WorldWideScience

Sample records for technology genetic engineering

  1. Genetic Engineering

    Science.gov (United States)

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  2. Plant artificial chromosome technology and its potential application in genetic engineering.

    Science.gov (United States)

    Yu, Weichang; Yau, Yuan-Yeu; Birchler, James A

    2016-05-01

    Genetic engineering with just a few genes has changed agriculture in the last 20 years. The most frequently used transgenes are the herbicide resistance genes for efficient weed control and the Bt toxin genes for insect resistance. The adoption of the first-generation genetically engineered crops has been very successful in improving farming practices, reducing the application of pesticides that are harmful to both human health and the environment, and producing more profit for farmers. However, there is more potential for genetic engineering to be realized by technical advances. The recent development of plant artificial chromosome technology provides a super vector platform, which allows the management of a large number of genes for the next generation of genetic engineering. With the development of other tools such as gene assembly, genome editing, gene targeting and chromosome delivery systems, it should become possible to engineer crops with multiple genes to produce more agricultural products with less input of natural resources to meet future demands. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Moral Fantasy in Genetic Engineering.

    Science.gov (United States)

    Boone, C. Keith

    1984-01-01

    Discusses the main ethical issues generated by the new genetics and suggests ways to think about them. Concerns include "playing God," violation of the natural order of the universe, and abuse of genetic technology. Critical distinctions for making difficult decisions about genetic engineering issues are noted. (DH)

  4. Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Pharmaceutical biotechnology has a long tradition and is rooted in the last century, first exemplified by penicillin and streptomycin as low molecular weight biosynthetic compounds. Today, pharmaceutical biotechnology still has its fundamentals in fermentation and bioprocessing, but the paradigmatic change affected by biotechnology and pharmaceutical sciences has led to an updated definition. The biotechnology revolution redrew the research, development, production and even marketing processes of drugs. Powerful new instruments and biotechnology related scientific disciplines (genomics, proteomics) make it possible to examine and exploit the behavior of proteins and molecules. Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. This technology, now approximately 25 years old, is becoming one of the most important technologies developed in the 20(th) century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances regarding rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we describe these processes.

  5. Genetically engineered foods

    Science.gov (United States)

    Bioengineered foods; GMOs; Genetically modified foods ... helps speed up the process of creating new foods with desired traits. The possible benefits of genetic engineering include: More nutritious food Tastier food Disease- and ...

  6. Genetic Engineering of Insects

    Indian Academy of Sciences (India)

    management, vector management in public health, produc- tion of medically important proteins and genetic improve- ment of beneficial insects like parasitoids, predators, silk worm and honey bee. The proposed release of genetically engineered insects is evoking serious debate among research- ers and environmental ...

  7. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  8. Overcoming Challenges in Engineering the Genetic Code.

    Science.gov (United States)

    Lajoie, M J; Söll, D; Church, G M

    2016-02-27

    Withstanding 3.5 billion years of genetic drift, the canonical genetic code remains such a fundamental foundation for the complexity of life that it is highly conserved across all three phylogenetic domains. Genome engineering technologies are now making it possible to rationally change the genetic code, offering resistance to viruses, genetic isolation from horizontal gene transfer, and prevention of environmental escape by genetically modified organisms. We discuss the biochemical, genetic, and technological challenges that must be overcome in order to engineer the genetic code. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Genetically Engineered Cyanobacteria

    Science.gov (United States)

    Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)

    2015-01-01

    The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

  10. Genetic Engineering Workshop Report, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Slezak, T

    2010-11-03

    The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies (TMT) program. The high-level goal of TMT is to accelerate the development of broad-spectrum countermeasures. To achieve this goal, there is a need to assess the genetic engineering (GE) approaches, potential application as well as detection and mitigation strategies. LLNL was tasked to coordinate a workshop to determine the scope of investments that DTRA should make to stay current with the rapid advances in genetic engineering technologies, so that accidental or malicious uses of GE technologies could be adequately detected and characterized. Attachment A is an earlier report produced by LLNL for TMT that provides some relevant background on Genetic Engineering detection. A workshop was held on September 23-24, 2010 in Springfield, Virginia. It was attended by a total of 55 people (see Attachment B). Twenty four (44%) of the attendees were academic researchers involved in GE or bioinformatics technology, 6 (11%) were from DTRA or the TMT program management, 7 (13%) were current TMT performers (including Jonathan Allen and Tom Slezak of LLNL who hosted the workshop), 11 (20%) were from other Federal agencies, and 7 (13%) were from industries that are involved in genetic engineering. Several attendees could be placed in multiple categories. There were 26 attendees (47%) who were from out of the DC area and received travel assistance through Invitational Travel Orders (ITOs). We note that this workshop could not have been as successful without the ability to invite experts from outside of the Beltway region. This workshop was an unclassified discussion of the science behind current genetic engineering capabilities. US citizenship was not required for attendance. While this may have limited some discussions concerning risk, we felt that it was more important for this first workshop to focus on the scientific state of

  11. Overcoming challenges in engineering the genetic code

    OpenAIRE

    Lajoie, MJ; Söll, D; Church, GM

    2015-01-01

    Withstanding 3.5 billion years of genetic drift, the canonical genetic code remains such a fundamental foundation for the complexity of life that it is highly conserved across all three phylogenetic domains. Genome engineering technologies are now making it possible to rationally change the genetic code, offering resistance to viruses, genetic isolation from horizontal gene transfer, and prevention of environmental escape by genetically modified organisms. We discuss the biochemical, genetic,...

  12. Genetically Engineering Entomopathogenic Fungi.

    Science.gov (United States)

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Paper Genetic Engineering.

    Science.gov (United States)

    MacClintic, Scott D.; Nelson, Genevieve M.

    Bacterial transformation is a commonly used technique in genetic engineering that involves transferring a gene of interest into a bacterial host so that the bacteria can be used to produce large quantities of the gene product. Although several kits are available for performing bacterial transformation in the classroom, students do not always…

  14. Safe genetically engineered plants

    International Nuclear Information System (INIS)

    Rosellini, D; Veronesi, F

    2007-01-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work

  15. Selected Readings in Genetic Engineering

    Science.gov (United States)

    Mertens, Thomas R.; Robinson, Sandra K.

    1973-01-01

    Describes different sources of readings for understanding issues and concepts of genetic engineering. Broad categories of reading materials are: concerns about genetic engineering; its background; procedures; and social, ethical and legal issues. References are listed. (PS)

  16. Genetic engineering technology for the improvement of the sterile insect technique. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1998-01-01

    Since the beginning of the joint FAO/IAEA programme on the research and development of insect pest control methodology, emphasis has been placed on the basic and applied aspects of implementing the sterile insect technique (SIT). Special emphasis has always been directed at the assembly of technological progress into workable systems that can be implemented in developing countries. The general intention is to solve problems associated with insect pests that have an adverse impact on production of food and fibre. For several insect species SIT has proven to be a powerful method for control. This includes the New World screwworm fly (Cochliomyia hominivorox), the Mediterranean fruit fly (Ceratitis capitata), the melon fly (Bactrocera cucurbitae), the Queensland fruit fly (Bactrocera tryoni) and one tsetse fly species (Glossina austeni). Improvements of the SIT are possible, especially through the use of molecular techniques. The final report of the Co-ordinated Research Programme on ''Genetic Engineering Technology for the Improvement of the Sterile Insect Technique'' highlights the progress made towards the development of transformation systems for non-drosophilid insects and the research aimed at the identification and engineering of potential target genes or traits

  17. Advanced Metasearch Engine Technology

    CERN Document Server

    Meng, Weiyi

    2010-01-01

    Among the search tools currently on the Web, search engines are the most well known thanks to the popularity of major search engines such as Google and Yahoo!. While extremely successful, these major search engines do have serious limitations. This book introduces large-scale metasearch engine technology, which has the potential to overcome the limitations of the major search engines. Essentially, a metasearch engine is a search system that supports unified access to multiple existing search engines by passing the queries it receives to its component search engines and aggregating the returned

  18. Advancement in Engineering Technology

    DEFF Research Database (Denmark)

    Kalia, Kartik; Rehman, M. Atiqur; Hussain, Dil muhammed Akbar

    2016-01-01

    but to harvest those ideas, technology is a must. With the huge requirement of engineering equipment's, the industry needs specialists who can manage and operate these technologies. Detailed information about the merits and demerits of technology is also mentioned in this paper. Findings: Technology has affected...... the environment on a great scale; in some cases, technology is even replacing human being or use of manpower. So proper counter measures have been mentioned, which can be used to control and limit harmful effect....

  19. Genetic Engineering of Alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Dan; Khurshid, Muhammad; Sun, Zhan Min; Tang, Yi Xiong; Zhou, Mei Liang; Wu, Yan Min

    2016-01-01

    Alfalfa is excellent perennial legume forage for its extensive ecological adaptability, high nutrition value, palatability and biological nitrogen fixation. It plays a very important role in the agriculture, animal husbandry and ecological construction. It is cultivated in all continents. With the development of modern plant breeding and genetic engineering techniques, a large amount of work has been carried out on alfalfa. Here we summarize the recent research advances in genetic engineering of alfalfa breeding, including transformation, quality improvement, stress resistance and as a bioreactor. The review article can enables us to understand the research method, direction and achievements of genetic engineering technology of Alfalfa.

  20. Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.

    Science.gov (United States)

    Shimizu, Katsuhiko

    2018-04-05

    Silk produced by the silkworm Bombyx mori is an attractive material because of its luster, smooth and soft texture, conspicuous mechanical strength, good biocompatibility, slow biodegradation, and carbon neutral synthesis. Silkworms have been domesticated and bred for production of better quality and quantity of silk, resulting in the development of sericulture and the textile industry. Silk is generally white, so dyeing is required to obtain colored fiber. However, the dyeing process involves harsh conditions and generates a large volume of waste water, which have environmentally and economically negative impacts. Although some strains produce cocoons that contain pigments derived from the mulberry leaves that they eat, the pigments are distributed in the sericin layer and are lost during gumming. In trials for production of colored silk by feeding silkworms on diets containing dyes, only limited species of dye molecules were incorporated into the silk threads. A method for the generation of transgenic silkworm was established in conjunction with the discovery of green fluorescent protein (GFP), and silkworms carrying the GFP gene spun silk threads that formed cocoons that glowed bright green and still retained the original properties of silk. A wide range of color variation of silk threads has been obtained by replacing the GFP gene with the genes of other fluorescent proteins chosen from the fluorescent protein palette. The genetically modified silk with photonic properties can be processed to form various products including linear threads, two-dimensional fabrics, and three-dimensional materials. The transgenic colored silk could be economically advantageous due to addition of a new value to silk and reduction of cost for water waste, and environmentally preferable for saving water. Here, I review the literature regarding the production methods of fluorescent silk from transgenic silkworms and present examples of genetically modified color silk. © 2018 IOP

  1. Genetic engineering of cyanobacteria

    DEFF Research Database (Denmark)

    Jacobsen, Jacob Hedemand

    source for growth in autotrophic cyanobacteria is CO2, which is reduced to carbohydrates during photosynthesis. Simple input requirements, fast growth rates and tolerance of adverse environmental conditions make cyanobacteria attractive candidates for large scale production of energy or value added......, including genetic tools that allow metabolic engineering. The cyanobacterial phylum represents a diverse group of aerobic photosynthetic bacteria that are widespread in nature. Cyanobacteria shaped our atmosphere by oxygen evolution through the splitting of water using energy from sunlight. The sole carbon...... that allows ligase independent directional cloning of two PCR products in a single step employing the uracilspecific excision reagent (USER) cloning principle. PCR amplified regions of a gene to be inactivated are inserted on either side of an antibiotic resistance cassette marker for positive selection...

  2. Agrobacterium: nature's genetic engineer.

    Science.gov (United States)

    Nester, Eugene W

    2014-01-01

    Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago. Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle (TIP), the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti) plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single-strand DNA (T-DNA) with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is likely coated and protected from nucleases by a bacterial secreted protein to form the T-complex. A nuclear localization signal in the endonuclease guides the transferred strand (T-strand), into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The T-DNA encodes enzymes of auxin, cytokinin, and opine synthesis, the latter a food source for Agrobacterium. The genes associated with T-strand formation and transfer (vir) map to the Ti plasmid and are only expressed when the bacteria are in close association with a plant. Plant signals are recognized by a two-component regulatory system which activates vir genes. Chromosomal genes with pleiotropic functions also play important roles in plant transformation. The data now explain Braun's old observations and also explain why Agrobacterium is nature's genetic engineer. Any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells. Thus, Agrobacterium has become the major vector in plant genetic engineering.

  3. Genetic engineering compared to natural genetic variations.

    Science.gov (United States)

    Arber, Werner

    2010-11-30

    By comparing strategies of genetic alterations introduced in genetic engineering with spontaneously occurring genetic variation, we have come to conclude that both processes depend on several distinct and specific molecular mechanisms. These mechanisms can be attributed, with regard to their evolutionary impact, to three different strategies of genetic variation. These are local nucleotide sequence changes, intragenomic rearrangement of DNA segments and the acquisition of a foreign DNA segment by horizontal gene transfer. Both the strategies followed in genetic engineering and the amounts of DNA sequences thereby involved are identical to, or at least very comparable with, those involved in natural genetic variation. Therefore, conjectural risks of genetic engineering must be of the same order as those for natural biological evolution and for conventional breeding methods. These risks are known to be quite low. There is no scientific reason to assume special long-term risks for GM crops. For future agricultural developments, a road map is designed that can be expected to lead, by a combination of genetic engineering and conventional plant breeding, to crops that can insure food security and eliminate malnutrition and hunger for the entire human population on our planet. Public-private partnerships should be formed with the mission to reach the set goals in the coming decades. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Genetic engineering and sustainable production of ornamentals

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Clarke, Jihong Liu; Müller, Renate

    2012-01-01

    Abstract Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduct....... In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding........ This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed......, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors...

  5. Genetic Engineering Strategies for Enhanced Biodiesel Production.

    Science.gov (United States)

    Hegde, Krishnamoorthy; Chandra, Niharika; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Veeranki, Venkata Dasu

    2015-07-01

    The focus on biodiesel research has shown a tremendous growth over the last few years. Several microbial and plant sources are being explored for the sustainable biodiesel production to replace the petroleum diesel. Conventional methods of biodiesel production have several limitations related to yield and quality, which led to development of new engineering strategies to improve the biodiesel production in plants, and microorganisms. Substantial progress in utilizing algae, yeast, and Escherichia coli for the renewable production of biodiesel feedstock via genetic engineering of fatty acid metabolic pathways has been reported in the past few years. However, in most of the cases, the successful commercialization of such engineering strategies for sustainable biodiesel production is yet to be seen. This paper systematically presents the drawbacks in the conventional methods for biodiesel production and an exhaustive review on the present status of research in genetic engineering strategies for production of biodiesel in plants, and microorganisms. Further, we summarize the technical challenges need to be tackled to make genetic engineering technology economically sustainable. Finally, the need and prospects of genetic engineering technology for the sustainable biodiesel production and the recommendations for the future research are discussed.

  6. Possible Health Hazards from Genetically Engineered Crops ...

    African Journals Online (AJOL)

    The paradox of Genetic Engineering of crops is evident from the unending revolution in the seeding and growth of new multibillion naira industries while it also poses the greatest hazards to life on the planet Earth. Recombination DNA technology is used to insert, delete, transpose and substitute new genes in plants that ...

  7. Genetically engineered yeast

    DEFF Research Database (Denmark)

    2014-01-01

    A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate semialde......A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate...

  8. Plastid genetic engineering in Solanaceae.

    Science.gov (United States)

    Venkatesh, Jelli; Park, Se Won

    2012-10-01

    Plastid genetic engineering has come of age, becoming today an attractive alternative approach for the expression of foreign genes, as it offers several advantages over nuclear transformants. Significant progress has been made in plastid genetic engineering in tobacco and other Solanaceae plants, through the use of improved regeneration procedures and transformation vectors with efficient promoters and untranslated regions. Many genes encoding for industrially important proteins and vaccines, as well as genes conferring important agronomic traits, have been stably integrated and expressed in the plastid genome. Despite these advances, it remains a challenge to achieve marked levels of plastid transgene expression in non-green tissues. In this review, we summarize the basic requirements of plastid genetic engineering and discuss the current status, limitations, and the potential of plastid transformation for expanding future studies relating to Solanaceae plants.

  9. Genetically engineered yeast

    DEFF Research Database (Denmark)

    2014-01-01

    A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate semialde......A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate...... semialdehyde. The yeast may also express a 3-hydroxyisobutyrate dehydrogenase (HIBADH) and a 3-hydroxypropanoate dehydrogenase (3-HPDH) and aspartate 1-decarboxylase. Additionally the yeast may express pyruvate carboxylase and aspartate aminotransferase....

  10. Genetic engineering of cyanobacteria

    DEFF Research Database (Denmark)

    Jacobsen, Jacob Hedemand

    and its natural ability to take up and stably integrate heterologous DNA make Synechococcus sp. PCC 7002 a good candidate for metabolic engineering. For targeted gene inactivation, a suite of vectors were made by adaptation of a system previously used in plants and fungi. The vectors include a cassette...... that allows ligase independent directional cloning of two PCR products in a single step employing the uracilspecific excision reagent (USER) cloning principle. PCR amplified regions of a gene to be inactivated are inserted on either side of an antibiotic resistance cassette marker for positive selection...... of the expression system. The system comprised a cassette for stable expression of multiple genes as a single operon. The cassette included a strong constitutive promoter, a USER cloning cassette for cloning of a single PCR product, a transcription terminator and restriction sites for promoter exchange and vector...

  11. Chromosome engineering: power tools for plant genetics.

    Science.gov (United States)

    Chan, Simon W L

    2010-12-01

    The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Microscale technologies for cell engineering

    CERN Document Server

    Gaharwar, Akhilesh

    2016-01-01

    This book offers readers cutting-edge research at the interface of polymer science and engineering, biomedical engineering, materials science, and biology. State-of-the-art developments in microscale technologies for cell engineering applications are covered, including technologies relevant to both pluripotent and adult stem cells, the immune system, and somatic cells of the animal and human origin. This book bridges the gap in the understanding of engineering biology at multiple length scale, including microenvironmental control, bioprocessing, and tissue engineering in the areas of cardiac, cartilage, skeletal, and vascular tissues, among others. This book also discusses unique, emerging areas of micropatterning and three-dimensional printing models of cellular engineering, and contributes to the better understanding of the role of biophysical factors in determining the cell fate. Microscale Technologies for Cell Engineering is valuable for bioengineers, biomaterial scientists, tissue engineers, clinicians,...

  13. Genome engineering in cattle: recent technological advancements.

    Science.gov (United States)

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  14. Modularization of genetic elements promotes synthetic metabolic engineering.

    Science.gov (United States)

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Technological Innovations in Forensic Genetics

    DEFF Research Database (Denmark)

    Wienroth, Matthias; Morling, Niels; Williams, Robin

    2014-01-01

    This paper discusses the nature of four waves of technological innovations in forensic genetics alongside the social, legal and ethical aspect of these innovations. It emphasises the way in which technological advances and their socio-legal frameworks are co-produced, shaping technology expectati......This paper discusses the nature of four waves of technological innovations in forensic genetics alongside the social, legal and ethical aspect of these innovations. It emphasises the way in which technological advances and their socio-legal frameworks are co-produced, shaping technology...... expectations, social identities, and legal institutions. It also considers how imagined and actual uses of forensic genetic technologies are entangled with assertions about social order, affirmations of common values and civil rights, and promises about security and justice. Our comments seek to encourage...... the participation of scientific actors in the development of anticipatory governance deliberations concerning the widening application of forensic genetics in an increasing number of criminal and civil jurisdictions....

  16. Technician Career Opportunities in Engineering Technology.

    Science.gov (United States)

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  17. Advances in genetic engineering of marine algae.

    Science.gov (United States)

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Genetic engineering of cyanobacteria as biodiesel feedstock.

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne.; Trahan, Christine Alexandra; Jones, Howland D. T.

    2013-01-01

    Algal biofuels are a renewable energy source with the potential to replace conventional petroleum-based fuels, while simultaneously reducing greenhouse gas emissions. The economic feasibility of commercial algal fuel production, however, is limited by low productivity of the natural algal strains. The project described in this SAND report addresses this low algal productivity by genetically engineering cyanobacteria (i.e. blue-green algae) to produce free fatty acids as fuel precursors. The engineered strains were characterized using Sandias unique imaging capabilities along with cutting-edge RNA-seq technology. These tools are applied to identify additional genetic targets for improving fuel production in cyanobacteria. This proof-of-concept study demonstrates successful fuel production from engineered cyanobacteria, identifies potential limitations, and investigates several strategies to overcome these limitations. This project was funded from FY10-FY13 through the President Harry S. Truman Fellowship in National Security Science and Engineering, a program sponsored by the LDRD office at Sandia National Laboratories.

  19. Genetically Engineered Immunotherapy for Advanced Cancer

    Science.gov (United States)

    In this trial, doctors will collect T lymphocytes from patients with advanced mesothelin-expressing cancer and genetically engineer them to recognize mesothelin. The gene-engineered cells will be multiplied and infused into the patient to fight the cancer

  20. Genetic engineering of microorganisms: free release into the environment

    OpenAIRE

    Morgan, J.A.W.

    1990-01-01

    Genetic engineering now makes possible the insertion of DNA from many organisms into other prokaryotic, eukaryotic and viral hosts. This technology has been used to construct a variety of such genetically engineered microorganisms (GEMs). The possibility of accidental or deliberate release of GEMs into the natural environment has recently raised much public concern. The prospect of deliberate release of these microorganisms has prompted an increased need to understand the processes of surviva...

  1. Engineering research, development and technology

    International Nuclear Information System (INIS)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report

  2. Technological Innovations in Forensic Genetics

    DEFF Research Database (Denmark)

    Wienroth, Matthias; Morling, Niels; Williams, Robin

    2014-01-01

    This paper discusses the nature of four waves of technological innovations in forensic genetics alongside the social, legal and ethical aspect of these innovations. It emphasises the way in which technological advances and their socio-legal frameworks are co-produced, shaping technology...... expectations, social identities, and legal institutions. It also considers how imagined and actual uses of forensic genetic technologies are entangled with assertions about social order, affirmations of common values and civil rights, and promises about security and justice. Our comments seek to encourage...... the participation of scientific actors in the development of anticipatory governance deliberations concerning the widening application of forensic genetics in an increasing number of criminal and civil jurisdictions....

  3. Genetic engineering strategies for enhancing phytoremediation of ...

    African Journals Online (AJOL)

    heavy metal contaminants from the soil-water environment. A genetic engineering based phytoremediation strategy is being aimed to improve the performance of plants in effective removal of metals from environment. This review gives an overview of current status of genetic engineering applications being implemented to ...

  4. Genetic use restriction technologies: a review.

    Science.gov (United States)

    Lombardo, Luca

    2014-10-01

    Genetic use restriction technologies (GURTs), developed to secure return on investments through protection of plant varieties, are among the most controversial and opposed genetic engineering biotechnologies as they are perceived as a tool to force farmers to depend on multinational corporations' seed monopolies. In this work, the currently proposed strategies are described and compared with some of the principal techniques implemented for preventing transgene flow and/or seed saving, with a simultaneous analysis of the future perspectives of GURTs taking into account potential benefits, possible impacts on farmers and local plant genetic resources (PGR), hypothetical negative environmental issues and ethical concerns related to intellectual property that have led to the ban of this technology. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. FY2012 Engineering Research & Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  6. Particle Bed Reactor engine technology

    International Nuclear Information System (INIS)

    Sandler, S.; Feddersen, R.

    1992-01-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology. 4 refs

  7. Particle Bed Reactor engine technology

    Science.gov (United States)

    Sandler, S.; Feddersen, R.

    1992-03-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology.

  8. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  9. Conventional engine technology. Volume 2: Status of diesel engine technology

    Science.gov (United States)

    Schneider, H. W.

    1981-01-01

    The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.

  10. Genetic engineering with T cell receptors.

    Science.gov (United States)

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  11. Genetic and metabolic engineering in diatoms.

    Science.gov (United States)

    Huang, Weichao; Daboussi, Fayza

    2017-09-05

    Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  12. Journal of Applied Science, Engineering and Technology

    African Journals Online (AJOL)

    The Journal of Applied Science, Engineering and Technology covers research activities and development in the field of Applied Sciences and Technology as it relates to Agricultural Engineering, Biotechnology, Computer Science and Engineering Computations, Civil Engineering, Food Science and Technology, Electrical ...

  13. Manipulating DNA repair for improved genetic engineering in Aspergillus

    DEFF Research Database (Denmark)

    Nødvig, Christina Spuur

    Aspergillus is a genus of filamentous fungi, which members includes industrial producers of enzymes, organic acids and secondary metabolites, important pathogens and a model organism. As such no matter the specific area of interest there are many reasons to perform genetic engineering, whether...... it is metabolic engineering to create better performing cell factory, elucidating pathways to study secondary metabolism etc. In this thesis, the main focus is on different ways to manipulate DNA repair for optimizing gene targeting, ultimately improving the methods available for faster and better genetic...... engineering strategies. Chapter 1 gives an introduction to the genus Aspergillus and some of the tools relevant to fungal genetic engineering. It also contains a short introduction to DNA repair and its interplay with gene targeting and finally an overview over the different genome editing technologies...

  14. Genetic Engineering and Manufacturing of Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Xiuyan Wang

    2017-06-01

    Full Text Available The marketing approval of genetically engineered hematopoietic stem cells (HSCs as the first-line therapy for the treatment of severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID is a tribute to the substantial progress that has been made regarding HSC engineering in the past decade. Reproducible manufacturing of high-quality, clinical-grade, genetically engineered HSCs is the foundation for broadening the application of this technology. Herein, the current state-of-the-art manufacturing platforms to genetically engineer HSCs as well as the challenges pertaining to production standardization and product characterization are addressed in the context of primary immunodeficiency diseases (PIDs and other monogenic disorders.

  15. [DEVELOPMENT OF CELL SHEET ENGINEERING TECHNOLOGY IN ENGINEERING VASCULARIZED TISSUE].

    Science.gov (United States)

    Chen, Jia; Ma, Dongyang; Ren, Liling

    2015-03-01

    To review the development of cell sheet engineering technology in engineering vascularized tissue. The literature about cell sheet engineering technology and engineering vascularized tissue was reviewed, analyzed, and summarized. Although there are many methods to engineer vascularized tissue, cell sheet engineering technology provides a promising potential to develop a vascularized tissue. Recently, cell sheet engineering technology has become a hot topic in engineering vascularized tissue. Co-culturing endothelial cells on a cell sheet, endothelial cells are able to form three-dimensional prevascularized networks and microvascular cavities in the cell sheet, which facilitate the formation of functional vascular networks in the transplanted tissue. Cell sheet engineering technology is a promising strategy to engineer vascularized tissue, which is still being studied to explore more potential.

  16. 130 FEMINISM AND HUMAN GENETIC ENGINEERING: A ...

    African Journals Online (AJOL)

    Ike Odimegwu

    It may be possible also to build an artificial human chromosome with the normal gene already on it .This could be a ... height, beauty or intelligence. Apart from the treatment of genetic disorders, genetic engineering has .... beneficial, or of experimentation that would inevitably lead to its destruction or mutilation or irreversibly ...

  17. Genetic Engineering: The Modification of Man

    Science.gov (United States)

    Sinsheimer, Robert L.

    1970-01-01

    Describes somatic and genetic manipulations of individual genotypes, using diabetes control as an example of the first mode that is potentially realizable be derepression or viral transduction of genes. Advocates the use of genetic engineering of the second mode to remove man from his biological limitations, but offers maxims to ensure the…

  18. Increased production of nutriments by genetically engineered crops

    NARCIS (Netherlands)

    Sevenier, R.E.; Meer, van der I.M.; Bino, R.J.; Koops, A.J.

    2002-01-01

    Plants are the basis of human nutrition and have been selected and improved to assure this purpose. Nowadays, new technologies such as genetic engineering and genomics approaches allow further improvement of plants. We describe here three examples for which these techniques have been employed. We

  19. Gender and Health Impacts of Genetically Engineered Crops in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The agricultural sector in developed countries still out-performs its counterpart in most developing economies. However, new technologies hold great promise for correcting the imbalance. For example, genetically engineered (GE) crops can help increase agricultural productivity, enhance the nutritional value of food, ...

  20. Genetic engineering of microbial pesticides

    Science.gov (United States)

    Bruce C. Carlton

    1985-01-01

    Recent advances in genetics and molecular biology make possible the cloning and genetic manipulation of genes for insecticidal activities from natural insect pathogens. Using recombinant DNA methods and site-directed mutagenesis of specific gene regions, production of new and improved biorationals should be possible.

  1. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Journal Sponsorship. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  2. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: About this journal. Journal Home > International Journal of Engineering, Science and Technology: About this journal. Log in or Register to get access to full text downloads.

  3. Versatile genetic paintbrushes: Brainbow technologies

    OpenAIRE

    Richier, Benjamin; Salecker, Iris

    2014-01-01

    Advances in labeling technologies are instrumental to study the developmental mechanisms that control organ formation and function at the cellular level. Until recently, genetic tools relied on the expression of single markers to visualize individual cells or lineages in developing and adult animals. Exploiting the expanding color palette of fluorescent proteins and the power of site-specific recombinases in rearranging DNA fragments, the development of Brainbow strategies in mice made it pos...

  4. [Research progress of genetic engineering on medicinal plants].

    Science.gov (United States)

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.

  5. Genetically engineered nanocarriers for drug delivery

    Directory of Open Access Journals (Sweden)

    Shi P

    2014-03-01

    Full Text Available Pu Shi, Joshua A Gustafson, J Andrew MacKayDepartment of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USAAbstract: Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.Keywords: polymeric drug carrier, non-polymeric drug carrier, gene delivery, GE drug carriers

  6. Advances in genetic engineering of domestic animals

    Directory of Open Access Journals (Sweden)

    Shaohua WANG,Kun ZHANG,Yunping DAI

    2016-03-01

    Full Text Available Global population will increase to over nine billion by 2050 with the doubling in demand for meat and milk. To overcome this challenge, it is necessary to breed highly efficient and productive livestock. Furthermore, livestock are also excellent models for human diseases and ideal bioreactors to produce pharmaceutical proteins. Thus, genetic engineering of domestic animals presents a critical and valuable tool to address these agricultural and biomedical applications. Overall, genetic engineering has evolved through three stages in history: transgenesis, gene targeting, and gene editing. Since the birth of the first transgenic pig, genetic engineering in livestock has been advancing slowly due to inherent technical limitations. A major breakthrough has been the advent of somatic cell nuclear transfer, which, for the first time, provided the technical ability to produce site-specific genome-modified domestic animals. However, the low efficiency of gene targeting events in somatic cells prohibits its wide use in agricultural and biomedical applications. Recently, rapid progress in tools and methods of genome engineering has been made, allowing genetic editing from mutation of a single base pair to the deletion of entire chromosomes. Here, we review the major advances of genetic engineering in domestic animals with emphasis placed on the introduction of latest designer nucleases.

  7. The ethics of using genetic engineering for sex selection.

    Science.gov (United States)

    Liao, S Matthew

    2005-02-01

    It is quite likely that parents will soon be able to use genetic engineering to select the sex of their child by directly manipulating the sex of an embryo. Some might think that this method would be a more ethical method of sex selection than present technologies such as preimplantation genetic diagnosis (PGD) because, unlike PGD, it does not need to create and destroy "wrong gendered" embryos. This paper argues that those who object to present technologies on the grounds that the embryo is a person are unlikely to be persuaded by this proposal, though for different reasons.

  8. Use of genetically modified viruses and genetically engineered virus-vector vaccines: environmental effects.

    Science.gov (United States)

    Chan, Vivian S W

    2006-11-01

    Despite major therapeutic advances, infectious diseases remain highly problematic. Recent advancements in technology in producing DNA-based vaccines, together with the growing knowledge of the immune system, have provided new insights into the identification of the epitopes needed to target the development of highly targeted vaccines. Genetically modified (GM) viruses and genetically engineered virus-vector vaccines possess significant unpredictability and a number of inherent harmful potential hazards. For all these vaccines, safety assessment concerning unintended and unwanted side effects with regard to targeted vaccinees has always been the main focus. Important questions concerning effects on nontargeted individuals within the same species or other species remain unknown. Horizontal transfer of genes, though lacking supportive experimental or epidemiological investigations, is well established. New hybrid virus progenies resulting from genetic recombination between genetically engineered vaccine viruses and their naturally occurring relatives may possess totally unpredictable characteristics with regard to host preferences and disease-causing potentials. Furthermore, when genetically modified or engineered virus particles break down in the environment, their nuclei acids are released. Appropriate risk management is the key to minimizing any potential risks to humans and environment resulting from the use of these GM vaccines. There is inadequate knowledge to define either the probability of unintended events or the consequences of genetic modifications. The objective of this article is to highlight the limitations in environmental risk assessment and raise awareness of the potential risks involving the use of genetically modified viruses and genetically engineered virus-vector vaccines.

  9. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  10. Perspectives of genetic engineering in radiobiology

    International Nuclear Information System (INIS)

    Khanson, K.P.; Zvonareva, N.B.; Evtushenko, V.I.

