prospects in imaging, diagnosis, detection, and monitoring, etc. Recently, THz technology has gained a lot of attention from biological spectral analysis to bio-medical imaging due to its unique features compared with microwave and optical waves. In this paper, a brief review is given to summarize the progress of THz techqiues in the field of food inspection. The properties of THz wave, its uniqueness in sensing and imaging applications, and the prospect of this novel technology in food industry were discussed.

  12. 材料试验机自动检测系统数字识别技术的研究%Research on digital recognition technology of automatic detection system in material testing machine

    Institute of Scientific and Technical Information of China (English)

    李晓阳; 赵新慧; 顾冉冉; 吕计坤

    2014-01-01

    为了提高材料试验机测量值的读取效率、降低人工操作造成的误差和减轻操作员的工作强度,提出一种具有较强鲁棒性的实时材料试验机测量值自动识别方法,利用一系列图像处理技术对材料试验机测量值图像进行识别。实验证明识别准确率和识别速度完全满足实际需求。这里创新地对数字切分中处理断裂数字的合并和粘连数字的分割采用二次阈值化分割法。%In order to improve the reading efficiency of values measured by material testing machine,reduce human error caused by the operators and lighten the working intensity of the operators,a robust real-time automatic identification method of values measured by material testing machine is presented in this paper. A series of image processing technologies were adopted to identify the digital images measured by material testing machine. The experimental results show that the recognition accuracy and speed can fully meet the actual needs of the system. The innovation is to use the secondary threshold method to deal with the broken digit merger and adhent digit division.

  13. Postharvest biology and technology research and development ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... The applications of biological control agents in pre- and post- ... The evolution of new technologies continues to change ... advances in biotechnology, environment technologies, ..... genetic potential of these antagonists.

  14. Desert Research and Technology Studies 2005 Report

    Science.gov (United States)

    Ross, Amy J.; Kosmo, Joseph J.; Janoiko, Barbara A.; Bernard, Craig; Splawn, Keith; Eppler, Dean B.

    2006-01-01

    During the first two weeks of September 2005, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2005 Research and Technology Studies (RATS). The Desert RATS field test activity is the culmination of the various individual science and advanced engineering discipline areas year-long technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The purpose of the RATS is to drive out preliminary exploration concept of operations EVA system requirements by providing hands-on experience with simulated planetary surface exploration extravehicular activity (EVA) hardware and procedures. The RATS activities also are of significant importance in helping to develop the necessary levels of technical skills and experience for the next generation of engineers, scientists, technicians, and astronauts who will be responsible for realizing the goals of the Constellation Program. The 2005 Desert RATS was the eighth RATS field test and was the most systems-oriented, integrated field test to date with participants from NASA field centers, the United States Geologic Survey (USGS), industry partners, and research institutes. Each week of the test, the 2005 RATS addressed specific sets of objectives. The first week focused on the performance of surface science astro-biological sampling operations, including planetary protection considerations and procedures. The second week supported evaluation of the Science, Crew, Operations, and Utility Testbed (SCOUT) proto-type rover and its sub-systems. Throughout the duration of the field test, the Communications, Avionics, and Infomatics pack (CAI-pack) was tested. This year the CAI-pack served to provide information on surface navigation, science sample collection procedures, and EVA timeline awareness. Additionally, 2005 was the first

  15. Research on Rare Earth Encapsulated Luminescent Material

    Institute of Scientific and Technical Information of China (English)

    Yu Zhiwei; Liu Chengdong; Qi Xiaopeng

    2004-01-01

    A new method of preparation of irradiative material by using rare earth as luminophor and inorganic powder as base nucleus was presented.Rare earth was used to make colloid, which was mixed with base nucleus solution,where deposition/attachment reaction took place and rare earth was adhered onto the surface of base nucleus, hence yielding a new rare earth encapsulated irradiative material.Fluorescent spectrum analysis shows that this material possesses two emission peaks, one within 400 ~ 500 nm and the other within 580 ~ 700 nm, reflecting the luminous characteristics of original rare earth material.

  16. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  17. Exploring health information technology education: an analysis of the research.

    Science.gov (United States)

    Virgona, Thomas

    2012-01-01

    This article is an analysis of the Health Information Technology Education published research. The purpose of this study was to examine selected literature using variables such as journal frequency, keyword analysis, universities associated with the research and geographic diversity. The analysis presented in this paper has identified intellectually significant studies that have contributed to the development and accumulation of intellectual wealth of Health Information Technology. The keyword analysis suggests that Health Information Technology research has evolved from establishing concepts and domains of health information systems, technology and management to contemporary issues such as education, outsourcing, web services and security. The research findings have implications for educators, researchers, journal.

  18. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  19. The new IAEA reference material: IAEA-434 technologically enhanced naturally occurring radioactive materials (TENORM) in phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Shakhashiro, A., E-mail: A.Shakhashiro@iaea.or [International Atomic Energy Agency, Agency' s Laboratories, Vienna International Center, PO Box 100, A-1400 Vienna (Austria); Sansone, U. [International Atomic Energy Agency, Agency' s Laboratories, Vienna International Center, PO Box 100, A-1400 Vienna (Austria); Wershofen, H. [Environmental Radioactivity, PTP, Braunschweig (Germany); Bollhoefer, A. [Environmental Radioactivity, Department of the Environment and Heritage, Darwin (Australia); Kim, C.K. [International Atomic Energy Agency, Agency' s Laboratories, Vienna International Center, PO Box 100, A-1400 Vienna (Austria); Kim, C.S. [Department of Environmental Radioactivity Assessment, Korea Institute of Nuclear Safety, Daejeon, Republic of Korea (Former collaborator) (Korea, Republic of); Kis-Benedek, G. [International Atomic Energy Agency, Agency' s Laboratories, Vienna International Center, PO Box 100, A-1400 Vienna (Austria); Korun, M. [Jozef Stefan Institute, Ljubljana (Slovenia); Moune, M. [LNE-LNHB, Laboratoire National Henri Becquerel, Gif-sur-Yvette Cedex (France); Lee, S.H. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Tarjan, S. [Central Radiological Laboratory, Hungarian Agricultural Authority, Budapest (Hungary); Al-Masri, M.S. [Atomic Energy Commission of Syria, Damascus (Syrian Arab Republic)

    2011-01-15

    A reliable determination of Technologically Enhanced Naturally Occurring Radioactive Materials in phosphogypsum is necessary to comply with radiation protection and environmental regulations. In this respect, a new phosphogypsum reference material was produced and certified to assist in the validation of analytical methods and the quality assurance of produced analytical results. This paper presents the sample preparation methodology, material homogeneity assessment, characterization campaign results and assignment of property values, and associated uncertainties. The reference values and associated uncertainties for Pb-210, Ra-226, Th-230, U-234 and U-238 were established based on consensus values calculated from analytical results reported by three National Metrology Institutes and five expert laboratories.

  20. The new IAEA reference material: IAEA-434 technologically enhanced naturally occurring radioactive materials (TENORM) in phosphogypsum.

    Science.gov (United States)

    Shakhashiro, A; Sansone, U; Wershofen, H; Bollhöfer, A; Kim, C K; Kim, C S; Kis-Benedek, G; Korun, M; Moune, M; Lee, S H; Tarjan, S; Al-Masri, M S

    2011-01-01

    A reliable determination of Technologically Enhanced Naturally Occurring Radioactive Materials in phosphogypsum is necessary to comply with radiation protection and environmental regulations. In this respect, a new phosphogypsum reference material was produced and certified to assist in the validation of analytical methods and the quality assurance of produced analytical results. This paper presents the sample preparation methodology, material homogeneity assessment, characterization campaign results and assignment of property values, and associated uncertainties. The reference values and associated uncertainties for Pb-210, Ra-226, Th-230, U-234 and U-238 were established based on consensus values calculated from analytical results reported by three National Metrology Institutes and five expert laboratories.

  1. Technology assessment of solar-energy systems. Materials resource and hazardous materials impacts of solar deployment

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, Y.M.; Tahami, J.E.

    1982-04-01

    The materials-resource and hazardous-materials impacts were determined by examining the type and quantity of materials used in the manufacture, construction, installation, operation and maintenance of solar systems. The materials requirements were compared with US materials supply-and-demand data to determine if potential problems exist in terms of future availability of domestic supply and increased dependence on foreign sources of supply. Hazardous materials were evaluated in terms of public and occupational health hazards and explosive and fire hazards. It is concluded that: (1) although large amounts of materials would be required, the US had sufficient industrial capacity to produce those materials; (2) the postulated growth in solar technology deployment during the period 1995-2000 could cause some production shortfalls in the steel and copper industry; (3) the U.S. could increase its import reliance for certain materials such as silver, iron ore, and copper; (4) however, shifts to other materials such as aluminum and polyvinylchloride could alleviate some of these problems.

  2. Applied Health Technology – a New Research Discipline at Blekinge Institute of Technology

    OpenAIRE

    Olander, Ewy; Nilsson, Lina

    2009-01-01

    Since spring 2008 is Applied Health Technology a new research discipline at Blekinge Institute of Technology. The discipline has been developed in collaboration between the School of Health Science and the School of Technology. In the general syllabus for third-cycle (doctoral research) studies in Applied Health Technology underlines the value of multidisciplinary as well as interdisciplinary research, focusing on how Caring and Nursing Sciences, Public Health Science and Clinical Medical Sci...

