WorldWideScience

Sample records for technology clinical laboratory

  1. Emerging Technologies for the Clinical Microbiology Laboratory

    Science.gov (United States)

    Buchan, Blake W.

    2014-01-01

    SUMMARY In this review we examine the literature related to emerging technologies that will help to reshape the clinical microbiology laboratory. These topics include nucleic acid amplification tests such as isothermal and point-of-care molecular diagnostics, multiplexed panels for syndromic diagnosis, digital PCR, next-generation sequencing, and automation of molecular tests. We also review matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry methods and their role in identification of microorganisms. Lastly, we review the shift to liquid-based microbiology and the integration of partial and full laboratory automation that are beginning to impact the clinical microbiology laboratory. PMID:25278575

  2. Theoretical and practical considerations for teaching diagnostic electronic-nose technologies to clinical laboratory technicians

    Science.gov (United States)

    Alphus D. Wilson

    2012-01-01

    The rapid development of new electronic technologies and instruments, utilized to perform many current clinical operations in the biomedical field, is changing the way medical health care is delivered to patients. The majority of test results from laboratory analyses, performed with these analytical instruments often prior to clinical examinations, are frequently used...

  3. Miniaturization and globalization of clinical laboratory activities.

    Science.gov (United States)

    Melo, Murilo R; Clark, Samantha; Barrio, Daniel

    2011-04-01

    Clinical laboratories provide an invaluable service to millions of people around the world in the form of quality diagnostic care. Within the clinical laboratory industry the impetus for change has come from technological development (miniaturization, nanotechnology, and their collective effect on point-of-care testing; POCT) and the increasingly global nature of laboratory services. Potential technological gains in POCT include: the development of bio-sensors, microarrays, genetics and proteomics testing, and enhanced web connectivity. In globalization, prospective opportunities lie in: medical tourism, the migration of healthcare workers, cross-border delivery of testing, and the establishment of accredited laboratories in previously unexplored markets. Accompanying these impressive opportunities are equally imposing challenges. Difficulty transitioning from research to clinical use, poor infrastructure in developing countries, cultural differences and national barriers to global trade are only a few examples. Dealing with the issues presented by globalization and the impact of developing technology on POCT, and on the clinical laboratory services industry in general, will be a daunting task. Despite such concerns, with appropriate countermeasures it will be possible to address the challenges posed. Future laboratory success will be largely dependent on one's ability to adapt in this perpetually shifting landscape.

  4. Advanced methods for teaching electronic-nose technologies to diagnosticians and clinical laboratory technicians

    Science.gov (United States)

    Alphus D. Wilson

    2012-01-01

    Electronic-detection technologies and instruments increasingly are being utilized in the biomedical field to perform a wide variety of clinical operations and laboratory analyses to facilitate the delivery of health care to patients. The introduction of improved electronic instruments for diagnosing diseases and for administering treatments has required new training of...

  5. Service quality framework for clinical laboratories.

    Science.gov (United States)

    Ramessur, Vinaysing; Hurreeram, Dinesh Kumar; Maistry, Kaylasson

    2015-01-01

    The purpose of this paper is to illustrate a service quality framework that enhances service delivery in clinical laboratories by gauging medical practitioner satisfaction and by providing avenues for continuous improvement. The case study method has been used for conducting the exploratory study, with focus on the Mauritian public clinical laboratory. A structured questionnaire based on the SERVQUAL service quality model was used for data collection, analysis and for the development of the service quality framework. The study confirms the pertinence of the following service quality dimensions within the context of clinical laboratories: tangibility, reliability, responsiveness, turnaround time, technology, test reports, communication and laboratory staff attitude and behaviour. The service quality framework developed, termed LabSERV, is vital for clinical laboratories in the search for improving service delivery to medical practitioners. This is a pioneering work carried out in the clinical laboratory sector in Mauritius. Medical practitioner expectations and perceptions have been simultaneously considered to generate a novel service quality framework for clinical laboratories.

  6. Integration of technology into clinical practice.

    Science.gov (United States)

    Doern, Christopher D

    2013-09-01

    It is an exciting time in clinical microbiology. New advances in technology are revolutionizing every aspect of the microbiology laboratory, from processing of specimens to bacterial identification; as a result, the microbiology laboratory is rapidly changing. With this change comes the challenge of selecting and implementing the technology that is most appropriate for each laboratory and clinical setting. This review focuses on issues surrounding implementation of new technology such that the improvements to clinical care are maximized. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Laboratory automation: trajectory, technology, and tactics.

    Science.gov (United States)

    Markin, R S; Whalen, S A

    2000-05-01

    Laboratory automation is in its infancy, following a path parallel to the development of laboratory information systems in the late 1970s and early 1980s. Changes on the horizon in healthcare and clinical laboratory service that affect the delivery of laboratory results include the increasing age of the population in North America, the implementation of the Balanced Budget Act (1997), and the creation of disease management companies. Major technology drivers include outcomes optimization and phenotypically targeted drugs. Constant cost pressures in the clinical laboratory have forced diagnostic manufacturers into less than optimal profitability states. Laboratory automation can be a tool for the improvement of laboratory services and may decrease costs. The key to improvement of laboratory services is implementation of the correct automation technology. The design of this technology should be driven by required functionality. Automation design issues should be centered on the understanding of the laboratory and its relationship to healthcare delivery and the business and operational processes in the clinical laboratory. Automation design philosophy has evolved from a hardware-based approach to a software-based approach. Process control software to support repeat testing, reflex testing, and transportation management, and overall computer-integrated manufacturing approaches to laboratory automation implementation are rapidly expanding areas. It is clear that hardware and software are functionally interdependent and that the interface between the laboratory automation system and the laboratory information system is a key component. The cost-effectiveness of automation solutions suggested by vendors, however, has been difficult to evaluate because the number of automation installations are few and the precision with which operational data have been collected to determine payback is suboptimal. The trend in automation has moved from total laboratory automation to a

  8. Clinical laboratory technologist professional development in Camagüey

    Directory of Open Access Journals (Sweden)

    Mercedes Caridad García González

    2015-05-01

    Full Text Available The paper describes the results of research aimed at assessing the current conditions related to clinical laboratory technologist professional development. A descriptive cross study covering the period between November 2013 and January 2014 is presented. Several techniques for identifying and hierarchically arranging professional developmental related problems were used to study a sample at the Faculty of Health Technology of the Medical University “Carlos Juan Finlay”. The study involved heads of teaching departments and methodologists of health care technology specialties; moreover a survey and a content test were given graduate clinical laboratory technicians. The authors reached at the conclusion that clinical laboratory technologist professional development is limited and usually underestimate the necessities and interests of these graduates. Likewise, a lack of systematization and integration of the biomedical basic sciences contents and the laboratory diagnosis is noticeable.

  9. [Why medical consultation is needed in the clinical laboratory].

    Science.gov (United States)

    Kawai, T

    1998-10-01

    During the 20th century, at least until the 1980s, clinical laboratory practice had been rapidly expanded, mainly because of a significant advancement in medicine as a whole and also in laboratory technology. However, recent economic changes in health care environment worldwide have been influencing greatly future trends in clinical laboratory practice. Four major macroeconomic forces drive change in clinical laboratory practice as follows; (1) Increasing cost of health care, (2) Implications of an aging population, (3) Social change in the patient population, and (4) Explosion of new technologies. Obviously, the increasing cost of health care is the primary driver. Considering a rapid change in the health care environment, clearly there are two separate pathways to be considered with regard to future modes of delivering patient care services through the clinical laboratory: commercial independent laboratories and hospital laboratories. In most hospital laboratories, in addition to high-quality, accurate and precise laboratory data being delivered through automated informatics in a timely fashion, laboratory physicians and other laboratorians should be available 24 hours a day and 7 days a week. The primary purpose of this approach is to develop a system in which the physician can order the most efficient number of tests, which will provide the maximum amount of clinically relevant informations most rapidly and most accurately at the least cost to the patient. Laboratory physicians must play a key role particularly in hospital laboratories. Their most important roles include those of a professional supplier of laboratory results being useful for health care and clinically relevant, and that of a consultative role for primary care physicians and other co-medical staffs to make important medical decision, based on laboratory results obtained. Therefore, the Japan Society of Clinical Pathology started in 1990 in publishing a series of proposed guidelines for adequate

  10. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  11. [Future roles of clinical laboratories and clinical laboratory technologists in university hospitals].

    Science.gov (United States)

    Yokota, Hiromitsu; Yatomi, Yutaka

    2013-08-01

    Clinical laboratories in university hospitals should be operated with a good balance of medical practice, education, research, and management. The role of a clinical laboratory is to promptly provide highly reliable laboratory data to satisfy the needs of clinicians involved in medical practice and health maintenance of patients. Improvement and maintenance of the quality of the laboratory staff and environment are essential to achieve this goal. In order to implement these requirements efficiently, an appropriate quality management system should be introduced and established, and evaluated objectively by a third party (e.g. by obtaining ISO 15189 certification). ISO 15189 is an international standard regarding the quality and competence of clinical laboratories, and specifies a review of the efficient operational system and technical requirements such as competence in implementing practical tests and calibration. This means the results of laboratory tests reported by accredited laboratories withstand any international evaluation, which is very important to assure the future importance of the existence and management of clinical laboratories as well as internationalization of medical practice. "Education" and "research" have important implications in addition to "medical practice" and "management", as the roles that clinical laboratories should play in university hospitals. University hospital laboratories should be operated by keeping these four factors in good balance. Why are "education" and "research" required in addition to "medical practice" services? If individual clinical laboratory technologists can provide an appropriate response to this question, the importance of the existence of clinical laboratories would be reinforced, without being compromised.

  12. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  13. 76 FR 5379 - Clinical Laboratory Improvement Advisory Committee (CLIAC)

    Science.gov (United States)

    2011-01-31

    ... modification of the standards to accommodate technological advances. Matters To Be Discussed: The agenda will... Coordinating Council on the Clinical Laboratory Workforce; the National Institutes of Health Genetic Test...

  14. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  15. Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology.

    Science.gov (United States)

    Garg, Uttam; Zhang, Yan Victoria

    2016-01-01

    Mass spectrometry (MS) has been used in research and specialized clinical laboratories for decades as a very powerful technology to identify and quantify compounds. In recent years, application of MS in routine clinical laboratories has increased significantly. This is mainly due to the ability of MS to provide very specific identification, high sensitivity, and simultaneous analysis of multiple analytes (>100). The coupling of tandem mass spectrometry with gas chromatography (GC) or liquid chromatography (LC) has enabled the rapid expansion of this technology. While applications of MS are used in many clinical areas, therapeutic drug monitoring, drugs of abuse, and clinical toxicology are still the primary focuses of the field. It is not uncommon to see mass spectrometry being used in routine clinical practices for those applications.

  16. Clinical Laboratory Fee Schedule

    Data.gov (United States)

    U.S. Department of Health & Human Services — Outpatient clinical laboratory services are paid based on a fee schedule in accordance with Section 1833(h) of the Social Security Act. The clinical laboratory fee...

  17. The management of clinical laboratories in Europe: a FESCC survey. Forum of the European Societies of Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    de Kieviet, Wim; Blaton, Victor; Kovacs, Gabor L; Palicka, Vladimir; Pulkki, Kari

    2002-03-01

    general management, the purchase of equipment and reagents and the education of technicians are in >90% the responsibility of the specialists in clinical chemistry. In most countries the majority of the specialists in clinical chemistry are members of the medical staff of the hospitals and have a position equivalent to the position of specialists in other medical disciplines. In some countries, however, it only holds true for the specialists with a medical background. In 79% of the countries the law regulates the profession of the specialists in clinical chemistry and in 60% of the countries the law regulates their position in the medical staff of the hospital. The advisory tasks to physicians, general practitioners and other users of laboratory tests are practised by >90% of the laboratories in 64% of the countries. Information is given directly to the patients by >90% of the laboratories in 30% of the countries. Only in a few countries laboratories give information to the public. The post-graduate training in clinical chemistry includes a managerial training in 58% of the countries, the study of information technology in 61% of the countries and an economy and/or a business administration study in 15% of the countries. In 27% of the countries no managerial education forms part of the post-graduate study in clinical chemistry. Harmonisation of the managerial aspects of the profession is one of the challenges for the European specialists in clinical chemistry. A European syllabus for post-graduate training could be helpful.

  18. Simulation-based medical education in clinical skills laboratory.

    Science.gov (United States)

    Akaike, Masashi; Fukutomi, Miki; Nagamune, Masami; Fujimoto, Akiko; Tsuji, Akiko; Ishida, Kazuko; Iwata, Takashi

    2012-01-01

    Clinical skills laboratories have been established in medical institutions as facilities for simulation-based medical education (SBME). SBME is believed to be superior to the traditional style of medical education from the viewpoint of the active and adult learning theories. SBME can provide a learning cycle of debriefing and feedback for learners as well as evaluation of procedures and competency. SBME offers both learners and patients a safe environment for practice and error. In a full-environment simulation, learners can obtain not only technical skills but also non-technical skills, such as leadership, team work, communication, situation awareness, decision-making, and awareness of personal limitations. SBME is also effective for integration of clinical medicine and basic medicine. In addition, technology-enhanced simulation training is associated with beneficial effects for outcomes of knowledge, skills, behaviors, and patient-related outcomes. To perform SBME, effectively, not only simulators including high-fidelity mannequin-type simulators or virtual-reality simulators but also full-time faculties and instructors as professionals of SBME are essential in a clinical skills laboratory for SBME. Clinical skills laboratory is expected to become an integrated medical education center to achieve continuing professional development, integrated learning of basic and clinical medicine, and citizens' participation and cooperation in medical education.

  19. Consolidated clinical microbiology laboratories.

    Science.gov (United States)

    Sautter, Robert L; Thomson, Richard B

    2015-05-01

    The manner in which medical care is reimbursed in the United States has resulted in significant consolidation in the U.S. health care system. One of the consequences of this has been the development of centralized clinical microbiology laboratories that provide services to patients receiving care in multiple off-site, often remote, locations. Microbiology specimens are unique among clinical specimens in that optimal analysis may require the maintenance of viable organisms. Centralized laboratories may be located hours from patient care settings, and transport conditions need to be such that organism viability can be maintained under a variety of transport conditions. Further, since the provision of rapid results has been shown to enhance patient care, effective and timely means for generating and then reporting the results of clinical microbiology analyses must be in place. In addition, today, increasing numbers of patients are found to have infection caused by pathogens that were either very uncommon in the past or even completely unrecognized. As a result, infectious disease specialists, in particular, are more dependent than ever on access to high-quality diagnostic information from clinical microbiology laboratories. In this point-counterpoint discussion, Robert Sautter, who directs a Charlotte, NC, clinical microbiology laboratory that provides services for a 40-hospital system spread over 3 states in the southeastern United States explains how an integrated clinical microbiology laboratory service has been established in a multihospital system. Richard (Tom) Thomson of the NorthShore University HealthSystem in Evanston, IL, discusses some of the problems and pitfalls associated with large-scale laboratory consolidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. [Clinical governance and patient safety culture in clinical laboratories in the Spanish National Health System].

    Science.gov (United States)

    Giménez-Marín, Á; Rivas-Ruiz, F

    To conduct a situational analysis of patient safety culture in public laboratories in the Spanish National Health System and to determine the clinical governance variables that most strongly influence patient safety. A descriptive cross-sectional study was carried out, in which a Survey of Patient Safety in Clinical Laboratories was addressed to workers in 26 participating laboratories. In this survey, which consisted of 45 items grouped into 6 areas, scores were assigned on a scale from 0 to 100 (where 0 is the lowest perception of patient safety). Laboratory managers were asked specific questions about quality management systems and technology. The mean scores for the 26 participating hospitals were evaluated, and the following results observed: in 4of the 6areas, the mean score was higher than 70 points. In the third area (equipment and resources) and the fourth area (working conditions), the scores were lower than 60 points. Every hospital had a digital medical record system. This 100% level of provision was followed by that of an electronic request management system, which was implemented in 82.6% of the hospitals. The results obtained show that the culture of security is homogeneous and of high quality in health service laboratories, probably due to the steady improvement observed. However, in terms of clinical governance, there is still some way to go, as shown by the presence of weaknesses in crucial dimensions of safety culture, together with variable levels of implementation of fail-safe technologies and quality management systems. Copyright © 2017 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. [Guidelines for blood transfusion teaching to medical laboratory technology students].

    Science.gov (United States)

    Moncharmont, P; Tourlourat, M; Fourcade, C; Julien, E; Peyrard, T; Cabaud, J-J

    2012-02-01

    The new French law about clinical laboratory medicine, the requirements of the ISO/CEI 15189 standard, the numerous abilities expected from the medical laboratory technologists and their involvement in blood bank management has led the working group "Recherche et démarche qualité" of the French Society of Blood Transfusion to initiate an inventory of blood transfusion teaching syllabus for medical laboratory technology students and to propose transfusion medicine teaching guidelines. Seven worksheets have been established for that purpose including red blood cell antigen typing and antibody screening, blood sampling in immunohaematology, automation, clinical practices, blood products, blood delivery and haemovigilance. These guidelines aim at contributing to the harmonization of transfusion medicine teaching and at providing objective elements to the medical laboratory managers regarding the practical and theoretical skills of theirs collaborators. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Biomedical mass spectrometry in today's and tomorrow's clinical microbiology laboratories

    NARCIS (Netherlands)

    A.F. van Belkum (Alex); M. Welker (Martin); M. Erhard (Marcel); S. Chatellier (Sonia)

    2012-01-01

    textabstractClinical microbiology is a conservative laboratory exercise where base technologies introduced in the 19th century remained essentially unaltered. High-tech mass spectrometry (MS) has changed that. Within a few years following its adaptation to microbiological diagnostics, MS has been

  3. Variation in interoperability across clinical laboratories nationwide.

    Science.gov (United States)

    Patel, Vaishali; McNamara, Lauren; Dullabh, Prashila; Sawchuk, Megan E; Swain, Matthew

    2017-12-01

    To characterize nationwide variation and factors associated with clinical laboratories': (1) capabilities to send structured test results electronically to ordering practitioners' EHR systems; and (2) their levels of exchange activity, as measured by whether they sent more than three-quarters of their test results as structured data to ordering practitioners' EHR systems. A national survey of all independent and hospital laboratories was conducted in 2013. Using an analytic weighted sample of 9382 clinical laboratories, a series of logistic regression analyses were conducted to identify organizational and area characteristics associated with clinical laboratories' exchange capability and activity. Hospital-based clinical laboratories (71%) and larger clinical laboratories (80%) had significantly higher levels of capability compared to independent (58%) and smaller laboratories (48%), respectively; though all had similar levels of exchange activity, with 30% of clinical laboratories sending 75% or more of their test results electronically. In multivariate analyses, hospital and the largest laboratories had 1.87 and 4.40 higher odds, respectively, of possessing the capability to send results electronically compared to independent laboratories (pLaboratories located in areas with a higher share of potential exchange partners had a small but significantly greater capability to send results electronically and higher levels of exchange activity(pClinical laboratories' capability to exchange varied by size and type; however, all clinical laboratories had relatively low levels of exchange activity. The role of exchange partners potentially played a small but significant role in driving exchange capability and activity. Published by Elsevier B.V.

  4. Nomenclature and basic concepts in automation in the clinical laboratory setting: a practical glossary.

    Science.gov (United States)

    Evangelopoulos, Angelos A; Dalamaga, Maria; Panoutsopoulos, Konstantinos; Dima, Kleanthi

    2013-01-01

    In the early 80s, the word automation was used in the clinical laboratory setting referring only to analyzers. But in late 80s and afterwards, automation found its way into all aspects of the diagnostic process, embracing not only the analytical but also the pre- and post-analytical phase. While laboratories in the eastern world, mainly Japan, paved the way for laboratory automation, US and European laboratories soon realized the benefits and were quick to follow. Clearly, automation and robotics will be a key survival tool in a very competitive and cost-concious healthcare market. What sets automation technology apart from so many other efficiency solutions are the dramatic savings that it brings to the clinical laboratory. Further standardization will assure the success of this revolutionary new technology. One of the main difficulties laboratory managers and personnel must deal with when studying solutions to reengineer a laboratory is familiarizing themselves with the multidisciplinary and technical terminology of this new and exciting field. The present review/glossary aims at giving an overview of the most frequently used terms within the scope of laboratory automation and to put laboratory automation on a sounder linguistic basis.

  5. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for use of tumor markers in clinical practice

    DEFF Research Database (Denmark)

    Sturgeon, Catharine M; Hoffman, Barry R; Chan, Daniel W

    2008-01-01

    BACKGROUND: This report presents updated National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines summarizing quality requirements for the use of tumor markers. METHODS: One subcommittee developed guidelines for analytical quality relevant to serum and tissue-based tumor...... questions to ensure selection of the appropriate test, adherence to good clinical and laboratory practices (e.g., minimization of the risk of incorrect patient and/or specimen identification, tube type, or timing), use of internationally standardized and well-characterized methods, careful adherence...... records. Also mandatory is extensive validation encompassing all stages of analysis before introduction of new technologies such as microarrays and mass spectrometry. Provision of high-quality tumor marker services is facilitated by dialogue involving researchers, diagnostic companies, clinical...

  6. Clinical laboratory accreditation in India.

    Science.gov (United States)

    Handoo, Anil; Sood, Swaroop Krishan

    2012-06-01

    Test results from clinical laboratories must ensure accuracy, as these are crucial in several areas of health care. It is necessary that the laboratory implements quality assurance to achieve this goal. The implementation of quality should be audited by independent bodies,referred to as accreditation bodies. Accreditation is a third-party attestation by an authoritative body, which certifies that the applicant laboratory meets quality requirements of accreditation body and has demonstrated its competence to carry out specific tasks. Although in most of the countries,accreditation is mandatory, in India it is voluntary. The quality requirements are described in standards developed by many accreditation organizations. The internationally acceptable standard for clinical laboratories is ISO15189, which is based on ISO/IEC standard 17025. The accreditation body in India is the National Accreditation Board for Testing and Calibration Laboratories, which has signed Mutual Recognition Agreement with the regional cooperation the Asia Pacific Laboratory Accreditation Cooperation and with the apex cooperation the International Laboratory Accreditation Cooperation.

  7. MUSICAL-COMPUTER TECHNOLOGY: THE LABORATORY

    Directory of Open Access Journals (Sweden)

    Gorbunova Irina B.

    2012-12-01

    Full Text Available The article deals with musically-computer technology in the educational system on example of the Educational and Methodical Laboratory Music & Computer Technologies at the Herzen State Pedagogical University of Russia, St. Petersburg. Interdisciplinary field of professional activities relates to the creation and application of specialized music software and hardware tools and the knowledges in music and informatics. A realization of the concept of musical-computer education in preparing music teachers is through basic educational programs of vocational training, supplementary education, professional development of teachers and methodical support via Internet. In addition, the laboratory Music & Computer Technologies engaged in scientific activity: it is, above all, specialized researches in the field of pedagogy and international conferences.

  8. Automation in the clinical microbiology laboratory.

    Science.gov (United States)

    Novak, Susan M; Marlowe, Elizabeth M

    2013-09-01

    Imagine a clinical microbiology laboratory where a patient's specimens are placed on a conveyor belt and sent on an automation line for processing and plating. Technologists need only log onto a computer to visualize the images of a culture and send to a mass spectrometer for identification. Once a pathogen is identified, the system knows to send the colony for susceptibility testing. This is the future of the clinical microbiology laboratory. This article outlines the operational and staffing challenges facing clinical microbiology laboratories and the evolution of automation that is shaping the way laboratory medicine will be practiced in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. [The future of clinical laboratory database management system].

    Science.gov (United States)

    Kambe, M; Imidy, D; Matsubara, A; Sugimoto, Y

    1999-09-01

    To assess the present status of the clinical laboratory database management system, the difference between the Clinical Laboratory Information System and Clinical Laboratory System was explained in this study. Although three kinds of database management systems (DBMS) were shown including the relational model, tree model and network model, the relational model was found to be the best DBMS for the clinical laboratory database based on our experience and developments of some clinical laboratory expert systems. As a future clinical laboratory database management system, the IC card system connected to an automatic chemical analyzer was proposed for personal health data management and a microscope/video system was proposed for dynamic data management of leukocytes or bacteria.

  10. Technology transfer in the national laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  11. Promoting Good Clinical Laboratory Practices and Laboratory Accreditation to Support Clinical Trials in Sub-Saharan Africa

    Science.gov (United States)

    Shott, Joseph P.; Saye, Renion; Diakité, Moussa L.; Sanogo, Sintry; Dembele, Moussa B.; Keita, Sekouba; Nagel, Mary C.; Ellis, Ruth D.; Aebig, Joan A.; Diallo, Dapa A.; Doumbo, Ogobara K.

    2012-01-01

    Laboratory capacity in the developing world frequently lacks quality management systems (QMS) such as good clinical laboratory practices, proper safety precautions, and adequate facilities; impacting the ability to conduct biomedical research where it is needed most. As the regulatory climate changes globally, higher quality laboratory support is needed to protect study volunteers and to accurately assess biological parameters. The University of Bamako and its partners have undertaken a comprehensive QMS plan to improve quality and productivity using the Clinical and Laboratory Standards Institute standards and guidelines. The clinical laboratory passed the College of American Pathologists inspection in April 2010, and received full accreditation in June 2010. Our efforts to implement high-quality standards have been valuable for evaluating safety and immunogenicity of malaria vaccine candidates in Mali. Other disease-specific research groups in resource-limited settings may benefit by incorporating similar training initiatives, QMS methods, and continual improvement practices to ensure best practices. PMID:22492138

  12. Clinical protein science developments for patient monitoring in hospital central laboratories.

    Science.gov (United States)

    Malm, Johan; Marko-Varga, György

    2016-12-01

    Patient care relies heavily on standardized tests performed in hospital laboratories, typically including clinical chemistry, pathology and microbiology. With the introduction of personalized medicine tremendous efforts have been made to identify new biomarkers of disease with various omics technologies, often including mass spectrometry. In order to validate new biomarkers and perform clinical studies high quality biobank samples are of key importance. In this editorial different aspects of mass spectrometry in future personalized medicine are discussed.

  13. A 50-year research journey. From laboratory to clinic.

    Science.gov (United States)

    Ross, John

    2009-01-01

    Prior important research is not always cited, exemplified by Oswald Avery's pioneering discovery that DNA is the genetic transforming factor; it was not cited by Watson and Crick 10 years later. My first laboratory research (National Institutes of Health 1950s) resulted in the clinical development of transseptal left heart catheterization. Laboratory studies on cardiac muscle mechanics in normal and failing hearts led to the concept of afterload mismatch with limited preload reserve. At the University of California, San Diego in La Jolla (1968) laboratory experiments on coronary artery reperfusion after sustained coronary occlusion showed salvage of myocardial tissue, a potential treatment for acute myocardial infarction proven in clinical trials of thrombolysis 14 years later. Among 60 trainees who worked with me in La Jolla, one-third were Japanese and some of their important laboratory experiments are briefly recounted, beginning with Sasayama, Tomoike and Shirato in the 1970 s. Recently, we developed a method for cardiac gene transfer, and subsequently we showed that gene therapy for the defect in cardiomyopathic hamsters halted the progression of advanced disease. Cardiovascular research and medicine are producing continuing advances in technologies for gene transfer and embryonic stem cell transplantation, targeting of small molecules, and tissue and organ engineering.

  14. Quality management systems for your in vitro fertilization clinic's laboratory: Why bother?

    Science.gov (United States)

    Olofsson, Jan I; Banker, Manish R; Sjoblom, Late Peter

    2013-01-01

    Several countries have in recent years introduced prescribed requirements for treatment and monitoring of outcomes, as well as a licensing or accreditation requirement for in vitro fertilization (IVF) clinics and their laboratories. It is commonplace for Assisted Reproductive Technology (ART) laboratories to be required to have a quality control system. However, more effective Total Quality Management systems are now being implemented by an increasing number of ART clinics. In India, it is now a requirement to have a quality management system in order to be accredited and to help meet customer demand for improved delivery of ART services. This review contains the proceedings a quality management session at the Indian Fertility Experts Meet (IFEM) 2010 and focuses on the creation of a patient-oriented best-in-class IVF laboratory.

  15. Overview and challenges of molecular technologies in the veterinary microbiology laboratory.

    Science.gov (United States)

    Cunha, Mónica V; Inácio, João

    2015-01-01

    Terrestrial, aquatic, and aerial animals, either domestic or wild, humans, and plants all face similar health threats caused by infectious agents. Multifaceted anthropic pressure caused by an increasingly growing and resource-demanding human population has affected biodiversity at all scales, from the DNA molecule to the pathogen, to the ecosystem level, leading to species declines and extinctions and, also, to host-pathogen coevolution processes. Technological developments over the last century have also led to quantic jumps in laboratorial testing that have highly impacted animal health and welfare, ameliorated animal management and animal trade, safeguarded public health, and ultimately helped to "secure" biodiversity. In particular, the field of molecular diagnostics experienced tremendous technical progresses over the last two decades that significantly have contributed to our ability to study microbial pathogens in the clinical and research laboratories. This chapter highlights the strengths, weaknesses, opportunities, and threats (or challenges) of molecular technologies in the framework of a veterinary microbiology laboratory, in view of the latest advances.

  16. Atomic spectrometry and trends in clinical laboratory medicine

    Science.gov (United States)

    Parsons, Patrick J.; Barbosa, Fernando

    2007-09-01

    Increasing numbers of clinical laboratories are transitioning away from flame and electrothermal AAS methods to those based on ICP-MS. Still, for many laboratories, the choice of instrumentation is based upon (a) the element(s) to be determined, (b) the matrix/matrices to be analyzed, and (c) the expected concentration(s) of the analytes in the matrix. Most clinical laboratories specialize in measuring Se, Zn, Cu, and Al in serum, and/or Pb, Cd, Hg, As, and Cr in blood and/or urine, while other trace elements (e.g., Pt, Au etc.) are measured for therapeutic purposes. Quantitative measurement of elemental species is becoming more widely accepted for nutritional and/or toxicological screening purposes, and ICP-MS interfaced with separation techniques, such as liquid chromatography or capillary electrophoresis, offers the advantage of on-line species determination coupled with very low detection limits. Polyatomic interferences for some key elements such as Se, As, and Cr require instrumentation equipped with dynamic reaction cell or collision cell technologies, or might even necessitate the use of sector field ICP-MS, to assure accurate results. Nonetheless, whatever analytical method is selected for the task, careful consideration must be given both to specimen collection procedures and to the control of pre-analytical variables. Finally, all methods benefit from access to reliable certified reference materials (CRMs). While a variety of reference materials (RMs) are available for trace element measurements in clinical matrices, not all can be classified as CRMs. The major metrological organizations (e.g., NIST, IRMM, NIES) provide a limited number of clinical CRMs, however, secondary reference materials are readily available from commercial organizations and organizers of external quality assessment schemes.

  17. Atomic spectrometry and trends in clinical laboratory medicine

    International Nuclear Information System (INIS)

    Parsons, Patrick J.; Barbosa, Fernando

    2007-01-01

    Increasing numbers of clinical laboratories are transitioning away from flame and electrothermal AAS methods to those based on ICP-MS. Still, for many laboratories, the choice of instrumentation is based upon (a) the element(s) to be determined, (b) the matrix/matrices to be analyzed, and (c) the expected concentration(s) of the analytes in the matrix. Most clinical laboratories specialize in measuring Se, Zn, Cu, and Al in serum, and/or Pb, Cd, Hg, As, and Cr in blood and/or urine, while other trace elements (e.g., Pt, Au etc.) are measured for therapeutic purposes. Quantitative measurement of elemental species is becoming more widely accepted for nutritional and/or toxicological screening purposes, and ICP-MS interfaced with separation techniques, such as liquid chromatography or capillary electrophoresis, offers the advantage of on-line species determination coupled with very low detection limits. Polyatomic interferences for some key elements such as Se, As, and Cr require instrumentation equipped with dynamic reaction cell or collision cell technologies, or might even necessitate the use of sector field ICP-MS, to assure accurate results. Nonetheless, whatever analytical method is selected for the task, careful consideration must be given both to specimen collection procedures and to the control of pre-analytical variables. Finally, all methods benefit from access to reliable certified reference materials (CRMs). While a variety of reference materials (RMs) are available for trace element measurements in clinical matrices, not all can be classified as CRMs. The major metrological organizations (e.g., NIST, IRMM, NIES) provide a limited number of clinical CRMs, however, secondary reference materials are readily available from commercial organizations and organizers of external quality assessment schemes

  18. [THE VIRTUAL CYTOLOGIC SLIDES FOR EXTERNAL EVALUATION OF QUALITY OF IMPLEMENTATION OF CYTOLOGIC ANALYSES IN CLINICAL DIAGNOSTIC LABORATORIES: POSSIBILITIES AND PERSPECTIVES].

    Science.gov (United States)

    Djangirova, T V; Shabalova, I P; Pronichev, A N; Polyakov, E V

    2015-08-01

    The article considers application of technology of analysis of cytological slides in external quality control of clinical diagnostic laboratories. The advantages of virtual slides are demonstrated against other applied technologies of external evaluation of quality i.e. slide plate and digital micro-photography. The conditions of formation of virtual slides for external evaluation of quality of clinical diagnostic laboratories. The technology of their application is described. The success of practical application of considered technology in the Federal system of external evaluation of quality is emphasized.

  19. [How do hospital clinical laboratories and laboratory testing companies cooperate and build reciprocal relations?].

    Science.gov (United States)

    Kawano, Seiji

    2014-12-01

    As the 2nd Joint Symposium of the Japanese Society of Laboratory Medicine and the Japanese Association of Laboratory Pathologists, the symposium on clinical test out-sourcing and branch laboratories was held at the 60th General Meeting of the Japanese Society of Laboratory Medicine on November 2nd, 2013 in Kobe. For the symposium, we conducted a questionnaire survey on the usage of clinical test out-sourcing and the introduction of branch laboratories to clinical laboratories of Japanese university hospitals, both private and public, between July 25th and August 20th, 2013. Seventy-two hospitals responded to the questionnaire survey, consisting of 41 public medical school hospitals and 31 private ones. According to the survey, the selection of each clinical test for out-sourcing was mainly determined by the capacities of hospital clinical laboratories and their equipment, as well as the profitability of each test. The main concerns of clinical laboratory members of university hospitals involved the continuity of measurement principles, traceability, and standardization of reference values for each test. They strongly requested the interchangeability and computerization of test data between laboratory testing companies. A branch laboratory was introduced to six hospitals, all of which were private medical college hospitals, out of 72 university hospitals, and eight of the other hospitals were open to its introduction. The merits and demerits of introducing a branch laboratory were also discussed. (Review).