    1988-01-01

    Present evidence on the use of genetic engineering methods in studying the molecular mechanism of radiation damage and repair of DNA, as well as radiation mutagenesis and carcinogenesis has been summarized. The new approach to radiobiological research has proved to be extremely fruitful. Some previously unknown types of structural disorders in DNA molecule have been discovered, some repair genes isolated and their primary structure established, some aspects of radiation mutagenesis elucidated, and research into disiphering the molecular bases of neoplastic transformations of exposed cells are being successfully investigated. The perspectives of using genetic engineering methods in radiobiology are discussed

  11. Diesel Technology: Engines. [Teacher and Student Editions.

    Science.gov (United States)

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  12. Engineering Genetically Encoded FRET Sensors

    Science.gov (United States)

    Lindenburg, Laurens; Merkx, Maarten

    2014-01-01

    Förster Resonance Energy Transfer (FRET) between two fluorescent proteins can be exploited to create fully genetically encoded and thus subcellularly targetable sensors. FRET sensors report changes in energy transfer between a donor and an acceptor fluorescent protein that occur when an attached sensor domain undergoes a change in conformation in response to ligand binding. The design of sensitive FRET sensors remains challenging as there are few generally applicable design rules and each sensor must be optimized anew. In this review we discuss various strategies that address this shortcoming, including rational design approaches that exploit self-associating fluorescent domains and the directed evolution of FRET sensors using high-throughput screening. PMID:24991940

  13. Refresher Course in Plant Genetic Engineering

    Indian Academy of Sciences (India)

    The aim of this two-week Refresher Course is to impart a hands-on training in Plant. Genetic Engineering. The participants will be trained in the basic methods of cloning a foreign gene in a binary vector, introduction of the binary vector into Agrobacterium and transformation of tobacco using Agrobacterium. Confirmation of ...

  14. Refresher Course in Plant Genetic Engineering

    Indian Academy of Sciences (India)

    at School of Biotechnology, Madurai Kamaraj University, Madurai 625 021 sponsored by Indian Academy of Sciences, Bangalore 560012. A Refresher Course in Plant Genetic Engineering for postgraduate College and University teachers will be held in the Department of Plant Biotechnology, School of Biotechnology,.

  15. Genetically Engineered Crops: Experiences and Prospects

    NARCIS (Netherlands)

    Giller, K.E.

    2016-01-01

    Since their introduction in the mid-1990s, genetically engineered (GE) crops have been the topic of much debate. This report reviews evidence accumulated from experiences on the most widely grown GE crops to date: herbicide-resistant and insect-resistant varieties of maize, soybean, and cotton.

  16. U.S. Adults with Agricultural Experience Report More Genetic Engineering Familiarity than Those Without

    Science.gov (United States)

    Stofer, Kathryn A.; Schiebel, Tracee M.

    2017-01-01

    Researchers and pollsters still debate the acceptance of genetic engineering technology among U.S. adults, and continue to assess their knowledge as part of this research. While decision-making may not rely entirely on knowledge, querying opinions and perceptions rely on public understanding of genetic engineering terms. Experience with…

  17. Information technology security system engineering methodology

    Science.gov (United States)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  18. Engineering Values Into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility.

    Science.gov (United States)

    Sankar, Pamela L; Cho, Mildred K

    2015-01-01

    Recent experiments have been used to "edit" genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing the Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a "gene drive" that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments.

  19. Journal of Applied Science, Engineering and Technology: Editorial ...

    African Journals Online (AJOL)

    ... Computer Science and Engineering Computations, Civil Engineering, Food Science and Technology, Electrical & Electronics Engineering, Energy, Geology, Industrial, Production & Manufacturing Engineering, Mechanical Engineering, Petroleum Engineering, Physics and other related Applied Sciences and Engineering ...

  20. Disseminating genetically modified (GM) maize technology to ...

    African Journals Online (AJOL)

    Disseminating genetically modified (GM) maize technology to smallholder farmers in the Eastern Cape province of South Africa: extension personnel's awareness of stewardship requirements and dissemination practices.

  1. RNAi technology extends its reach: Engineering plant resistance ...

    African Journals Online (AJOL)

    RNA interference (RNAi) is a homology-dependent gene silencing technology that is initiated by double stranded RNA (dsRNA). It has emerged as a genetic tool for engineering plants resistance against prokaryotic pathogens such as virus and bacteria. Recent studies broaden the role of RNAi, and many successful ...

  2. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  3. The role of genetically-engineered pigs in xenotransplantation research

    Science.gov (United States)

    Cooper, David K.C.; Ekser, Burcin; Ramsoondar, Jagdeece; Phelps, Carol; Ayares, David

    2015-01-01

    There is a critical shortage in the number of deceased human organs that become available for purposes of clinical transplantation. This problem might be resolved by the transplantation or organs from pigs genetically-engineered to protect them from the human immune response. The pathobiological barriers to successful pig organ transplantation in primates include activation of the innate and adaptive immune systems, coagulation dysregulation, and inflammation. Genetic engineering of the pig as an organ source has increased the survival of the transplanted pig heart, kidney, islet and corneal graft in nonhuman primates (NHP) from minutes to months or occasionally years. Genetic engineering may also contribute to any physiological barriers that might be identified as well as to reducing the risks of transfer of a potentially infectious micro-organism with the organ. There are now an estimated 40 or more genetic alterations that have been carried out in pigs, with some pigs expressing 5 or 6 manipulations. With the new technology now available, it will become increasingly common for a pig to express even more genetic manipulations, and these could be tested in the pig-to-NHP models to assess their efficacy and benefit. It is therefore likely that clinical trials of pig kidney, heart, and islet transplantation will become feasible in the near future. PMID:26365762

  4. Knowledge Expansion in Engineering Education: Engineering Technology as an Alternative

    Directory of Open Access Journals (Sweden)

    Kamsiah Mohd Ismail

    2015-07-01

    Full Text Available Abstract. The current and rising challenges in engineering education demand graduate engineers who are well-prepared to provide innovative solutions as technical specialists, system integrators and change agents. Realizing the importance of producing a highly competent manpower, the Malaysian Government has put considerable pressure to the universities to produce engineers who are competitive in the global market. Hence, this assignment of developing a highly competence engineering technologist workforce in support of the government policy highlights issues pertaining to the development and offering of practical-oriented programs as a knowledge expansion in engineering education at universities as envisioned by the Malaysian Government.  This paper evaluates the current scenario and examines the application-oriented programs of engineering technology education as practice in local institutions in Malaysia in comparisons to some universities abroad. It also investigates the challenges faced by university management in dealing with issues concerning national quality assurance and accreditation pertaining to the engineering technology education programs. Specifically, it analyzes the faculty planning of pedagogies in term of hands-on skills in teaching and learning. A key conclusion of this research is that Malaysian universities need to evaluate its engineering technology education strategies if they aim for quality assurance and accreditation to be established and aspire for successful attempts towards the creation of the requisite knowledge workers that Malaysia needs.Keywords: application-oriented, engineering education, engineering technology, hands-on skills, knowledge expansion 

  5. Knowledge Expansion in Engineering Education: Engineering Technology as an Alternative

    Directory of Open Access Journals (Sweden)

    Noor Hamizah Hussain

    2015-06-01

    Full Text Available Abstract. The current and rising challenges in engineering education demand graduate engineers who are well-prepared to provide innovative solutions as technical specialists, system integrators and change agents. Realizing the importance of producing a highly competent manpower, the Malaysian Government has put considerable pressure to the universities to produce engineers who are competitive in the global market. Hence, this assignment of developing a highly competence engineering technologist workforce in support of the government policy highlights issues pertaining to the development and offering of practical-oriented programs as a knowledge expansion in engineering education at universities as envisioned by the Malaysian Government. This paper evaluates the current scenario and examines the application-oriented programs of engineering technology education as practice in local institutions in Malaysia in comparisons to some universities abroad. It also investigates the challenges faced by university management in dealing with issues concerning national quality assurance and accreditation pertaining to the engineering technology education programs. Specifically, it analyzes the faculty planning of pedagogies in term of hands-on skills in teaching and learning. A key conclusion of this research is that Malaysian universities need to evaluate its engineering technology education strategies if they aim for quality assurance and accreditation to be established and aspire for successful attempts towards the creation of the requisite knowledge workers that Malaysia needs. Keywords: application-oriented, engineering education, engineering technology, hands-on skills, knowledge expansion

  6. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  7. Software Engineering Technology Infusion Within NASA

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  8. Examining the Relationship between Technology & Engineering Instruction and Technology & Engineering Literacy in K-8 Education

    Science.gov (United States)

    Mitchell, Tamarra L.

    2017-01-01

    The purpose of this study was to examine the relationship between technology and engineering instruction and technology and engineering literacy in grades K-8. The factors identified and used for the purpose of this study were gender, socioeconomic status, race/ethnicity, and important modes of technology and engineering instruction. These factors…

  9. Handbook of manufacturing engineering and technology

    CERN Document Server

    2015-01-01

    The Springer Reference Work Handbook of Manufacturing Engineering and Technology provides overviews and in-depth and authoritative analyses on the basic and cutting-edge manufacturing technologies and sciences across a broad spectrum of areas. These topics are commonly encountered in industries as well as in academia. Manufacturing engineering curricula across universities are now essential topics covered in major universities worldwide.

  10. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Editorial Policies ... Original theoretical work and application-based studies, which contributes to a better understanding of engineering, science and technological challenges, are ... The time between review and publication can range from 2-6 months ...

  11. Recent Technology Advances in Distributed Engine Control

    Science.gov (United States)

    Culley, Dennis

    2017-01-01

    This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.

  12. Genetic engineering: frost damage trial halted.

    Science.gov (United States)

    Budiansky, S

    The University of California at Berkeley has announced the postponement of a planned experiment involving the field testing of bacteria genetically engineered to reduce frost damage to crops. The action came after Jeremy Rifkin, who had earlier filed suit against the National Institutes of Health after its Recombinant DNA Advisory Committee had approved the experiment, threatened to seek a temporary restraining order against the university to halt the experiment.

  13. Insights on bovine genetic engineering and cloning

    Directory of Open Access Journals (Sweden)

    Fabiana F. Bressan

    2013-12-01

    Full Text Available Transgenic technology has become an essential tool for the development of animal biotechnologies, and animal cloning through somatic cell nuclear transfer (SCNT enabled the generation of genetically modified animals utilizing previously modified and selected cell lineages as nuclei donors, assuring therefore the generation of homogeneous herds expressing the desired modification. The present study aimed to discuss the use of SCNT as an important methodology for the production of transgenic herds, and also some recent insights on genetic modification of nuclei donors and possible effects of gene induction of pluripotency on SCNT.

  14. Predictors of Associate's Degree Completion in Engineering and Engineering Technologies

    Science.gov (United States)

    Reys-Nickel, Lynsey L.

    The purpose of this ex post facto study was to describe completers and non-completers of associate's degree programs in engineering and engineering technologies and determine whether and to what extent completion in these programs is a function of selected student-related variables and institutional variables. Data from the 2004/2009 Beginning Postsecondary Students Longitudinal Study (BPS: 04/09) of associate's degree completers and non-completers in engineering and engineering technologies were accessed and analyzed through PowerStats, a web-based data analysis tool from National Center for Education Statistics (NCES). Descriptive data indicated that, proportionally, engineering and engineering technologies completers were mostly White, married, middle income, employed part-time, enrolled full-time, did not hold a high school diploma or certificate, completed Trigonometry/Algebra II, had a father who's highest education level was an associate's degree, but did not know their mother's highest level of education, completed remedial coursework, and started college with the goal of earning an associate's degree. While more males enrolled in the programs, males and females demonstrated similar completion rates, proportionally--with females showing a slightly higher percentage of completion. Results from the logistic regression further indicated that the variables significant to completion in associate's degree programs in engineering and engineering technologies were gender and enrollment size. Findings suggested that female students were more likely to earn the degree, and that the larger the institution, the more likely the student would become a completer. However, since a major limitation of the study was the small weighted sample size, the results of the study are inconclusive in terms of the extent to which the findings can be generalized to the population of students in associate's degree programs in engineering and engineering technologies. This study fills a

  15. Genetic engineering of a mouse: Dr. Frank Ruddle and somatic cell genetics.

    Science.gov (United States)

    Jones, Dennis

    2011-06-01

    Genetic engineering is the process of modifying an organism's genetic composition by adding foreign genes to produce desired traits or evaluate function. Dr. Jon W. Gordon and Sterling Professor Emeritus at Yale Dr. Frank H. Ruddle were pioneers in mammalian gene transfer research. Their research resulted in production of the first transgenic animals, which contained foreign DNA that was passed on to offspring. Transgenic mice have revolutionized biology, medicine, and biotechnology in the 21st century. In brief, this review revisits their creation of transgenic mice and discusses a few evolving applications of their transgenic technology used in biomedical research.

  16. The Plant Genetic Engineering Laboratory For Desert Adaptation

    Science.gov (United States)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  17. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  18. Genetically engineering adenoviral vectors for gene therapy.

    Science.gov (United States)

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  19. Rocket Engine Altitude Simulation Technologies

    Science.gov (United States)

    Woods, Jody L.; Lansaw, John

    2010-01-01

    John C. Stennis Space Center is embarking on a very ambitious era in its rocket engine propulsion test history. The first new large rocket engine test stand to be built at Stennis Space Center in over 40 years is under construction. The new A3 Test Stand is designed to test very large (294,000 Ibf thrust) cryogenic propellant rocket engines at a simulated altitude of 100,000 feet. A3 Test Stand will have an engine testing chamber where the engine will be fired after the air in the chamber has been evacuated to a pressure at the simulated altitude of less than 0.16 PSIA. This will result in a very unique environment with extremely low pressures inside a very large chamber and ambient pressures outside this chamber. The test chamber is evacuated of air using a 2-stage diffuser / ejector system powered by 5000 lb/sec of steam produced by 27 chemical steam generators. This large amount of power and flow during an engine test will result in a significant acoustic and vibrational environment in and around A3 Test Stand.

  20. Technology for reducing aircraft engine pollution

    Science.gov (United States)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  1. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 7, No 3 (2015) >. Log in or Register to get access to full text downloads.

  2. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 11 (2010) >. Log in or Register to get access to full text downloads.

  3. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 3 (2016) >. Log in or Register to get access to full text downloads.

  4. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 3 (2011) >. Log in or Register to get access to full text downloads.

  5. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 2 (2010) >. Log in or Register to get access to full text downloads.

  6. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 4, No 4 (2012) >. Log in or Register to get access to full text downloads.

  7. Hydrogen fuel cell engines and related technologies

    Science.gov (United States)

    2001-12-01

    The manual documents the first training course developed on the use of hydrogen fuel cells in transportation. The manual contains eleven modules covering hydrogen properties, use and safety; fuel cell technology and its systems, fuel cell engine desi...

  8. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.

  9. Philosophy of technology and engineering sciences

    CERN Document Server

    2009-01-01

    The Handbook Philosophy of Technology and Engineering Sciences addresses numerous issues in the emerging field of the philosophy of those sciences that are involved in the technological process of designing, developing and making of new technical artifacts and systems. These issues include the nature of design, of technological knowledge, and of technical artifacts, as well as the toolbox of engineers. Most of these have thus far not been analyzed in general philosophy of science, which has traditionally but inadequately regarded technology as mere applied science and focused on physics, biology, mathematics and the social sciences.

  10. Education of indoor enviromental engineering technology

    Czech Academy of Sciences Publication Activity Database

    Kic, P.; Zajíček, Milan

    2011-01-01

    Roč. 9, Spec. 1 (2011), s. 83-90 ISSN 1406-894X. [Biosystems Engineering 2011. Tartu, 12.05.2011-13.05.2011] Institutional research plan: CEZ:AV0Z10750506 Keywords : Biosystems engineering * indoor environment * study * programs Subject RIV: AM - Education http://library.utia.cas.cz/separaty/2011/VS/zajicek- education of indoor enviromental engineering technology .pdf

  11. Application of Statistics in Engineering Technology Programs

    Science.gov (United States)

    Zhan, Wei; Fink, Rainer; Fang, Alex

    2010-01-01

    Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…

  12. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  13. Genetic Engineering In BioButanol Production And Tolerance

    Directory of Open Access Journals (Sweden)

    Ashok Rao

    Full Text Available ABSTRACT The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. Higher-chain alcohols possess chemical properties that are more similar to gasoline. Ethanol and butanol are two products which are used as biofuel. Butanol production was more concerned than ethanol because of its high octane number. Unfortunately, these alcohols are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. The synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of bio-butanol. Knock out and over-expression of genes is the major approaches towards genetic manipulation and metabolic engineering of microbes. Yet there are TargeTron Technology, Antisense RNA and CRISPR technology has a vital role in genome manipulation of C.acetobutylicum. This review concentrates on the recent developments for efficient production of butanol and butanol tolerance by various genetically engineered microbes.

  14. International Conference on Mechanical Engineering and Technology

    CERN Document Server

    Mechanical Engineering and Technology

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Mechanical Engineering and Technology, held on London, UK, November 24-25, 2011.   Mechanical engineering technology is the application of physical principles and current technological developments to the creation of useful machinery and operation design. Technologies such as solid models may be used as the basis for finite element analysis (FEA) and / or computational fluid dynamics (CFD) of the design. Through the application of computer-aided manufacturing (CAM), the models may also be used directly by software to create "instructions" for the manufacture of objects represented by the models, through computer numerically controlled (CNC) machining or other automated processes, without the need for intermediate drawings.   This volume covers the subject areas of mechanical engineering and technology, and also covers interdisciplinary subject areas of computers, communications, control and automation...

  15. Can Man Control His Biological Evolution? A Symposium on Genetic Engineering. Genetic Engineering

    Science.gov (United States)

    Ramsey, Paul

    1972-01-01

    Presented are issues related to genetic engineering. Increased knowledge of techniques to manipulate genes are apt to create confusion about moral values in relation to unborn babies and other living organisms on earth. Human beings may use this knowledge to disturb the balance maintained by nature. (PS)

  16. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Science.gov (United States)

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology, National Science and Technology Council Workshop ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  17. (Ict) Integration Into Science, Technology, Engineering And ...

    African Journals Online (AJOL)

    As Nigeria aspires for technological growth, positive changes need be made by placing proper educational values towards Science, Technology, Engineering and Mathematics (STEM) education. Some problems faced by STEM include lack of qualified teachers, curriculum, the misconception that STEM education is ...

  18. Teaching Applied Genetics and Molecular Biology to Agriculture Engineers. Application of the European Credit Transfer System

    Science.gov (United States)

    Weiss, J.; Egea-Cortines, M.

    2008-01-01

    We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…

  19. Genetic Technology and Food Security

    NARCIS (Netherlands)

    Grossman, M.R.

    2014-01-01

    In the United States and globally, producers cultivate millions of hectares of genetically modified crops. In the United States, the USDA, EPA, and FDA govern authorization of GMOs under federal laws and agency regulations. Because food produced from GMOs is not considered materially different from

  20. Human Genetic Engineering: A Survey of Student Value Stances

    Science.gov (United States)

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  1. Tokamak Engineering Technology Facility scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W.M. Jr.; Abdou, M.A.; Bolta, C.C.

    1976-03-01

    A scoping study for a Tokamak Engineering Technology Facility (TETF) is presented. The TETF is a tokamak with R = 3 m and I/sub p/ = 1.4 MA based on the counterstreaming-ion torus mode of operation. The primary purpose of TETF is to demonstrate fusion technologies for the Experimental Power Reactor (EPR), but it will also serve as an engineering and radiation test facility. TETF has several technological systems (e.g., superconducting toroidal-field coil, tritium fuel cycle, impurity control, first wall) that are prototypical of EPR.

  2. Seeking perfection: a Kantian look at human genetic engineering.

    Science.gov (United States)

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  3. ABET [Accreditation Board for Engineering and Technology] accreditation for engineering technology

    International Nuclear Information System (INIS)

    Foulke, L.R.

    1989-01-01

    Engineering technology is that part of the technological field that requires the application of scientific and engineering knowledge and methods combined with technical skills in support of engineering activities. It lies in the occupational spectrum between the craftsman and the engineer at the end of the spectrum closest to the engineer. The term engineering technician is applied to the graduates of associate degree programs. Graduates of baccalaureate programs are called engineering technologists. The content of a 4-yr engineering technology program treats the same subject areas as does an engineering program but with more emphasis on application, use of established design concepts, and the laboratory experience rather than on science, conceptual design, and new development. The mathematics content of accreditable baccalaureate programs must contain at least 12 semester-hour credits of mathematics including the study of calculus. Engineering managers should take a hard look at what is really needed in the education of that majority of a personnel who do not work as design and development engineers. Graduates of engineering technology programs may be better qualified than those of some engineering programs for the majority of jobs in our industry today

  4. Food safety evaluation of crops produced through genetic engineering--how to reduce unintended effects?

    Science.gov (United States)

    Jelenić, Srećko

    2005-06-01

    Scientists started applying genetic engineering techniques to improve crops two decades ago; about 70 varieties obtained via genetic engineering have been approved to date. Although genetic engineering offers the most precise and controllable genetic modification of crops in entire history of plant improvement, the site of insertion of a desirable gene cannot be predicted during the application of this technology. As a consequence, unintended effects might occur due to activation or silencing of genes, giving rise to allergic reactions or toxicity. Therefore, extensive chemical, biochemical and nutritional analyses are performed on each new genetically engineered variety. Since the unintended effects may be predictable on the basis of what is known about the insertion place of the transgenic DNA, an important aim of plant biotechnology is to define techniques for the insertion of transgene into the predetermined chromosomal position (gene targeting). Although gene targeting cannot be applied routinely in crop plants, given the recent advances, that goal may be reached in the near future.

  5. Using Genetically Engineered Animal Models in the Postgenomic Era to Understand Gene Function in Alcoholism

    Science.gov (United States)

    Reilly, Matthew T.; Harris, R. Adron; Noronha, Antonio

    2012-01-01

    Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene’s function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput “next-generation sequencing” technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism. PMID:23134044

  6. Recent Progress in Engine Noise Reduction Technologies

    Science.gov (United States)

    Huff, Dennis; Gliebe, Philip

    2003-01-01

    Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.

  7. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  8. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  9. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  10. Agrobacterium: nature’s genetic engineer

    Science.gov (United States)

    Nester, Eugene W.

    2015-01-01

    Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago. Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle (TIP), the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti) plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single-strand DNA (T-DNA) with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is likely coated and protected from nucleases by a bacterial secreted protein to form the T-complex. A nuclear localization signal in the endonuclease guides the transferred strand (T-strand), into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The T-DNA encodes enzymes of auxin, cytokinin, and opine synthesis, the latter a food source for Agrobacterium. The genes associated with T-strand formation and transfer (vir) map to the Ti plasmid and are only expressed when the bacteria are in close association with a plant. Plant signals are recognized by a two-component regulatory system which activates vir genes. Chromosomal genes with pleiotropic functions also play important roles in plant transformation. The data now explain Braun’s old observations and also explain why Agrobacterium is nature’s genetic engineer. Any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells. Thus, Agrobacterium has become the major vector in plant genetic engineering. PMID:25610442

  11. The ecological imperative and its application to ethical issues in human genetic technology

    OpenAIRE

    W. Malcolm Byrnes

    2003-01-01

    As a species, we are on the cusp of being able to alter that which makes us uniquely human, our genome. Two new genetic technologies, embryo selection and germline engineering, are either in use today or may be developed in the future. Embryo selection acts to alter the human gene pool, reducing genetic diversity, while germline engineering will have the ability to alter directly the genomes of engineered individuals. Our genome has come to be what it is through an evolutionary process extend...

  12. Lattice engineering technology and applications

    CERN Document Server

    Wang, Shumin

    2012-01-01

    This book contains comprehensive reviews of different technologies to harness lattice mismatch in semiconductor heterostructures and their applications in electronic and optoelectronic devices. While the book is a bit focused on metamorphic epitaxial growth, it also includes other methods like compliant substrate, selective area growth, wafer bonding and heterostructure nanowires etc. Basic knowledge on dislocations in semiconductors and innovative methods to eliminate threading dislocations are provided, and successful device applications are reviewed. It covers a variety of important semicon

  13. Preparing technicians for engineering materials technology

    Science.gov (United States)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  14. Progress report - Advanced cryogenic OTV engine technology

    Science.gov (United States)

    Schoenman, L.

    1985-01-01

    New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. A variable-thrust (200 to 3000 lbF), 2000 psi chamber pressure, LO2/LH2 engine has been selected to demonstrate the 20-hour, 500-restart life goal, and a specific impulse in excess of 480 lbF-sec/lbM. The results of recent vehicle-engine integration analyses and the progress in design, fabrication, and testing are provided. Emphasis is placed on the following technology areas being investigated in support of the advanced engine design: LOX hydrostatic bearings; burn-resistant materials for high-pressure GOX turbines and valves; high surface-low flux annular combustion chambers for the dual propellant expander cycle; improved cooling approaches for high-pressure combustion chambers, new concepts in integrated controls; and engine health diagnostics.

  15. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Apte, S.K.; Rao, A.S.; Appukuttan, D.; Nilgiriwala, K.S.; Acharya, C.

    2005-01-01

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  16. Information Technology in Engineering and Project Management

    Directory of Open Access Journals (Sweden)

    Chien-Ho Ko

    2017-01-01

    Full Text Available Information Technology (IT can be regarded as the use of computers to store, analyze, and manipulate data (Daintith, 2009. With the rapid development of personal computers, IT has been widely applied in nearly every field (Davenport, 2013. This issue presents five papers covering engineering and project management, three of which focus on the application of IT to solve engineering and project management issues, while one presents research into public private partnerships, and another into cash flow forecasting.

  17. Integrated Engineering Information Technology, FY93 accommplishments

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.N.; Miller, D.K.; Neugebauer, G.L.; Orona, J.R.; Partridge, R.A.; Herman, J.D.

    1994-03-01

    The Integrated Engineering Information Technology (IEIT) project is providing a comprehensive, easy-to-use computer network solution or communicating with coworkers both inside and outside Sandia National Laboratories. IEIT capabilities include computer networking, electronic mail, mechanical design, and data management. These network-based tools have one fundamental purpose: to help create a concurrent engineering environment that will enable Sandia organizations to excel in today`s increasingly competitive business environment.

  18. Pollution reduction technology program for turboprop engines

    Science.gov (United States)

    Tomlinson, J. G.

    1977-01-01

    The reduction of CO, HC, and smoke emissions while maintaining acceptable NO(x) emissions without affecting fuel consumption, durability, maintainability, and safety was accomplished. Component combustor concept screening directed toward the demonstration of advanced combustor technology required to meet the EPA exhaust emissions standards for class P2 turboprop engines was covered. The combustion system for the Allison 501-D22A engine was used, and three combustor design concepts - reverse flow, prechamber, and staged fuel were evaluated.

  19. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  20. Mechanical technology for higher engineering technicians

    CERN Document Server

    Black, Peter

    1972-01-01

    Mechanical Technology for Higher Engineering Technicians deals with the mechanics of machines, thermodynamics, and mechanics of fluids. This book presents discussions and examples that deal with the strength of materials, technology of machines, and techniques used by professional engineers. The book explains the strain energy of torsion, coil springs, and the effects of axial load. The author also discusses the forces that produce bending, shearing, and bending combined with direct stress, as well as beams subjected to a uniform bending moment or simply supported beams with concentrated non-c

  1. Rabbit defensin (NP-1) genetic engineering of plant | Ting | African ...

    African Journals Online (AJOL)

    Due to the broad antibacterial spectrum and special mechanism of microbial inhibition, rabbit defensin has been transformed into some plants and expressed via genetic engineering. And it plays an important role in genetic engineering of anti-disease plants and plants species' improvement. This article reviewed and ...

  2. An existential analysis of genetic engineering and human rights ...

    African Journals Online (AJOL)

    Genetic engineering for purposes of human enhancement poses risks that justify regulation. However, this paper argues philosophically that it is inappropriate to use human rights treaties to prohibit germ-line genetic engineering whether therapeutic or for purposes of enhancement. When also looked at existentially, the ...

  3. Suitable for human beings. Working world - genetic engineering - new technologies - ways of life - public authority. Documentation. Menschengerecht. Arbeitswelt - Genforschung - Neue Technik - Lebensformen - Staatsgewalt. Dokumentation

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler-Gmelin, H.; Adlerstein, W. (eds.)

    1986-01-01

    If a society decides to make use of the advantages of technologies that at the same time bear extensive potentials of harm, society has to prevent abuse of these potentials. Physical protection and other security measures inevitably entail a curtailment of personal liberty. The civil rights will not provide sufficient protection against such creeping loss of personal freedom. The high priority of the objects of legal protection in question will make it necessary to specify the civil rights according to conditions if the security measures are to become effective in practice. Weighing the legal merits and the principle of reasonableness will be the main instruments that will pave the way for a camouflaged change of legal concepts and, finally, a factual restriction of civil rights. Any policy of law intended to protect the civil rights therefore will have to clain responsible participation in research activities, technological development, and energy policy. The policy of law has to take care that the criterion of compatibility with the constitution, the weakening or strengthening effect of a technological system on the civil rights, will duly be taken into account in the process of democratic technology steering, and as early as possible. (orig./HSCH).

  4. Plant Genetic Resources: Selected Issues from Genetic Erosion to Genetic Engineering

    Directory of Open Access Journals (Sweden)

    Karl Hammer

    2008-04-01

    Full Text Available Plant Genetic Resources (PGR continue to play an important role in the development of agriculture. The following aspects receive a special consideration:1. Definition. The term was coined in 1970. The genepool concept served as an important tool in the further development. Different approaches are discussed.2. Values of Genetic Resources. A short introduction is highlighting this problem and stressing the economic usfulness of PGR.3. Genetic Erosion. Already observed by E. Baur in 1914, this is now a key issue within PGR. The case studies cited include Ethiopia, Italy, China, S Korea, Greece and S. Africa. Modern approaches concentrate on allelic changes in varieties over time but neglect the landraces. The causes and consequences of genetic erosion are discussed.4. Genetic Resources Conservation. Because of genetic erosion there is a need for conservation. PGR should be consigned to the appropriate method of conservation (ex situ, in situ, on-farm according to the scientific basis of biodiversity (genetic diversity, species diversity, ecosystem diversity and the evolutionary status of plants (cultivated plants, weeds, related wild plants (crop wild relatives.5. GMO. The impact of genetically engineered plants on genetic diversity is discussed.6. The Conclusions and Recommendations stress the importance of PGR. Their conservation and use are urgent necessities for the present development and future survival of mankind.

  5. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  6. Classroom Implementation of Science, Technology, Engineering ...

    African Journals Online (AJOL)

    Understanding science, technology, engineering, and mathematics (STEM) education as a curriculum that endows learners with specialized life skills in general and scientific literacy, along with a productive disposition and sense of social responsibility in particular, this paper discusses some elements of this curricular ...

  7. Liquid metal engineering and technology. Volume 3

    International Nuclear Information System (INIS)

    1988-01-01

    These proceedings of the fourth international conference on liquid metal engineering and technology, volume 3, are divided into 3 sections bearing on: - materials and structures in liquid metal environment (16 conferences) - impurity monitoring and removal (37 conferences) - operating experience with liquid metals (15 conferences) [fr

  8. Feminism and human genetic engineering: A philosophical cum ...

    African Journals Online (AJOL)

    Human genetic in the area of Bio-ethics is a new, rapidly advancing Science. While genetic knowledge may be good per se, in itself, it can be put to good or bad use per secundi quid. In non-technical language, the author investigates Genetic Engineering within the context of its scientific orientation. Major areas of concern ...

  9. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  10. Complex engineering systems science meets technology

    CERN Document Server

    Minai, Ali A; Bar-Yam, Yaneer

    2006-01-01

    Every time that we take money out of an ATM, surf the internet or simply turn on a light switch, we enjoy the benefits of complex engineered systems. Systems like power grids and global communication networks are so ubiquitous in our daily lives that we usually take them for granted, only noticing them when they break down. But how do such amazing technologies and infrastructures come to be what they are? How are these systems designed? How do distributed networks work? How are they made to respond rapidly in 'real time'? And as the demands that we place on these systems become increasingly complex, are traditional systems-engineering practices still relevant? This volume examines the difficulties that arise in creating highly complex engineered systems and new approaches that are being adopted. Topics addressed range from the formal representation and classification of distributed networked systems to revolutionary engineering practices inspired by biological evolution. By bringing together the latest resear...

  11. Genetically engineered livestock for biomedical models.

    Science.gov (United States)

    Rogers, Christopher S

    2016-06-01

    To commemorate Transgenic Animal Research Conference X, this review summarizes the recent progress in developing genetically engineered livestock species as biomedical models. The first of these conferences was held in 1997, which turned out to be a watershed year for the field, with two significant events occurring. One was the publication of the first transgenic livestock animal disease model, a pig with retinitis pigmentosa. Before that, the use of livestock species in biomedical research had been limited to wild-type animals or disease models that had been induced or were naturally occurring. The second event was the report of Dolly, a cloned sheep produced by somatic cell nuclear transfer. Cloning subsequently became an essential part of the process for most of the models developed in the last 18 years and is stilled used prominently today. This review is intended to highlight the biomedical modeling achievements that followed those key events, many of which were first reported at one of the previous nine Transgenic Animal Research Conferences. Also discussed are the practical challenges of utilizing livestock disease models now that the technical hurdles of model development have been largely overcome.