  3. A global renewable mix with proven technologies and common materials

    Science.gov (United States)

    Ballabrera, J.; Garcia-Olivares, A.; Garcia-Ladona, E.; Turiel, A.

    2012-04-01

    A global alternative mix to fossil fuels is proposed, based on proven renewable energy technologies that do not use scarce materials. Taking into account the availability of materials, the resulting mix consists of a combination of onshore and offshore wind turbines, concentrating solar power stations, hydroelectricity and wave power devices attached to the offshore turbines. Solar photovoltaic power could contribute to the mix if its dependence on scarce materials is solved. Material requirements are studied for the generation, power transport and for some future transport systems. The order of magnitude of copper, aluminium, neodymium, lithium, nickel, zinc and platinum that might be required for the proposed solution is obtained and compared with available reserves. While the proposed global alternative to fossil fuels seems technically feasible, lithium, nickel and platinum could become limiting materials for future vehicles fleet if no global recycling system were implemented and rechargeable zinc-air batteries could not be developed. As much as 60% of the current copper reserves would have to be employed in the implementation of the proposed solution. Altogether, the availability of materials may become a long-term physical constraint, preventing the continuation of the usual exponential growth of energy consumption.

  4. Research of Home Information Technology Adoption Model

    Institute of Scientific and Technical Information of China (English)

    Ao Shan; Ren Weiyin; Lin Peishan; Tang Shoulian

    2008-01-01

    The Information Technology at Home has caught the attention of various industries such as IT, Home Appliances, Communication, and Real Estate. Based on the information technology acceptance theories and family consumption behaviors theories, this study summarized and analyzed four key belief variables i.e. Perceived Value, Perceived Risk, Perceived Cost and Perceived Ease of Use, which influence the acceptance of home information technology. The study also summaries three groups of external variables. They axe social, industrial, and family influence factors. The social influence factors include Subjective Norm; the industry factors include the Unification of Home Information Technological Standards, the Perfection of Home Information Industry Value Chain, and the Competitiveness of Home Information Industry; and the family factors include Family Income, Family Life Cycle and Family Educational Level. The study discusses the relationship among these external variables and cognitive variables. The study provides Home Information Technology Acceptance Model based on the Technology Acceptance Model and the characteristics of home information technology consumption.

  5. Standard Lunar Regolith Simulants for Space Resource Utilization Technologies Development: Effects of Materials Choices

    Science.gov (United States)

    Sibille, Laurent; Carpenter, Paul K.

    2006-01-01

    As NASA turns its exploration ambitions towards the Moon once again, the research and development of new technologies for lunar operations face the challenge of meeting the milestones of a fastpace schedule, reminiscent of the 1960's Apollo program. While the lunar samples returned by the Apollo and Luna missions have revealed much about the Moon, these priceless materials exist in too scarce quantities to be used for technology development and testing. The need for mineral materials chosen to simulate the characteristics of lunar regoliths is a pressing issue that is being addressed today through the collaboration of scientists, engineers and NASA program managers. The issue of reproducing the properties of lunar regolith for research and technology development purposes was addressed by the recently held 2005 Workshop on Lunar Regolith Simulant Materials at Marshall Space Flight Center. The recommendation of the workshop of establishing standard simulant materials to be used in lunar technology development and testing will be discussed here with an emphasis on space resource utilization. The variety of techniques and the complexity of functional interfaces make these simulant choices critical in space resource utilization.

  6. ic-cmtp3: 3rd International Conference on Competitive Materials and Technology Processes

    Science.gov (United States)

    2016-04-01

    Competitiveness is one of the most important factors in our lives and it plays a key role in the efficiency both of organizations and societies. The more scientifically advanced and prepared organizations develop more competitive materials with better physical, chemical, and biological properties, and the leading companies apply more competitive equipment and technological processes. The aims of the 3rd International Conference on Competitive Materials and Technology Processes (ic-cmtp3), and the 1st International Symposium on Innovative Carbons and Carbon Based Materials (is-icbm1) and the 1st International Symposium on Innovative Construction Materials (is-icm1) organized alongside are the following: —Promote new methods and results of scientific research in the fields of material, biological, environmental and technological sciences; —Exchange information between the theoretical and applied sciences as well as technical and technological implementations; —Promote communication and collaboration between the scientists, researchers and engineers of different nations, countries and continents. Among the major fields of interest are advanced and innovative materials with competitive characteristics, including mechanical, physical, chemical, biological, medical and thermal, properties and extreme dynamic strength. Their crystalline, nano - and micro-structures, phase transformations as well as details of their technological processes, tests and measurements are also in the focus of the ic-cmtp3 conference and the is-scbm1 and is-icm1 symposia. Multidisciplinary applications of material science and the technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industries, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance with the program of the ic-cmtp3 conference and is-icbm1 and is-icm1 symposia we have received more

  7. Research activity with different types of scintillation materials

    Science.gov (United States)

    Brinkmann, K.-T.; Borisevich, A.; Diehl, S.; Dormenev, V.; Houzvicka, J.; Korjik, M.; Novotny, R. W.; Zaunick, H.-G.; Zimmermann, S.

    2016-10-01

    Nowadays there is a growing interest and demand in the development of new types of scintillation materials for experimental high energy physics. Future detector developments will focus on cheap, fast, and radiation hard materials, especially for application in collider experiments. The most recent results obtained by the Giessen group in close cooperation with colleagues from different institutes will be presented. The new start of the mass production of high quality lead tungstate crystals (PbWO4, PWO) for electromagnetic calorimetry was started by the company CRYTUR (Turnov, Czech Republic). We will present a detailed progress report on the research program of lead tungstate performed in the last two years. The latest results in the development of LuAG:Ce, YAG:Ce and LYSO:Ce inorganic fibers, grown by the micro pulling down method and cut with the heated wire technique as well as new glass ceramics material BaO*2SiO2 (DSB) doped by Ce and Gd will be presented. In addition, different samples of the organic plastic scintillator EJ-260 produced by the company Eljen Technology (Sweetwater, USA) have been characterized. The study has focused on the change of performance after irradiation with 150 MeV protons up to an integral fluence of 5-1013 protons/cm2 as well as with a strong 60Co gamma-source accumulating an integral dose of 100 Gy.

  8. Current status of silicon materials research for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ciszek, T F

    1985-04-01

    The desire for high solar cell efficiencies has been a strong factor in determining the course of recent silicon crystal growth research efforts for photovoltaics. This review, therefore, focuses on single-crystal, dislocation-free ingot growth methods (Czochralski growth, float zoning, and cold crucible growth) and on sheet growth technologies, generally multicrystalline, that have achieved moderately high (>13.5%) laboratory-scale efficiencies. These include dendritic web growth, growth from capillary dies, edge-supported pulling, ribbon-against-drop growth, and a recent technique termed crucible-free horizontal growth. Silicon ribbon crystals provide a favorable geometry and require no wafering, but they contain defects that limit solar cell performance. Growth processes, their current status, and cell efficiencies are discussed. Silicon material process steps before and after crystal growth are described, and the advantages of silicon are presented.

  9. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Science.gov (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  10. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    Directory of Open Access Journals (Sweden)

    Kateryna Shavanova

    2016-02-01

    Full Text Available The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical. A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  11. Analysis on approach of safeguards implementation at research reactor handling item count and bulk material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jo; Lee, Sung Ho; Lee, Byung Doo; Jung, Juang [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    KiJang research reactor (KJRR) will be constructed to produce the radioisotope such as Mo-99 etc., provide the neutron transmutation doping (NTD) service of silicon, and develop the core technologies of research reactor. In this paper, the features of the process and nuclear material flow are reviewed and the material balance area (MBA) and key measurement point (KMP) are established based on the nuclear material flow. Also, this paper reviews the approach on safeguards and nuclear material accountancy at the facility level for Safeguards-by-Design at research reactor handling item count and bulk material. In this paper, MBA and KMPs are established through the analysis on facility features and major process at KJRR handling item count and bulk material. Also, this paper reviews the IAEA safeguards implementation and nuclear material accountancy at KJRR. It is necessary to discuss the safeguards approach on the fresh FM target assemblies and remaining uranium in the intermediate level liquid wastes.

  12. Progress in materials and technologies for ultrahigh density data storage

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With the development of information superhighway, nanometer-scale data storage has been proposed and attracted great interest in recent years. This article reviews the research achievements in this field, and especially focuses on the materials for data recording by using an atomic force microscope (AFM) and scanning tunneling microscope (STM).

  13. [Science and Technology and Recycling: Instructional Materials on Aluminum.

    Science.gov (United States)

    Aluminum Association, New York, NY.

    Educational materials on the manufacture and use of aluminum are assembled in this multi-media unit for use by junior high and secondary school students. Student booklets and brochures include: "The Story of Aluminum,""Uses of Aluminum,""Independent Study Guide for School Research Projects,""Questions and Answers About Litter, Solid Waste, and…

  14. RECENT RELATED RESEARCH IN TECHNOLOGY ACCEPTANCE MODEL: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Shih-Chih Chen

    2011-10-01

    Full Text Available Technology Acceptance Model is widely applied to access users’ usage in various information system/information technology areas. Learning the critical role of Technology Acceptance Model can guide researchers to design different users’ interface for different online customers, and consequently achieve high user usage in different application areas. This study reviewed 24 studies to understand the past, now and future of Technology Acceptance Model. We discussed the related studies to clarify the extension of Technology Acceptance Model. Besides, the application areas are elaborated including electronic service, mobile data service, self-service technology, electronic learning and so on. Finally, the article concluded the conclusions and future research direction.