  20. [Quality Management and Quality Specifications of Laboratory Tests in Clinical Studies--Challenges in Pre-Analytical Processes in Clinical Laboratories].

    Science.gov (United States)

    Ishibashi, Midori

    2015-01-01

    The cost, speed, and quality are the three important factors recently indicated by the Ministry of Health, Labour and Welfare (MHLW) for the purpose of accelerating clinical studies. Based on this background, the importance of laboratory tests is increasing, especially in the evaluation of clinical study participants' entry and safety, and drug efficacy. To assure the quality of laboratory tests, providing high-quality laboratory tests is mandatory. For providing adequate quality assurance in laboratory tests, quality control in the three fields of pre-analytical, analytical, and post-analytical processes is extremely important. There are, however, no detailed written requirements concerning specimen collection, handling, preparation, storage, and shipping. Most laboratory tests for clinical studies are performed onsite in a local laboratory; however, a part of laboratory tests is done in offsite central laboratories after specimen shipping. As factors affecting laboratory tests, individual and inter-individual variations are well-known. Besides these factors, standardizing the factors of specimen collection, handling, preparation, storage, and shipping, may improve and maintain the high quality of clinical studies in general. Furthermore, the analytical method, units, and reference interval are also important factors. It is concluded that, to overcome the problems derived from pre-analytical processes, it is necessary to standardize specimen handling in a broad sense.

  1. 77 FR 41188 - Clinical Laboratory Improvement Advisory Committee (CLIAC)

    Science.gov (United States)

    2012-07-12

    ... to general issues related to improvement in clinical laboratory quality and laboratory medicine... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Clinical... patient-centeredness of laboratory services; revisions to the standards under which clinical laboratories...

  2. Clinical laboratory waste management in Shiraz, Iran.

    Science.gov (United States)

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  3. Selecting automation for the clinical chemistry laboratory.

    Science.gov (United States)

    Melanson, Stacy E F; Lindeman, Neal I; Jarolim, Petr

    2007-07-01

    Laboratory automation proposes to improve the quality and efficiency of laboratory operations, and may provide a solution to the quality demands and staff shortages faced by today's clinical laboratories. Several vendors offer automation systems in the United States, with both subtle and obvious differences. Arriving at a decision to automate, and the ensuing evaluation of available products, can be time-consuming and challenging. Although considerable discussion concerning the decision to automate has been published, relatively little attention has been paid to the process of evaluating and selecting automation systems. To outline a process for evaluating and selecting automation systems as a reference for laboratories contemplating laboratory automation. Our Clinical Chemistry Laboratory staff recently evaluated all major laboratory automation systems in the United States, with their respective chemistry and immunochemistry analyzers. Our experience is described and organized according to the selection process, the important considerations in clinical chemistry automation, decisions and implementation, and we give conclusions pertaining to this experience. Including the formation of a committee, workflow analysis, submitting a request for proposal, site visits, and making a final decision, the process of selecting chemistry automation took approximately 14 months. We outline important considerations in automation design, preanalytical processing, analyzer selection, postanalytical storage, and data management. Selecting clinical chemistry laboratory automation is a complex, time-consuming process. Laboratories considering laboratory automation may benefit from the concise overview and narrative and tabular suggestions provided.

  4. Quality and future of clinical laboratories: the Vico's whole cyclical theory of the recurring cycles.

    Science.gov (United States)

    Plebani, Mario

    2018-05-24

    In the last few decades, laboratory medicine has undergone monumental changes, and laboratory technology, which has made enormous advances, now has new clinical applications thanks to the identification of a growing number of biomarkers and risk factors conducive to the promotion of predictive and preventive interventions that have enhanced the role of laboratory medicine in health care delivering. However, the paradigm shift in the past 50 years has led to a gap between laboratory and clinic, with an increased risk of inappropriateness in test request and interpretation, as well as the consolidation of analytical work in focused factories and megastructurers oriented only toward achieving greater volumes, decreasing cost per test and generating a vision of laboratory services as simple commodities. A careful historical revision of the changing models for delivering laboratory services in the United States leads to the prediction that there are several reasons for counteracting the vision of clinical laboratory as a commodity, and restoring the true nature of laboratory services as an integral part of the diagnosis and therapy process. The present study, which reports on internal and external drivers for change, proposes an integrated vision of quality in laboratory medicine.

  5. U.S. Ebola Treatment Center Clinical Laboratory Support.

    Science.gov (United States)

    Jelden, Katelyn C; Iwen, Peter C; Herstein, Jocelyn J; Biddinger, Paul D; Kraft, Colleen S; Saiman, Lisa; Smith, Philip W; Hewlett, Angela L; Gibbs, Shawn G; Lowe, John J

    2016-04-01

    Fifty-five hospitals in the United States have been designated Ebola treatment centers (ETCs) by their state and local health authorities. Designated ETCs must have appropriate plans to manage a patient with confirmed Ebola virus disease (EVD) for the full duration of illness and must have these plans assessed through a CDC site visit conducted by an interdisciplinary team of subject matter experts. This study determined the clinical laboratory capabilities of these ETCs. ETCs were electronically surveyed on clinical laboratory characteristics. Survey responses were returned from 47 ETCs (85%). Forty-one (87%) of the ETCs planned to provide some laboratory support (e.g., point-of-care [POC] testing) within the room of the isolated patient. Forty-four (94%) ETCs indicated that their hospital would also provide clinical laboratory support for patient care. Twenty-two (50%) of these ETC clinical laboratories had biosafety level 3 (BSL-3) containment. Of all respondents, 34 (72%) were supported by their jurisdictional public health laboratory (PHL), all of which had available BSL-3 laboratories. Overall, 40 of 44 (91%) ETCs reported BSL-3 laboratory support via their clinical laboratory and/or PHL. This survey provided a snapshot of the laboratory support for designated U.S. ETCs. ETCs have approached high-level isolation critical care with laboratory support in close proximity to the patient room and by distributing laboratory support among laboratory resources. Experts might review safety considerations for these laboratory testing/diagnostic activities that are novel in the context of biocontainment care. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. The intelligent clinical laboratory as a tool to increase cancer care management productivity.

    Science.gov (United States)

    Mohammadzadeh, Niloofar; Safdari, Reza

    2014-01-01

    Studies of the causes of cancer, early detection, prevention or treatment need accurate, comprehensive, and timely cancer data. The clinical laboratory provides important cancer information needed for physicians which influence clinical decisions regarding treatment, diagnosis and patient monitoring. Poor communication between health care providers and clinical laboratory personnel can lead to medical errors and wrong decisions in providing cancer care. Because of the key impact of laboratory information on cancer diagnosis and treatment the quality of the tests, lab reports, and appropriate lab management are very important. A laboratory information management system (LIMS) can have an important role in diagnosis, fast and effective access to cancer data, decrease redundancy and costs, and facilitate the integration and collection of data from different types of instruments and systems. In spite of significant advantages LIMS is limited by factors such as problems in adaption to new instruments that may change existing work processes. Applications of intelligent software simultaneously with existing information systems, in addition to remove these restrictions, have important benefits including adding additional non-laboratory-generated information to the reports, facilitating decision making, and improving quality and productivity of cancer care services. Laboratory systems must have flexibility to change and have the capability to develop and benefit from intelligent devices. Intelligent laboratory information management systems need to benefit from informatics tools and latest technologies like open sources. The aim of this commentary is to survey application, opportunities and necessity of intelligent clinical laboratory as a tool to increase cancer care management productivity.

  7. Proceedings of symposium on technology in laboratories

    International Nuclear Information System (INIS)

    2008-03-01

    The Symposium on Technology in Laboratories was held on both 10th and 11th March 2008 at Ceratopia Toki in Toki city, Gifu Prefecture, Japan, which hosted by the National Institute for Fusion Science (NIFS). 287 people participated and 97 papers were presented from many universities, national laboratories, technical colleges, and some industries in Japan. Technical experience and new techniques were reported and discussed in four fields: technology of fabrication and cryogenics', 'device technology', 'diagnostic and control system', and 'computer and processing'. The 37 of the presented papers are indexed individually. (J.P.N.)

  8. Technology transfer from accelerator laboratories (challenges and opportunities)

    International Nuclear Information System (INIS)

    Verma, V.K.; Gardner, P.L.

    1994-06-01

    It is becoming increasingly evident that technology transfer from research laboratories must be a key element of their comprehensive strategic plans. Technology transfer involves using a verified and organized knowledge and research to develop commercially viable products. Management of technology transfer is the art of organizing and motivating a team of scientists, engineers and manufacturers and dealing intelligently with uncertainties. Concurrent engineering is one of the most effective approaches to optimize the process of technology transfer. The challenges, importance, opportunities and techniques of transferring technology from accelerator laboratories are discussed. (author)

  9. A Laboratory Course in Technological Chemistry.

    Science.gov (United States)

    Wiseman, P.

    1986-01-01

    Describes a laboratory course taught at the University of Manchester Institute of Science and Technology (United Kingdom) which focuses on the preparation, properties, and applications of end-use products of the chemical industry. Outlines laboratory experiments on dyes, fibers, herbicides, performance testing, antioxidants, and surface active…

  10. The Case for Laboratory Developed Procedures

    Directory of Open Access Journals (Sweden)

    Karen L. Kaul MD, PhD

    2017-07-01

    Full Text Available An explosion of knowledge and technology is revolutionizing medicine and patient care. Novel testing must be brought to the clinic with safety and accuracy, but also in a timely and cost-effective manner, so that patients can benefit and laboratories can offer testing consistent with current guidelines. Under the oversight provided by the Clinical Laboratory Improvement Amendments, laboratories have been able to develop and optimize laboratory procedures for use in-house. Quality improvement programs, interlaboratory comparisons, and the ability of laboratories to adjust assays as needed to improve results, utilize new sample types, or incorporate new mutations, information, or technologies are positive aspects of Clinical Laboratory Improvement Amendments oversight of laboratory-developed procedures. Laboratories have a long history of successful service to patients operating under Clinical Laboratory Improvement Amendments. A series of detailed clinical examples illustrating the quality and positive impact of laboratory-developed procedures on patient care is provided. These examples also demonstrate how Clinical Laboratory Improvement Amendments oversight ensures accurate, reliable, and reproducible testing in clinical laboratories.

  11. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  12. [Accreditation of clinical laboratories based on ISO standards].

    Science.gov (United States)

    Kawai, Tadashi

    2004-11-01

    International Organization for Standardization (ISO) have published two international standards (IS) to be used for accreditation of clinical laboratories; ISO/IEC 17025:1999 and ISO 15189:2003. Any laboratory accreditation body must satisfy the requirements stated in ISO/IEC Guide 58. In order to maintain the quality of the laboratory accreditation bodies worldwide, the International Laboratory Accreditation Cooperation (ILAC) has established the mutual recognition arrangement (MRA). In Japan, the International Accreditation Japan (IAJapan) and the Japan Accreditation Board for Conformity Assessment (JAB) are the members of the ILAC/MRA group. In 2003, the Japanese Committee for Clinical Laboratory Standards (JCCLS) and the JAB have established the Development Committee of Clinical Laboratory Accreditation Program (CLAP), in order to establish the CLAP, probably starting in 2005.

  13. Errors in clinical laboratories or errors in laboratory medicine?

    Science.gov (United States)

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  14. A Review of Research on Technology-Assisted School Science Laboratories

    Science.gov (United States)

    Wang, Chia-Yu; Wu, Hsin-Ka; Lee, Silvia Wen-Yu; Hwang, Fu-Kwun; Chang, Hsin-Yi; Wu, Ying-Tien; Chiou, Guo-Li; Chen, Sufen; Liang, Jyh-Chong; Lin, Jing-Wen; Lo, Hao-Chang; Tsai, Chin-Chung

    2014-01-01

    Studies that incorporate technologies into school science laboratories have proliferated in the recent two decades. A total of 42 studies published from 1990 to 2011 that incorporated technologies to support school science laboratories are reviewed here. Simulations, microcomputer-based laboratories (MBLs), and virtual laboratories are commonly…

  15. Burkholderia pseudomallei: Challenges for the Clinical Microbiology Laboratory.

    Science.gov (United States)

    Hemarajata, Peera; Baghdadi, Jonathan D; Hoffman, Risa; Humphries, Romney M

    2016-12-01

    Melioidosis is a potentially fatal infection caused by the bacterium Burkholderia pseudomallei Clinical diagnosis of melioidosis can be challenging since there is no pathognomonic clinical syndrome, and the organism is often misidentified by methods used routinely in clinical laboratories. Although the disease is more prevalent in Thailand and northern Australia, sporadic cases may be encountered in areas where it is not endemic, including the United States. Since the organism is considered a tier 1 select agent according to the Centers for Disease Control and Prevention and the U.S. Department of Agriculture Animal and Plant Health Inspection Service, clinical laboratories must be proficient at rapidly recognizing isolates suspicious for B. pseudomallei, be able to safely perform necessary rule-out tests, and to refer suspect isolates to Laboratory Response Network reference laboratories. In this minireview, we report a case of melioidosis encountered at our institution and discuss the laboratory challenges encountered when dealing with clinical isolates suspicious for B. pseudomallei or clinical specimens from suspected melioidosis cases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. SSPM based radiation sensing: Preliminary laboratory and clinical results

    International Nuclear Information System (INIS)

    Konnoff, Daniel C.; Plant, Thomas K.; Shiner, Elizabeth

    2011-01-01

    Recent Solid State Photomultiplier (SSPM) technology has matured, reaching a performance level that is suitable for replacement of the ubiquitous photomultiplier tube in selected applications for environmental radiation monitoring, clinical dosimetry, and medical imaging purposes. The objective of this work is low signal level laboratory and high signal level clinical testing of the Hamamatsu MPPC (S10362-11-050C), Photonique SSPM (0810G1), and Voxtel SiPM (SQBF-EKAA/SQBF-EIOA) SSPMs coupled to different inorganic scintillator crystals (Prelude 420, BGO), inorganic doped glass scintillator material SiO 2 :Cu 2+ and organic BCF-12 plastic scintillating fibers, used as detector elements. Plastic Optical Fibers (POFs) and Glass Optical Fibers (GOFs) are used as signal conduits for laboratory and clinical testing. Further, reduction of electron-beam-generated Cerenkov light in optical fibers is facilitated by the inclusion of metalized air-core capillary tubing between the BCF-12 plastic scintillating fiber and the POF. In a clinical setting dose linearity, percent depth dose, and angular measurements for 6 MV/18 MV photon beams and 9 MeV electron beams are compared with and without the use of the air-core capillary tubing for BCF-12 plastic scintillating fiber. These same measurements are repeated for SiO 2 :Cu 2+ scintillator material without air-core capillary tubing.

  17. Clinical Laboratory Tests in Some Acute Exogenous Poisonings.

    Science.gov (United States)

    Tufkova, Stoilka G; Yankov, Ivan V; Paskaleva, Diana A

    2017-09-01

    There is no specific toxicological screening of clinical laboratory parameters in clinical toxicology when it comes to acute exogenous poisoning. To determine routine clinical laboratory parameters and indicators for assessment of vital functions in patients with acute intoxications. One hundred and fifty-three patients were included in the present study. They were hospitalized in the Department of Clinical Toxicology at St. George University Hospital, Plovdiv for cerebral toxicity inducing medication (n = 45), alcohol (n = 40), heroin abuse (n = 33). The controls were 35. The laboratory tests were conducted in compliance with the standards of the clinical laboratory. We used the following statistical analyses: analysis of variance (the ucriterion of normal distribution, the Student's t-test, dispersion analysis based on ANOVA) and non-parametric analysis. Based on the routine hematological parameters with statistically significant changes in three groups of poisoning are: red blood cells, hematocrit, hemoglobin (except alcohol intoxication) and leukocytes. We found statistically significant changes in serum total protein, sodium and bilirubin. The highest statistical significance is the increased activity of AST and ALT. We present a model for selection of clinical laboratory tests for severe acute poisoning with modern equipment under standardized conditions. The results of the study suggest that the clinical laboratory constellation we used can be used as a mandatory element in the diagnosis of moderate and severe intoxication with the mentioned toxic substances.

  18. [Evaluation of clinical laboratories--assurance of their quality and competence].

    Science.gov (United States)

    Kawai, Tadashi

    2007-01-01

    Since ISO 15189:2003 was published, the accreditation program of clinical laboratories based on ISO 15189 has been introduced in many countries, except for those in USA where all clinical laboratories must be required to follow the federal law, CLIA'88. It will certainly help the accredited clinical laboratories improve their quality and competence. In relation to the activity of JCTLM, reference measurement laboratories will be accredited, based on ISO 15195 which is now under its review and amendment by ISO/TC212/WG2. In Japan, JCCLS (Japanese Committee for Clinical Laboratory Standards) and JAB (Japan Accreditation Board for Conformity Assessment) cojointly started the accreditation program for clinical laboratories, based on ISO 15189:2003, and a total of 15 laboratories including university hospitals, community hospitals and independent clinical laboratories have been accredited up until the end of 2006.

  19. Clinical laboratory analytics: Challenges and promise for an emerging discipline

    Directory of Open Access Journals (Sweden)

    Brian H Shirts

    2015-01-01

    Full Text Available The clinical laboratory is a major source of health care data. Increasingly these data are being integrated with other data to inform health system-wide actions meant to improve diagnostic test utilization, service efficiency, and "meaningful use." The Academy of Clinical Laboratory Physicians and Scientists hosted a satellite meeting on clinical laboratory analytics in conjunction with their annual meeting on May 29, 2014 in San Francisco. There were 80 registrants for the clinical laboratory analytics meeting. The meeting featured short presentations on current trends in clinical laboratory analytics and several panel discussions on data science in laboratory medicine, laboratory data and its role in the larger healthcare system, integrating laboratory analytics, and data sharing for collaborative analytics. One main goal of meeting was to have an open forum of leaders that work with the "big data" clinical laboratories produce. This article summarizes the proceedings of the meeting and content discussed.

  20. Laboratory and software applications for clinical trials: the global laboratory environment.

    Science.gov (United States)

    Briscoe, Chad

    2011-11-01

    The Applied Pharmaceutical Software Meeting is held annually. It is sponsored by The Boston Society, a not-for-profit organization that coordinates a series of meetings within the global pharmaceutical industry. The meeting generally focuses on laboratory applications, but in recent years has expanded to include some software applications for clinical trials. The 2011 meeting emphasized the global laboratory environment. Global clinical trials generate massive amounts of data in many locations that must be centralized and processed for efficient analysis. Thus, the meeting had a strong focus on establishing networks and systems for dealing with the computer infrastructure to support such environments. In addition to the globally installed laboratory information management system, electronic laboratory notebook and other traditional laboratory applications, cloud computing is quickly becoming the answer to provide efficient, inexpensive options for managing the large volumes of data and computing power, and thus it served as a central theme for the meeting.

  1. Assuring the Quality of Next-Generation Sequencing in Clinical Microbiology and Public Health Laboratories.

    Science.gov (United States)

    Gargis, Amy S; Kalman, Lisa; Lubin, Ira M

    2016-12-01

    Clinical microbiology and public health laboratories are beginning to utilize next-generation sequencing (NGS) for a range of applications. This technology has the potential to transform the field by providing approaches that will complement, or even replace, many conventional laboratory tests. While the benefits of NGS are significant, the complexities of these assays require an evolving set of standards to ensure testing quality. Regulatory and accreditation requirements, professional guidelines, and best practices that help ensure the quality of NGS-based tests are emerging. This review highlights currently available standards and guidelines for the implementation of NGS in the clinical and public health laboratory setting, and it includes considerations for NGS test validation, quality control procedures, proficiency testing, and reference materials. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Clinical Simulation: A Protocol for Evaluation of Mobile Technology.

    Science.gov (United States)

    Mather, Carey; Jensen, Sanne; Cummings, Elizabeth

    2017-01-01

    For mobile technology to be accepted at point of care in healthcare environments there is a need to demonstrate benefits whilst ameliorating the risks and challenges. To provide a standardised approach to evaluation of mobile technology a simulation protocol was developed to provide guidance for its use in healthcare environments. Simulated conditions provide the opportunity to assess intended and unintended consequences and identify potential workarounds when using technology. The protocol can also be used to demonstrate the importance of the development of digital professionalism by end-users prior to students entering the clinical practice setting. The mobile technology protocol was adapted from a health information systems protocol developed and used at the ITX Lab, Denmark for use in other simulation laboratories. Use case scenarios were developed to enable evaluation of mobile technology for mobile learning of nurses, nurse supervisors, students and patients. The scenarios can be used in a range of simulated environments including hospital bedside, outpatient clinic or community settings. A case study exemplar of a nurse and patient is included to demonstrate how the mobile technology protocol can be applied.

  3. Prevalence of estimated GFR reporting among US clinical laboratories.

    Science.gov (United States)

    Accetta, Nancy A; Gladstone, Elisa H; DiSogra, Charles; Wright, Elizabeth C; Briggs, Michael; Narva, Andrew S

    2008-10-01

    Routine laboratory reporting of estimated glomerular filtration rate (eGFR) may help clinicians detect kidney disease. The current national prevalence of eGFR reporting in clinical laboratories is unknown; thus, the extent of the situation of laboratories not routinely reporting eGFR with serum creatinine results is not quantified. Observational analysis. National Kidney Disease Education Program survey of clinical laboratories conducted in 2006 to 2007 by mail, web, and telephone follow-up. A national random sample, 6,350 clinical laboratories, drawn from the Federal Clinical Laboratory Improvement Amendments database and stratified by 6 major laboratory types/groupings. Laboratory reports serum creatinine results. Reporting eGFR values with serum creatinine results. Percentage of laboratories reporting eGFR along with reporting serum creatinine values, reporting protocol, eGFR formula used, and style of reporting cutoff values. Of laboratories reporting serum creatinine values, 38.4% report eGFR (physician offices, 25.8%; hospitals, 43.6%; independents, 38.9%; community clinics, 47.2%; health fair/insurance/public health, 45.5%; and others, 43.2%). Physician office laboratories have a reporting prevalence lower than other laboratory types (P laboratories reporting eGFR, 66.7% do so routinely with all adult serum creatinine determinations; 71.6% use the 4-variable Modification of Diet in Renal Disease Study equation; and 45.3% use the ">60 mL/min/1.73 m(2)" reporting convention. Independent laboratories are least likely to routinely report eGFR (50.6%; P laboratories across all strata are more likely to report eGFR (P laboratories, federal database did not have names of laboratory directors/managers (intended respondents), assumed accuracy of federal database for sample purposes. Routine eGFR reporting with serum creatinine values is not yet universal, and laboratories vary in their reporting practices.

  4. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    Science.gov (United States)

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  5. Building bridges between clinical and forensic toxicology laboratories.

    Science.gov (United States)

    Martin, Bernardino Barcelo; Gomila, Isabel; Noce, Valeria

    2018-05-09

    Clinical and forensic toxicology can be defined as the two disciplines involved the detection, identification and measurement of xenobiotics in biological and non-biological specimens to help in the diagnosis, treatment, prognosis, prevention of poisonings and to disclose causes and contributory causes of fatal intoxications, respectively. This article explores the close connections between clinical and forensic toxicology in overlapping areas of interest. An update has been carried out of the following seven areas of interest in analytical toxicology: doping control, sudden cardiac death (SCD), brain death, sudden infant death syndrome (SIDS) and Munchausen syndrome by proxy (MSBP), prenatal exposure to drugs and fetal alcohol syndrome (FAS), drug-facilitated crimes (DFC) and intoxications by new psychoactive substances (NPS). While issues such as SCD, SIDS or doping control are investigated mainly in forensic laboratories, other as prenatal exposure to drugs or FAS are mainly treated in clinical laboratories. On the other hand, areas such MSBP, DFC or the intoxications by NPS are of interest in both laboratories. Some of these topics are initially treated in hospital emergency departments, involving clinical laboratories and sometimes lately derived to forensic laboratories. Conversely, cases with initial medical-legal implications and fatalities are directly handled by forensic toxicology, but may trigger further studies in the clinical setting. Many areas of common interest between clinical and forensic laboratories are building bridges between them. The increasing relationships are improving the growth, the reliability and the robustness of both kind of laboratories. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Sandia National Laboratories: CRISPR genome-editing technology

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  7. Sandia National Laboratories: Microsystems Science & Technology Center

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  8. [Outsourcing of clinical laboratory department].

    Science.gov (United States)

    Murai, T

    2000-03-01

    Recently, to improve financial difficulties at various hospitals, outsourcing of the laboratory department is be coming more wide spread. At the department of clinical pathology of St. Luke's International Hospital, the system, so called, "Branch labo" which is one of the outsourcing laboratory conditions, was adopted in March 1999. In this reports. We described the decision procedure for accepting the situation and the circumstances of operation.

  9. Selecting clinical quality indicators for laboratory medicine.

    Science.gov (United States)

    Barth, Julian H

    2012-05-01

    Quality in laboratory medicine is often described as doing the right test at the right time for the right person. Laboratory processes currently operate under the oversight of an accreditation body which gives confidence that the process is good. However, there are aspects of quality that are not measured by these processes. These are largely focused on ensuring that the most clinically appropriate test is performed and interpreted correctly. Clinical quality indicators were selected through a two-phase process. Firstly, a series of focus groups of clinical scientists were held with the aim of developing a list of quality indicators. These were subsequently ranked in order by an expert panel of primary and secondary care physicians. The 10 top indicators included the communication of critical results, comprehensive education to all users and adequate quality assurance for point-of-care testing. Laboratories should ensure their tests are used to national standards, that they have clinical utility, are calibrated to national standards and have long-term stability for chronic disease management. Laboratories should have error logs and demonstrate evidence of measures introduced to reduce chances of similar future errors. Laboratories should make a formal scientific evaluation of analytical quality. This paper describes the process of selection of quality indicators for laboratory medicine that have been validated sequentially by deliverers and users of the service. They now need to be converted into measureable variables related to outcome and validated in practice.

  10. [Quality use of commercial laboratory for clinical testing services - considering laboratory's role].

    Science.gov (United States)

    Ogawa, Shinji

    2014-12-01

    The number of commercial laboratories for clinical testing in Japan run privately has decreased to about 30 companies, and their business is getting tougher. Branch Lab. and FMS businesses have not expanded recently due to the new reimbursement system which adds an additional sample management fee, becoming effective in 2010. This presentation gives an outline of each role for hospital and commercial laboratories, and their pros & cons considering the current medical situation. Commercial laboratories have investigated how to utilize ICT systems for sharing test information between hospitals and our facilities. It would be very helpful to clarify issues for each hospital. We will develop and create new values for clinical laboratory testing services and forge mutually beneficial relationships with medical institutions. (Review).

  11. Cab technology integration laboratory demonstration with moving map technology

    Science.gov (United States)

    2013-03-31

    A human performance study was conducted at the John A. Volpe National Transportation Systems Center (Volpe Center) using a locomotive research simulatorthe Cab Technology Integration Laboratory (CTIL)that was acquired by the Federal Railroad Ad...

  12. [Applications of MALDI-TOF technology in clinical microbiology].

    Science.gov (United States)

    Suarez, S; Nassif, X; Ferroni, A

    2015-02-01

    Until now, the identification of micro-organisms has been based on the cultural and biochemical characteristics of bacterial and fungal species. Recently, Mass Spectrometry type Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF MS) was developed in clinical microbiology laboratories. This new technology allows identification of micro-organisms directly from colonies of bacteria and fungi within few minutes. In addition, it can be used to identify germs directly from positive blood culture bottles or directly from urine samples. Other ways are being explored to expand the use of MALDI-TOF in clinical microbiology laboratories. Indeed, some studies propose to detect bacterial antibiotic resistance while others compare strains within species for faster strain typing. The main objective of this review is to update data from the recent literature for different applications of MALDI-TOF technique in microbiological diagnostic routine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. The changing face of clinical laboratories.

    Science.gov (United States)

    Plebani, M

    1999-07-01

    Laboratory medicine has undergone a sea change, and medical laboratories must now adapt to, and meet new, customer-supplier needs springing from shifts in the patterns of disease prevalence, medical practice, and demographics. Managed care and other cost-containment processes have forced those involved in health care to cooperate to develop a full picture of patient care, and this has affected clinical laboratory objectives, the main focus now being on improvement in medical outcomes. More recently, the resource shortages in health care and results of cost/effectiveness analysis have demonstrated that the value of a laboratory test must be ascertained not only on the basis of its chemical or clinical performance characteristics, but also by its impact on patient management, the only true assessment of the quality of testing being quality of patient outcomes. The time is ripe for changing the vision of laboratory medicine, and some of the reasons for this are the availability of results in real-time, the introduction of more specific tests, and the trend to prevent diseases rather than cure them. The information from laboratory tests designed to evaluate biochemical or genetic risk and/or prognostic factors cannot be replaced either by physical examination and/or the assessment of symptoms. Today, the importance of laboratory scientists must be proven in three broad areas: a) guaranteeing the quality of tests, irrespective of where they are performed; b) improving the quality of the service; c) maximizing the impact of laboratory information on patient management.

  14. Proceedings of the symposium on technology in laboratories

    International Nuclear Information System (INIS)

    1988-10-01

    The Symposium on Technology in Laboratories was held on March 29 and 30, 1988 at Toyota Auditorium in Nagoya University. This symposium was hosted by Institute of Plasma Physics. Participants were about 210 and 54 papers were presented from many of Japanese universities and laboratories. Technical experience and new technics were reported and discussed divided into five sessions; technologies of manufacture, cryogenic, diagonostic and control system, computer and experimental apparatus. (author)

  15. Transformation From a Conventional Clinical Microbiology Laboratory to Full Automation.

    Science.gov (United States)

    Moreno-Camacho, José L; Calva-Espinosa, Diana Y; Leal-Leyva, Yoseli Y; Elizalde-Olivas, Dolores C; Campos-Romero, Abraham; Alcántar-Fernández, Jonathan

    2017-12-22

    To validate the performance, reproducibility, and reliability of BD automated instruments in order to establish a fully automated clinical microbiology laboratory. We used control strains and clinical samples to assess the accuracy, reproducibility, and reliability of the BD Kiestra WCA, the BD Phoenix, and BD Bruker MALDI-Biotyper instruments and compared them to previously established conventional methods. The following processes were evaluated: sample inoculation and spreading, colony counts, sorting of cultures, antibiotic susceptibility test, and microbial identification. The BD Kiestra recovered single colonies in less time than conventional methods (e.g. E. coli, 7h vs 10h, respectively) and agreement between both methodologies was excellent for colony counts (κ=0.824) and sorting cultures (κ=0.821). Antibiotic susceptibility tests performed with BD Phoenix and disk diffusion demonstrated 96.3% agreement with both methods. Finally, we compared microbial identification in BD Phoenix and Bruker MALDI-Biotyper and observed perfect agreement (κ=1) and identification at a species level for control strains. Together these instruments allow us to process clinical urine samples in 36h (effective time). The BD automated technologies have improved performance compared with conventional methods, and are suitable for its implementation in very busy microbiology laboratories. © American Society for Clinical Pathology 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described

  17. Three-dimensional printing physiology laboratory technology.

    Science.gov (United States)

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  18. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  19. 42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.

    Science.gov (United States)

    2010-10-01

    ... and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... date of service for clinical laboratory and pathology specimens. The date of service for either a clinical laboratory test or the technical component of physician pathology service is as follows: (a...

  20. [ISO 15189 accreditation in clinical microbiology laboratory: general concepts and the status in our laboratory].

    Science.gov (United States)

    Akyar, Işin

    2009-10-01

    One important trend in the laboratory profession and quality management is the global convergence of laboratory operations. The goal of an accredited medical laboratory is to continue "offering useful laboratory service for diagnosis and treatment of the patients and also aid to the health of the nation". An accredited clinical laboratory is managed by a quality control system, it is competent technically and the laboratory service meets the needs of all its patients and physicians by taking the responsibility of all the medical tests and therapies. For this purpose, ISO 15189 international standard has been prepared by 2003. ISO 15189 standard is originated from the arrangement of ISO 17025 and ISO 9001:2000 standards. Many countries such as England, Germany, France, Canada and Australia have preferred ISO 15189 as their own laboratory accreditation programme, meeting all the requirements of their medical laboratories. The accreditation performance of a clinical microbiology laboratory is mainly based on five essential points; preanalytical, analytical, postanalytical, quality control programmes (internal, external, interlaboratory) and audits (internal, external). In this review article, general concepts on ISO 15189 accreditation standards for the clinical microbiology laboratories have been summarized and the status of a private laboratory (Acibadem LabMed, Istanbul) in Turkey has been discussed.

  1. The American Society for Clinical Pathology's 2015 Wage Survey of Medical Laboratories in the United States.

    Science.gov (United States)

    Garcia, Edna; Fisher, Patrick B

    2017-05-01

    To inform the pathology and laboratory field of the most recent national wage data from the American Society for Clinical Pathology (ASCP). Historically, the results of this biennial survey have served as a basis for additional research on laboratory recruitment, retention, education, marketing, certification, and advocacy. The 2015 wage survey was conducted through collaboration between the ASCP's Institute of Science, Technology, and Policy in Washington, DC, and the ASCP Board of Certification in Chicago, Illinois. Electronic survey invitations were sent to individuals who are currently practicing in the field. Data reveal increased salaries since 2013 for all staff-level laboratory professionals surveyed except phlebotomists and pathologists' assistants. Laboratory assistants and phlebotomists, regardless of level, continue to have lower salaries while pathologists' assistants and administration personnel have higher salaries than the rest of the laboratory professions surveyed. Survey results put emphasis on strategic recruitment and retention by laboratory training programs and institutions that hire laboratory professionals. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  3. Nanotechnology Laboratory Continues Partnership with FDA and National Institute of Standards and Technology | Poster

    Science.gov (United States)

    The NCI-funded Nanotechnology Characterization Laboratory (NCL)—a leader in evaluating promising nanomedicines to fight cancer—recently renewed its collaboration with the U.S. Food and Drug Administration (FDA) and the National Institute of Standards and Technology (NIST) to continue its groundbreaking work on characterizing nanomedicines and moving them toward the clinic. In

  4. [Laboratory medicine in the obligatory postgraduate clinical training system--common clinical training program in the department of laboratory medicine in our prefectural medical university hospital].