  12. Tiger Team Assessment, Energy Technology Engineering Center

    International Nuclear Information System (INIS)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies

  13. Tiger Team Assessment, Energy Technology Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  14. Analysis of Engineering Content within Technology Education Programs

    Science.gov (United States)

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  15. Electrical principles and technology for engineering

    CERN Document Server

    Bird, John

    1995-01-01

    The aim of this book is to introduce students to the basic electrical and electronic principles needed by technicians in fields such as electrical engineering, electronics and telecommunications. The emphasis is on the practical aspects of the subject, and the author has followed his usual successful formula, incorporating many worked examples and problems (answers supplied) into the learning process.Electrical Principles and Technology for Engineering is John Bird's core text for Further Education courses at BTEC levels N11 and N111 and Advanced GNVQ. It is also designed to provide a comprehe

  16. Genetic Engineering and the Amelioration of Genetic Defect

    Science.gov (United States)

    Lederberg, Joshua

    1970-01-01

    Discusses the claims for a brave new world of genetic manipulation" and concludes that if we could agree upon applying genetic (or any other effective) remedies to global problems we probably would need no rescourse to them. Suggests that effective methods of preventing genetic disease are prevention of mutations and detection and…

  17. Information technologies in environmental engineering. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Athanasiadis, Ioannis N.; Rizzoli, Andrea E. [Istituto dalle Molle di Studi sull' Intelligenza Artificiale (IDSIA), Manno (Switzerland); Mitkas, Pericles A. [Aristotle Univ. of Thessaloniki (Greece); Marx Gomez, Jorge (eds.) [Oldenburg Univ. (Germany). Abt. Wirtschaftsinformatik

    2009-07-01

    Information technologies have evolved to an enabling science for natural resource management and conservation, environmental engineering, scientific simulation and integrated assessment studies. Computing plays a significant role in every day practices of environmental engineers, natural scientists, economists, and social scientists. The complexity of natural phenomena requires interdisciplinary approaches, where computing science offers the infrastructure for environmental data collection and management, scientific simulations, decision support documentation and reporting. Ecology, environmental engineering and natural resource management comprise an excellent real-world testbed for IT system demonstration, while raising new challenges for computer science. Complexity, uncertainty and scaling issues of natural systems form a demanding application domain for sensor networks and earth observation systems; modelling, simulation and scientific workflows, data management and reporting, decision support and intelligent systems, distributed computing environments, geographical information systems, heterogeneous systems integration, software engineering, accounting systems and control systems. This books offers a collection of papers presented at the 4th International Symposium on Environmental Engineering, held in May 2009, in Thessaloniki, Greece. Recent success stories in ecoinformatics, promising ideas and new challenges are discussed among computer scientists, environmental engineers, economists and social scientists, demonstrating new paradigms for problem solving and decision making. (orig.)

  18. Can genetic engineering for the poor pay off? An ex-ante evaluation of Golden Rice in India

    OpenAIRE

    Stein, Alexander J.; Sachdev, H.P.S.; Qaim, Matin

    2006-01-01

    Genetic engineering (GE) in agriculture is a controversial topic in science and society at large. While some oppose genetically modified crops as proxy of an agricultural system they consider unsustainable and inequitable, the question remains whether GE can benefit the poor within the existing system and what needs to be done to deliver these benefits? Golden Rice has been genetically engineered to produce provitamin A. The technology is still in the testing phase, but, once released, it is ...

  19. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  20. Integration of basic electromagnetism and engineering technology

    DEFF Research Database (Denmark)

    Bentz, Sigurd

    1995-01-01

    The theory of electromagnetism is taught as a part of most contemporary electrical engineering curricula. Usually a basic course is intended to cover all the fundamental electromagnetic theory which is needed in later engineering courses. However it is often found that students fail to understand...... theoretical course contents have been reduced to a core of fundamental principles. These are combined with the study of magnetic properties of materials closely related to manufacturer's data sheets. To enhance the understanding of these fundamentals, practical topics from engineering technology are included....... Components or systems that combine magnetic, electrical and mechanical aspects are preferred. Also, a series of hands-on lab projects give the students an opportunity to learn by doing. The topics that are covered by the course are outlined. By integrating the teaching of basic physical laws...

  1. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  2. JAERI Nuclear Engineering School and technology transfer

    International Nuclear Information System (INIS)

    Nishimura, Kazuaki; Kawaguchi, Chiyoji

    1978-01-01

    A method is introduced to evaluate the degree of nuclear technology transfer; that is, the output powers of Japanese nuclear reactors constructed in these 20 years are chronologically plotted in a semi-log figure. All reactors plotted are classified into imported and domestic ones according to a value of domestication factor. A space between two historical trajectories of reactor construction may be interpreted as one of the measures indicating the degree of nuclear technology transfer. In connection with this method, historical change of educational and training courses in Nuclear Engineering School of Japan Atomic Energy Research Institute is reviewed in this report. (author)

  3. Bioreactor Technology in Cardiovascular Tissue Engineering

    Science.gov (United States)

    Mertsching, H.; Hansmann, J.

    Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.

  4. Sandia technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

  5. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  6. Uses of neutrons in engineering and technology

    International Nuclear Information System (INIS)

    Walker, J.

    1982-01-01

    Having outlined the principles of nuclear safeguards, some application of neutrons in engineering and technology are described including: the use of neutron activation analysis for on-stream analysis in the coal industry and for forensic applications, fission track detection of uranium, neutron sondes for oil and mineral exploration, tracer applications, transmutation doping of silicon, nuclear track filter production, neutron scattering studies of materials, neutron radiography, dynamic radiography, tomography and holography. (U.K.)

  7. Technological and engineering challenges of fusion

    International Nuclear Information System (INIS)

    Maisonnier, David; Hayward, Jim

    2008-01-01

    The current fusion development scenario in Europe assumes the sequential achievement of key milestones. Firstly, the qualification of the DEMO/reactor physics basis in ITER, secondly, the qualification of materials for in-vessel components in IFMIF and, thirdly, the qualification of components and processes in DEMO. Although this scenario is constrained by budgetary considerations, it assumes the resolution of many challenges in physics, technology and engineering. In the first part of the paper, the technological and engineering challenges to be met in order to satisfy the current development scenario will be highlighted. These challenges will be met by an appropriate share of the work between ITER, IFMIF, DEMO and the necessary accompanying programme, which will have to include a number of dedicated facilities (e.g. for the development of H and CD systems). In the second part of the paper, the consequences of a considerable acceleration of the fusion development programme will be discussed. Although most of the technological and engineering challenges identified above will have to be met within a shorter timescale, it is possible to limit the requirements and expectation for a first fusion power plant with respect to those adopted for the current fusion development scenario. However, it must be recognised that such a strategy will inevitably result in increased risk and a reduction in the economy of the plant. (author)

  8. Registration of Dicamba for Use on Genetically Engineered Crops

    Science.gov (United States)

    EPA has registered a new dicamba formulation, Extendimax™ with VaporGrip™, specifically designed to have lower volatility, to control weeds in cotton and soybean plants that have been genetically engineered (GE) to resist dicamba.

  9. International Genetically Engineered Machine (iGEM) Competition

    CSIR Research Space (South Africa)

    Sparrow, RW

    2010-07-01

    Full Text Available iGEM, the International Genetically Engineered Machine competition, is an initiative from MIT and has become the premiere undergraduate synthetic biology competition. The competing teams consist of students who work on a synthetic biology project...

  10. "Genetic Engineering" Gains Momentum (Science/Society Case Study).

    Science.gov (United States)

    Moore, John W.; Moore, Elizabeth A., Eds.

    1980-01-01

    Reviews the benefits and hazards of genetic engineering, or "recombinant-DNA" research. Recent federal safety rules issued by NIH which ease the strict prohibitions on recombinant-DNA research are explained. (CS)

  11. International Journal of Engineering, Science and Technology: Site ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Site Map. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Site Map. Log in or Register to get access to full text downloads.

  12. Teaching Engineering Habits of Mind in Technology Education

    Science.gov (United States)

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  13. Variable Cycle Engine Technology Program Planning and Definition Study

    Science.gov (United States)

    Westmoreland, J. S.; Stern, A. M.

    1978-01-01

    The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.

  14. Genetic engineering for improvement of Musa production in Africa ...

    African Journals Online (AJOL)

    The transgenic approach shows potential for the genetic improvement of the crop using a wide set of transgenes currently available which may confer resistance to nematode pests, fungal, bacterial and viral diseases. This article discusses the applications of genetic engineering for the enhancement of Musa production.

  15. Molecular research and genetic engineering of resistance to ...

    African Journals Online (AJOL)

    This paper reviews the recent research progress on genetic methods of resistance, the status and existing problems, traditional breeding, the main resistance mechanism, molecular markers and genetic engineering of resistance genes. It is hoped that new breeding methods and new varieties resistant to Verticillium wilt will ...

  16. New constitutive vectors: useful genetic engineering tools for biocatalysis.

    Science.gov (United States)

    Xu, Youqiang; Tao, Fei; Ma, Cuiqing; Xu, Ping

    2013-04-01

    Constitutive vectors are useful tools for genetic engineering. Two constitutive vectors with high levels of expression and broad host ranges were developed and used in a range of Pseudomonas hosts. The vectors showed superior characteristics compared to the inducible vectors as well as the potential to be used as improved genetic tools for biocatalysis.

  17. Genetically-Based Biologic Technologies. Biology and Human Welfare.

    Science.gov (United States)

    Mayer, William V.; McInerney, Joseph D.

    The purpose of this six-part booklet is to review the current status of genetically-based biologic technologies and to suggest how information about these technologies can be inserted into existing educational programs. Topic areas included in the six parts are: (1) genetically-based technologies in the curriculum; (2) genetic technologies…

  18. 77 FR 56681 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2012-09-13

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National Science and Technology Council; Public Engagement Through Nano.gov Webinar AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION...

  19. 78 FR 24241 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2013-04-24

    ... TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National Science and Technology Council; Notice of Public Meeting AGENCY: Executive Office of the President, Office of Science and Technology Policy. ACTION: Notice of Public Meeting. SUMMARY: The National...

  20. Optics and photonics: essential technologies for our nation (technology & engineering)

    CERN Document Server

    Research, Committee on Harnessing Light: Capitalizing on Optical Science Trends and Challenges for Future; Sciences, Division on Engineering and Physical; Council, National Research

    2013-01-01

    Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet. As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad--incl...

  1. Genetically modified cells in regenerative medicine and tissue engineering.

    Science.gov (United States)

    Sheyn, Dima; Mizrahi, Olga; Benjamin, Shimon; Gazit, Zulma; Pelled, Gadi; Gazit, Dan

    2010-06-15

    Regenerative medicine appears to take as its patron, the Titan Prometheus, whose liver was able to regenerate daily, as the field attempts to restore lost, damaged, or aging cells and tissues. The tremendous technological progress achieved during the last decade in gene transfer methods and imaging techniques, as well as recent increases in our knowledge of cell biology, have opened new horizons in the field of regenerative medicine. Genetically engineered cells are a tool for tissue engineering and regenerative medicine, albeit a tool whose development is fraught with difficulties. Gene-and-cell therapy offers solutions to severe problems faced by modern medicine, but several impediments obstruct the path of such treatments as they move from the laboratory toward the clinical setting. In this review we provide an overview of recent advances in the gene-and-cell therapy approach and discuss the main hurdles and bottlenecks of this approach on its path to clinical trials and prospective clinical practice. 2010 Elsevier B.V. All rights reserved.

  2. Advanced technology for reducing aircraft engine pollution

    Science.gov (United States)

    Jones, R. E.

    1973-01-01

    The proposed EPA regulations covering emissions of gas turbine engines will require extensive combustor development. The NASA is working to develop technology to meet these goals through a wide variety of combustor research programs conducted in-house, by contract, and by university grant. In-house efforts using the swirl-can modular combustor have demonstrated sizable reduction in NO emission levels. Testing to reduce idle pollutants has included the modification of duplex fuel nozzles to air-assisted nozzles and an exploration of the potential improvements possible with combustors using fuel staging and variable geometry. The Experimental Clean Combustor Program, a large contracted effort, is devoted to the testing and development of combustor concepts designed to achieve a large reduction in the levels of all emissions. This effort is planned to be conducted in three phases with the final phase to be an engine demonstration of the best reduced emission concepts.

  3. Teacher-to-Teacher: An Annotated Bibliography on DNA and Genetic Engineering.

    Science.gov (United States)

    Mertens, Thomas R., Comp.

    1984-01-01

    Presented is an annotated bibliography of 24 books on DNA and genetic engineering. Areas considered in these books include: basic biological concepts to help understand advances in genetic engineering; applications of genetic engineering; social, legal, and moral issues of genetic engineering; and historical aspects leading to advances in…

  4. Engaging Students in the Ethics of Engineering and Technology

    DEFF Research Database (Denmark)

    Keiko, Yasukawa

    This paper argues that education for engineers and technologists should focus on the ethics of technology and engineering, and not just ethics in technology and engineering projects. It argues that one's expression of their ethical position is linked closely to their identity formation......, and is different to other "competencies" that are emphasised in engineering and technology education. Principles of sustainable development are proposed as a framework for engaging students in reflecting on their ethical positions and practices....

  5. Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals.

    Science.gov (United States)

    Bosch, Pablo; Forcato, Diego O; Alustiza, Fabrisio E; Alessio, Ana P; Fili, Alejandro E; Olmos Nicotra, María F; Liaudat, Ana C; Rodríguez, Nancy; Talluri, Thirumala R; Kues, Wilfried A

    2015-05-01

    Transgenic farm animals are attractive alternative mammalian models to rodents for the study of developmental, genetic, reproductive and disease-related biological questions, as well for the production of recombinant proteins, or the assessment of xenotransplants for human patients. Until recently, the ability to generate transgenic farm animals relied on methods of passive transgenesis. In recent years, significant improvements have been made to introduce and apply active techniques of transgenesis and genetic engineering in these species. These new approaches dramatically enhance the ease and speed with which livestock species can be genetically modified, and allow to performing precise genetic modifications. This paper provides a synopsis of enzyme-mediated genetic engineering in livestock species covering the early attempts employing naturally occurring DNA-modifying proteins to recent approaches working with tailored enzymatic systems.

  6. [Progress on biogas technology and engineering].

    Science.gov (United States)

    Liu, Xiaofeng; Yuan, Yuexiang; Yan, Zhiying

    2010-07-01

    Dwindling supplies of conventional energy sources and the demand to increase the share of renewable energy for sustainability have increased the significance of biogas, the product of synergistic fermentation of biodegrable organic wastes from municipal, agricultural and industrial activities by microbial populations under anaerobic conditions. With extensive research and engineering practice, many technologies and modes have been developed for biogas production and application. Currently, the most widely used mode is the complete-mixing mesophilic fermentation. Europe, especially Germany, is leading the world in the combined heat and power production (CHP) from biogas. In this paper, updated progress in biogas technologies is reviewed, with focuses on anaerobic microorganisms, bioreactor configurations and process development, biogas production and applications, in which perspectives of biogas as a clean and renewable energy are projected.

  7. Fluidization technologies: Aerodynamic principles and process engineering.

    Science.gov (United States)

    Dixit, Rahul; Puthli, Shivanand

    2009-11-01

    The concept of fluidization has been adapted to different unit processes of pharmaceutical product development. Till date a lot of improvements have been made in the engineering design to achieve superior process performance. This review is focused on the fundamental principles of aerodynamics and hydrodynamics associated with the fluidization technologies. Fluid-bed coating, fluidized bed granulation, rotor processing, hot melt granulation, electrostatic coating, supercritical fluid based fluidized bed technology are highlighted. Developments in the design of processing equipments have been explicitly elucidated. This article also discusses processing problems from the operator's perspective along with latest developments in the application of these principles. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  8. Strategic alliances in engineering, technology and development

    International Nuclear Information System (INIS)

    Jazrawi, W.

    1991-01-01

    The role of strategic alliances in the development of heavy oil resources, both mineable and in-situ, is discussed. A strategic alliance is defined as a custom designed, long term collaborative working arrangement between two parties to pool, exchange, and integrate their resources to maximize mutual gain. A combination of one or more of the following success factors is seen as contributing to the unlocking of static heavy oil resources: sufficiently high and sustained crude oil prices; strategic intent to pursue heavy oil development regardless of short-term setbacks or economic downturns; technology breakthroughs that can reduce bitumen supply and upgrading costs; and strategic alliances. An idealized model for strategic alliances designed to help develop heavy oil resources is illustrated. The advantages and pitfalls involved in strategic alliances are listed along with the characteristics of viable contract agreements for such alliances. Some examples of strategic alliances in engineering and technology development are presented from Alberta experience. 2 figs., 1 tab

  9. Engineering Research, Development and Technology, FY95: Thrust area report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  10. Examining Engineering & Technology Students' Acceptance of Network Virtualization Technology Using the Technology Acceptance Model

    Science.gov (United States)

    Yousif, Wael K.

    2010-01-01

    This causal and correlational study was designed to extend the Technology Acceptance Model (TAM) and to test its applicability to Valencia Community College (VCC) Engineering and Technology students as the target user group when investigating the factors influencing their decision to adopt and to utilize VMware as the target technology. In…

  11. Engineering, Trade, and Technical Cluster. Task Analyses. Drafting and Design Technology, Precision Machining Technology, Electronics Technology.

    Science.gov (United States)

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    Developed in Virginia, this publication contains task analysis guides to support selected tech prep programs that prepare students for careers in the engineering, trade, and technical cluster. Three occupations are profiled: drafting and design technology, precision machining technology, and electronics technology. Each guide contains the…

  12. New Perspectives: Technology Teacher Education and Engineering Design

    OpenAIRE

    Hill, Roger B.

    2006-01-01

    Initiatives to integrate engineering design within the field of technology education are increasingly evident (Lewis, 2005; Wicklein, 2006). Alliances between technology education and engineering were prominent in the development of the Standards for Technological Literacy (International Technology Education Association, 2000), and leaders from both disciplines have expressed support for the outcomes described in the Standards (Bybee, 2000; Council of the National Academy of Engineering, 2000...

  13. Measuring Technology and Mechatronics Automation in Electrical Engineering

    CERN Document Server

    2012-01-01

    Measuring Technology and Mechatronics Automation in Electrical Engineering includes select presentations on measuring technology and mechatronics automation related to electrical engineering, originally presented during the International Conference on Measuring Technology and Mechanatronics Automation (ICMTMA2012). This Fourth ICMTMA, held at Sanya, China, offered a prestigious, international forum for scientists, engineers, and educators to present the state of the art of measuring technology and mechatronics automation research.

  14. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  15. Chapter VIII. Contributions of propagation techniques and genetic modification to breeding - genetic engineering for disease resistance

    Science.gov (United States)

    Genetic engineering offers an opportunity to develop flower bulb crops with resistance to fungal, viral, and bacterial pathogens. Several of the flower bulb crops, Lilium spp., Gladiolus, Zantedeschia, Muscari, Hyacinthus, Narcissus, Ornithogalum, Iris, and Alstroemeria, have been transformed with t...

  16. GENETIC ENGINEERING OF ENHANCED MICROBIAL NITRIFICATION

    Science.gov (United States)

    Experiments were conducted to introduce genetic information in the form of antibiotic or mercuric ion resistance genes into Nitrobacter hamburgensis strain X14. The resistance genes were either stable components of broad host range plasmids or transposable genes on methods for p...

  17. Genetic engineering of sulfur-degrading Sulfolobus

    Energy Technology Data Exchange (ETDEWEB)

    Ho, N.W.Y.

    1991-01-01

    The objectives of the proposed research is to first establish a plasmid-mediated genetic transformation system for the sulfur degrading Sulfolobus, and then to clone and overexpress the genes encoding the organic-sulfur-degrading enzymes from Sulfolobus- as well as from other microorganisms, to develop a Sulfolobus-based microbial process for the removal of both organic and inorganic sulfur from coal.

  18. Genetically engineered mouse models of prostate cancer

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Bergman, Andreas M.; van der Poel, Henk G.

    Objectives: Mouse models of prostate cancer are used to test the contribution of individual genes to the transformation process, evaluate the collaboration between multiple genetic lesions observed in a single tumour, and perform preclinical intervention studies in prostate cancer research. Methods:

  19. Increased production of nutriments by genetically engineered crops.

    Science.gov (United States)

    Sévenier, Robert; van der Meer, Ingrid M; Bino, Raoul; Koops, Andries J

    2002-06-01

    Plants are the basis of human nutrition and have been selected and improved to assure this purpose. Nowadays, new technologies such as genetic engineering and genomics approaches allow further improvement of plants. We describe here three examples for which these techniques have been employed. We introduced the first enzyme involved in fructan synthesis, the sucrose sucrose fructosyltransferase (isolated from Jerusalem artichoke), into sugar beet. The transgenic sugar beet showed a dramatic change in the nature of the accumulated sugar, 90% of the sucrose being converted into fructan. The use of transgenic sugar beet for the production and isolation of fructans will result in a more efficient plant production system of fructans and should promote their use in human food. The second example shows how the over-expression of the key enzyme of flavonoid biosynthesis could increase anti-oxidant levels in tomato. Introduction of a highly expressed chalcone isomerase led to a seventyfold increase of the amount of quercetin glucoside, which is a strong anti-oxidant in tomato. We were also able to modify the essential amino acid content of potato in order to increase its nutritional value. The introduction of a feedback insensitive bacterial gene involved in biosynthesis of aspartate family amino acids led to a sixfold increase of the lysine content. Because the use of a bacterial gene could appear to be controversial, we also introduced a mutated form of the plant key enzyme of lysine biosynthesis (dihydrodipicolinate synthase) in potato. This modification led to a 15 times increase of the lysine content of potato. This increase of the essential amino acid lysine influences the nutritional value of potato, which normally has low levels of several essential amino acids. These three examples show how the metabolism of primary constituents of the plant cell such as sugar or amino acids, but also of secondary metabolites such as flavonoids, can be modified by genetic

  20. Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis

    Science.gov (United States)

    Nan, Song

    2018-03-01

    Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.

  1. TMTI Task 1.6 Genetic Engineering Methods and Detection

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Lenhoff, R; Allen, J; Borucki, M; Vitalis, E; Gardner, S

    2009-12-04

    A large number of GE techniques can be adapted from other microorganisms to biothreat bacteria and viruses. Detection of GE in a microorganism increases in difficulty as the size of the genetic change decreases. In addition to the size of the engineered change, the consensus genomic sequence of the microorganism can impact the difficulty of detecting an engineered change in genomes that are highly variable from strain to strain. This problem will require comprehensive databases of whole genome sequences for more genetically variable biothreat bacteria and viruses. Preliminary work with microarrays for detecting synthetic elements or virulence genes and analytic bioinformatic approaches for whole genome sequence comparison to detect genetic engineering show promise for attacking this difficult problem but a large amount of future work remains.

  2. An Ethical Study on the Uses of Enhancement Genetic Engineering

    Science.gov (United States)

    Kawakita, Koji

    A variety of biomedical technologies are being developed that can be used for purposes other than treating diseases. Such “enhancement technologies” can be used to improve our own and future generation's life-chances. While these technologies can help people in many ways, their use raises important ethical issues. Some arguments for anti-enhancement as well as pro-enhancement seem to rest, however, on shaky foundation. Both company engineers and the general public had better learn more from technological, economical and philosophical histories. For such subjects may provide engineers with less opportunities of technological misuses and more powers of self-esteem in addition to self-control.

  3. Advancing ecological understandings through technological transformations in noninvasive genetics

    Science.gov (United States)

    Albano Beja-Pereira; Rita Oliveira; Paulo C. Alves; Michael K. Schwartz; Gordon Luikart

    2009-01-01

    Noninvasive genetic approaches continue to improve studies in molecular ecology, conservation genetics and related disciplines such as forensics and epidemiology. Noninvasive sampling allows genetic studies without disturbing or even seeing the target individuals. Although noninvasive genetic sampling has been used for wildlife studies since the 1990s, technological...

  4. Engineering, Analysis and Technology FY 1995 Site Support Program Plan

    International Nuclear Information System (INIS)

    Suyama, R.M.

    1994-09-01

    The vision of the Engineering, Analysis and Technology organization is to be recognized as the cost-effective supplier of specialized, integrated, multi-disciplined engineering teams to support Hanford missions. The mission of the Engineering, Analysis and Technology organization is to provide centralized engineering services. These services are focused on supplying technical design, analytical engineering and related support services that support Hanford's environmental restoration mission. These services include engineering analysis, design and development of systems and engineered equipment, supplying multi-disciplined engineering teams to all Hanford programs and project organizations, engineering document release, and site-wide leadership in the development and implementation of engineering standards, engineering practices, and configuration management processes

  5. Possible people, complaints, and the distinction between genetic planning and genetic engineering.

    Science.gov (United States)

    Delaney, James J

    2011-07-01

    Advances in the understanding of genetics have led to the belief that it may become possible to use genetic engineering to manipulate the DNA of humans at the embryonic stage to produce certain desirable traits. Although this currently cannot be done on a large scale, many people nevertheless object in principle to such practices. Most often, they argue that genetic enhancements would harm the children who were engineered, cause societal harms, or that the risks of perfecting the procedures are too high to proceed. However, many of these same people do not have serious objections to what is called 'genetic planning' procedures (such as the selection of sperm donors with desirable traits) that essentially have the same ends. The author calls the view that genetic engineering enhancements are impermissible while genetic planning enhancements are permissible the 'popular view', and argues that the typical reasons people give for the popular view fail to distinguish the two practices. This paper provides a principle that can salvage the popular view, which stresses that offspring from genetic engineering practices have grounds for complaint because they are identical to the pre-enhanced embryo, whereas offspring who are the result of genetic planning have no such grounds.

  6. Practical microcontroller engineering with ARM technology

    CERN Document Server

    Bai, Ying

    2016-01-01

    This book introduces the basic concepts and practical techniques in designing and building ARM® microcontrollers in industrial and commercial applications Practical Microcontroller Engineering with ARM® Technology provides the full scope of components and materials related to ARM® Cortex®–M4 microcontroller systems. Chapters 2 through 9 provide the fundamentals and detailed discussions about ARM® Cortex®-M4 MCU applications with the most widely used peripherals such as flash memory, EEPROM, ADC, DAC, PWM, UART, USB, I2C, SSI, LCD and GPTM. The remaining chapters cover advanced and optional peripherals such as Control Area Network (CAN), Quadrature Encoder Interface (QEI), Analog Comparators (ACMP) and detailed discussions of Floating Point Unit (FPU) and ARM® Cortex®-M4 Memory Protection Unit (MPU).

  7. International Conference on Intelligent Technologies and Engineering System (ICITES 2012)

    CERN Document Server

    Huang, Yi-Cheng; Intelligent Technologies and Engineering Systems

    2013-01-01

    This book concentrates on intelligent technologies as it relates to engineering systems. The book covers the following topics: networking, signal processing, artificial intelligence, control and software engineering, intelligent electronic circuits and systems, communications, and materials and mechanical engineering. The book is a collection of original papers that have been reviewed by technical editors. These papers were presented at the International Conference on Intelligent Technologies and Engineering Systems, held Dec. 13-15, 2012.

  8. Genetically engineered plants get a green light.

    Science.gov (United States)

    Norman, Colin

    1983-10-07

    The National Institutes of Health's Recombinant DNA Advisory Committee has given conditional approval to a proposal by the Cetus Madison Corporation to field test plants that have been genetically manipulated to resist some diseases. The committee made no recommendation, however, on another field test proposed by BioTechnica International Inc. Both proposals had been challenged by a coalition of environmental groups led by Jeremy Rifkin, who has now filed a freedom of information request to NIH asking for documents pertaining to their health and safety aspects.

  9. Genetic engineering: Rifkin wins interim injunction.

    Science.gov (United States)

    Budiansky, S

    A University of California field test of genetically altered bacteria has been halted by federal district court Judge John Sirica. His order is the result of a suit filed by Jeremy Rifkin challenging approval of the experiment by the Recombinant DNA Advisory Committee (RAC) of the National Institutes of Health. RAC has also been enjoined from considering similar NIH-funded trials while the case is pending. Rifkin claims that NIH failed to file environmental impact statements on the research. Sirica's preliminary ruling suggests that the final decision will be in Rifkin's favor, but the judge emphasized that he is weighing only the legal issues involved, not the scientific ones.

  10. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450

  11. Genetic engineering of T cell specificity

    NARCIS (Netherlands)

    R.A. Willemsen (Ralph)

    2004-01-01

    textabstractThe development of new strategies for the treatment of cancer and infectious diseases have primarily been based on advances in basic biology. Technologies that evolved from our understanding of the immune system include monoclonal antibody production, isolation and cloning of immune

  12. Divulgative Discourse in Genetic Engineering. Pragmatic-Semantic Analysis

    Directory of Open Access Journals (Sweden)

    Alicia Pineda

    2010-08-01

    Full Text Available The objectives of this research are to identify, describe and explain the lexical, semantic and practical strategies and resources utilized in producing divulgative discourse related to genetic engineering. The applied methodology is qualitative and related to discourse analysis, which makes it possible, by using abduction, to reveal particularities of the message production process and its links with the intentionality of the emitter. The most important conclusions of the study reveal: 1 that the discourse analyzed as having a notable similarity to the specialized discourse of biology (traditional and molecular reiterates the presence of lexical, semantic and discursive strategies and resources connected with that discursive practice. 2 An adjustment exists between the use of these strategies and resources and the emitter’s intentionality: the objectives of informing, persuading and demonstrating configure an asymmetrical communicative relationship between the emitter and the receiver.  3 Methodologies provided by the pragmatic-semantic analysis that of constructing conceptual networks are appropriate for producing messages about science and technology with a low conceptual density, and therefore, with a greater possibility of being understood by the average mass receiver.

  13. International Conference on Information Technology and Agricultural Engineering (ICITAE 2011)

    CERN Document Server

    Sambath, Sabo; Information Technology and Agricultural Engineering

    2012-01-01

    This volume comprises the papers from 2011 International Conference on Information Technology and Agricultural Engineering (ICITAE 2011).  2011 International Conference on Information Technology and Agricultural Engineering (ICITAE 2011) has been held in Sanya, China, December 1-2, 2011. All the papers have been peer reviewed by the selected experts. These papers represent the latest development in the field of materials manufacturing technology, spanning from the fundamentals to new technologies and applications. Specially, these papers cover the topics of Information Technology and Agricultural Engineering. This book provides a greatly valuable reference for researchers in the field of Information Technology and Agricultural Engineering who wish to further understand the underlying mechanisms and create innovative and practical techniques, systems and processes. It should also be particularly useful for engineers in information technology and agriculture who are responsible for the efficient and effective ...

  14. Current development in genetic engineering strategies of Bacillus species

    Science.gov (United States)

    2014-01-01

    The complete sequencing and annotation of the genomes of industrially-important Bacillus species has enhanced our understanding of their properties, and allowed advances in genetic manipulations in other Bacillus species. Post-genomic studies require simple and highly efficient tools to enable genetic manipulation. Here, we summarize the recent progress in genetic engineering strategies for Bacillus species. We review the available genetic tools that have been developed in Bacillus species, as well as methods developed in other species that may also be applicable in Bacillus. Furthermore, we address the limitations and challenges of the existing methods, and discuss the future research prospects in developing novel and useful tools for genetic modification of Bacillus species. PMID:24885003

  15. Application of industrial CT in reverse engineering technology

    International Nuclear Information System (INIS)

    Fang Liyong; Li Hui; Bai Jinping; Li Bailin

    2013-01-01

    The basic principle and basic steps of reverse engineering technology based on industrial CT are described. The recent research progresses and situation at home and abroad of reverse engineering technology based on industrial CT image are respectively described, analyzed and summarized from two routes which are surface segmentation and volume segmentation. An example of conch is used to exhibit the results from the two routes in reverse engineering technology based on industrial CT image. Finally, some difficulties in application and the future developments of reverse engineering technology based on industrial CT are prospected. (authors)

  16. Performance Engineering Technology for Scientific Component Software

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D.

    2007-05-08

    Large-scale, complex scientific applications are beginning to benefit from the use of component software design methodology and technology for software development. Integral to the success of component-based applications is the ability to achieve high-performing code solutions through the use of performance engineering tools for both intra-component and inter-component analysis and optimization. Our work on this project aimed to develop performance engineering technology for scientific component software in association with the DOE CCTTSS SciDAC project (active during the contract period) and the broader Common Component Architecture (CCA) community. Our specific implementation objectives were to extend the TAU performance system and Program Database Toolkit (PDT) to support performance instrumentation, measurement, and analysis of CCA components and frameworks, and to develop performance measurement and monitoring infrastructure that could be integrated in CCA applications. These objectives have been met in the completion of all project milestones and in the transfer of the technology into the continuing CCA activities as part of the DOE TASCS SciDAC2 effort. In addition to these achievements, over the past three years, we have been an active member of the CCA Forum, attending all meetings and serving in several working groups, such as the CCA Toolkit working group, the CQoS working group, and the Tutorial working group. We have contributed significantly to CCA tutorials since SC'04, hosted two CCA meetings, participated in the annual ACTS workshops, and were co-authors on the recent CCA journal paper [24]. There are four main areas where our project has delivered results: component performance instrumentation and measurement, component performance modeling and optimization, performance database and data mining, and online performance monitoring. This final report outlines the achievements in these areas for the entire project period. The submitted progress

  17. Why people like genetically engineered drugs but do not like genetic engineering

    International Nuclear Information System (INIS)

    Bruggemann, A.; Jungermann, H.

    1998-01-01

    Full test of publication follows: people seem to have difficulties to form a consistent opinion about biotechnology. They often express negative attitudes when asked about 'biotechnology', but they express positive attitudes when asked about specific 'applications of biotechnology'. This discrepancy is irritating if the specific applications are considered to constitute biotechnology. And it is significant because it raises doubts about the meaning of responses in surveys: when we ask for evaluations of applications, can we infer from the responses an overall opinion about biotechnology? And when we ask or overall judgments, what do the responses tell us about the acceptance or rejection of specific biotechnological products? We assume that evaluations of risks and benefits are influenced by the level of concreteness with which biotechnology is presented. In an empirical study, we distinguished three levels: bio-technology a) 'as such', i.e. as a technology, b) as domains of application, e.g. agriculture, and c) as products or effects, e.g. genetically manipulated tomatoes. Benefits were represented by pro-arguments, supposedly. more important for the formation of a judgment on the level of concrete products. Risks were represented by contra-arguments, supposedly more important on an abstract level of presentation than on a concrete level. 99 subjects read statements about biotechnology resp. biotechnological applications, together with pro-arguments and contra-arguments. They evaluated the items on 5-point scales with respect to weight and personal relevance of pros and cons. The data show the hypothesized relation between the level of concreteness and the importance of risks and benefits, but the relation is domain specific: in the pharmaceutical domain, benefits are more important on the concrete level of presentation, and risks are more important on the abstract level. In the agricultural domain, however, the risks are more important on the concrete level, and

  18. Technology of interdisciplinary open-ended designing in engineering education

    Science.gov (United States)

    Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.

    2017-11-01

    Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.

