WorldWideScience

Sample records for technology environmental education

  1. Partnership for Environmental Technology Education

    International Nuclear Information System (INIS)

    Dickinson, Paul R.; Fosse, Richard

    1992-01-01

    The need for broad cooperative effort directed toward the enhancement of science and mathematics education, including environmental science and technology has been recognized as a national priority by government, industry, and the academic community alike. In an effort to address this need, the Partnership for Environmental Technology Education (PETE) has been established in the five western states of Arizona, California, Hawaii, Nevada and Utah. PETE'S overall objectives are to link the technical resources of the DOE, ERA, and NASA Laboratories and private industry with participating community colleges to assist in the development and presentation of curricula for training environmental-Hazardous Materials Technicians and to encourage more transfer students to pursue studies in environmental science at four-year institutions. The program is co-sponsored by DOE and EPA. DoD participation is proposed. PETE is being evaluated by its sponsors as a regional pilot with potential for extension nationally. (author)

  2. Technology and Environmental Education: An Integrated Curriculum

    Science.gov (United States)

    Willis, Jana M.; Weiser, Brenda

    2005-01-01

    Preparing teacher candidates to integrate technology into their future classrooms effectively requires experience in instructional planning that utilizes technology to enhance student learning. Teacher candidates need to work with curriculum that supports a variety of technologies. Using Project Learning Tree and environmental education (EE),…

  3. Technology and Environmental Education: Friend or Foe?

    Science.gov (United States)

    Athman, Julie; Bates, Tim

    1998-01-01

    Discusses the pros and cons often mentioned concerning technology in education. Describes measures of effectiveness of technology-enhanced educational programs, ranging from active learning and multidisciplinary tasks to performance-based assessments. Argues that technology should enhance rather than replace direct experiences. (PVD)

  4. Environmental Education through Inquiry and Technology

    Science.gov (United States)

    Markaki, Vassiliki

    2014-01-01

    In the transformative world of today, the role of environmental education has become a much-debated issue. The experience from various EU countries shows lack of a concrete policy for the advancement of those strategic skills that correspond to the identified need for the connection of environmental education to green career choices. This paper…

  5. The Advanced Technology Environmental Education Center Summer Fellows Institute.

    Science.gov (United States)

    Depken, Diane E.; Zeman, Catherine L.; Lensch, Ellen Kabat; Brown, Edward J.

    2002-01-01

    Describes the background, activities, and outcomes of the Advanced Technology Environmental Education Center (ATEEC) and its Summer Fellows Institutes as a model for disciplinary and cross-disciplinary infusion of environmental science and technology content, curriculum, and methods into the classroom. Presents experiences, themes, and activities…

  6. The Use of Technology by Nonformal Environmental Educators

    Science.gov (United States)

    Peffer, Tamara Elizabeth; Bodzin, Alec M.; Smith, Judith Duffield

    2013-01-01

    This study examined the use of instructional and learning technologies by nonformal environmental educators. A 40-question survey was developed to inquire about practitioner demographics, technology use in practice, and beliefs about technology. The survey consisted of multiple choice, open-ended questions, and a Likert-type scale component--the…

  7. Investigating Elementary School Students' Technology Acceptance by Applying Digital Game-Based Learning to Environmental Education

    Science.gov (United States)

    Cheng, Yuh-Ming; Lou, Shi-Jer; Kuo, Sheng-Huang; Shih, Ru-Chu

    2013-01-01

    In order to improve and promote students' environmental knowledge, attitudes, and behaviour, integrating environmental education into the primary education curriculum has become a key issue for environmental education. For this reason, this study aimed to investigate elementary school students' acceptance of technology applying digital game-based…

  8. Innovative Approaches in Distance Education in the Field of Environmental Management and Environmental Technologies

    Directory of Open Access Journals (Sweden)

    Leontev Mikhail

    2016-01-01

    Full Text Available This article discusses the innovative structures and components of distance learning and education, discusses the results of application of approaches to teaching in the electronic environment based on the proposed andragogic and pedagogical models of teaching in cyberspace, for adult learners, bachelor graduates of “Management” for the training program “Introduction to environmental management systems”. This program particularly addresses the role of environmental managers in a company activity, the implementation of ecologically clean technologies. The author proposed an innovative nonlinear andragogic model of learning. The model was mediated by the constructive approach and problem-oriented learning.

  9. Program of Teacher Education for Environmental Technology (POTEET).

    Science.gov (United States)

    National Sanitation Foundation, Ann Arbor, MI.

    The environmental technician, a new but necessary subordinate of a professional environmentalist, might be employed by a health department, natural resources commission, state agriculture department, municipal water plant, or by business or industry in self-inspection and corrective activities. The Program of Teacher Education for Environmental…

  10. (Environmental technology)

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  11. Mitigation and Adaptation: Critical Perspectives toward Digital Technologies in Place-Conscious Environmental Education

    Science.gov (United States)

    Greenwood, David A.; Hougham, R. Justin

    2015-01-01

    This paper explores the tension for educators between the proliferation of mobile, digital technologies, and the widely held belief that environmental learning is best nurtured through place-based approaches that emphasize direct experience. We begin by offering a general critique of technology in culture and education, emphasizing what is at…

  12. Teaching Professionals Environmental Management and Cleaner Technology Combining Educational Learning and Practice Learning

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Jørgensen, Michael Søgaard; Rasmussen, Bent Hesse

    2001-01-01

    -ordinating efficient management of environmental problems and technological processes of change in companies, and within the area of planning and co-ordinating relevant public regulation. Two of the major cornerstones in the education of Environmental Management are 1) the education should provide the students......The objective of the education of Environmental Manager is to make the student able to understand and co-ordinate solutions of environmental problems within the industrial sector and the public authorities. As such the education aims at qualifying the student both within the area of planning and co...... with new scientific theories and methods that relate to their field of practice. And 2) the education should bring in and develop new competencies and perspectives that can act as renewable elements in the students’ practical work. Among other things this means that the education becomes a place where...

  13. A new approach to environmental education: environment-challenge for science, technology and society

    International Nuclear Information System (INIS)

    Popovic, D.

    2002-01-01

    The paper presents a new approach to environmental education within the project Environment: Challenge for Science, Technology and Education, realized on the Alternative Academic Education Network (AAEN) in Belgrade. The project is designed for graduate or advanced undergraduate students of science, medicine, engineering, biotechnology, political and law sciences. It is multidisciplinary and interdisciplinary project aimed to support students interest in different areas of the environmental sciences through strong inter-connection between modern scientific ideas, technological achievements and society. The project contains four basic courses (Living in the Environment; Physical and Chemical Processes in the Environment; Industrial Ecology and Sustainable Development; Environmental Philosophy and Ethics) and a number of elective courses dealing with environmental biology, adaptation processes , global eco politics, environmental ethics, scientific and public policy, environmental consequences of warfare, environmental pollution control, energy management, environmental impact assessment, etc. The standard ex catedra teaching is replaced with active student-teacher communication method enabling students to participate actively in the subject through seminars, workshops, short essays and individual research projects

  14. Exploring Use of New Media in Environmental Education Contexts: Introducing Visitors' Technology Use in Zoos Model

    Science.gov (United States)

    Yocco, Victor; Danter, Elizabeth H.; Heimlich, Joseph E.; Dunckel, Betty A.; Myers, Chris

    2011-01-01

    Modern zoological gardens have invested substantial resources in technology to deliver environmental education concepts to visitors. Investment in these media reflects a currently unsubstantiated belief that visitors will both use and learn from these media alongside more traditional and less costly displays. This paper proposes a model that…

  15. Environmental Education Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    This document is designed to guide the Environmental Education and Development Branch (EM-522) of the EM Office of Technology (OTD) Development, Technology Integration and Environmental Education Division (EM-52) in planning and executing its program through EM staff, Operations Offices, National Laboratories, contractors, and others.

  16. Environmental Education.

    Science.gov (United States)

    Heiser, Ed

    Furnished in this comprehensive report is a resume of a five-year experimental program in environmental education conducted by the Eastern Montana College Laboratory School in conjunction with Eastern Montana College and the Billings School District #2. The basic purpose of the program is to make teachers, and in turn students, aware of the…

  17. Emerging environmental technologies and environmental technology policy

    Science.gov (United States)

    Clarke, Leon Edward

    This dissertation explores the role and design of environmental technology policy when environmental innovation is embodied in emerging environmental technologies such as photovoltaic cells or fuel cells. The dissertation consists of three individual studies, all of which use a simplified, general model industry between an emerging environmental technology and an entrenched, more-polluting technology. It clarifies the situations in which environmental technology policy can achieve high welfare and those in which it cannot; and it separates the possible situations an emerging environmental technology might face into four scenarios, each with its own technology policy recommendations. The second study attempts to clarify which of two factors is having a larger limiting effect on private investment in photovoltaics: the failure to internalize the environmental costs of fossil fuel electricity generation or a broad set of innovation market failures that apply to innovation irrespective of environmental concerns. The study indicates that innovation market failures are probably having a significantly larger impact than incomplete internalization. The third study explores the effectiveness of adoption subsidies at encouraging private-sector innovation. The conclusion is that adoption subsidies probably have only a limited effect on long-term, private-sector research. Two important general conclusions of the dissertation are (1) that optimal technology policy should begin with technology-push measures and end with demand-pull measures; and (2) that the technological response to internalization instruments, such as emissions taxes, may be highly nonlinear.

  18. Environmental education

    International Nuclear Information System (INIS)

    Abdulhaye, F.

    2005-01-01

    The environment is an intricate mixture of natural, built and social components. The natural environment includes air, water, land, climate, flora and fauna, while the built environment consists of the fabric of building infrastructure and open space. The social component of the environment embraces the aesthetics, amenity quality, architectural style, heritages, law behavior, values and traditions of the society. In ecological terms the environment is a distortion of natural ecosystems or an ecosystem in its own right. A characteristic of the urban area is their fast changing nature with respect to their size, form, density and activity. This dynamism stems out of the basic functions of economic, social and cultural developments. The complexity and multiplicity of urban activities gives rise to a variety of environmental problems. Given their different level of economic and social development and the geography, not all the cities have identical problems, yet they have much in common. While the large cities of developed countries have long suffered the problem of pollution, inner city decay and neighborhood collapse, those in the less developed countries face more varied complex problems due to their overpopulation, poverty, inadequacy and poor quality of urban services, infrastructure, transportation, and changing life style. However the increasing pollution is common to the most of the cities and is the major cause of environmental degradation. Given the very serious nature of this problem it is essential to tackle this issue by incorporating the environmental concerns in the education system of Pakistan. This paper would give a brief overview of the environmental problems, and a detailed analysis of the status environmental issues in Pakistan. (author)

  19. Increasing Teacher Confidence in Teaching and Technology Use through Vicarious Experiences within an Environmental Education Context

    Science.gov (United States)

    Willis, Jana; Weiser, Brenda; Smith, Donna

    2016-01-01

    Providing teacher candidates opportunities to engage in experiences modeling effective technology integration could improve confidence/comfort in using technology and support skill development and transfer. A purposeful sample of 424 candidates in an educational technology course was administered the Technology and Teaching Efficacy Scale to…

  20. Environmental technology verification methods

    CSIR Research Space (South Africa)

    Szewczuk, S

    2016-03-01

    Full Text Available Environmental Technology Verification (ETV) is a tool that has been developed in the United States of America, Europe and many other countries around the world to help innovative environmental technologies reach the market. Claims about...

  1. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The environmental Science and Technology Program was structured based on the continuous growth of environmental activities on areas related to nuclear programs at IPEN. The program comprehends five main areas: Environmental analysis: Chemical technology; Polymer technology nucleus: Chemical and Isotope characterization and Analytical Chemistry for the Nuclear Fuel Cycle samples.

  2. Using Smartphone Technology in Environmental Sustainability Education: The Case of the Maasai Mara Region in Kenya

    Science.gov (United States)

    Dogbey, James; Quigley, Cassie; Che, Megan; Hallo, Jeffrey

    2014-01-01

    This study engaged key stakeholders in an economically and environmentally fragile region in Kenya in a unique, interdisciplinary, and integrative approach to explore the extent to which the use of smartphone technology helps access the environmental values and sustainability perspectives of the people of the Maasai land. The results of the study…

  3. Environmental Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Program on Environmental Science and Technology comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalyzers) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization)

  4. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1998-12-31

    This complete survey of modern environmental science covers the four traditional spheres of the environment: water, air, earth, and life, and introduces a fifth sphere -- the anthrosphere -- which the author defines as the sphere of human activities, especially technology, that affect the earth. The book discusses how technology can be used in a manner that minimizes environmental disruption.

  5. Acceptability of health information technology aimed at environmental health education in a prenatal clinic.

    Science.gov (United States)

    Rosas, Lisa G; Trujillo, Celina; Camacho, Jose; Madrigal, Daniel; Bradman, Asa; Eskenazi, Brenda

    2014-11-01

    To describe the acceptability of an interactive computer kiosk that provides environmental health education to low-income Latina prenatal patients. A mixed-methods approach was used to assess the acceptability of the Prenatal Environmental Health Kiosk pregnant Latina women in Salinas, CA (n=152). The kiosk is a low literacy, interactive touch-screen computer program with an audio component and includes graphics and an interactive game. The majority had never used a kiosk before. Over 90% of women reported that they learned something new while using the kiosk. Prior to using the kiosk, 22% of women reported their preference of receiving health education from a kiosk over a pamphlet or video compared with 57% after using the kiosk (peducation; and (3) popularity of the interactive game. The Prenatal Environmental Health Kiosk is an innovative patient health education modality that was shown to be acceptable among a population of low-income Latino pregnant women in a prenatal care clinic. This pilot study demonstrated that a health education kiosk was an acceptable strategy for providing Latina prenatal patients with information on pertinent environmental exposures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. A Methodological Evaluation of an Environmental Education Survey: Is There a Technological Advantage

    Science.gov (United States)

    Sharp, Ryan L.; Bradley, Michael J.; Maples, James N.

    2017-01-01

    Environmental education represents a conceivable way to counter the effects of youth's lack of exposure to the natural environment. However, the effectiveness of these programs is often not evaluated, and when they are, the methods for doing so are not consistent. Without proper and reliable methods of data collection, the results may be…

  7. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    Science.gov (United States)

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  8. Encouraging environmentally strategic technologies

    International Nuclear Information System (INIS)

    Heaton, G.R.

    1994-01-01

    Having moved beyond its initial absorption with controlling new technology, environmental policy today must focus more strongly on promoting the development and adoption of new technologies. World Resource Institute's (WRI) ongoing study of 'environmentally strategic technology' is addressed to this fundamental policy issue. The study proposes criteria for identifying such technology, offers a specific list, suggests the kinds of public policy changes necessary to encourage their development and finally presents a comparison of critical technology lists (from the White House, the European Community, Japan and the US Department of Defense). (TEC)

  9. Practical Environmental Education and Local Contribution in the Environmental Science Laboratory Circle in the College of Science and Technology in Nihon University

    Science.gov (United States)

    Taniai, Tetsuyuki; Ito, Ken-Ichi; Sakamaki, Hiroshi

    In this paper, we presented a method and knowledge about a practical and project management education and local contribution obtained through the student activities of “Environmental science laboratory circle in the College of Science and technology in Nihon University” from 1991 to 2001. In this circle, four major projects were acted such as research, protection, clean up and enlightenment projects. Due to some problems from inside or outside of this circle, this circle projects have been stopped. The diffusion and popularization of the internet technology will help to resolve some of these problems.

  10. SLICEIT and TAHMO Partnerships: Students Local and International Collaboration for Climate and Environmental Monitoring, Technology Development, Education, Adaptation and Mitigation

    Science.gov (United States)

    Aishlin, P. S.; Selker, J. S.

    2015-12-01

    Climate change understanding and impacts vary by community, yet the global nature of climate change requires international collaboration to address education, monitoring, adaptation and mitigation needs. We propose that effective climate change monitoring and education can be accomplished via student-led local and international community partnerships. By empowering students as community leaders in climate-environmental monitoring and education, as well as exploration of adaptation/mitigation needs, well-informed communities and young leadership are developed to support climate change science moving forward. Piloted 2013-2015, the SLICEIT1 program partnered with TAHMO2 to connect student leaders in North America, Europe and Africa. At the international level, schools in the U.S.A and Netherlands were partnered with schools in Ghana, Kenya, and Uganda for science and cultural exchange. Each school was equipped with a climate or other environmental sensing system, real-time data publication and curricula for both formal and informal science, technology, engineering and math education and skill development. African counterparts in TAHMO's School-2-School program collect critically important data for enhanced on-the-ground monitoring of weather conditions in data-scarce regions of Africa. In Idaho, student designed, constructed and installed weather stations provide real time data for classroom and community use. Student-designed formal educational activities are disseminated to project partners, increasing hands-on technology education and peer-based learning. At the local level, schools are partnered with a local agency, research institute, nonprofit organization, industry and/or community partner that supplies a climate science expert mentor to SLICEIT program leaders and teachers. Mentor engagement is facilitated and secured by program components that directly benefit the mentor's organization and local community via climate/environment monitoring, student workforce

  11. IMPLEMENTATION OF INFORMATION TECHNOLOGIES AS A HARMONIC COMPONENT OF IMPROVING THE ENVIRONMENTAL EDUCATION

    Directory of Open Access Journals (Sweden)

    N.V. Semenyuk

    2012-10-01

    Full Text Available The article shows author’s point of view for forming of the ecological thinking, ecological consciousness of the young generations. That is one of the main tasks on the way of overcoming of global ecological crisis. There are scientific editions and other sources on the basis of the personally conducted analysis that are specify the impotents of problem, and also attempt to find the ways of its decision and solutions. It is necessary for education system to be ready for accepting challenges of XXI centuries certain transformations of the system on the base of the use of modern information technologies.

  12. Environmental science and technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  13. Environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Environmental Science and Technology developed at the Chemical and Environmental Technology Center comprehends environmental chemistry (water, soil and atmospheric chemistry), clean technologies (desulfurization of diesel and oil, biodegradable polymers and structural modification of polymers, recycling, pyrolysis of dangerous chemicals by molten salt technology), nanotechnology (magnetic nanoparticles, dendrimers, nano biomarkers, catalysts) and chemical characterization of nuclear fuel and nuclear fuel cycle waste (chemical and isotopic characterization). The Chemical and Environmental Technology Center was established in 1995, as an evolution of the former Department of Chemistry Engineering (1970). The program on environment science and technology was structured as consequence of the continuous growth of environmental activities on areas related to nuclear programs of IPEN. Moreover, it was an answer to the society concerning the climate changes and biodiversity preservation. All activities of research and development, services, supervision of graduate and under graduated students and courses performance at the center were related to the development, improvement and establishment of new technologies. The highlights of this period (2011 - 2013) were: - Development and use of modern analytical technology for the characterization of persistent pollutants and endocrine disrupters (metals, PAHA’s, PCBs, Pesticides, hormones, surfactants, plasticizer and human pharmaceuticals) in order to evaluate water quality and/or sediments; - Atmospheric chemistry and greenhouse gases: Evaluating an estimation of surface trace gas fluxes from aircraft measurements above the Amazon; - Cooperation with SABESP (Water and Sewage Company) and CETESB (State Environment Agency) in program for the development of public policies; - Studies and development in biodegradable polymers, polyolefins and advanced methods for polymer and rubber recycling and re-use; - Studies

  14. Universities' New Role in Professional Training - Combining Education and Practice Learning in Environmental Management and Cleaner Technology

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik

    2002-01-01

    The article presents the experiences from the continued academic education in Environmental Management at DTU and identifies the demands that these types of professional educations forces on universities.......The article presents the experiences from the continued academic education in Environmental Management at DTU and identifies the demands that these types of professional educations forces on universities....

  15. Advanced Environmental Monitoring Technologies

    Science.gov (United States)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  16. Educational technology in medical education.

    Science.gov (United States)

    Han, Heeyoung; Resch, David S; Kovach, Regina A

    2013-01-01

    This article aims to review the past practices of educational technology and envision future directions for medical education. The discussion starts with a historical review of definitions and perspectives of educational technology, in which the authors propose that educators adopt a broader process-oriented understanding of educational technology. Future directions of e-learning, simulation, and health information technology are discussed based on a systems view of the technological process. As new technologies continue to arise, this process-oriented understanding and outcome-based expectations of educational technology should be embraced. With this view, educational technology should be valued in terms of how well the technological process informs and facilitates learning, and the acquisition and maintenance of clinical expertise.

  17. Teacher Educator Technology Competencies

    Science.gov (United States)

    Foulger, Teresa S.; Graziano, Kevin J.; Schmidt-Crawford, Denise A.; Slykhuis, David A.

    2017-01-01

    The U.S. National Educational Technology Plan recommends the need to have a common set of technology competencies specifically for teacher educators who prepare teacher candidates to teach with technology (U.S. Department of Education, Office of Educational Technology, 2017). This study facilitated the co-creation of the Teacher Educator…

  18. Educational Technology in China

    Science.gov (United States)

    Meifeng, Liu; Jinjiao, Lv; Cui, Kang

    2010-01-01

    This paper elaborates the two different academic views of the identity of educational technology in China at the current time--advanced-technology-oriented cognition, known as Electrifying Education, and problem-solving-oriented cognition, known as Educational Technology. It addresses five main modes of educational technology in China: as a…

  19. Definition: Conservation Education, Environmental Education, Outdoor Education.

    Science.gov (United States)

    1970

    Conservation education, outdoor education, and environmental education all have as a common goal the understanding and appreciation of the natural world. Outdoor education is a method of teaching wherein established disciplines, topics, and concepts which can best be taught outdoors are taught outdoors. Conservation education is the study of man's…

  20. Tourism and Environmental Education.

    Science.gov (United States)

    Mason, Peter

    1994-01-01

    Proposes that tourism should be part of the environmental education curriculum. Discusses the significance of tourism, the impacts of tourism on the environment, the concept of sustainable tourism, and tourism in education in the United Kingdom. (MDH)

  1. Environmental control technology

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    During this report period, Chem Tech identified environmental control technology (ECT) as an area of emphasis for future planning and resource allocation. The Division plans to continue to perform R and D activities in ECT for external sponsors such as the DOE Office of Fossil Energy (DOE/FE), the Electric Power Research Institute (EPRI), and the Environmental Protection Agency (EPA) while striving for recognition as an R and D center for ECT within the Martin Marietta Energy Systems' Complex. Chem Tech has already played supporting roles in this area for the Y-12 Plant and the Oak Ridge Gaseous Diffusion Plant (ORGDP) and is currently expanding its support to organizations within ORNL responsible for environmental matters. Over the long term, the Division hopes to achieve recognition as a center for R and D in ECT within the wider DOE system. Recent initiatives supporting these plans are discussed below

  2. Environmental radiation sensing technologies

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Inomata, Kenji; Tamuro, Masaru; Fujita, Kazuhiko

    2013-01-01

    After the Fukushima nuclear accident, environmental radiation monitoring and radioactivity measurement of contamination of wastes, soils, food and drinking water were needed in accurate and reliable way. Based on radiation sensing technologies and radiation and light coupled analysis method, new environmental radiation measurement system for simple monitoring post without exclusive house and also portable monitoring post for temporary use were developed with low cost. Measurement accuracy was improved by real-time processing of detected pulses and corrected non-linearity of low-energy range by analysis. Environmental performance was upgraded to assure detector gain with compensated against temperature change and aging. Inspection and maintenance were also simplified using touch panel display with standardized application menu and data format. (T. Tanaka)

  3. Environmental education policy research

    DEFF Research Database (Denmark)

    Læssøe, Jeppe; Feinstein, Noah Weeth; Blum, Nicole

    2013-01-01

    in the areas of Environmental Education (EE), Education for Sustainable Development and Climate Change Education. It especially makes a case for two kinds of research on EE policy: (1) a multi-sited approach to empirical documentation and theory development which explores the relationships between...

  4. Combining Education and Practice Learning in Environmental Management and Cleaner Technology

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Jørgensen, Michael Søgaard

    2004-01-01

    to overcome these problems are discussed. The educational principles are presented as a combination of educational learning and practice learning named as reflexive learning. The experience from working with reflexive learning is discussed and relation to the role it can play in creating profes......This chapter argues for a new role for universities in adding the training of (existing) professionals to the core agenda in parallel to academic education and scientific research. Based on experiences from Denmark new challenges both to academic knowledge and training are presented and way...

  5. Environmental engineering education enhancement

    Science.gov (United States)

    Caporali, E.

    2012-04-01

    Since higher education plays a central role in the development of both human beings and modern societies, enhancing social, cultural and economic development, active citizenship, ethical values and expertises for a sustainable growth, environment respectful, the European Commission promotes a wide range of programmes. Among the EC programmes, the TEMPUS - Trans European Mobility Programme for University Studies, with the support of the DG EAC of the European Commission, has contributed to many aspects of general interest for higher education. Curricula harmonization, LifeLong Learning Programme development, ICT use, quality assessment, accreditation, innovation learning methods, growth of networks of institutions trusting each other, are the focused aspects. Such a solid cooperation framework is surely among the main outcomes of the TEMPUS Projects leaded by the University of Firenze UNIFI (Italy), DEREC - Development of Environment and Resources Engineering Curriculum (2005-2008), and its spin-off DEREL - Development of Environment and Resources Engineering Learning (2010-2013), and VICES - Videoconferencing Educational Services (2009-2012). DEREC and DEREL TEMPUS projects, through the co-operation of Universities in Italy, Austria, Germany, Greece, Macedonia, Albania and Serbia, are aimed at the development of first and second level curricula in "Environment and Resources Engineering" at the Ss. Cyril and Methodius University - UKIM Skopje (MK). In the DEREC Project the conditions for offering a joint degree title in the field of Environmental Engineering between UNIFI and UKIM Skopje were fulfilled and a shared educational programme leading to the mutual recognition of degree titles was defined. The DEREL project, as logical continuation of DEREC, is aimed to introduce a new, up-to-date, postgraduate second level curriculum in Environment and Resources Engineering at UKIM Skopje, University of Novi Sad (RS) and Polytechnic University of Tirana (AL). following

  6. Education Technology Transformation

    Science.gov (United States)

    Kennedy, Mike

    2012-01-01

    Years ago, as personal computers and other technological advancements began to find their way into classrooms and other educational settings, teachers and administrators sought ways to use new technology to benefit students. The potential for improving education was clear, but the limitations of the available education technology made it difficult…

  7. Environmental Education and Small Business Environmental Activity

    Science.gov (United States)

    Redmond, Janice; Walker, Beth

    2011-01-01

    Environmental education is seen as a key driver of small business environmental management, yet little is known about the activities small business owner-managers are undertaking to reduce their environmental impact or in what areas they may need education. Therefore, research that can identify environmental management activities being undertaken…

  8. Urban Environmental Education: Leveraging Technology and Ecology to Engage Students in Studying the Environment

    Science.gov (United States)

    Barnett, Michael; Vaughn, Meredith Houle; Strauss, Eric; Cotter, Lindsey

    2011-01-01

    In this paper, we describe the outcomes of the first year of an intensive, urban ecology focused, summer program for urban high school youth. Students in our program conduct scientific investigations of their urban ecosystems while exploring potential career options in science and technology fields. In conducting their investigations, the students…

  9. Bridging the Gap: Meeting the Needs of Early Childhood Students by Integrating Technology and Environmental Education

    Science.gov (United States)

    Willis, Jana; Weiser, Brenda; Kirkwood, Donna

    2014-01-01

    Children come from diverse backgrounds, particularly in terms of their access to the environment and technology. It is our job as teachers to help level the playing field and provide all students an equal chance to succeed. By integrating these two seemingly opposed curricular areas we can create an opportunity for young children to become both…

  10. An environmental assessment system for environmental technologies

    DEFF Research Database (Denmark)

    Clavreul, Julie; Baumeister, Hubert; Christensen, Thomas Højlund

    2014-01-01

    A new model for the environmental assessment of environmental technologies, EASETECH, has been developed. The primary aim of EASETECH is to perform life-cycle assessment (LCA) of complex systems handling heterogeneous material flows. The objectives of this paper are to describe the EASETECH...

  11. ATBU Journal of Environmental Technology

    African Journals Online (AJOL)

    The journal of environmental technology is devoted to the publication of papers ... research results of both the natural; the technological; and the built environment. ... Assessment of multipath and shadowing effects on UHF band in built-up ...

  12. Technology in Education

    Science.gov (United States)

    Roden, Kasi

    2011-01-01

    This paper was written to support a position on using technology in education. The purpose of this study was to support the use of technology in education by synthesizing previous research. A variety of sources including books and journal articles were studied in order to compile an overview of the benefits of using technology in elementary,…

  13. Education Technology Success Stories

    Science.gov (United States)

    West, Darrell M.; Bleiberg, Joshua

    2013-01-01

    Advances in technology are enabling dramatic changes in education content, delivery, and accessibility. Throughout history, new technologies have facilitated the exponential growth of human knowledge. In the early twentieth century, the focus was on the use of radios in education. But since then, innovators have seen technology as a way to improve…

  14. Technology based Education System

    DEFF Research Database (Denmark)

    Kant Hiran, Kamal; Doshi, Ruchi; Henten, Anders

    2016-01-01

    Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded in the acad......Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded...... in the academic institutions. Thus, there is a need of comprehensive technology support system to cater the demands of all educational actors. Cloud Computing is one such comprehensive and user-friendly technology support environment that is the need of an hour. Cloud computing is the emerging technology that has...

  15. EPA'S ENVIRONMENTAL TECHNOLOGIES

    Science.gov (United States)

    The use of innovative technology is impeded by the lack of independent, credible information as to how the technology performs. Such data is needed by technology buyers and regulatory decision makers to make informed decisions on technologies that represent good financial invest...

  16. Practice of environmental education

    International Nuclear Information System (INIS)

    Takagi, Yoshio

    2005-01-01

    The author worked at Ishikawa Prefectural Takahama Senior High School until the last fiscal year and practiced environmental education. The syllabus of the class was as follows: (1) examination of river water quality (transparency, pH, dissolved oxygen, chemical oxygen demand, concentrations of phosphoric and chloride ions, and biological water qualification), (2) examination of air pollution (measurement of blocking of pine needle stoma with air-dust and measurement of atmospheric NO 2 concentration), (3) examination of environmental radioactivity and radiation (radon measurement by electrostatic collection of radon daughters and measurement of environmental radiation by using pocket dose-rate-meter), and (4) visitation to waste treatment center. (author)

  17. Activist Environmental Education and Moral Philosophy

    Science.gov (United States)

    Burns, David Patrick; Norris, Stephen P.