    Science.gov (United States)

    Okamoto, Yasuyuki

    2003-04-01

    I propose a postgraduate common clinical training program to be provided by the department of laboratory medicine in our prefectural medical university hospital. The program has three purposes: first, mastering basic laboratory tests; second, developing the skills necessary to accurately interpret laboratory data; third, learning specific techniques in the field of laboratory medicine. For the first purpose, it is important that medical trainees perform testing of their own patients at bedside or in the central clinical laboratory. When testing at the central clinical laboratory, instruction by expert laboratory technicians is helpful. The teaching doctors in the department of laboratory medicine are asked to advise the trainees on the interpretation of data. Consultation will be received via interview or e-mail. In addition, the trainees can participate in various conferences, seminars, and meetings held at the central clinical laboratory. Finally, in order to learn specific techniques in the field of laboratory medicine, several special courses lasting a few months will be prepared. I think this program should be closely linked to the training program in internal medicine.

  5. Clinical laboratory billing: superfluous requirements without justification?

    Science.gov (United States)

    Stadler, Stephen

    2004-01-01

    Congress occasionally passes new laws that affect how clinical laboratories handle test orders from physicians and, subsequently, process the billing for tests. Once a bill is signed into law, it is forwarded to administrative agencies, which draft regulations and administrative procedures, under which the intentions of Congress are carried out. In the case of laboratory test ordering and billing, the Centers for Medicare and Medicaid Services (CMS) has the greatest influence over how these regulations and procedures are defined. Unfortunately, in many cases, billing rules have been promulgated in ways that create the need for hospitals and commercial laboratories to expend huge sums of money to bill within the confines of the administrative rules; cause clinical laboratories to suffer from omissions and mistakes of other parties who are part of the patient care process but are not accountable for the billing information they provide to laboratories; and, frankly, in some respects, simply defy common sense.

  6. Practical aspects of the use of FMEA tool in clinical laboratory risk management

    Directory of Open Access Journals (Sweden)

    Maria Elizabete Mendes

    2013-06-01

    Full Text Available INTRODUCTION: This paper presents the failure modes and effects analysis (FMEA tool in a clinical laboratory through the introduction of new technology for blood gas and serum ionized calcium in multi-parameter analyzers such as Point of Care Testing (POCT. OBJECTIVE: To present FMEA as a tool for risk managing and improvement with the introduction of new technologies in a public laboratory. METHODS: The change of multiparameter gas analyzer type POCT was defined and described as a process. Subsequently, the criteria were presented to the risk assessment and its quantification. We studied the failure modes that might occur in this process. We established three action plans involving improvements to be made in the technological change. FMEA was applied in two stages: at the beginning of the project and after the implementation of the proposed measures. RESULTS: The first plan involved administrative measures related to the bidding process; the second preventive action involved the possibility of which supplier would win the bid by studying the efficiency of the analyzer and its impact on productivity; the third set of actions was directed to improvements in the relationship with the clinical staff in order to minimize occasional complaints. The last actions referred to employing new employees to meet the growing demand. CONCLUSION: FMEA proved to be a reliable tool for performance improvement, which proactively identifies, prioritizes and mitigates patient risks.

  7. Dental laboratory technology education in China: current situation and challenges.

    Science.gov (United States)

    Zheng, Liwei; Yue, Li; Zhou, Min; Yu, Haiyang

    2013-03-01

    Modern dentistry and dental education in China were first introduced from abroad by Dr. Lindsay in 1907. However, advancements in the field of dental laboratory technology did not occur to the same degree in specialties such as prosthodontics and orthodontics. Since the 1990s, orders from abroad demanding dental appliances surged as the image of China as the "world's factory" strengthened. The assembly line model, in which technicians work like simple procedure workers, was rapidly applied to denture production, while the traditional education system and apprenticeship systems demonstrated little progress in these years. The lack of advancement in dental laboratory technology education caused insufficient development in China's dental technology industry. In order to alter the situation, a four-year dental laboratory technology undergraduate educational program was established in 2005 by West China School of Stomatology, Sichuan University (WCSS, SCU). This program was based on SCU's undergraduate education and WCSS's junior college education systems. The program introduced scientific methods in relevant subjects into laboratory technicians' training and made many improvements in the availability of trained faculty, textbooks, laboratory facilities, and curriculum.

  8. Establishing benchmarks and metrics for disruptive technologies, inappropriate and obsolete tests in the clinical laboratory.

    Science.gov (United States)

    Kiechle, Frederick L; Arcenas, Rodney C; Rogers, Linda C

    2014-01-01

    Benchmarks and metrics related to laboratory test utilization are based on evidence-based medical literature that may suffer from a positive publication bias. Guidelines are only as good as the data reviewed to create them. Disruptive technologies require time for appropriate use to be established before utilization review will be meaningful. Metrics include monitoring the use of obsolete tests and the inappropriate use of lab tests. Test utilization by clients in a hospital outreach program can be used to monitor the impact of new clients on lab workload. A multi-disciplinary laboratory utilization committee is the most effective tool for modifying bad habits, and reviewing and approving new tests for the lab formulary or by sending them out to a reference lab. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. [View of a Laboratory Physician on the Present and Future of Clinical Laboratories].

    Science.gov (United States)

    Matsuo, Shuji

    2014-10-01

    It is meaningful to discuss the "present and future of laboratories" for the development of laboratories and education of medical technologists. Laboratory staff must be able to perform urgent high-quality tests and take part in so-called team-based medicine and should be proud of devising systems that efficiently provide laboratory data for all medical staff. On the other hand, there may be staff with a poor sense of professionalism who work no more than is expected and too readily ask firms and commercial laboratories to solve problems. Overwork caused by providing team-based medicine and a decrease in numbers of clinical chemists are concerns. The following are hoped for in the future. Firstly, laboratory staff will become conscious of their own high-level abilities and expand their areas of work, for example, bioscience, proteomics, and reproductive medicine. Secondly, a consultation system for medical staff and patients will be established. Thirdly, clinical research will be advanced, such as investigating unknown pathophysiologies using laboratory data and samples, and developing new methods of measurement. Lastly, it is of overriding importance that staff of laboratory and educational facilities will cooperate with each other to train the next generation. In conclusion, each laboratory should be appreciated, attractive, positive regarding its contribution to society, and show individuality.

  10. Figure 1. Associations between pre-ART clinical and laboratory ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Figure 1. Associations between pre-ART clinical and laboratory characteristics with subsequent TB-IRIS events. Figure 1. Associations between pre-ART clinical and laboratory characteristics with subsequent TB-IRIS events.

  11. Clinical laboratory: bigger is not always better.

    Science.gov (United States)

    Plebani, Mario

    2018-06-27

    Laboratory services around the world are undergoing substantial consolidation and changes through mechanisms ranging from mergers, acquisitions and outsourcing, primarily based on expectations to improve efficiency, increasing volumes and reducing the cost per test. However, the relationship between volume and costs is not linear and numerous variables influence the end cost per test. In particular, the relationship between volumes and costs does not span the entire platter of clinical laboratories: high costs are associated with low volumes up to a threshold of 1 million test per year. Over this threshold, there is no linear association between volumes and costs, as laboratory organization rather than test volume more significantly affects the final costs. Currently, data on laboratory errors and associated diagnostic errors and risk for patient harm emphasize the need for a paradigmatic shift: from a focus on volumes and efficiency to a patient-centered vision restoring the nature of laboratory services as an integral part of the diagnostic and therapy process. Process and outcome quality indicators are effective tools to measure and improve laboratory services, by stimulating a competition based on intra- and extra-analytical performance specifications, intermediate outcomes and customer satisfaction. Rather than competing with economic value, clinical laboratories should adopt a strategy based on a set of harmonized quality indicators and performance specifications, active laboratory stewardship, and improved patient safety.

  12. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D ampersand D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D ampersand D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2

  13. [Knowledge management system for laboratory work and clinical decision support].

    Science.gov (United States)

    Inada, Masanori; Sato, Mayumi; Yoneyama, Akiko

    2011-05-01

    This paper discusses a knowledge management system for clinical laboratories. In the clinical laboratory of Toranomon Hospital, we receive about 20 questions relevant to laboratory tests per day from medical doctors or co-medical staff. These questions mostly involve the essence to appropriately accomplish laboratory tests. We have to answer them carefully and suitably because an incorrect answer may cause a medical accident. Up to now, no method has been in place to achieve a rapid response and standardized answers. For this reason, the laboratory staff have responded to various questions based on their individual knowledge. We began to develop a knowledge management system to promote the knowledge of staff working for the laboratory. This system is a type of knowledge base for assisting the work, such as inquiry management, laboratory consultation, process management, and clinical support. It consists of several functions: guiding laboratory test information, managing inquiries from medical staff, reporting results of patient consultation, distributing laboratory staffs notes, and recording guidelines for laboratory medicine. The laboratory test information guide has 2,000 records of medical test information registered in the database with flexible retrieval. The inquiry management tool provides a methos to record all questions, answer easily, and retrieve cases. It helps staff to respond appropriately in a short period of time. The consulting report system treats patients' claims regarding medical tests. The laboratory staffs notes enter a file management system so they can be accessed to aid in clinical support. Knowledge sharing using this function can achieve the transition from individual to organizational learning. Storing guidelines for laboratory medicine will support EBM. Finally, it is expected that this system will support intellectual activity concerning laboratory work and contribute to the practice of knowledge management for clinical work support.

  14. Laboratory Medicine is Faced with the Evolution of Medical Practice

    Directory of Open Access Journals (Sweden)

    Collinson Paul

    2017-09-01

    Full Text Available Laboratory medicine and clinical medicine are co-dependent components of medicine. Laboratory medicine functions most effectively when focused through a clinical lens. Me dical practice as a whole undergoes change. New drugs, treatments and changes in management strategies are introduced. New techniques, new technologies and new tests are developed. These changes may be either clinically or laboratory initiated, and so their introduction requires dialogue and interaction between clinical and laboratory medicine specialists. Treatment monitoring is integral to laboratory medicine, varying from direct drug measurement to monitoring cholesterol levels in response to treatment. The current trend to »personalised medicine« is an extension of this process with the development of companion diagnostics. Technological innovation forms part of modern laboratory practice. Introduction of new technology both facilitates standard laboratory approaches and permits introduction of new tests and testing strategies previously confined to the research laboratory only. The revolution in cardiac biomarker testing has been largely a laboratory led change. Flexibility in service provision in response to changing clinical practice or evolving technology provides a significant laboratory management challenge in the light of increasing expectations, shifts in population demographics and constraint in resource availability. Laboratory medicine practitioners are adept at meeting these challenges. One thing remains constant, that there will be a constant need laboratory medicine to meet the challenges of novel clinical challenges from infectious diseases to medical conditions developing from lifestyle and longevity.

  15. Technology transfer from Canadian nuclear laboratories

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Evans, W.; MacEwan, J.R.; Melvin, J.G.

    1985-09-01

    Canada has developed a unique nuclear power system, the CANDU reactor. AECL - Research Company (AECL-RC) has played a key role in the CANDU program by supplying its technology to the reactor's designers, constructors and operators. This technology was transferred from our laboratories to our sister AECL companies and to domestic industries and utilities. As CANDUs were built overseas, AECL-RC made its technology available to foreign utilities and agencies. Recently the company has embarked on a new transfer program, commercial R and D for nuclear and non-nuclear customers. During the years of CANDU development, AECL-RC has acquired the skills and technology that are especially valuable to other countries embarking on their own nuclear programs. This report describes AECL-RC's thirty years' experience with the transfer of technology

  16. Error tracking in a clinical biochemistry laboratory

    DEFF Research Database (Denmark)

    Szecsi, Pal Bela; Ødum, Lars

    2009-01-01

    BACKGROUND: We report our results for the systematic recording of all errors in a standard clinical laboratory over a 1-year period. METHODS: Recording was performed using a commercial database program. All individuals in the laboratory were allowed to report errors. The testing processes were cl...

  17. The quality of veterinary in-clinic and reference laboratory biochemical testing.

    Science.gov (United States)

    Rishniw, Mark; Pion, Paul D; Maher, Tammy

    2012-03-01

    Although evaluation of biochemical analytes in blood is common in veterinary practice, studies assessing the global quality of veterinary in-clinic and reference laboratory testing have not been reported. The aim of this study was to assess the quality of biochemical testing in veterinary laboratories using results obtained from analyses of 3 levels of assayed quality control materials over 5 days. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index to determine factors contributing to poor performance, and agreement between in-clinic and reference laboratory mean results. The suitability of in-clinic and reference laboratory instruments for statistical quality control was determined using adaptations from the computerized program, EZRules3. Reference laboratories were able to achieve desirable quality requirements more frequently than in-clinic laboratories. Across all 3 materials, > 50% of in-clinic analyzers achieved a sigma metric ≥ 6.0 for measurement of 2 analytes, whereas > 50% of reference laboratory analyzers achieved a sigma metric ≥ 6.0 for measurement of 6 analytes. Expanded uncertainty of measurement and ± total allowable error resulted in the highest mean percentages of analytes demonstrating agreement between in-clinic and reference laboratories. Owing to marked variation in bias and coefficient of variation between analyzers of the same and different types, the percentages of analytes suitable for statistical quality control varied widely. These findings reflect the current state-of-the-art with regard to in-clinic and reference laboratory analyzer performance and provide a baseline for future evaluations of the quality of veterinary laboratory testing. © 2012 American Society for Veterinary Clinical Pathology.

  18. MendeLIMS: a web-based laboratory information management system for clinical genome sequencing.

    Science.gov (United States)

    Grimes, Susan M; Ji, Hanlee P

    2014-08-27

    Large clinical genomics studies using next generation DNA sequencing require the ability to select and track samples from a large population of patients through many experimental steps. With the number of clinical genome sequencing studies increasing, it is critical to maintain adequate laboratory information management systems to manage the thousands of patient samples that are subject to this type of genetic analysis. To meet the needs of clinical population studies using genome sequencing, we developed a web-based laboratory information management system (LIMS) with a flexible configuration that is adaptable to continuously evolving experimental protocols of next generation DNA sequencing technologies. Our system is referred to as MendeLIMS, is easily implemented with open source tools and is also highly configurable and extensible. MendeLIMS has been invaluable in the management of our clinical genome sequencing studies. We maintain a publicly available demonstration version of the application for evaluation purposes at http://mendelims.stanford.edu. MendeLIMS is programmed in Ruby on Rails (RoR) and accesses data stored in SQL-compliant relational databases. Software is freely available for non-commercial use at http://dna-discovery.stanford.edu/software/mendelims/.

  19. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D ampersand D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA

  20. Updating the immunology curriculum in clinical laboratory science.

    Science.gov (United States)

    Stevens, C D

    2000-01-01

    To determine essential content areas of immunology/serology courses at the clinical laboratory technician (CLT) and clinical laboratory scientist (CLS) levels. A questionnaire was designed which listed all major topics in immunology and serology. Participants were asked to place a check beside each topic covered. For an additional list of serological and immunological laboratory testing, participants were asked to indicate if each test was performed in either the didactic or clinical setting, or not performed at all. A national survey of 593 NAACLS approved CLT and CLS programs was conducted by mail under the auspices of ASCLS. Responses were obtained from 158 programs. Respondents from all across the United States included 60 CLT programs, 48 hospital-based CLS programs, 45 university-based CLS programs, and 5 university-based combined CLT and CLS programs. The survey was designed to enumerate major topics included in immunology and serology courses by a majority of participants at two distinct educational levels, CLT and CLS. Laboratory testing routinely performed in student laboratories as well as in the clinical setting was also determined for these two levels of practitioners. Certain key topics were common to most immunology and serology courses. There were some notable differences in the depth of courses at the CLT and CLS levels. Laboratory testing associated with these courses also differed at the two levels. Testing requiring more detailed interpretation, such as antinuclear antibody patterns (ANAs), was mainly performed by CLS students only. There are certain key topics as well as specific laboratory tests that should be included in immunology/serology courses at each of the two different educational levels to best prepare students for the workplace. Educators can use this information as a guide to plan a curriculum for such courses.

  1. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  2. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  3. Sensitivity and Specificity of Clinical and Laboratory Otolith Function Tests.

    Science.gov (United States)

    Kumar, Lokesh; Thakar, Alok; Thakur, Bhaskar; Sikka, Kapil

    2017-10-01

    To evaluate clinic based and laboratory tests of otolith function for their sensitivity and specificity in demarcating unilateral compensated complete vestibular deficit from normal. Prospective cross-sectional study. Tertiary care hospital vestibular physiology laboratory. Control group-30 healthy adults, 20-45 years age; Case group-15 subjects post vestibular shwannoma excision or post-labyrinthectomy with compensated unilateral complete audio-vestibular loss. Otolith function evaluation by precise clinical testing (head tilt test-HTT; subjective visual vertical-SVV) and laboratory testing (headroll-eye counterroll-HR-ECR; vesibular evoked myogenic potentials-cVEMP). Sensitivity and specificity of clinical and laboratory tests in differentiating case and control subjects. Measurable test results were universally obtained with clinical otolith tests (SVV; HTT) but not with laboratory tests. The HR-ECR test did not indicate any definitive wave forms in 10% controls and 26% cases. cVEMP responses were absent in 10% controls.HTT test with normative cutoff at 2 degrees deviations from vertical noted as 93.33% sensitive and 100% specific. SVV test with normative cutoff at 1.3 degrees noted as 100% sensitive and 100% specific. Laboratory tests demonstrated poorer specificities owing primarily to significant unresponsiveness in normal controls. Clinical otolith function tests, if conducted with precision, demonstrate greater ability than laboratory testing in discriminating normal controls from cases with unilateral complete compensated vestibular dysfunction.

  4. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    Science.gov (United States)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  5. Mobile technology in clinical teaching.

    Science.gov (United States)

    Mackay, B J; Anderson, J; Harding, T

    2017-01-01

    Technology is having a profound effect on education in the 21st century and nurse educators are being challenged to integrate technological innovation to assist students in their learning. This paper reports a study on the introduction of smart mobile technology to support student learning in the clinical environment. In a climate of collaborative inquiry, clinical lecturers and two researchers from the same department carried out a project in three phases: formation, implementation and analysis. Following the formation phase, six clinical lecturers adopted iPads to support their clinical teaching (implementation phase). At this time they also kept reflective journals. In the analysis phase a thematic analysis of the data from the journals and from a focus group found both enabling and constraining factors influenced the use of iPads by clinical lecturers. The themes categorised as enablers were: resources and technology; and, management and technology support. Those identified as barriers or constraining factors were: clinical staff engagement; and lecturer experience with technology. Student engagement and learning, and connectivity were both enabling and constraining factors. This paper concludes that the use of a mobile device such as an iPad can enhance teaching in clinical settings but that in order for such devices to be successfully integrated into clinical teaching consideration needs to be given to professional development needs, adequate resourcing and technology support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Clinical laboratory detection of carbapenem-resistant and carbapenemase-producing Enterobacteriaceae.

    Science.gov (United States)

    Miller, Shelley; Humphries, Romney M

    2016-08-01

    Carbapenemases, enzymes that hydrolyze carbapenem-class antimicrobials, pose serious clinical and diagnostic challenges, including their recent rapid spread among members of the Enterobacteriaceae, a family with no inherent carbapenem resistance. Currently there is no one-size-fits-all method for detecting carbapenem-resistant Enterobacteriaceae (CRE) in the laboratory, nor how to differentiate carbapenemase-producers (CP) from isolates that are carbapenem-resistant via other or combined mechanisms. This article reviews definitions for CRE and CP-CRE, and discusses current phenotypic and molecular methods available to the clinical laboratory for the detection of both CP and non-CP CRE. Expert commentary: Routine evaluation of carbapenem resistance mechanism by the routine clinical laboratory are not necessary for patient care, as clinical breakpoints best predict response. However, evaluation for carbapenemase is integral to infection control efforts, and laboratories should have the capacity to do such testing, either in house or by submitting isolates to a reference laboratory.

  7. Understanding the interface between clinical and laboratory staff

    Directory of Open Access Journals (Sweden)

    Ankie van den Broek

    2014-07-01

    Objectives: To propose a new conceptual model to gain insight and analyse factors that influence the laboratory–clinical staff interface. Methods: To develop the conceptual model, a literature study was performed, regulatory guidelines and standards for laboratories were analysed and discussions were held with experts on the topic. Result: A conceptual model and analytical framework provided good guidance in understanding and assessing the organisational and personal factors shaping the interface. The model was based on three elements: (1 the three phases of communication (pre-analytical, analytical and post-analytical; (2 the organisational and personal factors of interaction; and (3 the socio-political, economic and cultural context in which clinicians and laboratory staff operate. Conclusion: Assessment of the interface between clinicians and laboratory workers can be performed in a systematic way. Applying this model will provide information to managers of health institutions and heads of laboratories and clinical departments about what happens when clinicians and laboratory staff interact, thus aiding them in designing strategies to improve this interface.

  8. The American Society for Clinical Pathology's 2014 vacancy survey of medical laboratories in the United States.

    Science.gov (United States)

    Garcia, Edna; Ali, Asma M; Soles, Ryan M; Lewis, D Grace

    2015-09-01

    To determine the extent and distribution of workforce shortages within the nation's medical laboratories. Historically, the results of this biennial survey have served as a basis for additional research on laboratory recruitment, retention, education, marketing, certification, and advocacy. The 2014 Vacancy Survey was conducted through collaboration between American Society for Clinical Pathology's Institute of Science, Technology, and Policy in Washington, DC, and the Evaluation, Measurement, and Assessment Department and Board of Certification in Chicago, Illinois. Data were collected via an Internet survey that was distributed to individuals who were able to report on staffing and certifications for their laboratories. Data reveal increased overall vacancy rates since 2012 for all departments surveyed except cytology and cytogenetics. Also, results show higher anticipated retirement rates for both staff and supervisors. Overall certification rates are highest among laboratory personnel in cytogenetics, hematology/coagulation, and flow cytometry departments and lowest among phlebotomy, specimen processing, and anatomic pathology. Factors such as retirement and the improving economy are driving the need for more laboratory professionals. Recruitment of qualified laboratory professionals in the workforce and students in laboratory programs will be the key in fulfilling the higher vacancies revealed from the survey results in 2014. Copyright© by the American Society for Clinical Pathology.

  9. Laboratory research at the clinical trials of Veterinary medicinal Products

    OpenAIRE

    ZHYLA M.I.

    2011-01-01

    The article analyses the importance of laboratory test methods, namely pathomorfological at conduct of clinical trials. The article focuses on complex laboratory diagnostics at determination of clinical condition of animals, safety and efficacy of tested medicinal product.

  10. Clinical laboratory as an economic model for business performance analysis.

    Science.gov (United States)

    Buljanović, Vikica; Patajac, Hrvoje; Petrovecki, Mladen

    2011-08-15

    To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by implementing changes in the next fiscal

  11. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gunja, Ateka; Pandey, Yagya [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Xie, Hui [Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL (United States); Faculty of Health Sciences, Simon Fraser University, Burnaby, BC (Canada); Wolska, Beata M. [Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL (United States); Shroff, Adhir R.; Ardati, Amer K. [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States)

    2017-04-15

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm{sup 2}). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm{sup 2} ± 74.0 vs. 41.9 mGy cm{sup 2} ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image

  12. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Gunja, Ateka; Pandey, Yagya; Xie, Hui; Wolska, Beata M.; Shroff, Adhir R.; Ardati, Amer K.; Vidovich, Mladen I.

    2017-01-01

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm"2). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm"2 ± 74.0 vs. 41.9 mGy cm"2 ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image-noise compared to

  13. Quality of Control of Clinical-Biochemical Laboratories – Serbian Case

    Directory of Open Access Journals (Sweden)

    Vinko Peric

    2014-06-01

    Full Text Available In the last 20 years in medical laboratories, numerous activities regarding quality and accreditation system were taken. Approach to this problem in European countries is different, so the task of the Accreditation Work Group of the Confederation of European societies for clinical chemistry (EC 4 to help the efforts to harmonize this issue. External quality control in clinical-chemical laboratories imposed the need for the implementation of quality management system. »Good laboratory practice« and its principles were adopted by nominated bodies, both international and national. In the beginning, the standard ISO 9001 was applied for certification and for accreditation EN 45001 and ISO Guide 25, which are prepared for testing and calibration laboratories. Standard ISO 17025 is the successor of the previous documents and for now it is a reference for mentioned laboratories. Accreditation Work Group of the Confederation of European societies for clinical chemistry (EC 4 made an amendment of the requirements for medical laboratories, which this standard describes. Standard draft ISO 15189 was adopted on February 2003 as a final version with requirements for medical laboratories.

  14. 42 CFR 405.515 - Reimbursement for clinical laboratory services billed by physicians.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Reimbursement for clinical laboratory services... Criteria for Determining Reasonable Charges § 405.515 Reimbursement for clinical laboratory services billed... limitation on reimbursement for markups on clinical laboratory services billed by physicians. If a physician...

  15. Rules for the certification of good practices in clinical laboratories. No regulation. 3-2009. Good Laboratory Practice

    International Nuclear Information System (INIS)

    2015-01-01

    Regulation for Certification of Good Practices in clinical laboratories, hereinafter Regulation establishes the methodology and procedures for clinical laboratories to demonstrate their state of compliance with good practices, according to Regulation 3-2009, and that the CECMED can verify.

  16. 78 FR 32637 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-05-31

    ..., Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and...

  17. Quality documentation challenges for veterinary clinical pathology laboratories.

    Science.gov (United States)

    Sacchini, Federico; Freeman, Kathleen P

    2008-05-01

    An increasing number of veterinary laboratories worldwide have obtained or are seeking certification based on international standards, such as the International Organization for Standardization/International Electrotechnical Commission 17025. Compliance with any certification standard or quality management system requires quality documentation, an activity that may present several unique challenges in the case of veterinary laboratories. Research specifically addressing quality documentation is conspicuously absent in the veterinary literature. This article provides an overview of the quality system documentation needed to comply with a quality management system with an emphasis on preparing written standard operating procedures specific for veterinary laboratories. In addition, the quality documentation challenges that are unique to veterinary clinical pathology laboratories are critically evaluated against the existing quality standards and discussed with respect to possible solutions and/or recommended courses of action. Documentation challenges include the establishment of quality requirements for veterinary tests, the use or modification of human analytic methods for animal samples, the limited availability of quality control materials satisfactory for veterinary clinical pathology laboratories, the limited availability of veterinary proficiency programs, and the complications in establishing species-specific reference intervals.

  18. Geometry Laboratory (GEOLAB) surface modeling and grid generation technology and services

    Science.gov (United States)

    Kerr, Patricia A.; Smith, Robert E.; Posenau, Mary-Anne K.

    1995-01-01

    The facilities and services of the GEOmetry LABoratory (GEOLAB) at the NASA Langley Research Center are described. Included in this description are the laboratory functions, the surface modeling and grid generation technologies used in the laboratory, and examples of the tasks performed in the laboratory.

  19. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    International Nuclear Information System (INIS)

    Glen R. Longhurst

    2007-01-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  20. Nontyphoidal Salmonella: An Occupational Hazard for Clinical Laboratory Workers

    OpenAIRE

    Barker, Anna; Duster, Megan; Van Hoof, Sarah; Safdar, Nasia

    2015-01-01

    Laboratory-acquired infections due to nontyphoidal Salmonella are rare. Yet, recent outbreaks in microbiology teaching laboratories show that these species are still an appreciable occupational hazard for laboratory employees. This article presents two cases of nontyphoidal Salmonella that occurred at the authors' institution—an infected patient and a clinical laboratory worker who acquired the infection by handling this patient's specimens.

  1. Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Annesley, Thomas M.; Cooks, Robert G.; Herold, David A.; Hoofnagle, Andrew N.

    2016-01-04

    Each year the journal Clinical Chemistry publishes a January special issue on a topic that is relevant to the laboratory medicine community. In January 2016 the topic is mass spectrometry, and the issue is entitled “Clinical Mass Spectrometry: Achieving Prominence in Laboratory Medicine”. One popular feature in our issues is a Q&A on a topic, clearly in this case mass spectrometry. The journal is assembling a panel of 5-6 experts from various areas of mass spectrometry ranging from instrument manufacturing to practicing clinical chemists. Dick Smith is one of the scientist requested to participate in this special issue Q&A on Mass Spectrometry. The Q&A Transcript is attached

  2. Clinical laboratory as an economic model for business performance analysis

    Science.gov (United States)

    Buljanović, Vikica; Patajac, Hrvoje; Petrovečki, Mladen

    2011-01-01

    Aim To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Methods Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. Conclusion The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by

  3. 76 FR 39879 - Clinical Laboratory Improvement Advisory Committee (CLIAC)

    Science.gov (United States)

    2011-07-07

    ... the standards to accommodate technological advances. Matters to be Discussed: The agenda will include... the meeting online at least 14 days in advance at http://www.cdc.gov/cliac/default.aspx by clicking... Information: Nancy Anderson, Chief, Laboratory Practice Standards Branch, Division of Laboratory Science and...

  4. [CAP quality management system in clinical laboratory and its issue].

    Science.gov (United States)

    Tazawa, Hiromitsu

    2004-03-01

    The CAP (College of American Pathologists) was established in 1962 and, at present, CAP-accredited laboratories include about 6000 institutions all over the world, mainly in the U.S. The essential purpose of CAP accreditation is high quality reservation and improvement of clinical laboratory services for patient care, and is based on seven points, listed below. (1) Establishment of a laboratory management program and laboratory techniques to assure accuracy and improve overall quality of laboratory services. (2) Maintenance and improvement of accuracy objectively by centering on a CAP survey. (3) Thoroughness in safety and health administration. (4) Reservation of the performance of laboratory services by personnel and proficiency management. (5) Provision of appropriate information to physicians, and contribution to improved quality of patient care by close communication with physicians (improvement in patient care). (6) Reduction of running costs and personnel costs based on evidence by employing the above-mentioned criteria. (7) Reduction of laboratory error. In the future, accreditation and/or certification by organizations such as CAP, ISO, etc., may become a requirement for providing any clinical laboratory services in Japan. Taking the essence of the CAP and the characteristics of the new international standard, ISO151589, into consideration, it is important to choose the best suited accreditation and/or certification depending of the purpose of clinical laboratory.

  5. 75 FR 39028 - Clinical Laboratory Improvement Advisory Committee (CLIAC)

    Science.gov (United States)

    2010-07-07

    ... accommodate technological advances. Matters to be Discussed: The agenda will include agency updates from the... attendees are required to register for the meeting online at least 14 days in advance at http://wwwn.cdc.gov... Standards Branch, Division of Laboratory Science and Standards (proposed), Laboratory Science, Policy and...

  6. XML Syntax for Clinical Laboratory Procedure Manuals

    OpenAIRE

    Saadawi, Gilan; Harrison, James H.

    2003-01-01

    We have developed a document type description (DTD) in Extensable Markup Language (XML)1 for clinical laboratory procedures. Our XML syntax can adequately structure a variety of procedure types across different laboratories and is compatible with current procedure standards. The combination of this format with an XML content management system and appropriate style sheets will allow efficient procedure maintenance, distributed access, customized display and effective searching across a large b...

  7. Laboratory automation in clinical bacteriology: what system to choose?

    Science.gov (United States)

    Croxatto, A; Prod'hom, G; Faverjon, F; Rochais, Y; Greub, G

    2016-03-01

    Automation was introduced many years ago in several diagnostic disciplines such as chemistry, haematology and molecular biology. The first laboratory automation system for clinical bacteriology was released in 2006, and it rapidly proved its value by increasing productivity, allowing a continuous increase in sample volumes despite limited budgets and personnel shortages. Today, two major manufacturers, BD Kiestra and Copan, are commercializing partial or complete laboratory automation systems for bacteriology. The laboratory automation systems are rapidly evolving to provide improved hardware and software solutions to optimize laboratory efficiency. However, the complex parameters of the laboratory and automation systems must be considered to determine the best system for each given laboratory. We address several topics on laboratory automation that may help clinical bacteriologists to understand the particularities and operative modalities of the different systems. We present (a) a comparison of the engineering and technical features of the various elements composing the two different automated systems currently available, (b) the system workflows of partial and complete laboratory automation, which define the basis for laboratory reorganization required to optimize system efficiency, (c) the concept of digital imaging and telebacteriology, (d) the connectivity of laboratory automation to the laboratory information system, (e) the general advantages and disadvantages as well as the expected impacts provided by laboratory automation and (f) the laboratory data required to conduct a workflow assessment to determine the best configuration of an automated system for the laboratory activities and specificities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Outsourcing of Academic Clinical Laboratories

    Science.gov (United States)

    Mrak, Robert E.; Parslow, Tristram G.; Tomaszewski, John E.