  19. A Simple Interactive Introduction to Teaching Genetic Engineering

    Science.gov (United States)

    Child, Paula

    2013-01-01

    In the UK, at key stage 4, students aged 14-15 studying GCSE Core Science or Unit 1 of the GCSE Biology course are required to be able to describe the process of genetic engineering to produce bacteria that can produce insulin. The simple interactive introduction described in this article allows students to consider the problem, devise a model and…

  20. Genetic engineering of syringyl-enriched lignin in plants

    Science.gov (United States)

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  1. American chestnut: A test case for genetic engineering?

    Science.gov (United States)

    Leila. Pinchot

    2014-01-01

    The thought of genetically engineered (GE) trees might conjure images of mutant trees with unnatural and invasive tendencies, but there is much more to the story. GE trees are a new reality that, like it or not, will probably be part of the future of forestry. The basic inclination of most Forest Guild stewards is to reject GE trees as violating our principle to...

  2. Developing tools to genetically engineer the microalga Nannochloropsis

    OpenAIRE

    Nguyen, Vy

    2016-01-01

    Genetic manipulation is an important tool to engineer organisms for biotechnological applications. While directed gene replacement has been established in many bacteria, only few eukaryotic systems are known to allow targeted gene insertion into the nuclear genome. Recently directed nuclear gene insertion has been reported in the micro alga Nannochloropsis.

  3. Human genetic engineering and social justice in South Africa ...

    African Journals Online (AJOL)

    The realities of social injustice in the present South African context, with its great and growing gap between rich and poor and unequal distribution of wealth and resources, are also acutely visible in the health-care sector. Genetic engineering would lead to some children having the cards stacked overwhelmingly in their ...

  4. EU member states' voting for authorizing genetically engineered crops

    NARCIS (Netherlands)

    Smart, Richard D.; Blum, Matthias; Wesseler, Justus

    2015-01-01

    Several authors suggest a gridlock of the European Union's (EU's) approval process for genetically engineered (GE) crops. We analyse the voting behaviour of EU Member States (MSs) for voting results from 2003 to 2015 on the approval of GE crops to test for a gridlock; no reliable data are

  5. Somatic structural rearrangements in genetically engineered mouse mammary tumors

    NARCIS (Netherlands)

    Varela, I.; Klijn, C.N.; Stephens, P.J.; Mudie, L.J.; Stebbings, L.; Galappaththige, D.; Van der Gulden, H.; Schut, E.; Klarenbeek, S.; Campbell, P.J.; Wessels, L.F.A.; Stratton, M.R.; Jonkers, J.; Futreal, P.A.; Adams, D.J.

    2010-01-01

    Background: Here we present the first paired-end sequencing of tumors from genetically engineered mouse models of cancer to determine how faithfully these models recapitulate the landscape of somatic rearrangements found in human tumors. These were models of Trp53-mutated breast cancer, Brca1- and

  6. University Students' Knowledge and Attitude about Genetic Engineering

    Science.gov (United States)

    Bal, Senol; Samanci, Nilay Keskin; Bozkurt, Orçun

    2007-01-01

    Genetic engineering and biotechnology made possible of gene transfer without discriminating microorganism, plant, animal or human. However, although these scientific techniques have benefits, they cause arguments because of their ethical and social impacts. The arguments about ethical ad social impacts of biotechnology made clear that not only…

  7. Intrinsic Value and the Genetic Engineering of Animals.

    NARCIS (Netherlands)

    Vries, R.B.M. de

    2008-01-01

    The concept of intrinsic value is often invoked to articulate objections to the genetic engineering of animals, particularly those objections that are not directed at the negative effects the technique might have on the health and welfare of the modified animals. However, this concept was not

  8. Intrinsic Value and the Genetic Engineering of Animals

    NARCIS (Netherlands)

    Vries, R.B.M. de

    2008-01-01

    The concept of intrinsic value is often invoked to articulate objections to the genetic engineering of animals, particularly those objections that are not directed at the negative effects the technique might have on the health and welfare of the modified animals. However, this concept was not

  9. human genetic engineering and social justice in south africa

    African Journals Online (AJOL)

    engineering does take place at present in South Africa, modifying the genetic make-up of human embryos is prohibited. ... exists that empathy and concern for these diseases could disappear and that they could later become ... increase the intelligence of their children as well as that of all their subsequent descendants, then ...

  10. Gender and Health Impacts of Genetically Engineered Crops in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    For example, genetically engineered (GE) crops can help increase agricultural productivity, enhance the nutritional value of food, reduce the environmental impact of agriculture, and promote market competitiveness. But along with the benefits come potential risks to health, the environment, livelihoods and farming systems.

  11. Genetic Engineering--A Lesson on Bioethics for the Classroom.

    Science.gov (United States)

    Armstrong, Kerri; Weber, Kurt

    1991-01-01

    A unit designed to cover the topic of genetic engineering and its ethical considerations is presented. Students are expected to learn the material while using a debate format. A list of objectives for the unit, the debate format, and the results from an opinion questionnaire are described. (KR)

  12. International conference on Advances in Engineering Technologies and Physical Science

    CERN Document Server

    Ao, Sio-Iong; Rieger, Burghard; IAENG Transactions on Engineering Technologies : Special Edition of the World Congress on Engineering and Computer Science 2011

    2013-01-01

    This volume contains thirty revised and extended research articles written by prominent researchers participating in an international conference in engineering technologies and physical science and applications. The conference serves as good platforms for the engineering community to meet with each other and to exchange ideas. The conference has also struck a balance between theoretical and application development. The conference is truly international meeting with a high level of participation from many countries. Topics covered include chemical engineering, circuits, communications systems, control theory, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.

  13. Effects of genetic engineering on the pharmacokinetics of antibodies

    International Nuclear Information System (INIS)

    Colcher, D.; Goel, A.; Pavlinkova, G.; Beresford, G.; Booth, B.; Batra, S.K.

    1999-01-01

    Monoclonal antibodies (MAbs) may be considered 'magic bullets' due to their ability to recognize and eradicate malignant cells. MAbs, however, have practical limitations for their rapid application in the clinics. The structure of the antibody molecules can be engineered to modify functional domains such as antigen-binding sites and/or effectors functions. Advanced in genetic engineering have provided rapid progress the development of new immunoglobulin constructs of MAbs with defined research and therapeutic application. Recombinant antibody constructs are being engineered, such as human mouse chimeric, domain-dispositioned, domain-deleted, humanized and single-chain Fv fragments. Genetically-engineered antibodies differ in size and rate of catabolism. Pharmacokinetics studies show that the intact IgG (150 kD), enzymatically derived fragments Fab' (50 kD) and single chain Fv (28 kD) have different clearance rates. These antibody forms clear 50% from the blood pool in 2.1 days, 30 minutes and 10 minutes, respectively. Genetically-engineered antibodies make a new class of immunotherapeutic tracers for cancer treatment

  14. Genetic engineering, a hope for sustainable biofuel production: review

    Directory of Open Access Journals (Sweden)

    Sudip Paudel

    2014-06-01

    Full Text Available The use of recently developed genetic engineering tools in combination with organisms that have the potential to produce precursors for the production of biodiesel, promises a sustainable and environment friendly energy source. Enhanced lipid production in wild type and/or genetically engineered organisms can offer sufficient raw material for industrial transesterification of plant-based triglycerides. Bio-diesel, produced with the help of genetically modified organisms, might be one of the best alternatives to fossil fuels and to mitigate various environmental hazards. DOI: http://dx.doi.org/10.3126/ije.v3i2.10644 International Journal of the Environment Vol.3(2 2014: 311-323

  15. Infusing Software Engineering Technology into Practice at NASA

    Science.gov (United States)

    Pressburger, Thomas; Feather, Martin S.; Hinchey, Michael; Markosia, Lawrence

    2006-01-01

    We present an ongoing effort of the NASA Software Engineering Initiative to encourage the use of advanced software engineering technology on NASA projects. Technology infusion is in general a difficult process yet this effort seems to have found a modest approach that is successful for some types of technologies. We outline the process and describe the experience of the technology infusions that occurred over a two year period. We also present some lessons from the experiences.

  16. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  17. The Technology of Forming of Innovative Content for Engineering Education

    Science.gov (United States)

    Kayumova, Lilija A.; Savva, Lubov I.; Soldatchenko, Aleksandr L.; Sirazetdinov, Rustem M.; Akhmetov, Linar G.

    2016-01-01

    The relevance of the study is conditioned by the modernization of engineering education aimed at specialists' training to solve engineering and economic problems effectively. The goal of the paper is to develop the technology of the innovative content's formation for engineering education. The leading method to the study of this problem is a…

  18. Genetic engineering and sustainable production of ornamentals: current status and future directions.

    Science.gov (United States)

    Lütken, Henrik; Clarke, Jihong Liu; Müller, Renate

    2012-07-01

    Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding.

  19. Engineering genetic circuit interactions within and between synthetic minimal cells

    Science.gov (United States)

    Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.

    2017-05-01

    Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.

  20. Introduction to the workshop on technology transfer in software engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roelf J.

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  1. Toys for Tots in Your Technology and Engineering Program

    Science.gov (United States)

    Berkeihiser, Mike

    2016-01-01

    Most technology and engineering (T&E) classes are elective, so teachers are always looking for ways to market programs, engage students, and remind administrators and school board members about the good things T&E teachers do with and for kids. In this article, the Unionville High School (PA) Technology and Engineering Department describes…

  2. Emerging methods, technologies and process management in software engineering

    CERN Document Server

    Ferrucci, Filomena; Tortora, Genny; Tucci, Maurizio

    2007-01-01

    A high-level introduction to new technologies andmethods in the field of software engineering Recent years have witnessed rapid evolution of software engineering methodologies, and until now, there has been no single-source introduction to emerging technologies in the field.

  3. Hybrid orientation technology and strain engineering for ultra-high ...

    Indian Academy of Sciences (India)

    Hybrid orientation technology and strain engineering for ultra-high speed MOSFETs. T K MAITI and C K MAITI. ∗. Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology,. Kharagpur 721 302, India. MS received 27 March 2012. Abstract. We report here RF MOSFET performance ...

  4. Metabolic Engineering: Techniques for analysis of targets for genetic manipulations

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1998-01-01

    enzymes. Despite the prospect of obtaining major improvement through metabolic engineering, this approach is, however, not expected to completely replace the classical approach to strain improvement-random mutagenesis followed by screening. Identification of the optimal genetic changes for improvement......Metabolic engineering has been defined as the purposeful modification of intermediary metabolism using recombinant DNA techniques. With this definition metabolic engineering includes: (1) inserting new pathways in microorganisms with the aim of producing novel metabolites, e.g., production...... of polyketides by Streptomyces; (2) production of heterologous peptides, e.g., production of human insulin, erythropoitin, and tPA; and (3) improvement of both new and existing processes, e.g., production of antibiotics and industrial enzymes. Metabolic engineering is a multidisciplinary approach, which involves...

  5. Genetic Engineering of Algae for Enhanced Biofuel Production ▿

    Science.gov (United States)

    Radakovits, Randor; Jinkerson, Robert E.; Darzins, Al; Posewitz, Matthew C.

    2010-01-01

    There are currently intensive global research efforts aimed at increasing and modifying the accumulation of lipids, alcohols, hydrocarbons, polysaccharides, and other energy storage compounds in photosynthetic organisms, yeast, and bacteria through genetic engineering. Many improvements have been realized, including increased lipid and carbohydrate production, improved H2 yields, and the diversion of central metabolic intermediates into fungible biofuels. Photosynthetic microorganisms are attracting considerable interest within these efforts due to their relatively high photosynthetic conversion efficiencies, diverse metabolic capabilities, superior growth rates, and ability to store or secrete energy-rich hydrocarbons. Relative to cyanobacteria, eukaryotic microalgae possess several unique metabolic attributes of relevance to biofuel production, including the accumulation of significant quantities of triacylglycerol; the synthesis of storage starch (amylopectin and amylose), which is similar to that found in higher plants; and the ability to efficiently couple photosynthetic electron transport to H2 production. Although the application of genetic engineering to improve energy production phenotypes in eukaryotic microalgae is in its infancy, significant advances in the development of genetic manipulation tools have recently been achieved with microalgal model systems and are being used to manipulate central carbon metabolism in these organisms. It is likely that many of these advances can be extended to industrially relevant organisms. This review is focused on potential avenues of genetic engineering that may be undertaken in order to improve microalgae as a biofuel platform for the production of biohydrogen, starch-derived alcohols, diesel fuel surrogates, and/or alkanes. PMID:20139239

  6. 76 FR 8707 - Syngenta Seeds, Inc.; Determination of Nonregulated Status for Corn Genetically Engineered To...

    Science.gov (United States)

    2011-02-15

    ... Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There... genetic engineering that are plant pests or that there is reason to believe are plant pests. Such...

  7. 76 FR 78232 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a...

    Science.gov (United States)

    2011-12-16

    ... Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant Pests... environment) of organisms and products altered or produced through genetic engineering that are plant pests or...

  8. Mechanics of materials an introduction to engineering technology

    CERN Document Server

    Ghavami, Parviz

    2015-01-01

    This book, framed in the processes of engineering analysis and design, presents concepts in mechanics of materials for students in two-year or four-year programs in engineering technology, architecture, and building construction, as well as for students in vocational schools and technical institutes. Using the principles and laws of mechanics, physics, and the fundamentals of engineering, Mechanics of Materials: An Introduction for Engineering Technology will help aspiring and practicing engineers and engineering technicians from across disciplines—mechanical, civil, chemical, and electrical—apply concepts of engineering mechanics for analysis and design of materials, structures, and machine components. The book is ideal for those seeking a rigorous, algebra/trigonometry-based text on the mechanics of materials. This book also: ·       Elucidates concepts of engineering mechanics in materials, including stress and strain, force systems on structures, moment of inertia, and shear and bending moments...

  9. Genetic Engineering and Human Mental Ecology: Interlocking Effects and Educational Considerations.

    Science.gov (United States)

    Affifi, Ramsey

    2017-01-01

    This paper describes some likely semiotic consequences of genetic engineering on what Gregory Bateson has called "the mental ecology" (1979) of future humans, consequences that are less often raised in discussions surrounding the safety of GMOs (genetically modified organisms). The effects are as follows: an increased 1) habituation to the presence of GMOs in the environment, 2) normalization of empirically false assumptions grounding genetic reductionism, 3) acceptance that humans are capable and entitled to decide what constitutes an evolutionary improvement for a species, 4) perception that the main source of creativity and problem solving in the biosphere is anthropogenic. Though there are some tensions between them, these effects tend to produce self-validating webs of ideas, actions, and environments, which may reinforce destructive habits of thought. Humans are unlikely to safely develop genetic technologies without confronting these escalating processes directly. Intervening in this mental ecology presents distinct challenges for educators, as will be discussed.

  10. Commodifying animals: ethical issues in genetic engineering of animals.

    Science.gov (United States)

    Almond, B

    2000-03-01

    The genetic modification of living beings raises special ethical concerns which go beyond general discussion of animal rights or welfare. Although the goals may be similar, biotechnology has accelerated the process of modification of types traditionally carried out by cross-breeding. These changes are discussed in relation to two areas: biomedicine, and animal husbandry. Alternative ethical approaches are reviewed, and it is argued that the teleological thesis underlying virtue ethics has special relevance here. The case for and the case against genetic engineering and patenting of life-forms are examined, and conclusions are drawn which favour regulation, caution and respect for animals and animal species.

  11. Genetic design automation: engineering fantasy or scientific renewal?

    Science.gov (United States)

    Lux, Matthew W; Bramlett, Brian W; Ball, David A; Peccoud, Jean

    2012-02-01

    The aim of synthetic biology is to make genetic systems more amenable to engineering, which has naturally led to the development of computer-aided design (CAD) tools. Experimentalists still primarily rely on project-specific ad hoc workflows instead of domain-specific tools, which suggests that CAD tools are lagging behind the front line of the field. Here, we discuss the scientific hurdles that have limited the productivity gains anticipated from existing tools. We argue that the real value of efforts to develop CAD tools is the formalization of genetic design rules that determine the complex relationships between genotype and phenotype. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A engenharia genética Genetic engineering

    OpenAIRE

    José Alberto Neves Candeias

    1991-01-01

    São abordados os progressos havidos com as técnicas de engenharia genética, capazes de alterar o potencial genético de um organismo, quer pela introdução, quer pela supressão de novos genes estruturais. São mencionadas algumas das aplicações em geral e, em particular, possibilidades de uso no campo da medicina. É feita uma análise crítica dos benefícios e riscos envolvidos.This paper deals with the progress made in genetic engineering techniques, capable of altering the genetic potential of a...

  13. Genetic engineering possibilities for CELSS: A bibliography and summary of techniques

    Science.gov (United States)

    Johnson, E. J.

    1982-01-01

    A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.

  14. Pertussis toxins, other antigens become likely targets for genetic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Marwick, C.

    1990-11-14

    Genetically engineered pertussis vaccines have yet to be fully tested clinically. But early human, animal, and in vitro studies indicate effectiveness in reducing toxic effects due to Bordetella pertussis. The licensed pertussis vaccines consists of inactivated whole cells of the organism. Although highly effective, they have been associated with neurologic complications. While the evidence continues to mount that these complications are extremely rare, if they occur at all, it has affected the public's acceptance of pertussis immunization.

  15. Application of Genetic Engineering for Chromium Removal from Industrial Wastewater

    OpenAIRE

    N. K. Srivastava; M. K. Jha; I. D. Mall; Davinder Singh

    2010-01-01

    The treatment of the industrial wastewater can be particularly difficult in the presence of toxic compounds. Excessive concentration of Chromium in soluble form is toxic to a wide variety of living organisms. Biological removal of heavy metals using natural and genetically engineered microorganisms has aroused great interest because of its lower impact on the environment. Ralston metallidurans, formerly known as Alcaligenes eutrophus is a LProteobacterium colonizing indus...

  16. Genetically engineered rice. The source of β-carotene

    Directory of Open Access Journals (Sweden)

    Karol Terlecki

    2014-04-01

    Full Text Available β-carotene is a precursor of vitamin A. It is converted to vitamin A in the humans intestine by the β-carotene-15,15’-monooxygenase. Vitamin A is essential to support vision, as an antioxidant it protects the body from free radicals, it helps to integrate the immune system, as well as takes part in cellular differentiation and proliferation. Vitamin A deficiency is a major public health problem especially among developing countries. Nyctalopia, commonly known as „Night Blindness” is one of the major symptoms of Vitamin A deficiency (VAD. Plants such as apricots, broccoli, carrots, and sweet potatoes are rich in β-carotene. Some of the plants are characterized by a higher content of provitamin-A. Among vegetables rich sources of β-carotene are: carrots, pumpkin, spinach, lettuce, green peas, tomatoes, watercress, broccoli and parsley leaves. Amongst fruits the highest content of β-carotene is in apricot, cherry, sweet cherry, plum, orange and mango. The aim of the present study was to analyze available literature data of increasing the content of β-carotene in genetically engineered rice. The genetically modified cultivar contains additional genes: PSY and CRTI thanks to which rice seed endosperm contains β-carotene. Genetically engineered rice with β-carotene is an effective source of vitamin A, it contains approximately 30 μg β-carotene per 1 g. Fortunately some of the advantages of Genetically Modified Food give an opportunity to reduce VAD worldwide, by introducing the rice which has been genetically engineered to be rich in β-carotene. The popularity of this plant as an element of nutrition is simultaneously a source of vitamin A.

  17. Small Engine Technology (SET) - Task 14 Axisymmetric Engine Simulation Environment

    Science.gov (United States)

    Miller, Max J.

    1999-01-01

    As part of the NPSS (Numerical Propulsion Simulation System) project, NASA Lewis has a goal of developing an U.S. industry standard for an axisymmetric engine simulation environment. In this program, AlliedSignal Engines (AE) contributed to this goal by evaluating the ENG20 software and developing support tools. ENG20 is a NASA developed axisymmetric engine simulation tool. The project was divided into six subtasks which are summarized below: Evaluate the capabilities of the ENG20 code using an existing test case to see how this procedure can capture the component interactions for a full engine. Link AE's compressor and turbine axisymmetric streamline curvature codes (UD0300M and TAPS) with ENG20, which will provide the necessary boundary conditions for an ENG20 engine simulation. Evaluate GE's Global Data System (GDS), attempt to use GDS to do the linking of codes described in Subtask 2 above. Use a turbofan engine test case to evaluate various aspects of the system, including the linkage of UD0300M and TAPS with ENG20 and the GE data storage system. Also, compare the solution results with cycle deck results, axisymmetric solutions (UD0300M and TAPS), and test data to determine the accuracy of the solution. Evaluate the order of accuracy and the convergence time for the solution. Provide a monthly status report and a final formal report documenting AE's evaluation of ENG20. Provide the developed interfaces that link UD0300M and TAPS with ENG20, to NASA. The interface that links UD0300M with ENG20 will be compatible with the industr,, version of UD0300M.

  18. 3rd International Conference on Intelligent Technologies and Engineering Systems

    CERN Document Server

    2016-01-01

    This book includes the original, peer reviewed research from the 3rd International Conference on Intelligent Technologies and Engineering Systems (ICITES2014), held in December, 2014 at Cheng Shiu University in Kaohsiung, Taiwan. Topics covered include: Automation and robotics, fiber optics and laser technologies, network and communication systems, micro and nano technologies, and solar and power systems. This book also Explores emerging technologies and their application in a broad range of engineering disciplines Examines fiber optics and laser technologies Covers biomedical, electrical, industrial, and mechanical systems Discusses multimedia systems and applications, computer vision and image & video signal processing.

  19. Intelligent engineering and technology for nuclear power plant operation

    International Nuclear Information System (INIS)

    Wang, P.P.; Gu, X.

    1996-01-01

    The Three-Mile-Island accident has drawn considerable attention by the engineering, scientific, management, financial, and political communities as well as society at large. This paper surveys possible causes of the accident studied by various groups. Research continues in this area with many projects aimed at specifically improving the performance and operation of a nuclear power plant using the contemporary technologies available. In addition to the known cause of the accident and suggest a strategy for coping with these problems in the future. With the increased use of intelligent methodologies called computational intelligence or soft-computing, a substantially larger collection of powerful tools are now available for our designers to use in order to tackle these sensitive and difficult issues. These intelligent methodologies consists of fuzzy logic, genetic algorithms, neural networks, artificial intelligence and expert systems, pattern recognition, machine intelligence, and fuzzy constraint networks. Using the Three-Mile-Island experience, this paper offers a set of specific recommendations for future designers to take advantage of the powerful tools of intelligent technologies that we are now able to master and encourages the adoption of a novel methodology called fuzzy constraint network

  20. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  1. Reusable rocket engine preventive maintenance scheduling using genetic algorithm

    International Nuclear Information System (INIS)

    Chen, Tao; Li, Jiawen; Jin, Ping; Cai, Guobiao

    2013-01-01

    This paper deals with the preventive maintenance (PM) scheduling problem of reusable rocket engine (RRE), which is different from the ordinary repairable systems, by genetic algorithm. Three types of PM activities for RRE are considered and modeled by introducing the concept of effective age. The impacts of PM on all subsystems' aging processes are evaluated based on improvement factor model. Then the reliability of engine is formulated by considering the accumulated time effect. After that, optimization model subjected to reliability constraint is developed for RRE PM scheduling at fixed interval. The optimal PM combination is obtained by minimizing the total cost in the whole life cycle for a supposed engine. Numerical investigations indicate that the subsystem's intrinsic reliability characteristic and the improvement factor of maintain operations are the most important parameters in RRE's PM scheduling management

  2. Hybrid orientation technology and strain engineering for ultra-high ...

    Indian Academy of Sciences (India)

    We report here RF MOSFET performance in sub-45-nm hybrid orientation CMOS technology. Based on the combination of hybrid orientation technology (HOT) and process-induced local strain engineering,MOSFET RF performance is investigated using CAD (TCAD) technology. Transistor optimization on (100) substrate ...

  3. 1st International Conference on Data Engineering and Communication Technology

    CERN Document Server

    Bhateja, Vikrant; Joshi, Amit

    2017-01-01

    This two-volume book contains research work presented at the First International Conference on Data Engineering and Communication Technology (ICDECT) held during March 10–11, 2016 at Lavasa, Pune, Maharashtra, India. The book discusses recent research technologies and applications in the field of Computer Science, Electrical and Electronics Engineering. The aim of the Proceedings is to provide cutting-edge developments taking place in the field data engineering and communication technologies which will assist the researchers and practitioners from both academia as well as industry to advance their field of study.

  4. Proceedings of the 2012 International Conference on Information Technology and Software Engineering : Software Engineering & Digital Media Technology

    CERN Document Server

    Cai, Guoqiang; Liu, Weibin; Xing, Weiwei

    2013-01-01

    Proceedings of the 2012 International Conference on Information Technology and Software Engineering presents selected articles from this major event, which was held in Beijing, December 8-10, 2012. This book presents the latest research trends, methods and experimental results in the fields of information technology and software engineering, covering various state-of-the-art research theories and approaches. The subjects range from intelligent computing to information processing, software engineering, Web, unified modeling language (UML), multimedia, communication technologies, system identification, graphics and visualizing, etc. The proceedings provide a major interdisciplinary forum for researchers and engineers to present the most innovative studies and advances, which can serve as an excellent reference work for researchers and graduate students working on information technology and software engineering. Prof. Wei Lu, Dr. Guoqiang Cai, Prof. Weibin Liu and Dr. Weiwei Xing all work at Beijing Jiaotong Uni...

  5. Application of genetically engineered microbial whole-cell biosensors for combined chemosensing.

    Science.gov (United States)

    He, Wei; Yuan, Sheng; Zhong, Wen-Hui; Siddikee, Md Ashaduzzaman; Dai, Chuan-Chao

    2016-02-01

    The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.

  6. Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges.

    Science.gov (United States)

    Meyers, Benjamin; Zaltsman, Adi; Lacroix, Benoît; Kozlovsky, Stanislav V; Krichevsky, Alexander

    2010-01-01

    Plant genetic engineering is one of the key technologies for crop improvement as well as an emerging approach for producing recombinant proteins in plants. Both plant nuclear and plastid genomes can be genetically modified, yet fundamental functional differences between the eukaryotic genome of the plant cell nucleus and the prokaryotic-like genome of the plastid will have an impact on key characteristics of the resulting transgenic organism. So, which genome, nuclear or plastid, to transform for the desired transgenic phenotype? In this review we compare the advantages and drawbacks of engineering plant nuclear and plastid genomes to generate transgenic plants with the traits of interest, and evaluate the pros and cons of their use for different biotechnology and basic research applications, ranging from generation of commercial crops with valuable new phenotypes to 'bioreactor' plants for large-scale production of recombinant proteins to research model plants expressing various reporter proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Evolving technologies drive the new roles of Biomedical Engineering.

    Science.gov (United States)

    Frisch, P H; St Germain, J; Lui, W

    2008-01-01

    Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.

  8. Off reactor testings. Technological engineering applicative research

    International Nuclear Information System (INIS)

    Doca, Cezar

    2001-01-01

    By the end of year 2000 over 400 nuclear electro-power units were operating world wide, summing up a 350,000 MW total capacity, with a total production of 2,300 TWh, representing 16% of the world's electricity production. Other 36 units, totalizing 28,000 MW, were in construction, while a manifest orientation towards nuclear power development was observed in principal Asian countries like China, India, Japan and Korea. In the same world's trend one find also Romania, the Cernavoda NPP Unit 1 generating electrical energy into the national system beginning with 2 December 1996. Recently, the commercial contract was completed for finishing the Cernavoda NPP Unit 2 and launching it into operation by the end of year 2004. An important role in developing the activity of research and technological engineering, as technical support for manufacturing the CANDU type nuclear fuel and supplying with equipment the Cernavoda units, was played by the Division 7 TAR of the INR Pitesti. Qualification testings were conducted for: - off-reactor CANDU type nuclear fuel; - FARE tools, pressure regulators, explosion proof panels; channel shutting, as well as functional testing for spare pushing facility as a first step in the frame of the qualification tests for the charging/discharging machine (MID) 4 and 5 endings. Testing facilities are described, as well as high pressure hot/cool loops, measuring chains, all of them fulfilling the requirements of quality assurance. The nuclear fuel off-reactor tests were carried out to determine: strength; endurance; impact, pressure fall and wear resistance. For Cernavoda NPP equipment testings were carried out for: the explosion proof panels, pressure regulators, behaviour to vibration and wear of the steam generation tubings, effects of vibration upon different electronic component, channel shutting (for Cernavoda Unit 2), MID operating at 300 and 500 cycles. A number of R and D programs were conducted in the frame of division 7 TAR of INR

  9. Use of Soft Computing Technologies For Rocket Engine Control

    Science.gov (United States)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  10. Requirements Engineering and Design Technology Report

    National Research Council Canada - National Science Library

    Ganska, Ralph

    1995-01-01

    This report reviews the STSC's recommendations for the selection and usage of software engineering products aimed at the requirements analysis and high-level design portions of the software lifecycle...

  11. Integration of basic electromagnetism and engineering technology

    OpenAIRE

    Bentz, Sigurd

    1995-01-01

    The theory of electromagnetism is taught as a part of most contemporary electrical engineering curricula. Usually a basic course is intended to cover all the fundamental electromagnetic theory which is needed in later engineering courses. However it is often found that students fail to understand and retain much of the course material, which in turn makes their subsequent studies more difficult. We describe a freshman course in electromagnetism which alleviates these problems. Our hypothesis ...

  12. Engineering research, development and technology: Thrust area report FY 91

    International Nuclear Information System (INIS)

    1991-01-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence, Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) conduct high quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. The thrust area leader is also responsible for carrying out the work that follows from the Engineering Research, Development, and Technology Program so that the results can be applied as early as possible to the needs of LLNL programs. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year, 1991. Its intent is to provide timely summaries of objectives, theories, methods, and results

  13. [Research progress of cell sheet technology in oral tissue engineering].

    Science.gov (United States)

    Liu, Ying; Wang, Daqing; Mo, Jinlong; Li, Binzhong

    2014-09-01

    Cell sheet technology (CST) demonstrates the innovation and advantage by overcoming some immanent shortcomings of traditional tissue engineering. To review the research progress of CST in oral tissue engineering. The related home and abroad literature about CST and its application in stomatology was extensively reviewed and analyzed. Compared to the traditional tissue engineering technology, CST has the features of high seeding density, abundant matrix, good biological compatibility, and perfect operability, which can improve the survival rate of cell transplantation and promote functional reconstruction. It is reported that CST has been successfully used in the following fields, repair and reconstruction of periodontium, soft tissues of oral mucosa, and bones in maxillofacial region. With the development of CST and combined with the traditional tissue engineering technologies, it will promote the tissue engineering further progress in stomatology.

  14. The development and application of CFD technology in mechanical engineering

    Science.gov (United States)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  15. Concise Review: Organ Engineering: Design, Technology, and Integration.

    Science.gov (United States)

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  16. 2016 China Academic Conference on Printing, Packaging Engineering & Media Technology

    CERN Document Server

    Ouyang, Yun; Xu, Min; Yang, Li; Ouyang, Yujie

    2017-01-01

    This book includes a selection of reviewed papers presented at the 2016 China Academic Conference on Printing, Packaging Engineering & Media Technology, held on November 25-27, 2016 in Xi’an, China. The conference was jointly organized by China Academy of Printing Technology, Xi’an University of Technology and Stuttgart Media University of Germany. The proceedings cover the recent outcomes on color science and technology, image processing technology, digital media technology, digital process management technology in packaging and packaging etc. They will be of interest to university researchers, R&D engineers and graduate students in graphic communications, packaging, color science, image science, material science, computer science, digital media and network technology fields.

  17. Young Women's Perceptions of Technology and Engineering: Factors Influencing Their Participation in Math, Science and Technology? Research in Engineering and Technology Education

    Science.gov (United States)

    Roue, Leah C.

    2007-01-01

    The current number of women in technology and engineering only represents a fraction of today's workforce. Technological innovation depends on our nation's best and brightest, representing all segments of our diverse society. Sanders (2005), in talking about women in technology and engineering, stated that women's lack of participation can only be…

  18. The hermeneutic challenge of genetic engineering: Habermas and the transhumanists.

    Science.gov (United States)

    Edgar, Andrew

    2009-06-01

    The purpose of this paper is to explore the impact that developments in transhumanist technologies may have upon human cultures (and thus upon the lifeworld), and to do so by exploring a potential debate between Habermas and the transhumanists. Transhumanists, such as Nick Bostrom, typically see the potential in genetic and other technologies for positively expanding and transcending human nature. In contrast, Habermas is a representative of those who are fearful of this technology, suggesting that it will compound the deleterious effects of the colonisation of the lifeworld, further constraining human autonomy and undermining the meaningfulness of the lifeworld by expanding the technological control and manipulation of humanity. It will be argued that these opposed positions are grounded in fundamentally different understandings of the consequences of scientific and technological advance. On one level, the transhumanists remain confident that the lifeworld has within it the resources necessary to find meaning and purpose in a society deeply infused by genetic technology. Habermas disagrees. On another level, the difference is articulated by Horkheimer and Adorno in Dialectic of Enlightenment, primarily by challenging what may be understood as a Baconian faith in science as a project for the domination of nature (where nature is an infinitely malleable material, to be dominated and shaped, without adverse consequences, purely for the purposes of human survival). While the transhumanists broadly embrace this faith, Habermas returns to something akin to Horkheimer and Adorno's pessimistic scepticism.

  19. Sustainable transportation : technology, engineering, and science - summer camp instructor's guide.

    Science.gov (United States)

    2014-03-01

    This document reproduces the instructors guide for a ten day transportation engineering summer camp that was held at the University of Idaho in July 2013. The instructors guide is split into three units: Unit 1: Vehicle Technology, Unit 2: Traf...