    2012-01-01

    In this article the authors respond to a recent special issue of the "Canadian Journal of Science, Mathematics and Technology Education" (Alsop & Bencze, 2010) in which the role of environmental activism in science, mathematics, and technology education (SMTE) was addressed. Although they applaud this Special Issue's invitation to begin a new…

  18. Environmental Technologies Summary Book

    International Nuclear Information System (INIS)

    2009-02-01

    This book lists the companies and their technology, which have new excellent technology authentication and technology verification. They are as in the following : sewage advanced treatment technology using a three-stage Bio-Ceramic Filtration by Shinwoo engineering.co.kr, Twist Filter by Sungshin engineering.co.kr, Sewage advanced treatment technology using CIMEN-DOC by Taeyeong/CI biotech.co.kr, DeNipho using pump ejector and Bio Green Media by Green Technology.co.kr, Automatic integrated management system using Envi-SIS by Sallasanup.com Kozone.co.kr and Geoworks.co.kr.

  19. Environmental Education and Sustainability

    Science.gov (United States)

    Chapman, Paul

    2014-01-01

    In the fall of 2013, Inverness Associates conducted a comprehensive national survey of environmental education and sustainability among private independent schools. The National Association of Independent Schools (NAIS) and 14 regional and state associations supported the research. The survey sought to understand how schools' environmental…

  20. What Is Educational Technology?

    Science.gov (United States)

    Ingle, Henry T.

    1975-01-01

    Featured in this issue are the English translations of two speeches delivered to graduate students in educational technology at Pontificia Universidade, Porto Alegre, Brazil. Henry Ingle defines educational technology in the traditional as well as modern sense, describes its essential elements, and discusses situations in which the use of…

  1. Technological Literacy Education and Technological and Vocational Education in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng Steven

    2010-01-01

    Technology education in Taiwan is categorized into the following two types: (1) technological literacy education (TLE)--the education for all people to become technological literates; and (2) technological specialty education (TSE)--the education for specific people to become technicians and professionals for technology-related jobs. This paper…

  2. Environmental Policy and Technological Change

    International Nuclear Information System (INIS)

    Jaffe, Adam B.; Newell, Richard G.; Stavins, Robert N.

    2002-01-01

    The relationship between technological change and environmental policy has received increasing attention from scholars and policy makers alike over the past ten years. This is partly because the environmental impacts of social activity are significantly affected by technological change, and partly because environmental policy interventions themselves create new constraints and incentives that affect the process of technological developments. Our central purpose in this article is to provide environmental economists with a useful guide to research on technological change and the analytical tools that can be used to explore further the interaction between technology and the environment. In Part 1 of the article, we provide an overview of analytical frameworks for investigating the economics of technological change, highlighting key issues for the researcher. In Part 2, we turn our attention to theoretical analysis of the effects of environmental policy on technological change, and in Part 3, we focus on issues related to the empirical analysis of technology innovation and diffusion. Finally, we conclude in Part 4 with some additional suggestions for research

  3. Environmental Education: The African Dimension.

    Science.gov (United States)

    W'O Okot-Uma, Rogers; Wereko-Brobby, Charles

    1985-01-01

    Presents a historical perspective of educational and environmental curricula orientation in Africa. Examines environmentally-related problem areas (such as deforestation, pesticides, and endangered species) and lists the benefits and advantages of environmental education. A restructuring of Africa's formal education curriculum is recommended. (ML)

  4. Educational technology, reimagined.

    Science.gov (United States)

    Eisenberg, Michael

    2010-01-01

    "Educational technology" is often equated in the popular imagination with "computers in the schools." But technology is much more than merely computers, and education is much more than mere schooling. The landscape of child-accessible technologies is blossoming in all sorts of directions: tools for communication, for physical construction and fabrication, and for human-computer interaction. These new systems and artifacts allow educational designers to think much more creatively about when and where learning takes place in children's lives, both within and outside the classroom.

  5. Environmental Fundamentals. Environmental Education Curriculum.

    Science.gov (United States)

    Topeka Public Schools, KS.

    This unit presents materials to develop some of the basic knowledge necessary for grasping the complex processes associated with environmental relationships. It is divided into five topics: (1) Basic Needs for Life--the biological necessities of plants and animals; (2) Food Web--the interactions between organisms; (3) Observational Skills--ways…

  6. Environmental bioremediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.N.; Tripathi, R.D. (eds.) [National Botanical Research Institute, Lucknow (India). Ecotoxicology and Bioremediation

    2007-07-01

    The rapid expansion and increasing sophistication of various industries in the past century has remarkably increased the amount and complexity of toxic waste effluents, which may be bioremediated by suitable plants and microbes, either natural occurring or tailor-made for the specific purpose. This technology is termed as bioremediation. Bioremediation is an eco- friendly, cost-effective and natural technology targeted to remove heavy metals, radionuclides, xenobiotic compounds, organic waste, pesticides etc. from contaminated sites or industrial discharges through biological means. Since this technology is used in in-situ conditions, it does not physically disturb the site unlike conventional methods i.e. chemical or mechanical methods. In this technology, higher plants or microbes are used alone or in combination for phytoextraction of heavy metals from metal contaminated sites. Through microbial interventions, either the metals are immobilized or mobilized through redox conversions at contaminated sites. If mobilized, metal accumulating plants are put in place to accumulate metals in their body. Thereafter, metal-loaded plants are harvested and incinerated to reduce the volume of waste and then disposed off as hazardous materials or used for recovery of precious metals, if possible. In case of immobilization, metals are no longer available to be toxic to organisms. (orig.)

  7. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-10-31

    The Deactivation and Decommissioning (D&D) Technology Assessment Program (TAP) was developed to provide detailed, comparable data for environmental technologies and to disseminate this data to D&D professionals in a manner that will facilitate the review and selection of technologies to perform decontamination and decommissioning. The objectives for this project include the following: Determine technology needs through review of the Site Technology Coordination Group (STCG) information and other applicable websites and needs databases; Perform a detailed review of industries that perform similar activities as those required in D&D operations to identify additional technologies; Define the technology assessment program for characterization and waste management problem sets; Define the data management program for characterization, dismantlement, and waste management problem sets; Evaluate baseline and innovative technologies under standard test conditions at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) and other locations and collect data in the areas of performance, cost, health and safety, operations and maintenance, and primary and secondary waste generation; Continue to locate, verify, and incorporate technology performance data from other sources into the multimedia information system; and Develop the conceptual design for a dismantlement technology decision analysis tool for dismantlement technologies.

  8. The Educational Technology Myth

    Science.gov (United States)

    Stansfield, David

    2012-01-01

    If one wants to teach youth to think, one has to restrain himself from doing all their thinking for them. One has to refrain from specifying in advance what they are going to think. Yet, this is just what educational technologists are consistently guilty of doing. Educational technology is committed to excluding the possibility of anything new or…

  9. Educational Technology Funding Models

    Science.gov (United States)

    Mark, Amy E.

    2008-01-01

    Library and cross-disciplinary literature all stress the increasing importance of instructional technology in higher education. However, there is a dearth of articles detailing funding for library instructional technology. The bulk of library literature on funding for these projects focuses on one-time grant opportunities and on the architecture…

  10. Technology and Educational Structure

    Science.gov (United States)

    Boocock, Sarane S.

    2012-01-01

    Most current debate on instructional technology is characterized either by grandiose speculation on the salvation of education through automation (without specification of "what" and "how" technological innovations will actually be introduced in specific classroom situations, and how the changes will be financed), or by jargon-filled hairsplitting…

  11. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  12. Research priorities in environmental education

    Science.gov (United States)

    George H. Moeller

    1977-01-01

    Although natural processes operate in urban areas, they are difficult to observe. Much discussion during the symposium-fair was devoted to finding ways to improve urban children's environmental understanding through environmental education programs. But before effective environmental education programs can be developed, research is needed to: test the...

  13. A System Approach to Environmental Education

    Directory of Open Access Journals (Sweden)

    Z. Kostova

    2007-09-01

    Full Text Available A system approach to environmental education (EE is developed. By making use of it the educators will be able to introduce successfully ecological principles and global environmental problems in the educational system for the development of environmental culture, consciousness and behavior. It embraces a long period of thinking, designing, experimenting and rethinking in the light of the new ideas, concerning humanity-nature relationships. The core of the system approach is represented by environmental consciousness, which is the driving force of environmentally responsible behavior. The system approach is concerned with constructing an innovative model of EE, which consists of three elements: didactical, conceptual and technological and six integrating concepts, uniting the studies of the different school subjects under the global movement for sustainable development. EE is regarded to be an essential part of the education for sustainable development (ESD.

  14. Overview of emerging environmental technologies

    International Nuclear Information System (INIS)

    Olson, D.C.

    2000-01-01

    DOD is executing environmental restoration projects in accordance with compliance regulations from many federal agencies. With the passage of amendments to the Superfund law in 1986 that stated a preference for treatment instead of disposal, demand developed for alternative methods that provided more permanent and less costly solutions for dealing with contaminated materials. The Army files environmental impact statements on major programs and specific projects that are currently affecting, or have the potential to affect the environment. Personnel conducting those studies may find it helpful to learn about current environmental assessment methods and the outcomes of previous environmental studies. The Army currently spends almost 2.4% of its total budget on environmental programs. As the future budget picture continues to decline, new technologies offer the potential to provide a lower cost means of achieving the same level of environmental protection. This paper will provide an overview of environmental restoration planning and procedures, discuss information capabilities available on the Internet, provide summaries of recent technological literature and field studies; and identifies areas of informational 'gaps'. It concludes by urging closer ties between industry and the Army, as well as the need to pursue new and innovative techniques to solve old problems. (author)

  15. Aviation environmental technology and science

    Institute of Scientific and Technical Information of China (English)

    Zhang Yanzhong

    2008-01-01

    Expatiating on the impact of aviation on the environment and aviation environmental protection projects are ex- pounded, and analyzing on the atmosphere pollution and effects on the aviation noise of aircraft discharge. Researching the approach to control aircraft exhaust pollution and noise pollution, and proposing the technology and management measures to reduce air pollution.

  16. Environmental and process monitoring technologies

    International Nuclear Information System (INIS)

    Vo-Dinh, Tuan

    1993-01-01

    The objective of this conference was to provide a multidisciplinary forum dealing with state-of-the-art methods and instrumentation for environmental and process monitoring. In the last few years, important advances have been made in improving existing analytical methods and developing new techniques for trace detection of chemicals. These monitoring technologies are a topic of great interest for environmental and industrial control in a wide spectrum of areas. Sensitive detection, selective characterization, and cost-effective analysis are among the most important challenges facing monitoring technologies. This conference integrating interdisciplinary research and development was aimed to present the most recent advances and applications in the important areas of environmental and process monitoring. Separate abstracts have been prepared for 34 papers for inclusion in the appropriate data bases

  17. Education and Environmentalism: Ecological World Views and Environmentally Responsible Behaviour.

    Science.gov (United States)

    Blaikie, Norman

    1993-01-01

    Examined a subsample of students from the Royal Melbourne Institute of Technology to determine the extent to which an Ecological World View (EWV) has been adapted, an EWV related to environmental behavior, and the role education plays in the type of EWV adapted. Includes the Ecological World View Scale. (Contains 21 references.) (MDH)

  18. Educação Ambiental e as Novas Tecnologias de Informação e Comunicação / Environmental education and the new comunication and information technologies

    Directory of Open Access Journals (Sweden)

    Marlene Teresinha Muno Colesanti

    2008-06-01

    Full Text Available In the last twenty years, the development of modern information and communication technologies, aswell as the enlarging of their use have created enormous expectations and possibilities on schoolteaching. Related to the Environmental Education, the use of modern information and communicationtechnologies represents an advance, since the integration of information technology and multimediaallows the sensitive and knowledge of different environments and their specific problems, by the viewof students, as far as they can be.Through of the conception of Environmental Education linked to the complexity pedagogy, this articlelooked for argue the potentiality of work with principles of Environmental Education on support digital,using images, texts and sounds, implemented by hypermedia, no sequential technology, which informationare accessed in associative way.Keywords: Environmental Education. Hypermedia. Modern information and comunication.

  19. On School Educational Technology Leadership

    Science.gov (United States)

    Davies, Patricia M.

    2010-01-01

    This analysis of the literatures on school educational technology leadership addresses definitions of school technology leaders and leadership, their role in educational change, and why schools are now changing as a result of 21st century advancements in technology. The literatures disagree over the definition of educational technology leadership.…

  20. Animals in Environmental Education Research

    Science.gov (United States)

    Spannring, Reingard

    2017-01-01

    Over the past few decades, the increase in public and scholarly attention to human-animal relations has inspired an animal turn in a number of academic disciplines including environmental education research. This paper reviews the literature on animals in environmental education with respect to its theoretical foundations in critical pedagogy,…

  1. Ecotourism and Environmental Education: Relationships.

    Science.gov (United States)

    Eagles, Paul F. J.

    1999-01-01

    Examines relationships among environmental education, ecotourism, and public attitudes toward conservation. The global ecotourism industry and the worldwide growth of national parks and other protected areas reflect the long-term impact of environmental education. The entire cycle of protection, ecotourism use of protected areas, and more positive…

  2. European workshop on technologies for environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Buesing, J H; Pippich, B [eds.

    1996-12-31

    Current European research activities in the field of environmental technologies are discussed under the following headings: photocatalysis; emission abatement - catalytic processes (mainly NO{sub x} reduction catalysts for vehicles and industrial boilers); emission abatement - biological and chemical processes; biological wastewater treatment; chemical and physical wastewater treatment; integrated wastewater treatment; environmental technologies in pulp and paper industry; environmental technologies in surface treatment; selected examples of `clean technologies`; environmental technologies in ceramic and cement industry and policy and strategies.

  3. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-03-30

    A vendor was selected for the diamond wire technology demonstration scheduled for this summer at Princeton Plasma Physics Laboratory (PPPL). A team consisting of personnel from FIU-HCET, PPPL, and AEA Technology reviewed the submitted bids. FIU-HCET will contract this vendor. At the SRS Ninth ICT teleconference, the ICT team discussed the status of the following demonstrations: LRAD; x-ray, K-edge; Strippable Coatings; Thermal Spray Vitrification; Cutting/Shearing/Dismantlement/Size Reduction; and Electrets. The LRAD demo is complete, and the x-ray/K-edge, Strippable Coatings, and Electrets demos are ongoing. The Asbestos and Thermal Spray Vitrification demos require more laboratory testing. The Cutting/Shearing/Dismantlement/Size Reduction demo is undergoing procurement. Five FIU-HCET staff members took the 1S0 14000 environmental auditor training course February 22-26, 1999, given by ASC. The test plan for the Facility Dismantlement Technology Assessment is finished and ready for internal review.

  4. "Back to the Basics" Through Environmental Education.

    Science.gov (United States)

    Christian, Adelaide

    Environmental education is proposed as a viable means of improving the educational system. The rationale for teaching environmental education is based in part upon White's principles of education for Seventh-day Adventists and upon Noel McInnis's views of what makes education environmental. An overview of environmental education characterizes it…

  5. Technology Education and Societal Change.

    Science.gov (United States)

    Gilberti, Anthony F.

    1994-01-01

    Citizens in a democracy should understand the relationship of technological development to societal change. The rationale for universal technological education stems from the ideals of cultural education, the responsibilities of democratic life, and the need for economic security. Technology education furthers understanding of our technological…

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: GREEN BUILDING TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) Program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techno...

  7. Energetic technologies and environmental impact

    International Nuclear Information System (INIS)

    2001-01-01

    This monograph is a collective work by scientist from CIEMAT (Spanish centre for research on energy, environment and technology). By reviewing the central topics of their own work, the authors present a world-wide update of the state of the arts of the different technologies involved in energy production. The chapters fo through the more promising technologies related to the diverse energy sources, from the nuclear to the renewable and chemical a large gamut of energy supply ways is revised. The analysis of the production technologies is accompanied by considerations of the environmental implications, an aspect to wich a whole part of the volume is devoted. The book begins with a foreword by Dr. Felix Yndurain, former General Director of CIEMAT and follows with a general introduction to the main topics, that are presented in three parts, with specific introductions. There is also a closing fourth part that includes some additional activities where more basic and technical developments are included. The first part is devoted to energy of nuclear origin. In two separate sections, fission and fusion technologies are covered. The fission section points towards the present day problems of nuclear plants (ageing, accidents, risk analysis, etc.), reprocessing of the nuclear fuel, radioactive wastes and environmental radioactivity. The fusion section contains a critical account of the present and expected developments of the fusion reactors together with an exposition of the related plasma physics problems. The second part comprises two sections devoted to energy generation of renewable and chemical origin, respectively. Tehcnologies for solar, wind and biomass energies are thoroughly exposed along the renewable energy section whereas the chemical energy section is devoted to the modern technologies of clean fossil fuel combustion and gasification, as well as to the new appealing subject of direct electric generation with fuel cells. The main environmental and social

  8. A Review of Technology Education in Ireland; a Changing Technological Environment Promoting Design Activity

    Science.gov (United States)

    Leahy, Keelin; Phelan, Pat

    2014-01-01

    In Ireland, Technology Education's structure and organisation across the levels of education is not delivered or governed in a coherent manner. Technology Education in primary level education, for students between 5 and 12 years of age, does not explicitly exist as a separate subject. In primary level education, Social, Environmental and…

  9. SIHTI - Energy and environmental technology

    International Nuclear Information System (INIS)

    Estlander, A.; Pietilae, S.

    1993-01-01

    The research and development program SIHTI was carried out during 1991-1992, mainly concentrating on energy and environmental technology. SIHTI focused on examining emissions from various sources of energy in all stages of the production chain. The objective was to create new methods and equipment, with which the environmental drawbacks of energy production can be reduced. Also a development work aiming at reduced traffic emissions was included in the program. Totally the program included 53 projects, which were divided into the following subsections: energy production, traffic, fuel chains and other projects. In the energy production projects the main attention was paid to reduction of sulphur dioxide, nitrogen oxide and particulate emissions. Furthermore waste utilization and possibilities of reducing carbon dioxide emissions were studied. The traffic study was focused on developing of more environmental-friendly liquid fuels. The research of emissions at low ambient temperatures was developed to an international level. Further the use of gases and the rape seed oil ester as traffic fuel was studied in practical tests. In the fuel chain study the emissions from the most important fuel chains were examined all the way from the purchase of the primary energy to the final end product. Methods for further reduction of water discharges from peat production were developed. The other projects were concentrated on modelling development, environmental impact assessment and emission surveys

  10. Technology of environmental pollution control

    International Nuclear Information System (INIS)

    Shaheen, E.I.

    1992-01-01

    This book aims to be a comprehensive reference for technological advances in pollution control and abatement and pollution regulations. The first chapter, 'The dilemma of environmental pollution' summarises pollution legislation in the United States and discusses worldwide interest in pollution abatement. Chapter 2 describes some recent environmental disasters and discusses the major air pollutants and their harmful effects. Chapters 3 and 4 assess the various techniques for air pollution control and water pollution control. Chapter 5 is devoted to oil pollution impact and abatement. Solid waste management and methods of solid waste disposal are discussed in chapter 6, and noise pollution, its harmful effects and its control are dealt within chapter 7. Appendices contain a glossary, a summary of the US Clean Air Act and the US drinking water regulations and reference figures and tables relating to energy and the environment. Individual chapters contain many references

  11. Environmental Education Center.

    Science.gov (United States)

    Holmes (Warren) Co. and Black (Kenneth) Associate, Architects, Lansing, MI.

    Public awareness and concern for our natural environment have rapidly increased. With new demands for knowledge and action concerning all aspects of environmental quality, schools have begun to incorporate into their curriculums new programs emphasizing environmental awareness and appreciation at all age levels. To bring students into further…

  12. Radiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Machi, Sueo; Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji

    1991-01-01

    This paper reviews research and development of radiation technology application for environmental conservation. Our group in cooperation with Ebara Mfg. co., Ltd. first found and studied removals of sulfur dioxide and nitrogen oxides from flue gases by electron beam irradiation. Most of sulfer dioxide and nitrogen oxides are converted to ammonium sulfate and nitrate by radiation with the addition of ammonia. Feasibility studies of this technology by pilot scale experiments have been carried out in Japan, USA and Germany for flue gases from iron-ore sintering furnace and coal fire power station. About 90 % of CO 2 and NO X are removed with 15 kGy. Organic pollutants in wastewater, drinking water and ground water have been found to be reduced by radiation technology. Synergetic effect of radiation and ozone to remove pollutants was also found. Disinfection of water effluent from sewage water treatment plant by radiation instead of using chlorine to avoid formation of chlorinated organic compounds has been studied by our group. Efficient composting of sewage sludge using radiation disinfection followed by fermentation has been developed and produced compost can be used as fertilizer. In conclusion, radiation technology can provide new efficient treatment method for wastes. (author)

  13. Radiation technology for environmental conservation

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo; Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1991-01-01

    This paper reviews research and development of radiation technology application for environmental conservation. Our group in cooperation with Ebara Mfg. co., Ltd. first found and studied removals of sulfur dioxide and nitrogen oxides from flue gases by electron beam irradiation. Most of sulfer dioxide and nitrogen oxides are converted to ammonium sulfate and nitrate by radiation with the addition of ammonia. Feasibility studies of this technology by pilot scale experiments have been carried out in Japan, USA and Germany for flue gases from iron-ore sintering furnace and coal fire power station. About 90 % of CO{sub 2} and NO{sub X} are removed with 15 kGy. Organic pollutants in wastewater, drinking water and ground water have been found to be reduced by radiation technology. Synergetic effect of radiation and ozone to remove pollutants was also found. Disinfection of water effluent from sewage water treatment plant by radiation instead of using chlorine to avoid formation of chlorinated organic compounds has been studied by our group. Efficient composting of sewage sludge using radiation disinfection followed by fermentation has been developed and produced compost can be used as fertilizer. In conclusion, radiation technology can provide new efficient treatment method for wastes. (author).

  14. CLOUD TECHNOLOGY IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  15. Environmental technology foresight : New horizons for technology management

    NARCIS (Netherlands)

    Den Hond, Frank; Groenewegen, Peter

    1996-01-01

    Decision-making in corporate technology management and government technology policy is increasingly influenced by the environmental impact of technologies. Technology foresight (TF) and environmental impact assessment (EIA) are analyzed with regard to the roles they can play in developing long-term

  16. Exploration of mobile educational technology

    OpenAIRE

    Hosny, W.

    2007-01-01

    Recent advances in mobile and wireless technology could be utilised to enhance the delivery of educational programmes. The use of this technology is known as “Mobile Education”. Mobile education technology provides unique opportunities for educators to flexibly deliver their educational material to learners via mobile services anywhere at any time. Moreover, the material delivered could be adapted to the learners’ needs and preferences. Examples of mobile devices which could be used in mobile...

  17. GENERAL ENVIRONMENTAL CORPORATION; CURE ELECTROCOAGULATION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The CURE electrocoagulation technology was demonstrated under the Superfund Innovative Technology Evaluation (SITE) program at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS), where water from the solar evaporation ponds (SEPs) was contaminat...

  18. Environmental regulation and technological innovation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, A.E. [Carnegie Mellon Electricity Industry Center, Pittsburg, PA (United States)

    2002-07-01

    Government policies are a major factor in the determination of structural conditions of competition. The innovative activity comprises the following: invention, adoption, and diffusion. Invention involves research and development activities such as patenting, research and development budgets. The adoption phase is concerned with deployment. As for the diffusion phase, it involves commercialization, and scale-economies. The process of introducing new technologies that are adopted by small numbers of customers in a niche market was explained. Once costs are lowered through experience gained in designing, manufacturing and servicing the new technology, mew applications generally lead to larger markets. Environmental technologies have no early adopters, implying that governments have an important role to play. However, commercial processes are not normally as well known to government as it is to the private sector. The electoral cycle also interferes with long term research and development efforts for technological clusters. A look at sulphur dioxide control at United States power plants illustrated the problem. The author then explained the reasons behind low allowance prices. Low-sulphur western coal was rendered economic in large areas of the United States by rail deregulation. Electricity restructuring was also a factor. The author indicated that binding government regulation must come before adoption and diffusion of emission controls. A summary of recent research was provided, in which the author stated that no single policy instrument was likely to properly stimulate innovative activity. In those cases where both supply and demand are stimulated by government, the technological innovation is greatest. Stringent regulations induce innovation, as do greater flexibility and greater regulatory certainty. Knowledge transfer within the industry is vital. 8 refs., 3 figs.

  19. Timeline: environmental education in Colombia

    Directory of Open Access Journals (Sweden)

    Luz Adriana Pita-Morales

    2016-12-01

    Full Text Available The environmental education is a process that allows the individual to understand the relations of interdependence with the environment in the one that develops, is like that, since the reality bears biophysics in mind, social, political, economic in this respect it is necessary to generate in the company activities of valuation and respect for the environment. The environmental education is a dynamic and participative process orientated to the formation of critical and reflexive persons with aptitude to understand the environmental problematics of the local, regional and national context. In this frame the need is born of contextualized the labor that has become national in the construction of instruments that allow him the condition to look at the environmental education as a fundamental tool for the care of the natural resources and not as an isolated concept foreign to the community. In the present review their approaches the historical frame of the environmental education in Colombia his challenges, challenges and the way like are opening formative spaces and of projection for the suitable managing of the environment. In conclusion environmental education is a participatory process that must be born of the group in order to give management the natural resources of a region and community where professionals to do is oriental these processes in society.

  20. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC MONITORING TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This technology ...

  1. Hydrogen Technology Education Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-01

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new education effort coordinated by the Hydrogen, Fuel Cells, & Infrastructure Technologies Program of the Office of Energy Efficiency and Renewable Energy.

  2. INFORMATION TECHNOLOGIES IN ECONOMIC EDUCATION

    OpenAIRE

    I.A. Kinash

    2011-01-01

    In the article the basic aspects of the use of modern information technologies in an educational process are examined. Described directions of introduction of information technologies in economic education. Problems which are related to practice of professional preparation of specialists of economic specialities are examined. The role of information technologies in professional activity of specialists of economic type is underlined.

  3. INFORMATION TECHNOLOGIES IN ECONOMIC EDUCATION

    Directory of Open Access Journals (Sweden)

    I.A. Kinash

    2011-11-01

    Full Text Available In the article the basic aspects of the use of modern information technologies in an educational process are examined. Described directions of introduction of information technologies in economic education. Problems which are related to practice of professional preparation of specialists of economic specialities are examined. The role of information technologies in professional activity of specialists of economic type is underlined.

  4. Disruptive Technologies in Higher Education

    Science.gov (United States)

    Flavin, Michael

    2012-01-01

    This paper analyses the role of "disruptive" innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs) have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs) being more or less universal, but these technologies have not been universally…

  5. in environmental education

    African Journals Online (AJOL)

    Jenny

    least four rhetorical strategies that distort the views of those she discredits. Firstly, by .... rise of contemporary (Western) environmentalism in the 1970s, much ecological activism was distinctly .... requires a complicated joint management agreement culminating in the Southern African ..... Contingency, Irony, and Solidarity.

  6. Community Environmental Education as a Model for Effective Environmental Programmes

    Science.gov (United States)

    Blair, Morag

    2008-01-01

    The benefits of community environmental education outlined in environmental education literature are supported by the findings and implications of a research study undertaken in New Zealand. Evidence from a two-case case study suggests that environmental programmes guided by the key principles and practices of community environmental education,…

  7. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    International Nuclear Information System (INIS)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. WETO's environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies

  8. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  9. Radiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Machi, S.

    1983-01-01

    The use of radiation technology for environmental conservation is becoming increasingly important. Commercial plants for the radiation treatment of sewage sludge to reduce pathogenic micro-organisms have been operating in the Federal Republic of Germany for the past ten years and their technical and economical feasibility has been demonstrated. Irradiation of dried sludge has been developed at the Sandia National Laboratory (USA) using Cs-137, and the construction of a commercial plant is planned in Albuquerque. At the Japan Atomic Energy Research Institute (JAERI), efforts are under way to increase the rate of composting of sludge by radiation. Regarding waste water treatment, a significant synergistic effect of radiation and ozone was found in the reduction of TOC. The construction of a gamma irradiation plant is in the planning stage in Canada, for the disinfection of virus-contaminated waste effluents from the Canadian Animal Disease Research Institute. The treatment of exhaust gases by electron beam has been studied in Japan using a large pilot plant which demonstrated that 90% of SO 2 and 80% of NOsub(x) can be removed from the flue gas of iron ore sintering furnaces. The US Department of Energy is assisting in projects for the further development of this technology for combined removal of SO 2 and NOsub(x) in flue gas from coal burning power stations. (author)

  10. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  11. Educational technology and the new technologies

    NARCIS (Netherlands)

    Verhagen, Pleunes Willem; Plomp, T.

    1989-01-01

    Like everywhere in our culture, new technologies gradually penetrate the field of education. This may be seen as a problem area, which asks for appropriate, actions by teachers, curriculum experts, instructional designers and others. As "technology" seems to be the main issue,one may quation whether

  12. Searching for Educational Technology Faculty.

    Science.gov (United States)

    Barrow, Lloyd H.

    2003-01-01

    Identifies the types of positions available at domestic four-year institutions of higher education for faculty whose specialty is educational technology. Analyzes educational job postings listed in the "Chronicle of Higher Education" from August, 2000, through July, 2001. (Author/SOE)

  13. Radiologic technology educators and andragogy.

    Science.gov (United States)

    Galbraith, M W; Simon-Galbraith, J A

    1984-01-01

    Radiologic technology educators are in constant contact with adult learners. However, the theoretical framework that radiologic educators use to guide their instruction may not be appropriate for adults. This article examines the assumptions of the standard instructional theory and the most modern approach to adult education-- andragogy . It also shows how these assumptions affect the adult learner in a radiologic education setting.

  14. The 10th Anniversary Of Daejeon Environmental Technology Development Center

    International Nuclear Information System (INIS)

    2010-12-01

    This book describes the Daejeon Environment Technology Development Center with pictures for ten years. It also introduces the purpose of the foundation and background of center, structure of the center, main project and role of the center, center logo, current situation of cost of project, research business for 10 years, business supporting the environmental corporate, environment education, public relations activity and vision and prospect of the Daejeon Environmental Technology Development Center.

  15. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-09-30

    Co., Inc. was evaluated. A summary of the demonstration will be included in the October monthly report. A Kool-Vest from MicroClimate Systems, Inc. was evaluated during assessment at Beaver, WV from 8/16/99 to 8/17/99. The evaluation was performed in the same manner as the MTR Chemical Protective Suit described above. A summary of the demonstration will be included in the October monthly report. A brochure announcing the new Gateway to Environmental Technology (GET) website was produced by FIU-HCET and is being distributed to the D&D community by FETC-DDFA. The website provides links to the TIS and other decision support systems developed at FIU-HCET.