    2018-01-01

    American hospitals are increasingly turning to service outsourcing to reduce costs, including laboratory services. Studies of this practice have largely focused on nonacademic medical centers. In contrast, academic medical centers have unique practice environments and unique mission considerations. We sought to elucidate and analyze clinical laboratory outsourcing experiences in US academic medical centers. Seventeen chairs of pathology with relevant experience were willing to participate in in-depth interviews about their experiences. Anticipated financial benefits from joint venture arrangements often eroded after the initial years of the agreement, due to increased test pricing, management fees, duplication of services in support of inpatients, and lack of incentive for utilization control on the part of the for-profit partner. Outsourcing can preclude development of lucrative outreach programs; such programs were successfully launched in several cases after joint ventures were either avoided or terminated. Common complaints included poor test turnaround time and problems with test quality (especially in molecular pathology, microbiology, and flow cytometry), leading to clinician dissatisfaction. Joint ventures adversely affected retention of academically oriented clinical pathology faculty, with adverse effects on research and education, which further exacerbated clinician dissatisfaction due to lack of available consultative expertise. Resident education in pathology and in other disciplines (especially infectious disease) suffered both from lack of on-site laboratory capabilities and from lack of teaching faculty. Most joint ventures were initiated with little or no input from pathology leadership, and input from pathology leadership was seen to have been critical in those cases where such arrangements were declined or terminated. PMID:29637086

  9. SANDIA NATIONAL LABORATORIES IN SITU ELECTROKINETIC EXTRACTION TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As a part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated the In-Situ Electrokinetic Extraction (ISEE) system at Sandia National Laboratories, Albuquerque, New Mexico.The SITE demonstration results show ...

  10. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  11. Computer technology forecasting at the National Laboratories

    International Nuclear Information System (INIS)

    Peskin, A.M.

    1980-01-01

    The DOE Office of ADP Management organized a group of scientists and computer professionals, mostly from their own national laboratories, to prepare an annually updated technology forecast to accompany the Department's five-year ADP Plan. The activities of the task force were originally reported in an informal presentation made at the ACM Conference in 1978. This presentation represents an update of that report. It also deals with the process of applying the results obtained at a particular computing center, Brookhaven National Laboratory. Computer technology forecasting is a difficult and hazardous endeavor, but it can reap considerable advantage. The forecast performed on an industry-wide basis can be applied to the particular needs of a given installation, and thus give installation managers considerable guidance in planning. A beneficial side effect of this process is that it forces installation managers, who might otherwise tend to preoccupy themselves with immediate problems, to focus on longer term goals and means to their ends

  12. 42 CFR 493.1453 - Condition: Laboratories performing high complexity testing; clinical consultant.

    Science.gov (United States)

    2010-10-01

    ... Condition: Laboratories performing high complexity testing; clinical consultant. The laboratory must have a... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity testing; clinical consultant. 493.1453 Section 493.1453 Public Health CENTERS FOR MEDICARE & MEDICAID...

  13. 42 CFR 493.1415 - Condition: Laboratories performing moderate complexity testing; clinical consultant.

    Science.gov (United States)

    2010-10-01

    ... § 493.1415 Condition: Laboratories performing moderate complexity testing; clinical consultant. The laboratory must have a clinical consultant who meets the qualification requirements of § 493.1417 of this... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing moderate...

  14. The ideal laboratory information system.

    Science.gov (United States)

    Sepulveda, Jorge L; Young, Donald S

    2013-08-01

    Laboratory information systems (LIS) are critical components of the operation of clinical laboratories. However, the functionalities of LIS have lagged significantly behind the capacities of current hardware and software technologies, while the complexity of the information produced by clinical laboratories has been increasing over time and will soon undergo rapid expansion with the use of new, high-throughput and high-dimensionality laboratory tests. In the broadest sense, LIS are essential to manage the flow of information between health care providers, patients, and laboratories and should be designed to optimize not only laboratory operations but also personalized clinical care. To list suggestions for designing LIS with the goal of optimizing the operation of clinical laboratories while improving clinical care by intelligent management of laboratory information. Literature review, interviews with laboratory users, and personal experience and opinion. Laboratory information systems can improve laboratory operations and improve patient care. Specific suggestions for improving the function of LIS are listed under the following sections: (1) Information Security, (2) Test Ordering, (3) Specimen Collection, Accessioning, and Processing, (4) Analytic Phase, (5) Result Entry and Validation, (6) Result Reporting, (7) Notification Management, (8) Data Mining and Cross-sectional Reports, (9) Method Validation, (10) Quality Management, (11) Administrative and Financial Issues, and (12) Other Operational Issues.

  15. Laboratory 3.0: Manufacturing Technologies Laboratory Virtualization with a Student-Centred Methodology

    Science.gov (United States)

    Fabregat-Sanjuan, Albert; Pàmies-Vilà, Rosa; Ferrando Piera, Francesc; De la Flor López, Silvia

    2017-01-01

    This paper presents a blended-learning strategy for improving the teaching method applied in the laboratory subject Manufacturing Technologies. The teaching method has been changed from a predominantly teacher-centred to an active learning system with a student-centred focus and e-learning activities. In face-to-face classes, a game-based learning…

  16. Self-instructional "virtual pathology" laboratories using web-based technology enhance medical school teaching of pathology.

    Science.gov (United States)

    Marchevsky, Alberto M; Relan, Anju; Baillie, Susan

    2003-05-01

    Second-year medical students have traditionally been taught pulmonary pathophysiology at the University of California-Los Angeles (UCLA) School of Medicine using lectures, discussion groups, and laboratory sessions. Since 1998, the laboratory sessions have been replaced by 4 interactive, self-instructional sessions using web-based technology and case-based instruction. This article addresses nature of transformation that occurred from within the course in response to the infusion of new technologies. The vast majority of the course content has been digitized and incorporated into the website of the Pathophysiology of Disease course. The teaching histological slides have been photographed digitally and organized into "cases" with clinical information, digital images and text, and audio descriptions. The students study the materials from these cases at their own pace in 2 "virtual pathology" laboratory, with a few instructors supervising the on-site sessions. The students discuss additional cases available on the website in 2 other laboratory sessions supervised by a pulmonologist and a pathologist. Marked improvement in student participation and satisfaction was seen with the use of web-based instruction. Attendance at laboratory sessions, where the students had previously been required to bring their own microscopes to study histological slides at their own pace, increased from approximately 30% to 40% of the class in previous years to almost 100%. Satisfaction surveys showed progressive improvement over the past 4 years, as various suggestions were implemented. The value of web-based instruction of pathology at the UCLA School of Medicine is discussed.

  17. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Carton, D.; Rhyne, T. [and others

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  18. The future of hospital laboratories. Position statement from the Royal Belgian Society of Clinical Chemistry (RBSCC).

    Science.gov (United States)

    Langlois, Michel R; Wallemacq, Pierre

    2009-01-01

    To face the economic pressures arising from the current socio-economic conjuncture, hospital laboratories are endangered by an increasing trend towards the outsourcing of clinical laboratory tests to external (mega-) laboratories. This should allow hospitals to meet their economic requirements, but with an increased risk of loss of medical quality and, mid- to long-term, loss of cost effectiveness of healthcare at the national level. To anticipate current developments (economical and technological) that inevitably will affect the future of laboratory medicine, hospital laboratories should be proactive and enhance efficiency, reduce costs by consolidation, integrate into regional networks, and form alliances or partnerships. To create additional value, the core competency of laboratory professionals must be refocused to provide medical knowledge services (consultative support to clinicians) related to in vitro diagnostic testing. To integrate cost-efficiency with medical quality, implementation of a matricial organization - operational vs. biomedical level - could be an interesting approach. This integrated structure should create total quality of laboratory testing, managing the entire medical diagnostic cycle from the pre-preanalytical to post-postanalytical phase.

  19. [Strategy Development for International Cooperation in the Clinical Laboratory Field].

    Science.gov (United States)

    Kudo, Yoshiko; Osawa, Susumu

    2015-10-01

    The strategy of international cooperation in the clinical laboratory field was analyzed to improve the quality of intervention by reviewing documents from international organizations and the Japanese government. Based on the world development agenda, the target of action for health has shifted from communicable diseases to non-communicable diseases (NCD). This emphasizes the importance of comprehensive clinical laboratories instead of disease-specific examinations in developing countries. To achieve this goal, the World Health Organization (WHO) has disseminated to the African and Asian regions the Laboratory Quality Management System (LQMS), which is based on the same principles of the International Organization of Standardization (ISO) 15189. To execute this strategy, international experts must have competence in project management, analyze information regarding the target country, and develop a strategy for management of the LQMS with an understanding of the technical aspects of laboratory work. However, there is no appropriate pre- and post-educational system of international health for Japanese international workers. Universities and academic organizations should cooperate with the government to establish a system of education for international workers. Objectives of this education system must include: (1) training for the organization and understanding of global health issues, (2) education of the principles regarding comprehensive management of clinical laboratories, and (3) understanding the LQMS which was employed based on WHO's initiative. Achievement of these objectives will help improve the quality of international cooperation in the clinical laboratory field.

  20. Energy and technology review, January--February 1995. State of the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; Stull, S.; Cassady, C.; Kaiper, G.; Ledbetter, G.; McElroy, L.; Parker, A. [eds.

    1995-02-01

    This issue of Energy and Technology Review highlights the Laboratory`s 1994 accomplishments in their mission areas and core programs--economic competitiveness, national security, lasers, energy, the environment, biology and biotechnology, engineering, physics and space science, chemistry and materials science, computations, and science and math education. LLNL is a major national resource of science and technology expertise, and they are committed to applying this expertise to meet vital national needs.

  1. Laboratory exercises to teach clinically relevant chemistry of antibiotics.

    Science.gov (United States)

    El Sayed, Khalid A; Chelette, Candace T

    2014-03-12

    To design, implement, and evaluate student performance on clinically relevant chemical and spectral laboratory exercises on antibiotics. In the first of 2 exercises, second-year pharmacy students enrolled in an integrated laboratory sequence course studied the aqueous stability of ß-lactam antibiotics using a spectral visual approach. In a second exercise, students studied the tendency of tetracycline, rifamycins, and fluoroquinolones to form insoluble chelate complexes (turbidity) with polyvalent metals. On a survey to assess achievement of class learning objectives, students agreed the laboratory activities helped them better retain important information concerning antibiotic stability and interactions. A significant improvement was observed in performance on examination questions related to the laboratory topics for 2012 and 2013 students compared to 2011 students who did not complete the laboratory. A 1-year follow-up examination question administered in a separate course showed >75% of the students were able to identify rifamycins-food interactions compared with laboratory exercises. The use of spectral visual approaches allowed students to investigate antibiotic stability and interactions, thus reinforcing the clinical relevance of medicinal chemistry. Students' performance on questions at the 1-year follow-up suggested increased retention of the concepts learned as a result of completing the exercises.

  2. Laboratory hematology in the history of Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    Hoffmann, Johannes J M L

    2013-01-01

    For the occasion of the 50th anniversary of the journal Clinical Chemistry and Laboratory Medicine (CCLM), an historic overview of papers that the journal has published in the field of laboratory hematology (LH) is presented. All past volumes of CCLM were screened for papers on LH and these were categorized. Bibliographic data of these papers were also analyzed. CCLM published in total 387 LH papers. The absolute number of LH papers published annually showed a significant increase over the years since 1985. Also the share of LH papers demonstrated a steady increase (overall mean 5%, but mean 8% over the past 4 years). The most frequent category was coagulation and fibrinolysis (23.5%). Authors from Germany contributed the most LH papers to the journal (22.7%), followed by the Netherlands and Italy (16.3 and 13.2%, respectively). Recent citation data indicated that other publications cited LH review papers much more frequently than other types of papers. The history of the journal reflects the emergence and development of laboratory hematology as a separate discipline of laboratory medicine.

  3. Assessment of leadership among clinical laboratories managers of teaching hospitals: Quantum leadership approach

    Directory of Open Access Journals (Sweden)

    H. Dargahi

    2017-10-01

    Full Text Available Background: Quantum leadership approach causes efficient and effective procedures among health care organizations, specially clinical laboratories. Objective: This research was aimed to determine the status of quantum leadership dimensions among all management levels of clinical laboratories of teaching hospitals of medical sciences universities in Tehran. Methods: This descriptive, analytical and cross-sectional study was induced among 180 managers of 35 clinical laboratories of Iran, Shahid Beheshti and Tehran Universities of Medical Sciences 2016. The research tool was researcher - constructed questionnaire of quantum skills, demographic details that its content and face validity and reliability were confirmed. For analysis of data, T-test and ANOVA techniques were used. Findings: Most of the studied clinical laboratories managers were male, married, with 15-20 years work experiences, 1-5 years managerial services, and minimally one training courses in clinical laboratory management. The managers had relatively desired and desired score of quantum skills and leadership respectively. Also, there was significant correlation between quantum leadership with age (P=0.01, and with management training courses (P=0.02. Conclusion: It is expected this paradigm may change the clinical laboratory management in the near future with regards to desirability of quantum leadership dimensions among clinical laboratories.

  4. Report on the International Society for Laboratory Hematology Survey on guidelines to support clinical hematology laboratory practice.

    Science.gov (United States)

    Hayward, C P M; Moffat, K A; George, T I; Proytcheva, M; Iorio, A

    2016-05-01

    Given the importance of evidence-based guidelines in health care, we surveyed the laboratory hematology community to determine their opinions on guideline development and their experience and interest in developing clinical hematology laboratory practice guidelines. The study was conducted using an online survey, distributed to members of the International Society for Laboratory Hematology (ISLH) in 2015, with analysis of collected, anonymized responses. A total of 245 individuals participated. Most worked in clinical and/or research laboratories (83%) or industry (11%). 42% felt there were gaps in current guidelines. The majority (58%) recommended that ISLH engages its membership in guideline development. Participants differed in their familiarity with, and use of, different organizations' guidelines. Participants felt it was important to follow best practice recommendations on guideline development, including engagement of experts, statement about conflict of interests and how they were managed, systematic review and grading evidence for recommendations, identifying recommendations lacking evidence or consensus, and public input and peer review of the guideline. Moreover, it was considered important to provide guidelines free of charge. Industry involvement in guidelines was considered less important. The clinical laboratory hematology community has high expectations of laboratory practice guidelines that are consistent with recent recommendations on evidence-based guideline development. © 2016 John Wiley & Sons Ltd.

  5. Implementing self sustained quality control procedures in a clinical laboratory.

    Science.gov (United States)

    Khatri, Roshan; K C, Sanjay; Shrestha, Prabodh; Sinha, J N

    2013-01-01

    Quality control is an essential component in every clinical laboratory which maintains the excellence of laboratory standards, supplementing to proper disease diagnosis, patient care and resulting in overall strengthening of health care system. Numerous quality control schemes are available, with combinations of procedures, most of which are tedious, time consuming and can be "too technical" whereas commercially available quality control materials can be expensive especially for laboratories in developing nations like Nepal. Here, we present a procedure performed at our centre with self prepared control serum and use of simple statistical tools for quality assurance. The pooled serum was prepared as per guidelines for preparation of stabilized liquid quality control serum from human sera. Internal Quality Assessment was performed on this sample, on a daily basis which included measurement of 12 routine biochemical parameters. The results were plotted on Levey-Jennings charts and analysed with quality control rules, for a period of one month. The mean levels of biochemical analytes in self prepared control serum were within normal physiological range. This serum was evaluated every day along with patients' samples. The results obtained were plotted on control charts and analysed using common quality control rules to identify possible systematic and random errors. Immediate mitigation measures were taken and the dispatch of erroneous reports was avoided. In this study we try to highlight on a simple internal quality control procedure which can be performed by laboratories, with minimum technology, expenditure, and expertise and improve reliability and validity of the test reports.

  6. SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications

    International Nuclear Information System (INIS)

    Fetterly, K

    2014-01-01

    Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalities include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care

  7. Health and safety in clinical laboratories in developing countries: safety considerations.

    Science.gov (United States)

    Ejilemele, A A; Ojule, A C

    2004-01-01

    Clinical laboratories are potentially hazardous work areas. Health and safety in clinical laboratories is becoming an increasingly important subject as a result of the emergence of highly infectious diseases such as hepatitis and HIV. This is even more so in developing countries where health and safety have traditionally been regarded as low priority issues, considering the more important health problems confronting the health authorities in these countries. We conducted a literature search using the medical subheadings titles on the INTERNET over a period of twenty years and summarized our findings. This article identifies hazards in the laboratories and highlights measures to make the laboratory a safer work place. It also emphasizes the mandatory obligations of employers and employees towards the attainment of acceptable safety standards in clinical laboratories in Third World countries in the face of the current HIV/AIDS epidemic in many of these developing countries especially in the sub-Saharan Africa while accommodating the increasing work load in these laboratories. Both the employer and the employee have major roles to play in the maintenance of a safe working environment. This can be achieved if measures discussed are incorporated into everyday laboratory practice.

  8. Use of artificial intelligence in analytical systems for the clinical laboratory.

    Science.gov (United States)

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1995-01-01

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks.This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system.In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories.It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories.

  9. Practicing Handoffs Early: Applying a Clinical Framework in the Anatomy Laboratory

    Science.gov (United States)

    Lazarus, Michelle D.; Dos Santos, Jason A.; Haidet, Paul M.; Whitcomb, Tiffany L.

    2016-01-01

    The anatomy laboratory provides an ideal environment for the integration of clinical contexts as the willed-donor is often regarded as a student's "first patient." This study evaluated an innovative approach to peer teaching in the anatomy laboratory using a clinical handoff context. The authors introduced the "Situation,…

  10. Clinical and laboratory assessment of dehydration severity in children with acute gastroenteritis.

    Science.gov (United States)

    Parkin, Patricia C; Macarthur, Colin; Khambalia, Amina; Goldman, Ran D; Friedman, Jeremy N

    2010-03-01

    To evaluate clinical and laboratory assessment of dehydration severity in children, 1 to 36 months, with acute gastroenteritis. Clinical and laboratory measures and weight change following rehydration were collected for enrolled children. Pediatric emergency department. Likelihood ratio (LR+) and 95% confidence interval (CI): for a clinical score of 0, the LR+ was 2.2 (95% CI = 0.9-5.3); for a clinical score of 1 to 4, the LR+ was 1.3 (95% CI = 0.90-1.74); for a clinical score of 5 to 8, the LR+ was 5.2 (95% CI = 2.2-12.8); for a venous pH Dehydration Scale and laboratory measures into clinical decision-making algorithms to assess dehydration severity in children with acute gastroenteritis.

  11. Evaluating laboratory key performance using quality indicators in Alexandria University Hospital Clinical Chemistry Laboratories.

    Science.gov (United States)

    Rizk, Mostafa M; Zaki, Adel; Hossam, Nermine; Aboul-Ela, Yasmin

    2014-12-01

    The performance of clinical laboratories plays a fundamental role in the quality and effectiveness of healthcare. To evaluate the laboratory performance in Alexandria University Hospital Clinical Laboratories using key quality indicators and to compare the performance before and after an improvement plan based on ISO 15189 standards. The study was carried out on inpatient samples for a period of 7 months that was divided into three phases: phase I included data collection for evaluation of the existing process before improvement (March-May 2012); an intermediate phase, which included corrective, preventive action, quality initiative and steps for improvement (June 2012); and phase II, which included data collection for evaluation of the process after improvement (July 2012-September 2012). In terms of the preanalytical indicators, incomplete request forms in phase I showed that the total number of received requests were 31 944, with a percentage of defected request of 33.66%; whereas in phase II, there was a significant reduction in all defected request items (Plaboratories.

  12. Interference by pralidoxime (PAM) salts in clinical laboratory tests.

    Science.gov (United States)

    Nagase, Sumika; Kohguchi, Katsunori; Tohyama, Kaoru; Watanabe, Mikio; Iwatani, Yoshinori

    2013-02-01

    Drugs sometimes alter the results of clinical laboratory tests. We examined the effects of pralidoxime (PAM) salts, a medicine used to treat organophosphorus poisoning, on clinical laboratory test results for the first time. The effects of PAM salts on glucose (GLU) measurements were examined using a point-of-care testing (POCT) meter, four self-monitoring of blood glucose (SMBG) meters, and two biochemical autoanalyzers. The effects of PAM salts on other clinical tests were also evaluated. The addition of PAM iodide or potassium iodide, but not of PAM chloride or potassium chloride, to blood samples increased the GLU values measured by one POCT meter and 4 SMBG meters using the enzyme electrode (hydrogen peroxidase or oxygen electrode) method. On the other hand, PAM iodide or PAM chloride, but not KI or KCl, affected the values measured at 340 nm by an autoanalyzer using absorption spectrophotometry in 8 of 14 clinical laboratory tests. The absorption spectrum of PAM changed from 294 to 338 nm due to the reaction between PAM and the alkaline buffer, a component of the measuring reagents. PAM iodide increases the GLU values measured by the enzyme electrode method, and PAM salts affected the values measured at 340 nm by absorption spectrophotometry in many other clinical test items. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The evolution of Interior Intrusion Detection Technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  14. Report of the results of the International Clinical Cytometry Society and American Society for Clinical Pathology workload survey of clinical flow cytometry laboratories.

    Science.gov (United States)

    Wolniak, Kristy; Goolsby, Charles; Choi, Sarah; Ali, Asma; Serdy, Nina; Stetler-Stevenson, Maryalice

    2017-11-01

    Thorough review of current workload, staffing, and testing practices in clinical laboratories allows for optimization of laboratory efficiency and quality. This information is largely missing with regard to clinical flow cytometry laboratories. The purpose of this survey is to provide comprehensive, current, and accurate data on testing practices and laboratory staffing in clinical laboratories performing flow cytometric studies. Survey data was collected from flow cytometry laboratories through the ASCP website. Data was collected on the workload during a 1-year time period of full-time and part-time technical and professional (M.D./D.O./Ph.D. or equivalent) flow cytometry employees. Workload was examined as number of specimens and tubes per full time equivalent (FTE) technical and professional staff. Test complexity, test result interpretation, and reporting practices were also evaluated. There were 205 respondent laboratories affiliated predominantly with academic and health system institutions. Overall, 1,132 FTE employees were reported with 29% professional FTE employees and 71% technical. Fifty-one percent of the testing performed was considered high complexity and 49% was low complexity. The average number of tubes per FTE technologist was 1,194 per year and the average number of specimens per FTE professional was 1,659 per year. The flow cytometry reports were predominantly written by pathologists (57%) and were typically written as a separate report (58%). This survey evaluates the overall status of the current practice of clinical flow cytometry and provides a comprehensive dataset as a framework to help laboratory departments, directors, and managers make appropriate, cost-effective staffing decisions. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  15. Student perceptions of the clinical laboratory science profession.

    Science.gov (United States)

    McClure, Karen

    2009-01-01

    The purpose of this paper is to describe the attitudes and perceptions among college biology and CLS/CLT students. These students were on selected college campuses at Texas universities in Houston, Dallas and the Austin/San Antonio areas for the Spring 2007 semester. Specifically, students were questioned on factors that influence their choice of field of study, career expectations, legislative measures which might be used to attract individuals to the career, and factors that will be required to keep them in the field of practice. This study was part of a larger qualitative study which included exploratory discovery and inductive logic regarding the attitudes of four focus groups in Texas. Focus groups took place on college campuses or in hotel conference rooms. (1) junior/senior-level college biology students and (2) junior/senior-level students currently enrolled in CLS/CLT programs. Focus group discussions using a standard set of questions; group sessions lasted about 45 minutes. This study was a qualitative study which included exploratory discovery and inductive logic regarding the attitudes of two groups in Texas. College biology and CLS/CLT students find the clinical laboratory science profession to be interesting and exciting as a career prospect, however, many do not see themselves remaining in the profession and perceive it does not have good prospects for career advancement. The majority of students must work to support themselves through their college education and would welcome additional grants, scholarships and loan forgiveness programs as incentives to study the clinical laboratory sciences. Students believe that additional recruitment on high school and college campuses is needed to increase the visibility of the field as career choice. The majority of students who are entering the clinical laboratory science profession do not see the profession as their final career choice, but rather a stepping stone to another career field in healthcare or a

  16. Inter-laboratory agreement on embryo classification and clinical decision: Conventional morphological assessment vs. time lapse.

    Science.gov (United States)

    Martínez-Granados, Luis; Serrano, María; González-Utor, Antonio; Ortíz, Nereyda; Badajoz, Vicente; Olaya, Enrique; Prados, Nicolás; Boada, Montse; Castilla, Jose A

    2017-01-01

    -perfect inter-laboratory agreement among conventional morphological assessment (CMA), EmbryoScope™ and Primo Vision™, except for false divisions, vacuoles and asymmetry (users of all methods) and multinucleation (users of Primo Vision™), where the degree of agreement was lower. The inter-laboratory agreement on embryo classification according to the ASEBIR criteria was moderate-substantial (Gwet 0.41-0.80) for the laboratories using CMA and EmbryoScope™, and fair-moderate (Gwet 0.21-0.60) for those using Primo Vision™. The inter-laboratory agreement for clinical decision was moderate (Gwet 0.41-0.60) on day 5 for CMA users and almost perfect (Gwet 0.81-1) for time-lapse users. In conclusion, time-lapse technology does not improve inter-laboratory agreement on embryo classification or the analysis of each morphological variable. Moreover, depending on the time-lapse platform used, inter-laboratory agreement may be lower than that obtained by CMA. However, inter-laboratory agreement on clinical decisions is improved with the use of time lapse, regardless of the platform used.

  17. Inter-laboratory agreement on embryo classification and clinical decision: Conventional morphological assessment vs. time lapse.

    Directory of Open Access Journals (Sweden)

    Luis Martínez-Granados

    was almost-perfect inter-laboratory agreement among conventional morphological assessment (CMA, EmbryoScope™ and Primo Vision™, except for false divisions, vacuoles and asymmetry (users of all methods and multinucleation (users of Primo Vision™, where the degree of agreement was lower. The inter-laboratory agreement on embryo classification according to the ASEBIR criteria was moderate-substantial (Gwet 0.41-0.80 for the laboratories using CMA and EmbryoScope™, and fair-moderate (Gwet 0.21-0.60 for those using Primo Vision™. The inter-laboratory agreement for clinical decision was moderate (Gwet 0.41-0.60 on day 5 for CMA users and almost perfect (Gwet 0.81-1 for time-lapse users. In conclusion, time-lapse technology does not improve inter-laboratory agreement on embryo classification or the analysis of each morphological variable. Moreover, depending on the time-lapse platform used, inter-laboratory agreement may be lower than that obtained by CMA. However, inter-laboratory agreement on clinical decisions is improved with the use of time lapse, regardless of the platform used.

  18. Using e-technologies in clinical trials.

    Science.gov (United States)

    Rosa, Carmen; Campbell, Aimee N C; Miele, Gloria M; Brunner, Meg; Winstanley, Erin L

    2015-11-01

    Clinical trials have been slow to incorporate e-technology (digital and electronic technology that utilizes mobile devices or the Internet) into the design and execution of studies. In the meantime, individuals and corporations are relying more on electronic platforms and most have incorporated such technology into their daily lives. This paper provides a general overview of the use of e-technologies in clinical trials research, specifically within the last decade, marked by rapid growth of mobile and Internet-based tools. Benefits of and challenges to the use of e-technologies in data collection, recruitment and retention, delivery of interventions, and dissemination are provided, as well as a description of the current status of regulatory oversight of e-technologies in clinical trials research. As an example of ways in which e-technologies can be used for intervention delivery, a summary of e-technologies for treatment of substance use disorders is presented. Using e-technologies to design and implement clinical trials has the potential to reach a wide audience, making trials more efficient while also reducing costs; however, researchers should be cautious when adopting these tools given the many challenges in using new technologies, as well as threats to participant privacy/confidentiality. Challenges of using e-technologies can be overcome with careful planning, useful partnerships, and forethought. The role of web- and smartphone-based applications is expanding, and the increasing use of those platforms by scientists and the public alike make them tools that cannot be ignored. Published by Elsevier Inc.

  19. Bonding to oxide ceramics—laboratory testing versus clinical outcome.

    Science.gov (United States)

    Kern, Matthias

    2015-01-01

    Despite a huge number of published laboratory bonding studies on dental oxide ceramics clinical long-term studies on resin bonded oxide ceramic restorations are rare. The purpose of this review is to present the best available clinical evidence for successful bonding of dental oxide ceramic restorations. Clinical trials with resin-bonded restorations that had no or only limited mechanical retention and were made from alumina or zirconia ceramic were identified using an electronic search in PubMed database. Overall 10 publications with clinical trials could be identified. Their clinical outcome was compared with that laboratory bond strength studies. Clinical data provide strong evidence that air-abrasion at a moderate pressure in combination with using phosphate monomer containing primers and/or luting resins provide long-term durable bonding to glass-infiltrated alumina and zirconia ceramic under the humid and stressful oral conditions. As simple and clinically reliable bonding methods to oxide ceramics exist, the rationale for development of alternative bonding methods might be reconsidered especially when these methods are more time consuming or require rather complicated and/or technique sensitive procedures. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    Science.gov (United States)

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  1. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combination developed when commercial sensors were unavailable and the future application of expert systems. 5 refs

  2. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-01-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the U.S. Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). The authors also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  3. Meet the best Award-winning technologies from Pacific Northwest Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Battelle Memorial Institute has managed the Pacific Northwest Laboratory (PNL) for the US Department of Energy for 25 years. During this time, numerous new technologies have been discovered and developed at PNL as a result of our research programs. This document will introduce you to some of the more significant discoveries and newly commercialized technologies. Each of the technologies described has received an award from Research Development magazine or the Federal Laboratory Consortium--sometimes both Each technology is available to you through PNL's technology transfer program or one of our licensees. Similarly, our award-winning scientists and engineers are available to assist you as you search for innovative technologies to solve your technical problems. These researchers are familiar with current problems confronting industry, government agencies, and the academic community. They are happy to apply their skills and PNL's resources to your problems. PNL encourages its researchers to work with government agencies, universities, and US industries. PNL technology transfer programs address the nation's drive toward increased competitiveness by being flexible and aggressive, and are designed to tailor results to fit your needs and those of your clients. If you are in search of a new technology or increased competitiveness, consider collaborative efforts with our award-winning staff, whose accomplishments are synopsized in this booklet.

  4. Factors that impact clinical laboratory scientists' commitment to their work organizations.

    Science.gov (United States)

    Bamberg, Richard; Akroyd, Duane; Moore, Ti'eshia M

    2008-01-01

    To assess the predictive ability of various aspects of the work environment for organizational commitment. A questionnaire measuring three dimensions of organizational commitment along with five aspects of work environment and 10 demographic and work setting characteristics was sent to a national, convenience sample of clinical laboratory professionals. All persons obtaining the CLS certification by NCA from January 1, 1997 to December 31, 2006. Only respondents who worked full-time in a clinical laboratory setting were included in the database. Levels of affective, normative, and continuance organizational commitment, organizational support, role clarity, role conflict, transformational leadership behavior of supervisor, and organizational type, total years work experience in clinical laboratories, and educational level of respondents. Questionnaire items used either a 7-point or 5-point Likert response scale. Based on multiple regression analysis for the 427 respondents, organizational support and transformational leadership behavior were found to be significant positive predictors of affective and normative organizational commitment. Work setting (non-hospital laboratory) and total years of work experience in clinical laboratories were found to be significant positive predictors of continuance organizational commitment. Overall the organizational commitment levels for all three dimensions were at the neutral rating or below in the slightly disagree range. The results indicate a less than optimal level of organizational commitment to employers, which were predominantly hospitals, by CLS practitioners. This may result in continuing retention problems for hospital laboratories. The results offer strategies for improving organizational commitment via the significant predictors.

  5. Obtaining patient test results from clinical laboratories: a survey of state law for pharmacists.

    Science.gov (United States)

    Witry, Matthew J; Doucette, William R

    2009-01-01

    To identify states with laws that restrict to whom clinical laboratories may release copies of laboratory test results and to describe how these laws may affect pharmacists' ability to obtain patient laboratory test results. Researchers examined state statutes and administrative codes for all 50 states and the District of Columbia at the University of Iowa Law Library between June and July 2007. Researchers also consulted with lawyers, state Clinical Laboratory Improvement Amendments officers, and law librarians. Laws relating to the study objective were analyzed. 34 jurisdictions do not restrict the release of laboratory test results, while 17 states have laws that restrict to whom clinical laboratories can send copies of test results. In these states, pharmacists will have to use alternative sources, such as physician offices, to obtain test results. Pharmacists must consider state law before requesting copies of laboratory test results from clinical laboratories. This may be an issue that state pharmacy associations can address to increase pharmacist access to important patient information.

  6. What Clinical and Laboratory Parameters Distinguish Between ...

    African Journals Online (AJOL)

    Introduction: In developing countries, a large number of patients presenting acutely in renal failure are indeed cases of advanced chronic renal failure. In this study, we compared clinical and laboratory parameters between patients with acute renal failure (ARF) and chronic renal failure (CRF), to identify discriminatory ...

  7. An evaluation of clinical laboratory services in sub-Saharan Africa. Ex africa semper aliquid novi?

    Science.gov (United States)

    Gray, I P; Carter, J Y

    1997-11-06

    Pathology services represent the rational, scientific basis of the practice of clinical care. It does not represent deus ex machina, an implausible solution to a complex plot, but rather the way in which clinical care can be audited, controlled, guided and kept appropriate to the funds and the skills available. Arguments are presented to support this statement as well as to analyse what is wrong with health care, from the point of view of laboratory medicine, in sub-Saharan Africa. In most African countries 'first world' technology has to be imported by economies barely able to sustain the basic requirements of human life. Badly needed foreign exchange is obtained by growing export crops at the cost of traditional lifestyle, disenfranchising communities, urbanisation, and even at the cost not being able to grow food. War, corruption, lack of accountability even in the Western sense of being able to go to the polls every so often, lack of empowerment, low literacy rate etc all debase the communities, with minimal exceptions, of Africa. Health care is under the same capricious rule as all other public services: investment in laboratories is poor and most have no access to a professional laboratory at all. More investment, not less; expansion of pathology services not restricting them, is needed throughout the continent.

  8. Annual Technology Baseline (Including Supporting Data); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate; Cory, Karlynn; Hand, Maureen; Parkhill, Linda; Speer, Bethany; Stehly, Tyler; Feldman, David; Lantz, Eric; Augusting, Chad; Turchi, Craig; O' Connor, Patrick

    2015-07-08

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  9. The laboratory diagnosis of testosterone deficiency.