  15. Social justice and research using human biological material: A ...

    African Journals Online (AJOL)

    commercial medical research that uses human biological material, such as blood samples or other ... and provide that a person from whose body human biological material is withdrawn for .... part of investigators and institutions. This could be ...

  16. Concept-oriented research and development in information technology

    CERN Document Server

    Mori, Kinji

    2014-01-01

    This book thoroughly analyzes the relationships between concept, technology, and market-which are the main factors in shifting information technology research and development (R&D) to a new approach. It discusses unconventional methods and viewpoints of concept creation, technology innovation, and market cultivation. Featuring contributions from international experts and case studies from IBM and Hitachi, this book is perfect for graduate students in information technology, engineering, technology management, operation research, and business-as well as for R&D researchers, directors, strategis

  17. Information technology research and development critical trends and issues

    CERN Document Server

    1985-01-01

    Information Technology Research and Development: Critical Trends and Issues is a report of the Office of Technology Assessment of the United States Government on the research and development in the area of information technology. The report discusses information technology research and development - its goals, nature, issues, and strategies; environment and its changes; the roles of the participants; and the health of its field. The book then goes on to four selected case studies in information technology: advanced computer architecture; fiber optic communications; software engineering; and ar

  18. EDITORIAL: Combinatorial and High-Throughput Materials Research

    Science.gov (United States)

    Potyrailo, Radislav A.; Takeuchi, Ichiro

    2005-01-01

    The success of combinatorial and high-throughput methodologies relies greatly on the availability of various characterization tools with new and improved capabilities [1]. Indeed, how useful can a combinatorial library of 250, 400, 25 000 or 2 000 000 compounds be [2-5] if one is unable to characterize its properties of interest fairly quickly? How useful can a set of thousands of spectra or chromatograms be if one is unable to analyse them in a timely manner? For these reasons, the development of new approaches for materials characterization is one of the most active areas in combinatorial materials science. The importance of this aspect of research in the field has been discussed in numerous conferences including the Pittsburgh Conferences, the American Chemical Society Meetings, the American Physical Society Meetings, the Materials Research Society Symposia and various Gordon Research Conferences. Naturally, the development of new measurement instrumentation attracts the attention not only of practitioners of combinatorial materials science but also of those who design new software for data manipulation and mining. Experimental designs of combinatorial libraries are pursued with available and realistic synthetic and characterization capabilities in mind. It is becoming increasingly critical to link the design of new equipment for high-throughput parallel materials synthesis with integrated measurement tools in order to enhance the efficacy of the overall experimental strategy. We have received an overwhelming response to our proposal and call for papers for this Special Issue on Combinatorial Materials Science. The papers in this issue of Measurement Science and Technology are a very timely collection that captures the state of modern combinatorial materials science. They demonstrate the significant advances that are taking place in the field. In some cases, characterization tools are now being operated in the factory mode. At the same time, major challenges

  19. Micro Ethnographic Research as a Method for Informing Educational Technology Design in Practice

    DEFF Research Database (Denmark)

    Davidsen, Jacob; Vanderlinde, Ruben

    2013-01-01

    Objectives and purposes. This paper describes research on how micro ethnographic classroom studies (Mehan, 1979) of the integration of technology can inform researchers understanding of teachers and children’s situated acts with technology. Hence, the objective of this paper is to show stories...... important insights of the classroom order and their experience of using technology in classrooms. Results. Results show that introducing technology into the classroom as a learning tool posed a challenge to the pedagogic approach, the teaching materials and the roles of both teachers and learners...

  20. Sequencing technologies for animal cell culture research.

    Science.gov (United States)

    Kremkow, Benjamin G; Lee, Kelvin H

    2015-01-01

    Over the last 10 years, 2nd and 3rd generation sequencing technologies have made the use of genomic sequencing within the animal cell culture community increasingly commonplace. Each technology's defining characteristics are unique, including the cost, time, sequence read length, daily throughput, and occurrence of sequence errors. Given each sequencing technology's intrinsic advantages and disadvantages, the optimal technology for a given experiment depends on the particular experiment's objective. This review discusses the current characteristics of six next-generation sequencing technologies, compares the differences between them, and characterizes their relevance to the animal cell culture community. These technologies are continually improving, as evidenced by the recent achievement of the field's benchmark goal: sequencing a human genome for less than $1,000.

  1. Designing and Developing Supplemental Technology of PACI Model Materials through Blended Learning Methods

    Directory of Open Access Journals (Sweden)

    Effendi Limbong

    2017-06-01

    Full Text Available The 21st century English teachers and lecturers are required to have competencies in translating Content Knowledge (CK, integrating various Pedagogical Knolwedge (PK and implementing Technological Knowledge (TK in order to produce effective and efficient teaching. This research reveals and describes researchers efforts and pre-service EFL teachers (PSEFLTs roles in designing and developing the supplemental teaching and learning materials with PowerPoint, Audacity, Camtasia and Internet. To transform researcher roles and model to introduce and implement Technological, Pedagogical, and Content Knowledge (TPACK framework, this research implemented blended learning: traditional face to face (F2F and Facebook closed-group discussion (FBcgD based on Project-Based Learning (PBL. This research employed the qualitative autobiography narrative of self-study from the researchers experiences to implement blended learning. Semi-structure interviews were conducted with four PSEFLTs of group A and five PSEFLTs of group B to seek the PSEFLTs experiences in designing and developing PACI model. The results suggested that blended learning is can effectively and efficiently integrate and implement the design and development of a PACI model. Most importantly both of researcher and two groups realized that in integration of TPACK during a Computer Literacy course, the subject matter may be shaped by the application of technology; teaching as well as learning might be changed by the use of technology and the way to represent and communicate specific lessons to students.

  2. Materials Research for Superconducting Machinery-IV

    Science.gov (United States)

    1975-09-01

    increases with decreasing ( 19) amounts of delta ferrite present. Wells and Hagadorn have reported -> on Varestraint tests in high manganese stainless...to 5X delta ferrite in the weld fusion zone) were found to be feebly magnetic. However, weldments on Nitronic 33 made by the GTAW process U8:ng a...copper brazed X750 material revealed nonuniform wetting, dissolution of the X750 material interfara and grain boundary penetration by the copper

  3. Energy Technology Division research summary -- 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  4. 10th International School of Materials Science and Technology : Intercalation in Layered Materials "Ettore Majorana"

    CERN Document Server

    1986-01-01

    This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech­ nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc­ tion to the field for potential new participants, an in-depth and broad exposure for stu­ dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials...

  5. Research on Pipeline Holdup Measurement Technology

    Institute of Scientific and Technical Information of China (English)

    LU; Wen-guang; XU; Zheng; CHENG; Yi-mei; SUI; Hong-zhi; YIN; Hong-he

    2012-01-01

    <正>Some of the nuclear material could be deposited in the pipeline system of the nuclear facilities in the operation process. That kind of nuclear materials in the pipeline are called holdup. The measurement of pipeline holdup is not only important for the nuclear material accounting and control of facilities, but also important for the safe operation of facilities.

  6. Technology Base Research Project for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kim (ed.)

    1991-06-01

    The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

  7. Development of Management Metrics for Research and Technology

    Science.gov (United States)

    Sheskin, Theodore J.

    2003-01-01

    Professor Ted Sheskin from CSU will be tasked to research and investigate metrics that can be used to determine the technical progress for advanced development and research tasks. These metrics will be implemented in a software environment that hosts engineering design, analysis and management tools to be used to support power system and component research work at GRC. Professor Sheskin is an Industrial Engineer and has been involved in issues related to management of engineering tasks and will use his knowledge from this area to allow extrapolation into the research and technology management area. Over the course of the summer, Professor Sheskin will develop a bibliography of management papers covering current management methods that may be applicable to research management. At the completion of the summer work we expect to have him recommend a metric system to be reviewed prior to implementation in the software environment. This task has been discussed with Professor Sheskin and some review material has already been given to him.

  8. Assessment of basic research needs for greenhouse gas control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.M.; Chandler, W.; Edmonds, J.; Houghton, J.; Levine, M.; Bates, L.; Chum, H.; Dooley, J.; Grether, D.; Logan, J.; Wiltsee, G.; Wright, L.

    1998-09-01

    This paper is an outgrowth of an effort undertaken by the Department of Energy's Office of Energy Research to assess the fundamental research needs to support a national program in carbon management. Five topics were identified as areas where carbon management strategies and technologies might be developed: (1) capture of carbon dioxide, decarbonization strategies, and carbon dioxide disposal and utilization; (2) hydrogen development and fuel cells; (3) enhancement of the natural carbon cycle; (4) biomass production and utilization; and (5) improvement of the efficiency of energy production, conversion, and utilization. Within each of these general areas, experts came together to identify targets of opportunity for fundamental research likely to lead to the development of mid- to long-term solutions for stabilizing or decreasing carbon dioxide and other greenhouse gases in the atmosphere. Basic research to support the options outlined above are far reaching-from understanding natural global processes such as the ocean and terrestrial carbon cycles to development of new materials and concepts for chemical separation. Examples of fundamental research needs are described in this paper.