  20. INFORMATION AND COMMUNICATION TECHNOLOGIES – ONE ENGINE OF GLOBALIZATION

    Directory of Open Access Journals (Sweden)

    Daniela Popescul

    2009-12-01

    Full Text Available Technological changes are “the main engine of capitalism and evolution” (A. Toffler, “the fundamental driving force in transformation of an economy” (C. Freeman. The paper proposes a theoretical investigation of information and communication technologies evolution and their impact on the globalization of economy. It defines terms like globalization - with special attention focused on its economical dimension, technological change, and information and communication technologies.

  1. Performance Benefits for a Turboshaft Engine Using Nonlinear Engine Control Technology Investigated

    Science.gov (United States)

    Jones, Scott M.

    2004-01-01

    The potential benefits of nonlinear engine control technology applied to a General Electric T700 helicopter engine were investigated. This technology is being developed by the U.S. Navy SPAWAR Systems Center for a variety of applications. When used as a means of active stability control, nonlinear engine control technology uses sensors and small amounts of injected air to allow compressors to operate with reduced stall margin, which can improve engine pressure ratio. The focus of this study was to determine the best achievable reduction in fuel consumption for the T700 turboshaft engine. A customer deck (computer code) was provided by General Electric to calculate the T700 engine performance, and the NASA Glenn Research Center used this code to perform the analysis. The results showed a 2- to 5-percent reduction in brake specific fuel consumption (BSFC) at the three Sikorsky H-60 helicopter operating points of cruise, loiter, and hover.

  2. Attracting Girls to Science, Engineering and Technology: An Australian Perspective

    Science.gov (United States)

    Little, Alison J.; Leon de la Barra, Bernardo A.

    2009-01-01

    This paper describes a project undertaken by the school outreach team at the School of Engineering, University of Tasmania, Australia, to attract girls to science, engineering and technology (SET). The project was a pilot program designed to engage female students from upper primary to senior secondary in the teaching of physical sciences. A…

  3. Formal Abstraction in Engineering Education--Challenges and Technology Support

    Science.gov (United States)

    Neuper, Walther A.

    2017-01-01

    This is a position paper in the field of Engineering Education, which is at the very beginning in Europe. It relates challenges in the new field to the emerging technology of (Computer) Theorem Proving (TP). Experience shows, that "teaching" abstract models, for instance the wave equation in mechanical engineering and in electrical…

  4. Career Pathways of Science, Engineering and Technology Research Postgraduates

    Science.gov (United States)

    Giles, Marnie; Ski, Chantal; Vrdoljak, Davorin

    2009-01-01

    Suitably qualified scientists and engineers are essential for research and development, innovation and, in turn, the growth of the economy. Science, engineering and technology skills are therefore necessary for Australia to remain competitive in a global market. This article reports findings from a nationwide study investigating the career…

  5. Engine technology at the turn of the millennium

    NARCIS (Netherlands)

    Baert, R.

    2001-01-01

    Since its birth, new technology has been introduced continuously to the internal combustion engine in response to constant demands for better performance, higher power density and lower fuel consumption. It is described how smaller, more flexible but also more complex engines, provided with enhanced

  6. Teacher Challenges to Implement Engineering Design in Secondary Technology Education

    Science.gov (United States)

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive study examined the current status of technology education teacher practices with respect to engineering design. This article is the third article in a three-part series presenting the results of this study. The first article in the series titled "Examination of Engineering Design Curriculum Content" highlighted the research…

  7. International Conference on Emerging Trends in Science, Engineering and Technology

    CERN Document Server

    Caroline, B; Jayanthi, J

    2012-01-01

    The present book is based on the research papers presented in the International Conference on Emerging Trends in Science, Engineering and Technology 2012, held at Tiruchirapalli, India. The papers presented bridges the gap between science, engineering and technology. This book covers a variety of topics, including mechanical, production, aeronautical, material science, energy, civil and environmental energy, scientific management, etc. The prime objective of the book is to fully integrate the scientific contributions from academicians, industrialists and research scholars.

  8. Genetically engineered mouse models in oncology research and cancer medicine.

    Science.gov (United States)

    Kersten, Kelly; de Visser, Karin E; van Miltenburg, Martine H; Jonkers, Jos

    2017-02-01

    Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune-proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell-intrinsic and cell-extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast-track generation and fine-tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Integrated Tools for Future Distributed Engine Control Technologies

    Science.gov (United States)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  10. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  11. Specific immunotherapy by genetically engineered APCs: the "guided missile" strategy.

    Science.gov (United States)

    Wu, B; Wu, J M; Miagkov, A; Adams, R N; Levitsky, H I; Drachman, D B

    2001-04-01

    We tested the hypothesis that APCs genetically engineered to present an Ag and to express Fas ligand (FasL) simultaneously can target and eliminate Ag-specific T cells. Transgenic T cells specific for influenza hemagglutinin (HA) were used as targets. We prepared recombinant vaccinia virus vectors (VVV) to transfer the gene constructs individually or simultaneously into APCs. We prevented unwanted viral replication by attenuating the VVVs with psoralen-UV light treatment. For presentation of the HA Ag, APCs were transduced with cDNA for HA flanked by sequences of the lysosome-associated membrane protein that direct efficient processing and presentation of the Ag by APCs. As a "warhead" for the APCs, we transduced them with the gene for FasL, which induces apoptosis of Fas-expressing activated T cells. To protect the transduced APCs from self-destruction by FasL, we transferred cDNA for a truncated form of Fas-associated death domain, which inhibits Fas-mediated cell death. Our results show that the engineered APCs effectively expressed the genes of interest. APCs transduced with VVV carrying all three gene constructs specifically killed HA-transgenic T cells in culture. Coculture with T cells specific for an unrelated Ag (OVA) had no significant effect. Our in vitro findings show that APCs can be genetically engineered to target and kill Ag-specific T cells and represent a promising novel strategy for the specific treatment of autoimmune diseases.

  12. The Discussions around Precision Genetic Engineering: Role of and Impact on Disabled People

    Directory of Open Access Journals (Sweden)

    Gregor Wolbring

    2016-09-01

    Full Text Available Genetic researchers are advancing in their abilities to extract precise genetic information from biological and human entities bringing genetic research steps closer to accurately modifying genes of biological entities, including that of humans. In this analytical essay, we focus on the discussions about precision genetic intervention that have taken place since March 2015 as they pertain to disabled people. We focus on two areas; one being the role of disabled people in the recent gene editing discussions and the second being the utility of existing legal instruments. Within our first focus we address the following questions: (a What is the visibility of disabled people in the gene-editing discussions that have taken place since March 2015? (b What has been the impact of those discussions on disabled people? (c Were social problems which disabled people face taken into account in those discussions; (d How does the reality of engagement with disabled people in these discussions fit with science, technology and innovation governance discourses that ask for more stakeholder, bottom up and anticipatory involvement? Within our second focus we address the following questions: (a What is the utility of the United Nations Convention on the Right of Persons with Disabilities (UNCRPD; and (b What is the utility of existing legal instruments covering genetic interventions: for preventing negative social consequences of genetic engineering developments for disabled people. We argue that (a the genetic engineering debates since March 2015 have portrayed disabled people dominantly through a medical lens; (b that the governance of science, technology and innovation of genetic engineering including anticipatory governance and responsible innovation discourses has not yet engaged with the social impact of gene editing on disabled people; (c that few scholars that focus on the social situation of disabled people are visible in the governance discussions of gene

  13. Conventional engine technology. Volume 3: Comparisons and future potential

    Science.gov (United States)

    Dowdy, M. W.

    1981-01-01

    The status of five conventional automobile engine technologies was assessed and the future potential for increasing fuel economy and reducing exhaust emission was discussed, using the 1980 EPA California emisions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.

  14. International Conference of Applied Science and Technology for Infrastructure Engineering

    Science.gov (United States)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  15. NEW MOLECULAR TECHNOLOGIES IN GENETIC DIAGNOSIS OF MALE INFERTILITY

    Directory of Open Access Journals (Sweden)

    V. B. Chernykh

    2017-01-01

    Full Text Available In recent years, the accelerated development of technologies in the field of molecular genetics and cytogenetics has led to significant opportunities of the research and diagnosis of mutations and variations of the genome. This article provides a brief review of new molecular technology, also as the results of their use in reproductive medicine and their perspectives in the genetic diagnosis of male infertility. 

  16. Gene therapy in dentistry: tool of genetic engineering. Revisited.

    Science.gov (United States)

    Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish

    2015-03-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    Science.gov (United States)

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering. PMID:28773924

  18. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2016-09-01

    Full Text Available Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  19. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering.

    Science.gov (United States)

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-09-27

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  20. Engineering Genetically-Encoded Mineralization and Magnetism via Directed Evolution.

    Science.gov (United States)

    Liu, Xueliang; Lopez, Paola A; Giessen, Tobias W; Giles, Michael; Way, Jeffrey C; Silver, Pamela A

    2016-11-29

    Genetically encoding the synthesis of functional nanomaterials such as magnetic nanoparticles enables sensitive and non-invasive biological sensing and control. Via directed evolution of the natural iron-sequestering ferritin protein, we discovered key mutations that lead to significantly enhanced cellular magnetism, resulting in increased physical attraction of ferritin-expressing cells to magnets and increased contrast for cellular magnetic resonance imaging (MRI). The magnetic mutants further demonstrate increased iron biomineralization measured by a novel fluorescent genetic sensor for intracellular free iron. In addition, we engineered Escherichia coli cells with multiple genomic knockouts to increase cellular accumulation of various metals. Lastly to explore further protein candidates for biomagnetism, we characterized members of the DUF892 family using the iron sensor and magnetic columns, confirming their intracellular iron sequestration that results in increased cellular magnetization.

  1. A engenharia genética Genetic engineering

    Directory of Open Access Journals (Sweden)

    José Alberto Neves Candeias

    1991-02-01

    Full Text Available São abordados os progressos havidos com as técnicas de engenharia genética, capazes de alterar o potencial genético de um organismo, quer pela introdução, quer pela supressão de novos genes estruturais. São mencionadas algumas das aplicações em geral e, em particular, possibilidades de uso no campo da medicina. É feita uma análise crítica dos benefícios e riscos envolvidos.This paper deals with the progress made in genetic engineering techniques, capable of altering the genetic potential of an organism, either by the introduction or the suppression of new structural genes. Some of the general applications are described as are also, more particularly, their uses in the field of medicine. A critical analysis of the benefits and risks involved is also undertaken.

  2. Prospects of Engineering and Technology Graduates, 1968.

    Science.gov (United States)

    Engineers Joint Council, New York, NY. Engineering Manpower Commission.

    This 1968 survey shows a reduction in the number of engineering graduates going on to advanced study, a trend undoubtedly due to the elimination of graduate student military deferments in February 1968. The lack of advanced degrees will show up in coming years. In general, the rate of immediate employment has gone up, as has the number going into…

  3. Greenhouse engineering: New technologies and approaches

    NARCIS (Netherlands)

    Montero, J.I.; Henten, van E.J.; Son, J.E.; Castilla, N.

    2011-01-01

    Firstly, this article discusses the greenhouse engineering situation in three geographic areas which are relevant in the field of protected cultivation: Northern Asia, The Netherlands and the Mediterranean. For each area, the prevailing greenhouse type and equipment is briefly described. Secondly,

  4. Genetic-evolution-based optimization methods for engineering design

    Science.gov (United States)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  5. Genetically engineered plants in the product development pipeline in India.

    Science.gov (United States)

    Warrier, Ranjini; Pande, Hem

    2016-01-02

    In order to proactively identify emerging issues that may impact the risk assessment and risk management functions of the Indian biosafety regulatory system, the Ministry of Environment, Forests and Climate Change sought to understand the nature and diversity of genetically engineered crops that may move to product commercialization within the next 10 y. This paper describes the findings from a questionnaire designed to solicit information about public and private sector research and development (R&D) activities in plant biotechnology. It is the first comprehensive overview of the R&D pipeline for GE crops in India.

  6. Genetic engineering: Rifkin strikes at corn this time.

    Science.gov (United States)

    Budiansky, S

    As a result of a threatened suit by Jeremy Rifkin, Stanford University has postponed an experiment involving a test plot of genetically-engineered corn. At issue is an injunction forbidding the Recombinant DNA Advisory Committee of the National Institutes of Health from approving federal funding of experiments entailing the release of recombinant DNA into the environment. Rifkin's legal argument is that an environmnental impact statement must be filed for both commercially- and federally-funded research. It is expected that Rifkin's demand for equal treatment regardless of funding source will be agreed to by NIH.

  7. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  8. Bioprocess-Engineering Education with Web Technology

    OpenAIRE

    Sessink, O.

    2006-01-01

    Development of learning material that is distributed through and accessible via the World Wide Web. Various options from web technology are exploited to improve the quality and efficiency of learning material.

  9. Improving Teacher-Made Assessments in Technology and Engineering Education

    Science.gov (United States)

    White, Jesse W.; Moye, Johnny J.; Gareis, Christopher R.; Hylton, Sarah P.

    2018-01-01

    In the interest of learning how to effectively use the technological literacy standards and of adhering to education regulation, this article focuses on efforts to improve the professional teaching practices of Technology and Engineering Education (TEE) teachers by using the Gareis and Grant (2015) process with respect to "Standards for…

  10. Incorporating Disciplinary Literacy in Technology and Engineering Education

    Science.gov (United States)

    Loveland, Thomas

    2014-01-01

    This article presents an overview of how to relate reading to a content area, specifically technology education. The author notes that, with the new focus on Common Core English Language Arts State Standards and state-developed standards, technology and engineering teachers should include disciplinary literacy in their curriculum. Academic…

  11. 78 FR 66891 - Monsanto Co.; Determination of Nonregulated Status of Soybean Genetically Engineered for...

    Science.gov (United States)

    2013-11-07

    ... Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to... movement, or release into the environment) of organisms and products altered or produced through genetic engineering that are plant pests or that there is reason to believe are plant pests. Such genetically...

  12. Thermal barrier coatings - Technology for diesel engines

    International Nuclear Information System (INIS)

    Harris, D.H.; Lutz, J.

    1988-01-01

    Thermal Barrier Coatings (TBC) are a development of the aerospace industry primarily aimed at hot gas flow paths in turbine engines. TBC consists of zirconia ceramic coatings applied over (M)CrAlY. These coatings can provide three benefits: (1) a reduction of metal surface operating temperatures, (2) a deterrent to hot gas corrosion, and (3) improved thermal efficiencies. TBC brings these same benefits to reciprocal diesel engines but coating longevity must be demonstrated. Diesels require thicker deposits and have challenging geometries for the arc-plasma spray (APS) deposition process. Different approaches to plasma spraying TBC are required for diesels, especially where peripheral edge effects play a major role. Bondcoats and ceramic top coats are modified to provide extended life as determined by burner rig tests, using ferrous and aluminum substrates

  13. Civil engineering in power plant technology

    International Nuclear Information System (INIS)

    Krolewski, H.

    1982-01-01

    Guaranteeing our power supplies requires increasingly large, bold or novel construction works (for example, 200 m chimney with installation of stays over a wide area for a wind power plant in Spain; up to 400 m structure height on floating drill rigs). The layman admires the impressiveness with which these demand great ability and responsibility on the part of the civil engineer. The inland power station builder has to concentrate on few spectacular methods of construction or dimensions. The success of the total undertaking is however no less attributable to structural prerequisites. Civil engineering problems have to be displaced by means of static and dynamic problems in order to meet licensing requirements (planning of construction supervision, fire prevention, structure of supply and disposal). (orig.) [de

  14. Introduction to Plasma Technology Science, Engineering and Applications

    CERN Document Server

    Harry, John Ernest

    2011-01-01

    Written by a university lecturer with more than forty years experience in plasma technology, this book adopts a didactic approach in its coverage of the theory, engineering and applications of technological plasmas. The theory is developed in a unified way to enable brevity and clarity, providing readers with the necessary background to assess the factors that affect the behavior of plasmas under different operating conditions. The major part of the book is devoted to the applications of plasma technology and their accompanying engineering aspects, classified by the various pressure and densit

  15. Engineering research, development and technology. Thrust area report, FY93

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  16. Study on biofortification of rice by targeted genetic engineering

    Directory of Open Access Journals (Sweden)

    Sumon M. Hossain

    2012-12-01

    Full Text Available Micronutrient malnutrition is a major health problem in Bangladesh and also in many other developing countries, where a diversified diet is not affordable for the majority. In the present world- one, out of seven people suffers from hunger. Yet, there is a stealthier form of hunger than lack of food: micronutrient malnutrition or hidden hunger. While often providing enough calories, monotonous diets (of rural poor frequently fail to deliver sufficient quantities of essential minerals and vitamins. Due to micronutrient deficiencies different characteristic features have been observed to the victims. Various estimates indicate that over two-thirds of the world population, for the most part women and children specially, pre-school children are deficient in at least one micronutrient. This can have devastating consequences for the life, health and well being of the individuals concerned (like premature death, blindness, weakened immune systems etc. Genetic engineering approach is the upcoming strategy to solve this problem. Genetically engineered biofortified staple crops specially, rice that are high in essential micronutrients (Fe, Zn, vitamin A and adapted to local growing environments have the potential to significantly reduce the prevalence of micronutrient deficiencies specially to the rural poor.

  17. Telos, conservation of welfare, and ethical issues in genetic engineering of animals.

    Science.gov (United States)

    Rollin, Bernard E

    2015-01-01

    The most long-lived metaphysics or view of reality in the history of Western thought is Aristotle's teleology, which reigned for almost 2,000 years. Biology was expressed in terms of function or telos, and accorded perfectly with common sense. The rise of mechanistic, Newtonian science vanquished teleological explanations. Understanding and accommodating animal telos was essential to success in animal husbandry, which involved respect for telos, and was presuppositional to our "ancient contract" with domestic animals. Telos was further abandoned with the rise of industrial agriculture, which utilized "technological fixes" to force animal into environments they were unsuited for, while continuing to be productive. Loss of husbandry and respect for telos created major issues for farm animal welfare, and forced the creation of a new ethic demanding respect for telos. As genetic engineering developed, the notion arose of modifying animals to fit their environment in order to avoid animal suffering, rather than fitting them into congenial environments. Most people do not favor changing the animals, rather than changing the conditions under which they are reared. Aesthetic appreciation of husbandry and virtue ethics militate in favor of restoring husbandry, rather than radically changing animal teloi. One, however, does not morally wrong teloi by changing them-one can only wrong individuals. In biomedical research, we do indeed inflict major pain, suffering and disease on animals. And genetic engineering seems to augment our ability to create animals to model diseases, particularly more than 3,000 known human genetic diseases. The disease, known as Lesch-Nyhan's syndrome or HPRT deficiency, which causes self-mutilation and mental retardation, provides us with a real possibility for genetically creating "animal models" of this disease, animals doomed to a life of great and unalleviable suffering. This of course creates a major moral dilemma. Perhaps one can use the very

  18. The Slippery Slope Argument in the Ethical Debate on Genetic Engineering of Humans.

    Science.gov (United States)

    Walton, Douglas

    2017-12-01

    This article applies tools from argumentation theory to slippery slope arguments used in current ethical debates on genetic engineering. Among the tools used are argumentation schemes, value-based argumentation, critical questions, and burden of proof. It is argued that so-called drivers such as social acceptance and rapid technological development are also important factors that need to be taken into account alongside the argumentation scheme. It is shown that the slippery slope argument is basically a reasonable (but defeasible) form of argument, but is often flawed when used in ethical debates because of failures to meet the requirements of its scheme.

  19. Supporting indigenous women in science, technology, engineering ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    These programs, partly funded by Mexico's Consejo Nacional de Ciencia y Tecnologia (CONACYT) (National council of science and technology), have considerably improved the participation of indigenous people in the country's education system. However, there continue to be important challenges in advancement ...

  20. DIESEL ENGINE RETROFIT TECHNOLOGY VERIFICATION (POSTER)

    Science.gov (United States)

    ETV is presenting a poster at the EPA's 2005 Science Forum from May 16-18, 2005 in Washington, DC. This poster will contain a summary of the performance results realized by the six verified diesel retrofit technologies, as well as potential impacts that could be realized if sigi...

  1. Proceedings of the 2012 International Conference on Information Technology and Software Engineering : Information Technology & Computing Intelligence

    CERN Document Server

    Cai, Guoqiang; Liu, Weibin; Xing, Weiwei

    2013-01-01

    Proceedings of the 2012 International Conference on Information Technology and Software Engineering presents selected articles from this major event, which was held in Beijing, December 8-10, 2012. This book presents the latest research trends, methods and experimental results in the fields of information technology and software engineering, covering various state-of-the-art research theories and approaches. The subjects range from intelligent computing to information processing, software engineering, Web, unified modeling language (UML), multimedia, communication technologies, system identification, graphics and visualizing, etc. The proceedings provide a major interdisciplinary forum for researchers and engineers to present the most innovative studies and advances, which can serve as an excellent reference work for researchers and graduate students working on information technology and software engineering. Prof. Wei Lu, Dr. Guoqiang Cai, Prof. Weibin Liu and Dr. Weiwei Xing all work at Beijing Jiaotong Uni...

  2. Proceedings of the 2012 International Conference on Information Technology and Software Engineering : Information Technology

    CERN Document Server

    Cai, Guoqiang; Liu, Weibin; Xing, Weiwei

    2013-01-01

    Proceedings of the 2012 International Conference on Information Technology and Software Engineering presents selected articles from this major event, which was held in Beijing, December 8-10, 2012. This book presents the latest research trends, methods and experimental results in the fields of information technology and software engineering, covering various state-of-the-art research theories and approaches. The subjects range from intelligent computing to information processing, software engineering, Web, unified modeling language (UML), multimedia, communication technologies, system identification, graphics and visualizing, etc. The proceedings provide a major interdisciplinary forum for researchers and engineers to present the most innovative studies and advances, which can serve as an excellent reference work for researchers and graduate students working on information technology and software engineering. Prof. Wei Lu, Dr. Guoqiang Cai, Prof. Weibin Liu and Dr. Weiwei Xing all work at Beijing Jiaotong Uni...

  3. Exploring the discourse between genetic counselors and Orthodox Jewish community members related to reproductive genetic technology.

    Science.gov (United States)

    Mittman, Ilana Suez; Bowie, Janice V; Maman, Suzanne

    2007-02-01

    Genetic technology is complex, relatively new and involves sensitive issues pertaining to personhood and reproduction. While ethno cultural barriers to genetic care are well documented, little attention has been devoted to understanding religious beliefs pertaining to genetic services. This study evaluated the discourse between genetic counselors and Orthodox Jewish community members' perceptions of reproductive genetic technology. A cross section of the Orthodox Jewish community was sampled through purposeful and snowball recruitment for in-depth interviews with key informants. Genetic counselors felt apprehensive about serving the Orthodox Jewish population and were unaware of social norms, religious and cultural practices unique to this population. Similarly, Orthodox Jewish consumers exhibited major misgivings about genetic testing. Importantly, stereotypic expectations by both counselors and consumers exacerbated existing communication difficulties. Cultural differences and poor communication between genetic counselors and Orthodox Jewish community members impeded the ability of the Orthodox Jewish community to utilize genetic services. This work illuminates complex issues pertaining to medical encounters between providers and patients with ideological, social and cultural differences. In particular, issues of access to care and transcultural competence in serving religious minority groups, such as Orthodox Jews are presented. On the whole, this group is largely unrecognized in the minority health literature in spite of barriers and challenges that they face. Findings of this study may have application to other cloistered and highly observant religious groups when dealing with reproductive technology and other populations with diverse values, beliefs and behaviors pertaining to reproductive health.

  4. Engineering complex riboswitch regulation by dual genetic selection.

    Science.gov (United States)

    Sharma, Vandana; Nomura, Yoko; Yokobayashi, Yohei

    2008-12-03

    The recent discovery of riboswitches in diverse species of bacteria and few eukaryotes added metabolite-responsive gene regulation to the growing list of RNA functions in biology. The natural riboswitches have inspired several designs of synthetic analogues capable of gene regulation in response to a small molecule trigger. In this work, we describe our efforts to engineer complex riboswitches capable of sensing and responding to two small molecules according to Boolean logics AND and NAND. Two aptamers that recognize theophylline and thiamine pyrophosphate were embedded in tandem in the 5' UTR of bacterial mRNA, and riboswitches that function as logic gates were isolated by dual genetic selection. The diverse phenotype of the engineered logic gates supports the versatility of RNA-based gene regulation which may have preceded the modern protein-based gene regulators. Additionally, our design strategy advances our ability to harness the versatile capacities of RNA to program complex behavior in bacteria without the use of engineered proteins.

  5. Review of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae

    Directory of Open Access Journals (Sweden)

    Ya-Tang Yang

    2016-10-01

    Full Text Available One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae is to engineer strains that can optimally produce biofuels and commodity chemicals. However, the current workflow is slow and labor intensive with respect to assembly of genetic parts and characterization of production yields because of the slow growth rates of these organisms. Here, we review recent progress in the microfluidic photobioreactors and identify opportunities and unmet needs in metabolic engineering and synthetic biology. Because of the unprecedented experimental resolution down to the single cell level, long-term real-time monitoring capability, and high throughput with low cost, microfluidic photobioreactor technology will be an indispensible tool to speed up the development process, advance fundamental knowledge, and realize the full potential of metabolic engineering and synthetic biology for cyanobacteria and microalgae.

  6. Genetic correction using engineered nucleases for gene therapy applications.

    Science.gov (United States)

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  7. Biosensing Vibrio cholerae with Genetically Engineered Escherichia coli.

    Science.gov (United States)

    Holowko, Maciej B; Wang, Huijuan; Jayaraman, Premkumar; Poh, Chueh Loo

    2016-11-18

    Cholera is a potentially mortal, infectious disease caused by Vibrio cholerae bacterium. Current treatment methods of cholera still have limitations. Beneficial microbes that could sense and kill the V. cholerae could offer potential alternative to preventing and treating cholera. However, such V. cholerae targeting microbe is still not available. This microbe requires a sensing system to be able to detect the presence of V. cholera bacterium. To this end, we designed and created a synthetic genetic sensing system using nonpathogenic Escherichia coli as the host. To achieve the system, we have moved proteins used by V. cholerae for quorum sensing into E. coli. These sensor proteins have been further layered with a genetic inverter based on CRISPRi technology. Our design process was aided by computer models simulating in vivo behavior of the system. Our sensor shows high sensitivity to presence of V. cholerae supernatant with tight control of expression of output GFP protein.

  8. Technology development multidimensional review for engineering and technology managers

    CERN Document Server

    Neshati, Ramin; Watt, Russell; Eastham, James

    2014-01-01

    Developing new products, services, systems, and processes has become an imperative for any firm expecting to thrive in today’s fast-paced and hyper-competitive environment.  This volume integrates academic and practical insights to present fresh perspectives on new product development and innovation, showcasing lessons learned on the technological frontier.  The first part emphasizes decision making.  The second part focuses on technology evaluation, including cost-benefit analysis, material selection, and scenarios. The third part features in-depth case studies to present innovation management tools, such as customer needs identification, technology standardization, and risk management. The fourth part highlights important international trends, such as globalization and outsourcing. Finally the fifth part explores social and political aspects.

  9. Recent Progress in Data Engineering and Internet Technology Volume 2

    CERN Document Server

    Gaol, Ford Lumban

    2012-01-01

    The latest inventions in internet technology influence most of business and daily activities. Internet security, internet data management, web search, data grids, cloud computing, and web-based applications play vital roles, especially in business and industry, as more transactions go online and mobile. Issues related to ubiquitous computing are becoming critical.   Internet technology and data engineering should reinforce efficiency and effectiveness of business processes. These technologies should help people make better and more accurate decisions by presenting necessary information and possible consequences for the decisions. Intelligent information systems should help us better understand and manage information with ubiquitous data repository and cloud computing.   This book is a compilation of some recent research findings in Internet Technology and Data Engineering. This book provides state-of-the-art accounts in computational algorithms/tools, database management and database technologies,  intelli...

  10. Recent Progress in Data Engineering and Internet Technology Volume 1

    CERN Document Server

    Gaol, Ford Lumban

    2013-01-01

    The latest inventions in internet technology influence most of business and daily activities. Internet security, internet data management, web search, data grids, cloud computing, and web-based applications play vital roles, especially in business and industry, as more transactions go online and mobile. Issues related to ubiquitous computing are becoming critical.   Internet technology and data engineering should reinforce efficiency and effectiveness of business processes. These technologies should help people make better and more accurate decisions by presenting necessary information and possible consequences for the decisions. Intelligent information systems should help us better understand and manage information with ubiquitous data repository and cloud computing.   This book is a compilation of some recent research findings in Internet Technology and Data Engineering. This book provides state-of-the-art accounts in computational algorithms/tools, database management and database technologies,  intelli...

  11. Current progress of targetron technology: development, improvement and application in metabolic engineering.

    Science.gov (United States)

    Liu, Ya-Jun; Zhang, Jie; Cui, Gu-Zhen; Cui, Qiu

    2015-06-01

    Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Various pressure measurement technologies in nuclear engineering

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori (Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors); Hosoma, Takashi; Kawa, Tsunemichi

    1993-02-01

    Pressure measurement is one of major measurements in various plants as well as temperature and flow rate ones. Recently, a new pressure and differential pressure transducers, which can be applied to high temperature and high pressure conditions and have very high accuracy, were needed and have been developed to enhance safety of nuclear plants and reliability of their components. In the present paper, their new pressure measurement technologies, which have been established through using them in fundamental studies, proof testing and plants, are discussed from view points of their application to other nuclear fields. Furthermore, the measuring principle of the new sensors applied for their measurement technologies and the problems of their utilization are presented. (author).

  13. Sandia Technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics-Sandia`s unique facilities transform research advances into manufacturable products; Energy -- Sandia`s energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improve transportation, safety,l efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia`s success.

  14. Renewable energy technology handbook for military engineers

    Science.gov (United States)

    1982-03-01

    Renewable energy applications are introduced that are considered promising for military use in the 1980s. These are: solar hot water for buildings, active solar hot water and space heating for buildings, passive solar heating and cooling of buildings, solar industrial process heata, solar ponds, photovoltaic power for homes, photovoltaic power for remote applications, parabolic dish solar systems for remote applications, wind energy for buildings, wind energy for central power plants, wind energy for water pumping, biomass energy systems for buildings, biomass energy systems for central power plants, geothermal energy for process heat, and geothermal energy for central power plants. For each of these is given: a brief history of the technology and information on how the technology works; a detailed technical and economic profile of an operating system; and a summary listing of operating civilian and military systems that are open for public viewing.

  15. Various pressure measurement technologies in nuclear engineering

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Hosoma, Takashi; Kawa, Tsunemichi.

    1993-01-01

    Pressure measurement is one of major measurements in various plants as well as temperature and flow rate ones. Recently, a new pressure and differential pressure transducers, which can be applied to high temperature and high pressure conditions and have very high accuracy, were needed and have been developed to enhance safety of nuclear plants and reliability of their components. In the present paper, their new pressure measurement technologies, which have been established through using them in fundamental studies, proof testing and plants, are discussed from view points of their application to other nuclear fields. Furthermore, the measuring principle of the new sensors applied for their measurement technologies and the problems of their utilization are presented. (author)

  16. 3D Nanoprinting Technologies for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Jin Woo Lee

    2015-01-01

    Full Text Available Tissue engineering recovers an original function of tissue by replacing the damaged part with a new tissue or organ regenerated using various engineering technologies. This technology uses a scaffold to support three-dimensional (3D tissue formation. Conventional scaffold fabrication methods do not control the architecture, pore shape, porosity, or interconnectivity of the scaffold, so it has limited ability to stimulate cell growth and to generate new tissue. 3D printing technologies may overcome these disadvantages of traditional fabrication methods. These technologies use computers to assist in design and fabrication, so the 3D scaffolds can be fabricated as designed and standardized. Particularly, because nanofabrication technology based on two-photon absorption (2PA and on controlled electrospinning can generate structures with submicron resolution, these methods have been evaluated in various areas of tissue engineering. Recent combinations of 3D nanoprinting technologies with methods from molecular biology and cell dynamics have suggested new possibilities for improved tissue regeneration. If the interaction between cells and scaffold system with biomolecules can be understood and controlled and if an optimal 3D environment for tissue regeneration can be realized, 3D nanoprinting will become an important tool in tissue engineering.

  17. Waste Technology Engineering Laboratory (324 building)

    Energy Technology Data Exchange (ETDEWEB)

    Kammenzind, D.E.

    1997-05-27

    The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection.

  18. Waste Technology Engineering Laboratory (324 building)

    International Nuclear Information System (INIS)

    Kammenzind, D.E.

    1997-01-01

    The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection

  19. A Tailored Systems Engineering Framework for Science and Technology Projects

    Science.gov (United States)

    2009-03-01

    developments, and maybe even humanity’s grand challenges [ NAE , 2008]) and allows scientists, technologists, engineers, and project managers the opportunity...application (in which case the process is usually executed at the TD level), or cross- and multi-discipline technology solutions (executed at the enterprise...E. Director, United States Air Force Center for Systems Engineering, Wright-Patterson AFB OH. Personal Interview. 21 July 2008. [ NAE , 2008

  20. Get certified a guide to wireless communication engineering technologies

    CERN Document Server

    Ahson, Syed A

    2009-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) Communications Society designed the IEEE wireless communication engineering technologies (WCET) certification program to address the wireless industry's growing need for communications professionals with practical problem-solving skills in real-world situations. Individuals who achieve this prestigious certification are recognized as possessing the required knowledge, skill, and abilities to meet wireless challenges in various industry, business, corporate, and organizational settings. Presenting contributions from 50 wireless commun

  1. High Thrust-to-Power Annular Engine Technology

    Science.gov (United States)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  2. Cardiovascular genetics: technological advancements and applicability for dilated cardiomyopathy.