  16. Green Curriculum Analysis in Technological Education

    Science.gov (United States)

    Chakraborty, Arpita; Singh, Manvendra Pratap; Roy, Mousumi

    2018-01-01

    With rapid industrialization and technological development, India is facing adverse affects of unsustainable pattern of production and consumption. Education for sustainable development has been widely recognized to reduce the threat of environmental degradation and resource depletion. This paper used the content analysis method to explore the…

  17. THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM

    International Nuclear Information System (INIS)

    Behr-Andres, Christina B.

    2001-01-01

    The Environmental Technologies Acceptance (ETA) Program at the Energy and Environmental Research Center (EERC) is intended to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As shown in Table 1, this cooperative agreement funded by the National Energy Technology Laboratory (NETL) consists of three tasks: Technology Selection, Technology Development, and Technology Verification. As currently conceived, the ETA will address the needs of as many technologies as appropriate under its current 3-year term. This report covers activities during the first 6 months of the 3-year ETA program

  18. QuEST: Qualifying Environmentally Sustainable Technologies

    Science.gov (United States)

    Lewis, Pattie

    2012-01-01

    Articles in this issue inlude: (1) Foundation of Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) Technology Evaluation is Testing and Qualification, (2) Materials Management and Substitution Efforts, (3 Recycling and Pollution Control Efforts, and (4) Remediation Efforts

  19. Division of Environmental Control Technology program, 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    Environmental engineering programs are reviewed for the following technologies; coal; petroleum and gas; oil shale; solar; geothermal and energy conservation; nuclear energy; and decontamination and decommissioning. Separate abstracts were prepared for each technology. (MHR)

  20. Global environmental technologies in the future

    International Nuclear Information System (INIS)

    Takahashi, M.

    1994-01-01

    This paper outlines the activities of New Energy and industrial Technology Development Organization's (NEDO) 'Research and Development of Industrial Technology' projects which are related to global environmental technologies. Then, it describes four new material programs and two biotechnology ones, and presents a list of a few environmentally-friendly technologies. These national projects are carried out by private companies which are consigned by NEDO in conformity with MITI's fundamental Research and Development policy. (TEC)

  1. Environmental management technology demonstration and commercialization

    International Nuclear Information System (INIS)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-01-01

    The Energy ampersand Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD ampersand C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE's Office of Environmental Science and Technology (EM-50) under DOE's EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies

  2. Technology Education and the Arts

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    One hears quite frequently how the arts continually suffer in the academic day. Many long-time technology education champions certainly know what this is all about; but there may be some ways to use technology education to bring the arts into the classroom. This article offers a series of activities and suggestions that will help students better…

  3. Health Educational Potentials of Technologies.

    OpenAIRE

    Magnussen, Rikke; Aagaard-Hansen, Jens

    2012-01-01

    The field of health promotion technology has been in an exponential growth in recent years and smart phone applications, exer-games and self-monitoring devices has become part of fitness activities and health education. In this work-in-progress-paper theoretical perspectives for categorising and analysing health educational potentials of technologies are presented.

  4. Ubiquitous Computing Technologies in Education

    Science.gov (United States)

    Hwang, Gwo-Jen; Wu, Ting-Ting; Chen, Yen-Jung

    2007-01-01

    The prosperous development of wireless communication and sensor technologies has attracted the attention of researchers from both computer and education fields. Various investigations have been made for applying the new technologies to education purposes, such that more active and adaptive learning activities can be conducted in the real world.…

  5. Future Scenarios and Environmental Education

    NARCIS (Netherlands)

    Kopnina, H.N.

    2014-01-01

    This article explores a number of questions about visions of the future and their implications for environmental education (EE). If the future were known, what kind of actions would be needed to maintain the positive aspects and reverse the negative ones? How could these actions be translated into

  6. Drawing Analogies in Environmental Education

    Science.gov (United States)

    Affifi, Ramsey

    2014-01-01

    Reconsidering the origin, process, and outcomes of analogy-making suggests practices for environmental educators who strive to disengage humans from the isolating illusions of dichotomizing frameworks. We can view analogies as outcomes of developmental processes within which human subjectivity is but an element, threading our sense of self back…

  7. Technology Education Professional Enhancement Project

    Science.gov (United States)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  8. Technology for Education and Learning

    CERN Document Server

    2012 international conference on Technology for Education and Learning (ICTEL 2012)

    2012-01-01

    This volume contains 108 selected papers presented at the 2012 international conference on Technology for Education and Learning (ICTEL 2012), Macau, China, March 1-2, 2012. The conference brought together researchers working in various different areas of Technology for Education and Learning with a main emphasis on technology for business and economy in order to foster international collaborations and exchange of new ideas. This proceedings book has its focus on Technology for Economy, Finance and Education representing some of the major subareas presented at the conference.

  9. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: ARSENIC TREATMENT TECHNOLOGIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techn...

  10. ATBU Journal of Environmental Technology: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. The journal of environmental technology is devoted to the publication of papers which advance knowledge of practical and theoretical issues of the environmental technology. Selection of papers for publication is based on their relevance, clarity, topicality and individuality; the extent to which they advance ...

  11. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Kim, Ingyu; Kim, Enhan; Keum, Dongkwon

    2012-04-01

    To develop the comprehensive environmental radiation management technology, - An urban atmospheric dispersion model and decision-aiding model have been developed. - The technologies for assessing the radiation impact to non-human biota and the environmental medium contamination have developed. - The analytical techniques of the indicator radionuclides related to decommissioning of nuclear facilities and nuclear waste repository have been developed. - The national environmental radiation impact has been assessed, and the optimum management system of natural radiation has been established

  12. Analytical review of modern information education technologies

    OpenAIRE

    Светлана Викторовна Зенкина; О П Панкратова

    2014-01-01

    This article discusses and analyzes the modern information education technologies, which are seen as the priority to use in the modern information educational environment (Internet-based educational technologies, distance education, media education, e-Learning technologies, smart-education technologies).

  13. Corporate environmental management and information technology

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.

    2001-01-01

    software, the Internet, computer networks, telecommunications devices, etc. Information technology also has an impact on how companies perform environmental management. This paper looks at the relations between corporate environmental management and information technology. First it presents a framework...... for mapping information technology. Using this framework it focuses on the use of information technology in corporate environmental management, describes the market for standard environmental management information systems and implementation experiences from one large international company.......Information technology has changed, is changing and will continue to change the face of business as we further enter the Information Society. Today it would be difficult for a company to function effectively without the aid of various information technologies such as accounting software, production...

  14. LIEKKI 2 - Combustion technology is environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. [Aabo Akademi, Turku (Finland)

    1996-12-31

    Finland has wide experience in applications of various combustion technologies and fuels and in supplying energy to industry and municipalities. Furthermore, combustion hardware and equipment are amongst our most important export products. Above all, fluidized bed boilers, recovery boilers for pulp mills and heavy diesel engines and diesel power plants have achieved excellent success in the world markets. Exports of these products alone have amounted to several billions of Finnish marks of annual sales in recent years. Within modern combustion technology, the objective is to control flue gas emissions as far as possible in the process itself, thus doing away with the need for the separate scrubbing of flue gases. To accomplish this it has been necessary to conduct a large amount of research on the details of the chemistry of combustion emissions and the flows in furnaces and engine cylinders. A host of completely new products are being developed for the combustion technology field. The LIEKKI programme has been particularly interested in so-called combined-cycle processes based on pressurized fluidized bed technology

  15. Technological Innovation in Primary Education

    Directory of Open Access Journals (Sweden)

    Luisana Sleny López Alvarado

    2018-05-01

    Full Text Available The purpose of this essay is to reflect on technological innovation in Primary Education. In this idea, information processing was used to support the analysis of the theoretical approaches related to the relevance of education that is based on a significant pedagogical practice capable of developing the capacities and interests, so that they can appropriate the global and local content in the vision of access to information, considering social opportunities. The restructuring to which education has been subjected has been influenced by advances in science, technology and the demands of a complex, dynamic and uncertain society in the processes of educational innovation, which involves the introduction of something new in education. the educational system, modifying its teaching-learning structures through the incorporation of Information and Communication Technologies (ICT in the curricular design of primary education in its intention to train for incursion into science and technology from use of a wide range of didactic resources that lead to pedagogical innovation. It was concluded that technological innovation in the educational praxis of primary education, requires in addition to the vocation of service, to study the new didactic paradigms to display their reflective capacity and assume the commitment to acquire digital literacy to assume the requirements of a knowledge society which is increasingly globalized.

  16. Motion sensor technologies in education

    Directory of Open Access Journals (Sweden)

    T. Bratitsis

    2014-05-01

    Full Text Available This paper attempts to raise a discussion regarding motion sensor technologies, mainly seen as peripherals of contemporary video game consoles, by examining their exploitation within educational context. An overview of the existing literature is presented, while attempting to categorize the educational approaches which involve motion sensor technologies, in two parts. The first one concerns the education of people with special needs. The utilization of motion sensor technologies, incorporated by game consoles, in the education of such people is examined. The second one refers to various educational approaches in regular education, under which not so many research approaches, but many teaching ideas can be found. The aim of the paper is to serve as a reference point for every individual/group, willing to explore the Sensor-Based Games Based Learning (SBGBL research area, by providing a complete and structured literature review.

  17. Disruptive technologies in higher education

    Directory of Open Access Journals (Sweden)

    Michael Flavin

    2012-08-01

    Full Text Available This paper analyses the role of “disruptive” innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs being more or less universal, but these technologies have not been universally adopted and used by students and staff. Instead, other technologies not owned or controlled by HEIs are widely used to support learning and teaching. According to Christensen's theory of Disruptive Innovation, these disruptive technologies are not designed explicitly to support learning and teaching in higher education, but have educational potential. This study uses Activity Theory and Expansive Learning to analyse data regarding the impact of disruptive technologies. The data were obtained through a questionnaire survey about awareness and use of technologies, and through observation and interviews, exploring participants’ actual practice. The survey answers tended to endorse Disruptive Innovation theory, with participants establishing meanings for technologies through their use of them, rather than in keeping with a designer's intentions. Observation revealed that learners use a narrow range of technologies to support learning, but with a tendency to use resources other than those supplied by their HEIs. Interviews showed that participants use simple and convenient technologies to support their learning and teaching. This study identifies a contradiction between learning technologies made available by HEIs, and technologies used in practice. There is no evidence to suggest that a wide range of technologies is being used to support learning and teaching. Instead, a small range of technologies is being used for a wide range of tasks. Students and lecturers are not dependent on their HEIs to support learning and teaching. Instead, they self-select technologies, with use weighted towards established brands. The

  18. Environmental and sustainability education policy

    DEFF Research Database (Denmark)

    The volume draws on a wide range of policy studies and syntheses to provide readers with insights into the international genealogy and priorities of ESE policy. Editors and contributors call for renewed attention to the possibilities for future directions in light of previously published work and......, ideological orthodoxy and critique, curriculum making and educational theory, globalisation and neoliberalism, climate change and environmental worldviews, and much more....... and innovations in scholarship. They also offer critical commentary on the evolution of research trends, approaches and findings. Including a wide range of examples of ESE policy and policy research, the book draws on studies of educational initiatives and legislation, policy making processes and rhetoric...

  19. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - THE ELECTROPLATING INDUSTRY

    Science.gov (United States)

    This 44-page Technology Transfer Environmental Regulations and Technology publication is an update of a 1980 EPA publication that has been revised to reflect changes in the EPA regulations, as well as in the pollution control technologies that affect the electroplating industry. ...

  20. Environmental science and technology: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is intended to provide an overview of the scientific and technological effort to meet the environmental goals identified in the Green Plan. The report gives a sense of the range of scientific and technological efforts that are being devoted to issues as diverse as conserving our wildlife and national parks and developing innovative technologies to clean-up polluted sites.

  1. Environmental Sustainability and Quality Education: Perspectives ...

    African Journals Online (AJOL)

    Environmental Sustainability and Quality Education: Perspectives from a community living in a context of poverty. ... Southern African Journal of Environmental Education. Journal Home · ABOUT THIS ... AJOL African Journals Online. HOW TO ...

  2. Southern African Journal of Environmental Education

    African Journals Online (AJOL)

    The Southern African Journal of Environmental Education (SAJEE) is an accredited and ... It is published at least once a year, by the Environmental Education Association of Southern Africa (EEASA). ... AJOL African Journals Online. HOW TO ...

  3. [Information technology in medical education].

    Science.gov (United States)

    Ramić, A

    1999-01-01

    The role of information technology in educational models of under-graduate and post-graduate medical education is growing in 1980's influenced by PC's break-in in medical practice and creating relevant data basis, and, particularly, in 1990's by integration of information technology on international level, development of international network, Internet, Telemedicin, etc. The development of new educational information technology is evident, proving that information in transfer of medical knowledge, medical informatics and communication systems represent the base of medical practice, medical education and research in medical sciences. In relation to the traditional approaches in concept, contents and techniques of medical education, new models of education in training of health professionals, using new information technology, offer a number of benefits, such as: decentralization and access to relevant data sources, collecting and updating of data, multidisciplinary approach in solving problems and effective decision-making, and affirmation of team work within medical and non-medical disciplines. Without regard to the dynamics of change and progressive reform orientation within health sector, the development of modern medical education is inevitable for all systems a in which information technology and available data basis, as a base of effective and scientifically based medical education of health care providers, give guarantees for efficient health care and improvement of health of population.

  4. Technology development and transfer in environmental management

    International Nuclear Information System (INIS)

    Katz, J.; Karnovitz, A.; Yarbrough, M.

    1994-01-01

    Federal efforts to develop and employ the innovative technologies needed to clean up contaminated facilities would greatly benefit from a greater degree of interaction and integration with the energies and resources of the private sector. Yet there are numerous institutional, economic, and regulatory obstacles to the transfer and commercialization of environmental restoration and waste management technologies. These obstacles discourage private sector involvement and investment in Federal efforts to develop and use innovative technologies. A further effect is to impede market development even where private sector interest is high. Lowering these market barriers will facilitate the commercialization of innovative environmental cleanup technologies and expedite the cleanup of contaminated Federal and private facilities. This paper identifies the major barriers to transfer and commercialization of innovative technologies and suggests possible strategies to overcome them. Emphasis is placed on issues particularly relevant to the Department of Energy's Environmental Restoration and Waste Management (EM) program, but which are applicable to other Federal agencies confronting complex environmental cleanup problems

  5. Corporate Environmental Management and Information Technology

    DEFF Research Database (Denmark)

    Rikhardsson, Pall M.

    2000-01-01

    software, the internet, computer networks, telecommunications devices, etc. Information technology also has an impact on how companies perform environmental management. This paper explores the relations between environmental management and information technology in general terms. It offers a classification...... framework for the use of information technology in corporate environmental management (CEM), describes the market for standard environmental management information systems solutions, what main functionalities are available and what main trends are visible.......Information technology has changed, is changing and will continue to change the face of business as we further enter the Information Society. Today it would be difficult for a company to function effectively without the aid of various information technologies such as accounting software, production...

  6. Technology diffusion, product differentiation and environmental subsidies

    Energy Technology Data Exchange (ETDEWEB)

    McGinty, M. [Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Economics; Vries, F.P. de [Univ. of Groningen (Netherlands). Dept. of Law and Economics

    2007-07-01

    Technological change is often seen as the promising device that will mitigate or solve environmental problems. Policy intervention that spurs the development, adoption and diffusion of new, environmentally benign technologies therefore holds great appear for environmental authorities. Policymakers have various instruments at their disposal to affect technological diffusion, ranging from direct regulation (command-and-control strategies) to market-based instruments, such as taxes, subsidies and tradable pollution permits. This paper examines environmental subsidies as a technology diffusion policy. The authors apply evolutionary game theory to explore the relationship between subsidies for clean technology, the diffusion of that technology and the degree of product differentiation in an imperfectly competitive market. They show that the subsidy succeeds in reducing environmental damage only when the substitution effect (the reduction in pollution associated with the clean technology) exceeds the output effect (the extent that the subsidy increases output). When the substitution effect does dominate, environmental damage decreases monotonically during the diffusion process. The extent of diffusion (the degree to which clean technolgy replaces dirty) and the likelihood that the substitution effect will dominate both decrease with the extent of product differentiation. Finally, the subsidy for clean technology will spill over to the remaining dirty producers increasing their profit as well.

  7. Reconceptualizing Environmental Education: Taking Account of Reality.

    Science.gov (United States)

    Dillon, Justin; Teamey, Kelly

    2002-01-01

    Investigates the pros and cons of integrating environmental education into the school curriculum. Focusing solely on environmental education's role in the school curriculum ignores a range of factors that affect its efficacy in the majority of the world. Suggests a conceptualization of environmental education that takes into account a range of…

  8. Environmental Education Policy Development in Zimbabwe: An ...

    African Journals Online (AJOL)

    National environmental education policy is essential for guiding and coordinating environmental education activities within a country. The Zimbabwean Environmental Education Policy development process took place between 2000 and 2001.This paper looks at stages in the policy development process, the factors that ...

  9. Sense of Place in Environmental Education

    Science.gov (United States)

    Kudryavtsev, Alex; Stedman, Richard C.; Krasny, Marianne E.

    2012-01-01

    Although environmental education research has embraced the idea of sense of place, it has rarely taken into account environmental psychology-based sense of place literature whose theory and empirical studies can enhance related studies in the education context. This article contributes to research on sense of place in environmental education from…

  10. Computers: Educational Technology Paradox?

    Science.gov (United States)

    Hashim, Hajah Rugayah Hj.; Mustapha, Wan Narita

    2005-01-01

    As we move further into the new millennium, the need to involve and adapt learners with new technology have been the main aim of many institutions of higher learning in Malaysia. The involvement of the government in huge technology-based projects like the Multimedia Super Corridor Highway (MSC) and one of its flagships, the Smart Schools have…

  11. Educational Technology: Integration?

    Science.gov (United States)

    Christensen, Dean L.; Tennyson, Robert D.

    This paper presents a perspective of the current state of technology-assisted instruction integrating computer language, artificial intelligence (AI), and a review of cognitive science applied to instruction. The following topics are briefly discussed: (1) the language of instructional technology, i.e., programming languages, including authoring…

  12. Managing technological and environmental dynamics

    DEFF Research Database (Denmark)

    Madsen, Henning; Ulhøi, John Parm

    2001-01-01

    The field of MoT cannot continue indefinitely to ignore the importance of the natural environment as a fundamental basis for technological development. This paper will therefore focus on the various linkages between management of technology and sustainable development, discussing both the current...

  13. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    1999-01-31

    FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.

  14. Political measures for promoting environmental technology

    International Nuclear Information System (INIS)

    2006-01-01

    Environmental technology can contribute to solving many environmental challenges and to industrial development. Measures to support the development and use of such technologies can be regulatory, economic or administrative, and usually one needs to use a combination of different measures in order to reach both a better environment and industrial development. For industrial development other measures than those administered by environmental authorities will be of importance. The environmental authorities therefore need to acquire knowledge about these measures and the bodies administering them, and develop an operative cooperation with these actors

  15. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  16. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  17. Distance Education in Technological Age

    Directory of Open Access Journals (Sweden)

    R .C. SHARMA

    2005-04-01

    Full Text Available Distance Education in Technological AgeRomesh Verma (Editor, New Delhi: Anmol Publications, 2005, ISBN 81-261-2210-2, pp. 419 Reviewed by R C SHARMARegional DirectorIndira Gandhi National Open University-INDIA The advancements in information and communication technologies have brought significant changes in the way the open and distance learning are provided to the learners. The impact of such changes is quite visible in both developed and developing countries. Switching over to online mode, joining hands with private initiatives and making a presence in foreign waters, are some of the hallmarks of the open and distance education (ODE institutions in developing countries. The compilation of twenty six essays on themes as applicable to ODE has resulted in the book, “Distance Education in Technological Age”. These essays follow a progressive style of narration, starting from describing conceptual framework of distance education, how the distance education was emerged on the global scene and in India, and then goes on to discuss emergence of online distance education and research aspects in ODE. The initial four chapters provide a detailed account of historical development and growth of distance education in India and State Open University and National Open University Model in India . Student support services are pivot to any distance education and much of its success depends on how well the support services are provided. These are discussed from national and international perspective. The issues of collaborative learning, learning on demand, life long learning, learning-unlearning and re-learning model and strategic alliances have also given due space by the authors. An assortment of technologies like communication technology, domestic technology, information technology, mass media and entertainment technology, media technology and educational technology give an idea of how these technologies are being adopted in the open universities. The study

  18. TECHNOLOGY OF EDUCATIONAL EVENTS DESIGNING

    Directory of Open Access Journals (Sweden)

    N. V. Volkova

    2017-01-01

    Full Text Available The aim of the article is to prove and disclose the essence of the author’s technology of educational events designing.Methodology and methods of research. Methodological basis of work is humanitarian approach. The method of pedagogical modeling was used for the model development of educational events influence on pedagogical activity formation. The content analysis of texts descriptions, case-study method, expert estimations of event projects were applied as the main methods of efficiency confirmation of the technology of educational events design.Results and scientific novelty. The characteristics of an educational event are emphasized by means of an empirical way: opening (what a person opens for himself; generation (a result of a personal action; and participation in creation of something "new" (new communications, relations and experience. The structure of technology of educational events design including work with concepts (an educational event, substantial and procedural components is presented. The technology of educational events designing is considered as the process of the well-grounded choice of designing technologies, mutual activity, pedagogical communication, components of educational activity: contents, methods, means, and organizational forms depending on educational aims due to age-specific peculiarities of participants of the educational event. The main conditions providing successful use of the technology are the involvement into joint cognitive activity of all its participants and importance of the events for each of them that qualitatively change the nature of a cognitive process and generate real transformations of the reality.Practical significance. The author’s experience in teaching testifies to introduction of the module «Technology of Design of Educational Events» into the basic educational subject-module «Design Competence of the Teacher» (degree program «Pedagogical Education», considering this module as

  19. Advancing education by proper technology

    NARCIS (Netherlands)

    Bouwhuis, D.G.; Hoe, van R.R.G.; Bouma, H.; Liao, T.J.

    1996-01-01

    Abstract: The major trends emerging from a review of the first 25 volumes in the NATO Series on Educational Technology are a convergence on Intelligent Tutoring Systems and on microworld simulation tools. In both approaches a radical reform of the entire educational system is generally favored. In

  20. Innovative Technology in Engineering Education.

    Science.gov (United States)

    Fishwick, Wilfred

    1991-01-01

    Discusses the impact that computer-assisted technologies, including applications to software, video recordings, and satellite broadcasts, have had upon the conventions and procedures within engineering education. Calls for the complete utilization of such devices through their appropriate integration into updated education activities effectively…

  1. Technological Competence: Training Educational Leaders.

    Science.gov (United States)

    Bozeman, William C.; Spuck, Dennis W.

    1991-01-01

    Discussion of the competence of school administrators in the use of technology focuses on the results of a survey of data processing specialists in 165 school districts that was conducted to determine the importance of various educational computer applications. It is recommended that educational applications of computers be included in preservice…

  2. Gaming Research for Technology Education

    Science.gov (United States)

    Clark, Aaron C.; Ernst, Jeremy

    2009-01-01

    This study assesses the use of gaming to teach Science, Technology, Engineering, and Mathematics (STEM) in public education. The intent of the investigation was to identify attitudes about gaming and its use in education, as well as the need to utilize gaming as a platform to serve as an integrator of STEM subject matter. Participants included…

  3. Educational Technology Policy in Israel

    Science.gov (United States)

    Slakmon, Benzi

    2017-01-01

    The study examines Israel's educational technology policy in light of the coming-of-age of ICT. The study shows the ways it has been developing, and identifies two major shifts which have occurred in recent years: the introduction of the national educational cloud, and the enabling of the "bring your own device" (BYOD) policy. The way…

  4. Engineering Technology Education: Bibliography, 1988.

    Science.gov (United States)

    Dyrud, Marilyn A.

    1989-01-01

    Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…

  5. Future Trends in Educational Technology

    Science.gov (United States)

    Singaravelu, G.; Muthukrishnan, T.

    2007-01-01

    In the past, teachers were the primary medium of instruction and communication for their students. The teacher's role in the classroom is changing due to developments in technology. This article discusses the ways in which technology will change education in the future, and how these changes will affect the interactions between students and…

  6. Adequate Funding for Educational Technology

    Science.gov (United States)

    Angle, Jason B.

    2010-01-01

    Public schools are currently operating in a pressure-cooker of accountability systems in which they must teach students to high standards and meet ever increasing targets for student proficiency, or face increasingly severe sanctions. Into this mix is thrown educational technology and the funding for that technology. The literature espouses the…

  7. Activity and Action: Bridging Environmental Sciences and Environmental Education

    Science.gov (United States)

    Tal, Tali; Abramovitch, Anat

    2013-01-01

    The main goal of this study was to examine the Environmental Workshop unit taught to Environmental Sciences majors in the high schools in Israel and learn if, and in what ways, this unit could become a model for environmental education throughout the high school curriculum. We studied the special characteristics of the Environmental Workshop (EW)…

  8. Environmental education and indigenous approach

    International Nuclear Information System (INIS)

    Babar, S.M.; Hussain, M.; Mahmood, T.

    2005-01-01

    Environmental pollution control is the most important and highly discussed issue at the international level. Our and our's next generation survival highly depends on environment. Environmental security is not less important than territorial security. Living in the Competitive trade, Business and Commerce era. WTO threats of globalization to countries like Pakistan require sharp and immediate actions. SOS(Save our Sole) steps should be taken in Environmental Education in order to reorganizing values and clarifying Concepts to develop the necessary skills and attitude necessary to understand and appreciate the interrelatidness among masses, the Cultures and Ecosystem. Historical backgrounds along with different approaches were discussed particularly reference to Pakistan. In this presentation a new but indigenous idea is flashed to improve the environment education system in poor third world countries including Pakistan. Instead of imported ideas, previous implemented as such, indigenous approach highly Perfumed with Islamic, Ideological and cultural blends will do the right job in right direction if employed with true sense of commitment. (author)

  9. SRS environmental technology development field test platform

    International Nuclear Information System (INIS)

    Riha, B.D.; Rossabi, J.; Eddy-Dilek, C.A.

    1995-01-01

    A critical and difficult step in the development and implementation of new technologies for environmental monitoring and characterization is successfully transferring these technologies to industry and government users for routine assessment and compliance activities. The Environmental Sciences Section of the DOE Savannah River Technology Center provides a forum for developers, potential users, and regulatory organizations to evaluate new technologies in comparison with baseline technologies in a well characterized field test bed. The principal objective of this project is to conduct comprehensive, objective field tests of monitoring and characterization technologies that are not currently used in EPA standard methods and evaluate their performance during actual operating conditions against baseline methods. This paper provides an overview of the field test site and a description of some of the technologies demonstrated at the site including their field applications

  10. Educators Using Information Technology. GIS Video Series. [Videotape].

    Science.gov (United States)

    A M Productions Inc., Vancouver (British Columbia).

    This 57-minute videotape covers the "Florida Educators Using Information Technology" session of the "Eco-Informa '96" conference. Two speakers presented examples of environmental educators using information technology. The first speaker, Brenda Maxwell, is the Director and Developer of the Florida Science Institute based at…

  11. The Center for Environmental Technology Innovative Technology Screening Process

    International Nuclear Information System (INIS)

    Bertrand, C.M.

    1995-02-01

    The Center for Environmental Technology's (CET) mission is to provide a fully integrated system for accelerated evaluation, development, commercialization, and public acceptance of creative environmental solutions which match the foremost demands in today's environmentally sensitive world. In short, CET will create a means to provide quick, effective solutions for environmental needs. To meet this mission objective, CET has created a unique and innovative approach to eliminating the usual barriers in developing and testing environmental technologies. The approach paves the way for these emerging, cutting-edge technologies by coordinating environmental restoration and waste management activities of industry, universities, and the government to: efficiently and effectively transfer technology to these users, provide market-driven, cost-effective technology programs to the public and DOE, and aid in developing innovative ideas by initiating efforts between DOE facilities and private industry. The central part to this mission is selecting and evaluating specific innovative technologies for demonstration and application at United States Department of Energy (DOE) installations. The methodology and criteria used for this selection, which is called the CET Innovative Technology Screening Process, is the subject of this paper. The selection criteria used for the screening process were modeled after other DOE technology transfer programs and were further developed by CET's Technology Screening and Evaluation Board (TSEB). The process benefits both CET and the proposing vendors by providing objective selection procedures based on predefined criteria. The selection process ensures a rapid response to proposing vendors, all technologies will have the opportunity to enter the selection process, and all technologies are evaluated on the same scale and with identical criteria

  12. Radiotracer residence time distribution method for industrial and environmental applications. Material for education and on-the-job training for practitioners of radiotracer technology

    International Nuclear Information System (INIS)

    2008-01-01

    The International Atomic Energy Agency (IAEA) plays a major role in facilitating the transfer of the radiotracer technology to developing Member States. The major radiotracer techniques have been implemented through IAEA technical cooperation projects and adopted by many Member States. The expertise and knowledge gained should be preserved. The sustainability of technology and knowledge preservation calls for creation of young specialists and for continuing good practices. As a part of its involvement in human resource development, the IAEA is aware of the important need to prepare standard syllabi and training course materials for the education of specialists in different fields of nuclear technologies. This training course material is intended for the cultivation of radiotracer specialists and for continuing technical education of radiotracer practitioners worldwide. The wide interest in radiotracer technology has created the need for high level professional education and training in this field, which are not necessarily covered by traditional university courses. Radiotracers are playing more and more important roles in industry. These roles will continue to expand, especially if students and engineers are exposed in their academic training to the many possibilities for using this tool in research, development and applications. Besides educational purposes, this publication will assist developing Member States in establishing their quality control and accreditation systems. This publication is based on lecture notes and practical works delivered by many experts in IAEA-supported activities. Lectures, papers, case studies and software were reviewed by a number of specialists in several meetings

  13. Environmental management technology demonstration and commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [Energy & Environmental Research Center, Grand Forks, ND (United States)] [and others

    1995-10-01

    The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

  14. Education for Sustainable Living: An International Perspective on Environmental Education.

    Science.gov (United States)

    Fien, John

    1993-01-01

    Analyzes the nature of sustainable development and the role that environmental education can play in a transformation toward a sustainable society. Discusses three rules for teaching environmental education: a child-centered education, objectivity on matters of values, and creation of environmentally responsible behavior. Provides a checklist of…

  15. Technological literacy and innovation education

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    Lately, in Denmark and internationally, there has been an increased focus on welfare technology and innovation. The Danish healthcare system is being fundamentally restructured and re-formed, the health professions are dealing with increased speed on the introductions of new political strategies...... on innovation education and educational activities fostering technological literacy. While focus on technological literacy has often (historically) taken a functionalist direction, and mainly been related to ICT and development of non- vocational curricula, more recent developments of approaches...... to technological literacy emphasizes profession oriented relational technological literacy. Furthermore, new definitions of 21st century competencies and skills emphasize creative learning and innovation skills and competencies as central ingredients in the 21st century labor market, and call for innovation...