    Science.gov (United States)

    Paduch, Darius A; Brannigan, Robert E; Fuchs, Eugene F; Kim, Edward D; Marmar, Joel L; Sandlow, Jay I

    2014-05-01

    The evaluation and treatment of hypogonadal men has become an important part of urologic practice. Fatigue, loss of libido, and erectile dysfunction are commonly reported, but nonspecific symptoms and laboratory verification of low testosterone (T) are an important part of evaluation in addition to a detailed history and physical examination. Significant intraindividual fluctuations in serum T levels, biologic variation of T action on end organs, the wide range of T levels in human serum samples, and technical limitations of currently available assays have led to poor reliability of T measurements in the clinical laboratory setting. There is no universally accepted threshold of T concentration that distinguishes eugonadal from hypogonadal men; thus, laboratory results have to be interpreted in the appropriate clinical setting. This review focuses on clinical, biological, and technological challenges that affect serum T measurements to educate clinicians regarding technological advances and limitations of the currently available laboratory methods to diagnose hypogonadism. A collaborative effort led by the American Urological Association between practicing clinicians, patient advocacy groups, government regulatory agencies, industry, and professional societies is underway to provide optimized assay platforms and evidence-based normal assay ranges to guide clinical decision making. Until such standardization is commonplace in clinical laboratories, the decision to treat should be based on the presence of signs and symptoms in addition to serum T measurements. Rigid interpretation of T ranges should not dictate clinical decision making or define coverage of treatment by third party payers. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Clinical and laboratory profile of patients with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Phelipe Gabriel dos Santos Sant'Ana

    Full Text Available Abstract Objective: This study aimed to describe and analyze clinical and laboratory characteristics of patients with sickle cell anemia treated at the Hemominas Foundation, in Divinópolis, Brazil. Furthermore, this study aimed to compare the clinical and laboratory outcomes of the group of patients treated with hydroxyurea with those patients that were not treated with hydroxyurea. Methods: Clinical and laboratorial data were obtained by analyzing medical records of patients with sickle cell anemia. Results: Data from the medical records of 50 patients were analyzed. Most of the patients were female (56%, aged between 20 and 29 years old. Infections, transfusions, cholecystectomy, splenectomy and systemic arterial hypertension were the most common clinical adverse events of the patients. The most frequent cause of hospitalization was painful crisis. The majority of patients had reduced values of hemoglobin and hematocrit (8.55 ± 1.33 g/dL and 25.7 ± 4.4%, respectively and increased fetal hemoglobin levels (12 ± 7%. None of the clinical variables was statistically significant on comparing the two groups of patients. Among hematological variables only hemoglobin and hematocrit levels were statistically different between patients treated with hydroxyurea and untreated patients (p-value = 0.005 and p-value = 0.001, respectively. Conclusion: Sickle cell anemia requires treatment and follow-up by a multiprofessional team. A current therapeutic option is hydroxyurea. This drug reduces complications and improves laboratorial parameters of patients. In this study, the use of the drug increased the hemoglobin and hematocrit levels of patients.

  11. Cost comparison of laboratory methods and four field screening technologies for uranium-contaminated soil

    International Nuclear Information System (INIS)

    Douthat, D.M.; Armstrong, A.Q.

    1994-01-01

    To address the problem of characterizing uranium-contaminated surface soil at federal facilities, the Department of Energy has the development of four uranium field screening technologies, under the direction of the Uranium-in-Soils Integrated Demonstration (USID) Program. These four technologies include: a long-range alpha detector a beta scintillation detector, an in situ gamma detector, and a mobile laser ablation-inductively coupled plasma/atomic emission spectrometry (LA-ICP/AES) laboratory. As part of the performance assessment for these field screening technologies, cost estimates for the development and operation of each technology were created. A cost study was conducted to compare three of the USID field screening technologies to the use of traditional field surveying equipment to adequately characterize surface soils of a one-acre site. The results indicate that the use of traditional equipment costs more than the in situ gamma detector, but less than the beta scintillation detector and LRAD. The use of traditional field surveying equipment results in cost savings of 4% and 34% over the use of the beta scintillation and LRAD technologies, respectively. A study of single-point surface soil sampling and laboratory analysis costs was also conducted. Operational costs of the mobile LA-ICP/AES laboratory were compared with operational costs of traditional sampling and analysis, which consists of collecting soil samples and conducting analysis in a radiochemical laboratory. The cost study indicates that the use of the mobile LA-ICP/AES laboratory results in cost savings of 23% and 40% over traditional field sampling and laboratory analysis conducted by characterization groups at two DOE facilities

  12. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

  13. [Software for illustrating a cost-quality balance carried out by clinical laboratory practice].

    Science.gov (United States)

    Nishibori, Masahiro; Asayama, Hitoshi; Kimura, Satoshi; Takagi, Yasushi; Hagihara, Michio; Fujiwara, Mutsunori; Yoneyama, Akiko; Watanabe, Takashi

    2010-09-01

    We have no proper reference indicating the quality of clinical laboratory practice, which should clearly illustrates that better medical tests require more expenses. Japanese Society of Laboratory Medicine was concerned about recent difficult medical economy and issued a committee report proposing a guideline to evaluate the good laboratory practice. According to the guideline, we developed software that illustrate a cost-quality balance carried out by clinical laboratory practice. We encountered a number of controversial problems, for example, how to measure and weight each quality-related factor, how to calculate costs of a laboratory test and how to consider characteristics of a clinical laboratory. Consequently we finished only prototype software within the given period and the budget. In this paper, software implementation of the guideline and the above-mentioned problems are summarized. Aiming to stimulate these discussions, the operative software will be put on the Society's homepage for trial

  14. Review and Identification of DOE Laboratory Technologies for Countermine/Unexploded Ordnance Detection

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.M.

    2002-04-03

    Several Department of Energy (DOE) laboratories have worked and/or are working on technologies that are applicable to the detection of landmines and/or unexploded ordnance. This report is a compilation of technical summaries for many of these technologies. For additional information on any technology, appropriate points of contact are provided for each technology.

  15. Quality in laboratory medicine: 50years on.

    Science.gov (United States)

    Plebani, Mario

    2017-02-01

    The last 50years have seen substantial changes in the landscape of laboratory medicine: its role in modern medicine is in evolution and the quality of laboratory services is changing. The need to control and improve quality in clinical laboratories has grown hand in hand with the growth in technological developments leading to an impressive reduction of analytical errors over time. An essential cause of this impressive improvement has been the introduction and monitoring of quality indicators (QIs) such as the analytical performance specifications (in particular bias and imprecision) based on well-established goals. The evolving landscape of quality and errors in clinical laboratories moved first from analytical errors to all errors performed within the laboratory walls, subsequently to errors in laboratory medicine (including errors in test requesting and result interpretation), and finally, to a focus on errors more frequently associated with adverse events (laboratory-associated errors). After decades in which clinical laboratories have focused on monitoring and improving internal indicators of analytical quality, efficiency and productivity, it is time to shift toward indicators of total quality, clinical effectiveness and patient outcomes. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part B, Remedial Action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1. and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on the RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. Remedial action is the focus of Vol. 2, Pt. B, which has been divided into the three necessary subelements of the RA: characterization, RA, and robotics and automation. Each of these sections address general ORNL problems, which are then broken down by problem area/constituents and linked to potential remedial technologies. The diagrams also contain summary information about a technology`s status, its science and technology needs, and its implementation needs.

  17. [External quality assessment in clinical biochemistry laboratories: pilot study in 11 laboratories of Lomé (Togo)].

    Science.gov (United States)

    Kouassi, Kafui; Fétéké, Lochina; Assignon, Selom; Dorkenoo, Ameyo; Napo-Koura, Gado

    2015-01-01

    This study aims to evaluate the performance of a few biochemistry analysis and make recommendations to the place of the stakeholders. It is a cross-sectional study conducted between the October 1(st), 2012 and the July 31, 2013 bearing on the results of 5 common examinations of clinical biochemistry, provided by 11 laboratories volunteers opening in the public and private sectors. These laboratories have analysed during the 3 cycles, 2 levels (medium and high) of serum concentration of urea, glucose, creatinine and serum aminotransferases. The performance of laboratories have been determined from the acceptable limits corresponding to the limits of total errors, defined by the French Society of Clinical Biology (SFBC). A system of internal quality control is implemented by all laboratories and 45% of them participated in international programs of external quality assessment (EQA). The rate of acceptable results for the entire study was of 69%. There was a significant difference (plaboratories engaged in a quality approach and the group with default implementation of the quality approach. Also a significant difference was observed between the laboratories of the central level and those of the peripheral level of our health system (plaboratories remains relatively unsatisfactory. It is important that the Ministry of Health put in place a national program of EQA with mandatory participation.

  18. Has compliance with CLIA requirements really improved quality in US clinical laboratories?

    Science.gov (United States)

    Ehrmeyer, Sharon S; Laessig, Ronald H

    2004-08-02

    The Clinical Laboratory Improvement Amendments of 1988 (CLIA'88) mandate universal requirements for all U.S. clinical laboratory-testing sites. The intent of CLIA'88 is to ensure quality testing through a combination of minimum quality practices that incorporate total quality management concepts. These regulations do not contain established, objective indicators or measures to assess quality. However, there is an implicit assumption that compliance with traditionally accepted good laboratory practices--following manufacturers' directions, routinely analysing quality control materials, applying quality assurance principles, employing and assessing competent testing personnel, and participating in external quality assessment or proficiency testing (PT)--will result in improved test quality. The CLIA'88 regulations do include PT performance standards, which intentionally or unintentionally, define intra-laboratory performance. Passing PT has become a prime motivation for improving laboratory performance; it can also be used as an objective indicator to assess whether compliance to CLIA has improved intra-laboratory quality. Data from 1994 through 2002 indicate that the percentage of laboratories passing PT has increased. In addition to PT performance, subjective indicators of improved quality--frequency of inspection deficiencies, the number of government sanctions for non-compliance, and customer satisfaction--were evaluated. The results from these subjective indicators are more difficult to interpret but also seem to show improved quality in US clinical laboratories eleven years post-CLIA'88.

  19. Blending technology in teaching advanced health assessment in a family nurse practitioner program: using personal digital assistants in a simulation laboratory.

    Science.gov (United States)

    Elliott, Lydia; DeCristofaro, Claire; Carpenter, Alesia

    2012-09-01

    This article describes the development and implementation of integrated use of personal handheld devices (personal digital assistants, PDAs) and high-fidelity simulation in an advanced health assessment course in a graduate family nurse practitioner (NP) program. A teaching tool was developed that can be utilized as a template for clinical case scenarios blending these separate technologies. Review of the evidence-based literature, including peer-reviewed articles and reviews. Blending the technologies of high-fidelity simulation and handheld devices (PDAs) provided a positive learning experience for graduate NP students in a teaching laboratory setting. Combining both technologies in clinical case scenarios offered a more real-world learning experience, with a focus on point-of-care service and integration of interview and physical assessment skills with existing standards of care and external clinical resources. Faculty modeling and advance training with PDA technology was crucial to success. Faculty developed a general template tool and systems-based clinical scenarios integrating PDA and high-fidelity simulation. Faculty observations, the general template tool, and one scenario example are included in this article. ©2012 The Author(s) Journal compilation ©2012 American Academy of Nurse Practitioners.

  20. A Laboratory Course in Clinical Biochemistry Emphasizing Interest and Relevance

    Science.gov (United States)

    Schwartz, Peter L.

    1975-01-01

    Ten laboratory experiments are described which are used in a successful clinical biochemistry laboratory course (e.g. blood alcohol, glucose tolerance, plasma triglycerides, coronary risk index, gastric analysis, vitamin C and E). Most of the experiments are performed on the students themselves using simple equipment with emphasis on useful…

  1. TECHNOLOGICAL COMPETENCE OF FUTURE ENGINEER: FORMATION AND DEVELOPMENT IN COMPUTER INTEGRATED LABORATORY WORKSHOP ON PHYSICS

    Directory of Open Access Journals (Sweden)

    Ihor S. Chernetskyi

    2013-12-01

    Full Text Available The article examines the category «technological competence» and the definition of its components according to the educational process. A structural and functional model of technological competence of future engineers through forms, means, methods and technologies of computer oriented laboratory work. Selected blocks and elements of the model in the course of a typical student laboratory work on the course of general physics. We consider the possibility of using some type of digital labs «Phywe», «Fourier» and modern electronic media (flash books to optimize laboratory work at the Technical University. The analysis of the future research of structural elements model of technological competence.

  2. Polycystic ovary syndrome: clinical and laboratory evaluation

    Directory of Open Access Journals (Sweden)

    Marcos Yorghi Khoury

    Full Text Available OBJECTIVE: To evaluate clinically, and with laboratory, tests, women with polycystic ovary syndrome (PCO. PATIENTS: One hundred and twelve women with PCO were studied. METHODS: The following data was recorded: Current age; age at menarche; menstrual irregularity, occurrence of similar cases in the family; fertility, obstetric history; body mass index (BMI; and presence of hirsutism. Serum measurements of follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin, free testosterone, and dehydroepiandrosterone sulfate were taken. RESULTS: All patients presented either oligomenorrhea (31 percent, periods of secondary amenorrhea (9 percent, or both alterations (60 percent. The majority of the patients were infertile (75.6 percent. The LH/FSH ratio was higher than 2:1 in 55 percent of the patients and higher than 3:1 in 26.2 percent. The ultrasonographic aspect of the ovaries was considered to be normal in 31 percent. CONCLUSION: The main clinical feature of the PCO is the irregularity of menses since menarche, and that the laboratory tests would be important to exclude other disorders such as hyperprolactinemia or hyperandrogenemia caused by late-onset congenital adrenal hyperplasia.

  3. Information systems as a quality management tool in clinical laboratories

    Science.gov (United States)

    Schmitz, Vanessa; Rosecler Bez el Boukhari, Marta

    2007-11-01

    This article describes information systems as a quality management tool in clinical laboratories. The quality of laboratory analyses is of fundamental importance for health professionals in aiding appropriate diagnosis and treatment. Information systems allow the automation of internal quality management processes, using standard sample tests, Levey-Jennings charts and Westgard multirule analysis. This simplifies evaluation and interpretation of quality tests and reduces the possibility of human error. This study proposes the development of an information system with appropriate functions and costs for the automation of internal quality control in small and medium-sized clinical laboratories. To this end, it evaluates the functions and usability of two commercial software products designed for this purpose, identifying the positive features of each, so that these can be taken into account during the development of the proposed system.

  4. Information systems as a quality management tool in clinical laboratories

    International Nuclear Information System (INIS)

    Schmitz, Vanessa; Boukhari, Marta Rosecler Bez el

    2007-01-01

    This article describes information systems as a quality management tool in clinical laboratories. The quality of laboratory analyses is of fundamental importance for health professionals in aiding appropriate diagnosis and treatment. Information systems allow the automation of internal quality management processes, using standard sample tests, Levey-Jennings charts and Westgard multirule analysis. This simplifies evaluation and interpretation of quality tests and reduces the possibility of human error. This study proposes the development of an information system with appropriate functions and costs for the automation of internal quality control in small and medium-sized clinical laboratories. To this end, it evaluates the functions and usability of two commercial software products designed for this purpose, identifying the positive features of each, so that these can be taken into account during the development of the proposed system

  5. Laboratory-based surveillance in the molecular era: The typened model, a joint data-sharing platform for clinical and public health laboratories

    NARCIS (Netherlands)

    H.G.M. Niesters (Bert); J.W. Rossen (John); H.G.A.M. van der Avoort (Harrie); D. Baas; K. Benschop (Kimberley); E.C.J. Claas (Eric); A. Kroneman; N.M. van Maarseveen (Noortje); S.D. Pas (Suzan); W. van Pelt (Wilfred); J. Rahamat-Langendoen (Janette); R. Schuurman (Rob); H. Vennema (Harry); L. Verhoef; K.C. Wolthers (Katja); M.P.G. Koopmans D.V.M. (Marion)

    2013-01-01

    textabstractLaboratory-based surveillance, one of the pillars of monitoring infectious disease trends, relies on data produced in clinical and/or public health laboratories. Currently, diagnostic laboratories worldwide submit strains or samples to a relatively small number of reference laboratories

  6. Laboratory-based surveillance in the molecular era : the TYPENED model, a joint data-sharing platform for clinical and public health laboratories

    NARCIS (Netherlands)

    Niesters, H G; Rossen, J W; van der Avoort, H; Baas, D; Benschop, K; Claas, E C; Kroneman, A; van Maarseveen, N; Pas, S; van Pelt, W; Rahamat-Langendoen, J C; Schuurman, R; Vennema, H; Verhoef, L; Wolthers, K; Koopmans, Marion

    2013-01-01

    Laboratory-based surveillance, one of the pillars of monitoring infectious disease trends, relies on data produced in clinical and/or public health laboratories. Currently, diagnostic laboratories worldwide submit strains or samples to a relatively small number of reference laboratories for

  7. Laboratory-based surveillance in the molecular era: the TYPENED model, a joint data-sharing platform for clinical and public health laboratories

    NARCIS (Netherlands)

    Niesters, H. G.; Rossen, J. W.; van der Avoort, H.; Baas, D.; Benschop, K.; Claas, E. C.; Kroneman, A.; van Maarseveen, N.; Pas, S.; van Pelt, W.; Rahamat-Langendoen, J. C.; Schuurman, R.; Vennema, H.; Verhoef, L.; Wolthers, K.; Koopmans, M.

    2013-01-01

    Laboratory-based surveillance, one of the pillars of monitoring infectious disease trends, relies on data produced in clinical and/or public health laboratories. Currently, diagnostic laboratories worldwide submit strains or samples to a relatively small number of reference laboratories for

  8. MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond.

    Science.gov (United States)

    Posteraro, Brunella; De Carolis, Elena; Vella, Antonietta; Sanguinetti, Maurizio

    2013-04-01

    MALDI-TOF mass spectrometry (MS) is becoming essential in most clinical microbiology laboratories throughout the world. Its successful use is mainly attributable to the low operational costs, the universality and flexibility of detection, as well as the specificity and speed of analysis. Based on characteristic protein spectra obtained from intact cells - by means of simple, rapid and reproducible preanalytical and analytical protocols - MALDI-TOF MS allows a highly discriminatory identification of yeasts and filamentous fungi starting from colonies. Whenever used early, direct identification of yeasts from positive blood cultures has the potential to greatly shorten turnaround times and to improve laboratory diagnosis of fungemia. More recently, but still at an infancy stage, MALDI-TOF MS is used to perform strain typing and to determine antifungal drug susceptibility. In this article, the authors discuss how the MALDI-TOF MS technology is destined to become a powerful tool for routine mycological diagnostics.

  9. Use of the National Committee for Clinical Laboratory Standards Guidelines for Disk Diffusion Susceptibility Testing in New York State Laboratories

    Science.gov (United States)

    Kiehlbauch, Julia A.; Hannett, George E.; Salfinger, Max; Archinal, Wendy; Monserrat, Catherine; Carlyn, Cynthia

    2000-01-01

    Accurate antimicrobial susceptibility testing is vital for patient care and surveillance of emerging antimicrobial resistance. The National Committee for Clinical Laboratory Standards (NCCLS) outlines generally agreed upon guidelines for reliable and reproducible results. In January 1997 we surveyed 320 laboratories participating in the New York State Clinical Evaluation Program for General Bacteriology proficiency testing. Our survey addressed compliance with NCCLS susceptibility testing guidelines for bacterial species designated a problem (Staphylococcus aureus and Enterococcus species) or fastidious (Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria gonorrhoeae) organism. Specifically, we assessed compliance with guidelines for inoculum preparation, medium choice, number of disks per plate, and incubation conditions for disk diffusion tests. We also included length of incubation for S. aureus and Enterococcus species. We found overall compliance with the five characteristics listed above in 80 of 153 responding laboratories (50.6%) for S. aureus and 72 of 151 (47.7%) laboratories for Enterococcus species. The most common problem was an incubation time shortened to less than 24 h. Overall compliance with the first four characteristics was reported by 92 of 221 (41.6%) laboratories for S. pneumoniae, 49 of 163 (30.1%) laboratories for H. influenzae, and 11 of 77 (14.3%) laboratories for N. gonorrhoeae. Laboratories varied from NCCLS guidelines by placing an excess number of disks per plate. Laboratories also reported using alternative media for Enterococcus species, N. gonorrhoeae, and H. influenzae. This study demonstrates a need for education among clinical laboratories to increase compliance with NCCLS guidelines. PMID:10970381

  10. Clinical and laboratory criteria for type 2 diabetes mellitus in children

    OpenAIRE

    T.V. Sorokman; O.V. Makarova; V.G. Ostapchuk

    2018-01-01

    The purpose of this review was the analysis of literature data on clinical and laboratory criteria for type 2 diabetes mellitus in children. A review of scientific literature was conducted using Pubmed as the search engine by the keywords: diabetes mellitus, type 2 diabetes mellitus, clinical picture, laboratory criteria, risk factors, taking into consideration studies conducted in the last 10 years, citation review of relevant primary and review articles, conference abstracts, personal files...

  11. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research..., behavioral, and clinical science research. The panel meetings will be open to the public for approximately...

  12. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... Crowne Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A...

  13. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... biomedical, behavioral and clinical science research. The panel meetings will be open to the public for...

  14. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical...) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the...

  15. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  16. Use and Acceptance of Information and Communication Technology Among Laboratory Science Students

    Science.gov (United States)

    Barnes, Brenda C.

    Online and blended learning platforms are being promoted within laboratory science education under the assumption that students have the necessary skills to navigate online and blended learning environments. Yet little research has examined the use of information and communication technology (ICT) among the laboratory science student population. The purpose of this correlational, survey research study was to explore factors that affect use and acceptance of ICT among laboratory science students through the theoretical lens of the unified theory of acceptance and use of technology (UTAUT) model. An electronically delivered survey drew upon current students and recent graduates (within 2 years) of accredited laboratory science training programs. During the 4 week data collection period, 168 responses were received. Results showed that the UTAUT model did not perform well within this study, explaining 25.2% of the variance in use behavior. A new model incorporating attitudes toward technology and computer anxiety as two of the top variables, a model significantly different from the original UTAUT model, was developed that explained 37.0% of the variance in use behavior. The significance of this study may affect curriculum design of laboratory science training programs wanting to incorporate more teaching techniques that use ICT-based educational delivery, and provide more options for potential students who may not currently have access to this type of training.

  17. Hidden sources of mercury in clinical laboratories.

    Science.gov (United States)

    Alvarez-Chavez, C R; Federico-Perez, R A; Gomez-Alvarez, A; Velazquez-Contreras, L E; Perez-Rios, R

    2014-09-01

    The healthcare sector is an important contributor to mercury (Hg) pollution because of the potential presence of mercury in thermometers, blood pressure cuffs, amalgams, etc. There are also other potential sources of mercury in this sector which are used frequently and in high volumes where the presence of the metal is not obvious and which might be collectively contributing to pollution. For instance, some chemicals used for the clinical diagnosis of illness may contain mercury. The goal of this study was to investigate potential sources of mercury pollution, which originate from clinical laboratory discharges, using an exploratory approach. The focus was on the residue generated during automatic analysis of patients' bodily fluids at a medical center in Hermosillo, Sonora, Mexico. This study shows an overview of what might be happening in the region or the country related to non-obvious sources of mercury in the healthcare sector. The results showed measurable levels of mercury in the residues coming from urine sediment analysis. These amounts do not exceed the maximum allowed by Mexican environmental regulations; nevertheless, the frequency and cumulative volume of residues generated, combined with the potential for persistence and the bioaccumulation of mercury in the environment, warrant attention. The work carried out in this study is being taken as a model for future studies for pollution prevention in the healthcare sector with the goal of measuring mercury emissions to the environment from clinical laboratory wastewater, including identifying sources which--while not obvious--could be important given the frequency and volume of their use in the clinical diagnosis.

  18. Laboratory-based surveillance in the molecular era: the TYPENED model, a joint data-sharing platform for clinical and public health laboratories.

    Science.gov (United States)

    Niesters, H G; Rossen, J W; van der Avoort, H; Baas, D; Benschop, K; Claas, E C; Kroneman, A; van Maarseveen, N; Pas, S; van Pelt, W; Rahamat-Langendoen, J C; Schuurman, R; Vennema, H; Verhoef, L; Wolthers, K; Koopmans, M

    2013-01-24

    Laboratory-based surveillance, one of the pillars of monitoring infectious disease trends, relies on data produced in clinical and/or public health laboratories. Currently, diagnostic laboratories worldwide submit strains or samples to a relatively small number of reference laboratories for characterisation and typing. However, with the introduction of molecular diagnostic methods and sequencing in most of the larger diagnostic and university hospital centres in high-income countries, the distinction between diagnostic and reference/public health laboratory functions has become less clear-cut. Given these developments, new ways of networking and data sharing are needed. Assuming that clinical and public health laboratories may be able to use the same data for their own purposes when sequence-based testing and typing are used, we explored ways to develop a collaborative approach and a jointly owned database (TYPENED) in the Netherlands. The rationale was that sequence data - whether produced to support clinical care or for surveillance -can be aggregated to meet both needs. Here we describe the development of the TYPENED approach and supporting infrastructure, and the implementation of a pilot laboratory network sharing enterovirus sequences and metadata.

  19. Clinical and Laboratory Features of the Nocardia spp. Based on Current Molecular Taxonomy

    Science.gov (United States)

    Brown-Elliott, Barbara A.; Brown, June M.; Conville, Patricia S.; Wallace, Richard J.

    2006-01-01

    The recent explosion of newly described species of Nocardia results from the impact in the last decade of newer molecular technology, including PCR restriction enzyme analysis and 16S rRNA sequencing. These molecular techniques have revolutionized the identification of the nocardiae by providing rapid and accurate identification of recognized nocardiae and, at the same time, revealing new species and a number of yet-to-be-described species. There are currently more than 30 species of nocardiae of human clinical significance, with the majority of isolates being N. nova complex, N. abscessus, N. transvalensis complex, N. farcinica, N. asteroides type VI (N. cyriacigeorgica), and N. brasiliensis. These species cause a wide variety of diseases and have variable drug susceptibilities. Accurate identification often requires referral to a reference laboratory with molecular capabilities, as many newer species are genetically distinct from established species yet have few or no distinguishing phenotypic characteristics. Correct identification is important in deciding the clinical relevance of a species and in the clinical management and treatment of patients with nocardial disease. This review characterizes the currently known pathogenic species of Nocardia, including clinical disease, drug susceptibility, and methods of identification. PMID:16614249

  20. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research.... Neurobiology-D June 10, 2011 Crowne Plaza DC/Silver Spring. Clinical Research Program June 13, 2011 VA Central...

  1. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... & Behav Sci-A June 7, 2010 L'Enfant Plaza Hotel. Clinical Research Program June 9, 2010 *VA Central Office...

  2. A national survey on pediatric critical values used in clinical laboratories across Canada.

    Science.gov (United States)

    Gong, Yanping; Adeli, Khosrow

    2009-11-01

    Notification of critical values to clinical staff is an important post-analytical process in all acute care clinical laboratories. No data are available however on how laboratories obtain or establish critical values, particularly in pediatric settings. This study was designed to examine and compare critical values used for pediatric patients in biochemistry laboratories in Canada and assess potential interlaboratory variability. Fourteen clinical laboratories, including two in pediatric hospitals and twelve in hospitals caring for both children and adults, participated in a survey that included 14 pre-selected STAT chemistry tests and 19 pre-selected therapeutic drug monitoring (TDM) tests. Among fourteen chemistry tests, good agreement was observed for critical values used for sodium and pH at both low and high levels within 14 participant laboratories. Significant interlaboratory variability existed for glucose critical values at the high end, magnesium at high end, and PO2 at the low end. For 19 TDM tests, the majority of laboratories did not have alert values to report values over the therapeutic level but not toxic. For critical values greater than the toxic range, significant variability existed at both trough and peak levels among laboratories surveyed. When asked to provide the source for critical values established at each site, only a limited number of laboratories identified their sources as either internal decision or published references. Although all laboratories have established and routinely use critical values to alert clinical staff, considerable variability exists in both the critical limits reported as well as the source of such values. There is a clear need for new national efforts to standardize pediatric critical value reporting and establish evidence-based critical limits for all medical laboratories across Canada.

  3. 78 FR 44954 - Clinical Laboratory Improvement Advisory Committee (CLIAC)

    Science.gov (United States)

    2013-07-25

    ... pathology. Advancing laboratory interoperability in health information technology will also be discussed... for international registrants. Providing Oral or Written Comments: It is the policy of CLIAC to accept written public comments and provide a brief period for oral public comments whenever possible. Oral...

  4. Science teachers' perceptions of the effectiveness of technology in the laboratories: Implications for science education leadership

    Science.gov (United States)

    Yaseen, Niveen K.

    2011-12-01

    The purpose of this study was to identify science teachers' perceptions concerning the use of technology in science laboratories and identify teachers' concerns and recommendations for improving students' learning. Survey methodology with electronic delivery was used to gather data from 164 science teachers representing Texas public schools. The data confirmed that weaknesses identified in the 1990s still exist. Lack of equipment, classroom space, and technology access, as well as large numbers of students, were reported as major barriers to the implementation of technology in science laboratories. Significant differences were found based on gender, grade level, certification type, years of experience, and technology proficiency. Females, elementary teachers, traditionally trained teachers, and less experienced teachers revealed a more positive attitude toward the use of technology in science laboratories. Participants in this study preferred using science software simulations to support rather than replace traditional science laboratories. Teachers in this study recommended professional development programs that focused on strategies for a technology integrated classroom.

  5. Research with radioisotopes in clinical and laboratory medicine: a bibliographic review

    International Nuclear Information System (INIS)

    Metz, J.; Van der Walt, L.A.; Malan, J.M.

    1985-01-01

    This bibliography is restricted mainly to AEC-supported projects which are considered to amply reflect the widespread use of radioisotopes in clinical and laboratory medicine in South Africa and which describe research with radioisotopes of some direct relevance to diagnostic-clinical or laboratory medicine, or both, but excluding therapy with isotopes. General information is given in this review on oncology, endocrinology, metabolism and nutrition, haematology, neurology, angiocardiology, pulmonology, gastroenterology, gynaecology and obstetrics, nephrology, immunology and transplantation, microbiology and parasitology

  6. Clinical and laboratory experience of chorionic villous sampling in ...

    African Journals Online (AJOL)

    2013-12-14

    Dec 14, 2013 ... clinical and laboratory procedures, including general characteristics of women, indications and outcome, .... quality assurance, accuracy and reliability of results. ... controls for confirmation of results, while negative control.

  7. Oropharyngeal Dysphagia in Dermatomyositis: Associations with Clinical and Laboratory Features Including Autoantibodies

    OpenAIRE

    Mugii, Naoki; Hasegawa, Minoru; Matsushita, Takashi; Hamaguchi, Yasuhito; Oohata, Sacihe; Okita, Hirokazu; Yahata, Tetsutarou; Someya, Fujiko; Inoue, Katsumi; Murono, Shigeyuki; Fujimoto, Manabu; Takehara, Kazuhiko

    2016-01-01

    Objective Dysphagia develops with low frequency in patients with dermatomyositis. Our objective was to determine the clinical and laboratory features that can estimate the development of dysphagia in dermatomyositis. Methods This study included 92 Japanese patients with adult-onset dermatomyositis. The associations between dysphagia and clinical and laboratory features including disease-specific autoantibodies determined by immunoprecipitation assays were analyzed. Results Videofluoroscopy sw...

  8. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  9. A Computerized Clinical Support System and Psychological Laboratory.

    Science.gov (United States)

    Cassel, Russell N.

    1978-01-01

    Advocating "holistic" medicine, this article details the benefits to be derived from using a computerized clinical support system in a psychological laboratory focusing on internal healing where the client/patient becomes a committed partner utilizing biofeedback equipment, gaming, and simulation to achieve self-understanding and…

  10. Critical value reporting: a survey of 36 clinical laboratories in South Africa.

    Science.gov (United States)

    Schapkaitz, Elise; Mafika, Zipho

    2013-10-11

    Critical value policies are used by clinical laboratories to decide when to notify caregivers of life-threatening results. Despite their widespread use, critical value policies have not been published locally. A survey was designed to determine critical value policies for haematology tests in South Africa. A survey was carried out on 136 identified laboratories across South Africa in January 2013. Of these, 36 responded. Data collected included critical value policies, critical values for haematology parameters, and critical value reporting. Of the 36 laboratories surveyed, 11.1% (n=4) were private, 33.3% (n=12) were affiliated to academic institutions and 55.6% (n=20) were peripheral or regional National Health Laboratory Service laboratories. All the laboratories confirmed that they had a critical value policy, and 83.3% of such policies were derived from local clinical opinion. Mean low and high critical limits for the most frequently listed tests were as follows: haemoglobin 20 g/dl, platelet count 1 000 ×10(9)/l, white cell count 46 ×10(9)/l, activated partial thromboplastin time >101 seconds, and international normalised ratio >6. In almost all cases critical value reporting was performed by the technologist on duty (97.2%). The majority of laboratories required that the person notified of the critical value be the doctor who ordered the test or the caregiver directly involved in the patient's care (83.3%); 73.3% of laboratories indicated that they followed an algorithm if the doctor/caregiver could not be reached. Each laboratory is responsible for establishing clinically relevant critical limits. Clinicians should be involved in developing the laboratory's critical value policy. The findings of this survey may be of value to local laboratories that are in the process of establishing or reviewing critical value policies.

  11. Exploring a Laboratory Model of Pharmacogenetics as Applied to Clinical Decision Making

    Directory of Open Access Journals (Sweden)

    Angela Smith, PharmD Candidate

    2013-01-01

    Full Text Available Objective: To evaluate a pilot of a laboratory model for relating pharmacogenetics to clinical decision making. Case Study: This pilot was undertaken and evaluated to help determine if a pharmacogenetics laboratory should be included in the core Doctor of Pharmacy curriculum. The placement of the laboratory exercise in the curriculum was determined by identifying the point in the curriculum where the students had been introduced to the chemistry of deoxyribonucleic acid (DNA as well as instructed on the chemistry of genetic variation. The laboratory included cytochrome P450 2C19 genotyping relative to the *2 variant. Twenty-four students served as the pilot group. Students provided buccal swabs as the source of DNA. Students stabilized the samples and were then provided instructions related to sample preparation, polymerase chain reaction, and gel electrophoresis. The results were reported as images of gels. Students used a reference gel image to compare their results to. Students then applied a dosing algorithm to make a “clinical decision” relative to clopidogrel use. Students were offered a post laboratory survey regarding attitudes toward the laboratory. Twenty-four students completed the laboratory with genotyping results being provided for 22 students (91.7%. Sixteen students were wild-type (*1/*1, while six students were heterozygous (*1/*2. Twenty-three students (96% completed the post laboratory survey. All 23 agreed (6, 26.1% or strongly agreed (17, 73.9% that the laboratory “had relevance and value in the pharmacy curriculum”. Conclusion: The post pilot study survey exploring a laboratory model for pharmacogenetics related to clinical decision making indicated that such a laboratory would be viewed positively by students. This model may be adopted by colleges to expand pharmacogenetics education.