    Science.gov (United States)

    Kummeling, G J M; Baas, A F; Harakalova, M; van der Smagt, J J; Asselbergs, F W

    2015-07-01

    Genetics plays an important role in the pathophysiology of cardiovascular diseases, and is increasingly being integrated into clinical practice. Since 2008, both capacity and cost-efficiency of mutation screening of DNA have been increased magnificently due to the technological advancement obtained by next-generation sequencing. Hence, the discovery rate of genetic defects in cardiovascular genetics has grown rapidly and the financial threshold for gene diagnostics has been lowered, making large-scale DNA sequencing broadly accessible. In this review, the genetic variants, mutations and inheritance models are briefly introduced, after which an overview is provided of current clinical and technological applications in gene diagnostics and research for cardiovascular disease and in particular, dilated cardiomyopathy. Finally, a reflection on the future perspectives in cardiogenetics is given.

  3. Consumer attitudes and decision-making with regard to genetically engineered food products: A review of the literature and a presentation of models for future research

    OpenAIRE

    Bredahl, Lone; Grunert, Klaus G.; Frewer, Lynn

    1998-01-01

    Executive summary 1. Few studies have to date explained consumer attitudes and purchase decisions with regard to genetically engineered food products. However, the increased marketing of genetically engineered food products and the considerable concern that consumers seem to express with regard to the technology call for the development of a theoretical basis for research into these issues. 2. The aim of the paper is to present three models which we have developed to explain consumer attitude...

  4. Application of local area network technology in an engineering environment

    International Nuclear Information System (INIS)

    Powell, A.D.; Sokolowski, M.A.

    1990-01-01

    This paper reports on the application of local area network technology in an engineering environment. Mobil Research and Development Corporation Engineering, Dallas, texas has installed a local area network (LAN) linking over 85 microcomputers. This network, which has been in existence for more than three years, provides common access by all engineers to quality output devices such as laser printers and multi-color pen plotters; IBM mainframe connections; electronic mail and file transfer; and common engineering program. The network has been expanded via a wide area ethernet network to link the Dallas location with a functionally equivalent LAN of over 400 microcomputers in Princeton, N.J. Additionally, engineers on assignment at remote areas in Europe, U.S., Africa and project task forces have dial-in access to the network via telephone lines

  5. Evaluation of complementary technologies to reduce bio engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Blowes, J.H.

    2003-09-01

    This report summaries the results of a study examining the technical and economic feasibility of exhaust gas treatment technologies for reducing emissions from diesel engines burning pyrolysis oil to within internationally recognised limits. Details are given of the burning of pyrolysis oils in reciprocating engines, the reviewing of information on pyrolysis oils and engines, and the aim to produce detailed information for securing investment for a British funded diesel project. The burning of the pyrolysis oils in an oxygen-rich atmosphere to allow efficient combustion with acceptable exhaust emission limits is discussed along with the problems caused by the deterioration of the injection system.

  6. Shaping Identity of Being Creative Information Technology (IT) Engineers

    DEFF Research Database (Denmark)

    Zhang, Hui; Zhou, Chunfang

    2015-01-01

    This paper emphasizes the increasing awareness and ability of developing creativity in Information Technology (IT) education, which is motivated by the need to be creative engineers as part of the social identity of young IT engineers. This suggests this paper to discuss three questions: 1) what...... is creativity and engineering creativity? 2) why is IT understood as a creative domain? And 3) how to increase the awareness and ability of developing creativity in IT education? The above three questions will lead to a literature review in order to seeking for the answers. In addition, this paper points out...

  7. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants.

    Science.gov (United States)

    Wally, Owen; Punja, Zamir K

    2010-01-01

    We review the current and future potential of genetic engineering strategies used to make fungal and bacterial pathogen-resistant GM crops, illustrating different examples of the technologies and the potential benefits and short-falls of the strategies. There are well- established procedures for the production of transgenic plants with resistance towards these pathogens and considerable progress has been made using a range of new methodologies. There are no current commercially available transgenic plant species with increased resistance towards fungal and bacterial pathogens; only plants with increased resistance towards viruses are available. With an improved understanding of plant signaling pathways in response to a range of other pathogens, such as fungi, additional candidate genes for achieving resistance are being investigated. The potential for engineering plants for resistance against individual devastating diseases or for plants with resistance towards multiple pathogens is discussed in detail.

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    Science.gov (United States)

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  9. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  10. Surveys suck: Consumer preferences when purchasing genetically engineered foods.

    Science.gov (United States)

    Powell, Douglas A

    2013-01-01

    Many studies have attempted to gauge consumers' acceptance of genetically engineered or modified (GM) foods. Surveys, asking people about attitudes and intentions, are easy-to-collect proxies of consumer behavior. However, participants tend to respond as citizens of society, not discrete individuals, thereby inaccurately portraying their potential behavior. The Theory of Planned Behavior improved the accuracy of self-reported information, but its limited capacity to account for intention variance has been attributed to the hypothetical scenarios to which survey participants must respond. Valuation methods, asking how much consumers may be willing to pay or accept for GM foods, have revealed that consumers are usually willing to accept them at some price, or in some cases willing to pay a premium. Ultimately, it's consumers' actual--not intended--behavior that is of most interest to policy makers and business decision-makers. Real choice experiments offer the best avenue for revealing consumers' food choices in normal life.

  11. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    Science.gov (United States)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  12. Genetically engineered mesenchymal stem cells: applications in spine therapy.

    Science.gov (United States)

    Aslan, Hadi; Sheyn, Dima; Gazit, Dan

    2009-01-01

    Spine disorders and intervertebral disc degeneration are considered the main causes for the clinical condition commonly known as back pain. Spinal fusion by implanting autologous bone to produce bony bridging between the two vertebrae flanking the degenerated-intervertebral disc is currently the most efficient treatment for relieving the symptoms of back pain. However, donor-site morbidity, complications and the long healing time limit the success of this approach. Novel developments undertaken by regenerative medicine might bring more efficient and available treatments. Here we discuss the pros and cons of utilizing genetically engineered mesenchymal stem cells for inducing spinal fusion. The combination of the stem cells, gene and carrier are crucial elements for achieving optimal spinal fusion in both small and large animal models, which hopefully will lead to the development of clinical applications.

  13. Genetic engineering of stem cells for enhanced therapy.

    Science.gov (United States)

    Nowakowski, Adam; Andrzejewska, Anna; Janowski, Miroslaw; Walczak, Piotr; Lukomska, Barbara

    2013-01-01

    Stem cell therapy is a promising strategy for overcoming the limitations of current treatment methods. The modification of stem cell properties may be necessary to fully exploit their potential. Genetic engineering, with an abundance of methodology to induce gene expression in a precise and well-controllable manner, is particularly attractive for this purpose. There are virus-based and non-viral methods of genetic manipulation. Genome-integrating viral vectors are usually characterized by highly efficient and long-term transgene expression, at a cost of safety. Non-integrating viruses are also highly efficient in transduction, and, while safer, offer only a limited duration of transgene expression. There is a great diversity of transfectable forms of nucleic acids; however, for efficient shuttling across cell membranes, additional manipulation is required. Both physical and chemical methods have been employed for this purpose. Stem cell engineering for clinical applications is still in its infancy and requires further research. There are two main strategies for inducing transgene expression in therapeutic cells: transient and permanent expression. In many cases, including stem cell trafficking and using cell therapy for the treatment of rapid-onset disease with a short healing process, transient transgene expression may be a sufficient and optimal approach. For that purpose, mRNA-based methods seem ideally suited, as they are characterized by a rapid, highly efficient transfection, with outstanding safety. Permanent transgene expression is primarily based on the application of viral vectors, and, due to safety concerns, these methods are more challenging. There is active, ongoing research toward the development of non-viral methods that would induce permanent expression, such as transposons and mammalian artificial chromosomes.

  14. Antibodies and genetically engineered related molecules: production and purification.

    Science.gov (United States)

    Roque, A Cecília A; Lowe, Christopher R; Taipa, M Angela

    2004-01-01

    Antibodies and antibody derivatives constitute 20 % of biopharmaceutical products currently in development, and despite early failures of murine products, chimeric and humanized monoclonal antibodies are now viable therapeutics. A number of genetically engineered antibody constructions have emerged, including molecular hybrids or chimeras that can deliver a powerful toxin to a target such as a tumor cell. However, the general use in clinical practice of antibody therapeutics is dependent not only on the availability of products with required efficacy but also on the costs of therapy. As a rule, a significant percentage (50-80%) of the total manufacturing cost of a therapeutic antibody is incurred during downstream processing. The critical challenges posed by the production of novel antibody therapeutics include improving process economics and efficiency, to reduce costs, and fulfilling increasingly demanding quality criteria for Food and Drug Administration (FDA) approval. It is anticipated that novel affinity-based separations will emerge from the development of synthetic ligands tailored to specific biotechnological needs. These synthetic affinity ligands include peptides obtained by synthesis and screening of peptide combinatorial libraries and artificial non-peptidic ligands generated by a de novo process design and synthesis. The exceptional stability, improved selectivity, and low cost of these ligands can lead to more efficient, less expensive, and safer procedures for antibody purification at manufacturing scales. This review aims to highlight the current trends in the design and construction of genetically engineered antibodies and related molecules, the recombinant systems used for their production, and the development of novel affinity-based strategies for antibody recovery and purification.

  15. Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making

    Directory of Open Access Journals (Sweden)

    Paul Vincelli

    2016-05-01

    Full Text Available Genetic engineering (GE offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several options are discussed. Selected risks and concerns of GE are also considered, along with genome editing, a technology that greatly expands the capacity of molecular biologists to make more precise and targeted genetic edits. While GE is merely a suite of tools to supplement other breeding techniques, if wisely used, certain GE tools and applications can contribute to sustainability goals.

  16. Exploring the Chemistry of Genetic Information Storage and Propagation through Polymerase Engineering.

    Science.gov (United States)

    Houlihan, Gillian; Arangundy-Franklin, Sebastian; Holliger, Philipp

    2017-04-18

    Nucleic acids are a distinct form of sequence-defined biopolymer. What sets them apart from other biopolymers such as polypeptides or polysaccharides is their unique capacity to encode, store, and propagate genetic information (molecular heredity). In nature, just two closely related nucleic acids, DNA and RNA, function as repositories and carriers of genetic information. They therefore are the molecular embodiment of biological information. This naturally leads to questions regarding the degree of variation from this seemingly ideal "Goldilocks" chemistry that would still be compatible with the fundamental property of molecular heredity. To address this question, chemists have created a panoply of synthetic nucleic acids comprising unnatural sugar ring congeners, backbone linkages, and nucleobases in order to establish the molecular parameters for encoding genetic information and its emergence at the origin of life. A deeper analysis of the potential of these synthetic genetic polymers for molecular heredity requires a means of replication and a determination of the fidelity of information transfer. While non-enzymatic synthesis is an increasingly powerful method, it currently remains restricted to short polymers. Here we discuss efforts toward establishing enzymatic synthesis, replication, and evolution of synthetic genetic polymers through the engineering of polymerase enzymes found in nature. To endow natural polymerases with the ability to efficiently utilize non-cognate nucleotide substrates, novel strategies for the screening and directed evolution of polymerase function have been realized. High throughput plate-based screens, phage display, and water-in-oil emulsion technology based methods have yielded a number of engineered polymerases, some of which can synthesize and reverse transcribe synthetic genetic polymers with good efficiency and fidelity. The inception of such polymerases demonstrates that, at a basic level at least, molecular heredity is not

  17. 2nd International Conference on Intelligent Technologies and Engineering Systems

    CERN Document Server

    Chen, Cheng-Yi; Yang, Cheng-Fu

    2014-01-01

    This book includes the original, peer reviewed research papers from the 2nd International Conference on Intelligent Technologies and Engineering Systems (ICITES2013), which took place on December 12-14, 2013 at Cheng Shiu University in Kaohsiung, Taiwan. Topics covered include: laser technology, wireless and mobile networking, lean and agile manufacturing, speech processing, microwave dielectrics, intelligent circuits and systems, 3D graphics, communications, and structure dynamics and control.

  18. FY2011 Engineering Innovations, Research, and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Kip [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Poyneer, Lisa A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shusteff, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, Christopher M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hopkins, Jonathan B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernier, Joel V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puso, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, Todd H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Goldstein, Noah C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sales, Ana Paula De Oliveira [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dehlinger, Dietrich A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotovsky, Jack [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kuntz, Joshua D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wheeler, Elizabeth K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, John T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lehman, Sean K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vernon, Stephen P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tang, Vincent [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-04-24

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory’s Engineering Directorate for FY2011. These efforts exemplify Engineering’s nearly 60-year history of developing and applying the technology innovations needed for the Laboratory’s national security missions, and embody Engineering’s mission to “Enable program success today and ensure the Laboratory’s vitality tomorrow.

  19. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    OpenAIRE

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especial...

  20. Genetic engineering and therapy for inherited and acquired cardiomyopathies.

    Science.gov (United States)

    Day, Sharlene; Davis, Jennifer; Westfall, Margaret; Metzger, Joseph

    2006-10-01

    The cardiac myofilaments consist of a highly ordered assembly of proteins that collectively generate force in a calcium-dependent manner. Defects in myofilament function and its regulation have been implicated in various forms of acquired and inherited human heart disease. For example, during cardiac ischemia, cardiac myocyte contractile performance is dramatically downregulated due in part to a reduced sensitivity of the myofilaments to calcium under acidic pH conditions. Over the last several years, the thin filament regulatory protein, troponin I, has been identified as an important mediator of this response. Mutations in troponin I and other sarcomere genes are also linked to several distinct inherited cardiomyopathic phenotypes, including hypertrophic, dilated, and restrictive cardiomyopathies. With the cardiac sarcomere emerging as a central player for such a diverse array of human heart diseases, genetic-based strategies that target the myofilament will likely have broad therapeutic potential. The development of safe vector systems for efficient gene delivery will be a critical hurdle to overcome before these types of therapies can be successfully applied. Nonetheless, studies focusing on the principles of acute genetic engineering of the sarcomere hold value as they lay the essential foundation on which to build potential gene-based therapies for heart disease.

  1. Food and Feed Safety of Genetically Engineered Food Crops.

    Science.gov (United States)

    Delaney, Bryan; Goodman, Richard E; Ladics, Gregory S

    2018-04-01

    The first genetically engineered (GE) food crop (tomato) was introduced in 1995, followed by the successful development and commercial release of maize, soybeans, cotton, canola, potatoes, papaya, alfalfa, squash, and sugar beets with specific new genetic traits. Even though the safety of every new GE crop has been evaluated by various regulatory authorities throughout the world prior to its commercial release, the ongoing public debate about the safety of food and feed derived from GE plants has not abated. Such debates often overshadow an important fact that all crops used as human food or animal feed include varieties that have been developed through conventional breeding and selection over hundreds or thousands of years, or through intentional but random mutagenesis. Developing food crops through such breeding practices result in large-scale genomic changes in the resulting crops, and these genomic changes do not undergo molecular characterization. In contrast, new GE crops are developed using well-characterized DNA fragments and the resulting crops are tested and evaluated with much greater scrutiny. This document reviews the safety data and information of GE crops and foods obtained from them.

  2. Creating the integral engineer : Combining development education, sustainability, entrepreneurship and technology at Delft University of Technology

    NARCIS (Netherlands)

    Zwarteveen, J.W.; Blom, E.M.; Vastbinder, B.; Brezet, J.C.

    2010-01-01

    A modern engineer is more than a technical specialist. Training an integral engineer requires education in non-technical skills, including social and ethical aspects. Therefore, Delft University of Technology (DUT) introduced sustainable development and entrepreneurship into its bachelor and master

  3. Development of salt tolerant plants through genetic engineering (abstract)

    International Nuclear Information System (INIS)

    Mukhtar, Z.; Khan, S.A.; Zafar, Y.

    2005-01-01

    Salinity stress is one of the most serious factors limiting the productivity of agricultural crops. Genetic engineering provides a useful tool for tailoring plants with enhanced salt tolerance characteristics. Many organisms have evolved mechanisms to survive and grow under such extreme environments. These organisms provide us with a useful source of genes which can be used to improve salt tolerance in plants. The present study aims at identification and cloning of useful halo tolerance conferring genes from fungi and plants and to develop salt tolerant transgenic plants. Here we describe the cloning and use of HSR1 gene (a yeast transcription factor known to confer salt tolerance) and Na/sup +//H/sup +/ antiporter gene AtNHX1 (3016 bp) from Arabidopsis thaliana, and transformation of tobacco with HSR1 and AtNHX1 genes through Agrobacterium method. A number of transgenic tobacco plants were regenerated from leaf explants transformed with Agrobacterium tumefaciens (LBA4404) having HSR1 and AtNHX1 genes by leaf disc method. The putative transgenic plants were analyzed by PCR and dot blot analysis. Screening of these transgenic plants at different salinity levels is in progress which will help identify the suitable plant lines and thus the promising genes which can be further exploited to engineer salt tolerant crop plants. (author)

  4. Genetic engineering, a potential aid to conventional plant breeding

    International Nuclear Information System (INIS)

    Baloch, M.J.; Soomro, B.A.

    1993-01-01

    To develop improve crop varieties, the most basic elements are crossing of desirable parents to provide genetic variation for evaluation and selection of desirable plants among the progenies. In conventional plant breeding, gene transfer is achieved by back crossing or less frequently by recurrent selection. Both processes take several generations to reach to a point where genetic milieu of the parents remains. Plant breeders also face the most difficult situation when the desired gene is present in the entirely diverse species where wide crosses become inevitable. In addition, genomic disharmony, unfavourable genic interaction and chromosomal instability also account for limited success of wide hybridization in the field crops. Under such circumstances, tissue culture techniques, such as somaclonal variation, Embryo Rescue Technique and Somatic hybridization are the ultimate options. There may be other cases where desired genes are present in entirely different genera or organisms and crossings of donor with recipient is no more a concern. Plant breeders also spend much of their time manipulating quantitatively inherited traits such as yield, that have low heritability. These characters are assumed to be determined by a large number of genes each with minor and additive effects. Direct selection for such traits is less effective. Genetic Engineering approaches like isozymes and Restriction Fragment Length Polymorphism (RFLP) with heritability of 1.0 make the selection very efficient and accurate as indirect selection criteria for quantitatively inherited traits. Hence isozymes and RFLPs techniques can easily be exercised at cellular or seedling stages thus reducing the time and labour oriented screening of plants at maturity. Rather new approach such as polymerase chain reaction (PCR) will also be discussed in this article. (Orig./A.B.)

  5. Biology, Biography, and Technology: Review in Kinship and Genetics

    OpenAIRE

    Frois, Catarina

    2009-01-01

    This review considers four recent works on in vitro fertilization; human egg donation; the relation among family, kinship and nature; genetic databases, and medical research. Assisted reproductive technology has increasingly become a tool for the artificial production of body parts. Anthropology is reformulating kinship and family theories, taking into account their relationship with biology (in the strict sense of body) and technology as primary ‘‘agents’’ of reproductio...

  6. Rejecting New Technology: The Case of Genetically Modified Wheat

    OpenAIRE

    Derek Berwald; Colin A. Carter; Guillaume P. Gruère

    2006-01-01

    Canada has stringent regulations covering the release of new wheat varieties, but the United States has virtually no regulations in this area. Monsanto Co. developed genetically modified (GM) spring wheat for North America, and made a commitment to the U.S. industry to release this new technology simultaneously in both Canada and the United States, or not at all. The Canadian regulatory bias against new varieties acted as a veto against GM wheat and caused Monsanto to shelve the technology in...

  7. Meeting national challenges with science, engineering, and technology

    International Nuclear Information System (INIS)

    1992-03-01

    This report discusses research in the following areas at Lawrence Livermore National Laboratory: national challenges; the Livermore Laboratory; national defense: preserving peace in a rapidly changing world; energy: clean and economic; environment: from the microscopic to the global; health: genetics and biomedicine; economy: bringing laboratory technology to the US market; education: sparking interest in science; and the Livermore Laboratory: a national resource

  8. The ecological imperative and its application to ethical issues in human genetic technology

    Directory of Open Access Journals (Sweden)

    W. Malcolm Byrnes

    2003-08-01

    Full Text Available As a species, we are on the cusp of being able to alter that which makes us uniquely human, our genome. Two new genetic technologies, embryo selection and germline engineering, are either in use today or may be developed in the future. Embryo selection acts to alter the human gene pool, reducing genetic diversity, while germline engineering will have the ability to alter directly the genomes of engineered individuals. Our genome has come to be what it is through an evolutionary process extending over millions of years, a process that has involved exceedingly complex and unpredictable interactions between ourselves or our ancestors and myriad other life forms within Earth's biosphere. In this paper, the ecological imperativ e, which states that we must not alter the human genome or the collective human genetic inheritance, will be introduced. It will be argued based on ecological principles that embryo selection and germline engineering are unethical and unwise because they will diminish our survivability as a species, will disrupt our relationship with the natural world, and will destroy the very basis of that which makes us human.

  9. From STEM to STEAM: Strategies for Enhancing Engineering & Technology Education

    Directory of Open Access Journals (Sweden)

    Andy M. Connor

    2015-05-01

    Full Text Available This paper sets out to challenge the common pedagogies found in STEM (Science, Technology, Engineering and Mathematics education with a particular focus on engineering. The dominant engineering pedagogy remains “chalk and talk”; despite research evidence that demonstrates its ineffectiveness. Such pedagogical approaches do not embrace the possibilities provided by more student-centric approaches and more active learning. The paper argues that there is a potential confusion in engineering education around the role of active learning approaches, and that the adoption of these approaches may be limited as a result of this confusion, combined with a degree of disciplinary egocentrism. The paper presents examples of design, engineering and technology projects that demonstrate the effectiveness of adopting pedagogies and delivery methods more usually attributed to the liberal arts such as studio based learning. The paper concludes with some suggestions about how best to create a fertile environment from which inquiry based learning can emerge as well as a reflection on whether the only real limitation on cultivating such approaches is the disciplinary egocentrism of traditional engineering educators.

  10. STEMM: Science, Technology, Engineering, Math...and Multimedia?

    Science.gov (United States)

    Cornelius, Dave

    2011-01-01

    The current buzz surrounding science, technology, engineering and math (STEM) disciplines and their economic importance is certainly justified. Unfortunately, when educators push to improve a specific discipline, it often has negative effects on everything else. While the STEM disciplines are important, focus on them is taking away from other…

  11. Taiwanese Preservice Teachers' Science, Technology, Engineering, and Mathematics Teaching Intention

    Science.gov (United States)

    Lin, Kuen-Yi; Williams, P. John

    2016-01-01

    This study applies the theory of planned behavior as a basis for exploring the impact of knowledge, values, subjective norms, perceived behavioral controls, and attitudes on the behavioral intention toward science, technology, engineering, and mathematics (STEM) education among Taiwanese preservice science teachers. Questionnaires (N = 139)…

  12. Women of Color in Science, Technology, Engineering, and Mathematics (STEM)

    Science.gov (United States)

    Johnson, Dawn R.

    2011-01-01

    Scholars have theorized and examined women's underrepresentation in science, technology, engineering and mathematics (STEM) fields for well over thirty years. However, much of this research has paid little attention to issues of racial and ethnic diversity among women, suggesting that all women have the same experiences in STEM. Women of color…

  13. Urban Composting in the Technology and Engineering Classroom

    Science.gov (United States)

    Buelin-Biesecker, Jennifer

    2014-01-01

    The average American produces around 1,600 pounds of garbage every year, and it is estimated that 50 percent of that waste is material that could be composted (Clean Air Council, 2012). Instead, most is sent to landfills and incinerators. In technology and engineering education, a great deal of time is spent in talking, teaching, and thinking…

  14. Nano-Science-Engineering-Technology Applications to Food and Nutrition.

    Science.gov (United States)

    Nakajima, Mitsutoshi; Wang, Zheng; Chaudhry, Qasim; Park, Hyun Jin; Juneja, Lekh R

    2015-01-01

    Nanoscale Science, Engineering and Technology are applied to Food and Nutrition. Various delivery systems include nanoemulsions, microemulsions, solid lipid nanoparticles, micelles, and liposomes. The nanoscale systems have advantages, such as higher bioavailabitity, and other physicochemical properties. The symposium will provide an overview of the formulation, characterization, and utilization of nanotechnology-based food and nutrition.

  15. Retaining Students in Science, Technology, Engineering, and Mathematics (STEM) Majors

    Science.gov (United States)

    Watkins, Jessica; Mazur, Eric

    2013-01-01

    In this paper we present results relating undergraduate student retention in science, technology, engineering, and mathematics (STEM) majors to the use of Peer Instruction (PI) in an introductory physics course at a highly selective research institution. We compare the percentages of students who switch out of a STEM major after taking a physics…

  16. Rapid prototyping technology and its application in bone tissue engineering.

    Science.gov (United States)

    Yuan, Bo; Zhou, Sheng-Yuan; Chen, Xiong-Sheng

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.

  17. Innovative Mechanical Engineering Technologies, Equipment and Materials-2013

    Science.gov (United States)

    Ilnaz Izailovich, Fayrushin; Nail Faikovich, Kashapov; Mahmut Mashutovich, Ganiev

    2014-12-01

    In the period from 25 to 27 September 2013 the city of Kazan hosted the International Scientific Conference "Innovative mechanical engineering technologies, equipment and materials - 2013" (IRTC "IMETEM - 2013"). The conference was held on the grounds of "Kazanskaya Yarmarka" (Kazan). The conference plenary meeting was held with the participation of the Republic of Tatarstan, breakout sessions, forum "Improving the competitiveness and efficiency of engineering enterprises in the WTO" and a number of round tables. Traditionally, the event was followed by the 13th International specialized exhibition "Engineering. Metalworking. Kazan ", in which were presented the development of innovative enterprises in the interests of the Russian Federation of Industry of Republic of Tatarstan, to support the "Foundation for Assistance to Small Innovative Enterprises in Science and Technology" and the 8th specialized exhibition "TechnoWelding". Kashapov Nail, D.Sc., professor (Kazan Federal University)

  18. Infusing photonics to increase enrollment in electronics engineering technology

    Science.gov (United States)

    Panayiotou, Chrys A.; Seeber, Fred P.

    2007-06-01

    During the last 15 years most of the electronics engineering technology programs across the nation have experienced a constant decline in enrollment. Today's high school students do not seem to consider a career in electronics engineering appealing enough to commit to a field of study in desperate need of new students. They still associate electronics programs with the electronics section of a department store; televisions, stereo systems, DVD and VCR players, and other disposable electronics. While the downward trend continues across the nation, Indian River Community College (IRCC) has been able not only to stop it but to reverse it by attracting a new generation of students. By introducing high school students to new and emerging technologies, their perception of established degrees has changed and their interest has been stimulated. Photonics is one of those technologies capturing students' attention. IRCC, a partner college in the National Center for Optics and Photonics Education (OP-TEC), with the assistance of other colleges like Camden County College which already offers an Associate in Applied Science degree in Photonics, has created a Photonics specialization under the Electronics Engineering Technology program. The targeted marketing of this new specialization has led to an increase in enrollment of 50% in 2005, 80% in 2006, and for 2007 it is projected it to be over 100%. An interesting comparison can be made concerning enrollment at colleges with a full AAS program in photonics like Camden County College and IRCC which uses photonics as an enabling technology. This analysis could lead to a new approach in restructuring engineering technology degrees with the infusion of photonics throughout many technology fields. This presentation will discuss the plan of action that made possible this initiative at Indian River Community College and new program directions at Camden County College, Blackwood, New Jersey.

  19. Systems engineering identification and control of mixed waste technology development

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1997-01-01

    The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop technologies required to meet the Department's commitments for treatment of mixed low-level and transuranic wastes. Waste treatment includes all necessary steps from generation through disposal. Systems engineering was employed to reduce programmatic risk, that is, risk of failure to meet technical commitments within cost and schedule. Customer needs (technology deficiencies) are identified from Site Treatment Plans, Consent Orders, ten year plans, Site Technical Coordinating Groups, Stakeholders, and Site Visits. The Technical Baseline, a prioritized list of technology deficiencies, forms the basis for determining which technology development activities will be supported by the MWFA. Technology Development Requirements Documents are prepared for each technology selected for development. After technologies have been successfully developed and demonstrated, they are documented in a Technology Performance Report. The Technology Performance Reports are available to any of the customers or potential users of the technology, thus closing the loop between problem identification and product development. This systematic approach to technology development and its effectiveness after 3 years is discussed in this paper

  20. 78 FR 13302 - Syngenta Biotechnology, Inc.; Determination of Nonregulated Status of Corn Genetically Engineered...

    Science.gov (United States)

    2013-02-27

    ... and products altered or produced through genetic engineering that are plant pests or that there is... regulations in 7 CFR part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant Pests,'' regulate, among other...

  1. 76 FR 63279 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered for Insect...

    Science.gov (United States)

    2011-10-12

    ... and products altered or produced through genetic engineering that are plant pests or that there is... regulations in 7 CFR part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant Pests,'' regulate, among other...

  2. 77 FR 41350 - Monsanto Co.; Determination of Nonregulated Status of Soybean Genetically Engineered To Produce...

    Science.gov (United States)

    2012-07-13

    ... and products altered or produced through genetic engineering that are plant pests or that there is... regulations in 7 CFR part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant Pests,'' regulate, among other...

  3. Genetic Engineering: A Matter that Requires Further Refinement in Spanish Secondary School Textbooks

    Science.gov (United States)

    Martinez-Gracia, M. V.; Gil-Quylez, M. J.; Osada, J.

    2003-01-01

    Genetic engineering is now an integral part of many high school textbooks but little work has been done to assess whether it is being properly addressed. A checklist with 19 items was used to analyze how genetic engineering is presented in biology textbooks commonly used in Spanish high schools, including the content, its relationship with…

  4. The Effect of Case Teaching on Meaningful and Retentive Learning When Studying Genetic Engineering

    Science.gov (United States)

    Güccük, Ahmet; Köksal, Mustafa Serdar

    2017-01-01

    The purpose of this study is to investigate the effects of case teaching on how students learn about genetic engineering, in terms of meaningful learning and retention of learning. The study was designed as quasi-experimental research including 63 8th graders (28 boys and 35 girls). To collect data, genetic engineering achievement tests were…

  5. 76 FR 80869 - Monsanto Co.; Determination of Nonregulated Status of Corn Genetically Engineered for Drought...

    Science.gov (United States)

    2011-12-27

    ... and products altered or produced through genetic engineering that are plant pests or that there is... in 7 CFR part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant Pests,'' regulate, among other...

  6. 76 FR 5780 - Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the...

    Science.gov (United States)

    2011-02-02

    ... part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering... and products altered or produced through genetic engineering that are plant pests or that there is... California by the Center for Food Safety, other associations, and several organic alfalfa growers. The...

  7. Cardiovascular genetics : Technological advancements and applicability for dilated cardiomyopathy

    NARCIS (Netherlands)

    Kummeling, G. J M; Baas, A. F.; Harakalova, M.; van der Smagt, J. J.; Asselbergs, F. W.

    2015-01-01

    Genetics plays an important role in the pathophysiology of cardiovascular diseases, and is increasingly being integrated into clinical practice. Since 2008, both capacity and cost-efficiency of mutation screening of DNA have been increased magnificently due to the technological advancement obtained

  8. Children of the new reproductive technologies: social and genetic parenthood

    NARCIS (Netherlands)

    Bos, H.; van Balen, F.

    2010-01-01

    Objective: To review empirical studies on families created by new reproductive technologies (NRT) in which only one parent has a genetic link to the child. Methodology: Literature search was conducted among computerized databases. Inclusion criteria were that studies should focus on childrearing or

  9. Potential benefits of genetic modification (GM) technology for food ...

    African Journals Online (AJOL)

    We assessed the perception of farmers towards potential adoption of genetic modification (GM) technology for improving health, food security and agricultural productivity using a semi-structured interview. A total sample of 54 small-scale farmers participated in 6 focus group meetings (FGMs) and 23 in-depth interviews at ...

  10. Results of the pollution reduction technology program for turboprop engines

    Science.gov (United States)

    Mularz, E. J.

    1976-01-01

    A program was performed to evolve and demonstrate advanced combustor technology aimed at achieving the 1979 EPA standards for turboprop engines (Class P2). The engine selected for this program was the 501-D22A turboprop manufactured by Detroit Diesel Allison Division of General Motors Corporation. Three combustor concepts were designed and tested in a combustor rig at the exact combustor operating conditions of the 501-D22A engine over the EPA landing-takeoff cycle. Each combustor concept exhibited pollutant emissions well below the EPA standards, achieving substantial reductions in unburned hydrocarbons, carbon monoxide, and smoke emissions compared with emissions from the production combustor of this engine. Oxides of nitrogen emissions remained well below the EPA standards, also.

  11. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Ho Dong; Kim, Sung Ki; Song, Kee Chan

    2010-04-01

    This report is aims to establish design requirements for constructing mock-up system of pyroprocess by 2011 to realize long-term goal of nuclear energy promotion comprehensive plan, which is construction of engineering scale pyroprocess integrated process demonstration facility. The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The detailed contents of research for these are as follows; - Design of Mock-up facility for demonstrate pyroprocess, Construction, Approval, Trial run, Performance test - Development of nuclear material accountancy technology for unit processes of pyroprocess and design of safeguards system - Remote operation of demonstrating pyroprocess / Development of maintenance technology and equipment - Establishment of transportation system and evaluation of pre-safety for interim storage system - Deriving and implementation of a method to improve nuclear transparency for commercialization proliferation resistance nuclear fuel cycle Spent fuel which is the most important pending problem of nuclear power development would be reduced and recycled by developing the system engineering technology of pyroprocess facility by 2010. This technology would contribute to obtain JD for the use of spent fuel between the ROK-US and to amend the ROK-US Atomic Energy Agreement scheduled in 2014

  12. Development of Key Performance Indicators for the Engineering Technology Education Programs in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng; Lai, Chun-Chin

    2004-01-01

    In comparison with engineering, engineering technology is more practical and purposeful. The engineering technology education programs in Taiwan have been mainly offered in 56 universities/colleges of technology (UTs/CTs) and are anticipated to continuously improve their performance to prepare quality engineering technologists. However, it is…

  13. International Conference on Sustainable Vital Technologies in Engineering and Informatics

    CERN Document Server

    Hassan, Maguid

    2017-01-01

    This book reports on cutting-edge technologies that have been fostering sustainable development in a variety of fields, including built and natural environments, structures, energy, advanced mechanical technologies as well as electronics and communication technologies. It reports on the applications of Geographic Information Systems (GIS), Internet-of-Things, predictive maintenance, as well as modeling and control techniques to reduce the environmental impacts of buildings, enhance their environmental contribution and positively impact the social equity. The different chapters, selected on the basis of their timeliness and relevance for an audience of engineers and professionals, describe the major trends in the field of sustainable engineering research, providing them with a snapshot of current issues together with important technical information for their daily work, as well as an interesting source of new ideas for their future research. The works included in this book were selected among the contributions...