  16. 78 FR 21909 - Environmental Technologies Trade Advisory Committee; Public Meeting

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference....S. exports of environmental technologies, goods, services, and products. The ETTAC was originally...

  17. 77 FR 35941 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-06-15

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... promotion programs; and issues related to innovation in the environmental technology sector. Background: The...

  18. 78 FR 21911 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... review the role of the U.S. government in supporting the early adoption of environmental technologies and...

  19. 76 FR 66912 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-10-28

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference... expand U.S. exports of environmental technologies, goods, services, and products. The ETTAC was...

  20. 75 FR 18482 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-04-12

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its quarterly meeting to discuss environmental technologies trade liberalization, industry competitiveness issues, and general Committee...

  1. 77 FR 6064 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-02-07

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The teleconference... administration of programs to expand U.S. exports of environmental technologies, goods, services, and products...

  2. 75 FR 1590 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-01-12

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its first plenary meeting of 2010 to discuss environmental technologies trade liberalization, industry competitiveness issues, and general...

  3. 75 FR 52716 - Environmental Technologies Trade Advisory Committee (ETTAC)

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF COMMERCE Environmental Technologies Trade Advisory Committee (ETTAC) AGENCY... Environmental Technologies Trade Advisory Committee (ETTAC) will hold its quarterly meeting to discuss environmental technologies industry competitiveness issues, the National Export Initiative, and general...

  4. Spacecraft Environmental Interactions Technology 1983

    Science.gov (United States)

    1985-01-01

    recently acquired a NASA field office within the Technology Lenter; that is staffed by Mr. Wa~ne Hudson. We take our guidance from Air Force...apogee of 4.6 % geocentric and a perigee of 650 )a altitude. The DR-1 Nigh Altitude Plama instrument (DAPI) consists of five electrostatic analyzers

  5. Third Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  6. Environmental Consequences of Pig Slurry Treatment Technologies

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke

    occur during manure storage and after field application. The main emissions are ammonia, nitrous oxide, methane, carbon dioxide, nitrate, phosphorus and odour. Slurry treatment technologies have been and are being developed in order to reduce the environmental impacts of manure. However, it is important...... and excluding biogenic carbon, marine and freshwater eutrophication potential, terrestrial acidification and eutrophication potential, and fossil resource depletion potential. The different types of treatment technologies showed varying environmental profiles, meaning that one type of technology was beneficial...... technology, or co-substrate for anaerobic digestion). With respect to odorous emissions, an LCIA method was developed, but due to a lack of data it proved difficult to include odour in LCA. Regulations appear to have an influence on the environmental impacts of slurry treatment. A decrease in N application...

  7. Divison of Environmental Control Technology program, 1978

    International Nuclear Information System (INIS)

    1979-06-01

    This report covers Division of Environmental Control Technology projects in progress during FY 1978, within the Office of the Assistant Secretary for Environment, Department of Energy. It is the second in a planned series of annual reports. The Division of Environmental Control Technology (ECT) continues to support the Assistant Secretary for Environment (EV) in discharging two primary responsibilities: (1) under the Environmental Engineering (EE) Program, the independent overview and assessment of environmental control aspects of both the U.S. Department of Energy's (DOE) research, development, and demonstration (RD and D) programs and the Nation's energy policies, and (2) under the Decontamination and Decommissioning Program, the reduction of potential environmental hazards at the radioactively contaminated sites that are presently owned or were formerly used by the Government. This report presents a short summary of objectives, approach, progress and results, future plans, and a reference bibliography for each research, development, or assessment project within the program areas described above

  8. Sensory Perception, Rationalism and Outdoor Environmental Education

    Science.gov (United States)

    Auer, Matthew R.

    2008-01-01

    There is a strong emphasis on sensory perception and "hands-on" learning in the outdoor environmental education of children. In addition, normative concerns infuse children's environmental curricula, and in particular, the notion that environmental education is not a passive undertaking; when one appreciates the essential value of the…

  9. From Practice to Policy in Environmental Education

    African Journals Online (AJOL)

    practical skills that are needed to solve them. While infusion was the main focus of the country's environmental ... innovative work in the field of environmental education, thus recognising that additional thinking and experimentation are necessary to future policy formulation.The Uttarakhand. Environmental Education Centre ...

  10. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H S; Kim, G N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  11. Embracing uncertainties: The paradox of environmental education ...

    African Journals Online (AJOL)

    This paper is a pair of binoculars which I have used to scan the last two years that I have been studying environmental education, the focus being on the research I did on Theatre for Development for environmental education in formal education. The paper aims to bring into view some on the paradoxes of doing ...

  12. Can postpositivist research in environmental education engender ...

    African Journals Online (AJOL)

    In this article we contend that postpositivist research in environmental education can contribute towards promoting ethical activity within higher education. We argue that postpositivist inquiry breaks with utilitarian and uncritical assumptions about research in environmental education and also creates unconfined spaces for ...

  13. Education, Technology and Health Literacy.

    Science.gov (United States)

    Lindgren, Kurt; Koldkjær Sølling, Ina; Carøe, Per; Siggaard Mathiesen, Kirsten

    2015-01-01

    The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration creates natural interest and motivation for welfare technology. The aim of establishing an interaction between these three areas of expertise is to create an understanding of skills and cultural differences in each area. Futhermore, the aim is to enable future talents to gain knowledge and skills to improve health literacy among senior citizens. Based on a holistic view of welfare technology, a Student Academy was created as a theoretically- and practically-oriented learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management related to e-health and health literacy. The Student Academy inspires students, stakeholders, politicians, DanAge Association members, companies, and professionals to participate in training, projects, workshops, and company visits.

  14. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per

    The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction between the 3...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...... areas of expertise is to create an understanding for each other's skills and cultural differences. Futhermore enabling future talents to gain knowledge and skills to improve Health Literacy among senior citizens. Based on a holistic view on welfare technology a Student Academy was created...

  15. Education, Technology and Health Literacy

    DEFF Research Database (Denmark)

    Lindgren, Kurt; Sølling, Ina Koldkjær; Carøe, Per

    2016-01-01

    Abstract The purpose of this study is to develop an interdisciplinary learning environment between education in technology, business, and nursing. This collaboration contributes to the creation of a natural interest and motivation for welfare technology. The aim of establishing an interaction...... as a theoretical and practical learning center. The mission of the Student Academy is to support and facilitate education in order to maintain and upgrade knowledge and skills in information technology and information management in relation to e-health and Health Literacy. The Student Academy inspires students...... between the 3 areas of expertise is to create an understanding for each other's skills and cultural differences. Futhermore enabling future talents to gain knowledge and skills to improve Health Literacy among senior citizens. Based on a holistic view on welfare technology a Student Academy was created...

  16. ENVIRONMENTAL TECHNOLOGIES IN ROMANIAN IT

    Directory of Open Access Journals (Sweden)

    STEGAROIU CARINA

    2014-12-01

    Full Text Available In Romania, key ICT and environmental legislation was adopted during the EU accession process, in the form of national adaptations of EU directives. There is coherent climate change legislation, a strategy and a detailed implementation plan in place in Romania, although it is lagging behind EU standards in terms of implementation. It is possible for Romania to have an immediate economic stimulus and job creation while moving quickly to abide by the requirements of climate change legislation and energy efficiency directives. The costs of implementing energy efficiency and renewable energy measures are minimal as they are not cash expenditures but rather investments paid back by future, continuous energy savings. In this paper, we will focus on two areas pertaining to Romania’s environment policies,

  17. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian

    2000-01-31

    The Online Measurement of Decontamination project team received a commitment for a demonstration in May from the Sacramento (California) Municipal Utility District (SMUD) Rancho Seco site. Since this site is a member of the DOE Commercial Utilities Consortium, the demonstration will fulfill the DOE and commercial technology demonstration requirements. Discussion on deployment of the Integrated Vertical and Overhead Decontamination (IVOD) System at Rancho Seco was conducted; date for deployment tentatively scheduled for early spring. Based upon fictional requirements from SRS for a shiny monitor in a high-level waste tank, FIU-HCET developed and delivered a draft slurry monitor design and draft test plan. Experiments measuring slurry settling time for SRS slurry simulant at 10 wt% have been completed on FIU-HCET'S flow loop with SRS dip. The completed design package of the test mockup for evaluating Non-Intrusive Location of Buried Items Technologies was sent to Fluor Fernald and the Operating Engineers National Hazmat Program for review. Comments are due at the end of January. Preliminary experiments to determine size distribution of aerosols generated during metal cutting were performed. A 1/4-inch-thick iron plate was cut using a plasma arc torch, and the size distribution of airborne particles was measured using a multistage impactor. Per request of DOE-Ohio, FIU-HCET participated in a weeklong value engineering study for the characterization, decontamination, and dismantlement of their critical path facility.

  18. New Swedish environmental and sustainable education research

    Directory of Open Access Journals (Sweden)

    Johan Öhman

    2011-01-01

    Full Text Available This special issue of Education & Democracy presents examples froma new generation of Swedish research on environmental and sustainability education and thereby complement the picture of the current Swedish environmental and sustainability education research outlined in the recent Danish-Swedish special issue of Environmental EducationResearch (Vol 16, No 1 and the anthology Democracy and Values inEducation for Sustainable Development – Contributions from Swedish Research (Öhman 2008. All the contributors to this issue are associatedwith the Graduate School in Education and Sustainable Development (GRESD, either as PhD students or as supervisors.

  19. Information technologies in technical education

    OpenAIRE

    Кравченя, Э. М.

    2013-01-01

    The purpose of researches is working out of the concept of filling of discipline «Information and computer technologies in formation» the first step of higher education entered into curricula was at engineering-pedagogical faculty BNTU. It is shown that as a result of discipline studying there is an expansion of outlook and formation at students of technical college of independent thinking in the field of modern and perspective information technology.

  20. Distance Education in Technological Age

    OpenAIRE

    R .C. SHARMA

    2005-01-01

    Distance Education in Technological AgeRomesh Verma (Editor), New Delhi: Anmol Publications, 2005, ISBN 81-261-2210-2, pp. 419 Reviewed by R C SHARMARegional DirectorIndira Gandhi National Open University-INDIA The advancements in information and communication technologies have brought significant changes in the way the open and distance learning are provided to the learners. The impact of such changes is quite visible in both developed and developing countries. Switching over to online mode...

  1. The politics of federal environmental education policy

    Science.gov (United States)

    Crouch, Richard Craig

    Both environmental governance1 and education governance 2 occupy contested territory in contemporary US political discourse. Environmental education (EE) policy has emerged at this intersection and taken on aspects of both controversies. Central to debates surrounding environmental education are still unresolved issues concerning the role of the federal government in education, the role of education in citizen-making, and the role of the public in environmental governance. As a case study of the politics of environmental education policy, I explore these issues as they relate to the National Environmental Education Act of 1990,3 attempts at its reauthorization, its continued appropriations, and its current state of policy stasis. The political controversy over the federal role in environmental education is an appropriate case study of environmental education politics insofar as it reflects the different positions held by actor groups with regard to the definition, efficacy, and legitimacy of environmental education. At the core of these debates, as we will see, is a definitional crisis---that is, there is no common understanding across the relevant actor groups as to what environmental education is, or should be. I suggest here that this definitional issue can be best understood as having technical, ideological, and structural components4---all of which are mutually reinforcing and thus perpetuate the stasis in federal environmental education policy. 1I rely on Durant, Fiorino and O'leary's definition of environmental governance in Environmental Governance Reconsidered ; "In the term environmental governance, we refer to the increasingly collaborative nature of [environmental and natural resource] policy formulation and implementation. In this vein, a wide array of third parties (for example, actors in the profit sector, the nonprofit sector, and civic society), in addition to government agencies, comprise non hierarchical networks of actors wielding a variety of

  2. Critical materialism: science, technology, and environmental sustainability.

    Science.gov (United States)

    York, Richard; Clark, Brett

    2010-01-01

    There are widely divergent views on how science and technology are connected to environmental problems. A view commonly held among natural scientists and policy makers is that environmental problems are primarily technical problems that can be solved via the development and implementation of technological innovations. This technologically optimistic view tends to ignore power relationships in society and the political-economic order that drives environmental degradation. An opposed view, common among postmodernist and poststructuralist scholars, is that the emergence of the scientific worldview is one of the fundamental causes of human oppression. This postmodernist view rejects scientific epistemology and often is associated with an anti-realist stance, which ultimately serves to deny the reality of environmental problems, thus (unintentionally) abetting right-wing efforts to scuttle environmental protection. We argue that both the technologically optimistic and the postmodernist views are misguided, and both undermine our ability to address environmental crises. We advocate the adoption of a critical materialist stance, which recognizes the importance of natural science for helping us to understand the world while also recognizing the social embeddedness of the scientific establishment and the need to challenge the manipulation of science by the elite.

  3. The Extent of Educational Technology's Influence on Contemporary Educational Practices

    OpenAIRE

    Kim, Bradford-Watts

    2005-01-01

    This paper investigates how advances in educational technologies have influenced contemporary educational practices.It discusses the nature of educational technology, the limitations imposed by the digital divide and other factors of uptake, and the factors leading to successful implementation of educational technologies.The extent of influence is then discussed,together with the probable implications for educational sites for the future.

  4. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  5. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  6. FACTORS OF NANOTECHNOLOGY AND BIODIVERSITY: ENVIRONMENTAL AND EDUCATIONAL ASPECTS

    Directory of Open Access Journals (Sweden)

    A. V. Kozachek

    2015-01-01

    Full Text Available The aim is to consider the features of impact of nanotechnology on biodiversity in the future.Methods. We suggest an approach, according to which nanotechnologies are viewed as key technologies of the sixth technological order. It is assumed that nanotechnology may be a potential source of environmental problems of the future, and the basis for the creation of new advanced types of environmental engineering and technology. Since all of the above is important both within the actual environmental performance and for the purposes of professional engineering and environmental training. We suggest in this paper to view the problem of the impact of nanotechnology on biodiversity and the state of the environment through environmental and educational aspects.Results. We considered and analyzed the environmental and educational aspects of the application of nanotechnology in the period of the sixth technological order. Implementing procedures for their analysis has contributed to the identification and systematization of the various impacts of nanotechnology on biodiversity and the state of the environment, and identification of options for the prevention of such factors. Based on the results of such studies we have identified educational aspects of training environmental engineers during the sixth technological order; defined a new focus of the training in the sixth technological order, which involves, in our opinion, the study of features of a rational and prudent use of natural resources with the use of appropriate innovative eco-oriented nanotechnology, education of students in terms of the understanding of the causes, consequences and ways to prevent the global resource crisis on the planet due to the emergence of a new class of nano-contamination.Main conclusions. The results can be recommended to be used in practice for more in-depth analysis of the specific environmental challenges of nanotechnology, and revising approaches to the design of the

  7. Environmental technology manual. Eisenmann Umwelttechnik

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    One part of the manual is dedicated to the removal of air pollution in the industrial sector, a conspectus of the bases of waste air cleaning is followed by explanations on modern cleaning methods and the pertaining installations. Under the catchword ''practice of waste air cleaning'' solution examples from the most different industrial sectors are presented, hints for planning, operation and maintenance given and some important characteristic data summed up in tables. The chapter on waste water addresses first of all operating personnel from industry and the service sector, providing aids to that group for the solution of waste water problems. A brief conspectus on the bases of waste water treatment is followed by a detailed description of the cleaning methods in use today and the pertaining installations. After practical examples and hints for operating and maintenance of waste water plants, tables on chemicals, pollutants and discharge conditions are given. The technology ''energy from waste material'' concentrates on the utilization of combustible wastes for energy production. The following possibilities are at hand: combustion, pyrolysis, and gasification.

  8. Environmental issues affecting clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  9. Environmental impacts from the solar energy technologies

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Frantzeskaki, Niki; Gekas, Vassilis

    2005-01-01

    Solar energy systems (photovoltaics, solar thermal, solar power) provide significant environmental benefits in comparison to the conventional energy sources, thus contributing, to the sustainable development of human activities. Sometimes however, their wide scale deployment has to face potential negative environmental implications. These potential problems seem to be a strong barrier for a further dissemination of these systems in some consumers. To cope with these problems this paper presents an overview of an Environmental Impact Assessment. We assess the potential environmental intrusions in order to ameliorate them with new technological innovations and good practices in the future power systems. The analysis provides the potential burdens to the environment, which include - during the construction, the installation and the demolition phases, as well as especially in the case of the central solar technologies - noise and visual intrusion, greenhouse gas emissions, water and soil pollution, energy consumption, labour accidents, impact on archaeological sites or on sensitive ecosystems, negative and positive socio-economic effects

  10. environmental education programmes offered by delta

    African Journals Online (AJOL)

    ENVIRONMENTAL CENTRE: SOME RESEARCH FINDINGS ... approach so as to achieve education for sustainable .... Qualitative research tbat emphasises ..... Quantitative Approaches. Sage ... Applied Social Research Methods Series 5.

  11. Information technologies in higher education

    OpenAIRE

    Dimitrova, F.

    2012-01-01

    The article deals with the use of Information Technologies in modern Higher Education. The author describes possible means of its application in the process of teaching English for students of Language Departments. Diverse online resources, advanced methods, progressive approaches are integral parts of modern teaching learning process in contemporary world and essential in strengthening language awareness and professional skills.

  12. Distance Education Technologies in Asia

    International Development Research Centre (IDRC) Digital Library (Canada)

    17 schools ... Mobile Technology in Non-formal Distance Education 192 ..... in the design and application of e-learning strategies, the need to standardise and ...... library providing access to over 20,000 journals and thesis databases, and 6,000 ...

  13. Technology for Education. IDRA Focus.

    Science.gov (United States)

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on technology for education to benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Coca-Cola Valued Youth Program Students Meet Peers Via Video Conference" (Linda Cantu, Leticia Lopez-De La Garza) describes how at-risk…

  14. Linking information technology in education

    Directory of Open Access Journals (Sweden)

    Humberto Jaime Pérez Gutierrez

    2014-02-01

    Full Text Available It is attempted in this paper, show a clear and concise point involved the new technologies of computer science in education, and how these affect the preparation of teachers, overcoming the wide and deep stretch that separates computer specialists teachers of any subject, learners and the interaction between them.

  15. Geospatial Technology in Geography Education

    NARCIS (Netherlands)

    Muniz Solari, Osvaldo; Demirci, A.; van der Schee, J.A.

    2015-01-01

    The book is presented as an important starting point for new research in Geography Education (GE) related to the use and application of geospatial technologies (GSTs). For this purpose, the selection of topics was based on central ideas to GE in its relationship with GSTs. The process of geospatial

  16. Virtual Technologies Trends in Education

    Science.gov (United States)

    Martín-Gutiérrez, Jorge; Mora, Carlos Efrén; Añorbe-Díaz, Beatriz; González-Marrero, Antonio

    2017-01-01

    Virtual reality captures people's attention. This technology has been applied in many sectors such as medicine, industry, education, video games, or tourism. Perhaps its biggest area of interest has been leisure and entertainment. Regardless the sector, the introduction of virtual or augmented reality had several constraints: it was expensive, it…

  17. Mobile Technology and Liberal Education

    Science.gov (United States)

    Rossing, Jonathan P.

    2012-01-01

    In this article, the author offers reflections on the impact of mobile technology for liberal education. These reflections are based on his own experience of incorporating iPads in his communication courses during the 2010-2011 academic year. As a member of an interdisciplinary faculty learning community on the use of mobile tablets, he explored…

  18. Reforming Technical and Technological Education.

    Science.gov (United States)

    Wilson, David N.

    1993-01-01

    Review of technical and technological educational reform in Brazil, Canada, Germany, Great Britain, Indonesia, Malaysia, Singapore, and Sweden shows that reform takes time to complete effectively, long-term approaches are needed, and reform is linked to industrial development, regional cooperation, and decentralized decision making. (SK)

  19. Collective Bargaining: An Educational Technology.

    Science.gov (United States)

    O'Brien, Gavin W.

    Collective bargaining is a technology and not a philosophy or set of moral values. There seems to be an almost irresistible urge among authors of educational bargaining statutes to adopt the basic tenets of private-sector labor law. However, employment and collective bargaining are different in the public sector than in the private sector, and one…

  20. Brain Activities and Educational Technology

    Science.gov (United States)

    Riza, Emel

    2002-01-01

    There are close relationships between brain activities and educational technology. Brain is very important and so complicated part in our bodies. From long time scientists pay attention to that part and did many experiments, but they just reached little information like a drop in the sea. However from time to time they gave us some light to…

  1. Health Educational Potentials of Technologies

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Aagaard-Hansen, Jens

    2012-01-01

    The field of health promotion technology has been in an exponential growth in recent years and smart phone applications, exer-games and self-monitoring devices has become part of fitness activities and health education. In this work-in-progress-paper theoretical perspectives for categorising...

  2. Teaching Professionals Environmental Management and Cleaner Technology

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik; Jørgensen, Michael Søgaard; Thorsen, Nils

    -ters. The target groups are professional environmental managers working in businesses including consultants, governmental institutions and organizations. To get access to the education the students must have a technical/nature science competence at master level or bachelor level combined with relevant job...... experience. Generally participants have had 5-15 years of practical experience and are in the position of a internal or external job change towards new tasks that require new knowledge, methodologies or management/co-ordination skills. The education of "Masters of Environmental Management" (MEM) started...

  3. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  4. EDUCATIONAL TECHNOLOGIES TO EMPOWER HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    J. C.V. Garzón

    2014-08-01

    Full Text Available Introduction and objectives: The New Media Consortium (NMC Horizon Project defines educational technology in a broad sense as tools and resources that are used to improve teaching, learning, and creative inquiry. Each technology has been carefully researched and framed in the context of its potential impact on higher education. Within the Horizon Project there are currently seven categories of technologies, tools, and strategies for their use that the NMC monitors continuously. All they have the potential to foster real changes in education, particularly in the development of progressive pedagogies and learning strategies; the organization of teachers’ work; and the arrangement and delivery of content. Following the recommendations of NMC experts panel, we design an application named Augmented Reality Metabolic Pathways (ARMET in order to improve motivation and to promote student interactivity to the development of skills needed to learn the metabolic pathways. Materials and methods: The ARMET app was developed using Unity, 3D molecules obtained from Protein Data Bank and ChemSpider-chemical structure database, the usage data are stored into a database (MySQL and are analyzed using the statistical software R. Results and conclusions: ARMET mixes several technologies out of seven categories recommend in the NMC Horizon Report: Mobile app, Bring Your Own Device, Flipped Classroom, Learning Analytics and Augmented Reality. The principal criterion for the inclusion of those technologies into the app was its potential relevance to teaching and learning biochemistry. ARMET is available for iOS and Android platforms, and includes PDF files with a set of cards, the game board and classroom worksheet’s. The students and teachers can register for free. Teachers can create classes and track student performance. ARMET collects data for personalizing learning experiences addressing the challenge to build better pedagogical tools to establish effective

  5. Qualitative Education Management Based on Information Technologies

    OpenAIRE

    Natal'ya M. Obolyaeva

    2012-01-01

    The article deals with the qualitative education management through information technologies. Different approaches to defining the quality of education are considered. The interpretation for qualitative assessment of education is analyzed. The qualitative education management in details on the basis of information technologies is shown. The key advantages of appliance such technologies at the institutions of higher learning are analyzed.

  6. Qualitative Education Management Based on Information Technologies

    Directory of Open Access Journals (Sweden)

    Natal'ya M. Obolyaeva

    2012-12-01

    Full Text Available The article deals with the qualitative education management through information technologies. Different approaches to defining the quality of education are considered. The interpretation for qualitative assessment of education is analyzed. The qualitative education management in details on the basis of information technologies is shown. The key advantages of appliance such technologies at the institutions of higher learning are analyzed.

  7. Current Trends In Educational Technology: Implication On ...

    African Journals Online (AJOL)

    This paper presents the current trends in educational technology and the implication on educational managers in Nigeria. The current trends in the field of educational technology are centred on the influence of information and communication technology on the development of educational management. Various challenges ...

  8. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  9. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    International Nuclear Information System (INIS)

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO's environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO's areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation's largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST's Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management

  10. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R ampersand D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  11. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  12. 76 FR 77776 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  13. 76 FR 51001 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-08-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  14. 76 FR 26247 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2011-05-06

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401 Constitution Ave, NW...

  15. 78 FR 46921 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-08-02

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Hinman, Office of Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053...

  16. 77 FR 58356 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-09-20

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  17. 78 FR 4834 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2013-01-23

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The meeting is... Energy & Environmental Industries (OEEI), International Trade Administration, Room 4053, 1401...

  18. [Medical technology and medical education].

    Science.gov (United States)

    von Mallek, D; Biersack, H-J; Mull, R; Wilhelm, K; Heinz, B; Mellert, F

    2010-08-01

    The education of medical professionals is divided into medical studies, postgraduate training leading to the qualification as a specialist, and continuing professional development. During education, all scientific knowledge and practical skills are to be acquired, which enable the physician to practice responsibly in a specialized medical area. In the present article, relevant curricula are analyzed regarding the consideration of medical device-related topics, as the clinical application of medical technology has reached a central position in modern patient care. Due to the enormous scientific and technical progress, this area has become as important as pharmacotherapy. Our evaluation shows that medical device-related topics are currently underrepresented in the course of medical education and training and should be given greater consideration in all areas of medical education. Possible solutions are presented.

  19. Environmental Education Research: To What Ends?

    Science.gov (United States)

    Jickling, Bob

    2009-01-01

    This paper engages questions about ends in environmental education research. In doing so, I argue that such questions are essentially normative, and that normative questions are underrepresented in this field. After cautioning about perils of prescribing research agendas, I gently suggest that in environmental education key normative questions…

  20. SIHTI 2 - Energy and environmental technology

    International Nuclear Information System (INIS)

    Saviharju, K.; Johansson, A.

    1993-01-01

    The programme is divided into system and technology parts. The aim of system studies is to determine, on the basis of lifecycle analyses, long-term environmental-technological aims for various fields (energy, industry) and to find out an optimum strategy for reaching these aims. The analysis will give data on emission reduction costs and on fields, where technical improvements are required, and will determine the limits set by environmental factors for future technical development. Environmental impacts will be discussed from national and economic viewpoints. Technological development is dependent on new ideas. The aim is to indicate possibilities for reducing emissions from energy use of peat and wood, for low-emission production at least on one industrial field (wood-processing industry), to establish emission measuring and control methods, to indicate utilization alternatives for solid matter separated at power plants, and to find out operable alternatives for the energy use of wastes. Other ventures of significance will also be financed: survey of 'new' emissions and development of their measuring and purification methods. The field of the programme will be divided into synergic sub-fields: systematics of emission chains, fields of operation (energy and environment problems in the wood-processing industries), development of flue gas purification technology, measuring and control technology, by-products of power plants, emissions from peat production, etc

  1. Environmental characteristics of clean coal technologies

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1992-01-01

    The Department of Energy's (DOE) Clean Coal Technology (CCT) Program is aimed at demonstrating the commercial readiness of advanced coal-based technologies. A major goal of the CCT program is to introduce into the US energy marketplace those coal-based power generation technologies that have superior economic and environmental performance over the current suite of commercial coal-based power generation technologies. The commercialization of CCTs will provide the electric utility industry with technology options for replacing aging power plants and meeting future growth in electricity demand. This paper discusses the environmental advantages of two CCTs used for electric power generation: pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC). These CCTs are suitable for repowering existing power plants or for grassroots construction. Due to their high efficiency and advanced environmental control systems, they emit less sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), particulate matter, and carbon dioxide (CO 2 ) than a state-of-the-art, pulverized coal power plant with flue gas desulfurization (PC/FGD)

  2. Enhancing Environmental Higher Education in Eastern Europe

    Science.gov (United States)

    Palmisano, E.; Caporali, E.; Valdiserri, J.

    2010-12-01

    Higher Education plays a central role in the development of both human beings and modern societies as it enhances social, cultural and economic development, active citizenship, ethical values and expertises for a sustainable growth. Different initiatives are taking place at world level to guarantee accessibility and right to higher education. The sustainability of human development has, as relevant key factors, environment protection and natural resources enhancement. Environment is therefore becoming more and more important at global level. The Environmental policy is object of discussions, in different prime minister summits and conferences, and constitutes a priority of policy in an increasing number of countries. The European Higher Education institutions, to achieve the objectives above, and to encourage cooperation between countries, may take part in a wide range of European Commission funded programmes, such as TEMPUS, which supports the modernisation of higher education and creates an area of co-operation in countries surrounding the EU. Some important projects run by the University of Florence are the TEMPUS DEREC-Development of Environmental and Resources Engineering Curriculum (2005-2008) and its spin-off called DEREL-Development of Environment and Resources Engineering Learning (2010-2013), recently recommended for funding by the European Commission. Through the co-operation of all project consortium members (Universities in Austria, Germany, Greece, FYR Macedonia, Albania and Serbia) they are aimed at the development and introduction of first and second level curricula in “Environmental and Resources Engineering” at the Ss. Cyril and Methodius University in Skopje (FYR Macedonia). In the DEREC Project the conditions for offering a joint degree title in the field of Environmental Engineering between the University of Florence and the Ss. Cyril and Methodius University in Skopje were fulfilled and a shared educational programme leading to the mutual

  3. CEO Education and Corporate Environmental Footprint

    DEFF Research Database (Denmark)

    Amore, Mario Daniele; Bennedsen, Morten; Larsen, Birthe

    We analyze the effect of CEO education on environmental decision-making. Using a unique sample of Danish firms from 1996 to 2012, we find that CEO education significantly improves firms’ energy efficiency. We derive causality using health shocks: the hospitalization of highly educated CEOs induces...... a drop in energy efficiency, whereas the hospitalization of less educated CEOs does not have any significant effect. Exploring the mechanisms at play, we show that our results are driven by the length rather than the field of education. CEO education improves corporate energy efficiency through personal...... environmental awareness: highly educated CEOs exhibit greater concerns for climate change, as measured by a survey of social preferences, and drive more environmentally-efficient cars. Taken together, our findings suggest that education shapes managerial styles giving rise to greater sustainability in corporate...

  4. Developing innovative environmental technologies for DOE needs

    International Nuclear Information System (INIS)

    Devgun, J.S.; Sewell, I.O.; DeGregory, J.