  12. Exploring a Laboratory Model of Pharmacogenetics as Applied to Clinical Decision Making

    Directory of Open Access Journals (Sweden)

    David F. Kisor

    2013-01-01

    Full Text Available Objective: To evaluate a pilot of a laboratory model for relating pharmacogenetics to clinical decision making. Case Study: This pilot was undertaken and evaluated to help determine if a pharmacogenetics laboratory should be included in the core Doctor of Pharmacy curriculum. The placement of the laboratory exercise in the curriculum was determined by identifying the point in the curriculum where the students had been introduced to the chemistry of deoxyribonucleic acid (DNA as well as instructed on the chemistry of genetic variation. The laboratory included cytochrome P450 2C19 genotyping relative to the *2 variant. Twenty-four students served as the pilot group. Students provided buccal swabs as the source of DNA. Students stabilized the samples and were then provided instructions related to sample preparation, polymerase chain reaction, and gel electrophoresis. The results were reported as images of gels. Students used a reference gel image to compare their results to. Students then applied a dosing algorithm to make a "clinical decision" relative to clopidogrel use. Students were offered a post laboratory survey regarding attitudes toward the laboratory. Twenty-four students completed the laboratory with genotyping results being provided for 22 students (91.7%. Sixteen students were wild-type (*1/*1, while six students were heterozygous (*1/*2. Twenty-three students (96% completed the post laboratory survey. All 23 agreed (6, 26.1% or strongly agreed (17, 73.9% that the laboratory "had relevance and value in the pharmacy curriculum" Conclusion: The post pilot study survey exploring a laboratory model for pharmacogenetics related to clinical decision making indicated that such a laboratory would be viewed positively by students. This model may be adopted by colleges to expand pharmacogenetics education.   Type: Case Study

  13. Customer satisfaction survey with clinical laboratory and phlebotomy services at a tertiary care unit level.

    Science.gov (United States)

    Koh, Young Rae; Kim, Shine Young; Kim, In Suk; Chang, Chulhun L; Lee, Eun Yup; Son, Han Chul; Kim, Hyung Hoi

    2014-09-01

    We performed customer satisfaction surveys for physicians and nurses regarding clinical laboratory services, and for outpatients who used phlebotomy services at a tertiary care unit level to evaluate our clinical laboratory and phlebotomy services. Thus, we wish to share our experiences with the customer satisfaction survey for clinical laboratory and phlebotomy services. Board members of our laboratory designed a study procedure and study population, and developed two types of questionnaire. A satisfaction survey for clinical laboratory services was conducted with 370 physicians and 125 nurses by using an online or paper questionnaire. The satisfaction survey for phlebotomy services was performed with 347 outpatients who received phlebotomy services by using computer-aided interviews. Mean satisfaction scores of physicians and nurses was 58.1, while outpatients' satisfaction score was 70.5. We identified several dissatisfactions with our clinical laboratory and phlebotomy services. First, physicians and nurses were most dissatisfied with the specimen collection and delivery process. Second, physicians and nurses were dissatisfied with phlebotomy services. Third, molecular genetic and cytogenetic tests were found more expensive than other tests. This study is significant in that it describes the first reference survey that offers a survey procedure and questionnaire to assess customer satisfaction with clinical laboratory and phlebotomy services at a tertiary care unit level.

  14. Implementation of Good Clinical Laboratory Practice (GCLP) guidelines within the External Quality Assurance Program Oversight Laboratory (EQAPOL).

    Science.gov (United States)

    Todd, Christopher A; Sanchez, Ana M; Garcia, Ambrosia; Denny, Thomas N; Sarzotti-Kelsoe, Marcella

    2014-07-01

    The EQAPOL contract was awarded to Duke University to develop and manage global proficiency testing programs for flow cytometry-, ELISpot-, and Luminex bead-based assays (cytokine analytes), as well as create a genetically diverse panel of HIV-1 viral cultures to be made available to National Institutes of Health (NIH) researchers. As a part of this contract, EQAPOL was required to operate under Good Clinical Laboratory Practices (GCLP) that are traditionally used for laboratories conducting endpoint assays for human clinical trials. EQAPOL adapted these guidelines to the management of proficiency testing programs while simultaneously incorporating aspects of ISO/IEC 17043 which are specifically designed for external proficiency management. Over the first two years of the contract, the EQAPOL Oversight Laboratories received training, developed standard operating procedures and quality management practices, implemented strict quality control procedures for equipment, reagents, and documentation, and received audits from the EQAPOL Central Quality Assurance Unit. GCLP programs, such as EQAPOL, strengthen a laboratory's ability to perform critical assays and provide quality assessments of future potential vaccines. © 2013.

  15. Science and Technology Teachers' Views about the Causes of Laboratory Accidents

    Science.gov (United States)

    Aydogdu, Cemil

    2015-01-01

    The aim of this study was to determine science and technology teachers' views about the causes of the problems encountered in laboratories. In this research, phenomenology, a qualitative research design, was used. 21 science and technology teachers who were working in elementary schools in Eskisehir during the 2010-2011 spring semester were the…

  16. Correlation of 111In-labeled leukocyte scintigraphy with clinical and laboratory findings

    International Nuclear Information System (INIS)

    Uchida, Yoshitaka; Kitakata, Yuusuke; Uno, Kimiichi; Minoshima, Satoshi; Arimizu, Noboru.

    1993-01-01

    This study evaluated the relationship between 111 In-labeled leukocyte scintigraphy and clinical information and laboratory findings in 24 patients with bone infection and 35 patients with abdominal infection. Fifty-nine scintigrams were retrospectively reviewed and classified into positive or negative results. As the laboratory findings, C-reactive protein (CRP) level, erythrocyte sedimentation rate (ESR) at 60 minutes, and peripheral blood leukocyte counts (WBCC) were evaluated. Clinical information such as presence of fever and administration of antibiotics was also compared. No significant relationship between the scintigraphic results and clinical as well as laboratory findings was observed in bone infection patients. CRP levels in positive scintigraphic patients were significantly higher than those in negative scintigraphic patients in the abdominal infection group, otherwise the other indices were not correlated with the scintigraphic results. A few patients with slightly increased CRP (mostly chronic cases) did not show positive scintigrams, suggesting an increased false negative rate of leukocyte scintigraphy in such circumstances. These results suggest that it is inappropriate to determine the application of leukocyte scintigraphy depending on clinical as well as laboratory findings, and leukocyte scintigraphy would yield additional information different from other indices when evaluating inflammatory foci. (author)

  17. Incorporating spectroscopy and measurement technology into the high school chemistry laboratory

    Science.gov (United States)

    Harbert, Emily Ann

    Science and technology are becoming increasingly important in maintaining a healthy economy at home and a competitive edge on the world stage, though that is just one facet affected by inadequate science education in the United States. Engaging students in the pursuit of knowledge and giving them the skills to think critically are paramount. One small way to assist in achieving these goals is to increase the quality and variety of technology-rich activities conducted in high school classrooms. Incorporating more laboratory measurement technology into high schools may incite more student interest in the processes and practices of science and may allow students to learn to think more critically about their data and what it represents. The first objective of the work described herein was to determine what measurement technology is being used in schools and to what extent, as well as to determine other teacher needs and preferences. Second, the objective was to develop a new program to provide incoming freshmen (or rising seniors) with measurement technology training they did not receive in high school, and expose them to new research and career opportunities in science. The final objective was to create a technology-rich classroom laboratory activity for use in high schools.

  18. Assessing the effectiveness of technology transfer from U.S. government R&D laboratories: impact of market orientation

    Science.gov (United States)

    Bozeman, Barry; Coker, Karen

    1992-05-01

    This study, based on a national survey of U.S. government laboratories, assesses the degree of success laboratories have had in transferring technology to industry, taking into account the laboratories' differing receptivity to market influences. Three success criteria are considered here, two based on self-evaluations and a third based on the number of technology licenses issued from the laboratory. The two self-evaluations are rooted in different types of effectiveness, `getting technology out the door,' in one case, and, in the other, having a demonstrable commercial impact. A core hypothesis of the study is that the two types of effectiveness will be responsive to different factors and, in particular, the laboratories with a clearer market orientation will have a higher degree of success on the commercial impact and technology license criteria. Overall, the results seem to suggest that multifaceted, multimission laboratories are likely to enjoy the most success in technology transfer, especially if they have relatively low levels of bureaucratization and either ties to industry (particularly direct financial ties) or a commercial orientation in the selection of projects.

  19. Clinical and laboratory findings in 220 children with recurrent abdominal pain

    NARCIS (Netherlands)

    Gijsbers, C. F. M.; Benninga, M. A.; Büller, H. A.

    2011-01-01

    Aim: To investigate the clinical and laboratory findings in children with recurrent abdominal pain (RAP). Methods: Consecutive patients with RAP (Apley criteria), age 4-16 years, referred to a secondary medical centre were evaluated by a standardized history, physical examination and laboratory

  20. Psychosocial and individual characteristics and musculoskeletal complaints among clinical laboratory workers.

    Science.gov (United States)

    Sadeghian, Farideh; Kasaeian, Amir; Noroozi, Pirasteh; Vatani, Javad; Taiebi, Seiyed Hassan

    2014-01-01

    Musculoskeletal disorders (MSDs) are an important health problem among healthcare workers, including clinical laboratory ones. The aim of the present study was to investigate the prevalence of MSDs and individual and psychosocial risk factors among clinical laboratory workers. A cross-sectional study was carried out among 156 workers of 30 clinical laboratories in 3 towns of Iran. The Nordic questionnaire with individual and psychosocial risk factors was used to collect data. Multiple logistic regression analysis was performed. The prevalence of reported MSDs among the study population was 72.4% in the past 12 months. The most prevalent MSDs were pain in the lower back and neck; 42.7% and 33.3%, respectively. Significant relations were found between MSDs and age, gender, heavy work at home and job control (p workers were high and associated with age, gender, heavy work at home and job control. More research into measuring these factors and workplace physical demands is suggested.

  1. Opinion: redefining the role of the physician in laboratory medicine in the context of emerging technologies, personalised medicine and patient autonomy ('4P medicine').

    Science.gov (United States)

    Orth, Matthias; Averina, Maria; Chatzipanagiotou, Stylianos; Faure, Gilbert; Haushofer, Alexander; Kusec, Vesna; Machado, Augusto; Misbah, Siraj A; Oosterhuis, Wytze; Pulkki, Kari; Twomey, Patrick J; Wieland, Eberhard

    2017-12-22

    The role of clinical pathologists or laboratory-based physicians is being challenged on several fronts-exponential advances in technology, increasing patient autonomy exercised in the right to directly request tests and the use of non-medical specialists as substitutes. In response, clinical pathologists have focused their energies on the pre-analytical and postanalytical phases of Laboratory Medicine thus emphasising their essential role in individualised medical interpretation of complex laboratory results. Across the European Union, the role of medical doctors is enshrined in the Medical Act. This paper highlights the relevance of this act to patient welfare and the need to strengthen training programmes to prevent an erosion in the quality of Laboratory Medicine provided to patients and their physicians. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. A Map for Clinical Laboratories Management Indicators in the Intelligent Dashboard.

    Science.gov (United States)

    Azadmanjir, Zahra; Torabi, Mashallah; Safdari, Reza; Bayat, Maryam; Golmahi, Fatemeh

    2015-08-01

    management challenges of clinical laboratories are more complicated for educational hospital clinical laboratories. Managers can use tools of business intelligence (BI), such as information dashboards that provide the possibility of intelligent decision-making and problem solving about increasing income, reducing spending, utilization management and even improving quality. Critical phase of dashboard design is setting indicators and modeling causal relations between them. The paper describes the process of creating a map for laboratory dashboard. the study is one part of an action research that begins from 2012 by innovation initiative for implementing laboratory intelligent dashboard. Laboratories management problems were determined in educational hospitals by the brainstorming sessions. Then, with regard to the problems key performance indicators (KPIs) specified. the map of indicators designed in form of three layered. They have a causal relationship so that issues measured in the subsequent layers affect issues measured in the prime layers. the proposed indicator map can be the base of performance monitoring. However, these indicators can be modified to improve during iterations of dashboard designing process.

  3. Autoverification in a core clinical chemistry laboratory at an academic medical center

    Directory of Open Access Journals (Sweden)

    Matthew D Krasowski

    2014-01-01

    Full Text Available Background: Autoverification is a process of using computer-based rules to verify clinical laboratory test results without manual intervention. To date, there is little published data on the use of autoverification over the course of years in a clinical laboratory. We describe the evolution and application of autoverification in an academic medical center clinical chemistry core laboratory. Subjects and Methods: At the institution of the study, autoverification developed from rudimentary rules in the laboratory information system (LIS to extensive and sophisticated rules mostly in middleware software. Rules incorporated decisions based on instrument error flags, interference indices, analytical measurement ranges (AMRs, delta checks, dilution protocols, results suggestive of compromised or contaminated specimens, and ′absurd′ (physiologically improbable values. Results: The autoverification rate for tests performed in the core clinical chemistry laboratory has increased over the course of 13 years from 40% to the current overall rate of 99.5%. A high percentage of critical values now autoverify. The highest rates of autoverification occurred with the most frequently ordered tests such as the basic metabolic panel (sodium, potassium, chloride, carbon dioxide, creatinine, blood urea nitrogen, calcium, glucose; 99.6%, albumin (99.8%, and alanine aminotransferase (99.7%. The lowest rates of autoverification occurred with some therapeutic drug levels (gentamicin, lithium, and methotrexate and with serum free light chains (kappa/lambda, mostly due to need for offline dilution and manual filing of results. Rules also caught very rare occurrences such as plasma albumin exceeding total protein (usually indicative of an error such as short sample or bubble that evaded detection and marked discrepancy between total bilirubin and the spectrophotometric icteric index (usually due to interference of the bilirubin assay by immunoglobulin (Ig M monoclonal

  4. Quality assurance of laboratory work and clinical use of laboratory tests in general practice in norway: a survey.

    Science.gov (United States)

    Thue, Geir; Jevnaker, Marianne; Gulstad, Guri Andersen; Sandberg, Sverre

    2011-09-01

    Virtually all the general practices in Norway participate in the Norwegian Quality Improvement of Laboratory Services in Primary Care, NOKLUS. In order to assess and develop NOKLUS's services, it was decided to carry out an investigation in the largest participating group, general practices. In autumn 2008 a questionnaire was sent to all Norwegian general practices asking for feedback on different aspects of NOKLUS's main services: contact with medical laboratory technologists, sending of control materials, use and maintenance of practice-specific laboratory binders, courses, and testing of laboratory equipment. In addition, attitudes were elicited towards possible new services directed at assessing other technical equipment and clinical use of tests. Responses were received from 1290 of 1552 practices (83%). The great majority thought that the frequency of sending out control material should continue as at present, and they were pleased with the feedback reports and follow-up by the laboratory technologists in the counties. Even after many years of practical experience, there is still a need to update laboratory knowledge through visits to practices, courses, and written information. Practices also wanted quality assurance of blood pressure meters and spirometers, and many doctors wanted feedback on their use of laboratory tests. Services regarding quality assurance of point-of-care tests, guidance, and courses should be continued. Quality assurance of other technical equipment and of the doctor's clinical use of laboratory tests should be established as part of comprehensive quality assurance.

  5. Pharmacology Portal: An Open Database for Clinical Pharmacologic Laboratory Services.

    Science.gov (United States)

    Karlsen Bjånes, Tormod; Mjåset Hjertø, Espen; Lønne, Lars; Aronsen, Lena; Andsnes Berg, Jon; Bergan, Stein; Otto Berg-Hansen, Grim; Bernard, Jean-Paul; Larsen Burns, Margrete; Toralf Fosen, Jan; Frost, Joachim; Hilberg, Thor; Krabseth, Hege-Merete; Kvan, Elena; Narum, Sigrid; Austgulen Westin, Andreas

    2016-01-01

    More than 50 Norwegian public and private laboratories provide one or more analyses for therapeutic drug monitoring or testing for drugs of abuse. Practices differ among laboratories, and analytical repertoires can change rapidly as new substances become available for analysis. The Pharmacology Portal was developed to provide an overview of these activities and to standardize the practices and terminology among laboratories. The Pharmacology Portal is a modern dynamic web database comprising all available analyses within therapeutic drug monitoring and testing for drugs of abuse in Norway. Content can be retrieved by using the search engine or by scrolling through substance lists. The core content is a substance registry updated by a national editorial board of experts within the field of clinical pharmacology. This ensures quality and consistency regarding substance terminologies and classification. All laboratories publish their own repertoires in a user-friendly workflow, adding laboratory-specific details to the core information in the substance registry. The user management system ensures that laboratories are restricted from editing content in the database core or in repertoires within other laboratory subpages. The portal is for nonprofit use, and has been fully funded by the Norwegian Medical Association, the Norwegian Society of Clinical Pharmacology, and the 8 largest pharmacologic institutions in Norway. The database server runs an open-source content management system that ensures flexibility with respect to further development projects, including the potential expansion of the Pharmacology Portal to other countries. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  6. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

    1997-06-01

    Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

  7. Laboratory 3.0: Manufacturing technologies laboratory virtualization with a student-centred methodology

    Directory of Open Access Journals (Sweden)

    Albert Fabregat-Sanjuan

    2017-06-01

    Full Text Available This paper presents a blended-learning strategy for improving the teaching method applied in the laboratory subject Manufacturing Technologies. The teaching method has been changed from a predominantly teacher-centred to an active learning system with a student-centred focus and e-learning activities. In face-to-face classes, a game-based learning platform has been used. This methodology ensured engaging classes at the same time that provided a useful live feedback for students and teachers. The virtualization of the laboratory was achieved by two different e-learning activities, self-assessment tasks and video clips. These e-learning tools have been used not only to improve the students’ learning but also to enhance their motivation. The results from academic outputs show a significant improvement after the new blended learning method is applied. Moreover, a student satisfaction survey shows the positive impact of the methodology on the students’ engagement and motivation.

  8. Walking the bridge: Nursing students' learning in clinical skill laboratories.

    Science.gov (United States)

    Ewertsson, Mona; Allvin, Renée; Holmström, Inger K; Blomberg, Karin

    2015-07-01

    Despite an increasing focus on simulation as a learning strategy in nursing education, there is limited evidence on the transfer of simulated skills into clinical practice. Therefore it's important to increase knowledge of how clinical skills laboratories (CSL) can optimize students' learning for development of professional knowledge and skills, necessary for quality nursing practice and for patient safety. Thus, the aim was to describe nursing students' experiences of learning in the CSL as a preparation for their clinical practice. Interviews with 16 students were analysed with content analysis. An overall theme was identified - walking the bridge - in which the CSL formed a bridge between the university and clinical settings, allowing students to integrate theory and practice and develop a reflective stance. The theme was based on categories: conditions for learning, strategies for learning, tension between learning in the skills laboratory and clinical settings, and development of professional and personal competence. The CSL prepared the students for clinical practice, but a negative tension between learning in CSL and clinical settings was experienced. However, this tension may create reflection. This provides a new perspective that can be used as a pedagogical approach to create opportunities for students to develop their critical thinking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The... Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development...

  10. The Individualized Quality Control Plan - Coming Soon to Clinical Microbiology Laboratories Everywhere!

    Science.gov (United States)

    Anderson, Nancy

    2015-11-15

    As of January 1, 2016, microbiology laboratories can choose to adopt a new quality control option, the Individualized Quality Control Plan (IQCP), under the Clinical Laboratory Improvement Amendments of 1988 (CLIA). This voluntary approach increases flexibility for meeting regulatory requirements and provides laboratories the opportunity to customize QC for their testing in their unique environments and by their testing personnel. IQCP is an all-inclusive approach to quality based on risk management to address potential errors in the total testing process. It includes three main steps, (1) performing a risk assessment, (2) developing a QC plan, and (3) monitoring the plan through quality assessment. Resources are available from the Centers for Medicare & Medicaid Services, Centers for Disease Control and Prevention, American Society for Microbiology, Clinical and Laboratory Standards Institute, and accrediting organizations, such as the College of American Pathologists and Joint Commission, to assist microbiology laboratories implementing IQCP.

  11. The national laboratory business role in energy technology research and development. Panel Discussion

    International Nuclear Information System (INIS)

    Sackett, John; Sullivan, Charles J.; Aumeier, Steve; Sanders, Tom; Johnson, Shane; Bennett, Ralph

    2001-01-01

    Full text of publication follows: Energy issues will play a pivotal role in the economic and political future of the United States. For reasons of both available supply and environmental concerns, development and deployment of new energy technologies is critical. Nuclear technology is important, but economic, political, and technical challenges must be overcome if it is to play a significant role. This session will address business opportunities for national laboratories to contribute to the development and implementation of a national energy strategy, concentrating on the role of nuclear technology. Panelists have been selected from the national laboratories, the U.S. Department of Energy, and state regulators. (authors)

  12. COMMERCIALLY ORIENTED CLINICAL LABORATORIES

    Science.gov (United States)

    Chapman, W. Max

    1964-01-01

    Out-of-state flat-rate mail order contract laboratories operating from states which have little or no legal control over them can do business in California without obedience to regulations that govern laboratories located within the state. The flat-rate contract principle under which some out-of-state laboratories operate is illegal in California. The use of such laboratories increases physician liability. Legislation for the control of these laboratories is difficult to construct, and laws which might result would be awkward to administer. The best remedy is for California physicians not to use an out-of-state laboratory offering contracts or conditions that it could not legally offer if it were located in California. PMID:14165875

  13. The paediatric change laboratory: optimising postgraduate learning in the outpatient clinic.

    Science.gov (United States)

    Skipper, Mads; Musaeus, Peter; Nøhr, Susanne Backman

    2016-02-02

    This study aimed to analyse and redesign the outpatient clinic in a paediatric department. The study was a joint collaboration with the doctors of the department (paediatric residents and specialists) using the Change Laboratory intervention method as a means to model and implement change in the outpatient clinic. This study was motivated by a perceived failure to integrate the activities of the outpatient clinic, patient care and training of residents. The ultimate goal of the intervention was to create improved care for patients through resident learning and development. We combined the Change Laboratory intervention with an already established innovative process for residents, 3-h meetings. The Change Laboratory intervention method consists of a well-defined theory (Cultural-historical activity theory) and concrete actions where participants construct a new theoretical model of the activity, which in this case was paediatric doctors' workplace learning modelled in order to improve medical social practice. The notion of expansive learning was used during the intervention in conjunction with thematic analysis of data in order to fuel the process of analysis and intervention. The activity system of the outpatient clinic can meaningfully be analysed in terms of the objects of patient care and training residents. The Change Laboratory sessions resulted in a joint action plan for the outpatient clinic structured around three themes: (1) Before: Preparation, expectations, and introduction; (2) During: Structural context and resources; (3) After: Follow-up and feedback. The participants found the Change Laboratory method to be a successful way of sharing reflections on how to optimise the organisation of work and training with patient care in mind. The Change Laboratory approach outlined in this study succeeded to change practices and to help medical doctors redesigning their work. Participating doctors must be motivated to uncover inherent contradictions in their

  14. Smart Technology in Lung Disease Clinical Trials.

    Science.gov (United States)

    Geller, Nancy L; Kim, Dong-Yun; Tian, Xin

    2016-01-01

    This article describes the use of smart technology by investigators and patients to facilitate lung disease clinical trials and make them less costly and more efficient. By "smart technology" we include various electronic media, such as computer databases, the Internet, and mobile devices. We first describe the use of electronic health records for identifying potential subjects and then discuss electronic informed consent. We give several examples of using the Internet and mobile technology in clinical trials. Interventions have been delivered via the World Wide Web or via mobile devices, and both have been used to collect outcome data. We discuss examples of new electronic devices that recently have been introduced to collect health data. While use of smart technology in clinical trials is an exciting development, comparison with similar interventions applied in a conventional manner is still in its infancy. We discuss advantages and disadvantages of using this omnipresent, powerful tool in clinical trials, as well as directions for future research. Published by Elsevier Inc.

  15. Technology for enhancing chest auscultation in clinical simulation.

    Science.gov (United States)

    Ward, Jeffrey J; Wattier, Bryan A

    2011-06-01

    The ability to use an acoustic stethoscope to detect lung and/or heart sounds, and then to then communicate one's interpretation of those sounds is an essential skill for many medical professionals. Interpretation of lung and heart sounds, in the context of history and other examination findings, often aids the differential diagnosis. Bedside assessment of changing auscultation findings may also guide treatment. Learning lung and heart auscultation skills typically involves listening to pre-recorded normal and adventitious sounds, often followed by laboratory instruction to guide stethoscope placement, and finally correlating the sounds with the associated pathophysiology and pathology. Recently, medical simulation has become an important tool for teaching prior to clinical practice, and for evaluating bedside auscultation skills. When simulating cardiovascular or pulmonary problems, high-quality lung and heart sounds should be able to accurately corroborate other findings such as vital signs, arterial blood gas values, or imaging. Digital audio technology, the Internet, and high-fidelity simulators have increased opportunities for educators and learners. We review the application of these technologies and describe options for reproducing lung and heart sounds, as well as their advantages and potential limitations.

  16. Proceedings of symposium on technology in laboratories by department of engineering and technical services

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The Symposium on Technology in Laboratories was held on March 14 and 15 at Ceratopia Toki in Toki City, Gifu Prefecture, Japan. This symposium was hosted by National Institute for Fusion Science (NIFS). There were 407 participants from many Japanese universities, national laboratories, technical colleges and from some Japanese Industrial world. One hundred and thirty one papers were presented in the symposium. Technical experience and new techniques were reported and discussed being divided into five sessions; technology of fabrication, device technology, diagnostic and control system, cryogenics, computer and data processing. (author)

  17. Quality control of parasitology stool examination in Tabriz clinical laboratories

    Directory of Open Access Journals (Sweden)

    shahram Khademvatan

    2011-06-01

    Full Text Available The purpose of quality control program was to make doctors and laboratory personnel trust in laboratory results and consequently increasing confidence in laboratory achievements. The quality assurance means raising the level of quality in all tests that lead to raising the level of work efficiency and laboratories including minimum expense for society and minimum time for lab personnel. This study aimed to assess and determine the accuracy and precision of results in Tabriz medical diagnostic laboratories. Materials and Methods: In this retrospective study, 790 stool samples were selected randomly and tested by standard methods.Student t- test, SPSS software and sensitivity and accuracy formulas were used for data analysis. Results: The sensitivity was 62%, 22% and 8% with 95% confidence intervals for worm's eggs, protozoan cysts and trophozoite detection respectively. Conclusion: To elevate quality assurance in clinical diagnostic laboratory, monitoring and check of the laboratories by standard methods continually should be done.

  18. Single and Combined Diagnostic Value of Clinical Features and Laboratory Tests in Acute Appendicitis

    NARCIS (Netherlands)

    Laméris, Wytze; van Randen, Adrienne; Go, Peter M. N. Y. H.; Bouma, Wim H.; Donkervoort, Sandra C.; Bossuyt, Patrick M. M.; Stoker, Jaap; Boermeester, Marja A.

    2009-01-01

    Objectives: The objective was to evaluate the diagnostic accuracy of clinical features and laboratory test results in detecting acute appendicitis. Methods: Clinical features and laboratory test results were prospectively recorded in a consecutive series of 1,101 patients presenting with abdominal

  19. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    Energy Technology Data Exchange (ETDEWEB)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  20. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    International Nuclear Information System (INIS)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management

  1. Nursing students' perceptions of factors influencing their learning environment in a clinical skills laboratory: A qualitative study.

    Science.gov (United States)

    Haraldseid, Cecilie; Friberg, Febe; Aase, Karina

    2015-09-01

    The mastery of clinical skills learning is required to become a trained nurse. Due to limited opportunities for clinical skills training in clinical practice, undergraduate training at clinical skills laboratories (CSLs) is an essential part of nursing education. In a sociocultural learning perspective learning is situated in an environment. Growing student cohorts, rapid introduction of technology-based teaching methods and a shift from a teaching- to a learning-centered education all influence the environment of the students. These changes also affect CSLs and therefore compel nursing faculties to adapt to the changing learning environment. This study aimed to explore students' perceptions of their learning environment in a clinical skills laboratory, and to increase the knowledge base for improving CSL learning conditions identifying the most important environmental factors according to the students. An exploratory qualitative methodology was used. Nineteen second-year students enrolled in an undergraduate nursing program in Norway participated in the study. They took the same clinical skills course. Eight were part-time students (group A) and 11 were full-time students (group B). Focus group interviews and content analysis were conducted to capture the students' perception of the CSL learning environment. The study documents students' experience of the physical (facilities, material equipment, learning tools, standard procedures), psychosocial (expectations, feedback, relations) and organizational (faculty resources, course structure) factors that affect the CSL learning environment. Creating an authentic environment, facilitating motivation, and providing resources for multiple methods and repetitions within clinical skills training are all important for improving CSL learning environments from the student perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Renewable energy technology development at Sandia National Laboratories

    Science.gov (United States)

    Klimas, P. C.

    1994-02-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  3. Hyperthermia: from the clinic to the laboratory and back again

    International Nuclear Information System (INIS)

    Maher, E.J.

    1989-01-01

    Murine tumours have been used extensively to investigate the effects of heat and radiation, but there are significant differences between controlled laboratory studies and relatively uncontrolled clinical experience. From 1983 to 1986 a simple clinical system was developed in order to investigate biological questions in the clinic. This involved identifying a suitable patient population, reliable heating and thermometry, and methods of evaluating response of human tumours and their vasculature. (author)

  4. Modern clinical laboratory diagnostics

    International Nuclear Information System (INIS)

    Balakhovskij, I.S.

    1986-01-01

    Laboratory diagnosis is auxillary medical discipline studying specific laboratory symptoms of diseases, revealed by investigations of materials taken from patients. The structure of laboratory servie in our country and abroad, items of laboratory investigations, organizational principles are described. Attention is being given to the cost of analyses, the amount of conducted investigations, methods of result presentation, problems of accuracy, quality control and information content

  5. Clinical microbiology informatics.

    Science.gov (United States)

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Performance of Kiestra total laboratory automation combined with MS in clinical microbiology practice

    NARCIS (Netherlands)

    Mutters, Nico T.; Hodiamont, Caspar J.; de Jong, Menno D.; Overmeijer, Hendri P. J.; van den Boogaard, Mandy; Visser, Caroline E.

    2014-01-01

    Microbiological laboratories seek technologically innovative solutions to cope with large numbers of samples and limited personnel and financial resources. One platform that has recently become available is the Kiestra Total Laboratory Automation (TLA) system (BD Kiestra B.V., the Netherlands). This

  7. Clinical Laboratory Data Management: A Distributed Data Processing Solution

    OpenAIRE

    Levin, Martin; Morgner, Raymond; Packer, Bernice

    1980-01-01

    Two turn-key systems, one for patient registration and the other for the clinical laboratory have been installed and linked together at the Hospital of the University of Pennsylvania, forming the nucleus of an evolving distributed Hospital Information System.

  8. Evaluation of clinical, laboratory and morphologic prognostic factors in colon cancer

    Directory of Open Access Journals (Sweden)

    Nigro Casimiro

    2008-09-01

    Full Text Available Abstract Background The long-term prognosis of patients with colon cancer is dependent on many factors. To investigate the influence of a series of clinical, laboratory and morphological variables on prognosis of colon carcinoma we conducted a retrospective analysis of our data. Methods Ninety-two patients with colon cancer, who underwent surgical resection between January 1999 and December 2001, were analyzed. On survival analysis, demographics, clinical, laboratory and pathomorphological parameters were tested for their potential prognostic value. Furthermore, univariate and multivariate analysis of the above mentioned data were performed considering the depth of tumour invasion into the bowel wall as independent variable. Results On survival analysis we found that depth of tumour invasion (P Conclusion The various clinical, laboratory and patho-morphological parameters showed different prognostic value for colon carcinoma. In the future, preoperative prognostic markers will probably gain relevance in order to make a proper choice between surgery, chemotherapy and radiotherapy. Nevertheless, current data do not provide sufficient evidence for preoperative stratification of high and low risk patients. Further assessments in prospective large studies are warranted.

  9. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: guide to the Register, version 3-2010

    DEFF Research Database (Denmark)

    McMurray, Janet; Zérah, Simone; Hallworth, Michael

    2010-01-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 12 years, more...... than 2200 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Forum of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). Two previous...

  10. Application of failure mode and effects analysis in a clinical chemistry laboratory.

    Science.gov (United States)

    Jiang, Yuanyuan; Jiang, Hongmin; Ding, Siyi; Liu, Qin

    2015-08-25

    Timely delivery of correct results has long been considered as the goal of quality management in clinical laboratory. With increasing workload as well as complexities of laboratory testing and patient care, the traditional technical adopted like internal quality control (IQC) and external quality assessment (EQA) may not enough to cope with quality management problems for clinical laboratories. We applied failure mode and effects analysis (FMEA), a proactive tool, to reduce errors associated with the process beginning with sample collection and ending with a test report in a clinical chemistry laboratory. Our main objection was to investigate the feasibility of FMEA in a real-world situation, namely the working environment of hospital. A team of 8 people (3 laboratory workers, 2 couriers, 2 nurses, and 1 physician) from different departments who were involved in the testing process were recruited and trained. Their main responsibility was to analyze and score all possible clinical chemistry laboratory failures based on three aspects: the severity of the outcome (S), the likeliness of occurrence (O), and the probability of being detected (D). These three parameters were multiplied to calculate risk priority numbers (RPNs), which were used to prioritize remedial measures. Failure modes with RPN≥200 were deemed as high risk, meaning that they needed immediate corrective action. After modifications that were put, we compared the resulting RPN with the previous one. A total of 33 failure modes were identified. Many of the failure modes, including the one with the highest RPN (specimen hemolysis) appeared in the pre-analytic phase, whereas no high-risk failure modes (RPN≥200) were found during the analytic phase. High-priority risks were "sample hemolysis" (RPN, 336), "sample delivery delay" (RPN, 225), "sample volume error" (RPN, 210), "failure to release results in a timely manner" (RPN, 210), and "failure to identify or report critical results" (RPN, 200). The

  11. 10 CFR 32.71 - Manufacture and distribution of byproduct material for certain in vitro clinical or laboratory...