  14. Application of plasma technology to nuclear engineering fields

    International Nuclear Information System (INIS)

    Suzuki, Masaaki; Akatsuka, Hiroshi

    1996-01-01

    In order to discuss about the application of the plasma technology to nuclear engineering fields, we mention two subjects, the oxygenation of metal chloride waste by oxygen plasma and the characterization of fine particles generated in the plasma process. Through the experimental results of two subjects, both of the advantage and the disadvantage of the plasma technology and their characteristics are shown and discussed. The following conclusions are obtained. The reactive plasma is effective to oxygenate the chloride wastes. The particle generation which is one of the disadvantages must not be specialized and its characteristics can be estimated. Consequently, the plasma technology should be applicable to nuclear engineering fields adopting its advantage and overcoming its disadvantage. (author)

  15. [Flexible print circuit technology application in biomedical engineering].

    Science.gov (United States)

    Jiang, Lihua; Cao, Yi; Zheng, Xiaolin

    2013-06-01

    Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.

  16. Information Technology in project-organized electronic and computer technology engineering education

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1999-01-01

    This paper describes the integration of IT in the education of electronic and computer technology engineers at Institute of Electronic Systems, Aalborg Uni-versity, Denmark. At the Institute Information Technology is an important tool in the aspects of the education as well as for communication...

  17. Genetic technologies to enhance the Sterile Insect Technique (SIT)

    Energy Technology Data Exchange (ETDEWEB)

    Alphey, Luke; Baker, Pam; Condon, George C.; Condon, Kirsty C.; Dafa' alla, Tarig H.; Fu, Guoliang; Jin, Li; Labbe, Genevieve; Morrison, Neil M.; Nimmo, Derric D.; O' Connell, Sinead; Phillips, Caroline E.; Plackett, Andrew; Scaife, Sarah; Woods, Alexander, E-mail: luke.alphey@zoo.ox.ac.u [Oxitec Ltd., Oxford (United Kingdom); Burton, Rosemary S.; Epton, Matthew J.; Gong, Peng [University of Oxford (United Kingdom). Dept. of Zoology

    2006-07-01

    The Sterile Insect Technique (SIT) has been used very successfully against range of pest insects, including various tephritid fruit flies, several moths and a small number of livestock pests. However, modern genetics could potentially provide several improvements that would increase the cost-effectiveness of SIT, and extend the range of suitable species. These include improved identification of released individuals by incorporation of a stable, heritable, genetic marker; built-in sex separation (genetic sexing); reduction of the hazard posed by non-irradiated accidental releases from mass-rearing facility (fail-safe); elimination of the need for sterilization by irradiation (genetic sterilization). We discuss applications of these methods and the state of the art, at the time of this meeting, in developing suitable strains. We have demonstrated, in several key pest species, that the required strains can be constructed by introducing a repressible dominant lethal genetic system, a method known as RIDL(trade mark). Based on field experience with Medfly, incorporation of a genetic sexing system into SIT programs for other tephritids could potentially provide a very significant improvement in cost-effectiveness. We have now been able to make efficient female-lethal strains for Medfly. One advantage of our approach is that it should be possible rapidly to extend this technology to other fruit fly species; indeed we have recently been able also to make genetic sexing strains of Medfly (Anastrepha ludens). (author)

  18. Genetic technologies to enhance the Sterile Insect Technique (SIT)

    International Nuclear Information System (INIS)

    Alphey, Luke; Baker, Pam; Condon, George C.; Condon, Kirsty C.; Dafa'alla, Tarig H.; Fu, Guoliang; Jin, Li; Labbe, Genevieve; Morrison, Neil M.; Nimmo, Derric D.; O'Connell, Sinead; Phillips, Caroline E.; Plackett, Andrew; Scaife, Sarah; Woods, Alexander; Burton, Rosemary S.; Epton, Matthew J.; Gong, Peng

    2006-01-01

    The Sterile Insect Technique (SIT) has been used very successfully against range of pest insects, including various tephritid fruit flies, several moths and a small number of livestock pests. However, modern genetics could potentially provide several improvements that would increase the cost-effectiveness of SIT, and extend the range of suitable species. These include improved identification of released individuals by incorporation of a stable, heritable, genetic marker; built-in sex separation (genetic sexing); reduction of the hazard posed by non-irradiated accidental releases from mass-rearing facility (fail-safe); elimination of the need for sterilization by irradiation (genetic sterilization). We discuss applications of these methods and the state of the art, at the time of this meeting, in developing suitable strains. We have demonstrated, in several key pest species, that the required strains can be constructed by introducing a repressible dominant lethal genetic system, a method known as RIDL(trade mark). Based on field experience with Medfly, incorporation of a genetic sexing system into SIT programs for other tephritids could potentially provide a very significant improvement in cost-effectiveness. We have now been able to make efficient female-lethal strains for Medfly. One advantage of our approach is that it should be possible rapidly to extend this technology to other fruit fly species; indeed we have recently been able also to make genetic sexing strains of Medfly (Anastrepha ludens). (author)

  19. Field cage studies and progressive evaluation of genetically-engineered mosquitoes.

    Directory of Open Access Journals (Sweden)

    Luca Facchinelli

    Full Text Available A genetically-engineered strain of the dengue mosquito vector Aedes aegypti, designated OX3604C, was evaluated in large outdoor cage trials for its potential to improve dengue prevention efforts by inducing population suppression. OX3604C is engineered with a repressible genetic construct that causes a female-specific flightless phenotype. Wild-type females that mate with homozygous OX3604C males will not produce reproductive female offspring. Weekly introductions of OX3604C males eliminated all three targeted Ae. aegypti populations after 10-20 weeks in a previous laboratory cage experiment. As part of the phased, progressive evaluation of this technology, we carried out an assessment in large outdoor field enclosures in dengue endemic southern Mexico.OX3604C males were introduced weekly into field cages containing stable target populations, initially at 10:1 ratios. Statistically significant target population decreases were detected in 4 of 5 treatment cages after 17 weeks, but none of the treatment populations were eliminated. Mating competitiveness experiments, carried out to explore the discrepancy between lab and field cage results revealed a maximum mating disadvantage of up 59.1% for OX3604C males, which accounted for a significant part of the 97% fitness cost predicted by a mathematical model to be necessary to produce the field cage results.Our results indicate that OX3604C may not be effective in large-scale releases. A strain with the same transgene that is not encumbered by a large mating disadvantage, however, could have improved prospects for dengue prevention. Insights from large outdoor cage experiments may provide an important part of the progressive, stepwise evaluation of genetically-engineered mosquitoes.

  20. Intercultural Communication in Management of Engineering and Technology

    Science.gov (United States)

    Miyoshi, Kazuhisa

    Companies want more business-minded industrial technology managers and engineers with entrepreneurial skills who also have an awareness of the challenges of global marketplace. Both the Master of Engineering and Management Degree (MEM) and the Master of Management of Technology Degree (MOT) aim to meet the needs of industry by offering managers and engineers the critical skills need to be successful in a professional career. The world today is characterized by an ever-growing number of contacts resulting in communication between people in industry with different linguistic and cultural backgrounds. This communication takes place because of contacts within the areas of business, engineering, technology, science, and education but also because of immigration brought about by labor shortage or political conflicts. In all these contacts, there is communication, which needs to be as constructive as possible, without misunderstandings and breakdowns. Knowledge on the nature of linguistic and cultural similarities and differences can play a positive and constructive role. The objective of this paper is to examine what makes the difference in communication between people with diverse cultural background. In addition, it emphasizes the importance of diversity management and diversity leadership in the diverse workplace.

  1. The Application of Sheet Technology in Cartilage Tissue Engineering.

    Science.gov (United States)

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions.

  2. Consumer attitudes and decision-making with regard to genetically engineered food products: A review of the literature and a presentation of models for future research

    DEFF Research Database (Denmark)

    Bredahl, Lone; Grunert, Klaus G.; Frewer, Lynn

    to the technology call for the development of a theoretical basis for research into these issues. 2. The aim of the paper is to present three models which we have developed to explain consumer attitudes, buying behaviour and attitude change with regard to genetically engineered food products. All three models build......Executive summary 1. Few studies have to date explained consumer attitudes and purchase decisions with regard to genetically engineered food products. However, the increased marketing of genetically engineered food products and the considerable concern that consumers seem to express with regard...... on established consumer behaviour theory and on existing and comparable research in the field. 3. Consumer attitudes toward genetic engineering in food products are explained in an attitude model that builds on Fishbein's multiattribute attitude model. The model deviates from Fishbein's model in a number of ways...

  3. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    Science.gov (United States)

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  5. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  6. 76 FR 63278 - Bayer CropScience LP; Determination of Nonregulated Status for Cotton Genetically Engineered for...

    Science.gov (United States)

    2011-10-12

    ... part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering... and products altered or produced through genetic engineering that are plant pests or that there is...

  7. 78 FR 51706 - Bayer CropScience LP; Determination of Nonregulated Status of Soybean Genetically Engineered for...

    Science.gov (United States)

    2013-08-21

    ... part 340, ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering... and products altered or produced through genetic engineering that are plant pests or that there is...

  8. A FIELD STUDY WITH GENETICALLY ENGINEERED ALFALFA INOCULATED WITH RECOMBINANT SINORHIZOBIUM MELILOTI: EFFECTS ON THE SOIL ECOSYSTEM

    Science.gov (United States)

    The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...

  9. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.

    Science.gov (United States)

    Yanase, Hideshi; Miyawaki, Hitoshi; Sakurai, Mitsugu; Kawakami, Akinori; Matsumoto, Mari; Haga, Kenji; Kojima, Motoki; Okamoto, Kenji

    2012-06-01

    An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h(-1).

  10. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    Science.gov (United States)

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  11. Genetically Engineered Vaccinia Viruses As Agents for Cancer Treatment, Imaging, and Transgene Delivery

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2017-05-01

    Full Text Available Despite advances in technology, the formidable challenge of treating cancer, especially if advanced, still remains with no significant improvement in survival rates, even with the most common forms of cancer. Oncolytic viral therapies have shown great promise for the treatment of various cancers, with the possible advantages of stronger treatment efficacy compared to conventional therapy due to higher tumor selectivity, and less toxicity. They are able to preferentially and selectively propagate in cancer cells, consequently destroying tumor tissue mainly via cell lysis, while leaving non-cancerous tissues unharmed. Several wild-type and genetically engineered vaccinia virus (VACV strains have been tested in both preclinical and clinical trials with promising results. Greater understanding and advancements in molecular biology have enabled the generation of genetically engineered oncolytic viruses for safer and more efficacious treatment, including arming VACVs with cytokines and immunostimulatory molecules, anti-angiogenic agents, and enzyme prodrug therapy, in addition to combining VACVs with conventional external and systemic radiotherapy, chemotherapy, immunotherapy, and other virus strains. Furthermore, novel oncolytic vaccinia virus strains have been generated that express reporter genes for the tracking and imaging of viral therapy and monitoring of therapeutic response. Further study is needed to unlock VACVs’ full potential as part of the future of cancer therapy.

  12. Semantic modeling and interoperability in product and process engineering a technology for engineering informatics

    CERN Document Server

    2013-01-01

    In the past decade, feature-based design and manufacturing has gained some momentum in various engineering domains to represent and reuse semantic patterns with effective applicability. However, the actual scope of feature application is still very limited. Semantic Modeling and Interoperability in Product and Process Engineering provides a systematic solution for the challenging engineering informatics field aiming at the enhancement of sustainable knowledge representation, implementation and reuse in an open and yet practically manageable scale.   This semantic modeling technology supports uniform, multi-facet and multi-level collaborative system engineering with heterogeneous computer-aided tools, such as CADCAM, CAE, and ERP.  This presented unified feature model can be applied to product and process representation, development, implementation and management. Practical case studies and test samples are provided to illustrate applications which can be implemented by the readers in real-world scenarios. �...

  13. Graphics tablet technology in second year thermal engineering teaching

    Directory of Open Access Journals (Sweden)

    Antonio Carrillo Andrés

    2013-12-01

    Full Text Available Graphics tablet technology is well known in markets such as manufacturing, graphics arts and design but they have not yet found widespread acceptance for university teaching. A graphics tablet is an affordable and efficient teaching tool that combines the best features from traditional and new media. It allows developing a progressive, interactive lecture (as a traditional blackboard does. However, the tablet is more versatile, being able to integrate graphic material such as tables, graphs, colours, etc. In addition to that, lecture notes can be saved and posted on a course website. The objective of this paper is to show the usefulness of tablet technology in undergraduate engineering teaching by sharing experiences made using a graphics tablet for lecturing a second year Thermal Engineering course. Students’ feedback is definitely positive, though there are some caveats regarding technical and operative problems.

  14. Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies.

    Science.gov (United States)

    Mehta, Prina; Haj-Ahmad, Rita; Rasekh, Manoochehr; Arshad, Muhammad S; Smith, Ashleigh; van der Merwe, Susanna M; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2017-01-01

    Complex micro- and nano-structures enable crucial developments in the healthcare remit (e.g., pharmaceutical and biomaterial sciences). In recent times, several technologies have been developed and explored to address key healthcare challenges (e.g., advanced chemotherapy, biomedical diagnostics and tissue regeneration). Electrohydrodynamic atomization (EHDA) technologies are rapidly emerging as promising candidates to address these issues. The fundamental principle driving EHDA engineering relates to the action of an electric force (field) on flowing conducting medium (formulation) giving rise to a stable Taylor cone. Through careful optimization of process parameters, material properties and selection, nozzle and needle design, and collection substrate method, complex active micro- and nano-structures are engineered. This short review focuses on key selected recent and established advances in the field of pharmaceutical and biomaterial applications. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. 5th International Conference on Advanced Manufacturing Engineering and Technologies

    CERN Document Server

    Jakovljevic, Zivana; NEWTECH2017

    2017-01-01

    This book presents the proceedings from the 5th NEWTECH conference (Belgrade, Serbia, 5–9 June 2017), the latest in a series of high-level conferences that bring together experts from academia and industry in order to exchange knowledge, ideas, experiences, research results, and information in the field of manufacturing. The range of topics addressed is wide, including, for example, machine tool research and in-machine measurements, progress in CAD/CAM technologies, rapid prototyping and reverse engineering, nanomanufacturing, advanced material processing, functional and protective surfaces, and cyber-physical and reconfigurable manufacturing systems. The book will benefit readers by providing updates on key issues and recent progress in manufacturing engineering and technologies and will aid the transfer of valuable knowledge to the next generation of academics and practitioners. It will appeal to all who work or conduct research in this rapidly evolving field.

  16. Advanced High-Temperature Engine Materials Technology Progresses

    Science.gov (United States)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  17. Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yimin

    2009-07-16

    The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

  18. Traditional technologies of fuels production for air-jet engines

    Directory of Open Access Journals (Sweden)

    Бойченко С. В.

    2013-07-01

    Full Text Available Available energy resources for various fuels, mainly for gas-turbine engines are presented in the given article. Traditional technologies for jet fuels production from nonrenewable raw materials, such as crude oil, coal, natural gas, oil-shales and others are analyzed in details. Cause and effect relationship between production and use of such fuels and their impact on natural environment is defined. The timeliness and necessity for development of alternative technologies of aviation biofuels production are determined in the given article.

  19. Complex engineering objects construction using Multi-D innovative technology

    International Nuclear Information System (INIS)

    Agafonov, Alexey

    2013-01-01

    Multi-D technology is an integrated innovative project management system for a construction of complex engineering objects based on a construction process simulation using an intellectual 3D model. Multi-D technology includes: • The unified schedule of E+P+C; • The schedule of loading of human resources, machines & mechanisms; • The budget of expenses and the income integrated with the schedule; • 3D model; • Multi-D model; • Weekly-daily tasks (with 4th level schedules); • Control system of interaction of Customer-EPC(m) company - Contractors; • Change and configuration management system

  20. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    International Nuclear Information System (INIS)

    Gerke, Frank G.

    2001-01-01

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy

  1. Digital video and audio broadcasting technology a practical engineering guide

    CERN Document Server

    Fischer, Walter

    2010-01-01

    Digital Video and Audio Broadcasting Technology - A Practical Engineering Guide' deals with all the most important digital television, sound radio and multimedia standards such as MPEG, DVB, DVD, DAB, ATSC, T-DMB, DMB-T, DRM and ISDB-T. The book provides an in-depth look at these subjects in terms of practical experience. In addition it contains chapters on the basics of technologies such as analog television, digital modulation, COFDM or mathematical transformations between time and frequency domains. The attention in the respective field under discussion is focussed on aspects of measuring t

  2. Nuclear engineering and manufacturing technology transfer coproduction with technical assistance

    International Nuclear Information System (INIS)

    Marillier, J.C.; Boury, C.

    1985-10-01

    This paper emphasizes in the specific areas of design, engineering, and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of successful implementation of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  3. Collaboration in Research and Engineering for Advanced Technology.

    Energy Technology Data Exchange (ETDEWEB)

    Vrieling, P. Douglas [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  4. History of the Development of NERVA Nuclear Rocket Engine Technology

    International Nuclear Information System (INIS)

    David L., Black

    2000-01-01

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably

  5. Stocking the genetic supermarket: reproductive genetic technologies and collective action problems.

    Science.gov (United States)

    Gyngell, Chris; Douglas, Thomas

    2015-05-01

    Reproductive genetic technologies (RGTs) allow parents to decide whether their future children will have or lack certain genetic predispositions. A popular model that has been proposed for regulating access to RGTs is the 'genetic supermarket'. In the genetic supermarket, parents are free to make decisions about which genes to select for their children with little state interference. One possible consequence of the genetic supermarket is that collective action problems will arise: if rational individuals use the genetic supermarket in isolation from one another, this may have a negative effect on society as a whole, including future generations. In this article we argue that RGTs targeting height, innate immunity, and certain cognitive traits could lead to collective action problems. We then discuss whether this risk could in principle justify state intervention in the genetic supermarket. We argue that there is a plausible prima facie case for the view that such state intervention would be justified and respond to a number of arguments that might be adduced against that view. © 2014 The Authors. Bioethics published by John Wiley & Sons Ltd.

  6. Benefits of reverse engineering technologies in software development makerspace

    Directory of Open Access Journals (Sweden)

    Aabidi M.H.

    2017-01-01

    Full Text Available In the recent decades, the amount of data produced by scientific, engineering, and life science applications has increased with several orders of magnitude. In parallel with this development, the applications themselves have become increasingly complex in terms of functionality, structure, and behavior. In the same time, development and production cycles of such applications exhibit a tendency of becoming increasingly shorter, due to factors such as market pressure and rapid evolution of supporting and enabling technologies. As a consequence, an increasing fraction of the cost of creating new applications and manufacturing processes shifts from the creation of new artifacts to the adaption of existing ones. A key component of this activity is the understanding of the design, operation, and behavior of existing manufactured artifacts, such as software code bases, hardware systems, and mechanical assemblies. For instance, in the software industry, it is estimated that maintenance costs exceed 80% of the total costs of a software product's lifecycle, and software understanding accounts for as much as half of these maintenance costs. To facilitate the software development process, it would be ideal to have tools that automatically generate or help to generate UML (Unified Modeling Language models from source code. Reverse engineering the software architecture from source code provides a valuable service to software practitioners. Case tools implementing MDA and reverse-engineering constitute an important opportunity of software development engineers. So MDA and reverse engineering is an important key witch make makerspace more productive and more efficient.

  7. Criteria for identifying and evaluating candidate sites for open-field trials of genetically engineered mosquitoes.

    Science.gov (United States)

    Brown, David M; Alphey, Luke S; McKemey, Andrew; Beech, Camilla; James, Anthony A

    2014-04-01

    Recent laboratory successes in the development of genetically engineered mosquitoes for controlling pathogen transmission have fostered the need for standardized procedures for advancing the technical achievements to practical tools. It is incumbent in many cases for the same scientists doing the in-laboratory discovery research to also take on the initial challenges of developing the pathway that will move the technologies to the field. One of these challenges is having a set of criteria for selecting collaborators and sites for efficacy and safety field trials that combine rigorous science with good ethical and legal practices. Specific site-selection criteria were developed in four categories-Scientific, Regulatory, Community Engagement, and Resources-in anticipation of open-field releases of a transgenic mosquito strain designed to suppress populations of the dengue vector mosquito, Aedes aegypti. The criteria are derived from previous published material, discussions, and personal experiences with the expectation of providing guidance to laboratory scientists for addressing the conceptual and operational considerations for identifying partner researchers and countries with whom to collaborate. These criteria are not intended to be prescriptive nor can they be applied to every circumstance where genetic approaches are proposed for deployment. However, we encourage those involved in the discovery phase of research to consider each criterion during project planning activities, and where appropriate, incorporate them into a "go/no-go" decision-making process for further development and testing of the technologies.

  8. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

  9. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria.

    Science.gov (United States)

    Srirangan, Kajan; Pyne, Michael E; Perry Chou, C

    2011-09-01

    As an energy carrier, hydrogen gas is a promising substitute to carbonaceous fuels owing to its superb conversion efficiency, non-polluting nature, and high energy content. At present, hydrogen is predominately synthesized via chemical reformation of fossil fuels. While various biological methods have been extensively explored, none of them is justified as economically feasible. A sustainable platform for biological production of hydrogen will certainly impact the biofuel market. Among a selection of biological systems, algae and cyanobacteria have garnered major interests as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical systems. This article reviews recent advances of biochemical, bioprocess, and genetic engineering strategies in circumventing technological limitations to hopefully improve the applicative potential of these photosynthetic hydrogen production systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    Science.gov (United States)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  11. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa

    2016-03-01

    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  12. Developing an Integration Infrastructure for Distributed Engine Control Technologies

    Science.gov (United States)

    Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan

    2014-01-01

    Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.

  13. IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)

    Science.gov (United States)

    Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...

  14. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Background: The limited xylose utilizing ability of native Saccharomyces cerevisiae has been a major obstacle for efficient cellulosic ethanol production from lignocellulosic materials. Haploid laboratory strains of S. cerevisiae are commonly used for genetic engineering to enable its xylose utiliza...

  15. Notification: Evaluation of Office of Pesticide Programs’ Genetically Engineered Corn Insect Resistance Management

    Science.gov (United States)

    Project #OPE-FY15-0055, July 09, 2015. The EPA OIG plans to begin preliminary research on the EPA's ability to manage and prevent increased insect resistance to genetically engineered Bacillus thuringiensis (Bt) corn.

  16. The establishment of genetically engineered canola populations in the U.S.

    Science.gov (United States)

    Concerns regarding the commercial release of genetically engineered (GE) crops include naturalization, introgression to sexually compatible relatives and the transfer of beneficial traits to native and weedy species through hybridization. To date there have been few documented re...

  17. Molecular profiling techniques as tools to detect potential unintended effects in genetically engineered maize

    CSIR Research Space (South Africa)

    Barros, E

    2010-05-01

    Full Text Available In the early stages of production and commercialization of foods derived from genetically engineered (GE) plants, international consensus was reached on the principles of food safety evaluation. The concept of substantial equivalence became...

  18. Notification: Evaluation of EPA's Management of Resistance Issues Related to Herbicide Tolerant Genetically Engineered Crops

    Science.gov (United States)

    Project #OPE-FY16-0023, March 25, 2016. The EPA OIG plans to begin preliminary research to assess the EPA's management and oversight of resistance issues related to herbicide tolerant genetically engineered crops.

  19. Young Women’s Perceptions of Technology and Engineering: Factors Influencing Their Participation in Math, Science and Technology?

    OpenAIRE

    Roue, Leah C.

    2007-01-01

    The current number of women in technology and engineering only represents a fraction of today’s workforce. Technological innovation depends on our nation’s best and brightest, representing all segments of our diverse society. Sanders (2005), in talking about women in technology and engineering, stated that women’s lack of participation can only be measured in jobs not filled, problems not solved, and technology not created. Research in the area of how young women view technology will provide ...

  20. Mutational breeding and genetic engineering in the development of high grain protein content.

    Science.gov (United States)

    Wenefrida, Ida; Utomo, Herry S; Linscombe, Steve D

    2013-12-04

    Cereals are the most important crops in the world for both human consumption and animal feed. Improving their nutritional values, such as high protein content, will have significant implications, from establishing healthy lifestyles to helping remediate malnutrition problems worldwide. Besides providing a source of carbohydrate, grain is also a natural source of dietary fiber, vitamins, minerals, specific oils, and other disease-fighting phytocompounds. Even though cereal grains contain relatively little protein compared to legume seeds, they provide protein for the nutrition of humans and livestock that is about 3 times that of legumes. Most cereal seeds lack a few essential amino acids; therefore, they have imbalanced amino acid profiles. Lysine (Lys), threonine (Thr), methionine (Met), and tryptophan (Trp) are among the most critical and are a limiting factor in many grain crops for human nutrition. Tremendous research has been put into the efforts to improve these essential amino acids. Development of high protein content can be outlined in four different approaches through manipulating seed protein bodies, modulating certain biosynthetic pathways to overproduce essential and limiting amino acids, increasing nitrogen relocation to the grain through the introduction of transgenes, and exploiting new genetic variance. Various technologies have been employed to improve protein content including conventional and mutational breeding, genetic engineering, marker-assisted selection, and genomic analysis. Each approach involves a combination of these technologies. Advancements in nutrigenomics and nutrigenetics continue to improve public knowledge at a rapid pace on the importance of specific aspects of food nutrition for optimum fitness and health. An understanding of the molecular basis for human health and genetic predisposition to certain diseases through human genomes enables individuals to personalize their nutritional requirements. It is critically important

  1. The role of technology and engineering models in transforming healthcare.

    Science.gov (United States)

    Pavel, Misha; Jimison, Holly Brugge; Wactlar, Howard D; Hayes, Tamara L; Barkis, Will; Skapik, Julia; Kaye, Jeffrey

    2013-01-01

    The healthcare system is in crisis due to challenges including escalating costs, the inconsistent provision of care, an aging population, and high burden of chronic disease related to health behaviors. Mitigating this crisis will require a major transformation of healthcare to be proactive, preventive, patient-centered, and evidence-based with a focus on improving quality-of-life. Information technology, networking, and biomedical engineering are likely to be essential in making this transformation possible with the help of advances, such as sensor technology, mobile computing, machine learning, etc. This paper has three themes: 1) motivation for a transformation of healthcare; 2) description of how information technology and engineering can support this transformation with the help of computational models; and 3) a technical overview of several research areas that illustrate the need for mathematical modeling approaches, ranging from sparse sampling to behavioral phenotyping and early detection. A key tenet of this paper concerns complementing prior work on patient-specific modeling and simulation by modeling neuropsychological, behavioral, and social phenomena. The resulting models, in combination with frequent or continuous measurements, are likely to be key components of health interventions to enhance health and wellbeing and the provision of healthcare.

  2. Mechanical-engineering aspects of mirror-fusion technology

    International Nuclear Information System (INIS)

    Fisher, D.K.; Doggett, J.N.

    1982-01-01

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design

  3. Integration of an ion engine on the Communications Technology Satellite.

    Science.gov (United States)

    Payne, W. F.; Finke, R. C.

    1972-01-01

    An ion engine subsystem intended for satellite stationkeeping tasks is described. Ion thrusters are chosen to perform the task because the specific impulse is at least an order of magnitude higher than the commonly used reaction control jets. The higher the value of specific impulse, the greater the total impulse that can be attained for a given weight of propellant, hence cost benefits result. The integration, subsystem testing, and the operating plans for the ion engine experiment to be flown in 1975 on the Canadian Communications Technology Satellite (CTS) are described. The subsystem is designed to demonstrate north-south stationkeeping, attitude control by means of thrust vectoring, long-term space storage and restart capability, and compatibility with a high powered communications transponder.

  4. Physics and information technology an interplay between science and engineering

    CERN Multimedia

    Hagstrom, S B

    1999-01-01

    In the last decade of this century and millennium, the computer and communication revolution has shown its power to transform the society. In this talk I will reflect on my personal experience of witnessing this revolution from an observation post in Silicon Valley. In particular, I will emphasize the role of physics and the interplay between science and engineering in this development. Information technology is often viewed as based on some physics discoveries and inventions such as the transistor and the semiconductor laser. Much of the subsequent development, the integrated circuit being a good example, has been an engineering feat. With shrinking dimensions of the circuits we are approaching the quantum limitations, requiring new types of computer architectures based on fundamental physics concepts. In this context we may ask if we should include the basic concepts of information and information handling as part of physics. Finally I will include some remarks on the views of physics as seen in the eyes of...

  5. Pollution Reduction Technology Program, Turboprop Engines, Phase 1

    Science.gov (United States)

    Anderson, R. D.; Herman, A. S.; Tomlinson, J. G.; Vaught, J. M.; Verdouw, A. J.

    1976-01-01

    Exhaust pollutant emissions were measured from a 501-D22A turboprop engine combustor and three low emission combustor types -- reverse flow, prechamber, and staged fuel, operating over a fuel-air ratio range of .0096 to .020. The EPAP LTO cycle data were obtained for a total of nineteen configurations. Hydrocarbon emissions were reduced from 15.0 to .3 lb/1000 Hp-Hr/cycle, CO from 31.5 to 4.6 lb/1000 Hp-Hr/cycle with an increase in NOx of 17 percent, which is still 25% below the program goal. The smoke number was reduced from 59 to 17. Emissions given here are for the reverse flow Mod. IV combustor which is the best candidate for further development into eventual use with the 501-D22A turboprop engine. Even lower emissions were obtained with the advanced technology combustors.

  6. The support of meat value chains by genetic technologies.

    Science.gov (United States)

    Sosnicki, Andrzej A; Newman, Scott

    2010-09-01

    Ongoing meat and food industry consolidation has resulted in the creation of larger and more complex, vertically integrated and/or coordinated food production systems. These systems have also been focused on development of differentiated 'Value Chains' as a departure from the traditional commodity oriented 'Supply Chains'. The main goal of value chains is to achieve sustainable competitiveness through focusing resources on efficiently producing goods that offer superior consumer-recognized value. A closely-aligned value chain often contains vertically and horizontally linked players such as genetics and genetic improvement program(s), farmer(s), processor(s), distributor(s), and retailer(s). In this paper we postulate that the underlying foundation of the success of meat value chain accomplishments has been through substantial development of animal genetic technologies enabling sustainable production of animal protein-based consumer products of desirable quantity and quality. It is plausible to assume that further advancement in genomic selection and eventually proteomics will enable implementation of more complex genetic improvement programs leading to further development of differentiated meat value chains focused on ever changing consumer needs.

  7. Functional information technology in geometry-graphic training of engineers

    Directory of Open Access Journals (Sweden)

    Irina D. Stolbova

    2017-01-01

    Full Text Available In the last decade, information technology fundamentally changed the design activity and made significant adjustments to the development of design documentation. Electronic drawings and 3d-models appeared instead of paper drawings and the traditional form of the design documentation. Geometric modeling of 3d-technology has replaced the graphic design technology. Standards on the electronic models are introduced. Electronic prototypes and 3d-printing contribute to the spread of rapid prototyping technologies.In these conditions, the task to find the new learning technology, corresponding to the level of development of information technologies and meeting the requirements of modern design and manufacturing technologies, comes to the fore. The purpose of this paper — the analysis of the information technology capabilities in the formation of geometrical-graphic competences, happening in the base of graphic training of students of technical university. Traditionally, basic graphic training of students in the junior university courses consisted in consecutive studying of the descriptive geometry, engineering and computer graphics. Today, the use of integrative approach is relevant, but the role of computer graphics varies considerably. It is not only an object of study, but also a learning tool, the core base of graphic training of students. Computer graphics is an efficient mechanism for the development of students’ spatial thinking. The role of instrumental training of students to the wide use of CAD-systems increases in the solution of educational problems and in the implementation of project tasks, which corresponds to the modern requirements of the professional work of the designer-constructor.In this paper, the following methods are used: system analysis, synthesis, simulation.General geometric-graphic training model of students of innovation orientation, based on the use of a wide range of computer technology is developed. The

  8. Knowing What Engineering and Technology Teachers Need to Know: An Analysis of Pre-Service Teachers Engineering Design Problems

    Science.gov (United States)

    Fantz, Todd D.; De Miranda, Michael A.; Siller, Thomas J.

    2011-01-01

    With the rapid advances in civilization, technological breakthroughs, and a globally growing workforce, there is a strong need for engineers capable of working in the 21st century environment (Galloway, "The 21st century engineer: A proposal for engineering education reform." ASCE, Washington DC 2008). To help increase the quality and quantity of…

  9. Dictionary of electrical engineering. Power engineering, automation technology, measurement and control technology, mechatronics. English - German; Fachwoerterbuch Elektrotechnik. Energietechnik, Automatisierungstechnik, Mess-, Steuer- und Regelungstechnik, Mechatronik. Englisch - Deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Heckler, H.

    2007-07-01

    The foreign-language vocabulary taught at school usually does not cover terms needed during professional life in electrical engineering. This comprehensive dictionary contains more than 60,000 electrotechnical and engineering terms - used in textbooks, manuals, data sheets, whitepapers and international standards. British English and American English spelling differences are identified. Terms used in IEC standards of the International Electrotechnical Commission are marked, allowing the reader to have easy access to the multilingual glossary of the IEC. This book contains the in-house dictionaries of the internationally operating companies Festo, KEB, Phoenix Contact, and Rittal. Topics: - Basic of electrical engineering, - Electrical power engineering, - Mechatronics, - Electrical drive engineering, - Electrical connection technology, - Automation technology, - Safety-related technology, - Information technology, - Measurement and control technology, - Explosion protection - Power plant technology, - Lightning and overvoltage protection. (orig.)