  9. Scientific Research and Technological Innovation: The Brazilian Approach to Biotechnology

    National Research Council Canada - National Science Library

    Nara Azevedo; Luiz Otavio Ferreira; Simone Petraglia Kropf; Wanda Susana Hamilton

    2002-01-01

    .... The research shows that the lag between scientific capability and technological development at FIOCRUZ resulted from the institutional dynamic related to its process of reconstruction beginning in...

  10. Research Opportunities for Materials with Ultrafine Microstructures

    Science.gov (United States)

    1989-12-31

    Ulrich, 1984). Alkoxides are the organometallic precursors for silica, alumina, titania, and zirconia , among others. A catalyst is used to start...selectively added to the clusters by these methods. The extension of this technology to include excitation of gaseous species in corona -discharge free

  11. Research Development of MOX Fuel Element Technology

    Institute of Scientific and Technical Information of China (English)

    YANG; Qi-fa; YANG; Ting-gui; SHANG; Gai-bin; YIN; Bang-yue; ZHOU; Guo-liang; LI; Qiang; JIANG; Bao-jun

    2015-01-01

    The project of"MOX Fuel Element Research"led by China Institute of Atomic Energy,404Company Ltd.and CNPE Zhengzhou Branch are members of the project research team.The research task of 2015had been accomplished successfully,and the research productions of this year build up a basis for the future research,also

  12. [Establishment of prescription research technology system in Chinese medicine secondary exploitation based on "component structure" theory].

    Science.gov (United States)

    Cheng, Xu-Dong; Feng, Liang; Gu, Jun-Fei; Zhang, Ming-Hua; Jia, Xiao-Bin

    2014-11-01

    Chinese medicine prescriptions are the wisdom outcomes of traditional Chinese medicine (TCM) clinical treatment determinations which based on differentiation of symptoms and signs. Chinese medicine prescriptions are also the basis of secondary exploitation of TCM. The study on prescription helps to understand the material basis of its efficacy, pharmacological mechanism, which is an important guarantee for the modernization of traditional Chinese medicine. Currently, there is not yet dissertation n the method and technology system of basic research on the prescription of Chinese medicine. This paper focuses on how to build an effective system of prescription research technology. Based on "component structure" theory, a technology system contained four-step method that "prescription analysis, the material basis screening, the material basis of analysis and optimization and verify" was proposed. The technology system analyzes the material basis of the three levels such as Chinese medicine pieces, constituents and the compounds which could respect the overall efficacy of Chinese medicine. Ideas of prescription optimization, remodeling are introduced into the system. The technology system is the combination of the existing research and associates with new techniques and methods, which used for explore the research thought suitable for material basis research and prescription remodeling. The system provides a reference for the secondary development of traditional Chinese medicine, and industrial upgrading.

  13. Measuring Research on County Agricultural Technological Innovation Ability Index

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Taking the mechanism of technological construction guidance theory and mode which consists of "objective-construction-evaluation-construction-objective" as a starting point, on the basis of county agricultural technological innovation ability and its index definition, this paper researches the constructing system of county agricultural technological innovation ability. Firstly, on the basis of defining county agricultural technological innovation ability and the definition of index, according to the principle of purposefulness, scientificity, systematicness, integration of dynamic state and static state, integration of quantitativeness and qualitativeness and so on, we construct the multi-level measuring system of county agricultural technological innovation ability, including 4 first-level indices, namely technological innovation environment, technological innovation basis, technological innovation ability, and technological innovation efficiency; 15 second-level indices, such as technological policy, technological system mechanism, technological institution construction, ability of innovation subject, ability of industrial expansion, scale merit, technological contribution rate. Moreover, this system has 45 third-level indices. Then, by using unascertained mathematics method and AHM method, we establish the multi-level unascertained composite measuring model of county agricultural technological innovation ability index. Finally, by using the survey data of one county in Hebei Province, and the established county agricultural technological innovation ability index model, we get the county agricultural technological innovation ability index of 0.711 by calculation, that is, the innovation ability is at the intermediate level, namely the modern agricultural sub-stage. The empirical research proves the correctness and applicability of this model.

  14. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  15. Engineer Research and Development Center's Materials Testing Center (MTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center's Materials Testing Center (MTC) is committed to quality testing and inspection services that are delivered on time and...

  16. Technology and Meteorology. An Action Research Paper.

    Science.gov (United States)

    Taggart, Raymond F.

    Meteorology, the science of weather and weather conditions, has traditionally been taught via textbook and rote demonstration. This study was intended to determine to what degree utilizing technology in the study of meteorology improves students' attitudes towards science and to measure to what extent technology in meteorology increases…

  17. Trends and Research Issues in Educational Technology

    Science.gov (United States)

    Spector, J. Michael

    2013-01-01

    If one looks back at the last 50 years or so at educational technologies, one will notice several things. First, the pace of innovation has increased dramatically with many developments in the application of digital technologies to learning and instruction, following by a few years developments in the sciences and engineering disciplines that are…

  18. Innovative Mechanical Engineering Technologies, Equipment and Materials-2013

    Science.gov (United States)

    Ilnaz Izailovich, Fayrushin; Nail Faikovich, Kashapov; Mahmut Mashutovich, Ganiev

    2014-12-01

    In the period from 25 to 27 September 2013 the city of Kazan hosted the International Scientific Conference "Innovative mechanical engineering technologies, equipment and materials - 2013" (IRTC "IMETEM - 2013"). The conference was held on the grounds of "Kazanskaya Yarmarka" (Kazan). The conference plenary meeting was held with the participation of the Republic of Tatarstan, breakout sessions, forum "Improving the competitiveness and efficiency of engineering enterprises in the WTO" and a number of round tables. Traditionally, the event was followed by the 13th International specialized exhibition "Engineering. Metalworking. Kazan ", in which were presented the development of innovative enterprises in the interests of the Russian Federation of Industry of Republic of Tatarstan, to support the "Foundation for Assistance to Small Innovative Enterprises in Science and Technology" and the 8th specialized exhibition "TechnoWelding". Kashapov Nail, D.Sc., professor (Kazan Federal University)

  19. NASA's Advanced TPS Materials and Technology Development: Multi-Functional Materials and Systems for Space Exploration

    Science.gov (United States)

    Venkatapathy, Ethiraj; Feldman, Jay; Ellerby, Donald T.; Wercinski, Paul F.; Beck, Robin A S.

    2017-01-01

    NASA's future missions will be more demanding. They require materials to be mass efficient, robust, multi-functional, scalable and able to be integrated with other subsystems to enable innovative missions to accomplish future science missions. Thermal protection systems and materials (TPSM) are critical for the robotic and human exploration of the solar system when it involves entry. TPSM is a single string system with no back-up. Mass efficiency and robustness are required. Integration of TPSM with the aeroshell is both a challenge and an opportunity. Since 2010, NASA's Space Technology Mission Directorate has invested in innovative new materials and systems across a spectrum of game changing technologies. In this keynote address, we plan to highlight and present our successful approaches utilized in developing four different materials and system technologies that use innovative new manufacturing techniques to meet mission needs. 3-D weaving and felt manufacturing allowed us to successfully propose new ways of addressing TPSM challenges. In the 3-D MAT project, we developed and delivered a multi-functional TPS materials solution, in under three years that is an enabler for Lunar Capable Orion Spacecraft. Under the HEEET project, we are developing a robust heat-shield that can withstand extreme entry conditions, both thermally and mechanically, for entry at Venus, Saturn or higher speed sample return missions. The improved efficiency of HEEET allows science missions entry at much reduced G'loads enabling delicate science instruments to be used. The ADEPT concept is a foldable and deployable entry system and the critical component is a multi-functional fabric that is foldable and deployable and also functions as a mechanical aeroshell and a TPS. The fourth technology we will highlight involves felt to address integration challenges of rigid ablative system such as PICA that was used on MSL. The felt technology allows us to develop a compliant TPS for easy

  20. Teacher Researchers: Technology and Ethical Considerations while Conducting an Action Research

    Science.gov (United States)

    Isman, Aytekin; Altinay Aksal, Fahriye; Altinay Gazi, Zehra

    2009-01-01

    The research study stimulates critical approach to research and practice, with an increasing emphasis on ethics and ethical decision making of the teacher researchers within action research process by using technology in its process. The study investigates the impact of technology within the action research, ethical considerations and dilemmas…

  1. DEVELOPMENT OF IMPORT-SUBSTITUTING TECHNOLOGIES FOR BUILDING MATERIAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. I. Berezovsky

    2014-01-01

    Full Text Available The paper presents results of investigations on rational usage of mineral resources. In particular, it has shown the possibility to increase a period of raw material serviceability and its application for production of building products depending on chemical and mineralogical composition of the waste. Analysis of the executed investigations shows that import substitution of anthracite, lignite and black coal for local fuels (milled peat and its sub-standard product is possible in the production technology of porous building materials.A mathematical model for drying process has been developed in the paper. Technology for thermal performance of a sintering machine with calculation of its length at the given pallet speed has been proposed on the basis of the developed model. Once-through circulation of flue gases and heated materials is the main specific feature of belt sintering machines being used in production. In such a case the whole drying process can be divided into two periods: a period of constant drying rate and a period of falling drying rate. Calculations have shown that the drying rate depends on moisture content but it does not depend on heat exchange Bio-criteria, however, heating rate is a function of temperature and Biq. A mechanism of moisture transfer using various drying methods is the same as in an environment with constant temperature and so in an environment with variable temperature. Application of the mathematical model provides the possibility to save significantly power resources expended for drying process.The paper gives description of methodology for calculation of technologically important optimum parameters for sintering processes of agglomeration while using milled peat.