    1995-01-01

    Environmental restoration and waste management activities at US Department of Energy (DOE) facilities are diverse and complex. Contamination at DOE sites and facilities includes radionuclides, chlorinated hydrocarbons, volatile organic compounds, non-aqueous phase liquids, and heavy metals, among others. Soil and groundwater contamination are major areas of concern and DOE has focused very significant efforts in these areas. Relevant technology development activities are being conducted at DOE's own national laboratories, as well as through collaborative efforts with other federal agencies and the private sector. These activities span research and development (R ampersand D) of new concepts and techniques to demonstration and commercialization of mature technologies. Since 1990, DOE has also supported R ampersand D of innovative technologies through interagency agreements with US Environmental Protection Agency (EPA), US Department of Defense, the National Science Foundation, and others

  5. THE MUSEUM: A PARTNER IN ENVIRONMENTAL EDUC.ATION

    African Journals Online (AJOL)

    . Museum resources are generally underutil ised by educational establishments, not least of all by environmental educators. Some museum activities are explained and ... What is their true mission in society? There are many descriptions of the ...

  6. Technology needs assessment for DOE environmental restoration programs

    International Nuclear Information System (INIS)

    Duray, J.R.; Carlson, T.J.; Carpenter, C.E.; Cummins, L.E.; Daub, G.J.

    1992-01-01

    The 'Technology Needs Assessment Final Report' describes current and planned environmental restoration activity, identifies technologies intended to be used or under consideration, and ranks technology deficiencies in the U.S. Department of Energy's environmental restoration program. Included in the ranking are treatment technologies, characterization technologies, and non-technology issues that affect environmental restoration. Data used for the assessment was gathered during interviews in the spring of 1991 with DOE site personnel responsible for the environmental restoration work. (author)

  7. Cultivating Environmental Citizenship in Teacher Education

    Science.gov (United States)

    Green, Carie; Medina-Jerez, William; Bryant, Carol

    2016-01-01

    Research on environmental action projects in teacher education is limited. Furthermore, projects that emphasize the role of citizens and governments in environmental problem-solving are scarce. The purpose of this study was to explore how participating in a political environmental action project influenced pre-service teachers' environmental…

  8. Outdoor Education and Environmental Responsibility. ERIC Digest.

    Science.gov (United States)

    Yerkes, Rita; Haras, Kathy

    Outdoor education programs provide opportunities for students to become environmentally conscious citizens. However, awareness of environmental issues is not enough to preserve our world of limited natural resources. Students must also recognize their environmental responsibilities and change their behaviors accordingly. This digest reviews the…

  9. Environmental education and the development

    International Nuclear Information System (INIS)

    Marroquin de la Rotta, Marina

    1994-01-01

    The ecological movements have shown the irreversible consequences that the human activity has exercised on the natural systems. As consequence of it has been understood it that the environmental deterioration is intimately bound to the style of development of the country and this in turn is direct consequence in the ways of economic organization and politics of the society. It has become more and more evident the necessity to radically change the development pattern that has been come using, with all the ethical, political, economic and social implications that this bears. The problem of the environment deterioration has been the resultant of the relationships that the man has taken to all the long of his existence; although the man's presence in the nature is so short, this can be measured by its capacity to destroy it. Many are the means that he has used for their destruction, for example the industrial revolution, the population's exaggerated growth and the disordered urbanism and uncontrolled. The man has used the science and the technology to increase and to improve the quality of the human beings' life, with purposes not always appropriate, and it has created problems like the consumption growing, that which has caused an excessive extraction of the natural resources

  10. Can Environmental Education Increase Student-Athletes' Environmental Behaviors?

    Science.gov (United States)

    Mullenbach, Lauren E.; Green, Gary T.

    2018-01-01

    Environmental education was incorporated within a mentoring program (i.e. treatment group) for student-athletes at the University of Georgia. These student-athletes' environmental attitudes, behavioral intent, knowledge, self-efficacy, self-regulatory learning, motivation, and learning strategies were assessed before and after their environmental…

  11. Technology Evaluation for Environmental Risk Mitigation Compendium

    Science.gov (United States)

    Meinhold, A.; Greene, B.; Dussich, J.; Sorkin, A.; Olsen, W.

    2017-01-01

    The Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center and its predecessor organization the Acquisition Pollution Prevention Program (AP2) supported the National Aeronautics and Space Administration (NASA) in identifying technology solutions to risks and costs to NASA programs driven by environmental regulations and requirements. TEERM researched the commercial and government marketplace to locate viable and available technologies that met NASAs needs. TEERM focused on addressing environmentally-driven risks of direct concern to NASA programs and facilities, including hazardous materials in NASA operations and materials that became obsolescent because of environmental regulations. TEERM projects aimed to reduce cost; ensure the health and safety of people, assets, and the environment; promote efficiency; and minimize duplication. Major TEERM and AP2 projects focused on waste minimization and hazardous waste treatment, recycling, corrosion prevention and control, solvent and ozone depleting substances substitution, and aqueous based cleaners. In 2017, NASA made the decision to terminate the TEERM Principal Center. This Compendium Report documents TEERM and AP2 project successes. The Compendium Report traces the evolution of TEERM based on evolving risks and requirements for NASA and its relationship to the Space Shuttle Program, the United States Department of Defense, the European Space Agency, and other public and private stakeholders. This Compendium Report also documents project details from Project Summaries and Joint Test Plans and describes project stakeholders and collaborative effort results.

  12. Divison of Environmental Control Technology program, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Mott, William E.

    1979-06-01

    This report covers Division of Environmental Control Technology projects in progress during FY 1978, within the Office of the Assistant Secretary for Environment, Department of Energy. It is the second in a planned series of annual reports. The Division of Environmental Control Technology (ECT) continues to support the Assistant Secretary for Environment (EV) in discharging two primary responsibilities: (1) under the Environmental Engineering (EE) Program, the independent overview and assessment of environmental control aspects of both the U.S. Department of Energy's (DOE) research, development, and demonstration (RD and D) programs and the Nation's energy policies, and (2) under the Decontamination and Decommissioning Program, the reduction of potential environmental hazards at the radioactively contaminated sites that are presently owned or were formerly used by the Government. This report presents a short summary of objectives, approach, progress and results, future plans, and a reference bibliography for each research, development, or assessment project within the program areas described above.

  13. REGIONAL ISSUES IN ENVIRONMENTAL EDUCATION

    African Journals Online (AJOL)

    and decision-making on a broad range of environmental ... systems seek changes in awareness, knDwledge. attitudes ... "infusion method" whereby environmental issues are dealt ... teachers on energy, water and population issues that will ...

  14. A Study on Environmental Education Films.

    Science.gov (United States)

    Gerba, Diana

    The degree of communication between the film industry and educators and its effect on the future directions of environmental education films are the focus of this report. Separate surveys were mailed to 100 film industry producers and distributors and 150 elementary and secondary educators in Maine, Kansas, Pennsylvania, California, and Alabama.…

  15. Abandonment: Technological, organisational and environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, B.G. [Reverse Engineering Ltd., (United Kingdom)

    1996-12-31

    The paper deals with the abandonment of offshore wells. Decommissioning of offshore installations is a complex multi-disciplined issue, which raises a number of technical, organisational and environmental challenges. The success of a planned decommissioning operation depends on the development of a clear understanding of the complex blend of drivers which control the decommissioning process and their inter-relationship. Due to the complexity of the inter-relationship between the primary drivers one cannot separate the technological, organisational and environmental issues raised by the decommissioning of offshore installations. The optimal solution will be a compromise between all the decommissioning drivers mentioned in this paper. 5 figs., 3 tabs.

  16. Abandonment: Technological, organisational and environmental challenges

    International Nuclear Information System (INIS)

    Twomey, B.G.

    1996-01-01

    The paper deals with the abandonment of offshore wells. Decommissioning of offshore installations is a complex multi-disciplined issue, which raises a number of technical, organisational and environmental challenges. The success of a planned decommissioning operation depends on the development of a clear understanding of the complex blend of drivers which control the decommissioning process and their inter-relationship. Due to the complexity of the inter-relationship between the primary drivers one cannot separate the technological, organisational and environmental issues raised by the decommissioning of offshore installations. The optimal solution will be a compromise between all the decommissioning drivers mentioned in this paper. 5 figs., 3 tabs

  17. The promises of educational technology: a reassessment

    NARCIS (Netherlands)

    Ely, Donald P.; Plomp, T.

    1986-01-01

    The claims made for educational technology have not always been realized. Many programmes in education based on media and technology have produced useful documentation and supportive research; others have failed. The current, comprehensive definition of educational technology is a helpful key to

  18. Educational Technology: Kindergarten through Twelfth Grade.

    Science.gov (United States)

    Steinhaus, Kurt A.

    This report presents the findings and conclusions of a study of educational technology in New Mexico schools. Designed to provide baseline information to the New Mexico Education Technology Planning Committee, the results of the study will also be used to help make statewide planning decisions concerning educational technology. The findings…

  19. Thesaurus Dataset of Educational Technology in Chinese

    Science.gov (United States)

    Wu, Linjing; Liu, Qingtang; Zhao, Gang; Huang, Huan; Huang, Tao

    2015-01-01

    The thesaurus dataset of educational technology is a knowledge description of educational technology in Chinese. The aims of this thesaurus were to collect the subject terms in the domain of educational technology, facilitate the standardization of terminology and promote the communication between Chinese researchers and scholars from various…

  20. Digital Technologies as Education Innovation at Universities

    Science.gov (United States)

    Kryukov, Vladimir; Gorin, Alexey

    2017-01-01

    This paper analyses the use of digital technology-based education innovations in higher education. It demonstrated that extensive implementation of digital technologies in universities is the main factor conditioning the acceleration of innovative changes in educational processes, while digital technologies themselves become one of the key…

  1. Environmental effects of information and communications technologies.

    Science.gov (United States)

    Williams, Eric

    2011-11-16

    The digital revolution affects the environment on several levels. Most directly, information and communications technology (ICT) has environmental impacts through the manufacturing, operation and disposal of devices and network equipment, but it also provides ways to mitigate energy use, for example through smart buildings and teleworking. At a broader system level, ICTs influence economic growth and bring about technological and societal change. Managing the direct impacts of ICTs is more complex than just producing efficient devices, owing to the energetically expensive manufacturing process, and the increasing proliferation of devices needs to be taken into account. © 2011 Macmillan Publishers Limited. All rights reserved

  2. Applications of microwave radiation environmental remediation technologies

    International Nuclear Information System (INIS)

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail

  3. A New Vision for Chemistry Education Students: Environmental Education

    Science.gov (United States)

    Teksoz, Gaye; Sahin, Elvan; Ertepinar, Hamide

    2010-01-01

    The present study aimed to determine level of pre-service chemistry teachers' environmental literacy and their perceptions on environmental education. This study was realized during the fall semester of 2006-2007 academic year with the participation of 60 students enrolled in five-year chemistry teacher education program. The data collected by…

  4. Information technologies in environmental engineering. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Athanasiadis, Ioannis N.; Rizzoli, Andrea E. [Istituto dalle Molle di Studi sull' Intelligenza Artificiale (IDSIA), Manno (Switzerland); Mitkas, Pericles A. [Aristotle Univ. of Thessaloniki (Greece); Marx Gomez, Jorge (eds.) [Oldenburg Univ. (Germany). Abt. Wirtschaftsinformatik

    2009-07-01

    Information technologies have evolved to an enabling science for natural resource management and conservation, environmental engineering, scientific simulation and integrated assessment studies. Computing plays a significant role in every day practices of environmental engineers, natural scientists, economists, and social scientists. The complexity of natural phenomena requires interdisciplinary approaches, where computing science offers the infrastructure for environmental data collection and management, scientific simulations, decision support documentation and reporting. Ecology, environmental engineering and natural resource management comprise an excellent real-world testbed for IT system demonstration, while raising new challenges for computer science. Complexity, uncertainty and scaling issues of natural systems form a demanding application domain for sensor networks and earth observation systems; modelling, simulation and scientific workflows, data management and reporting, decision support and intelligent systems, distributed computing environments, geographical information systems, heterogeneous systems integration, software engineering, accounting systems and control systems. This books offers a collection of papers presented at the 4th International Symposium on Environmental Engineering, held in May 2009, in Thessaloniki, Greece. Recent success stories in ecoinformatics, promising ideas and new challenges are discussed among computer scientists, environmental engineers, economists and social scientists, demonstrating new paradigms for problem solving and decision making. (orig.)

  5. Electron Beam Technology for Environmental Pollution Control.

    Science.gov (United States)

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs.

  6. New environmental applications of radiation technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1998-01-01

    The paper is a brief review of recent data on environmental applications of radiation technology obtained with participation of the author. It includes the results of the study on combined electron-beam and ozone treatment of municipal wastewater in the aerosol flow and electron-beam purification of water from heavy metals (lead, cadmium, mercury, chromium) by two methods (in the presence of formate as an OH radical scavenger or sorbents of inorganic and plant origins)

  7. Environmental technologies of woody crop production systems

    Science.gov (United States)

    Ronald S. Zalesny Jr.; John A. Stanturf; Emile S. Gardiner; Gary S. Ba??uelos; Richard A. Hallett; Amir Hass; Craig M. Stange; James H. Perdue; Timothy M. Young; David R. Coyle; William L. Headlee

    2016-01-01

    Soil erosion, loss of productivity potential, biodiversity loss, water shortage, and soil and water pollution are ongoing processes that decrease or degrade provisioning (e.g., biomass, freshwater) and regulating (e.g., carbon sequestration, soil quality) ecosystem services. Therefore, developing environmental technologies that maximize these services is essential for...

  8. Putting environmental technologies into the mainstream

    DEFF Research Database (Denmark)

    Kannan, Devika; Diana, Gabriel Cepollaro; Jabbour, Charbel José Chiappetta

    2017-01-01

    of a new CSF called employee empowerment, which derives from learning and benchmarking initiatives. Two CSFs can be highlighted as the most relevant and unanimously present in both company “Alpha” and company “Beta”: support from senior management and employee empowerment through learning and benchmarking...... greater intensity in terms of CSFs than Alpha. This work can be considered one of the first researches relating CSFs and the adoption of environmental technologies in medium-sized firms in Brazil....

  9. Environmental consequences of new energy technology

    International Nuclear Information System (INIS)

    Svensson, Torbjoern

    1991-09-01

    This report summarises and assesses the environmental consequences associated with new energy technologies, with particular emphasis on their use for space heating supplies in the built environment. In the case of solar heating, it is primarily the processes associated with the production of the necessary materials and ground use requirements that can adversely affect the environment. There is also a certain risk associated with the leakage of heat transfer fluid. For heat stores, problem areas are primarily those associated with heating of the ground, discharge of foreign substances in connection with water treatment and conflicts of other users of ground water. The main adverse effects of heat pumps are their emissions of CFCs, which damage the ozone layer, utilisation of certain types of heat sources and the need to provide primary energy for mechanical drive of the pumps. All three of these new energy technologies are regarded as having less environmental consequences than conventional alternatives, although this assumes a change to less hazardous working media in heat pumps. A mutual comparison of the three technologies indicates that solar heating and heat stores have somewhat better environmental characteristics than heat pumps

  10. Investigation of Environmental Topics in the Science and Technology Curriculum and Textbooks in Terms of Environmental Ethics and Aesthetics

    Science.gov (United States)

    Lacin Simsek, Canan

    2011-01-01

    In order to solve environmental problems, it is thought that education should be connected with values. For this reason, it is emphasized that environmental issues should be integrated with ethical and aesthetic values. In this study, 6th, 7th and 8th grade science and technology curriculum and textbooks were investigated to find out how much…

  11. THE IMPORTANCE OF EDUCATIONAL TECHNOLOGY IN TEACHING

    Directory of Open Access Journals (Sweden)

    Lazar Stošić

    2015-06-01

    Full Text Available Today, more than ever, the role of educational technology in teaching is of great importance because of the use of information and communication technologies. With the help of various applications for distance education, the Internet, teachers, and students themselves, they see the advantage of educational technology. The question is whether schools and teachers themselves are ready for the use of technology in education and whether they are aware of its benefits? In this paper, we try to give an overview of the importance and use of educational technology in the classroom.

  12. ADVANCED TECHNOLOGIES OF ELECTRONIC EDUCATIONAL SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Shishkina

    2011-11-01

    Full Text Available Actual problems and contradictions of electronic educational systems development are described: availability of education, quality of educational services; individualization of education; exposures and advantages in using of computer technology; standardization of technologies and resources. Tendencies of their solution in the view of development of new advanced technologies of e-education are specified. The essence and advantages of using the cloud computing technologies as a new platform of distributed learning are specified. Advanced directions of cloud-based data usage in executive system of education are declared: access management, content management, asset management, communications management.

  13. Software support for environmental measurement in quality at educational institutions

    Directory of Open Access Journals (Sweden)

    Alena Pauliková

    2016-03-01

    Full Text Available The analysed theme of this article is based on the training of environmental measurements for workplaces. This is very important for sustainable quality in technical educational institutions. Applied kinds of software, which are taught at technical educational institutions, have to offer the professional and methodical knowledge concerning conditions of working ambient for students of selected technical specialisations. This skill is performed in such a way that the graduates, after entering the practical professional life, will be able to participate in solutions for actual problems that are related to environmental protection by means of software support. Nowadays, during the training processit is also obligatory to introduce technical science. Taking into consideration the above-mentioned facts it is possible to say that information technology support for environmental study subjects is a relevant aspect, which should be integrated into the university educational process. There is an effective progress that further highlights the focus on the quality of university education not only for environmental engineers. Actual trends require an increasing number of software/hardware educated engineers who can participate in qualitative university preparation, i.e.IT environmentalists. The Department of Environmental Engineering at the Faculty of Mechanical Engineering, TechnicalUniversity in Košice, Slovakia is an institution specified and intended for quality objectivisation. This institution introduced into the study programmes (“Environmental Management” and “Technology of Environmental Protection” study subjects with the software support, which are oriented towards outdoor and indoor ambient and in this way the Department of Process and Environmental Engineering is integrated effectively and intensively into the area of measurement training with regard to the requirement of quality educational processes.

  14. Involving stakeholders in evaluating environmental restoration technologies

    International Nuclear Information System (INIS)

    McCabe, G.H.; Serie, P.J.

    1993-02-01

    Involving citizens, interest groups, and regulators in environmental restoration and waste management programs is a challenge for government agencies and the organizations that support them. To be effective, such involvement activities must identify all individuals and groups who have a stake in the cleanup. Their participation must be early, substantive, and meaningful. Stockholders must be able to see how their input was considered and used, and feel that a good- faith effort was made to reconcile conflicting objectives. The Integrated Demonstration for Cleanup of Volatile Organic Compounds at Arid Sites (VOC-Arid ID) is a Department of Energy Office of Technology Development project located at Hanford. Along with technical evaluation of innovative cleanup technologies, the program is conducting an institutional assessment of regulatory and public acceptance of new technologies. Through a series of interviews and workshops, and use of a computerized information management tool, stakeholders are having a voice in the evaluation. Public and regulatory reaction has been positive

  15. KSC Education Technology Research and Development Plan

    Science.gov (United States)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  16. A Delphi forecast of technology in education

    Science.gov (United States)

    Robinson, B. E.

    1973-01-01

    The results are reported of a Delphi forecast of the utilization and social impacts of large-scale educational telecommunications technology. The focus is on both forecasting methodology and educational technology. The various methods of forecasting used by futurists are analyzed from the perspective of the most appropriate method for a prognosticator of educational technology, and review and critical analysis are presented of previous forecasts and studies. Graphic responses, summarized comments, and a scenario of education in 1990 are presented.

  17. ENVIRONMENTAL EDUCATION: The development of a curriculum ...

    African Journals Online (AJOL)

    approach to environmental education and curriculum innovation. ... transition from an external and rational strategy of curriculum ... 'scientific' approaches to curriculum development .... 'get the conservation message across' so as to foster.

  18. ENVIRONMENTAL EDUCATION AND TRAINING IN INDUSTRY ...

    African Journals Online (AJOL)

    strategies, and notes that new orientations to environmental education and training are more likely to sup- port a re-orientation .... were all interested in exploring the role of educa- tion and ..... dardised global procedures for corporate environ-.

  19. Southern African Journal of Environmental Education

    African Journals Online (AJOL)

    ... knowledge and community based management of wildlife resources: a study of the Mumbwa and Lupande Game Management areas of Zambia. ... Southern African Journal of Environmental Education ... AJOL African Journals Online.

  20. embracing uncertainties: the paradox of environmental education ...

    African Journals Online (AJOL)

    intellectual thought. I ask whether a critical approach to environmental education can exist within the current .... us free, give us a better life, a better job, a better world. Orr (1990, 351) .... although participatory, (in the sense that everyone was.

  1. embracing uncertainties: the paradox of environmental education

    African Journals Online (AJOL)

    intellectual thought. I ask whether a critical approach to environmental education can exist within the current ... modern intellectual movement, identified by Bubules, surfacing. ..... traditional values and principles and this pattern of power is not ...

  2. THE CONCEYf OF ENVIRONMENTAL EDUCATION AND THE ...

    African Journals Online (AJOL)

    1990-09-17

    Sep 17, 1990 ... able to participate actively in decision-making about ... domains of human development: the cognitive, the affective and the ... theory and the practice of environmental education. Parallel to and ... behaviour is based. Leopold ...

  3. Environmental Education: The Whole Man Revisited

    Science.gov (United States)

    Kormondy, Edward J.

    1971-01-01

    Environmental education is seen as an interdisciplinary study of the ecology of man, viewed in his totality, in all his dimensions. Biology is not considered the central discipline in this study. (Author/AL)

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, GROUNDWATER SAMPLING TECHNOLOGIES, GEOPROBE INC., PNEUMATIC BLADDER PUMP GW 1400 SERIES

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...

  5. Archives: African Journal of Environmental Science and Technology

    African Journals Online (AJOL)

    Items 1 - 50 of 117 ... Archives: African Journal of Environmental Science and Technology. Journal Home > Archives: African Journal of Environmental Science and Technology. Log in or Register to get access to full text downloads.

  6. Current Trends in Higher Education Technology: Simulation

    Science.gov (United States)

    Damewood, Andrea M.

    2016-01-01

    This paper is focused on how technology in use changes over time, and the current trend of simulation technology as a supported classroom technology. Simulation-based training as a learning tool is discussed within the context of adult learning theories, as is the technology used and how today's higher education technology administrators support…

  7. Environmental Education in Action in Secondary Teacher Training in ...

    African Journals Online (AJOL)

    Jenny

    In secondary and tertiary education, most environmental education is ... Teacher educators were very supportive of the policy development process because they .... relevant environmental education issues, while the same subjects, together ...

  8. 298 The Importance of Environmental Education to Secondary ...

    African Journals Online (AJOL)

    First Lady

    2013-01-28

    Jan 28, 2013 ... also discussed Environmental Education (EE) as a key to creating environmental .... The Development of Modern Education in Nigeria, ... of traditional education on Nigerian education system in Olukoya,. O. (Ed.) Culture and ...

  9. Understanding Technology Literacy: A Framework for Evaluating Educational Technology Integration

    Science.gov (United States)

    Davies, Randall S.

    2011-01-01

    Federal legislation in the United States currently mandates that technology be integrated into school curricula because of the popular belief that learning is enhanced through the use of technology. The challenge for educators is to understand how best to teach with technology while developing the technological expertise of their students. This…

  10. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    OpenAIRE

    Durán-García Martín Enrique

    2014-01-01

    Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the ...

  11. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  12. Viewpoint Working with Environmental Education Pedagogies in ...

    African Journals Online (AJOL)

    The aim of this viewpoint paper is to generate interest in working with environmental education pedagogies in order to enhance the quality imperative of social and environmental responsibility for South African learners through the fundamental subject, Life Orientation. Drawing on our own experiences as Life Orientation ...

  13. Environmental Management Guide for Educational Facilities

    Science.gov (United States)

    APPA: Association of Higher Education Facilities Officers, 2017

    2017-01-01

    Since 1996, APPA and CSHEMA, the Campus Safety Health and Environmental Management Association, have collaborated to produce guidance documents to help educational facilities get ahead of the moving target that is environmental compliance. This new 2017 edition will help you identify which regulations pertain to your institution, and assist in…

  14. A Total Curricular Approach to Environmental Education

    Science.gov (United States)

    Jinks, Jerry L.

    1975-01-01

    Presented is an environmental education model based on an interdisciplinary curricular structure. The model consists of three two-dimensional matrices organizing objectives, strategies, and content. Each matrix lists environmental concepts along one axis and the disciplines along the other. One interpretation of the model is presented as a…

  15. Can Global Warming Heat Up Environmental Education?

    Science.gov (United States)

    Mazzatenta, Claudio

    2008-01-01

    Bronx Community College (CUNY) launched "Global Warming Campus Awareness and Action Days" in celebration of Earth Day, 2007. The purpose of this program was to raise awareness of environmental issues in the college population, especially students. To let more students have a grasp of what Environmental Education (EE) is all about, the author…

  16. Training and Education of Environmental Managers

    DEFF Research Database (Denmark)

    Ulhøi, John Parm; Sinding, Knud; Madsen, Henning

    An analysis of the training backgrounds of environmental managers in a range of environmentally advanced European companies reveals the very broad qualifications ideally required of these managers. At the same time, however, it is found that the provision of training opportunities relevant...... for this important category of managers is both limited in scope and foundation, and highly dependent on the randomly distributed efforts of educators with an environmental interest....

  17. Environmental Engineering in Mining Engineering Education

    Science.gov (United States)

    Mahamud-Lopez, Manuel Maria; Menendez-Aguado, Juan Maria

    2005-01-01

    In this paper, the current profile of the environmental engineer and the programming of the subject "Environmental Engineering and Technology" corresponding to the studies of Mining Engineering at the University of Oviedo in Spain, is discussed. Professional profile, student knowledge prior to and following instruction as well as…

  18. 77 FR 14734 - Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-03-13

    ... DEPARTMENT OF COMMERCE International Trade Administration Environmental Technologies Trade... proposed agenda of a meeting of the Environmental Technologies Trade Advisory Committee (ETTAC). DATES: The... innovation in the environmental technology sector. Background: The ETTAC is mandated by Public Law 103-392...

  19. A Contemporary Preservice Technology Education Program

    Science.gov (United States)

    Flanigan, Rod; Becker, Kurt; Stewardson, Gary

    2012-01-01

    In order to teach engineering education, today's engineering and technology education teachers must be equipped with lesson plans to teach engineering design, among other principles, to the 6th-12th grade levels. At Utah State University (USU), curriculum has been developed for preservice engineering and technology education teachers that…

  20. Virtually Nursing: Emerging Technologies in Nursing Education.

    Science.gov (United States)

    Foronda, Cynthia L; Alfes, Celeste M; Dev, Parvati; Kleinheksel, A J; Nelson, Douglas A; OʼDonnell, John M; Samosky, Joseph T

    Augmented reality and virtual simulation technologies in nursing education are burgeoning. Preliminary evidence suggests that these innovative pedagogical approaches are effective. The aim of this article is to present 6 newly emerged products and systems that may improve nursing education. Technologies may present opportunities to improve teaching efforts, better engage students, and transform nursing education.

  1. Franchising Technology Education: Issues and Implications.

    Science.gov (United States)

    Daniel, Dan; Newcomer, Cynthia

    1993-01-01

    Describes educational technology franchises that sell services to students, either through schools or directly through retail centers, to educate them about and with technology. Topics addressed include the emphasis on personalized instruction; cooperative learning; curriculum; cost effectiveness; site-based management in public education; and…

  2. Educational Technology: Effective Leadership and Current Initiatives

    Science.gov (United States)

    Courville, Keith

    2011-01-01

    (Purpose) This article describes the basis for effective educational technology leadership and a few of the current initiatives and impacts that are a result of the aforementioned effective leadership. (Findings) Topics addressed in this paper include: (1) the role of the educational technology leader in an educational setting; (2) an examination…

  3. Studying Innovation Technologies in Modern Education

    Science.gov (United States)

    Stukalenko, Nina M.; Zhakhina, Bariya B.; Kukubaeva, Asiya K.; Smagulova, Nurgul K.; Kazhibaeva, Gulden K.

    2016-01-01

    In modern society, innovation technologies expand to almost every field of human activity, including such wide field as education. Due to integrating innovation technologies into the educational process practice, this phenomenon gained special significance within improvement and modernization of the established educational system. Currently, the…

  4. New technologies - How to assess environmental effects

    Science.gov (United States)

    Sullivan, P. J.; Lavin, M. L.

    1981-01-01

    A method is provided for assessing the environmental effects of a room-and-pillar mining system (RP) and a new hydraulic borehole mining system (HBM). Before environmental assessment can begin, each technology is defined in terms of its engineering characteristics at both the conceptual and preliminary design stages. The mining sites are also described in order to identify the significant advantages and constraints for each system. This can be a basic physical and biological survey of the region at the conceptual stage, but a more specific representation of site characteristics is required at the preliminary stage. Assessment of potential environmental effects of each system at the conceptual design is critical to its hardware development and application. A checklist can be used to compare and identify the negative impacts of each method, outlining the resource affected, the type of impact involved, and the exact activity causing that impact. At the preliminary design stage, these impacts should be evaluated as a result of either utilization or alteration. Underground coal mining systems have three major utilization impacts - the total area disturbed, the total water resources withdrawn from other uses, and the overall energy efficiency of the process - and one major alteration impact - the degradation of water quality by sedimentation and acid contamination. A comparison of the RP and HBM systems shows the HBM to be an environmentally less desirable system for the Central Appalachia region.

  5. University of Tennessee and Oak Ridge environmental restoration education program

    International Nuclear Information System (INIS)

    Yalcintas, M.G.; Swindle, D.W. Jr.

    1992-01-01

    A joint program of the Oak Ridge National Laboratory (ORNL) and the University of Tennessee at Knoxville (UTK) has been initiated to provide education and research on environmental restoration and waste management. The program will provide opportunity for formal education and research for area businesses, while integrating their efforts in mixed-waste management with those of UTK and ORNL. Following successful results demonstrated at ORNL and UTK, the program will be integrated with other universities and research institutions in the country. During this presentation, the programs's objective, scope, and goals will be described, and details of the program structure will be explained. Also, it will be demonstrated how experience gained in environmental restoration technology transfer activities could be applied in an educational program, providing a focal point for technology transfer and information exchange. Expected accomplishments and industry benefits will also be discussed

  6. Toward Political Ecologies of Environmental Education

    Science.gov (United States)

    Henderson, Joseph A.; Zarger, Rebecca K.

    2017-01-01

    Drawing a causal line between educational practice and ecological impact is a difficult intellectual task given the complexity of variables at work between educational event and ecological effect. This is further complicated by the anthropological fact that diverse peoples interact with nature in myriad ways. Our environmental interactions are…

  7. Environmental Ethics: Questions for Adult Education.

    Science.gov (United States)

    Parker, Jenneth

    1993-01-01

    Presents a series of questions through which adult educators can explore controversial questions of environmental values and moral behavior in their programs. The subjects include geography, local history, natural history, economics, politics, business, labor education, world affairs, literature, women's studies, psychology, and courses for the…

  8. Environmental Education: From Policy to Practice.

    Science.gov (United States)

    Barraza, Laura; Duque-Aristizabal, Ana M.; Rebolledo, Geisha

    2003-01-01

    Details a seminar held at King's College in London in March, 2001. Presents a reading and reflection upon two major aspects of the discussion, the meanings of environmental education and education for sustainable development in different cultures and contexts. (Contains 20 references.) (Author/NB)

  9. Game-like Technology Innovation Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2011-01-01

    scenario designed for technology education in grades 7 - 9 in Danish schools. In the paper, methodological challenges of doing design-based research into technology innovation education are discussed. The preliminary results from the first studies of a game-inspired technology innovation camp are also...