    Science.gov (United States)

    2010-01-01

    ... certain in vitro clinical or laboratory testing under general license. 32.71 Section 32.71 Energy NUCLEAR... certain in vitro clinical or laboratory testing under general license. An application for a specific... only by physicians, veterinarians in the practice of veterinary medicine, clinical laboratories or...

  12. Symptomatic HIV infection in infancy - clinical and laboratory ...

    African Journals Online (AJOL)

    in infancy - clinical and laboratory markers of infection. M P Meyer, Z Latief, C Haworlh, 5 Salie,. A van Dyk. Objective. To investigate the usefulness of immunological tests in the diagnosis of HIV infection in young symptomatic children « 15 months of age). Design. Tests were evaluated in HIV-infected (HIV antibody- and ...

  13. Clinical and Laboratory evaluation of measleslike rash in children and young adults

    Directory of Open Access Journals (Sweden)

    Stewien Klaus Eberhard

    2000-01-01

    Full Text Available A clinical and laboratory evaluation of 11 children and young adults with measleslike rash was done during the measles outbreak in the Greater São Paulo Metropolitan area at the end of 1996 and spread over the country during 1997. Measles was laboratory confirmed in 07 patients by specific IgM detection in acute serum specimens using an IgM-capture EIA, by specific IgG seroconversion in serum pairs, and by reverse transcription PCR and virus isolation in peripheral blood lymphocytes. Clinical presentations were not always classic; one of the 07 cases had received measles vaccine and corresponded to modified clinical case of measles. The 4 remaining cases were negative for measles and were diagnosed as exanthem subitum (2 cases, scarlet fever and Kawasaki disease. The present study reinforces the view that clinical features alone are not sufficient for establishing an accurate diagnosis in the post-vaccine era, and a surveillance system based on sensitive laboratory results is needed so that it can confirm IgM-negative measles cases.

  14. Balancing Enthusiasm for Innovative Technologies with Optimizing Value: An Approach to Adopt New Laboratory Tests for Infectious Diseases Using Bloodstream Infections as Exemplar.

    Science.gov (United States)

    Culbreath, Karissa; Petti, Cathy A

    2015-04-01

    A number of exciting new technologies have emerged to detect infectious diseases with greater accuracy and provide faster times to result in hopes of improving the provision of care and patient outcomes. However, the challenge in evaluating new methods lies not in the technical performance of tests but in (1) defining the specific advantages of new methods over the present gold standards in a practicable way and (2) understanding how advanced technologies will prompt changes in medical and public health decisions. With rising costs to deliver care, enthusiasm for innovative technologies should be balanced with a comprehensive understanding of clinical and laboratory ecosystems and how such factors influence the success or failure of test implementation. Selecting bloodstream infections as an exemplar, we provide a 6-step model for test adoption that will help clinicians and laboratorians better define the value of a new technology specific to their clinical practices.

  15. [Laboratory of technology of biopreparations].

    Science.gov (United States)

    Datsenko, Z M

    1995-01-01

    The main scientific direction of the Laboratory is the development of new biochemical technologies for obtaining various biopreparations based on animal and plant raw materials, especially on that of the sea organisms. Fundamental investigations of the preparations of animal and microorganism hydrolysis have enabled the researchers to develop technologies for obtaining Str. griseus and Ceph. acremonium proteolytic complexes and to study their properties for the latter could be used as reagents in chemistry of proteins. Immobilized polyenzyme systems of proteases with silicagel and activated carbon fibre material as a matrix were created on the basis of investigations of immobilized enzymes. The advantages of immobilized biocatalysts possessing highest stability and a possibility of repeated application are described. Biotechnological isolation of bioactive preparations (BAP) of lipid-protein nature that are the structure components of cells membranes is the key problem at present. Biochemical principles of BAP metabolisms regulation in cell membranes and the role of the obtained biopreparations in correction of pathological conditions are also studied. These investigations promoted development of technologies for two new biopreparations from sea organisms (Calmar's gonades) for medicine. The first one is a set of surface active phospholipids and the second one is a set of nucleopeptides affecting the secretion of sex hormones. It has been found that surface active preparations show an antioxidative and membrane-stabilizing properties as well. It has also been shown that the preparation corrects the effect of pathology conditions in case of experimental hepatitis-induced by CCl4. The preparation influences the antioxidative system and thus the rate of lipid peroxidation.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. The Role of the Clinical Laboratory in the Future of Health Care: Lean Microbiology

    Science.gov (United States)

    Samuel, Linoj

    2014-01-01

    This commentary will introduce lean concepts into the clinical microbiology laboratory. The practice of lean in the clinical microbiology laboratory can remove waste, increase efficiency, and reduce costs. Lean, Six Sigma, and other such management initiatives are useful tools and can provide dividends but must be accompanied by organizational leadership commitment to sustaining the lean culture in the laboratory setting and providing resources and time to work through the process. PMID:24574289

  17. Accelerating technology transfer from federal laboratories to the private sector by industrial R and D collaborations - A new business model

    Energy Technology Data Exchange (ETDEWEB)

    LOMBANA,CESAR A.; ROMIG JR.,ALTON D.; LINTON,JONATHAN D.; MARTINEZ,J. LEONARD

    2000-04-13

    Many important products and technologies were developed in federal laboratories and were driven initially by national needs and for federal applications. For example, the clean room technology that enhanced the growth of the semiconductor industry was developed at Sandia National Laboratories (SNL) decades ago. Similarly, advances in micro-electro-mechanical-systems (MEMS)--an important set of process technologies vital for product miniaturization--are occurring at SNL. Each of the more than 500 federal laboratories in the US, are sources of R and D that contributes to America's economic vitality, productivity growth and, technological innovation. However, only a fraction of the science and technology available at the federal laboratories is being utilized by industry. Also, federal laboratories have not been applying all the business development processes necessary to work effectively with industry in technology commercialization. This paper addresses important factors that federal laboratories, federal agencies, and industry must address to translate these under utilized technologies into profitable products in the industrial sector.

  18. [Validation of a questionnaire to evaluate patient safety in clinical laboratories].

    Science.gov (United States)

    Giménez Marín, Ángeles; Rivas-Ruiz, Francisco

    2012-01-01

    The aim of this study was to prepare, pilot and validate a questionnaire to evaluate patient safety in the specific context of clinical laboratories. A specific questionnaire on patient safety in the laboratory, with 62 items grouped into six areas, was developed, taking into consideration the diverse human and laboratory contextual factors which may contribute to producing errors. A pilot study of 30 interviews was carried out, including validity and reliability analyses using principal components factor analysis and Cronbach's alpha. Subsequently, 240 questionnaires were sent to 21 hospitals, followed by a test-retest of 41 questionnaires with the definitive version. The sample analyzed was composed of 225 questionnaires (an overall response rate of 80%). Of the 62 items initially assessed, 17 were eliminated due to non-compliance with the criteria established before the principal components factor analysis was performed. For the 45 remaining items, 12 components were identified, with an cumulative variance of 69.5%. In seven of the 10 components with two or more items, Cronbach's alpha was higher than 0.7. The questionnaire items assessed in the test-retest were found to be stable. We present the first questionnaire with sufficiently proven validity and reliability for evaluating patient safety in the specific context of clinical laboratories. This questionnaire provides a useful instrument to perform a subsequent macrostudy of hospital clinical laboratories in Spain. The questionnaire can also be used to monitor and promote commitment to patient safety within the search for continuous quality improvement. Copyright © 2011 SESPAS. Published by Elsevier Espana. All rights reserved.

  19. Developing Medicare Competitive Bidding: A Study of Clinical Laboratories

    Science.gov (United States)

    Hoerger, Thomas J.; Meadow, Ann

    1997-01-01

    Competitive bidding to derive Medicare fees promises several advantages over administered fee systems. The authors show how incentives for cost savings, quality, and access can be incorporated into bidding schemes, and they report on a study of the clinical laboratory industry conducted in preparation for a bidding demonstration. The laboratory industry is marked by variable concentration across geographic markets and, among firms themselves, by social and economic heterogeneity. The authors conclude that these conditions can be accommodated by available bidding design options and by careful selection of bidding markets. PMID:10180003

  20. Exploration Laboratory Analysis

    Science.gov (United States)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  1. Remote participation technologies in the EFDA Laboratories - status and prospects

    International Nuclear Information System (INIS)

    Schmidt, V.; How, J.A.

    2003-01-01

    More than 25 laboratories of the European Fusion Development Agreement (EFDA) have been increasingly using remote participation (RP) technologies for collaborative work on several experiments. We present an overview of the technologies that are employed to provide remote data access, remote computer access, and tele-conference. We also deal with computer network requirements, and support and documentation needs. The biggest application of these tools has been the joint scientific exploitation of the JET Facilities. Increasingly other experiments are operated as shared facilities, and the RP tools are being used in this context. For remote data access there is a clear trend towards MDSplus as common data access layer for multi-experiment data access. Secure Remote Computer access is converging on two different solutions. Video-conference is also converging on two partially inter-operable solutions, whereas the sharing of presentation material is converging on one solution. Remote Control Room participation is being used in two laboratories. Network monitoring has been developed and is now in routine use. The RP work is being done at many laboratories and is co-ordinated by EFDA. A number of items in several fields need still to be tackled and an overview of these is presented. (authors)

  2. Remote participation technologies in the EFDA Laboratories - status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, V. [Associazione EURATOM-ENEA sulla Fusione, Consorzio RFX, Padova (Italy); How, J.A. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    More than 25 laboratories of the European Fusion Development Agreement (EFDA) have been increasingly using remote participation (RP) technologies for collaborative work on several experiments. We present an overview of the technologies that are employed to provide remote data access, remote computer access, and tele-conference. We also deal with computer network requirements, and support and documentation needs. The biggest application of these tools has been the joint scientific exploitation of the JET Facilities. Increasingly other experiments are operated as shared facilities, and the RP tools are being used in this context. For remote data access there is a clear trend towards MDSplus as common data access layer for multi-experiment data access. Secure Remote Computer access is converging on two different solutions. Video-conference is also converging on two partially inter-operable solutions, whereas the sharing of presentation material is converging on one solution. Remote Control Room participation is being used in two laboratories. Network monitoring has been developed and is now in routine use. The RP work is being done at many laboratories and is co-ordinated by EFDA. A number of items in several fields need still to be tackled and an overview of these is presented. (authors)

  3. [Automation and organization of technological process of urinalysis].

    Science.gov (United States)

    Kolenkin, S M; Kishkun, A A; Kol'chenko, O L

    2000-12-01

    Results of introduction into practice of a working model of industrial technology of laboratory studies and KONE Specific Supra and Miditron M devices are shown as exemplified by clinical analysis of the urine. This technology helps standardize all stages and operations, improves the efficiency of quality control of laboratory studies, rationally organizes the work at all stages of the process, creates a system for permanent improvement of the efficiency of investigations at the preanalytical, analytical, and postanalytical stages of technological process of laboratory studies. As a result of introduction of this technology into laboratory practice, violations of quality criteria of clinical urinalysis decreased from 15 to 8% at the preanalytical stage and from 6 to 3% at the analytical stage. Automation of the analysis decreased the need in reagents 3-fold and improved the productivity at the analytical stage 4-fold.

  4. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    Science.gov (United States)

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  5. Error identification in a high-volume clinical chemistry laboratory: Five-year experience.

    Science.gov (United States)

    Jafri, Lena; Khan, Aysha Habib; Ghani, Farooq; Shakeel, Shahid; Raheem, Ahmed; Siddiqui, Imran

    2015-07-01

    Quality indicators for assessing the performance of a laboratory require a systematic and continuous approach in collecting and analyzing data. The aim of this study was to determine the frequency of errors utilizing the quality indicators in a clinical chemistry laboratory and to convert errors to the Sigma scale. Five-year quality indicator data of a clinical chemistry laboratory was evaluated to describe the frequency of errors. An 'error' was defined as a defect during the entire testing process from the time requisition was raised and phlebotomy was done until the result dispatch. An indicator with a Sigma value of 4 was considered good but a process for which the Sigma value was 5 (i.e. 99.977% error-free) was considered well controlled. In the five-year period, a total of 6,792,020 specimens were received in the laboratory. Among a total of 17,631,834 analyses, 15.5% were from within hospital. Total error rate was 0.45% and of all the quality indicators used in this study the average Sigma level was 5.2. Three indicators - visible hemolysis, failure of proficiency testing and delay in stat tests - were below 5 on the Sigma scale and highlight the need to rigorously monitor these processes. Using Six Sigma metrics quality in a clinical laboratory can be monitored more effectively and it can set benchmarks for improving efficiency.

  6. International Federation of Clinical Chemistry. Use of artificial intelligence in analytical systems for the clinical laboratory. IFCC Committee on Analytical Systems.

    Science.gov (United States)

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1994-12-16

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI) both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel-processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of this paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual property and that there is a need for better documentation, evaluation and regulation of the systems already being used widely in clinical laboratories.

  7. Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory's 10 waste area groups. Contaminated sites at the laboratory's Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram

  8. A Required Rotation in Clinical Laboratory Management for Pathology Residents

    OpenAIRE

    Arvind Rishi MD; Syed T. Hoda MD; James M. Crawford MD, PhD

    2016-01-01

    Leadership and management training during pathology residency have been identified repeatedly by employers as insufficient. A 1-month rotation in clinical laboratory management (CLM) was created for third-year pathology residents. We report on our experience and assess the value of this rotation. The rotation was one-half observational and one-half active. The observational component involved being a member of department and laboratory service line leadership, both at the departmental and ins...

  9. A national clinical quality program for Veterans Affairs catheterization laboratories (from the Veterans Affairs clinical assessment, reporting, and tracking program).

    Science.gov (United States)

    Maddox, Thomas M; Plomondon, Mary E; Petrich, Megan; Tsai, Thomas T; Gethoffer, Hans; Noonan, Gregory; Gillespie, Brian; Box, Tamara; Fihn, Stephen D; Jesse, Robert L; Rumsfeld, John S

    2014-12-01

    A "learning health care system", as outlined in a recent Institute of Medicine report, harnesses real-time clinical data to continuously measure and improve clinical care. However, most current efforts to understand and improve the quality of care rely on retrospective chart abstractions complied long after the provision of clinical care. To align more closely with the goals of a learning health care system, we present the novel design and initial results of the Veterans Affairs (VA) Clinical Assessment, Reporting, and Tracking (CART) program-a national clinical quality program for VA cardiac catheterization laboratories that harnesses real-time clinical data to support clinical care and quality-monitoring efforts. Integrated within the VA electronic health record, the CART program uses a specialized software platform to collect real-time patient and procedural data for all VA patients undergoing coronary procedures in VA catheterization laboratories. The program began in 2005 and currently contains data on 434,967 catheterization laboratory procedures, including 272,097 coronary angiograms and 86,481 percutaneous coronary interventions, performed by 801 clinicians on 246,967 patients. We present the initial data from the CART program and describe 3 quality-monitoring programs that use its unique characteristics-procedural and complications feedback to individual labs, coronary device surveillance, and major adverse event peer review. The VA CART program is a novel approach to electronic health record design that supports clinical care, quality, and safety in VA catheterization laboratories. Its approach holds promise in achieving the goals of a learning health care system. Published by Elsevier Inc.

  10. [Critical role of clinical laboratories in hospital infection control].

    Science.gov (United States)

    Yagi, Tetsuya

    2010-11-01

    The hospital infection control and prevention is recognized to be more and more important according to the advances in modern medical treatment and care. Clinical microbiology laboratory play critical roles in the hospital infection control as a member of infection control team (ICT). They are the first in a hospital to identify outbreak of MRSA in NICU and molecular epidemiological analysis of the isolates lead proper intervention of ICT to the concerned ward. From a viewpoint of infectious disease specialist, rapid and precise microbiological information is essential for the appropriate diagnosis and treatment of infectious diseases. Each medical technologist need to make efforts to understand the characteristics of the examinations for infectious diseases and send out information useful for clinical practices. In our hospital, with the participation of all members of medical technologists, rapid reporting system was developed for blood culture examinations, which greatly contribute to the appropriate treatment of bloodstream infections. Collaborations of clinical microbiology laboratory with other members of ICT realize high quality hospital infection control. They also need to be aware of themselves as good practitioners of infection control measures to prevent hospital infections.

  11. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  12. Clinical and Laboratory Predictors of Articular Disorders Among HIV ...

    African Journals Online (AJOL)

    radiologist for features of avascular necrosis (AVN) and sacroiliitis, respectively. Synovial fluid was obtained, for analysis and microscopy, culture/sensitivity testing and acid fast bacilli detection in those with demonstrable joint effusion. The clinically evident articular features, laboratory, and radiographic findings were used ...

  13. Childhood obstructive sleep-disordered breathing: a clinical update and discussion of technological innovations and challenges.

    Science.gov (United States)

    Halbower, Ann C; Ishman, Stacey L; McGinley, Brian M

    2007-12-01

    Childhood sleep-disordered breathing (SDB) has been known to be associated with health and cognitive impacts for more than a century, and yet our understanding of this disorder is in its infancy. Neuropsychological consequences in children with snoring or subtle breathing disturbances not meeting the traditional definition of sleep apnea suggest that "benign, or primary snoring" may be clinically significant, and that the true prevalence of SDB might be underestimated. There is no standard definition of SDB in children. The polysomnographic technology used in many sleep laboratories may be inadequate to diagnose serious but subtle forms of clinically important airflow limitation. In the last several years, advances in digital technology as well as new observational studies of respiratory and arousal patterns in large populations of healthy children have led to alternative views of what constitutes sleep-related breathing and arousal abnormalities that may refine our diagnostic criteria. This article reviews our knowledge of childhood SDB, highlights recent advances in technology, and discusses diagnostic and treatment strategies that will advance the management of children with pediatric SDB.

  14. Total laboratory automation: Do stat tests still matter?

    Science.gov (United States)

    Dolci, Alberto; Giavarina, Davide; Pasqualetti, Sara; Szőke, Dominika; Panteghini, Mauro

    2017-07-01

    During the past decades the healthcare systems have rapidly changed and today hospital care is primarily advocated for critical patients and acute treatments, for which laboratory test results are crucial and need to be always reported in predictably short turnaround time (TAT). Laboratories in the hospital setting can face this challenge by changing their organization from a compartmentalized laboratory department toward a decision making-based laboratory department. This requires the implementation of a core laboratory, that exploits total laboratory automation (TLA) using technological innovation in analytical platforms, track systems and information technology, including middleware, and a number of satellite specialized laboratory sections cooperating with care teams for specific medical conditions. In this laboratory department model, the short TAT for all first-line tests performed by TLA in the core laboratory represents the key paradigm, where no more stat testing is required because all samples are handled in real-time and (auto)validated results dispatched in a time that fulfills clinical needs. To optimally reach this goal, laboratories should be actively involved in managing all the steps covering the total examination process, speeding up also extra-laboratory phases, such sample delivery. Furthermore, to warrant effectiveness and not only efficiency, all the processes, e.g. specimen integrity check, should be managed by middleware through a predefined set of rules defined in light of the clinical governance. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  15. Implementation of a companion diagnostic in the clinical laboratory

    DEFF Research Database (Denmark)

    Mancini, Irene; Pinzani, Pamela; Simi, Lisa

    2015-01-01

    A companion diagnostic test provides information that is essential for the safe and effective use of a corresponding therapeutic product as indicated in the drug instructions. The implementation of a companion diagnostic follows the rules of a molecular test for somatic mutations in a routine...... clinical laboratory environment and needs guidance on practical aspects, including the choice of the proper analytical method and the procedures for internal and external quality controls. Selection of the appropriate assay for detection of genetic alterations depends on several factors: the type...... on restrictions of the method used. In relation to these aspects herein we report an opinion paper of the Working Group Personalized Laboratory Medicine jointly constituted by the European Federation of Laboratory Medicine (EFLM) and by the European Society of Pharmacogenomics and Theranostics (ESPT) using...

  16. Metacognitive factors that impact student nurse use of point of care technology in clinical settings.

    Science.gov (United States)

    Kuiper, RuthAnne

    2010-01-01

    The utility of personal digital assistants (PDA) as a point of care resource in health care practice and education presents new challenges for nursing faculty. While there is a plethora of PDA resources available, little is known about the variables that effect student learning and technology adoption. In this study nursing students used PDA software programs which included a drug guide, medical dictionary, laboratory manual and nursing diagnosis manual during acute care clinical experiences. Analysis of student journals comparative reflective statements about the PDA as an adjunct to other available resources in clinical practice are presented. The benefits of having a PDA included readily available data, validation of thinking processes, and facilitation of care plan re-evaluation. Students reported increased frequency of use and independence. Significant correlations between user perceptions and computer self-efficacy suggested greater confidence in abilities with technology resulting in increased self-awareness and achievement of learning outcomes.

  17. MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory.

    Science.gov (United States)

    Horowitz, Gary L; Zaman, Zahur; Blanckaert, Norbert J C; Chan, Daniel W; Dubois, Jeffrey A; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W; Nilsen, Olaug L; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

    2005-01-01

    MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality.

  18. Clinical and laboratory experience of chorionic villous sampling in ...

    African Journals Online (AJOL)

    Background: Chorionic villous sampling is a first trimester invasive diagnosis procedure that was introduced in Nigeria <2 decades ago. Objective: The objective of the following study is to review experience with chorionic villous sampling in relation to clinical and laboratory procedures, including general characteristics of ...

  19. The use of reference change values in clinical laboratories.

    Science.gov (United States)

    Bugdayci, Guler; Oguzman, Hamdi; Arattan, Havva Yasemin; Sasmaz, Guler

    2015-01-01

    The use of Reference Change Values (RCV) has been advocated as very useful for monitoring individuals. Most of these are performed for monitoring individuals in acute situations and for following up the improvement or deterioration of chronic diseases. In our study, we aimed at evaluating the RCV calculation for 24 clinical chemistry analytes widely used in clinical laboratories and the utilization of this data. Twenty-four serum samples were analyzed with Abbott kits (Abbott Laboratories, Abbott Park, IL, USA), manufactured for use with the Architect c8000 (Abbott Laboratories, Abbott Park, IL, USA) auto-analyzer. We calculated RCV using the following formula: RCV = Z x 2 1/2x (CVA2 + CVw2)1/2. Four reference change values (RCV) were calculated for each analyte using four statistical probabilities (0.95, and 0.99, unidirectional and bidirectional). Moreover, by providing an interval after identifying upper and lower limits with the Reference Change Factor (RCF), serially measured tests were calculated by using two formulas: exp (Z x 2 1/2 x (CV(A)2 + CVw2)½/100) for RCF(UP) and (1/RCF(UP)) for RCF(DOWN). RCVs of these analytes were calculated as 14.63% for glucose, 29.88% for urea, 17.75% for ALP, 53.39% for CK, 46.98% for CK-MB, 21.00% amylase, 8.00% for total protein, 8.70% for albumin, 51.08% for total bilirubin, 86.34% for direct bilirubin, 6.40% for calcium, 15.03% for creatinine, 21.47% for urate, 14.19% for total cholesterol, 46.62% for triglyceride, 20.51% for HDL-cholesterol, 29.59% for AST, 46.31% for ALT, 31.54% for GGT, 20.92% for LDH, 19.75% for inorganic phosphate, 3.05% for sodium, 11.75% for potassium, 4.44% for chloride (RCV, p laboratories. RCV could be available as a tool for making clinical decision, especially when monitoring individuals.

  20. Obtaining valid laboratory data in clinical trials conducted in resource diverse settings: lessons learned from a microbicide phase III clinical trial.

    Directory of Open Access Journals (Sweden)

    Tania Crucitti

    2010-10-01

    Full Text Available Over the last decade several phase III microbicides trials have been conducted in developing countries. However, laboratories in resource constrained settings do not always have the experience, infrastructure, and the capacity to deliver laboratory data meeting the high standards of clinical trials. This paper describes the design and outcomes of a laboratory quality assurance program which was implemented during a phase III clinical trial evaluating the efficacy of the candidate microbicide Cellulose Sulfate 6% (CS [1].In order to assess the effectiveness of CS for HIV and STI prevention, a phase III clinical trial was conducted in 5 sites: 3 in Africa and 2 in India. The trial sponsor identified an International Central Reference Laboratory (ICRL, responsible for the design and management of a quality assurance program, which would guarantee the reliability of laboratory data. The ICRL provided advice on the tests, assessed local laboratories, organized trainings, conducted supervision visits, performed re-tests, and prepared control panels. Local laboratories were provided with control panels for HIV rapid tests and Chlamydia trachomatis/Neisseria gonorrhoeae (CT/NG amplification technique. Aliquots from respective control panels were tested by local laboratories and were compared with results obtained at the ICRL.Overall, good results were observed. However, discordances between the ICRL and site laboratories were identified for HIV and CT/NG results. One particular site experienced difficulties with HIV rapid testing shortly after study initiation. At all sites, DNA contamination was identified as a cause of invalid CT/NG results. Both problems were timely detected and solved. Through immediate feedback, guidance and repeated training of laboratory staff, additional inaccuracies were prevented.Quality control guidelines when applied in field laboratories ensured the reliability and validity of final study data. It is essential that sponsors

  1. The answer of the Bacteriology Laboratory to new clinical needs. Rapid sepsis diagnotics at the Novara hospital

    Directory of Open Access Journals (Sweden)

    Vesselina Kroumova

    2012-06-01

    Full Text Available Faster microbiological responses are increasingly necessary in modern medicine and the Laboratory of Microbiology must be equipped in this sense. New instrumentation and, above all, a new approach by the Clinical Microbiologist that puts a focus on the real needs of the patient before the microbiological may allow for significantly improving the TAT of these diagnostics. The use of both new methodologies, new tools and revisited old technologies may mean less these days as it was obtained at the Laboratory of Microbiology and Virology of Novara, where the combined use of molecular biology techniques, and mass spectrometry techniques rapid growth have allowed for more than 36 hours to shorten the response time by positivization of blood cultures. Such an approach allows an important support to the clinician with obvious benefits for the patient.

  2. The Tanzania experience: clinical laboratory testing harmonization and equipment standardization at different levels of a tiered health laboratory system.

    Science.gov (United States)

    Massambu, Charles; Mwangi, Christina

    2009-06-01

    The rapid scale-up of the care and treatment programs in Tanzania during the preceding 4 years has greatly increased the demand for quality laboratory services for diagnosis of HIV and monitoring patients during antiretroviral therapy. Laboratory services were not in a position to cope with this demand owing to poor infrastructure, lack of human resources, erratic and/or lack of reagent supply and commodities, and slow manual technologies. With the limited human resources in the laboratory and the need for scaling up the care and treatment program, it became necessary to install automated equipment and train personnel for the increased volume of testing and new tests across all laboratory levels. With the numerous partners procuring equipment, the possibility of a multitude of equipment platforms with attendant challenges for procurement of reagents, maintenance of equipment, and quality assurance arose. Tanzania, therefore, had to harmonize laboratory tests and standardize laboratory equipment at different levels of the laboratory network. The process of harmonization of tests and standardization of equipment included assessment of laboratories, review of guidelines, development of a national laboratory operational plan, and stakeholder advocacy. This document outlines this process.

  3. E-health, phase two: the imperative to integrate process automation with communication automation for large clinical reference laboratories.

    Science.gov (United States)

    White, L; Terner, C

    2001-01-01

    The initial efforts of e-health have fallen far short of expectations. They were buoyed by the hype and excitement of the Internet craze but limited by their lack of understanding of important market and environmental factors. E-health now recognizes that legacy systems and processes are important, that there is a technology adoption process that needs to be followed, and that demonstrable value drives adoption. Initial e-health transaction solutions have targeted mostly low-cost problems. These solutions invariably are difficult to integrate into existing systems, typically requiring manual interfacing to supported processes. This limitation in particular makes them unworkable for large volume providers. To meet the needs of these providers, e-health companies must rethink their approaches, appropriately applying technology to seamlessly integrate all steps into existing business functions. E-automation is a transaction technology that automates steps, integration of steps, and information communication demands, resulting in comprehensive automation of entire business functions. We applied e-automation to create a billing management solution for clinical reference laboratories. Large volume, onerous regulations, small margins, and only indirect access to patients challenge large laboratories' billing departments. Couple these problems with outmoded, largely manual systems and it becomes apparent why most laboratory billing departments are in crisis. Our approach has been to focus on the most significant and costly problems in billing: errors, compliance, and system maintenance and management. The core of the design relies on conditional processing, a "universal" communications interface, and ASP technologies. The result is comprehensive automation of all routine processes, driving out errors and costs. Additionally, compliance management and billing system support and management costs are dramatically reduced. The implications of e-automated processes can extend

  4. CLINIC-LABORATORY DESIGN BASED ON FUNCTION AND PHILOSOPHY AT PURDUE UNIVERSITY.

    Science.gov (United States)

    HANLEY, T.D.; STEER, M.D.

    THIS REPORT DESCRIBES THE DESIGN OF A NEW CLINIC AND LABORATORY FOR SPEECH AND HEARING TO ACCOMMODATE THE THREE BASIC PROGRAMS OF--(1) CLINICAL TRAINING OF UNDERGRADUATE AND GRADUATE STUDENT MAJORS, (2) SERVICES MADE AVAILABLE TO THE SPEECH AND HEARING HANDICAPPED, AND (3) RESEARCH IN SPEECH PATHOLOGY, AUDIOLOGY, PSYCHO-ACOUSTICS, AND…

  5. Using the Technology: Introducing Point of View Video Glasses Into the Simulated Clinical Learning Environment.

    Science.gov (United States)

    Metcalfe, Helene; Jonas-Dwyer, Diana; Saunders, Rosemary; Dugmore, Helen

    2015-10-01

    The introduction of learning technologies into educational settings continues to grow alongside the emergence of innovative technologies into the healthcare arena. The challenge for health professionals such as medical, nursing, and allied health practitioners is to develop an improved understanding of these technologies and how they may influence practice and contribute to healthcare. For nurse educators to remain contemporary, there is a need to not only embrace current technologies in teaching and learning but to also ensure that students are able to adapt to this changing pedagogy. One recent technological innovation is the use of wearable computing technology, consisting of video recording with the capability of playback analysis. The authors of this article discuss the introduction of the use of wearable Point of View video glasses by a cohort of nursing students in a simulated clinical learning laboratory. Of particular interest was the ease of use of the glasses, also termed the usability of this technology, which is central to its success. Students' reflections were analyzed together with suggestions for future use.

  6. Load Disaggregation Technologies: Real World and Laboratory Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T.; Sullivan, Greg P.; Petersen, Joseph M.; Butner, Ryan S.; Johnson, Erica M.

    2016-09-28

    Low cost interval metering and communication technology improvements over the past ten years have enabled the maturity of load disaggregation (or non-intrusive load monitoring) technologies to better estimate and report energy consumption of individual end-use loads. With the appropriate performance characteristics, these technologies have the potential to enable many utility and customer facing applications such as billing transparency, itemized demand and energy consumption, appliance diagnostics, commissioning, energy efficiency savings verification, load shape research, and demand response measurement. However, there has been much skepticism concerning the ability of load disaggregation products to accurately identify and estimate energy consumption of end-uses; which has hindered wide-spread market adoption. A contributing factor is that common test methods and metrics are not available to evaluate performance without having to perform large scale field demonstrations and pilots, which can be costly when developing such products. Without common and cost-effective methods of evaluation, more developed disaggregation technologies will continue to be slow to market and potential users will remain uncertain about their capabilities. This paper reviews recent field studies and laboratory tests of disaggregation technologies. Several factors are identified that are important to consider in test protocols, so that the results reflect real world performance. Potential metrics are examined to highlight their effectiveness in quantifying disaggregation performance. This analysis is then used to suggest performance metrics that are meaningful and of value to potential users and that will enable researchers/developers to identify beneficial ways to improve their technologies.

  7. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  8. Technological capability at the Brazilian official pharmaceutical laboratories

    Directory of Open Access Journals (Sweden)

    José Vitor Bomtempo Martins

    2008-10-01

    Full Text Available This paper studies the technological capability in the Brazilian Official Pharmaceutical Laboratories [OPL]. The technological capability analysis could contribute to organization strategies and governmental actions in order to improve OPL basic tasks as well to incorporate new ones, particularly concerning the innovation management. Inspired in Figueiredo (2000, 2003a, 2003b and Figueiredo and Ariffin (2003, a framework was drawn and adapted to pharmaceutical industry characteristics and current sanitary and health legislation. The framework allows to map different dimensions of the technological capability (installations, processes, products, equipments, organizational capability and knowledge management and the level attained by OPL (ordinary or innovating capability. OPL show a good development of ordinary capabilities, particularly in Product and Processes. Concerning the other dimensions, OPL are quite diverse. In general, innovating capabilities are not much developed. In the short term, it was identified a dispersion in the capacitating efforts. Considering their present level and the absorption efforts, good perspectives can be found in Installations, Processes and Organizational Capability. A lower level of efforts in Products and Knowledge Management could undermine these capabilities in the future.