  2. Recent Progress In Infrared Fiber Material Research

    Science.gov (United States)

    Gannon, John R.; Byron, Kevin C.

    1982-12-01

    This paper reviews some recent developments in the field of infra-red transmitting glasses. A variety of heavy metal fluoride glasses are currently being investigated with a view to fabricating high performance optical fibre systems. In order to assess the bandwidth potential of these fibres, a computer model of fibre dispersion has been developed, in which accurate calculations of the materials, waveguide, profile and total dispersions are made over a broad wavelength range. Predictions are also made of the range of choice in Δn and core diameter available to give zero total dispersion at particular wavelengths in practical fibres made with these materials.

  3. Material Model Research on Rubber Vibration Isolators

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three parameters to characterize the hyperelastic static properties of rubber materials,and the other component incorporating two relaxation time parameters, corresponding to high and low strain rates, respectively, to describe the dynamic response under vibration and impact loadings. Based on this proposed constitutive model, a series of experiments were performed on two types of rubber materials over a wide strain rate range. The results predicted from this model are in good agreement with the experimental data.

  4. Alternative technology of nanoparticles consolidation in the bulk material

    Directory of Open Access Journals (Sweden)

    VOLKOV Georgiy Michailovich

    2016-02-01

    Full Text Available Theoretical bases and technological principles of single-stages nanoparticles conso-lidation into bulk material were offered. The theory was implemented on the model system of carbon-carbon in the process of high-temperature pyrolysis of hydrocar-bons. The bulk carbon nanomaterial with unique technical properties was produced. That made it possible to create engineering products which technical characteristics are higher than the existing level in the world. The proposed theory can be adapted to other gas-phase, liquid phase and secondary crystallization processes to create bulk nanomaterials of another chemical composition with no less unique properties.

  5. Advanced Materials and Solids Analysis Research Core (AMSARC)

    Science.gov (United States)

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  6. Advanced Materials and Solids Analysis Research Core (AMSARC)

    Science.gov (United States)

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  7. PREFACE: International Seminar on Science and Technology of Glass Materials (ISSTGM-2009)

    Science.gov (United States)

    Veeraiah, N.

    2009-07-01

    The progress of the human race is linked with the development of new materials and also the values they acquired in the course of time. Though the art of glass forming has been known from Egyptian civilization, the understanding and use of these glasses for technological applications only became possible once the structural aspects were revealed by the inspiring theories proposed by William H Zachariasen. Glass and glass ceramics have become the essential materials for modern technology. The applications of these materials are wide and cover areas such as optical communication, laser host, innovative architecture, bio-medical, automobile and space technology. As we master the technology, we must also learn to use it judiciously and for the overall development of all in this global village. The International Seminar on Science and Technology of Glass Materials (ISSTGM-2009) is organized to bring together scientists, academia and industry in order to discuss various aspects of the technology and to inspire young scholars to take up fruitful research. Various topics such as glass formation and glass-ceramics, glass structure, applications of glass and glass ceramics in nuclear waste management, radiation dosimetry, electronics and information technology, biotechnological applications, bulk metallic glasses, glasses containing nano-particles, hybrid glasses, novel glasses and applications in photonics, Non-linear optics and energy generation were discussed. In this volume, 59 research articles covering 18 invited talks, 10 oral presentations and 31 poster presentations are included. We hope these will serve as a valuable resource to all the scientists and scholars working with glass materials. Acharya Nagarjuna University, established in 1976, is named after the great Buddhist preceptor and philosopher, Acharya Nagarjuna, who founded a university on the banks of river Krishna some centuries ago. The University is situated between Vijayawada and Guntur, the famous

  8. Research Data Management - Managing digital material

    OpenAIRE

    Collins, Anna

    2012-01-01

    This short presentation "Managing digital material" is specifically aimed at PhD students and discussed what data is, why it needs to be managed - including examples of what can happen if it is lost, the Data Management Planning lifecycle, structuring and describing data files and the open access option

  9. The technological socio-materiality of kindergarten children’s conduct of everyday life

    DEFF Research Database (Denmark)

    Chimirri, Niklas Alexander

    The conduct of everyday life concept has been enormously fruitful for theorizing how persons come to live their lives across diverse social contexts as participants in and contributors to social practices. However, social practice research still needs to investigate in a more detailed manner...... the relevance of material artifacts for conducting one’s everyday life. Everyday artifacts such as media technologies heavily shape the concrete socio-material arrangements in specific practices, hence co-constituting the scope of imaginable action possibilities. The presentation builds on insights drawn from...... a four-month researcher participation in a kindergarten practice. It argues that the relevance of media technologies can only be investigated in relation to the various perspectives of the other practice participants. The main focus is put on the children’s perspectives, as it is their conduct...

  10. Scientific Assessment in support of the Materials Roadmap enabling Low Carbon Energy Technologies: Hydrogen and Fuel Cells

    DEFF Research Database (Denmark)

    Cerri, I.; Lefebvre-Joud, F.; Holtappels, Peter

    A group of experts from European research organisations and industry have assessed the state of the art and future needs for materials' R&D for hydrogen and fuel cell technologies. The work was performed as input to the European Commission's roadmapping exercise on materials for the European...

  11. Research into Practice: How Research Appears in Pronunciation Teaching Materials

    Science.gov (United States)

    Levis, John M.

    2016-01-01

    Research into pronunciation has often disregarded its potential to inform pedagogy. This is due partly to the historical development of pronunciation teaching and research, but its effect is that there is often a mismatch between research and teaching. This paper looks at four areas in which the (mis)match is imperfect but in which a greater…

  12. Research into Practice: How Research Appears in Pronunciation Teaching Materials

    Science.gov (United States)

    Levis, John M.

    2016-01-01

    Research into pronunciation has often disregarded its potential to inform pedagogy. This is due partly to the historical development of pronunciation teaching and research, but its effect is that there is often a mismatch between research and teaching. This paper looks at four areas in which the (mis)match is imperfect but in which a greater…

  13. Quality and Characteristics of Recent Research in Technology Education

    Science.gov (United States)

    Johnson, Scott D.; Daugherty, Jenny

    2008-01-01

    The focus of research in technology education has evolved throughout its history as the field changed from industrial arts to technology education (Spencer & Rogers, 2006). With the move to technology education, the field has begun to broaden its focus to better understand the teaching, learning, curriculum, and policy implications of preparing…

  14. The technology benefits of inertial confinement fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Powell, H T

    1999-05-26

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10{sup 6} J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10{sup {minus}6} m) with picosecond (10{sup {minus}12} s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal

  15. Multifunctional Materials and Structures Gordon Research Conference

    Science.gov (United States)

    2016-03-08

    Presenter Registered Reitz, Thomas L Air Force Research Laboratory Poster Presenter Registered Rivera , Jesus University of California, Riverside Poster...Registered Windsor, Shane P University of Bristol Poster Presenter Registered Xu, Sheng University of California, San Diego Attendee Registered

  16. 退役汽车塑料材料NIRS识别技术及设备研究*%Research on Near-infrared Spectrum Identiifcation Technology for Plastic Materials of End-of-life Vehicles

    Institute of Scientific and Technical Information of China (English)

    张洪申; 陈铭

    2013-01-01

    A near-infrared spectrum(NIRS) identification test system for plastic materials of end-of-life vehicle was developed based on NIRS identification technology for plastic materials which had some characteristics such as simple operation, good stability,high efficiency,no pollution,and low cost and so on. The hardwares of the system consist of NIRS spectrometer, integrating sphere,tungsten light source,fiber optic reflection probe,the test bench,etc. The software system is composed of the sample acquisition module,model building and calibration module,sample test module. The results show that the system recognizable rate is over 95%,which meet the requirements of the identification of automotive plastic and lays a good foundation for further development and application.%  基于近红外塑料识别技术具有操作简单、稳定性好、效率高、环保清洁、成本低等特点,开发了一套退役车用塑料近红外识别试验系统。该系统的硬件部分包括BTC261E阵列型近红外光谱仪、BIP2.0积分球、光纤探头、钨丝灯光源、测试台架等,软件部分包括样品采集单元、模型建立和校正单元、样品检测单元。系统的应用测试结果表明,车用塑料的识别准确率超过95%,满足车用塑料识别的要求,为进一步工业化开发和应用做好了铺垫,同时为开展退役汽车塑料的回收利用奠定了坚实的基础。

  17. Research and technology: Fiscal year 1984 report

    Science.gov (United States)

    1985-01-01

    Topics covered include extraterrestrial physics, high energy astrophysics, astronomy, solar physics, atmospheres, oceans, terrestrial physics, space technology, sensors, techniques, user space data systems, space communications and navigation, and system and software engineering.