  10. New Theoretical Approach Integrated Education and Technology

    Science.gov (United States)

    Ding, Gang

    2010-01-01

    The paper focuses on exploring new theoretical approach in education with development of online learning technology, from e-learning to u-learning and virtual reality technology, and points out possibilities such as constructing a new teaching ecological system, ubiquitous educational awareness with ubiquitous technology, and changing the…

  11. Early Learning and Educational Technology Policy Brief

    Science.gov (United States)

    Lee, Joan

    2016-01-01

    Recognizing the growth of technology use in early learning settings, the U.S. Department of Education and U.S. Department of Health and Human Services collaborated in the development of the "Early Learning and Educational Technology Policy Brief" to promote developmentally appropriate use of technology in homes and early learning…

  12. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Han, M. H.; Kim, E. H.; Keum, D. K.; Kang, M. J.; Jang, B. W.

    2010-04-01

    The objectives of the study are to development of an urban atmospheric dispersion model and data assimilation technique for improving the reliability, to develop the technology for assessing the radiation impact to biota and the surface water transport model, to develop the analytical techniques for the indicator radionuclides on decommissioning of nuclear facilities and nuclear waste disposal sites and to assess of the national environmental radiation impact and establish the optimum management bases of natural radiation. The obtained results might be used; for assessing the radiological effects due to and radiological incident in an urban area, for assessing radiation doses on biota for the environmental protection from ionizing radiation with the application of new concept of the ICP new recommendation, for analyzing the indicator radionuclides on decommissioning of nuclear facilities and nuclear waste disposal sites, and for providing the natural radionuclide database of Korea to international organizations such as UNSCEAR. It can be used for emphasizing relative nuclear safety

  13. The Multistability of Technological Breakdowns in Education

    DEFF Research Database (Denmark)

    Andersen, Bjarke Lindsø; Tafdrup, Oliver Alexander

    2017-01-01

    Introduction Everyone who is involved with modern technological artefacts such as computers, software and tablets has experienced situations where the artefacts suddenly cease to function properly. This is commonly known as a technological breakdown. Within education and the praxis of teaching...... technological breakdowns become a more and more ubiquitous phenomenon due to the rapid increase of technological artefacts utilized for educational purposes (Riis, 2012). The breakdowns impact the educational practice with consequences ranging from creating small obstacles to rendering it impossible to conduct...... successful teaching. Thus, knowing how to cope with technological breakdowns is a pivotal part of being a technological literate....

  14. Educating to Think in Environmental Education

    African Journals Online (AJOL)

    (b) How do we educate to think, that is, through what kind of learning contexts ..... rationality conceives all physical and biological life as a machine, harbouring ... wonder sees not only timber in the tree but also the sound of leaves in the wind. .... keeping to a decision, adopting the ethic of prudence in formulating evaluations ...

  15. ENVIRONMENTAL PROTECTION AND EDUCATION SYSTEM IN POLAND

    Directory of Open Access Journals (Sweden)

    Małgorzata Falencka-Jabłońska

    2017-10-01

    Full Text Available Pro-environmental education and the effectiveness of its methods are a necessity, decisive for preserving natural resources for successive generations. Educating proper attitudes towards the surrounding nature must be based on sound knowledge gained, supported by observation, experience and experiment. Teaching conducted at all levels environmental science should be based not on boxed knowledge, but on causal thinking skills. Establishing hypotheses and their verification, as well as the variety of methods of understanding the laws of nature, will influence the effective prevention of environmental degradation in the 21st century.

  16. Integrating technology education concepts into China's educational system

    Science.gov (United States)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  17. Educational Technologies in Health Science Libraries: Teaching Technology Skills

    Science.gov (United States)

    Hurst, Emily J.

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting? PMID:24528269

  18. Educational technologies in health sciences libraries: teaching technology skills.

    Science.gov (United States)

    Hurst, Emily J

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many librarians. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting?

  19. New decontamination technologies for environmental applications

    International Nuclear Information System (INIS)

    Allen, R.P.; Arrowsmith, H.W.; McCoy, M.W.

    1981-01-01

    The technologies discussed represent a versatile collection of tools and approaches for environmental decontamination applications. The fixatives provide a means for gaining and maintaining control of large contaminated areas, for decontaminating large surface areas, and for protecting equipment and supplies used in decontamination operations. The other decontamination techniques together provide a method for removing loose surface contamination from almost all classes of materials and surfaces. These techniques should have wide application both as direct decontamination processes and for the cleaning of tools and equipment used in the decontamination operations

  20. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas; Gojobori, Takashi

    2015-01-01

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  1. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas

    2015-10-22

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  2. Projects: viable alternatives in the Environmental Education?

    Directory of Open Access Journals (Sweden)

    Marcos Jose Terossi

    2011-11-01

    Full Text Available In this article we are going to develop the reflection about the projects, its genesis, its use in education and environmental education.To this end, we will promote the discussion about the so-called "method of projects" and "projects pedagogy", with a comparison between them and outlining the approach that we consider most appropriate to EA, its limits and possibilities within the critical perspective, manufacturing and emancipatory education.

  3. CLARIFYING ENVIRONMENTAL EDUCATION: A SEARCH FOR ...

    African Journals Online (AJOL)

    technological breakthroughs for the development of both the developed and .... linked to development support groups or nature reserve neighbour ..... centres producing education materials with, and for, ... auditing' within curriculum contexts.

  4. environmental education and outcomes-based education in south

    African Journals Online (AJOL)

    The infusion of environmental education into a new South African curriculum marks a historic shift from the past where it was ... was not broadly inclusive and resulted in little implementation .... in the classroom that reconstruction must start for.

  5. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  6. Development of decontamination, decommissioning and environmental restoration technology

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of D evelopment of decontamination, decommissioning and environmental restoration technology , the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  7. Physical Education Teacher's Attitudes towards Philosophy of Education and Technology

    Science.gov (United States)

    Turkeli, Anil; Senel, Omer

    2016-01-01

    The current study was carried out to find out the attitudes of physical education teachers towards educational philosophy and technology, and to determine the relationship between the philosophy of education that they adopt and their attitudes toward technology. With this aim, the study was conducted on 22 female and 69 male physical education…

  8. Higher Education Beyond Faculties: Interdisciplinary Education in Care and Technology.

    Science.gov (United States)

    Sponselee, Anne-Mie A G; Van Hoof, Joost

    2017-01-01

    A Centre of Healthcare and Technology of a Dutch University of Applied Sciences, is presented - and illustrated by project examples - to show how the transitions in the sectors of health care and technology can result in interdisciplinary education in care and technology by means of higher education beyond faculties.

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: EXEL INDUSTRIAL AIRMIX SPRAY GUN

    Science.gov (United States)

    The Environmental Technology Verification Program has partnered with Concurrent Technologies Corp. to verify innovative coatings and coating equipment technologies for reducing air emissions. This report describes the performance of EXEL Industrial's Kremlin Airmix high transfer ...

  10. Technology needs for environmental restoration remedial action. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  11. Educational Technology--The White Elephant.

    Science.gov (United States)

    Molnar, Andrew R.

    A ten year experiment in educational technology sponsored under Title VII of the National Defense Education Act (NDEA) demonstrated the feasibility of large-scale educational systems which can extend education to all while permitting the individualization of instruction without significant increase in cost (through television, computer systems,…

  12. Environmental assessment report: Nuclear Test Technology Complex

    International Nuclear Information System (INIS)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report

  13. Technology and Technique: An Educational Perspective

    Science.gov (United States)

    Isman, Aytekin

    2012-01-01

    Today, technology is developing very fast around the world. This technological development (hardware and software) affects our life. There is a relationship among technology, society, culture, organization, machines, technical operation, and technical phenomenon. Educators should know this relationship because technology begins to affect teaching…

  14. Beyond the Limitations of Environmental Education in Japan

    Science.gov (United States)

    Imamura, Mitsuyuki

    2017-01-01

    Environmental education has not spread as widely in Japan as expected and therefore has not had any significant impact on environmental problems, even though many educators and researchers have devoted themselves to environmental educational practice. Why is environmental education not popular in Japan, and what does this tell us? The purpose of…

  15. Women Technology Leaders: Gender Issues in Higher Education Information Technology

    Science.gov (United States)

    Drury, Marilyn

    2011-01-01

    Women working in higher education information technology (IT) organizations and those seeking leadership positions in these organizations face a double challenge in overcoming the traditionally male-dominated environments of higher education and IT. Three women higher education chief information officers (CIOs) provided their perspectives,…

  16. Technological Knowledge and Reasoning in Finnish and Estonian Technology Education

    Science.gov (United States)

    Autio, Ossi; Soobik, Mart

    2017-01-01

    The main idea of this research was to find out if there is a relationship between students' undertakings within Craft and Technology education and their ability to understand technological concepts. Study participants' technological knowledge and reasoning was measured with a questionnaire regarding mechanical systems connected with simple…

  17. The Technological Dimension of Educational Technology in Europe

    Science.gov (United States)

    Dimitriadis, Yannis

    2012-01-01

    This article describes some of the main technological trends and issues of the European landscape of research and innovation in educational technology. Although several innovative technologies (tools, architectures, platforms, or approaches) emerge, such as intelligent support to personalization, collaboration or adaptation in mobile, game-based,…

  18. Problematic of the Environmental Education in Educational Institutions

    Directory of Open Access Journals (Sweden)

    Liliana Hayde Gutierrez Sabogal

    2016-01-01

    Full Text Available The following article sketches the understanding of the actual situation of environmental education in Colombian educational institutions, taking in to account the aspects that seem to have an impact on this problematic and the possible interrelationships between them like the first stage of the doctoral research lead by Doctor Francisco González.

  19. An Educational Tool for Outdoor Education and Environmental Concern

    Science.gov (United States)

    Sandell, Klas; Ohman, Johan

    2013-01-01

    The purpose of this paper is to suggest an outdoor education model that respects the need to critically discuss the general belief in a causal relationship between experiences of nature, environmentally-friendly attitudes and behavioural change, but that at the same time respects the legitimate claims on the part of outdoor education practice for…

  20. still in an environmental education curriculum research story

    African Journals Online (AJOL)

    The Environmental Education Curriculum Initiative (EECI) in partnership with the .... adoption of an integrated system of lifelong learning ... environmental education in the country and has played .... Environmental Affairs and Tourism, Pretoria.

  1. Automation Technology in Elementary Technology Education.

    Science.gov (United States)

    Hiltunen, Jukka; Jarvinen, Esa-Matti

    2000-01-01

    Finnish fifth-graders (n=20) and sixth-graders (n=23) worked in teams in a Lego/Logo-Control Lab to complete Lego design activities. Observations showed that they became familiar with automation technology but their skills were not always up to their ideas. Activities based on real-life situations gave them ownership and engaged them in learning.…

  2. Improving Educational Outcomes by Providing Educational Services through Mobile Technology

    OpenAIRE

    Hosam Farouk El-Sofany

    2013-01-01

    The use of Computers, Networks, and Internet has successfully enabled educational institutions to provide their students and instructors with various online educational services. With the recent developments in M-learning and mobile technology, further possibilities are emerging to provide such services through mobile devices such as mobile phones and PDAs. By providing the educational services using wireless and mobile technologies, the educational institutions can potentially bring great co...

  3. Uptake of Space Technologies - An Educational Programme

    Science.gov (United States)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be

  4. Social Adjustment of At-Risk Technology Education Students

    Science.gov (United States)

    Ernst, Jeremy V.; Moye, Johnny J.

    2013-01-01

    Individual technology education students' subgroup dynamic informs progressions of research while apprising technology teacher educators and classroom technology education teachers of intricate differences between students. Recognition of these differences help educators realize that classroom structure, instruction, and activities must be…

  5. Future Ready Learning: Reimagining the Role of Technology in Education. 2016 National Education Technology Plan

    Science.gov (United States)

    Thomas, Susan

    2016-01-01

    The National Education Technology Plan is the flagship educational technology policy document for the United States. The 2016 Plan, "Future Ready Learning: Reimagining the Role of Technology in Education," articulates a vision of equity, active use, and collaborative leadership to make everywhere, all-the-time learning possible. While…

  6. Technology needs for environmental restoration remedial action

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  7. Technology needs for environmental restoration remedial action

    International Nuclear Information System (INIS)

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs

  8. Technology enhanced learning for occupational and environmental health nursing: a global imperative.

    Science.gov (United States)

    Olson, D K; Cohn, S; Carlson, V

    2000-04-01

    One strategy for decreasing the barriers to higher education and for increasing the competency and performance of the occupational and environmental health nurse in the information age is technology enhanced learning. Technology enhanced learning encompasses a variety of technologies employed in teaching and learning activities of presentation, interaction, and transmission to on campus and distant students. Web based learning is growing faster than any other instructional technology, offering students convenience and a wealth of information.

  9. Whatever became of educational technology? the implications for teacher education

    Directory of Open Access Journals (Sweden)

    Colin Latchem

    2013-12-01

    Full Text Available The paper explores the reasons for educational technology principles and practices not being more widely accepted and successfully applied in everyday teaching and learning. It argues that these are: an over-emphasis on new technology; a failure to learn from the lessons of the past; and a lack of meta-analysis and collaborative research to evidence the benefits. The paper also brings out the point that the literature fails to acknowledge the important role of educational technology in informal learning and non-formal education. It concludes with recommendations for future research into the broader aspects of educational technology and the employment of more longitudinal and collaborative action research and the nature of pre- service, in-service and postgraduate teacher education in educational technology.

  10. Aligning Technology Education Teaching with Brain Development

    Science.gov (United States)

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…

  11. Historiography in Graduate Technology Teacher Education

    Science.gov (United States)

    Flowers, Jim; Hunt, Brian

    2012-01-01

    A proposal is made suggesting the inclusion of historiography (i.e., historical research and the writing of history) into graduate technology teacher education. In particular, a strategy is forwarded to have graduate students in technology teacher education, who are working at schools in different locations, conduct historical research and write…

  12. Journal of Technology and Education in Nigeria

    African Journals Online (AJOL)

    The Journal of Technology and Education in Nigeria focuses on the following areas: Agriculture, Food Science, Technology/Engineering, Science and Applied Science, Vocational/Technical Education. Vol 17, No 2 (2012). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access ...

  13. Online Experiential Education for Technological Entrepreneurs

    Science.gov (United States)

    Ermolovich, Thomas R.

    2011-01-01

    Technological Entrepreneurship is both an art and a science. As such, the education of a technological entrepreneur requires both an academic and an experiential component. One form of experiential education is creating real new ventures with student teams. When these ventures are created in an online modality, students work in virtual teams and…

  14. A Model Technology Educator: Thomas A. Edison

    Science.gov (United States)

    Pretzer, William S.; Rogers, George E.; Bush, Jeffery

    2007-01-01

    Reflecting back over a century ago to the small village of Menlo Park, New Jersey provides insight into a remarkable visionary and an exceptional role model for today's problem-solving and design-focused technology educator: Thomas A. Edison, inventor, innovator, and model technology educator. Since Edison could not simply apply existing knowledge…

  15. The Changing Nature of Educational Technology Programs

    Science.gov (United States)

    Spector, J. Michael

    2015-01-01

    The many changes in educational technologies have been well documented in both the professional and popular literature. What is less well documented is the changing nature of programs that prepare individuals for careers in the broad multi-disciplinary field of educational technology. This article is a first attempt to look at how educational…

  16. Relationships between Teacher Characteristics and Educational Technology

    Science.gov (United States)

    Schulze, Kurt Ronald

    2014-01-01

    Too often, teachers are using educational technology resources for administrative purposes instead of using these resources in a constructivist manner to enhance student learning. The study site was well behind the national average in overall educational technology use categories. The purpose of this explanatory correlational research was to…

  17. Best Practices of Leadership in Educational Technology

    Science.gov (United States)

    Brown, Loren

    2014-01-01

    Leadership in Educational Technology is a relatively new field that is changing as fast as technology itself. Success for an educational leader includes maintaining a firm grasp of how to diagnose the needs of a district, a school, or a classroom while aligning policies, procedures, and protocols into a format that will empower the individual…

  18. Sustainable city policy. Economic, environmental, technological

    International Nuclear Information System (INIS)

    Camagni, R.; Capello, R.

    1995-01-01

    While the reasons for advocating intensified environmental concerns at the urban level are more and more accepted and clear, the question how to overcome such concerns is still fraught with many difficulties. The aim of the present paper is to formulate some policy guidelines, based on economic principles, for a 'sustainable city'; it is an ambitious aim, since a unique and operationally defined 'recipe' is difficult to envisage. An urban policy for a sustainable city needs to take different (and contrasting) aspects and many conflicting interests into consideration, while many political, social and economic frictions need to be overcome. A description of various aspects and concepts concerning sustainability issues at the urban level is given in Section 2. Section 3 then provides some considerations on possible technological, economic and environmental urban policies, by creating a typo logy of policy tools associated with different causes of urban decline. Section 4 provides some new, and partly provocative, suggestions for specific urban sustainability policies; in particular it deals with the problem of urban sustainability indicators, measures, and critical threshold levels at which urban sustainability policies should be implemented. Some reflective remarks will conclude the paper. 3 figs., 4 tabs., 25 refs

  19. Sustainable city policy. Economic, environmental, technological

    Energy Technology Data Exchange (ETDEWEB)

    Camagni, R.; Capello, R. [Politecnico di Milano, Milan (Italy). Economics Dept.; Nijkamp, P. [Dept. of Spatial Economics. Fac. of Economics and Econometrics. Vrije Univ., Amsterdam (Netherlands)

    1995-12-31

    While the reasons for advocating intensified environmental concerns at the urban level are more and more accepted and clear, the question how to overcome such concerns is still fraught with many difficulties. The aim of the present paper is to formulate some policy guidelines, based on economic principles, for a `sustainable city`; it is an ambitious aim, since a unique and operationally defined `recipe` is difficult to envisage. An urban policy for a sustainable city needs to take different (and contrasting) aspects and many conflicting interests into consideration, while many political, social and economic frictions need to be overcome. A description of various aspects and concepts concerning sustainability issues at the urban level is given in Section 2. Section 3 then provides some considerations on possible technological, economic and environmental urban policies, by creating a typo logy of policy tools associated with different causes of urban decline. Section 4 provides some new, and partly provocative, suggestions for specific urban sustainability policies; in particular it deals with the problem of urban sustainability indicators, measures, and critical threshold levels at which urban sustainability policies should be implemented. Some reflective remarks will conclude the paper. 3 figs., 4 tabs., 25 refs.

  20. Environmental engineering education: examples of accreditation and quality assurance

    Science.gov (United States)

    Caporali, E.; Catelani, M.; Manfrida, G.; Valdiserri, J.

    2013-12-01

    Environmental engineers respond to the challenges posed by a growing population, intensifying land-use pressures, natural resources exploitation as well as rapidly evolving technology. The environmental engineer must develop technically sound solutions within the framework of maintaining or improving environmental quality, complying with public policy, and optimizing the utilization of resources. The engineer provides system and component design, serves as a technical advisor in policy making and legal deliberations, develops management schemes for resources, and provides technical evaluations of systems. Through the current work of environmental engineers, individuals and businesses are able to understand how to coordinate society's interaction with the environment. There will always be a need for engineers who are able to integrate the latest technologies into systems to respond to the needs for food and energy while protecting natural resources. In general, the environment-related challenges and problems need to be faced at global level, leading to the globalization of the engineering profession which requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. In this framework, the Europe-based EUR ACE (European Accreditation of Engineering Programmes) system, currently operated by ENAEE - European Network for Accreditation of Engineering Education can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. The application of the accreditation model EUR-ACE, and of the National Italian Degree Courses Accreditation System, promoted by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR), to the Environmental Engineering Degree Courses at the University of Firenze is presented. In

  1. Game-like Technology Innovation Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2011-01-01

      The aim of this paper is to discuss the first results and methodological challenges and perspectives of designing game-inspired scenarios for implementation of innovation processes into schools' science education. This paper comprises and report on a case study of a game-inspired innovation...... scenario designed for technology education in grades 7 - 9 in Danish schools. In the paper, methodological challenges of doing design-based research into technology innovation education are discussed. The preliminary results from the first studies of a game-inspired technology innovation camp are also...... presented, along with discussions of the future of development of these educational spaces....

  2. Strategies for Evaluating Complex Environmental Education Programs

    Science.gov (United States)

    Williams, V.

    2011-12-01

    Evidence for the effectiveness of environmental education programs has been difficult to establish for many reasons. Chief among them are the lack of clear program objectives and an inability to conceptualize how environmental education programs work. Both can lead to evaluations that make claims that are difficult to substantiate, such as significant changes in student achievement levels or behavioral changes based on acquisition of knowledge. Many of these challenges can be addressed by establishing the program theory and developing a logic model. However, claims of impact on larger societal outcomes are difficult to attribute solely to program activities. Contribution analysis may offer a promising method for addressing this challenge. Rather than attempt to definitively and causally link a program's activities to desired results, contribution analysis seeks to provide plausible evidence that can reduce uncertainty regarding the 'difference' a program is making to observed outcomes. It sets out to verify the theory of change behind a program and, at the same time, takes into consideration other influencing factors. Contribution analysis is useful in situations where the program is not experimental-there is little or no scope for varying how the program is implemented-and the program has been funded on the basis of a theory of change. In this paper, the author reviews the feasibility of using contribution analysis as a way of evaluating the impact of the GLOBE program, an environmental science and education program. Initially conceptualized by Al Gore in 1995, the program's implementation model is based on worldwide environmental monitoring by students and scientists around the globe. This paper will make a significant and timely contribution to the field of evaluation, and specifically environmental education evaluation by examining the usefulness of this analysis for developing evidence to assess the impact of environmental education programs.

  3. Technological Developments in Networking, Education and Automation

    CERN Document Server

    Elleithy, Khaled; Iskander, Magued; Kapila, Vikram; Karim, Mohammad A; Mahmood, Ausif

    2010-01-01

    "Technological Developments in Networking, Education and Automation" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the following areas: Computer Networks: Access Technologies, Medium Access Control, Network architectures and Equipment, Optical Networks and Switching, Telecommunication Technology, and Ultra Wideband Communications. Engineering Education and Online Learning: including development of courses and systems for engineering, technical and liberal studies programs; online laboratories; intelligent

  4. A Study on the Teachers' Professional Knowledge and Competence in Environmental Education

    Science.gov (United States)

    Yuan, Kuo-Shu; Wu, Tung-Ju; Chen, Hui-Bing; Li, Yi-Bin

    2017-01-01

    The rapid development of technology and economy has largely enhanced the quality of life. Nevertheless, various social and environmental problems have emerged. It would be the key solution to develop environmental education in order to have people present the environmental knowledge and the attitudes and value to concern about the environment and…

  5. Business and Technology Educators: Practices for Inclusion

    Science.gov (United States)

    Donne, Vicki; Hansen, Mary A.

    2013-01-01

    Business educators face the challenge of operationalizing the global converging initiatives of technology integration and inclusion of students with a disability in K-12 education. A survey of business educators was conducted to ascertain how they were implementing these initiatives in the United States. Results indicated that business educators…

  6. EDUCATIONAL TECHNOLOGY AND THE DISADVANTAGED ADOLESCENT.

    Science.gov (United States)

    TURNEY, DAVID

    SINCE THE CULTURALLY DISADVANTAGED STUDENT OFTEN MANIFESTS AN AVERSION TOWARD THE ACADEMIC AND HIGHLY INSTITUTIONALIZED EDUCATIONAL PROCESS WHICH NOW EXISTS, EDUCATORS MUST EXPLORE THE POSSIBILITIES INHERENT IN EDUCATIONAL TECHNOLOGY TO MAKE THIS PROCESS LESS FORMAL. PROGRAMED MATERIALS AND OTHER SELF-TUTORING DEVICES ADAPTED TO THE LEARNING NEEDS…

  7. Marginalized Student Access to Technology Education

    Science.gov (United States)

    Kurtcu, Wanda M.

    The purpose of this paper is to investigate how a teacher can disrupt an established curriculum that continues the cycle of inequity of access to science, technology, engineering, and math (STEM) curriculum by students in alternative education. For this paper, I will focus on the technology components of the STEM curriculum. Technology in the United States, if not the world economy, is developing at a rapid pace. Many areas of day to day living, from applying for a job to checking one's bank account online, involve a component of science and technology. The 'gap' in technology education is emphasized between the 'haves and have-nots', which is delineated along socio-economic lines. Marginalized students in alternative education programs use this equipment for little else than remedial programs and credit recovery. This level of inequity further widens in alternative education programs and affects the achievement of marginalized students in credit recovery or alternative education classes instead of participation technology classes. For the purposes of this paper I focus on how can I decrease the inequity of student access to 21st century technology education in an alternative education program by addressing the established curriculum of the program and modifying structural barriers of marginalized student access to a technology focused curriculum.

  8. Female Technology Education Teachers' Experiences of Finnish Craft Education

    Science.gov (United States)

    Niiranen, Sonja; Hilmola, Antti

    2016-01-01

    In order to introduce a more equitable gender balance in education and consequently in the labour market, it is highly relevant to continue to expand our knowledge of technology education and to give attention to gender related issues. The ultimate purpose of this study was to contribute to efforts to get more women to study technology and pursue…

  9. Educational Technology and Distance Supervision in Counselor Education

    Science.gov (United States)

    Carlisle, Robert Milton; Hays, Danica G.; Pribesh, Shana L.; Wood, Chris T.

    2017-01-01

    The authors used a nonexperimental descriptive design to examine the prevalence of distance supervision in counselor education programs, educational technology used in supervision, training on technology in supervision, and participants' (N = 673) perceptions of legal and ethical compliance. Program policies are recommended to guide the training…

  10. Designing Research in Environmental Education Curriculum Policy ...

    African Journals Online (AJOL)

    There is increasing dissatisfaction at many levels with existing environmental education curricula in southern Africa. The resulting change and innovation is opening up possibilities for innovative research into the construction, conceptualisation and implementation of the curriculum. However, researching the curriculum ...

  11. Teaching environmental sustainability in higher education

    NARCIS (Netherlands)

    Itard, L.C.M.; Van den Bogaard, M.E.D.; Hasselaar, E.

    2010-01-01

    The challenges of sustainable engineering and design are complex and so are the challenges of teaching sustainability to higher education students. This paper deals with teaching environmental sustainability, with a specific focus on the sustainability of buildings. The paper addresses specifically

  12. Supporting Tutoring Within a Namibian Environmental Education ...

    African Journals Online (AJOL)

    This paper is based on a case study of tutoring in the Namibian Environmental Education Certificate (NEEC) Course. In order to support tutoring, the National NEEC Coordinator investigated the way NEEC tutors are supported and the kinds of challenges faced in the tutoring process. The case study was framed within a ...

  13. Environmental Education. Teacher's Handbook, Grade 5.

    Science.gov (United States)

    Nashville - Davidson County Metropolitan Public Schools, TN.

    Prepared for use in the 5th grade, this teacher's handbook consists of 19 science units dealing with environmental education. Topics are ecology, language arts, rocks and fossils, soil, noise pollution, Nashville pioneers and American Indians, conservation, waste and litter, water pollution, compass and mapping, plants and trees, use of the…

  14. Technology and Online Education: Models for Change

    Science.gov (United States)

    Cook, Catherine W.; Sonnenberg, Christian

    2014-01-01

    This paper contends that technology changes advance online education. A number of mobile computing and transformative technologies will be examined and incorporated into a descriptive study. The object of the study will be to design innovative mobile awareness models seeking to understand technology changes for mobile devices and how they can be…

  15. Marginalized Student Access to Technology Education

    Science.gov (United States)

    Kurtcu, Wanda M.

    2017-01-01

    The purpose of this paper is to investigate how a teacher can disrupt an established curriculum that continues the cycle of inequity of access to science, technology, engineering, and math (STEM) curriculum by students in alternative education. For this paper, I will focus on the technology components of the STEM curriculum. Technology in the…

  16. Introducing Mobile Technology in Graduate Professional Education

    Science.gov (United States)

    Anand, Gopesh; Chhajed, Dilip; Hong, Seung Won; Scagnoli, Norma

    2014-01-01

    The insertion of mobile technology in educational settings is becoming more prevalent, making it important to understand the effectiveness of such technology in enhancing students' learning and engagement. This article is based on research conducted to study the effects of the use of mobile technology--specifically iPads--by students in a graduate…

  17. A Technological Teacher Education Program Planning Model.

    Science.gov (United States)

    Hansen, Ronald E.

    1993-01-01

    A model for technology teacher education curriculum has three facets: (1) purpose (experiential learning, personal development, technological enlightenment, economic well-being); (2) content (professional knowledge, curriculum development competence, pedagogical knowledge and skill, technological foundations); and (3) process (planned reflection,…

  18. What Is Technology Education? A Review of the "Official Curriculum"

    Science.gov (United States)

    Brown, Ryan A.; Brown, Joshua W.

    2010-01-01

    Technology education, not to be confused with educational technology, has an "official curriculum." This article explores this "official curriculum" and answers the following questions; what are the goals of technology education, what should technology education look like in classrooms, and why technology education is important. This article…

  19. The phenomenology in the environmental aesthetic education

    International Nuclear Information System (INIS)

    Noguera de Echeverri, Ana Patricia

    2000-01-01

    In this paper we present an abstract about our Philosophical Doctor Thesis make on Campinas University (Sao Paulo, Brazil) titled educacion estetico ambiental y fenomenologia: problemas de la educacion estetico ambiental en la modernidad. In this thesis we do a critical thinking about the epistemological model of relation subject -object on modern education, and on the other side, we work in the construction about a aesthetic - environmental education model. We propose here an aesthetization of the education, for conjoint body and world-of-life (lebenswelt) into scenarios and actors of the pedagogical process. Body and world-of-life, are two concepts of Husserl's phenomenology that open the door about the environment' s studies aesthetization and aesthetic' s studies environment, separated on modernity, between the metaphysical subject and physicality objects. Body and world-of-life -symbolic-biotic- are marginal alterities on modernity. This marginality has been a structural lead on the contemporary environmental problems

  20. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  1. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  2. Environmentally Sound Technologies for Decision Making in Integrated Coastal Management: Prospects of Co-Operation with UNEP-IETC for Education and Training in the Mediterranean

    OpenAIRE

    Casanova, L.G.C.