  10. Pharmacokinetics and biodistribution of genetically-engineered antibodies

    International Nuclear Information System (INIS)

    Colcher, D.; Pavlinkova, G.; Beresford, G.; Booth, B.J.M.; Choudhury, A.; Batra, S.K.; Omaha, Univ. of Nebraska Medical Center, NE

    1998-01-01

    Genetic manipulations of the immunoglobulin molecules are effective means of altering stability, functional affinity, pharmacokinetics, and biodistribution of the antibodies required for the generation of the 'magic bullet'

  11. Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids

    Science.gov (United States)

    Xu, Jun-Wei; Zhong, Jian-Jiang

    2015-01-01

    Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum. PMID:26588475

  12. Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids.

    Science.gov (United States)

    Xu, Jun-Wei; Zhong, Jian-Jiang

    2015-01-01

    Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum.

  13. Microstructural Engineering in Eutectoid Steel: A Technological Possibility?

    Science.gov (United States)

    Durgaprasad, A.; Giri, S.; Lenka, S.; Kundu, S.; Chandra, S.; Mishra, S.; Doherty, R. D.; Samajdar, I.

    2018-02-01

    Eutectoid wire rods were subjected to controlled thermo-mechanical processing (TMP). Both increased cooling rate and applied stress during the austenite-to-pearlite decomposition produced significant changes in the microstructure: major increases in the pearlite's axial alignment and minor decreases in the interlamellar spacing. The pearlite alignment was correlated with changes in the ferrite crystallographic texture and the state of residual stress. Microstructural engineering, improved axial alignment of pearlite, through controlled TMP gave a fourfold increase in torsional ductility. TMP of eutectoid steel thus appears to have interesting technological possibilities.

  14. Stem Cell Technology for (Epi)genetic Brain Disorders.

    Science.gov (United States)

    Riemens, Renzo J M; Soares, Edilene S; Esteller, Manel; Delgado-Morales, Raul

    2017-01-01

    Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).

  15. 76 FR 39812 - Scotts Miracle-Gro Co.; Regulatory Status of Kentucky Bluegrass Genetically Engineered for...

    Science.gov (United States)

    2011-07-07

    ...] Scotts Miracle-Gro Co.; Regulatory Status of Kentucky Bluegrass Genetically Engineered for Herbicide... Scotts Miracle-Gro Company seeking confirmation that their Kentucky bluegrass, which has been genetically... letter from Scotts and APHIS' response letter on the Internet at http://www.aphis.usda.gov/biotechnology...

  16. Generating Alternative Engineering Designs by Integrating Desktop VR with Genetic Algorithms

    Science.gov (United States)

    Chandramouli, Magesh; Bertoline, Gary; Connolly, Patrick

    2009-01-01

    This study proposes an innovative solution to the problem of multiobjective engineering design optimization by integrating desktop VR with genetic computing. Although, this study considers the case of construction design as an example to illustrate the framework, this method can very much be extended to other engineering design problems as well.…

  17. Ethical issues in the application of genetic engineering | Ukah ...

    African Journals Online (AJOL)

    The position of this paper titled “Ethical Issues in the Application of Genetic Engineering” is that science needs to be overseen by ethics. The science of genetics is used as case study here to highlight the difficulties inherent in the application of the discoveries of geneticists. Whereas we have acknowledged the positive ...

  18. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    Science.gov (United States)

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  19. Continuous nonlinear optimization for engineering applications in GAMS technology

    CERN Document Server

    Andrei, Neculai

    2017-01-01

    This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical opti...

  20. Thermal engineering and micro-technology; Thermique et microtechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, S. [Rochester Inst. of Tech., NY (United States); Luo, L. [Institut National Polytechnique, 54 - Nancy (France); Gruss, A. [CEA Grenoble, GRETH, 38 (France); Wautelet, M. [Mons Univ. (Belgium); Gidon, S. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Gillot, C. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, 38 - Saint Martin d' Heres (France)]|[CEA Grenoble, Lab. Electronique et de Technologie de l' Informatique (LETI), 38 (France); Therme, J.; Marvillet, Ch.; Vidil, R. [CEA Grenoble, 38 (France); Dutartre, D. [ST Microelectronique, France (France); Lefebvre, Ph. [SNECMA, 75 - Paris (France); Lallemand, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France); Colin, S. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Joulin, K. [Ecole Nationale Superieure de Mecanique et d' Aerotechnique (ENSMA), 86 - Poitiers (France); Gad el Hak, M. [Virginia Univ., Charlottesville, VA (United States)

    2003-07-01

    This document gathers the abstracts and transparencies of 5 invited conferences of this congress of the SFT about heat transfers and micro-technologies: Flow boiling in microchannels: non-dimensional groups and heat transfer mechanisms (S. Kandlikar); Intensification and multi-scale process units (L. Luo and A. Gruss); Macro-, micro- and nano-systems: different physics? (M. Wautelet); micro-heat pipes (M. Lallemand); liquid and gas flows inside micro-ducts (S. Colin). The abstracts of the following presentations are also included: Electro-thermal writing of nano-scale memory points in a phase change material (S. Gidon); micro-technologies for cooling in micro-electronics (C. Gillot); the Minatec project (J. Therme); importance and trends of thermal engineering in micro-electronics (D. Dutartre); Radiant heat transfers at short length scales (K. Joulain); Momentum and heat transfer in micro-electromechanical systems (M. Gad-el-Hak). (J.S.)

  1. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  2. Development of genome engineering technologies in cattle: from random to specific.

    Science.gov (United States)

    Yum, Soo-Young; Youn, Ki-Young; Choi, Woo-Jae; Jang, Goo

    2018-01-01

    The production of transgenic farm animals (e.g., cattle) via genome engineering for the gain or loss of gene functions is an important undertaking. In the initial stages of genome engineering, DNA micro-injection into one-cell stage embryos (zygotes) followed by embryo transfer into a recipient was performed because of the ease of the procedure. However, as this approach resulted in severe mosaicism and has a low efficiency, it is not typically employed in the cattle as priority, unlike in mice. To overcome the above issue with micro-injection in cattle, somatic cell nuclear transfer (SCNT) was introduced and successfully used to produce cloned livestock. The application of SCNT for the production of transgenic livestock represents a significant advancement, but its development speed is relatively slow because of abnormal reprogramming and low gene targeting efficiency. Recent genome editing technologies (e.g., ZFN, TALEN, and CRISPR-Cas9) have been rapidly adapted for applications in cattle and great results have been achieved in several fields such as disease models and bioreactors. In the future, genome engineering technologies will accelerate our understanding of genetic traits in bovine and will be readily adapted for bio-medical applications in cattle.

  3. The Significance of Content Knowledge for Informal Reasoning regarding Socioscientific Issues: Applying Genetics Knowledge to Genetic Engineering Issues

    Science.gov (United States)

    Sadler, Troy D.; Zeidler, Dana L.

    2005-01-01

    This study focused on informal reasoning regarding socioscientific issues. It sought to explore how content knowledge influenced the negotiation and resolution of contentious and complex scenarios based on genetic engineering. Two hundred and sixty-nine students drawn from undergraduate natural science and nonnatural science courses completed a…

  4. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms.

    Science.gov (United States)

    de Oliveira, Juliana Davies; Carvalho, Lucas Silva; Gomes, Antônio Milton Vieira; Queiroz, Lúcio Rezende; Magalhães, Beatriz Simas; Parachin, Nádia Skorupa

    2016-07-01

    Hyaluronic acid, or HA, is a rigid and linear biopolymer belonging to the class of the glycosaminoglycans, and composed of repeating units of the monosaccharides glucuronic acid and N-acetylglucosamine. HA has multiple important functions in the human body, due to its properties such as bio-compatibility, lubricity and hydrophilicity, it is widely applied in the biomedical, food, health and cosmetic fields. The growing interest in this molecule has motivated the discovery of new ways of obtaining it. Traditionally, HA has been extracted from rooster comb-like animal tissues. However, due to legislation laws HA is now being produced by bacterial fermentation using Streptococcus zooepidemicus, a natural producer of HA, despite it being a pathogenic microorganism. With the expansion of new genetic engineering technologies, the use of organisms that are non-natural producers of HA has also made it possible to obtain such a polymer. Most of the published reviews have focused on HA formulation and its effects on different body tissues, whereas very few of them describe the microbial basis of HA production. Therefore, for the first time this review has compiled the molecular and genetic bases for natural HA production in microorganisms together with the main strategies employed for heterologous production of HA.

  5. Genetic Networks of Complex Disorders: from a Novel Search Engine for PubMed Article Database.

    Science.gov (United States)

    Jung, Jae-Yoon; Wall, Dennis Paul

    2013-01-01

    Finding genetic risk factors of complex disorders may involve reviewing hundreds of genes or thousands of research articles iteratively, but few tools have been available to facilitate this procedure. In this work, we built a novel publication search engine that can identify target-disorder specific, genetics-oriented research articles and extract the genes with significant results. Preliminary test results showed that the output of this engine has better coverage in terms of genes or publications, than other existing applications. We consider it as an essential tool for understanding genetic networks of complex disorders.

  6. Genotyping technologies: application to biotransformation enzyme genetic polymorphism screening.

    Science.gov (United States)

    Romkes, Marjorie; Buch, Shama C

    2014-01-01

    Pharmacogenomics encompasses several major areas: the study of polymorphic variations to drug response and disease susceptibility, identification of the effects of drugs/xenobiotics at the genomic level, and genotype/phenotype associations. The most common type of human genetic variations is single-nucleotide polymorphisms (SNPs). Several novel approaches to detection of SNPs are currently available. The range of new methods includes modifications of several conventional techniques such as PCR, mass spectrometry, and sequencing as well as more innovative technologies such as fluorescence resonance energy transfer and microarrays. The application of each of these techniques is largely dependent on the number of SNPs to be screened and sample size. The current chapter presents an overview of the general concepts of a variety of genotyping technologies with an emphasis on the recently developed methodologies, including a comparison of the advantages, applicability, cost efficiency, and limitations of these methods.

  7. PREFACE: Modern Technologies in Industrial Engineering (ModTech2015)

    Science.gov (United States)

    Oanta, E.; Comaneci, R.; Carausu, C.; Placzek, M.; Cohal, V.; Topala, P.; Nedelcu, D.

    2015-11-01

    attended by 140 participants from 17 countries. The authors and co-authors were from various countries worldwide, namely: Sweden, China, Switzerland, Romania, Serbia, Germany, Netherlands, Belgium, France, South Korea, Taiwan, Poland, USA, Slovenia, Turkey, Republic of Moldova, Russia, Finland, Japan, Ukraine, Portugal, Uzbekistan, Iraq, Italy and India. The Keynote Speakers were as follows: Prof. Esteban Broitman - Linkoping University, Sweden; Prof. Ziyi Ge - NIMTE, Chinese Academy of Sciences, Ningbo, China; Prof. Thomas Graule - EMPA, Switzerland; prof. Razvan Tamas - Constanta Maritime University, Romania; Prof. Rainer Gadow - University of Stuttgart, Germany; Prof. Marcel Van de Voorde - DELFT University of Technology, Netherlands; Prof. Chris Lacor - Vrije University, Brussels, Belgium; Prof. Fiqiri Hodaj - National Polytechnique Institute of Grenoble, France; Prof. Hong Seok Park - University of Ulsan, South Korea; Prof. Der-Jang Liaw - National Taiwan University of Science and Technology, Taiwan; Prof. Petrica Vizureanu - Gheorghe Asachi Technical University of Iasi, Romania. The main publications of ModTech2015 International Conference are as follows: IOP Conference Series: Materials Science and Engineering, United Kingdom, Indian Journal of Engineering & Materials Sciences (IJEMS) and International Journal of Modern Manufacturing Technologies (IJMMT).

  8. Innovative technologies in course Electrical engineering and electronics

    Science.gov (United States)

    Kuznetsov, E. V.; Kiselev, V. I.; Kulikova, E. A.

    2017-11-01

    Department of Electrical Engineering and Nondestructive Testing, NRU “MPEI”, has been working on development Electronic Learning Resources (ELRs) in course Electrical Engineering and Electronics for several years. This work have been focused on education intensification and effectiveness while training bachelors in nonelectrical specializations including students from Thermal and Atomic Power Engineering Institute. The developed ELRs are united in a tutorial module consisting of three parts (Electrical Circuits, Electrical Machines, Basics of Electronics): electronic textbook and workbook (ETW); virtual laboratory sessions (VLS); training sessions (ETS); personal tasks (PT); testing system that contains electronic tests in all course subjects and built-in verification of a student’s work results in ETW, VLS, ETS, PT. The report presents samples of different ELRs in html format and MathCAD, MatLAB Simulink applications, copyrighted programs in Java2, Delphi, VB6, C++. The report also contains the experience description, advantages and disadvantages of the new technologies. It is mentioned that ELRs provide new opportunities in course studying.

  9. Applied reproductive technologies and genetic resource banking for amphibian conservation.

    Science.gov (United States)

    Kouba, Andrew J; Vance, Carrie K

    2009-01-01

    As amphibian populations continue to decline, both government and non-government organisations are establishing captive assurance colonies to secure populations deemed at risk of extinction if left in the wild. For the most part, little is known about the nutritional ecology, reproductive biology or husbandry needs of the animals placed into captive breeding programs. Because of this lack of knowledge, conservation biologists are currently facing the difficult task of maintaining and reproducing these species. Academic and zoo scientists are beginning to examine different technologies for maintaining the genetic diversity of founder populations brought out of the wild before the animals become extinct from rapidly spreading epizootic diseases. One such technology is genetic resource banking and applied reproductive technologies for species that are difficult to reproduce reliably in captivity. Significant advances have been made in the last decade for amphibian assisted reproduction including the use of exogenous hormones for induction of spermiation and ovulation, in vitro fertilisation, short-term cold storage of gametes and long-term cryopreservation of spermatozoa. These scientific breakthroughs for a select few species will no doubt serve as models for future assisted breeding protocols and the increasing number of amphibians requiring conservation intervention. However, the development of specialised assisted breeding protocols that can be applied to many different families of amphibians will likely require species-specific modifications considering their wide range of reproductive modes. The purpose of this review is to summarise the current state of knowledge in the area of assisted reproduction technologies and gene banking for the conservation of amphibians.

  10. International Colloquium on Sports Science, Exercise, Engineering and Technology 2014

    CERN Document Server

    Ismail, Shariman; Sulaiman, Norasrudin

    2014-01-01

    The proceeding is a collection of research papers presented at the International Colloquium on Sports Science, Exercise, Engineering and Technology (ICoSSEET2014), a conference dedicated to address the challenges in the areas of sports science, exercise, sports engineering and technology including other areas of sports, thereby presenting a consolidated view to the interested researchers in the aforesaid fields. The goal of this conference was to bring together researchers and practitioners from academia and industry to focus on the scope of the conference and establishing new collaborations in these areas. The topics of interest are as follows but are not limited to:1. Sports and Exercise Science • Sports Nutrition • Sports Biomechanics • Strength and Conditioning • Motor Learning and Control • Sports Psychology • Sports Coaching • Sports and Exercise Physiology • Sports Medicine and Athletic Trainer • Fitness and Wellness • Exercise Rehabilitation • Adapted Physical Activity...

  11. Renewable energy technology from underpinning physics to engineering application

    International Nuclear Information System (INIS)

    Infield, D G

    2008-01-01

    The UK Energy Research Centre (UKERC) in it's submission to the DTI's 2006 Energy Review reminded us that the 'UK has abundant wind, wave and tidal resources available; its mild climate lends itself to bio-energy production, and solar radiation levels are sufficient to sustain a viable solar industry'. These technologies are at different stages of development but they all draw on basic and applied Science and Engineering. The paper will briefly review the renewable energy technologies and their potential for contributing to a sustainable energy supply. Three research topics will be highlighted that bridge the gap between the physics underpinning the energy conversion, and the engineering aspects of development and deployment; all three are highly relevant to the Government's programme on micro-generation. Two are these are taken from field of thin film photovoltaics (PV), one related to novel device development and the other to a measurement technique for assessing the manufacturing quality of PV modules and their performance. The third topic concerns the development of small building integrated wind turbines and examines the complex flow associated with such applications. The paper will conclude by listing key research challenges that are central to the search for efficient and cost-effective renewable energy generation

  12. Pollution technology program, can-annular combustor engines

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  13. Genetically engineered plants with increased vegetative oil content

    Science.gov (United States)

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  14. Moral and Legal Decisions in Reproductive and Genetic Engineering

    Science.gov (United States)

    Heim, Werner G.

    1972-01-01

    Discusses the moral and ethical issues raised by the imminent possibilities for genetic and reproductive manipulation of humans, the responsibilities of scientists, moralists, and social scientists, and the role of teachers in public information. (AL)

  15. Assessment of an Engineering Technology Outreach Program for 4th-7th Grade Girls

    Science.gov (United States)

    Dell, Elizabeth M.; Christman, Jeanne; Garrick, Robert D.

    2011-01-01

    This paper describes a workshop led by female Engineering Technology students, with support from female faculty, to provide an introduction to Engineering Technology to 4th-7th grade girls through a series of interactive laboratory experiments. This outreach program was developed to improve attitudes towards science and engineering in middle…

  16. Electronic Engineering Technology Program Exit Examination as an ABET and Self-Assessment Tool

    Science.gov (United States)

    Thomas, Gary; Darayan, Shahryar

    2018-01-01

    Every engineering, computing, and engineering technology program accredited by the Accreditation Board for Engineering and Technology (ABET) has formulated many and varied self-assessment methods. Methods used to assess a program for ABET accreditation and continuous improvement are for keeping programs current with academic and industrial…

  17. Tools for genetic engineering of the yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Saraya, Ruchi; Gidijala, Loknath; Veenhuis, Marten; van der Klei, Ida J; Mapelli, Valeria

    2014-01-01

    Hansenula polymorpha is a methylotrophic yeast species that has favorable properties for heterologous protein production and metabolic engineering. It provides an attractive expression platform with the capability to secrete high levels of commercially important proteins. Over the past few years

  18. Biotechnology. Part 1: Historical aspects. Part 2: Microbiological engineering. Part 3: Enzymatic engineering. Part 4: Genetical engineering. Part 5: Quality control in biological industry. Part 6: Bio technologies in France and in the world; Biotechnologie. Partie 1: Historique. Partie 2: Le genie microbiologique. Partie 3: Le genie enzymatique. Partie 4: Le genie genetique. Partie 5: Controle qualite en bio-industrie. Partie 6: Les biotechnologies en France et dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    Bouquet, J. [Lycee de Lille, 59 (France); Arnaud, A.; Galzy, P. [Ecole Nationale Superieure Agronomie de Montpellier, 34 (France); Guiraud, J.P. [Montpellier-2 Universite, 34 (France). Institut Superieur Ingenieurs de Montpellier; Leveau, J.Y.; Bouix, M.; Berset, C.; Goursaud, J.; Cuvelier, G.F. [Ecole Nationale Superieure des Industries Agricoles et Alimentaires, 91 - Massy (France); Engasser, J.M. [Institut Polytechnique de Lorraine, 54 - Vandoeuvre-les-Nancy (France); Cerisier, Y. [CNCM Institut Pasteur, 75 - Paris (France); Richard, H. [Ecole Nationale Superieure des Industries Agricoles et Alimentaires, 91 - Massy (France). Laboratoire de Chimie des Substances Naturelles; Scriban, R. [Ecole Nationale Superieure des Industries Alimentaires, 59 - Douai (France); Teoule, E. [Paris-6 Universite, 75 (France). Laboratoire Station de Genetique et d`Amelioration des Plantes; Martal, J. [INRA, 78 - Jouy-en-Josas (France); Mawas, C. [INSERM, Cancerologie et Therapeutique experimentales, 13 - Marseille (France); Pourquie, J. [Institut National Agronomique, 75 - Paris (France); Vandecasteele, J.P. [Institut Francais du Petrole, 92 - Rueil-Malmaison (France); Iwema, A. [Agence de l`eau Rhone-Mediterranee-Corse, 69 - Pierre-Benite (France); Lebeault, J.M. [Compiegne Universite, Centre de Recherche de Royalieu, 60 (France); Steenbrugge, H. [Gaz de France, 59 - Lille (France); Pierrard, S. [Veterinaire Inspecteur, 70 - Vesoul (France); Normand-Plessier, F. [Elf Sanofi, 94 - Gentilly (France); Raugel, P.J. [Economiste International, 94 - Ivry-sur-Seine (France); Guerrini, M.; Jupin, C. [Institut National de la Propriete Industrielle, 75 - Paris (France); Thomas, D. [Compiegne Universite Technologique, 60 (France)]|[Ecole Pratique des Hautes Etudes URA,CNRS, 60 - Compiegne (France); Nettancourt, D. de [Commission des Communautes Europeenes, Bruxelles (Belgium)

    1993-12-31

    The fourth edition of the book ``biotechnology`` has just been published. It keeps the general frame of the previous editions while adding the analysis of new areas such as the animal world, the environment, the question of patentability, the standards and regulations, the stake of research and formation in the CEE, the importance of the scientific research for the reciprocal understanding of bio technologies and environmental problems, the respect of the biological variety.. Among the treated subjects, those particularly interesting for the ETDE database are the waste waters and industrial wastes and the natural gas. Didactic guide particularly well documented by a valuable bibliography, this work is an indispensable tool for teacher-searcher, students and engineers. (O.M.) 1113 refs.

  19. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  20. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference.

    Science.gov (United States)

    Murray, James D; Maga, Elizabeth A

    2016-06-01

    At the time of the first Transgenic Animal Research Conference, the lack of knowledge about promoter, enhancer and coding regions of genes of interest greatly hampered our efforts to create transgenes that would express appropriately in livestock. Additionally, we were limited to gene insertion by pronuclear microinjection. As predicted then, widespread genome sequencing efforts and technological advancements have profoundly altered what we can do. There have been many developments in technology to create transgenic animals since we first met at Granlibakken in 1997, including the advent of somatic cell nuclear transfer-based cloning and gene editing. We can now create new transgenes that will express when and where we want and can target precisely in the genome where we want to make a change or insert a transgene. With the large number of sequenced genomes, we have unprecedented access to sequence information including, control regions, coding regions, and known allelic variants. These technological developments have ushered in new and renewed enthusiasm for the production of transgenic animals among scientists and animal agriculturalists around the world, both for the production of more relevant biomedical research models as well as for agricultural applications. However, even though great advancements have been made in our ability to control gene expression and target genetic changes in our animals, there still are no genetically engineered animal products on the market for food. World-wide there has been a failure of the regulatory processes to effectively move forward. Estimates suggest the world will need to increase our current food production 70 % by 2050; that is we will have to produce the total amount of food each year that has been consumed by mankind over the past 500 years. The combination of transgenic animal technology and gene editing will become increasingly more important tools to help feed the world. However, to date the practical benefits of

  1. Genetic Transformation and Genomic Resources for Next-Generation Precise Genome Engineering in Vegetable Crops

    Science.gov (United States)

    Cardi, Teodoro; D’Agostino, Nunzio; Tripodi, Pasquale

    2017-01-01

    In the frame of modern agriculture facing the predicted increase of population and general environmental changes, the securement of high quality food remains a major challenge to deal with. Vegetable crops include a large number of species, characterized by multiple geographical origins, large genetic variability and diverse reproductive features. Due to their nutritional value, they have an important place in human diet. In recent years, many crop genomes have been sequenced permitting the identification of genes and superior alleles associated with desirable traits. Furthermore, innovative biotechnological approaches allow to take a step forward towards the development of new improved cultivars harboring precise genome modifications. Sequence-based knowledge coupled with advanced biotechnologies is supporting the widespread application of new plant breeding techniques to enhance the success in modification and transfer of useful alleles into target varieties. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system, zinc-finger nucleases, and transcription activator-like effector nucleases represent the main methods available for plant genome engineering through targeted modifications. Such technologies, however, require efficient transformation protocols as well as extensive genomic resources and accurate knowledge before they can be efficiently exploited in practical breeding programs. In this review, we revise the state of the art in relation to availability of such scientific and technological resources in various groups of vegetables, describe genome editing results obtained so far and discuss the implications for future applications. PMID:28275380

  2. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts.

    Science.gov (United States)

    Gagnon, Kenneth B; Delpire, Eric

    2013-04-15

    Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes.

  3. DECOMPOSTION OF GENETICALLY ENGINEERED TOBACCO UNDER FIELD CONDITIONS: PERSISTENCE OF THE PROTEINASE INHIBITOR I PRODUCT AND EFFECTS OF SOIL MICROBIAL RESPIRATION AND PROTOZOA, NEMATODE AND MICROARTHR

    Science.gov (United States)

    1. To evaluate the potential effects of genetically engineered (transgenic) plants on soil ecosystems, litterbags containing leaves of non-engineered (parental) and transgenic tobacco plants were buried in field plots. The transgenic tobacco plants were genetically engineered to ...

  4. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    Science.gov (United States)

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  5. Comparison of China-US Engineering Ethics Educations in Sino-Western Philosophies of Technology.

    Science.gov (United States)

    Cao, Gui Hong

    2015-12-01

    Ethics education has become essential in modern engineering. Ethics education in engineering has been increasingly implemented worldwide. It can improve ethical behaviors in technology and engineering design under the guidance of the philosophy of technology. Hence, this study aims to compare China-US engineering ethics education in Sino-Western philosophies of technology by using literature studies, online surveys, observational researches, textual analyses, and comparative methods. In my original theoretical framework and model of input and output for education, six primary variables emerge in the pedagogy: disciplinary statuses, educational goals, instructional contents, didactic models, teaching methods, and edificatory effects. I focus on the similarities and differences of engineering ethics educations between China and the U.S. in Chinese and Western philosophies of technology. In the field of engineering, the U.S. tends toward applied ethics training, whereas China inclines toward practical moral education. The U.S. is the leader, particularly in the amount of money invested and engineering results. China has quickened its pace, focusing specifically on engineering labor input and output. Engineering ethics is a multiplayer game effected at various levels among (a) lower level technicians and engineers, engineering associations, and stockholders; (b) middle ranking engineering ethics education, the ministry of education, the academy of engineering, and the philosophy of technology; and (c) top national and international technological policies. I propose that professional engineering ethics education can play many important roles in reforming engineering social responsibility by international cooperation in societies that are becoming increasingly reliant on engineered devices and systems. Significantly, my proposals contribute to improving engineering ethics education and better-solving engineering ethics issues, thereby maximizing engineering

  6. Primary School Students' Views about Science, Technology and Engineering

    Science.gov (United States)

    Pekmez, Esin

    2018-01-01

    Some of the main goals of science education are to increase students' knowledge about the technology and engineering design process, and to train students as scientifically and technologically literate individuals. The main purpose of this study is to find out primary students' views about science, technology and engineering. For this aim and in…

  7. Teaching Sustainable Entrepreneurship to Engineering Students: The Case of Delft University of Technology

    Science.gov (United States)

    Bonnet, Hans; Quist, Jaco; Hoogwater, Daan; Spaans, Johan; Wehrmann, Caroline

    2006-01-01

    Sustainability, enhancement of personal skills, social aspects of technology, management and entrepreneurship are of increasing concern for engineers and therefore for engineering education. In 1996 at Delft University of Technology this led to the introduction of a subject on sustainable entrepreneurship and technology in the course programmes of…

  8. De novo genetic engineering of the camalexin biosynthetic pathway.

    Science.gov (United States)

    Møldrup, Morten E; Salomonsen, Bo; Geu-Flores, Fernando; Olsen, Carl E; Halkier, Barbara A

    2013-09-10

    Camalexin is a tryptophan-derived phytoalexin that is induced in the model plant Arabidopsis thaliana upon pathogen attack. Only few genes in the biosynthetic pathway of camalexin remain unidentified, however, investigation of candidate genes for these steps has proven particularly difficult partly because of redundancy in the genome of Arabidopsis. Here we describe metabolic engineering of the camalexin biosynthetic pathway in the transient Nicotiana benthamiana expression system. Camalexin accumulated in levels corresponding to what is seen in induced Arabidopsis thaliana. We have used this system to evaluate candidate genes suggested to be involved in the camalexin pathway. This has provided biochemical evidence for CYP71A12 conducting same reaction as CYP71A13 in the pathway. We discuss the prospects of using metabolic engineering of camalexin, both with respect to engineering plant defense and as a tool for screening yet unidentified candidate genes in the camalexin pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. TECHNOLOGICAL CONTRIBUTIONS OF THE MILITARY ENGINEERING TO THE NATIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    RODRIGO CARO DE KARTZOW

    2018-01-01

    Full Text Available The development of the Chilean military industry is closely related to the growing of the national industry. Similarly to the way the history of the Army and the country are tightly related, the history of the military engineering is an example of organic growth when compared to its civilian counterpart. Collaboration instead of competition is the distinctive seal that best shows the development of weaponry, explosives, cartography and nuclear power. This collaboration have lasted with the years and we can afirm today that the relationship within civilian professionals and technicians and their military counterparts has reached an state that has never seen before. The governmental policies that fund R&D of initiatives that facilitate the science and technology study and research, come of a futuristic vision, born in the rim of the independent movements, driven naturally by the need of self sustain as sovereign nations.

  10. Systems Engineering and Technology Considerations of a Mars Ascent Vehicle

    Science.gov (United States)

    Sengupta, Anita; Kennett, Andrew; Pauken, Mike; Trinidad, Mark; Zabrensky, Ed

    2012-01-01

    A Mars Ascent Vehicle (MAV) systems engineering study is underway to define the driving requirements, system architecture, major risks, and required technology developments to support the launch of a rock core sample to a specified delivery orbit for later retrieval and return to Earth. The proposed MAV would essentially be a small-scale launch vehicle, the first of its kind to be launched autonomously from another planet. The MAV would be a flight element of the proposed Mars Sample Return (MSR) campaign architecture, which currently assumes a 2018 launch of the sample caching mission and a 2024 (Earth) launch date of the MAV and lander, with arrival on Mars in 2025. After 9 months on the surface the MAV would be erected and launched to a specified delivery orbit. In the delivery orbit it would release its payload, a 5 kg sphere containing the rock core sample. An orbiter would rendezvous and capture the payload, returning it to Earth a year later.

  11. Building technology entrepreneurship capabilities, an engineering education perspective

    DEFF Research Database (Denmark)

    Kleine, Kari; Giones, Ferran; Tegtmeier, Silke

    to respond to the divergence between the new demands imposed by the societal challenges and the existing science and technology development focus of universities is to transform the educational programs being offered. Instead of aiming to transform consolidated structures through directed interventions...... of the regular course activities. The development of attitudes towards entrepreneurial behavior is also activated through internal projects. For instance, as part of a master program, engineering students enroll in a business venturing course (the course receives different names in each institution), where......Much has been discussed on the changing role of universities in society, in particular when examining the contribution of universities in the economic growth and societal development (Audretsch 2012). The transition from universities as research centers to universities as innovation drivers has...

  12. Light-Weight Injector Technology for Cryogenic Mars Ascent Engines

    Science.gov (United States)

    Trihn, Huu Phuoc; Cramer, John M.

    1998-01-01

    Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of launch vehicles. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission decrease. NASA/Johnson Space Center has initiated several concept studies of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This state-of-the-art technology will then be applied to the development of a cryogenic propulsion system that will meet the requirements of the planned Mars sample return (MSR) mission. The current baseline propulsion system for the MSR mission uses a storable propellant combination [monomethyl hydrazine/mixed oxides of nitrogen-25. However, a mission option that incorporates in-situ propellant production and utilization for the ascent stage is being carefully considered as a subscale

  13. Engine Family Groups for Verification of Clean Diesel Technology

    Science.gov (United States)

    These documents show engine family boxes that represent groupings of engine families with similar characterists (i.e., the emissions standards that the engines were built to) for current and past model years.

  14. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  15. Genetic engineering of Pichia stipitis for fermentation of xylose

    Science.gov (United States)

    Thomas W. Jeffries; N. Q. Shi; J. Y. Cho; P. Lu; K. Dahn; J. Hendrick; H. K. Sreenath

    1998-01-01

    A useful genetic system has been developed for the transformation of Pichia stipitis. This includes two selectable markers (URA3 and LEU2), integrating and autonomous replication vectors, a pop-out cassette that enables multiple targeted disruptions, and a genomic X-library for rapid cloning. Using this system we have cloned two genes for alcohol dehydrogenase (PsADH1...

  16. Genetically engineered dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 18, č. 3 (2001), s. 475-478 ISSN 1019-6439 R&D Projects: GA MZd NC5526 Keywords : dendritic cells * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.330, year: 2001

  17. Rabbit defensin (NP-1) genetic engineering of plant

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... NP-1 gene has been detected in the genome of these transgenic plants by PCR and PCR-Southern, and it was a stable genetic to T1 generation. The results of disease resistance and insect resistance evaluation showed that these plants had got higher resistance to powdery mildew, leaf rust and stripe rust ...

  18. Potato leafroll virus : molecular analysis and genetically engineered resistance

    NARCIS (Netherlands)

    Wilk, van der F.

    1995-01-01

    The nucleotide sequence of the genomic RNA of potato leafroll virus (PLRV) was elucidated and its genetic organization deduced (Chapter 2). Six open reading frames (ORFs) were shown to be present on the genome. Both the PLRV coat protein gene and the RNA- dependent RNA polymerase gene were

  19. Advances in genetic engineering for plants abiotic stress control ...

    African Journals Online (AJOL)

    Consequently, engineering genes that protect and maintain the function and structure of cellular components can enhance tolerance to stress. This review presents principal methods adapted in the control of plants abiotic stresses including recent advances in using transgenes for the improvement of abiotic stress tolerance ...

  20. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    Science.gov (United States)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.