  18. PREFACE: 2nd International Conference on Innovative Materials, Structures and Technologies

    Science.gov (United States)

    Ručevskis, Sandris

    2015-11-01

    The 2nd International Conference on Innovative Materials, Structures and Technologies (IMST 2015) took place in Riga, Latvia from 30th September - 2nd October, 2015. The first event of the conference series, dedicated to the 150th anniversary of the Faculty of Civil Engineering of Riga Technical University, was held in 2013. Following the established tradition, the aim of the conference was to promote and discuss the latest results of industrial and academic research carried out in the following engineering fields: analysis and design of advanced structures and buildings; innovative, ecological and energy efficient building materials; maintenance, inspection and monitoring methods; construction technologies; structural management; sustainable and safe transport infrastructure; and geomatics and geotechnics. The conference provided an excellent opportunity for leading researchers, representatives of the industrial community, engineers, managers and students to share the latest achievements, discuss recent advances and highlight the current challenges. IMST 2015 attracted over 120 scientists from 24 countries. After rigorous reviewing, over 80 technical papers were accepted for publication in the conference proceedings. On behalf of the organizing committee I would like to thank all the speakers, authors, session chairs and reviewers for their efficient and timely effort. The 2nd International Conference on Innovative Materials, Structures and Technologies was organized by the Faculty of Civil Engineering of Riga Technical University with the support of the Latvia State Research Programme under the grant agreement "INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH". I would like to express sincere gratitude to Juris Smirnovs, Dean of the Faculty of Civil Engineering, and Andris Chate, manager of the Latvia State Research Programme. Finally, I would like to thank all those who helped to make this event happen. Special thanks go to Diana

  19. The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Sorrell, C.A.

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`

  20. 7 CFR 3406.17 - Program application materials-research.

    Science.gov (United States)

    2010-01-01

    ... RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS PROGRAM Preparation of a Research Proposal § 3406.17 Program application materials—research... 7 Agriculture 15 2010-01-01 2010-01-01 false Program application materials-research....

  1. Research on Composite Materials for Structural Design.

    Science.gov (United States)

    1984-04-01

    Residual Stresses in Composite Laminates", (August 1983); the M.Sc. thesis of E.J. Porth , titled "Effect of an External Stress on Moisture Diffusion in...Rates in OUnidirectional Double Cantilevered Beam Fracture Toughness Specimens", December 1982. 4. Porth , E.J., "Effect of an External Stress on...Composite Materials (December 1983) Edward John Porth , B.S., University of Colorado Chairman of Advisory Committee: Dr. Y. Weitsman This work concerns

  2. 2014 Materials Research Society (MRS) Fall Meeting

    Science.gov (United States)

    2015-12-18

    Number: Sub Contractors (DD882) Names of Faculty Supported Names of Under Graduate students supported Names of Personnel receiving masters degrees Names...in Bismuth Ferrite under Varying Epitaxial Strain States Michael Jablonski, Drexel University Ferroelectric materials find use in a number of...and Eric A. Armour and Balakrishnan Krishnan and Soo Min Lee and George D. Papasouliotis MRS Online Proceedings Library, Volume 1736, 2015, mrsf14-1736

  3. Participating Technologies? Nonhuman Others and Socio-Material Assemblages

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina

    2015-01-01

    This talk takes up the conversation analytical understanding of participation and combines it with the idea of technical agency developed in actor-network theory (Latour 2005). Rather than depicting nonhumans as objects of human actions, actor-network theory understands actions as socio-material ......This talk takes up the conversation analytical understanding of participation and combines it with the idea of technical agency developed in actor-network theory (Latour 2005). Rather than depicting nonhumans as objects of human actions, actor-network theory understands actions as socio......-material assemblages of humans and nonhumans that form actions. Thus nonhumans become participants of social actions. But, actor-network theory misses the moment-by-moment development of practices, which, for example, can be seen in workplace studies (Luff, Hindmarsh, & Heath 2001) and does not distinguish different......? The discussion will be based on the analysis of video-recordings from two data-sets that show different ways of how technologies take part in interactions. The focus is set on the participation framework of the situation and the construction of a participation status of the technology. The first example shows...

  4. Information technologies of strategic planning in raw-material region

    Directory of Open Access Journals (Sweden)

    Sergey Mikhaylovich Lavlinskiy

    2013-09-01

    Full Text Available The article is devoted to a problem discussion of technology formation for development of strategy and program of socio-economic development of the raw-material region. The methodology of indicative planning is offered as the essence of such technology. The modeling tools should be developed according to a trajectory of sustainable development. The mechanism of management decision development using models of regional indicative planning and providing balances of labor and material resources, and also the financial balance of actions is developed. The approach based on the repeated problem solving of developing territory according a trajectory of sustainable development for several sets of scenarios of external conditions is offered for a strategy generation of resource region development. The set of indicative plans received during problem solution allows interpreting the found tendencies and making on this basis the management decision good for external conditions changing, balance and productivity. The examples of such approach implementation for some regions showing a technique of efficient administration development during strategic planning are given.

  5. Piezoceramic materials - potential of a new actuator technology

    Energy Technology Data Exchange (ETDEWEB)

    Jaenker, P.; Hermle, F.; Lorkowski, T.; Storm, S.; Christmann, M. [Daimler-Benz AG, Muenchen (Germany). Forschung und Technik

    2000-07-01

    Over the past few years, above all microlectronics has shaped and accelerated technical developments. Modern electronics makes it possible to realize ''smart'' adaptive systems. These systems cover operating conditions with sensors, further process the information to actuator commands and, by means of actuators, control mechanical vehicle subfunctions. Developments in the area of actuator systems have not kept pace at all with microelectronics and sensor systems. Actuators based on mechanically active materials (smart materials) are a new approach toward closing this technological gap. Of extraordinary technical importance are electrically controlled actuators that can be integrated into electronic control systems and that represent the core modules of mechatronic systems. Within this major group, piezoelectric ceramics (PZT) offer a high potential compared to the electromagnetic actuators that are currently used most{sup 1}. The industrial application technology of piezoelectrical actuators is currently in an early development stage. A topical example for potential industrial application is vibration isolation of high-speed trains. Other examples for application presented in this paper are adaptive systems for future helicopters. (orig.)

  6. Interviewing Objects: Including Educational Technologies as Qualitative Research Participants

    Science.gov (United States)

    Adams, Catherine A.; Thompson, Terrie Lynn

    2011-01-01

    This article argues the importance of including significant technologies-in-use as key qualitative research participants when studying today's digitally enhanced learning environments. We gather a set of eight heuristics to assist qualitative researchers in "interviewing" technologies-in-use (or other relevant objects), drawing on concrete…

  7. Interviewing Objects: Including Educational Technologies as Qualitative Research Participants

    Science.gov (United States)

    Adams, Catherine A.; Thompson, Terrie Lynn

    2011-01-01

    This article argues the importance of including significant technologies-in-use as key qualitative research participants when studying today's digitally enhanced learning environments. We gather a set of eight heuristics to assist qualitative researchers in "interviewing" technologies-in-use (or other relevant objects), drawing on concrete…

  8. Research Needs for Technology Education: An International Perspective

    Science.gov (United States)

    Ritz, John M.; Martin, Gene

    2013-01-01

    These authors report the findings of a study that sought to determine the most relevant research issues needed to be studied by the technology education profession. It used an international panel of experts to develop a list of important research issues for the school subject of technology education and for the preparation of teachers to better…

  9. Creep and fatigue research efforts on advanced materials

    Science.gov (United States)

    Gayda, John

    1990-01-01

    Two of the more important materials problems encountered in turbine blades of aircraft engines are creep and fatigue. To withstand these high-temperature phenomena, modern engines utilize single-crystal, nickel-base superalloys as the material of choice in critical applications. This paper will present recent research activities at NASA's Lewis Research Center on single-crystal blading material, related to creep and fatique. The goal of these research efforts is to improve the understanding of microstructure-property relationships and thereby guide material development.

  10. Focused Research Group in Correlated Electron and Complex Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziqiang [Boston College, Chestnut Hill, MA (United States)

    2016-02-17

    While the remarkable physical properties of correlated and complex electronic materials hold great promise for technological applications, one of the key values of the research in this field is its profound impact on fundamental physics. The transition metal oxides, pnictides, and chalcogenides play a key role and occupy an especially important place in this field. The basic reason is that the outer shell of transition metals contains the atomic d-orbitals that have small spatial extent, but not too small to behave as localized orbtials. These d-electrons therefore have a small wave function overlap in a solid, e.g. in an octahedral environment, and form energy bands that are relatively narrow and on the scale of the short-range intra-atomic Coulomb repulsion (Hubbard U). In this intermediate correlation regime lies the challenge of the many-body physics responsible for new and unconventional physical properties. The study of correlated electron and complex materials represents both the challenge and the vitality of condensed matter and materials physics and often demands close collaborations among theoretical and experimental groups with complementary techniques. Our team has a track record and a long-term research goal of studying the unusual complexities and emergent behaviors in the charge, spin, and orbital sectors of the transition metal compounds in order to gain basic knowledge of the quantum electronic states of matter. During the funding period of this grant, the team continued their close collaborations between theory, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy and made significant progress and contributions to the field of iron-based superconductors, copper-oxide high-temperature superconductors, triangular lattice transition metal oxide cobaltates, strontium ruthenates, spin orbital coupled iridates, as well as topological insulators and other topological quantum states of matter. These results include both new

  11. Increasingly mobile: How new technologies can enhance qualitative research.

    Science.gov (United States)

    Moylan, Carrie Ann; Derr, Amelia Seraphia; Lindhorst, Taryn

    2015-01-01

    Advances in technology, such as the growth of smart phones, tablet computing, and improved access to the internet have resulted in many new tools and applications designed to increase efficiency and improve workflow. Some of these tools will assist scholars using qualitative methods with their research processes. We describe emerging technologies for use in data collection, analysis, and dissemination that each offer enhancements to existing research processes. Suggestions for keeping pace with the ever-evolving technological landscape are also offered.