    1999-01-01

    The present crisis in urban management in developing and 'transitioning' countries is largely the result of rapid urbanization and modernization which came to these countries without the basics of planning and management that should have gone hand in hand with them. Because economic growth was the primary goal, the advent of urban development further resulted in the degradation of the urban environment, notably its freshwater and marine resources. Today, the need for urban environmental ma...

  3. The Utilization of Education Technology in Higher Education

    Science.gov (United States)

    Brooks, Angela

    2017-01-01

    With the rise of technology, many educational organizations are scrambling to find ways to incorporate technology into effective learning strategies. Although there is a significant need to equip curriculum with active learning technology objectives, the challenges that are sometimes overlooked lies within faculty perceived barriers and how they…

  4. Technology and Education: Theoretical Reflections Exemplified in Religious Education

    Science.gov (United States)

    Reader, John; Freathy, Rob

    2016-01-01

    How do recent technological advances impact upon the field of education? This article examines the work of the philosopher of technology Bernard Stiegler and his interpretation of technology as pharmakon (both remedy and poison). This is linked to threshold concept theory which advocates more creative ways of learning, and illustrated through a…

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT LASER TOUCH AND TECHNOLOGIES, LLC LASER TOUCH MODEL LT-B512

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of Laser Touch model LT-B512 targeting device manufactured by Laser Touch and Technologies, LLC, for manual spray painting operations. The relative transfer efficiency (TE) improved an avera...

  6. Using modern information technologies in continuing education

    Directory of Open Access Journals (Sweden)

    Магомедхан Магомедович Ниматулаев

    2012-06-01

    Full Text Available Article opens problems of formation of system of continuous education and improvement of professional skill for effective realization of professional work of the teacher in the conditions of use of modern information technology. Possibilities and necessities of use of information-communication technologies, Web-technologies for an intensification and giving of additional dynamics to educational process are considered. In this connection new forms and methods of the organization of educational activity for development and perfection of this activity are defined.

  7. Description of environmental technology; Beskrivelse av miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    This report gives an overview of different subject areas and the technological difficulties the businesses have met and which remains. This report is highly connected to the petroleum industry and technology like searching technology and well operations have been discussed

  8. Conceptual Challenges for Environmental Education: Advocacy, Autonomy, Implicit Education and Values

    Science.gov (United States)

    Schlottmann, Christopher

    2012-01-01

    "Conceptual Challenges for Environmental Education" is a critical analysis of environmental education from the perspective of educational ethics. It spells out elements of the conceptual foundations of an environmental education theory--among them implicit education, advocacy, Decade of Education for Sustainable Development, and climate…

  9. An Environmental Ethical Conceptual Framework for Research on Sustainability and Environmental Education

    Science.gov (United States)

    Kronlid, David O.; Ohman, Johan

    2013-01-01

    This article suggests that environmental ethics can have great relevance for environmental ethical content analyses in environmental education and education for sustainable development research. It is based on a critique that existing educational research does not reflect the variety of environmental ethical theories. Accordingly, we suggest an…

  10. Environmental radiation monitoring technology: Capabilities and needs

    International Nuclear Information System (INIS)

    Hofstetter, K.J.

    1994-01-01

    Radiation monitoring in the Savannah River Site (SRS) environment is conducted by a combination of automated, remote sampling and/or analysis systems, and manual sampling operations. This program provides early detection of radionuclide releases, minimizes the consequences, and assesses the impact on the public. Instrumentation installed at the release points monitor the atmospheric and aqueous releases from SRS operations. Ground water and air monitoring stations are strategically located throughout the site for radionuclide migration studies. The environmental radiological monitoring program at SRS includes: fixed monitoring stations for atmospheric radionuclide concentrations, aqueous monitors for surface water measurements, mobile laboratory operations for real-time, in-field measurements, aerial scanning for wide area contamination surveillance, and hand-held instruments for radionuclide-specific measurements. Rigorous environmentnal sampling surveillance coupled with laboratory analyses provide confirmatory results for all in-field measurements. Gaps in the technologies and development projects at SRS to fill these deficiencies are discussed in the context of customer needs and regulatory requirements

  11. Environmental control technology for shale oil wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, B.W.; Wakamiya, W.; Bell, N.E.; Mason, M.J.; Spencer, R.R.; English, C.J.; Riley, R.G.

    1982-09-01

    This report summarizes the results of studies conducted at Pacific Northwest Laboratory from 1976 to 1982 on environmental control technology for shale oil wastewaters. Experimental studies conducted during the course of the program were focused largely on the treatment and disposal of retort water, particularly water produced by in situ retorting of oil shale. Alternative methods were evaluated for the treatment and disposal of retort water and minewater. Treatment and disposal processes evaluated for retort water include evaporation for separation of water from both inorganic and organic pollutants; steam stripping for ammonia and volatile organics removal; activated sludge and anaerobic digestion for removal of biodegradable organics and other oxidizable substances; carbon adsorption for removal of nonbiodegradable organics; chemical coagulation for removal of suspended matter and heavy metals; wet air oxidation and solvent extraction for removal of organics; and land disposal and underground injection for disposal of retort water. Methods for the treatment of minewater include chemical processing and ion exchange for fluoride and boron removal. Preliminary cost estimates are given for several retort water treatment processes.

  12. Environmental literacy based on educational background

    Science.gov (United States)

    Agfar, A.; Munandar, A.; Surakusumah, W.

    2018-05-01

    This research aims to examine attitude, knowledge and cognitive skill. To collect data we used survey method, was conducted in Pahawang, Lampung. Respondents of this research are coastal society of Pahawang, 114 participants determined using purposive sampling, from two areas in the village, Pahawang and Penggetahan. Data were analyzed using both quantitative and descriptive. Environmental literacy of the society which is primary school graduate is moderate category (85.61), consist of 38.90% in low category and 61.10% in moderate category. Environmental literacy of junior high school graduate is moderate (99.36), consist of 12% in low category, 76% in moderate category and 12% in high category. Environmental literacy of senior high school graduate is moderate (108.85), consist of 84.90% moderate category and 15.10% in high category. But, undergraduate society is high category (118.53). Details 0% low category 52.94% moderate category and 47.06% in high category. This finding research has revelaed that the educational background affects the level of environmental literacy. This finding research has revealed that the educational background affects the level of environmental literacy.

  13. Bring Your Own Technology (BYOT to Education

    Directory of Open Access Journals (Sweden)

    Joseph M. Woodside

    2014-06-01

    Full Text Available In an effort to reduce costs and increase worker satisfaction, many businesses have implemented a concept known as Bring Your Own Device (BYOD or Bring Your Own Technology (BYOT. Similarly, many school districts are beginning to implement BYOT policies and programs to improve educational learning opportunities for students who have a wide variety of technology devices. BYOT allow districts with limited budgets enable usage of technology while improving student engagement. This paper explores the technology devices, and educational implications of policies, device management, security and included components.

  14. Advance Planning, Programming and Production Control as key Activities Now the Environmental Education

    Directory of Open Access Journals (Sweden)

    Geraldo Cardoso de Oliveira Neto

    2015-06-01

    Full Text Available This work addresses the evolution of Planning, Programming and Control of Production (PPCP as essential activities of the company towards the insertion of environmental education. The approach is based on an exploratory research and a critical bibliographic revision. Two main objectives were established: i a new way of production organization, by considering cleaner production from company utilities to production capacity, technology and outsourcing and ii infrastructure changes related to market attendance and environmental education dissemination. Needs that arise can be grouped as follows: utilities adequacy, cleaner technologies and ecochains implementation; instruction and dissemination of environmental education; and necessity of the adoption of new paradigms.

  15. Reimagining the Role of Technology in Education: 2017 National Education Technology Plan Update

    Science.gov (United States)

    Office of Educational Technology, US Department of Education, 2017

    2017-01-01

    The National Education Technology Plan (NETP) sets a national vision and plan for learning enabled by technology through building on the work of leading education researchers; district, school, and higher education leaders; classroom teachers; developers; entrepreneurs; and nonprofit organizations. The principles and examples provided in this…

  16. Emerging educational technologies: Tensions and synergy

    Directory of Open Access Journals (Sweden)

    J. Michael Spector

    2014-01-01

    Full Text Available A review of high level sources with regard to new and emerging technologies was conducted. Three technologies, according to these sources, appear especially promising: (a massive open online courses (MOOCs, (b personalized learning, and (c game-based learning. This paper will review information from the US National Science Foundation, the US Department of Education, the New Media Consortium, and two European Networks of Excellence with regard to new and emerging technologies. A critique will then be provided using established principles pertaining to learning and instruction and a recommended curriculum for advanced learning technologies. The general result is that it appears that some educational technology advocates are overstating the likelihood of these three technologies having a significant and sustained impact in the near future, although there are promising aspects to each of these technologies in the long term.

  17. The Savannah River environmental technology field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The Savannah River technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies are tested in actual field scenarios to determine their appropriate applications in environmental characterization and monitoring activities. The field tests provide regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs. This program has resulted in the successful implementation of several new technologies

  18. THE ENVIRONMENTAL ATTITUDES IN STUDENTS OF THE TECHNICAL AND PROFESSIONAL EDUCATION. A SOCIAL PROBLEM OF SCIENCE AND TECHNOLOGY / LAS ACTITUDES MEDIOAMBIENTALES EN ESTUDIANTES DE LA EDUCACIÓN TÉCNICA Y PROFESIONAL. UN PROBLEMA SOCIAL DE LA CIENCIA Y LA TECNOLOGÍA

    Directory of Open Access Journals (Sweden)

    Omar Gutiérrez Hidalgo

    2013-09-01

    Full Text Available Our Earth Planet confronts the global crisis including the environmental area and its common cause, the unconscious acting of the human being and the convergent effect to the extermination of the world and the human sort. At present environmental insufficiencies are persisted related to the environmental knowledge of the Construction technician in Oscar Alberto Ortega Lara Polytechnic Institute as well as in the development of a favourable environmental attitudes establishing a contradiction in the social practice between a model wanted in the Technical and Professional Education (TPE - to graduate technicians of the Construction Family with good environmental behaviour. That’s why in this paper it is argued that the environmental attitudes of the TPE students constitute a social problem of the Science and the Technology, getting as a result that the application of the epistemology bases given, emits positive changes in their cognitive, affective and participative attitudes to the environmental situations.

  19. Educational Uses of Virtual Reality Technology

    National Research Council Canada - National Science Library

    Youngblut, Christine

    1998-01-01

    ... addressed. Educational uses of the technology are broadly distinguished as those where students interact with pre-developed VR applications and those where students develop their own virtual worlds...

  20. Distance Education Technologies in Asia | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-11-10

    Nov 10, 2010 ... Book cover Distance Education Technologies in Asia ... Canada's International Development Research Centre (IDRC) deserves our ... results of its 2017 call for proposals to establish Cyber Policy Centres in the Global South.

  1. Photobioreactor: Biotechnology for the Technology Education Classroom.

    Science.gov (United States)

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Describes a problem scenario involving photobioreactors and presents materials and resources, student project activities, and teaching and evaluation methods for use in the technology education classroom. (Contains 14 references.) (SK)

  2. Educational Uses of Virtual Reality Technology

    National Research Council Canada - National Science Library

    Youngblut, Christine

    1998-01-01

    The potential of VR technology tor supporting education is widely recognized. It has already seen practical use in an estimated 20 or more public schools and colleges, and many more have been involved in evaluation or research efforts...

  3. Nano-enabled environmental products and technologies - opportunities and drawbacks

    DEFF Research Database (Denmark)

    Møller Christensen, Frans; Brinch, Anna; Kjølholt, Jesper

    The project aims to investigate the benefits for health and environment that the use of nanomaterials in products and technologies may have. More specifically, the project provides an overview of the most relevant nano-enabled environmental technologies, different types of products and technologies...... on the (Danish) market, as well as products and technologies, which are still in R&D and it will provide a qualitative overview of health and environmental pros and cons of these technologies. The project has focused on technologies applied in: 1) purification of water and wastewater, 2) remediation of soil...

  4. Environmental regulation and the export dynamics of energy technologies

    International Nuclear Information System (INIS)

    Costantini, Valeria; Crespi, Francesco

    2008-01-01

    The pollution haven hypothesis affirms that an open market regime will encourage the flow of low-technology polluting industries towards developing countries because of potential comparative advantages related to low environmental standards. In contrast, the hypothesis suggested by Porter and van der Linde claims that innovating firms operate in a dynamic competitive situation which allows global diffusion of environmental-friendly technologies. Environmental regulation may represent a relevant mechanism through which technological change is induced. In this way, countries that are subject to more stringent environmental regulations may become net exporters of environmental technologies. This paper provides new evidence on the evolution of export flows of environmental technologies across different countries for the energy sector. Advanced economies, particularly the European Union, have increasingly focused on the role of energy policies as tools for sustaining the development path. The Kyoto Protocol commitments, together with growing import dependence on energy products, have brought attention to the analysis of innovation processes in this specific sector. The analysis uses a gravity model in order to test the determinants and the transmission channels through which environmental technologies for renewable energies and energy efficiency are exported to advanced and developing countries. Our results are consistent with the Porter and van der Linde hypothesis where environmental regulation represents a significant source of comparative advantages. What strongly emerges is that the stringency of environmental regulation supplemented by the strength of the National Innovation System is a crucial driver of export performance in the field of energy technologies. (author)

  5. Education in Environmental Chemistry: Setting the Agenda and Recommending Action

    Science.gov (United States)

    Zoller, Uri

    2005-01-01

    The effective utilization of Education in Environmental Chemistry (EEC) in addressing global and societal environmental problems requires integration between educational, technical, financial, ethical and societal considerations. An interdisciplinary approach is fundamental to efforts to achieve long-term solutions.

  6. Educational Cognitive Technologies as Human Adaptation Strategies

    Directory of Open Access Journals (Sweden)

    Marja Nesterova

    2017-07-01

    Full Text Available Modernity is characterized by profound changes in all spheres of human life caused by the global transformations on macro and micro levels of social reality. These changes allow us to speak about the present as the era of civilizational transition in the mode of uncertainty. Therefore, this situation demands qualitative transformations of human adaptive strategies and educational technologies accordingly. The dominant role in the dynamics of pedagogics and andragogy’s landscape belongs to transformative learning. The transformative learning theory is considered as the relevant approach to education of the individual, which is able to become an autonomous communicative actor of the social complexity. The article considers the cognitive technologies of social cohesion development and perspectives of their implementation in the educational dimension. In addition to implementing the principles of inclusion, equity in education, an important factor for improving social cohesion, stability and unity of society is the development of cognitive educational technologies. The key factors and foundations for the cognitive educational technologies are transversal competencies. They create the conditions for civil, public dialogue, non-violent type of communication. These “21st century skills” are extremely important for better human adaptation. One of the aspects and roots of social adaptation is social cohesion. Mutual determinations and connections between social cohesion development and transversal competences have been shown. The perspective direction of further researches is to find a methodological base for the further development of cognitive education technologies and platform for realization of innovative services for educational programs. New educational paradigm offers the concept of human adaptation as cognitive effectiveness and how to reach it through educational technologies. The article includes topics of creative thinking, teambuilding

  7. Environmental applications of electron-beam technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    2001-01-01

    The main directions of modern environmental applications of electron-beam technology are the following: 1) treatment of polluted natural and drinking water, municipal and industrial wastewater, other liquid wastes; 2) purification of gases; 3) treatment of sewage sludges; 4) treatment of solid wastes (medical wastes, contaminated soil and so on). In some cases, the results of respective researches and developments found a large-scale application. For example, recently several industrial plants for electron-beam purification of flue gases of thermal power plants from SO2 and NOx were created in China, Poland and Japan. In the report, a brief summary of the most important results obtained in the mentioned directions will be presented. A special attention will be paid to the data in the first direction. In particular, the recent results on radiation treatment of some liquid systems obtained in the laboratory under author's leadership will be considered. One of them is water polluted with petroleum products (motor oil, diesel fuel, residual fuel oil). The pollutants were present in water in dissolved form and as a separate phase. It was found that irradiation (dose 25-40 kGy) decomposes and removes the pollutants as a precipitate. The second system is natural oil gas consisting of gaseous and low-boiling hydrocarbons, water and so on. Laboratory- and pilot-scale (with electron accelerator of 0.7 MeV and 30 kW) studies have shown that electron-beam treatment (in a recycling regime with continuous sampling the liquid phase) of this gas leads to the formation of a mixture of liquid branched hydrocarbons, alcohols, ethers and so on, i.e., there is a radiation-induced liquefaction of the natural oil gas. The mechanism of radiolytic conversions occurring in the mentioned systems will be discussed

  8. Environmental Education as a Life Philosophy

    Directory of Open Access Journals (Sweden)

    Julio Coutiño-Molina

    2011-11-01

    Full Text Available Abstract. Environmental education (E. E. is of great importance in preserving the environment, transmitting values based on sustainable development. However, given the current environmental paradigm, we must reflect on the question: is it necessary to approach E. E. from a broader perspective or are we seeing E. E. from a narrow perspective? People’s relationship with the environment needs to change. This means that the efforts and principles of E. E. should be adopted and applied in our daily live, making it a philosophy of life, deep inside each person, thoughtful and based on ethical principles. Thus more responsible and committed actions and attitudes could be achieved, which would contribute to environmental care. This may be a small, but continuous contribution.

  9. Traditional Knowledge Strengthens NOAA's Environmental Education

    Science.gov (United States)

    Stovall, W. K.; McBride, M. A.; Lewinski, S.; Bennett, S.

    2010-12-01

    Environmental education efforts are increasingly recognizing the value of traditional knowledge, or indigenous science, as a basis to teach the importance of stewardship. The National Oceanic and Atmospheric Administration (NOAA) Pacific Services Center incorporates Polynesian indigenous science into formal and informal education components of its environmental literacy program. By presenting indigenous science side by side with NOAA science, it becomes clear that the scientific results are the same, although the methods may differ. The platforms for these tools span a vast spectrum, utilizing media from 3-D visualizations to storytelling and lecture. Navigating the Pacific Islands is a Second Life project in which users navigate a virtual Polynesian voyaging canoe between two islands, one featuring native Hawaiian practices and the other where users learn about NOAA research and ships. In partnership with the University of Hawai‘i Waikiki Aquarium, the Nana I Ke Kai (Look to the Sea) series focuses on connecting culture and science during cross-discipline, publicly held discussions between cultural practitioners and research scientists. The Indigenous Science Video Series is a multi-use, animated collection of short films that showcase the efforts of NOAA fisheries management and ship navigation in combination with the accompanying Polynesian perspectives. Formal education resources and lesson plans for grades 3-5 focusing on marine science have also been developed and incorporate indigenous science practices as examples of conservation success. By merging traditional knowledge and stewardship practices with NOAA science in educational tools and resources, NOAA's Pacific Services Center is helping to build and increase environmental literacy through the development of educational tools and resources that are applicable to place-based understanding and approaches.

  10. Relationship between Pre-School Preservice Teachers' Environmental Literacy and Science and Technology Literacy Self Efficacy Beliefs

    Science.gov (United States)

    Surmeli, Hikmet

    2013-01-01

    This study examined the relationship between preschool teachers' environmental literacy and their science and technology self efficacy beliefs. 120 preschool teachers from teacher education programme at one university participated in this study. Data were collected by using Environmental Literacy Scale and Science and Technology Literacy Self…

  11. TECHcitement: Advances in Technology Education, 2008

    Science.gov (United States)

    Patton, Madeline

    2008-01-01

    This publication presents the following articles: (1) Advanced Technological Education (ATE) Develops Student Recruitment and Retention Strategies; (2) Marketer Advises Tech Educators Appeal to Teens' Emotions, Desires to Do Something Important; (3) Digital Bridge Academy Gets At-Risk Students on Paths to Knowledge-Based Careers; (4) Project…

  12. Partnership for electrical generation technology education

    International Nuclear Information System (INIS)

    Rasmussen, R. S.; Beaty, L.; Holman, R.

    2006-01-01

    This Engineering Technician education effort adapts an existing two-year Instrumentation and Control (I and C) education program into a model that is focused on electrical-generation technologies. It will also locally implement a program developed elsewhere with National Science Foundation funding, aimed at public schools, and adapt it to stimulate pre-college interest in pursuing energy careers in general. (authors)

  13. Getting Your Counselor to Support Technology Education

    Science.gov (United States)

    Preble, Brian C.

    2016-01-01

    Is there a disconnect between counselors and educators in technology and vocational education? What is counseling, and what is a school counselor's role in a secondary school setting? How can one work with his or her guidance staff to ensure that students better understand your course offerings? The development of relationships, knowledge, and…

  14. New Achievements in Technology Education and Development

    Science.gov (United States)

    Soomro, Safeeullah, Ed.

    2010-01-01

    Since many decades Education Science and Technology has an achieved tremendous recognition and has been applied to variety of disciplines, mainly Curriculum development, methodology to develop e-learning systems and education management. Many efforts have been taken to improve knowledge of students, researchers, educationists in the field of…

  15. The Use of Technology to Improve Education

    Science.gov (United States)

    Nepo, Kaori

    2017-01-01

    Introduction: The primary purpose of the Individuals with Disabilities Education Act (IDEA) is to ensure free appropriate public education for individuals with disabilities in the least restrictive environment. The statute also mandates student's access and services for students' access to devices and technology as part of the individual education…

  16. The Future of Educational Technology Is Past.

    Science.gov (United States)

    Mitchell, P. David

    1989-01-01

    Discusses the field of educational technology and the need for new perspectives on the processes of learning, teaching, and doing research. Topics discussed include the scope of education; goal-directed feedback; control system theory; cybernetics and general system research; self-instruction; and suggestions for future planning for educational…

  17. Game-Like Technology Innovation Education

    Science.gov (United States)

    Magnussen, Rikke

    2011-01-01

    This paper examines the methodological challenges and perspectives of designing game-like scenarios for the implementation of innovation processes in school science education. This paper presents a design-based research study of a game-like innovation scenario designed for technology education for Danish public school students aged 13-15. Students…

  18. Information Technologies (ITs) in Medical Education.

    Science.gov (United States)

    Masic, Izet; Pandza, Haris; Toromanovic, Selim; Masic, Fedja; Sivic, Suad; Zunic, Lejla; Masic, Zlatan

    2011-09-01

    Advances in medicine in recent decades are in significant correlation with the advances in the information technology. Modern information technologies (IT) have enabled faster, more reliable and comprehensive data collection. These technologies have started to create a large number of irrelevant information, which represents a limiting factor and a real growing gap, between the medical knowledge on one hand, and the ability of doctors to follow its growth on the other. Furthermore, in our environment, the term technology is generally reserved for its technical component. Education means, learning, teaching, or the process of acquiring skills or behavior modification through various exercises. Traditionally, medical education meant the oral, practical and more passive transferring of knowledge and skills from the educators to students and health professionals. For the clinical disciplines, of special importance are the principles, such as, "learning at bedside," aided by the medical literature. In doing so, these techniques enable students to contact with their teachers, and to refer to the appropriate literature. The disadvantage of these educational methods is in the fact, that teachers often do not have enough time. Additionally they are not very convenient to the horizontal and vertical integration of teaching, create weak or almost no self education, as well as, low skill levels and poor integration of education with a real social environment. In this paper authors describe application of modern IT in medical education - their advantages and disadvantages comparing with traditional ways of education.

  19. Technological Affordances for the Music Education Researcher

    Science.gov (United States)

    Bauer, William I.

    2016-01-01

    The purpose of this study was to examine music education researchers' perceptions of the importance of selected technologies to scholarly inquiry. Participants (N = 460), individuals who had published articles during a 5-year period between 2008 and 2012 in six prominent journals that disseminate music education research, were invited to complete…

  20. TECHcitement: Advances in Technological Education, 2006

    Science.gov (United States)

    American Association of Community Colleges (NJ1), 2006

    2006-01-01

    This publication includes 13 articles: (1) ATE [Advanced Technological Education] Attuned to Global Competition; (2) Materials Science Center Supplies Information on Often-Overlooked Field; (3) CSEC [Cyber Security Education Consortium] Builds Corps of Cyber Technicians; (4) KCTCS [Kentucky Community and Technical College System] Is U.S. Partner…

  1. Application of Educational Technology Resource and Systems ...

    African Journals Online (AJOL)

    This paper examined the application of educational technology resource systems approach in teaching English Language highlighting some inadequacies observed in educational system in Nigeria. Language is the most unique gift to man from God for language differentiates man from animals. This forms the basis to ...

  2. Environmental and Financial Evaluation of Passenger Vehicle Technologies in Belgium

    OpenAIRE

    Messagie, Maarten; Lebeau, Kenneth; Coosemans, Thierry; Macharis, Cathy; Mierlo, Joeri van

    2013-01-01

    Vehicles with alternative drive trains are regarded as a promising substitute for conventional cars, considering the growing concern about oil depletion and the environmental impact of our transportation system. However, “clean” technologies will only be viable when they are cost-efficient. In this paper, the environmental impacts and the financial costs of different vehicle technologies are calculated for an average Belgian driver. Environmentally friendly vehicles are compared with conventi...

  3. Environmental Science and Technology department. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. [eds.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department`s contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department`s education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  4. Environmental Science and Technology department. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. (eds.)

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  5. Environmental Science and Technology department. Annual report 1991

    International Nuclear Information System (INIS)

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.)

  6. Introducing Technology Education at the Elementary Level

    Science.gov (United States)

    McKnight, Sean

    2012-01-01

    Many school districts are seeing a need to introduce technology education to students at the elementary level. Pennsylvania's Penn Manor School District is one of them. Pennsylvania has updated science and technology standards for grades 3-8, and after several conversations the author had with elementary principals and the assistant superintendent…

  7. Experiencing Technology Integration in Education: Children's Perceptions

    Science.gov (United States)

    Baytak, Ahmet; Tarman, Bülent; Ayas, Cemalettin

    2011-01-01

    The purpose of this phenomenological study was to explore the experiences of six children using technologies in their education. Data were collected via in-depth interviews, classroom observations, and home observations. The results showed that students have common perceptions toward their experience with technology integration. Furthermore, the…

  8. Emerging Education Technologies and Research Directions

    Science.gov (United States)

    Spector, J. Michael

    2013-01-01

    Two recent publications report the emerging technologies that are likely to have a significant impact on learning and instruction: (a) New Media Consortium's "2011 Horizon Report" (Johnson, Smith, Willis, Levine & Haywood, 2011), and (b) "A Roadmap for Education Technology" funded by the National Science Foundation in…

  9. Oral History as Educational Technology Research

    Science.gov (United States)

    Butler, Rebecca P.

    2008-01-01

    Oral history is a significant type of historical research. Its use in retaining records of the early days of educational technology provides another way to look at the history of this field. The remembrances of its founders inform everyone today of, not only of what went on before, but also of how current and future technologies evolve. There are…

  10. Social media, new technologies and history education

    NARCIS (Netherlands)

    Ribbens, Kees; Haydn, Terry; Carretero, Mario; Berger, Stefan; Grever, Maria

    This chapter explores the implications of recent developments in technology and social media, having a significant impact on the way in which young people learn history in schools and outside schools. New technology not only has a positive influence on education, it also has unintended negative

  11. Digital technology in physical education: global perspectives

    NARCIS (Netherlands)

    Koekoek, Jeroen; van Hilvoorde, I.M.

    2018-01-01

    The rapid development of digital technologies has opened up new possibilities for how Physical Education is taught. This book offers a comprehensive, practice-oriented and critical exploration of the actual and potential applications of digital technologies in PE. It considers the opportunities that

  12. Edutainment as a Modern Technology of Education

    OpenAIRE

    Anikina, Oksana Vladimirovna; Yakimenko, Elena Vladimirovna

    2015-01-01

    The article considers the methodological value and potential of modern education technology Edutainment. The author reveals the features and gives the definition of the Edutainment technology concept based on a review and analysis of the literature. ESP teaching is also taken into account.

  13. Virtual Education: Guidelines for Using Games Technology

    Science.gov (United States)

    Schofield, Damian

    2014-01-01

    Advanced three-dimensional virtual environment technology, similar to that used by the film and computer games industry, can allow educational developers to rapidly create realistic online virtual environments. This technology has been used to generate a range of interactive Virtual Reality (VR) learning environments across a spectrum of…

  14. Trends and Research Issues in Educational Technology

    Science.gov (United States)

    Spector, J. Michael

    2013-01-01

    If one looks back at the last 50 years or so at educational technologies, one will notice several things. First, the pace of innovation has increased dramatically with many developments in the application of digital technologies to learning and instruction, following by a few years developments in the sciences and engineering disciplines that are…

  15. Environmental Education Policy Processes in the Southern African ...

    African Journals Online (AJOL)

    implementation of environmental education policy. Further questions .... for Environmental Management (in Ketlhoilwe, 2003) calls for an informed and environmentally ..... As priority issues such as HIV/AIDS, poverty, water resources and solid.

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PORTABLE GAS CHROMATOGRAPH ELECTRONIC SENSOR TECHNOLOGY MODEL 4100

    Science.gov (United States)

    The U.S. Environmental Protection Agency, through the Environmental Technology Verification Program, is working to accelerate the acceptance and use of innovative technologies that improve the way the United States manages its environmental problems. As part of this program, the...

  17. 78 FR 74129 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2013-12-10

    ... for Environmental Policy and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT members represent academia...

  18. 75 FR 25240 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-05-07

    ... ENVIRONMENTAL PROTECTION AGENCY National Advisory Council for Environmental Policy and Technology... for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT is a committee of...

  19. Educational Potential of Case-Study Technology

    OpenAIRE

    Fedorinova, Zoya; Vorobeva, Victoria; Malyanova, Marina

    2015-01-01

    This article presents the results of phenomenological and typological analysis of case-study technology educational potential. The definition “educational potential of case-study technology” is given, the main characteristics of which are changed in communication and collaborative activity quality, appearance of educational initiatives, change of participants’ position in learning process, formation of “collective subject” in collaborative activity, increase of learning (subject) results. Dep...

  20. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  1. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  2. Does technology really enhance nurse education?

    Science.gov (United States)

    Goodchild, Tim

    2018-07-01

    Technology has clearly impacted upon our working lives, and the purpose of this paper is to offer a critical insight into the ubiquitous presence of technology in nurse education. This paper argues that technology enhanced learning is predicated on the promise of potential and purported transformation of teaching and learning. It suggests that there is a lack of critical engagement in the academic field of technology enhanced learning, and adds a critical voice to some of the emerging arguments in this area. There is also a lack of systematic evidence supporting the enhancement offered by technology, and yet the technology enhanced project continues to persist. The discourse surrounding technology enhanced learning has become so dominant, so pervasive, that those of us within it can no longer see alternatives. But there are alternatives, and this paper argues that we need to challenge the dominance of technology enhanced learning, and become aware of its contingent nature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology Consortium annual report, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The member institutions of the Consortium continue to play a significant role in increasing the number of African Americans who enter the environmental professions through the implementation of the Consortium`s RETT Plan for Research, Education, and Technology Transfer. The four major program areas identified in the RETT Plan are as follows: (1) minority outreach and precollege education; (2) undergraduate education and postsecondary training; (3) graduate and postgraduate education and research; and (4) technology transfer.