  12. RECENT RELATED RESEARCH IN TECHNOLOGY ACCEPTANCE MODEL: A LITERATURE REVIEW

    OpenAIRE

    Shih-Chih Chen; Shing-Han Li; Chien-Yi Li

    2011-01-01

    Technology Acceptance Model is widely applied to access users’ usage in various information system/information technology areas. Learning the critical role of Technology Acceptance Model can guide researchers to design different users’ interface for different online customers, and consequently achieve high user usage in different application areas. This study reviewed 24 studies to understand the past, now and future of Technology Acceptance Model. We discussed the related studies to ...

  13. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  14. Liquid crystals. Oligomeric and polymeric materials for soft photonic technologies

    CERN Document Server

    Coles, M J

    2002-01-01

    The current pace of today's information technologies might lead the casual observer to believe that this is all new. However the reality is that, as with most things, this is really a long evolution of processes based on tried, tested and re-adapted techniques. This thesis represents 12 years of predominantly technology driven research and covers a whole range of characterising, evaluating and fabricating devices based on liquid crystalline systems. Firstly polymer liquid crystals are discussed with respect to the fabrication of a flexible substrate display based on standard printing techniques and this is shown to have improved display viewing properties over a standard polymer dispersed liquid crystal (PDLC) device. Following on from this work is presented that involves the production of regular grid arrays in isotropic polymers that are used as control structures in nematic liquid crystal systems. This progresses onto a now patented device that allows the production of robust ferroelectric devices based on...

  15. Mixed Methodology Research Design in Educational Technology

    Science.gov (United States)

    Kumar, Muthu

    2007-01-01

    In recent times many educational researchers have moved away from the traditional purist approach of strictly adopting either a qualitative or quantitative approach to conducting research. Instead they have attempted an eclectic mix of both methods in their research inquiry, combining aspects of both the traditions at various stages of their…

  16. Doctoral Students' Experience of Information Technology Research

    Science.gov (United States)

    Bruce, Christine; Stoodley, Ian; Pham, Binh

    2009-01-01

    As part of their journey of learning to research, doctoral candidates need to become members of their research community. In part, this involves coming to be aware of their field in ways that are shared amongst longer-term members of the research community. One aspect of candidates' experience we need to understand, therefore, involves how they…

  17. Mixed Methodology Research Design in Educational Technology

    Science.gov (United States)

    Kumar, Muthu

    2007-01-01

    In recent times many educational researchers have moved away from the traditional purist approach of strictly adopting either a qualitative or quantitative approach to conducting research. Instead they have attempted an eclectic mix of both methods in their research inquiry, combining aspects of both the traditions at various stages of their…

  18. FY96 materials and processes technology area plan (TAP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The Materials and Processes Technology Area Plan (MP TAP) describes the research and development activities performed by the Wright-Laboratory`s Materials Directorate (WL/XL) at WPAFB, OH. WL/ML is responsible for developing MP technologies for all Air Force aircraft, spacecraft, and missiles systems. MP for Structures, Propulsion, and Subsystems thrust of the MP TAP describes the development of technologies utilizing advanced composite materials, lightweight - aluminum and titanium alloys, high temperature intermetallics, and improved fluids, lubricants, and coatings. Applications include airframe and engine retrofits, high speed aircraft, spacelift, missiles and satellites. The MP for Electronics, Optics, and Survivability thrust of the MP TAP describes the development of materials for high temperature semiconductors and superconductors, advanced infrared detectors, non-linear optical devices, and laser hardening. Applications include high power radar and avionic systems, infrared countermeasures, and sensor and aircrew laser protection. The MP for Systems and Operational Support thrust of the MP TAP describes the development of nondestructive inspection (NDI) techniques and repair of composite and LO materials. It also describes ML`s interface with all Air Force fielded systems through logistic centers and system project offices (SPOs) and by conducting electronic and structural failure analysis.

  19. Pseudoscience in Instructional Technology: The Case of Learner Control Research.

    Science.gov (United States)

    Reeves, Thomas C.

    Scientific research that is conducted without the structure of a supporting scientific paradigm should be labeled pseudoscience in that such research is deceptive or false science. It is argued that much of the research in educational technology is pseudoscience, with the focus on learner control research. Learner control is the design feature of…

  20. Silicon Research and Technology Workshop report

    Science.gov (United States)

    Meulenberg, A., Jr.

    1980-01-01

    The materials, structures, processing, modeling and measurements of high efficiency silicon solar cells were surveyed. In the materials area, highlights included: (1) the possibility of improving cell voltages by reducing minority carrier mobilities in critical regions of the solar cells; (2) the need for and possibility of lowering the surface recombination velocity for improvement of open circuit voltage in shallow junction cells; (3) the present need for improved lifetime in high resistivity cells; and (4) the potential for new materials such as polycrystalline or dendritic web material to perform well at end of life in a radiation environment. In the area of structures, distinction was made between those for terrestrial use and those that would survive radiation environments. Areas such as epitaxial growth and laser or elctron beam annealing (and diffusion) were proposed as having certain advantages over more conventional techniques.

  1. Technology Estimating: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Reeves, John D.; Williams-Byrd, Julie A.; Greenberg, Marc; Comstock, Doug; Olds, John R.; Wallace, Jon; DePasquale, Dominic; Schaffer, Mark

    2013-01-01

    NASA is investing in new technologies that include 14 primary technology roadmap areas, and aeronautics. Understanding the cost for research and development of these technologies and the time it takes to increase the maturity of the technology is important to the support of the ongoing and future NASA missions. Overall, technology estimating may help provide guidance to technology investment strategies to help improve evaluation of technology affordability, and aid in decision support. The research provides a summary of the framework development of a Technology Estimating process where four technology roadmap areas were selected to be studied. The framework includes definition of terms, discussion for narrowing the focus from 14 NASA Technology Roadmap areas to four, and further refinement to include technologies, TRL range of 2 to 6. Included in this paper is a discussion to address the evaluation of 20 unique technology parameters that were initially identified, evaluated and then subsequently reduced for use in characterizing these technologies. A discussion of data acquisition effort and criteria established for data quality are provided. The findings obtained during the research included gaps identified, and a description of a spreadsheet-based estimating tool initiated as a part of the Technology Estimating process.

  2. Development of inherently safe and environmentally acceptable intelligent processing technologies for HTS materials

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E.J.; Wangen, L.E.; Ott, K.C.; Muenchausen, R.E.; Parkinson, W.J. (Los Alamos National Lab., NM (USA))

    1989-01-01

    The development of new processing technologies for the production, fabrication, and application of advanced materials proceeds through several complementary dimensions. The advanced materials dimension includes basic research on materials synthesis, composition, and properties; materials processing research; engineering characterization and materials applications; and product and process engineering. The health and environmental dimension includes identification of potential health and environmental constraints; characterization of candidate processes for waste and effluent quality; process optimization for both economic and environmental benefit; and development of control strategies to deal with health and environmental problems that cannot be solved through process modification. The intelligent processing dimension includes application of available sensors and the development of new diagnostics for real-time process measurements; development of control strategies and expert systems to use these process measurements for real-time process control; and development of capabilities to optimize working processes in real-time for both product quality and environmental acceptability. This paper discusses these issues in the context of the Laboratory's efforts to develop technologies based on the processing of the new high-temperature superconducting ceramic oxides.

  3. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  4. Governing the postmortem procurement of human body material for research.

    Science.gov (United States)

    Van Assche, Kristof; Capitaine, Laura; Pennings, Guido; Sterckx, Sigrid

    2015-03-01

    Human body material removed post mortem is a particularly valuable resource for research. Considering the efforts that are currently being made to study the biochemical processes and possible genetic causes that underlie cancer and cardiovascular and neurodegenerative diseases, it is likely that this type of research will continue to gain in importance. However, post mortem procurement of human body material for research raises specific ethical concerns, more in particular with regard to the consent of the research participant. In this paper, we attempt to determine which consent regime should govern the post mortem procurement of body material for research. In order to do so, we assess the various arguments that could be put forward in support of a duty to make body material available for research purposes after death. We argue that this duty does in practice not support conscription but is sufficiently strong to defend a policy of presumed rather than explicit consent.

  5. Lithium ion rechargeable batteries materials, technology, and new applications

    CERN Document Server

    Ozawa, Kazunori

    2012-01-01

    Lithium ion batteries are both an established commercial market as well as a field of constant research and crucial for technological leadership. For example, battery duration is an extremely important selling point with almost any portable or handheld electronic device. Notebook computers, digital cameras, mobile phones, PDAs, mp3-players all rely on lithium ion batteries. Ultimately, powerful batteries are needed in vehicles to supplement or even entirely replace combustion engines. Starting out with an introduction to the fundamentals of lithium ion batteries, this book begins by descri

  6. Research on New Technology for Extracting Precious Metals from Low Grade Gold Platinum Palladium Material%从低品位金铂钯物料中提取贵金属新工艺研究

    Institute of Scientific and Technical Information of China (English)

    马玉天; 陈大林; 郭晓辉; 潘从明; 张燕; 王立

    2014-01-01

    金川集团股份有限公司产生的低品位金钯铂物料为蒸残渣,通常是由贵金属精矿蒸馏分离锇、钌,水溶液氯化产生。现有蒸残渣处理工艺为反复氯化,由于受氯化效率的影响,依然有部分贵金属残留在外付渣中,造成贵金属流失。为提高贵金属回收率,金川集团贵金属冶炼厂组织进行了从蒸残渣中提纯贵金属的实验研究。通过长期实验探索,确定了蒸残渣氯化焙烧-盐酸浸出-有机溶剂萃取分离金铂钯的工艺路线。之后,又进行了工业化扩大试验,确定了最佳工艺技术条件,金、铂、钯直收率≥95%。与水溶液氯化工艺相比,该工艺具有贵金属直收率高、劳动强度低、生产周期短及生产成本低等特点。%The company produced platinum and palladium low grade gold material that was a kind of steamed residue,additionally,the steamed residue was produced during the process of precious metals concentrate distillation separation of osmium,ruthenium and aqueous chlorination.The existing steamed residue treatment technique of chloride repeatedly,because the effect of the efficiency of chloride,there were still some precious metal residues in the outside pay residue,has the problem of precious metals lossing.In order to improve the precious metal recovery,the smelting plant in the company completed a series of experimental studies on purification of precious metals from the steamed residue.Thus,after the experimental exploration for a long time, the steamed residue chloridizing roasting-hydrochloric acid leaching gold platinum palladium-organic solvent extraction separation process was determined.Then,the industrialized expanding test and the optimum technology conditions were also determined,meanwhile,the direct recovery rate was more than or equal to 95%during the technological process of gold,platinum and palladium.Compared with aqueous chlorination process,the method applied in the paper

  7. Progress of Solidification Researches and the Applications in Materials Processing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research achievements of solidification theories and technologies in the last decades are reviewed with the stresses on some new development in the recent years. Some new interesting areas emerged in the last years are also pointed out.

  8. Intercomparison of techniques available at INETI in the analysis of two IAEA candidate research materials.

    Science.gov (United States)

    Freitas, M C; Afonso, M H; Almeida, C; Alves, L C; Araújo, M F; Barreiros, M A; Seabra e Barros, J; Costa, M B; Gouveia, M A; Reis, M A

    1994-01-01

    Under contract with the IAEA, the epiphytic lichen Evernia prunastri was collected to prepare a multielement lichen reference material for quality assurance of environmental studies. An intercomparison run on trace and minor elements in this candidate research material (IAEA-336) was organized in which six analytical groups of the National Institute of Engineering and Industrial Technology (INETI) took part. INAA, PIXE, XRF, AAS, and ICP-ES were applied. The results obtained by different methods are compared, and their complementarity is discussed. As a quality control, the IAEA cabbage research material (IAEA-359) was analyzed. The results agree quite well with the estimated values given by the IAEA.

  9. Emergent Technologies in Mixed and Multimethod Research

    NARCIS (Netherlands)

    R. Choenni; I.J. Mulder; N. Stembert; L. Remijn

    2015-01-01

    This chapter presents an overview of the developments and potentials of mobile technologies and their major impact on society and the daily activities of individuals. The increase of sensors embedded in everyday objects enable these objects to sense the environment and communicate. This creates new

  10. Identifying Interdisciplinary Research Collaboration in Instructional Technology

    Science.gov (United States)

    Cho, Yonjoo

    2017-01-01

    Interdisciplinarity is defined as communication and collaboration across academic disciplines. The instructional technology (IT) field has claimed to have an interdisciplinary nature influenced by neighboring fields such as psychology, communication, and management. However, it has been difficult to find outstanding evidence of the field's…

  11. The Technological Paradigm of Psychological Research

    Science.gov (United States)

    Kvale, Steinar

    1973-01-01

    The experiment in physics has often been pictured as an ideal for the less mature social sciences, especially by positivist philosophy of science. The thesis to be presented here is that the physical experiment as a paradigm for psychology is merely a pretext, a smoke-screen for a more fundamental and concealed technological paradigm for the study…

  12. Identifying Interdisciplinary Research Collaboration in Instructional Technology

    Science.gov (United States)

    Cho, Yonjoo

    2017-01-01

    Interdisciplinarity is defined as communication and collaboration across academic disciplines. The instructional technology (IT) field has claimed to have an interdisciplinary nature influenced by neighboring fields such as psychology, communication, and management. However, it has been difficult to find outstanding evidence of the field's…

  13. The Technological Paradigm of Psychological Research

    Science.gov (United States)

    Kvale, Steinar

    1973-01-01

    The experiment in physics has often been pictured as an ideal for the less mature social sciences, especially by positivist philosophy of science. The thesis to be presented here is that the physical experiment as a paradigm for psychology is merely a pretext, a smoke-screen for a more fundamental and concealed technological paradigm for the study…

  14. Funding the Technology of a Research University

    Science.gov (United States)

    Ostrom-Blonigen, Jean

    2013-01-01

    Using the central information technology unit (CITU) on the North Dakota State University (NDSU) campus, this project triangulated two independent studies in an effort to converge data findings. The studies were conducted in an effort to determine whether CITU's budget constraints were known to its stakeholders and how the extended use of the…

  15. [Problems in medicinal materials research of new traditional Chinese medicine].

    Science.gov (United States)

    Zhou, Gang; Wang, Ting; He, Yan-Ping

    2014-08-01

    Medicinal materials research and development of new drug of traditional Chinese medicine (TCM) research is the premise and foundation of new drug research and development, it throughout the whole process of new drug research. Medicinal materials research is one of the main content of the pharmaceutical research of new drug of TCM, and it is also the focus of the new medicine pharmaceutical evaluation content. This article through the analysis of the present problems existing in the development of TCM research of new drug of TCM, from medicine research concept, quality stability, quality standard, etc are expounded, including medicine research idea value medicine study should focus on the important role and from the purpose for the top-level design of new drug research problem. Medicinal materials quality stability should pay attention to the original, medicinal part, origin, processing, storage, planting (breeding), and other aspects. Aspect of quality standard of medicinal materials should pay attention to establish the quality standards of conform to the characteristics of new drug of TCM. As the instruction of TCM new drug research and development and the scientific nature of the review, and provide the basis for medicinal material standards.

  16. Local and national impact of aerospace research and technology

    Science.gov (United States)

    Mccarthy, J. F., Jr.

    1981-01-01

    An overview of work at the NASA Lewis Research Center in the areas of aeronautics space, and energy is presented. Local and national impact of the work is discussed. Some aspects of the U.S. research and technology base, the aerospace industry, and foreign competition are discussed. In conclusion, U.S. research and technology programs are cited as vital to U.S. economic health.

  17. Learning Practice and Technology: Extending the Structurational Practice Lens to Educational Technology Research

    Science.gov (United States)

    Halperin, Ruth

    2017-01-01

    Scholars in the field of educational technology have been calling for robust use of social theory within learning technology research. In view of that, interest has been noted in applying Giddens' structuration theory to the understanding of human interaction with technology in learning settings. However, only few such attempts have been published…

  18. RESEARCH AND DEVELOPMENT OF HIGH TEMPERATURE STRUCTURAL MATERIALS FOR AERO-ENGINE APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    G.Q. Zhang

    2005-01-01

    The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superalloys for aero-engine disks and rings, and powder metallurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification,spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.

  19. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    Science.gov (United States)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  20. European cross-cutting research on structural materials for Generation IV and transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, C., E-mail: concetta.fazio@nuklear.fzk.d [Forschungszentrum Karlsruhe, Program Nuklear, P.O. Box 3640, 76021 Karlsruhe (Germany); Alamo, A. [Commissariat a l' Energie Atomique, Saclay, 91191 Gif sur Yvette cedex (France); Almazouzi, A. [Studiecentrum voor Kernenergie - Centre D' Etude de L' Energie Nucleaire, Boeretang 200, 2400 Mol (Belgium); De Grandis, S. [Ente per le Nuove Tecnologie l' Energia e l' Ambiente, CR Brasimone, 40032 Camugnano Bologna (Italy); Gomez-Briceno, D. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Avenida Complutense 22, 28040 Madrid (Spain); Henry, J. [Commissariat a l' Energie Atomique, Saclay, 91191 Gif sur Yvette cedex (France); Malerba, L. [Studiecentrum voor Kernenergie - Centre D' Etude de L' Energie Nucleaire, Boeretang 200, 2400 Mol (Belgium); Rieth, M. [Forschungszentrum Karlsruhe, Program Nuklear, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2009-07-15

    It has been internationally recognized that materials science and materials development are key issues for the implementation of innovative reactor systems such as those defined in the framework of the Generation IV and advanced fuel cycle initiatives. In Europe, materials studies are considered within the Strategic Research Agenda of the Sustainable Nuclear Energy Technology Platform. Moreover, the European Commission has recently launched a 7th Framework Programme Research Project, named 'Generation IV and Transmutation Materials', that has the objective of addressing materials issues which are cross-cutting for more than one type of innovative reactor systems. The present work has been prepared with the aim of describing the rationale, the objectives, the work plan and the expected results of this research project.