  4. Application of radiation technology for industry and environmental protection

    International Nuclear Information System (INIS)

    Sueo Machi

    1996-01-01

    The world population today is 5.7 billion and increasing by 94 million per year. In order to meet the increasing consumption of food and energy due to the tremendous population growth, unproved technologies which are environmentally friendly, are indispensable. In this context. a number of advanced technologies have been brought about by the LISC of radiation and isotopes. This paper highlights radiation technology, applications in industry, environmental conservation, and agriculture

  5. Environmental Science and Technology Department annual report 1996

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs

  6. Environmental Science and Technology Department annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A; Gissel Nielsen, G; Gundersen, V; Nielsen, O J; Oestergaard, H; Aarkrog, A [eds.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department`s contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department`s educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.).

  7. Environmental Science and Technology Department annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O. J.; Oestergaard, H.; Aarkrog, A. [eds.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs.

  8. Environmental Science and Technology Department annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A. [eds.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs.

  9. Environmental Science and Technology Department annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department`s contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department`s educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au).

  10. Environmental Science and Technology Department annual report 1992

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department's contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department's educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au)

  11. Environmental Science and Technology Department annual report 1994

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department's contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department's educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.)

  12. Environmental Science and Technology Department annual report 1995

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs

  13. Pre-Service Teachers' Mind Maps and Opinions on STEM Education Implemented in an Environmental Literacy Course

    Science.gov (United States)

    Sümen, Özlem Özçakir; Çalisici, Hamza

    2016-01-01

    This study aims to implement a science, technology, engineering, and mathematics (STEM) education approach in an environmental education course. The research involved the design and implementation of STEM activities by researchers, as part of the environmental education course taught in the second year of a Primary School Teaching undergraduate…

  14. Efficacy of the World Wide Web in K-12 environmental education

    Science.gov (United States)

    York, Kimberly Jane

    1998-11-01

    Despite support by teachers, students, and the American public in general, environmental education is not a priority in U.S. schools. Teachers face many barriers to integrating environmental education into K--12 curricula. The focus of this research is teachers' lack of access to environmental education resources. New educational reforms combined with emerging mass communication technologies such as the Internet and World Wide Web present new opportunities for the infusion of environmental content into the curriculum. New technologies can connect teachers and students to a wealth of resources previously unavailable to them. However, significant barriers to using technologies exist that must be overcome to make this promise a reality. Web-based environmental education is a new field and research is urgently needed. If teachers are to use the Web meaningfully in their classrooms, it is essential that their attitudes and perceptions about using this new technology be brought to light. Therefore, this exploratory research investigates teachers' attitudes toward using the Web to share environmental education resources. Both qualitative and quantitative methods were used to investigate this problem. Two surveys were conducted---self-administered mail survey and a Web-based online survey---to elicit teachers perceptions and comments about environmental education and the Web. Preliminary statistical procedures including frequencies, percentages and correlational measures were performed to interpret the data. In-depth interviews and participant-observation methods were used during an extended environmental education curriculum development project with two practicing teachers to gain insights into the process of creating curricula and placing it online. Findings from the both the mail survey and the Web-based survey suggest that teachers are interested in environmental education---97% of respondents for each survey agreed that environmental education should be taught in K

  15. INFORMATION TECHNOLOGY AND COMMUNICATION IN NURSING EDUCATION

    Directory of Open Access Journals (Sweden)

    C. R. B. Costa

    2014-07-01

    Full Text Available The use of information and communication technologies in education, transforms not only the way we communicate, but also work, decide and think, as well as allows you to create rich, complex and diversified learning situations, through sharing the tasks between teachers and students , providing an interactive, continuous and lifelong learning. The paper aims to reflect on the importance of the use of information and communication technologies in higher education and show the potential in promoting changes and challenges for teachers of undergraduate nursing course. This is a literary review concerning the issue at hand, in the period from February to March 2014. The result indicates that the resources of information and communication technologies are strategies for the education of future nurses and promote the changing process for teachers , providing quality education to students and understanding that we must seek new opportunities to build a new style of training.

  16. Cost effectiveness studies of environmental technologies: Volume 1

    International Nuclear Information System (INIS)

    Silva, E.M.; Booth, S.R.

    1994-02-01

    This paper examines cost effectiveness studies of environmental technologies including the following: (1) In Situ Air Stripping, (2) Surface Towed Ordinance Locator System, (3) Ditch Witch Horizontal Boring Technology, (4) Direct Sampling Ion Trap Mass Spectrometer, (5) In Situ Vitrification, (6) Site Characterization and Analysis Penetrometer System, (7) In Situ Bioremediation, and (8) SEAMIST Membrane System Technology

  17. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    Uddin, Mahatab

    that developed the technology, to another that adopts, adapts, and uses it. As different kinds of threats posed by climate change are continuously increasing all over the world the issue of “technology transfer” especially the transfer of environmentally sound technologies has become one of the key topics...

  18. Green technological foresight on environmental friendly agriculture: Executive summary

    DEFF Research Database (Denmark)

    Borch, K.; Christensen, S.; Jørgensen, U.

    2005-01-01

    Risø and the co-operators have on behalf of the Forest and Nature Agency completed a technological foresight on environmentally friendly agriculture based on green technologies. A technological foresight is a systematic dialogue on how one prepares forfuture challenges, which have not yet manifes...

  19. Integrating Educational Technologies into Teacher Education: A Case Study

    Science.gov (United States)

    Rawlins, Peter; Kehrwald, Benjamin

    2014-01-01

    This article is a case study of an integrated, experiential approach to improving pre-service teachers' understanding and use of educational technologies in one New Zealand teacher education programme. The study examines the context, design and implementation of a learning activity which integrated student-centred approaches, experiential…

  20. Toward Fostering Environmental Political Participation: Framing an Agenda for Environmental Education Research

    Science.gov (United States)

    Levy, Brett L. M.; Zint, Michaela T.

    2013-01-01

    Scholars of environmental education (EE) and education for sustainable development (ESD) have been among the environmental leaders calling for individuals to become increasingly engaged in political action aimed at addressing environmental and sustainability issues. Few, however, have studied how educational experiences might foster greater…

  1. Touch technologies in primary education

    DEFF Research Database (Denmark)

    Davidsen, Jacob

    This paper presents findings from a longitude project on children‘s use of interactive touchscreens in classroom-settings. By exploring and analysing interaction among pairs, children‘s collaborative activities are under study, and it is highlighted how touch technologies invites for a more...

  2. Informational technologies in modern educational structure

    Science.gov (United States)

    Fedyanin, A. B.

    2017-01-01

    The article represents the structure of informational technologies complex that is applied in modern school education, describes the most important educational methods, shows the results of their implementation. It represents the forms and methods of educational process informative support usage, examined in respects of different aspects of their using that take into account also the psychological features of students. A range of anxious facts and dangerous trends connected with the usage and distribution of the informational technologies that are to be taken into account in the educational process of informatization is also indicated in the article. Materials of the article are based on the experience of many years in operation and development of the informational educational sphere on the basis of secondary school of the physics and mathematics specialization.

  3. Environmental control technology in petroleum drilling and production

    International Nuclear Information System (INIS)

    Wojtanowicz, A.K.

    1997-01-01

    Environmental control technology (ECT) is process integrated and relates mainly to pollution prevention and risk assessment. Mechanisms of environmental impact in petroleum drilling, well completion and production, include the generation of waste, induction of toxicity or the creation of pathways for pollutant migration. The identification and evaluation of these mechanisms constitute two parts of the scope of ECT. A third part is the development of new techniques to comply with environmental requirements without prejudicing productivity. The basic concepts of the ECT approach are presented in this chapter. The approach is then used to analyse oilfield drilling and production processes. Environmental control components developed in these technologies are described. These include: the control of the volume and toxicity of drilling fluids; source separation technology in produced water cleaning; subsurface injection of oilfield waste slurries; containment technology in the integrity of petroleum wells; subsurface reduction of produced water; oilfield pit closure technology. (37 figures; 26 tables; 227 references) (UK)

  4. Implementing Educational Technology in Higher Education: A Strategic Approach

    Directory of Open Access Journals (Sweden)

    Cynthia C. Roberts

    2008-01-01

    Full Text Available Although the move toward implementing technology in higher education is driven by an increasing number of competitors as well as student demand, there is still considerable resistance to embracing it. Adoption of technology requires more that merely installing a product. This paper outlines a framework for a strategic change process that can be utilized by educators for the purpose of the selection as well as successful implementation of educational technologies within their setting, in particular, online course management systems. The four steps of this process include strategic analysis, strategy making, strategic plan design, and strategic plan implementation. The choice to embrace a new system and the extent and speed of its implementation depends upon internal factors such as resources, organizational culture, faculty readiness, anticipated degree of resistance, and the degree of variance from the status quo. A case from the author’s experience provides one example of how the use of distance learning technology was strategically implemented.

  5. Environmental Science Education at Sinte Gleska University

    Science.gov (United States)

    Burns, D.

    2004-12-01

    At Sinte Gleska University, basically we face two problems 1. The lack of natural resources/environmental education instructors and students. 2. High turnover in the drinking water (and waste water / environmental monitoring) jobs. As soon as people are trained, they typically leave for better paying jobs elsewhere. To overcome these In addition to regular teaching we conduct several workshops year around on environmental issues ranging from tree plantation, preserving water resources, sustainable agriculture and natural therapy (ayurvedic treatment- the Lakota way of treating illness) etc. We offer workshops about the negative impacts brought about by the development and use of hydropower, fossil fuel and nuclear energy (but include topics like reclamation of land after mining). Not only does the harvest and consumption of these energy forms devastate the land and its plants, animals, water and air, but the mental, spiritual, and physical health and culture of Native peoples suffer as well. In contrast, wind power offers an environmentally friendly source of energy that also can provide a source of income to reservations.

  6. Nuclear waste disposal: technology and environmental hazards

    International Nuclear Information System (INIS)

    Hare, F.K.; Aikin, A.M.

    1980-01-01

    The subject is discussed under the headings: introduction; the nature and origin of wastes (fuel cycles; character of wastes; mining and milling operations; middle stages; irradiated fuel; reprocessing (waste generation); reactor wastes); disposal techniques and disposal of reprocessing wastes; siting of repositories; potential environmental impacts (impacts after emplacement in a rock repository; catastrophic effects; dispersion processes (by migrating ground water); thermal effects; future security; environmental survey, monitoring and modelling); conclusion. (U.K.)

  7. New technology in everyday life - social processes and environmental impact

    DEFF Research Database (Denmark)

    Røpke, Inge

    2001-01-01

    aspect both of changes in everyday life and of the environmental impact of everyday-life activities. Technological change is often seen as an important part of the solutions to environmental problems, however, when technological change is seen from the perspective of everyday life, this image becomes...... more complex. In this paper technological changes are explored from the perspective of consumption and everyday life, and it is argued that environmental impacts arise through the interplay of technology, consumption and everyday life. Firstly, because technological renewals form integral parts...... influence the environment in the long run. The paper points to the need for further studies of the long term interplay between new technologies, everyday life and the environment....

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - TETRATEC PTFE TECHNOLOGIES TETRATEX 8005

    Science.gov (United States)

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  9. Influencing Technology Education Teachers to Accept Teaching Positions

    Science.gov (United States)

    Steinke, Luke Joseph; Putnam, Alvin Robert

    2008-01-01

    Technology education is facing a significant teacher shortage. The purpose of this study was to address the technology education teacher shortage by examining the factors that influence technology education teachers to accept teaching positions. The population for the study consisted of technology education teachers and administrators. A survey…

  10. Participant Action Research and Environmental Education

    Directory of Open Access Journals (Sweden)

    Yasmin Coromoto Requena Bolívar

    2018-02-01

    Full Text Available The committed participation of the inhabitants in diverse Venezuelan communities is fundamental in the search of solution to environmental problems that they face in the daily life; in the face of this reality, studies based on Participant Action Research were addressed, through a review and documentary analysis of four works related to community participation, carried out in the state of Lara. For this, the following question was asked: ¿What was the achievement in the solution of environmental problems in the communities, reported through the master's degree works oriented under participant action research and presented to Yacambú University in 2011-2013? A qualitative approach is used, approaching the information according to the stages suggested by Arias (2012: Search of sources, initial reading of documents, preparation of the preliminary scheme, data collection, analysis and interpretation of the information, formulation of the final scheme, introduction and conclusions, final report. It begins with the definition of the units of analysis and inquiry of the literature, through theoretical positions, concepts and contributions on: participant action research, participation and environmental education, to culminate with the analysis and interpretation of the information and the conclusions of this investigation. For the collection of the data, the bibliographic records were used with the purpose of organizing the information on the researches consulted, and of summary for the synthesis of the documents. It was concluded that, in the analyzed degree works, the purpose of the IAP was fulfilled, which consisted in the transformation of the problem-situation, which allowed the IAP to become the propitious scenario to promote environmental participation and education not formal.

  11. environmental education teacher training: a particpatory research ...

    African Journals Online (AJOL)

    organisations. Such co - ope r at i ve ventures hold the key t o the emergence of guidelines allowing for the e sta bl i sh r.1en t of a non - racial structure of environmental education teacher training. It is proposed, therefore, to visit selected en vir onmenta l. e d u c a t i on p r o g r a r.11:: e s r u n by u n i v e r s i t i e s , colleges ...

  12. Overcoming regulatory barriers: DOE environmental technology development program

    International Nuclear Information System (INIS)

    Kurtyka, B.M.; Clodfelter-Schumack, K.; Evans, T.T.

    1995-01-01

    The potential to improve environmental conditions via compliance or restoration is directly related to the ability to produce and apply innovative technological solutions. However, numerous organizations, including the US General Accounting Office (GAO), the EPA National Advisory Council for Environmental Policy and Technology (NACEPT), the DOE Environmental Management Advisory Board (EMAB), and the National Science and Technology Council (NSTC) have determined that significant regulatory barriers exist that inhibit the development and application of these technologies. They have noted the need for improved efforts in identifying and rectifying these barriers for the purpose of improving the technology development process, providing innovative alternatives, and enhancing the likelihood of technology acceptance by all. These barriers include, among others, regulator and user bias against ''unknown/unproven'' technologies; multi-level/multi-media permit disincentives; potential liability of developers and users for failed implementation; wrongly defined or inadequate data quality objectives: and lack of customer understanding and input. The ultimate goal of technology development is the utilization of technologies. This paper will present information on a number of regulatory barriers hindering DOE's environmental technology development program and describe DOE efforts to address these barriers

  13. Enhancing environmental engineering education in Europe

    Science.gov (United States)

    Caporali, Enrica; Tuneski, Atanasko

    2013-04-01

    In the frame of knowledge triangle: education-innovation-research, the environmental engineering higher education is here discussed with reference to the TEMPUS-Trans European Mobility Programme for University Studies promoted by the European Commission. Among the focused aspects of TEMPUS are curricula harmonization and lifelong learning programme development in higher education. Two are the curricula, since the first TEMPUS project, coordinated in the period 2005-2008 by University of Firenze in cooperation with colleagues of the Ss Cyril and Methodius University, Skopje. The second three years TEMPUS Joint Project denominated DEREL-Development of Environment and Resources Engineering Learning, is active since October 2010. To the consortium activities participate 4 EU Universities (from Italy, Greece, Germany and Austria), 7 Partner Countries (PC) Universities (from FYR of Macedonia, Serbia and Albania), and 1 PC Ministry, 4 PC National Agencies, 1 PC non governmental organization and 1 PC enterprise. The same 4 EU Universities and the same Macedonian Institutions participated at the first TEMPUS JEP entitled DEREC-Development of Environmental and Resources Engineering Curriculum. Both the first and second cycle curriculum, developed through the co-operation, exchange of know-how and expertise between partners, are based on the European Credit Transfer System and are in accordance with the Bologna Process. Within DEREC a new three-years first cycle curriculum in Environmental and Resources Engineering was opened at the University Ss Cyril and Methodius, Skopje, and the necessary conditions for offering a Joint Degree Title, on the basis of an agreement between the Ss. Cyril and Methodius University and the University of Firenze, were fulfilled. The running DEREL project, as a continuation of DEREC, is aimed to introduce a new, up-to-date, postgraduate second cycle curriculum in Environment and Resources Engineering at the Ss Cyril and Methodius University in

  14. Ecotourism Development: Educational Media of Environmental Care

    Directory of Open Access Journals (Sweden)

    Mohd. Hatta

    2015-10-01

    Full Text Available One of appropriate tourism management models to be implemented while maintaining the sustainability and the beauty of the nature is sustainable tourism activities that have low impact on the environment, otherwise known as ecotourism. With the concept of ecotourism, which combines tourism with nature conservation, is believed to develop the rest of the environmental potential. Developing the natural ecotourism with alignments principles on nature and will be very beneficial to humans. Its usefulness is not only availability of a healthy environment and climate, maintaining flora and fauna that increasingly rare, but also can be a direct lecturing media, both formal and informal levels. Availability of valuable educational ecotourism area has to be monitored seriously so that the chain of intergenerational education of nature is not interrupted. Through ecotourism promoting the values of education, future generations will be more familiar with nature as an integral part of life. Keywords: Ecotourism, educational media, environmentCopyright © 2015 by Al-Ta'lim All right reserved

  15. Technology management for environmentally sound and sustainable development

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    1992-01-01

    With the evolutionary change in the production activities of human societies, the concept of development has also been changing. In the recent years the emphasis has been on the environmentally sound and sustainable development. The environmentally sound and sustainable development can be obtained through judicious use of technology. Technology as a resource transformer has emerged as the most important factor which can constitute to economic growth. But technology is not an independent and autonomous force, it is only an instrument which needs to be used carefully, properly and appropriately which necessitates technology management. (author)

  16. OCETA: services for environmental companies an technology developers

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, A.; Ozdemir, B. [Ontario Centre for Environmental Technology Advancement, Toronto, ON (Canada)

    1995-12-31

    Services provided by OCETA (Ontario Centre for Environmental Technology Advancement) to Ontario-based developers of environmental technologies, were described. While OCETA is not a granting agency, it is prepared to provide seed funding, in combination with private and government funding for client projects, and is committed to sharing risks and rewards for successful commercialization. The agency is also in a position to provide technology services at agreed discounts and to maximize in-kind contributions in order to extend project funding. Other services that the agency is equipped to provide, are described. These include information services, technology demonstration and assessment, business services, funding identification and sourcing, marketing, partnerships, and export market development.

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, ENVIRONMENTAL DECISION SUPPORT SOFTWARE, UNIVERSITY OF TENNESSEE RESEARCH CORPORATION, SPATIAL ANALYSIS AND DECISION ASSISTANCE (SADA)

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification Program (ETV) to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the...

  18. Hawaii Energy and Environmental Technologies (HEET) Initiative

    National Research Council Canada - National Science Library

    Rocheleau, Richard E; Moore, Robert M; Turn, Scott Q; Antal, Jr., Michael J; Cooney, Michael J; Liaw, Bor-Yann; Masutani, Stephen M

    2007-01-01

    This report covers efforts by the Hawaii Natural Energy Institute of the University of Hawaii under the ONR-funded HEET Initiative that addresses critical technology needs for exploration/utilization...

  19. TABLET (MOBILE TECHNOLOGY FOR PROFESSIONAL MUSIC EDUCATION

    Directory of Open Access Journals (Sweden)

    Gorbunova Irina B.

    2016-12-01

    Full Text Available The article highlights issues associated with the introduction of cloud-centric and tablet (mobile devices in music education, use of which confronts the teacher-musician fundamentally new challenges. So, it's a development of practical teaching skills with the assistance of modern technology, a search of approaches to the organization of educational process, a creation of conditions for the continuity between traditional music learning and information technologies in educational process. Authors give the characteristics of cloud computing and the perspective of its use in music schools (distance learning, sharing, cloud services, etc.. Also you can see in this article the overview of some mobile applications (for OS Android and iOS and their use in the educational process.

  20. Environmental Science and Technology Department annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au).

  1. Environmental Science and Technology Department annual report 1993

    International Nuclear Information System (INIS)

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au)

  2. The Danish technology foresight on environmentally friendly agriculture

    DEFF Research Database (Denmark)

    Borch, Kristian

    2013-01-01

    A premise that is necessary for agriculture to develop into an environmentally friendly direction is that research is undertaken into environmentally friendly technologies and methods and how they can be brought into use. There is a need for a prioritised research effort that focuses on those...... without any plan or with some thought. Therefore the National Forest and Nature Agency in Denmark initiated the Green Technological foresight on environmentally friendly agriculture with the aim of examining the agricultural environmental challenges and suggesting technological and structural solutions....... problems which are related to minimising environmental problems affected by the agricultural production’s negative influence on the surroundings, improving animal welfare and finding new ways and products for agriculture. Future directions of agriculture can derive with or without dialogue; it can occur...

  3. Economic and environmental impacts of alternative transportation technologies.

    Science.gov (United States)

    2013-04-01

    This project has focused on comparing alternative transportation technologies in terms of their : environmental and economic impacts. The research is data-driven and quantitative, and examines the : dynamics of impact. We have developed new theory an...

  4. African Journal of Environmental Science and Technology - Vol 4 ...

    African Journals Online (AJOL)

    Increase in healthcare facilities and rapid environmental degradation: A technological paradox in Nigeria's urban centres · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. A Coker, MKC Sridhar, 577-585 ...

  5. Informatics and Technology in Resident Education.

    Science.gov (United States)

    Niehaus, William

    2017-05-01

    Biomedical or clinical informatics is the transdisciplinary field that studies and develops effective uses of biomedical data, information technology innovations, and medical knowledge for scientific inquiry, problem solving, and decision making, with an emphasis on improving human health. Given the ongoing advances in information technology, the field of informatics is becoming important to clinical practice and to residency education. This article will discuss how informatics is specifically relevant to residency education and the different ways to incorporate informatics into residency education, and will highlight applications of current technology in the context of residency education. How informatics can optimize communication for residents, promote information technology use, refine documentation techniques, reduce medical errors, and improve clinical decision making will be reviewed. It is hoped that this article will increase faculty and trainees' knowledge of the field of informatics, awareness of available technology, and will assist practitioners to maximize their ability to provide quality care to their patients. This article will also introduce the idea of incorporating informatics specialists into residency programs to help practitioners deliver more evidenced-based care and to further improve their efficiency. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  6. Technologies of polytechnic education in global benchmark higher education institutions

    Science.gov (United States)

    Kurushina, V. A.; Kurushina, E. V.; Zemenkova, M. Y.

    2018-05-01

    The Russian polytechnic education is going through the sequence of transformations started with introduction of bachelor and master degrees in the higher education instead of the previous “specialists”. The next stage of reformation in the Russian polytechnic education should imply the growth in quality of teaching and learning experience that is possible to achieve by accumulating the best education practices of the world-class universities using the benchmarking method. This paper gives an overview of some major distinctive features of the foreign benchmark higher education institution and the Russian university of polytechnic profile. The parameters that allowed the authors to select the foreign institution for comparison include the scope of educational profile, industrial specialization, connections with the leading regional corporations, size of the city and number of students. When considering the possibilities of using relevant higher education practices of the world level, the authors emphasize the importance of formation of a new mentality of an engineer, the role of computer technologies in engineering education, the provision of licensed software for the educational process which exceeds the level of a regional Russian university, and successful staff technologies (e.g., inviting “guest” lecturers or having 2-3 lecturers per course).

  7. Education of indoor enviromental engineering technology

    Czech Academy of Sciences Publication Activity Database

    Kic, P.; Zajíček, Milan

    2011-01-01

    Roč. 9, Spec. 1 (2011), s. 83-90 ISSN 1406-894X. [Biosystems Engineering 2011. Tartu, 12.05.2011-13.05.2011] Institutional research plan: CEZ:AV0Z10750506 Keywords : Biosystems engineering * indoor environment * study * programs Subject RIV: AM - Education http://library.utia.cas.cz/separaty/2011/VS/zajicek-education of indoor enviromental engineering technology.pdf

  8. Research on Technology and Physics Education

    Science.gov (United States)

    Bonham, Scott

    2010-10-01

    From Facebook to smart phones, technology is an integral part of our student's lives. For better or for worse, technology has become nearly inescapable in the classroom, enhancing instruction, distracting students, or simply complicating life. As good teachers we want to harness the power we have available to impact our students, but it is getting harder as the pace of technological change accelerates. How can we make good choices in which technologies to invest time and resources in to use effectively? Do some technologies make more of a difference in student learning? In this talk we will look at research studies looking at technology use in the physics classroom---both my work and that of others---and their impact on student learning. Examples will include computers in the laboratory, web-based homework, and different forms of electronic communication. From these examples, I will draw some general principles for effective educational technology and physics education. Technology is simply a tool; the key is how we use those tools to help our students develop their abilities and understanding.

  9. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G.A.

    1999-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites

  10. Assessment and evaluation of technologies for environmental restoration. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Uzochukwu, G. A. [North Carolina A and T State Univ., Greensboro, NC (United States)

    2000-06-30

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  11. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G. A.

    2000-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  12. Educational Uses of Virtual Reality Technology.

    Science.gov (United States)

    1998-01-01

    assist learning disabled students in gaining such skills. This VIRART researchers are also working on providing support for autistic students. In this...on the use of VR to help autistic children. In their first effort, these researchers used Street World to investigate the usability of the technology ...ANALYSES Educational Uses of Virtual Reality Technology Christine Youngblut mm QUALITY INSPECTED B, 19980325 036 / . , This work was conducted

  13. Bridge to a sustainable future: National environmental technology strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    For the past two years the Administration has sought the views of Congress, the states, communities, industry, academia, nongovernmental organizations, and interested citizens on ways to spur the development and use of a new generation of environmental technologies. This document represents the views of thousands of individuals who participated in events around the country to help craft a national environmental technology strategy that will put us on the path to sustainable development.

  14. Environmental education. Umweltlernen. Veraenderungsmoeglichkeiten des Umweltbewusstseins

    Energy Technology Data Exchange (ETDEWEB)

    Fietkau, H J; Kessel, H

    1981-01-01

    On the basis of findings of the social sciences as well as domestic and foreign experiences this reader shows how it might be possible to change the people's ecological awareness. After having given an introduction into a new approach of a model twelve authors discuss this topic from various fields of the social sciences (opinion poll research, pedagogics, sociology, psychology) and from practical fields (schools, adult education, commercial communication). Contributions to recent developments of environmental education in the Netherlands, Sweden and the United Kingdom supplement the volume. After having provided an evaluating summary the editors of the volume derive the practical consequences for changing the ecological awareness. First of all this is based on the results of opinion polls which point out that there is overall, a positive attitude towards pollution protection among the population of the F.R. of Germany. The citizens insist on increased activities for maintaining the environment both from governmental and non-governmental authorities, even if financial resources have to be employed. Opinion polls confirm that there is a basic preparedness to actively contribute, maintaining and improving the environment by people's own behaviour. As far as the corresponding attitudes are concerned the conditions for an environmentally-minded behaviour are given.

  15. Environmental education. Umweltlernen. Veraenderungsmoeglichkeiten des Umweltbewusstseins

    Energy Technology Data Exchange (ETDEWEB)

    Fietkau, H.J.; Kessel, H.

    1981-01-01

    On the basis of findings of the social sciences as well as domestic and foreign experiences this reader shows how it might be possible to change the people's ecological awareness. After having given an introduction into a new approach of a model twelve authors discuss this topic from various fields of the social sciences (opinion poll research, pedagogics, sociology, psychology) and from practical fields (schools, adult education, commercial communication). Contributions to recent developments of environmental education in the Netherlands, Sweden and the United Kingdom supplement the volume. After having provided an evaluating summary the editors of the volume derive the practical consequences for changing the ecological awareness. First of all this is based on the results of opinion polls which point out that there is overall, a positive attitude towards pollution protection among the population of the F.R. of Germany. The citizens insist on increased activities for maintaining the environment both from governmental and non-governmental authorities, even if financial resources have to be employed. Opinion polls confirm that there is a basic preparedness to actively contribute, maintaining and improving the environment by people's own behaviour. As far as the corresponding attitudes are concerned the conditions for an environmentally-minded behaviour are given.

  16. Improving Educational Outcomes by Providing Educational Services through Mobile Technology

    Directory of Open Access Journals (Sweden)

    Hosam Farouk El-Sofany

    2013-01-01

    Full Text Available The use of Computers, Networks, and Internet has successfully enabled educational institutions to provide their students and instructors with various online educational services. With the recent developments in M-learning and mobile technology, further possibilities are emerging to provide such services through mobile devices such as mobile phones and PDAs. By providing the educational services using wireless and mobile technologies, the educational institutions can potentially bring great convenience to those off-campus students who do not always have time to find Internet enabled computers to get the important educational information from their academic institutions. With the mobile or M-educational services, both the students and the instructors can access the services anytime and anywhere they want. This paper discusses those M-educational services that can be moved to the mobile platform and then presents the system prototype and architecture that integrate these services into the mobile technology platform. The paper will conclude with a description of the formative evaluation of the system prototype.

  17. SIHTI 2 - Versatile research on environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K. [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    The Finnish industry has in many fields reached an international top position in energy economy and environmental safety. This would have not been possible without intensive R and D work and close co-operation of process utilisers and equipment manufacturers - in particular in pulp and paper industries - in development of cleaner production methods and equipment

  18. Environmental statement for Applications Technology Satellite program

    Science.gov (United States)

    1971-01-01

    The experiments, environmental impact, and applications of data collected by ATS are discussed. Data cover communications, navigation, meteorology, data collection (including data from small unattended remote stations such as buoys, seismology and hydrology monitors, etc.), geodesy, and scientific experiments to define the environment at synchronous orbit, and to monitor emissions from the sun.

  19. Environmental Justice and Green-Technology Adoption

    Science.gov (United States)

    Ong, Paul

    2012-01-01

    This paper presents an analysis of an environmental justice (EJ) program adopted by the South Coast Air Quality Management District (SCAQMD) as a part of its regulation to phase out a toxic chemical used by dry cleaners. SCAQMD provided financial incentives to switch early and gave establishments in EJ neighborhoods priority in applying for…

  20. SIHTI 2 - Versatile research on environmental technology

    International Nuclear Information System (INIS)

    Larjava, K.

    1996-01-01

    The Finnish industry has in many fields reached an international top position in energy economy and environmental safety. This would have not been possible without intensive R and D work and close co-operation of process utilisers and equipment manufacturers - in particular in pulp and paper industries - in development of cleaner production methods and equipment