  9. Building Connecticut's clinical biodosimetry laboratory surge capacity to mitigate the health consequences of radiological and nuclear disasters: A collaborative approach between the state biodosimetry laboratory and Connecticut's medical infrastructure

    International Nuclear Information System (INIS)

    Albanese, Joseph; Martens, Kelly; Arnold, Jeffrey L.; Kelley, Katherine; Kristie, Virginia; Forte, Elaine; Schneider, Mark; Dainiak, Nicholas

    2007-01-01

    Biodosimetry, based on the analysis of dicentric chromosomes in circulating mononuclear cells, is considered the 'gold standard' for estimating radiation dose and is used to make informed decisions regarding the medical management of irradiated persons. This paper describes the development of biodosimetry laboratory surge capacity for the health consequences of radiological and nuclear disasters in Connecticut, including: (1) establishment of the Biodosimetry Laboratory for the timely assessment of radiation dosage in biodosimetry specimens; (2) identification of clinical laboratories qualified and willing to process biodosimetry specimens from a large number of victims; (3) training of clinical laboratorians in initial biodosimetry specimen processing; and (4) conducting a functional drill that evaluated the effectiveness of these elements. Descriptive information was obtained from: (1) personal observations; (2) a needs assessment of clinical laboratories in Connecticut; (3) records from a training program of clinical laboratorians in biodosimetry specimen processing that was developed and provided by the Yale New Haven Center for Emergency Preparedness and Disaster Response; and (4) records from a statewide functional drill in biodosimetry specimen processing that was developed and conducted by the State of Connecticut Biodosimetry Laboratory. A needs assessment of clinical laboratories in Connecticut identified 30 of 32 clinical laboratories qualified and willing to perform initial biodosimetry specimen processing. Currently, 79 clinical laboratorians in 19 of these qualified clinical laboratories have been trained in biodosimetry specimen processing. A functional exercise was conducted involving 37 of these trained clinical laboratorians in 18 qualified laboratories as well as the Biodosimetry Laboratory. The average turnaround time for biodosimetry specimen processing in this drill was 199 min. Exercise participants provided feedback which will be used to

  10. Lean six sigma methodologies improve clinical laboratory efficiency and reduce turnaround times.

    Science.gov (United States)

    Inal, Tamer C; Goruroglu Ozturk, Ozlem; Kibar, Filiz; Cetiner, Salih; Matyar, Selcuk; Daglioglu, Gulcin; Yaman, Akgun

    2018-01-01

    Organizing work flow is a major task of laboratory management. Recently, clinical laboratories have started to adopt methodologies such as Lean Six Sigma and some successful implementations have been reported. This study used Lean Six Sigma to simplify the laboratory work process and decrease the turnaround time by eliminating non-value-adding steps. The five-stage Six Sigma system known as define, measure, analyze, improve, and control (DMAIC) is used to identify and solve problems. The laboratory turnaround time for individual tests, total delay time in the sample reception area, and percentage of steps involving risks of medical errors and biological hazards in the overall process are measured. The pre-analytical process in the reception area was improved by eliminating 3 h and 22.5 min of non-value-adding work. Turnaround time also improved for stat samples from 68 to 59 min after applying Lean. Steps prone to medical errors and posing potential biological hazards to receptionists were reduced from 30% to 3%. Successful implementation of Lean Six Sigma significantly improved all of the selected performance metrics. This quality-improvement methodology has the potential to significantly improve clinical laboratories. © 2017 Wiley Periodicals, Inc.

  11. Kikuchi-Fujimoto disease: Clinical and laboratory characteristics and outcome

    Directory of Open Access Journals (Sweden)

    P S Rakesh

    2014-01-01

    Full Text Available Introduction: Kikuchi-Fujimoto disease is an uncommon disorder with worldwide distribution, characterized by fever and benign enlargement of the lymph nodes, primarily affecting young adults. Awareness about this disorder may help prevent misdiagnosis and inappropriate investigations and treatment. The objective of the study was to evaluate the clinical and laboratory characteristics of histopathologically confirmed cases of Kikuchi′s disease from a tertiary care center in southern India. Materials and Methods: Retrospective analysis of all adult patients with histopathologically confirmed Kikuchi′s disease from January 2007 to December 2011 in a 2700-bed teaching hospital in South India was done. The clinical and laboratory characteristics and outcome were analyzed. Results: There were 22 histopathologically confirmed cases of Kikuchi′s disease over the 5-year period of this study. The mean age of the subjects′ was 29.7 years (SD 8.11 and majority were women (Male: female- 1:3.4. Apart from enlarged cervical lymph nodes, prolonged fever was the most common presenting complaint (77.3%. The major laboratory features included anemia (54.5%, increased erythrocyte sedimentation rate (31.8%, elevated alanine aminotransferase (27.2% and elevated lactate dehydrogenase (LDH (31.8%. Conclusion: Even though rare, Kikuchi′s disease should be considered in the differential diagnosis of young individuals, especially women, presenting with lymphadenopathy and prolonged fever. Establishing the diagnosis histopathologically is essential to avoid inappropriate investigations and therapy.

  12. Research and development of superconductivity for energy technology in electrotechnical laboratory

    International Nuclear Information System (INIS)

    Koyama, K.

    1984-01-01

    Superconductivity is a physical effect wherein the electrical resistivity disappears at cryogenic temperatures. Superconductivity has the advantage of following large current densities and high magnetic fields, which are stable and homogeneous. There are many applications of superconductivity which take advantage of these merits. It is of special importance to apply superconductors to alternative energy and energy saving technology. This paper presents briefly some of the research and development efforts to apply superconductivity to energy technology in the Electrotechnical Laboratory

  13. Socio-demographic, Clinical and Laboratory Features of Rotavirus Gastroenteritis in Children Treated in Pediatric Clinic

    OpenAIRE

    Azemi, Mehmedali; Berisha, Majlinda; Ismaili-Jaha, Vlora; Kolgeci, Selim; Avdiu, Muharrem; Jakupi, Xhevat; Hoxha, Rina; Hoxha-Kamberi, Teuta

    2013-01-01

    Aim: The aim of work was presentation of several socio-demographic, clinical and laboratory characteristics of gastroenteritis caused by rotavirus. The examinees and methods: The examinees were children under the age of five years treated at the Pediatric Clinic due to acute gastroenteritis caused by rotavirus. Rotavirus is isolated by method chromatographic immunoassay by Cer Test Biotec. Results: From the total number of patients (850) suffering from acute gastroenteritis, feces test on bac...

  14. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    OpenAIRE

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated ...

  15. Candida bloodstream infection: a clinical microbiology laboratory perspective.

    Science.gov (United States)

    Pongrácz, Júlia; Kristóf, Katalin

    2014-09-01

    The incidence of Candida bloodstream infection (BSI) has been on the rise in several countries worldwide. Species distribution is changing; an increase in the percentage of non-albicans species, mainly fluconazole non-susceptible C. glabrata was reported. Existing microbiology diagnostic methods lack sensitivity, and new methods need to be developed or further evaluation for routine application is necessary. Although reliable, standardized methods for antifungal susceptibility testing are available, the determination of clinical breakpoints remains challenging. Correct species identification is important and provides information on the intrinsic susceptibility profile of the isolate. Currently, acquired resistance in clinical Candida isolates is rare, but reports indicate that it could be an issue in the future. The role of the clinical microbiology laboratory is to isolate and correctly identify the infective agent and provide relevant and reliable susceptibility data as soon as possible to guide antifungal therapy.

  16. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  17. Proceedings of symposium on technology in laboratories by department of engineering and technical services

    International Nuclear Information System (INIS)

    1994-07-01

    The Symposium on Technology in Laboratories was held on March 23 and 24 at Ceratopia Toki, and Toki Chamber of Commerce and Industry in Toki city, Gifu Prefecture, Japan. This symposium was hosted by National Institute for Fusion Science (NIFS). There were 273 participants from many Japanese universities and laboratories, from some Japanese industrial world. Seventy eight papers were presented in the symposium. Technical experience and new techniques were reported and discussed being divided into five sessions; technologies of fabrication, cryogenics, diagnostic and control system, computer and experimental apparatus. (author)

  18. [Study of continuous quality improvement for clinical laboratory processes via the platform of Hospital Group].

    Science.gov (United States)

    Song, Wenqi; Shen, Ying; Peng, Xiaoxia; Tian, Jian; Wang, Hui; Xu, Lili; Nie, Xiaolu; Ni, Xin

    2015-05-26

    The program of continuous quality improvement in clinical laboratory processes for complete blood count (CBC) was launched via the platform of Beijing Children's Hospital Group in order to improve the quality of pediatric clinical laboratories. Fifteen children's hospitals of Beijing Children's Hospital group were investigated using the method of Chinese adapted continuous quality improvement with PDCA (Plan-Do-Check-Action). The questionnaire survey and inter-laboratory comparison was conducted to find the existing problems, to analyze reasons, to set forth quality targets and to put them into practice. Then, targeted training was conducted to 15 children's hospitals and the second questionnaire survey, self examinations by the clinical laboratories was performed. At the same time, the Group's online internal quality control platform was established. Overall effects of the program were evaluated so that lay a foundation for the next stage of PDCA. Both quality of control system documents and CBC internal quality control scheme for all of clinical laboratories were improved through this program. In addition, standardization of performance verification was also improved, especially with the comparable verification rate of precision and internal laboratory results up to 100%. In terms of instrument calibration and mandatory diagnostic rates, only three out of the 15 hospitals (20%) failed to pass muster in 2014 from 46.67% (seven out of the 15 hospitals) in 2013. The abnormal data of intraday precision variance coefficients of the five CBC indicator parameters (WBC, RBC, Hb, Plt and Hct) of all the 15 laboratories accounted for 1.2% (2/165) in 2014, a marked decrease from 9.6% (14/145) in 2013. While the number of the hospitals using only one horizontal quality control object for daily quality control has dropped to three from five. The 15 hospitals organized a total of 263 times of training in 2014 from 101 times in 2013, up 160%. The quality improvement program for

  19. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: Code of Conduct, Version 2--2008.

    LENUS (Irish Health Repository)

    McMurray, Janet

    2009-01-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 10 years, more than 2000 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Federation of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). A Code of Conduct was adopted in 2003 and a revised and updated version, taking account particularly of the guidelines of the Conseil Européen des Professions Libérales (CEPLIS) of which EFCC is a member, is presented in this article. The revised version was approved by the EC4 Register Commission and by the EFCC Executive Board in Paris on 6 November, 2008.

  20. DNA decontamination methods for internal quality management in clinical PCR laboratories.

    Science.gov (United States)

    Wu, Yingping; Wu, Jianyong; Zhang, Zhihui; Cheng, Chen

    2018-03-01

    The polymerase chain reaction (PCR) technique, one of the most commonly applied methods in diagnostic and molecular biology, has a frustrating downside: the occurrence of false-positive signals due to contamination. In previous research, various DNA decontamination methods have been developed to overcome this limitation. Unfortunately, the use of random or poorly focused sampling methods for monitoring air and/or object surfaces leads to the incomplete elimination during decontamination procedures. We herein attempted to develop a novel DNA decontamination method (environmental surveillance, including surface and air sampling) and quality management program for clinical molecular diagnostic laboratories (or clinical PCR laboratories). Here, we performed a step-by-step evaluation of current DNA decontamination methods and developed an effective procedure for assessing the presence of decontaminating DNA via PCR analysis. Performing targeted environmental surveillance by sampling, which reached optimal performance over 2 weeks, and the decontamination process had been verified as reliable. Additionally, the process was validated to not affect PCR amplification efficiency based on a comparative study. In this study, effective guidelines for DNA decontamination were developed. The method employed ensured that surface DNA contamination could be effectively identified and eliminated. Furthermore, our study highlighted the importance of overall quality assurance and good clinical laboratory practices for preventing contamination, which are key factors for compliance with regulatory or accreditation requirements. Taken together, we provided the evidence that the presented scheme ranged from troubleshooting to the elimination of surface contamination, could serve as critical foundation for developing regular environmental surveillance guidelines for PCR laboratories. © 2017 Wiley Periodicals, Inc.

  1. EXPERIENCE OF THE ORGANIZATION OF VIRTUAL LABORATORIES ON THE BASIS OF TECHNOLOGIES OF CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    V. Oleksyuk

    2014-06-01

    Full Text Available The article investigated the concept of «virtual laboratory». This paper describes models of deploying of cloud technologies in IT infrastructure. The hybrid model is most recent for higher educational institution. The author suggests private cloud platforms to deploying the virtual laboratory. This paper describes the experience of the deployment enterprise cloud in IT infrastructure of Department of Physics and Mathematics of Ternopil V. Hnatyuk National Pedagogical University. The object of the research are virtual laboratories as components of IT infrastructure of higher education. The subject of the research are clouds as base of deployment of the virtual laboratories. Conclusions. The use of cloud technologies in the development virtual laboratories of the is an actual and need of the development. The hybrid model is the most appropriate in the deployment of cloud infrastructure of higher educational institution. It is reasonable to use the private (Cloudstack, Eucalyptus, OpenStack cloud platform in the universities.

  2. [Security Management in Clinical Laboratory Departments and Facilities: Current Status and Issues].

    Science.gov (United States)

    Ishida, Haku; Nakamura, Junji; Yoshida, Hiroshi; Koike, Masaru; Inoue, Yuji

    2014-11-01

    We conducted a questionnaire survey regarding the current activities for protecting patients' privacy and the security of information systems (IS) related to the clinical laboratory departments of university hospitals, certified training facilities for clinical laboratories, and general hospitals in Yamaguchi Prefecture. The response rate was 47% from 215 medical institutions, including three commercial clinical laboratory centers. The results showed that there were some differences in management activities among facilities with respect to continuing education, the documentation or regulation of operational management for paper records, electronic information, remaining samples, genetic testing, and laboratory information for secondary use. They were suggested to be caused by differences in functions between university and general hospitals, differences in the scale of hospitals, or whether or not hospitals have received accreditation or ISO 15189. Regarding the IS, although the majority of facilities had sufficiently employed the access control to IS, there was some room for improvement in the management of special cases such as VIPs and patients with HIV infection. Furthermore, there were issues regarding the login method for computers shared by multiple staff, the showing of the names of personnel in charge of reports, and the risks associated with direct connections to systems and the Internet and the use of portable media such as USB memory sticks. These results indicated that further efforts are necessary for each facility to continue self-assessment and make improvements.

  3. Near-drowning and clinical laboratory changes.

    Science.gov (United States)

    Oehmichen, Manfred; Hennig, Renate; Meissner, Christoph

    2008-01-01

    Opposite to clinical laboratory findings in experimental drowning of animals (erythrocytic lysis, hyperkalemia, and final cardial fibrillation) are the observations in drowned humans (increase of pCO2, hypoxic encephalopathy), which leads to a different pathophysiological interpretation of the drowning process. This process, however, is recently discussed again, therefore an additional study seemed to be recommended. In a retrospective study, 31 cases of near-drowning (23 cases: fresh water; 8 cases: brackish water) clinical laboratory data were analysed. While 21 of the cases were fatal with a delay of up to 180 days, 10 individuals survived the accident, four cases with severe neurological deficits. Data of pH, potassium, sodium, chloride, hemoglobin and total protein were collected during the very early post-drowning period. Nearly all cases (96%) revealed a reduction of pH due to hypoxic acidosis, and only two cases (6.5%) exhibited a slight hyperkalemia. The hemoglobin level was normal in most of the cases (83%) and slightly reduced in the others (17%) while the protein level was slightly reduced in most of the fatalities (80%). As a result of our investigation we have to state the lack of hyperkalemia as well as of an increase of the hemoglobin level indicate that there is no distinct intravascular red cell lysis due to influx of water into the vascular compartment. Therefore the death by drowning in humans in most cases is the result of a hypoxic cerebral process. A comparison with animal experiments obviously is not helpful because the drowning process in humans leads to an aspiration of only 2-4 ml water/kg, while in animal experiments more than 10 ml water/kg will be artificially aspirated leading to red cell lysis as well as to electrolyte disturbances and cardial fibrillation.

  4. Effective use of technology in clinical supervision

    Directory of Open Access Journals (Sweden)

    Priya Martin

    2017-06-01

    Full Text Available Clinical supervision is integral to continuing professional development of health professionals. With advances in technology, clinical supervision too can be undertaken using mediums such as videoconference, email and teleconference. This mode of clinical supervision is termed as telesupervision. While telesupervision could be useful in any context, its value is amplified for health professionals working in rural and remote areas where access to supervisors within the local work environment is often diminished. While telesupervision offers innovative means to undertake clinical supervision, there remain gaps in the literature in terms of its parameters of use in clinical practice. This article outlines ten evidence-informed, practical tips stemming from a review of the literature that will enable health care stakeholders to use technology effectively and efficiently while undertaking clinical supervision. By highlighting the “how to” aspect, telesupervision can be delivered in the right way, to the right health professional, at the right time.

  5. Transmission of hepatitis B virus in clinical laboratory areas.

    Science.gov (United States)

    Lauer, J L; VanDrunen, N A; Washburn, J W; Balfour, H H

    1979-10-01

    The transmission of hepatitis B virus (HBV) in clinical laboratory areas was delineated by the use of hepatitis B surface antigen (HBsAg) as presumptive evidence for the presence of the infective agent. Twenty-six (34%) of 76 environmental surfaces sampled were positive for HBsAg. The outer surfaces of blood- and serum-specimen containers had HBsAg contamination rates of 55% (six of 11) and 44% (four of nine), respectively. Subsequent handling of pipetting aids, marking devices, and other items led to their contamination and further dissemination of HBsAg. An assay instrument for complete determinations of blood cell counts was observed to splatter and drip blood during its operation. The contamination rate for environmental surfaces associated with this instrument was 15%. The data indicate that transmission of HBV in the clinical laboratory is subtle and mainly via hand contact with contaminated items during the various steps of blood processing. These data support the concept that the portal of entry of HBV is through inapparent breaks in skin and mucous membranes.

  6. Practices for Identifying and Rejecting Hemolyzed Specimens Are Highly Variable in Clinical Laboratories.

    Science.gov (United States)

    Howanitz, Peter J; Lehman, Christopher M; Jones, Bruce A; Meier, Frederick A; Horowitz, Gary L

    2015-08-01

    Hemolysis is an important clinical laboratory quality attribute that influences result reliability. To determine hemolysis identification and rejection practices occurring in clinical laboratories. We used the College of American Pathologists Survey program to distribute a Q-Probes-type questionnaire about hemolysis practices to Chemistry Survey participants. Of 3495 participants sent the questionnaire, 846 (24%) responded. In 71% of 772 laboratories, the hemolysis rate was less than 3.0%, whereas in 5%, it was 6.0% or greater. A visual scale, an instrument scale, and combination of visual and instrument scales were used to identify hemolysis in 48%, 11%, and 41% of laboratories, respectively. A picture of the hemolysis level was used as an aid to technologists' visual interpretation of hemolysis levels in 40% of laboratories. In 7.0% of laboratories, all hemolyzed specimens were rejected; in 4% of laboratories, no hemolyzed specimens were rejected; and in 88% of laboratories, some specimens were rejected depending on hemolysis levels. Participants used 69 different terms to describe hemolysis scales, with 21 terms used in more than 10 laboratories. Slight and moderate were the terms used most commonly. Of 16 different cutoffs used to reject hemolyzed specimens, moderate was the most common, occurring in 30% of laboratories. For whole blood electrolyte measurements performed in 86 laboratories, 57% did not evaluate the presence of hemolysis, but for those that did, the most common practice in 21 laboratories (24%) was centrifuging and visually determining the presence of hemolysis in all specimens. Hemolysis practices vary widely. Standard assessment and consistent reporting are the first steps in reducing interlaboratory variability among results.

  7. Comparing the use of SNOMED CT and ICD10 for coding clinical conditions to implement laboratory guidelines.

    Science.gov (United States)

    Yasini, Mobin; Ebrahiminia, Vahid; Duclos, Catherine; Venot, Alain; Lamy, Jean-Baptiste

    2013-01-01

    Laboratory medicine is responsible for an important part of hospital expenditure. Providing appropriate decision support to laboratory test requesters at the point of care is one of the main incentives for implementing laboratory guidelines, which can improve medical care. Laboratory guidelines developed by local experts in the Parisian region and two national guidelines for dyslipidemia were analyzed to extract test ordering recommendations. Clinical conditions which can be a trigger to order or not to order laboratory tests were extracted and mapped with ICD10 and SNOMED CT: 43.1% of clinical conditions were matched by ICD10 whereas SNOMED CT covered 80.1% of these conditions. For the non-mapped conditions, the main problem was found to be the ambiguity of the terms used in the guidelines. Ordinal characteristics of some clinical conditions and using terms more specific than SNOMED CT were other causes of mapping failure. Applying consistent and explicit concepts in the development of guidelines would lead to better implementation. By resolving the guideline ambiguity, SNOMED CT is a good choice and covers almost all of the clinical conditions in laboratory guidelines which are needed to implement in a Clinical Decision Support System.

  8. Blockchain technology for improving clinical research quality.

    Science.gov (United States)

    Benchoufi, Mehdi; Ravaud, Philippe

    2017-07-19

    Reproducibility, data sharing, personal data privacy concerns and patient enrolment in clinical trials are huge medical challenges for contemporary clinical research. A new technology, Blockchain, may be a key to addressing these challenges and should draw the attention of the whole clinical research community.Blockchain brings the Internet to its definitive decentralisation goal. The core principle of Blockchain is that any service relying on trusted third parties can be built in a transparent, decentralised, secure "trustless" manner at the top of the Blockchain (in fact, there is trust, but it is hardcoded in the Blockchain protocol via a complex cryptographic algorithm). Therefore, users have a high degree of control over and autonomy and trust of the data and its integrity. Blockchain allows for reaching a substantial level of historicity and inviolability of data for the whole document flow in a clinical trial. Hence, it ensures traceability, prevents a posteriori reconstruction and allows for securely automating the clinical trial through what are called Smart Contracts. At the same time, the technology ensures fine-grained control of the data, its security and its shareable parameters, for a single patient or group of patients or clinical trial stakeholders.In this commentary article, we explore the core functionalities of Blockchain applied to clinical trials and we illustrate concretely its general principle in the context of consent to a trial protocol. Trying to figure out the potential impact of Blockchain implementations in the setting of clinical trials will shed new light on how modern clinical trial methods could evolve and benefit from Blockchain technologies in order to tackle the aforementioned challenges.

  9. Preparing clinical laboratory science students with teaching skills.

    Science.gov (United States)

    Isabel, Jeanne M

    2010-01-01

    Training clinical laboratory science (CLS) students in techniques of preparation and delivery of an instructional unit is an important component of all CLS education programs and required by the national accrediting agency. Participants of this study included students admitted to the CLS program at Northern Illinois University and enrolled in the teaching course offered once a year between the years of 1997 and 2009. Courses on the topic of "teaching" may be regarded by CLS students as unnecessary. However, entry level practitioners are being recruited to serve as clinical instructors soon after entering the workforce. Evaluation of the data collected indicates that students are better prepared to complete tasks related to instruction of a topic after having an opportunity to study and practice skills of teaching. Mentoring CLS students toward the career role of clinical instructor or professor is important to maintaining the workforce.

  10. Laboratory Diagnosis and Characterization of Fungal Disease in Patients with Cystic Fibrosis (CF): A Survey of Current UK Practice in a Cohort of Clinical Microbiology Laboratories.

    Science.gov (United States)

    Boyle, Maeve; Moore, John E; Whitehouse, Joanna L; Bilton, Diana; Downey, Damian G

    2018-03-02

    There is much uncertainty as to how fungal disease is diagnosed and characterized in patients with cystic fibrosis (CF). A 19-question anonymous electronic questionnaire was developed and distributed to ascertain current practice in clinical microbiology laboratories providing a fungal laboratory service to CF centres in the UK. Analyses of responses identified the following: (1) current UK laboratory practice, in general, follows the current guidelines, but the scope and diversity of what is currently being delivered by laboratories far exceeds what is detailed in the guidelines; (2) there is a lack of standardization of fungal tests amongst laboratories, outside of the current guidelines; (3) both the UK CF Trust Laboratory Standards for Processing Microbiological Samples from People with Cystic Fibrosis and the US Cumulative Techniques and Procedures in Clinical Microbiology (Cumitech) Guidelines 43 Cystic Fibrosis Microbiology need to be updated to reflect both new methodological innovations, as well as better knowledge of fungal disease pathophysiology in CF; (4) there is a need for clinical medicine to decide upon a stratification strategy for the provision of new fungal assays that will add value to the physician in the optimal management of CF patients; (5) there is also a need to rationale what assays should be performed at local laboratory level and those which are best served at National Mycology Reference Laboratory level; and (6) further research is required in developing laboratory assays, which will help ascertain the clinical importance of 'old' fungal pathogens, as well as 'emerging' fungal pathogens.

  11. How to design a program of clinical biochemistry, for health technicians in clinical laboratory profile taking into account the new teaching approaches?

    Directory of Open Access Journals (Sweden)

    Mercedes Moleiro Hernández

    2007-06-01

    Full Text Available The formation process of the Licentiate in Health Technology of the profile of Clinical Laboratory is based in the mastery of the essential knowledge that, linked with the performance ways, allow him the solution of the professional problems he faces, as part of the health team of his specialty, so that within his teaching curriculum a group of subjects are included which have a special linking with the labor practice that the students carry out, on the base of a new didactic approach, starting from invariants of didactics as science which energize the teaching-learning process, and taking as base structure the didactic unity, which makes possible that the student consolidates his learning, achieving partial objectives, but around a well defined object of learning.

  12. Technology roadmap for development of SiC sensors at plasma processes laboratory

    Directory of Open Access Journals (Sweden)

    Mariana Amorim Fraga

    2010-08-01

    Full Text Available Recognizing the need to consolidate the research and development (R&D activities in microelectronics fields in a strategic manner, the Plasma Processes Laboratory of the Technological Institute of Aeronautics (LPP-ITA has established a technology roadmap to serve as a guide for activities related to development of sensors based on silicon carbide (SiC thin films. These sensors have also potential interest to the aerospace field due to their ability to operate in harsh environment such as high temperatures and intense radiation. In the present paper, this roadmap is described and presented in four main sections: i introduction, ii what we have already done in the past, iii what we are doing in this moment, and iv our targets up to 2015. The critical technological issues were evaluated for different categories: SiC deposition techniques, SiC processing techniques for sensors fabrication and sensors characterization. This roadmap also presents a shared vision of how R&D activities in microelectronics should develop over the next five years in our laboratory.

  13. Yeast identification in routine clinical microbiology laboratory and its clinical relevance

    Directory of Open Access Journals (Sweden)

    S Agarwal

    2011-01-01

    Full Text Available Rapid identification of yeast infections is helpful in prompt appropriate antifungal therapy. In the present study, the usefulness of chromogenic medium, slide culture technique and Vitek2 Compact (V2C has been analysed. A total of 173 clinical isolates of yeast species were included in the study. An algorithm to identify such isolates in routine clinical microbiology laboratory was prepared and followed. Chromogenic medium was able to identify Candida albicans, C. tropicalis, C. krusei, C. parapsilosis and Trichosporon asahii. Chromogenic medium was also helpful in identifying "multi-species" yeast infections. The medium was unable to provide presumptive identification of C. pelliculosa, C. utilis, C. rugosa, C. glabrata and C. hemulonii. Vitek 2 compact (V2C differentiated all pseudohypae non-producing yeast species. The algorithm followed was helpful in timely presumptive identification and final diagnosis of yeast infections, including multi-species yeast infections.

  14. Adult Hematology and Clinical Chemistry Laboratory Reference Ranges in a Zimbabwean Population.

    Science.gov (United States)

    Samaneka, Wadzanai P; Mandozana, Gibson; Tinago, Willard; Nhando, Nehemiah; Mgodi, Nyaradzo M; Bwakura-Dangarembizi, Mutsawashe F; Munjoma, Marshall W; Gomo, Zvenyika A R; Chirenje, Zvavahera M; Hakim, James G

    2016-01-01

    Laboratory reference ranges used for clinical care and clinical trials in various laboratories in Zimbabwe were derived from textbooks and research studies conducted more than ten years ago. Periodic verification of these ranges is essential to track changes over time. The purpose of this study was to establish hematology and chemistry laboratory reference ranges using more rigorous methods. A community-based cross-sectional study was carried out in Harare, Chitungwiza, and Mutoko. A multistage sampling technique was used. Samples were transported from the field for analysis at the ISO15189 certified University of Zimbabwe-University of California San Francisco Central Research Laboratory. Hematology and clinical chemistry reference ranges lower and upper reference limits were estimated at the 2.5th and 97.5th percentiles respectively. A total of 769 adults (54% males) aged 18 to 55 years were included in the analysis. Median age was 28 [IQR: 23-35] years. Males had significantly higher red cell counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin compared to females. Females had higher white cell counts, platelets, absolute neutrophil counts, and absolute lymphocyte counts compared to males. There were no gender differences in eosinophils, monocytes, and absolute basophil count. Males had significantly higher levels of urea, sodium, potassium, calcium, creatinine, amylase, total protein, albumin and liver enzymes levels compared to females. Females had higher cholesterol and lipase compared with males. There are notable differences in the white cell counts, neutrophils, cholesterol, and creatinine kinase when compared with the currently used reference ranges. Data from this study provides new country specific reference ranges which should be immediately adopted for routine clinical care and accurate monitoring of adverse events in research studies.

  15. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R ampersand D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  16. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  17. Preanalytical quality in clinical chemistry laboratory.

    Science.gov (United States)

    Ahmad, M Imteyaz; Ramesh, K L; Kumar, Ravi

    2014-01-01

    Haemolysis is usually caused by inadequate specimen collection or preanalytical handling and is suggested to be a suitable indicator of preanalytical quality. We investigated the prevalence of detectable haemolysis in all routine venous blood samples in OPDs and IPDs to identify differences in preanalytical quality. Haemolysis index (HI) values were obtained from a Vitros 5,1 in the routine clinical chemistry laboratory for samples collected in the outpatient department (OPD) collection centres, a hospital, and inpatient departments (IPD). Haemolysis was defined as a HI > or = 15 (detection limit). Samples from the OPD with the highest prevalence of haemolysis were 6.1 times (95% confidence interval (CI) 4.0 - 9.2) more often haemolysed compared to the center with the lowest prevalence. Of the samples collected in primary health care, 10.4% were haemolysed compared to 31.1% in the IPDs (p = 0.001). A notable difference in haemolysed samples was found between the IPDs section staffed by emergency medicine physicians and the section staffed by primary health care physicians (34.8% vs. 11.3%, p = 0.001). The significant variation in haemolysis indices among the investigated units is likely to reflect varying preanalytical conditions. The HI is a valuable tool for estimation and follow-up of preanalytical quality in the health care laboratory.

  18. Clinical and laboratory evaluation of adrenal dysfunction

    International Nuclear Information System (INIS)

    Ashkar, F.S.; Fishman, L.M.

    1983-01-01

    Because of their special physical and chemical properties, the adrenal secretory products were among the first hormonal substances to be measured by methods other than bioassay. Over the past several years, the development of sensitive and specific methods of hormone assay dependent on the use of radionuclides has revolutionized investigative and clinical endocrinology. While the capacity of defining most abnormalities of adrenal function antedates hormone measurement and adrenal imaging utilizing radioisotopes, the availability of such methods has greatly facilitated and made more precise the diagnostic approach to patients with suspected adrenal dysfunction. As an example of how clinical and laboratory considerations can be integrated into a rational approach to the diagnosis of adrenal disease, the problem of suspected adrenal hyperfunction is analyzed in light of current understanding of its pathophysiology. Reflection demonstrates that suspected primary aldosteronism and adrenal insufficiency are equally amenable to such an approach

  19. The mass spectrometry technology MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time- Of-Flight for a more rapid and economic workflow in the clinical microbiology laboratory

    Directory of Open Access Journals (Sweden)

    Simona Barnini

    2012-12-01

    Full Text Available Introduction: In order to improve the outcome of patients, reduce length of stay, costs and resources engaged in diagnostics, more rapid reports are requested to the clinical microbiologists.The purpose of this study is to assess the impact on workflow of MALDI-TOF technology, recently made available for use in routine diagnostics. Methods:The work list by the management information system is sent to the instrument MALDI-TOF, where are held at least three successive analytic sessions: the first includes bacteria isolated from CSF, blood cultures, and cases already reported as serious/urgent, the second includes all other germs isolated, the third, microorganisms that require extraction with trifluoroacetic acid (TFA or formic acid (FA for identification.The results of each session direct to the execution of different types of susceptibility testing. Results:The times of microbial identifications are reduced by 24 or 48 hours and made available to the clinician for the rational empirical therapy.The reagent costs are reduced by 40%.The subcultures were reduced by 80%, and microscopic examinations by 50%.The antibiotic susceptibility tests were immediately performed with the most appropriate method, based on the knowledge of local epidemiology and microbial species. Conclusion:The bacteriology is the less automated discipline among the clinical laboratory activities and results of diagnostic tests are poorly well-timed. The new interpretative algorithms of MALDI-TOF spectra, now available, allow the correct identification of bacteria in near real time, completely eliminating the wait is necessary for biochemical identification and guiding the operator in selecting the most appropriate antibiotic susceptibility tests. This technology makes work more rapid, economic and efficient, eliminating errors and, together with effective computerization of data, transforms the information content of the microbiological report, making it much more effective

  20. Duplicate laboratory test reduction using a clinical decision support tool.

    Science.gov (United States)

    Procop, Gary W; Yerian, Lisa M; Wyllie, Robert; Harrison, A Marc; Kottke-Marchant, Kandice

    2014-05-01

    Duplicate laboratory tests that are unwarranted increase unnecessary phlebotomy, which contributes to iatrogenic anemia, decreased patient satisfaction, and increased health care costs. We employed a clinical decision support tool (CDST) to block unnecessary duplicate test orders during the computerized physician order entry (CPOE) process. We assessed laboratory cost savings after 2 years and searched for untoward patient events associated with this intervention. This CDST blocked 11,790 unnecessary duplicate test orders in these 2 years, which resulted in a cost savings of $183,586. There were no untoward effects reported associated with this intervention. The movement to CPOE affords real-time interaction between the laboratory and the physician through CDSTs that signal duplicate orders. These interactions save health care dollars and should also increase patient satisfaction and well-being.

  1. A 2-year study of patient safety competency assessment in 29 clinical laboratories.

    Science.gov (United States)

    Reed, Robyn C; Kim, Sara; Farquharson, Kara; Astion, Michael L

    2008-06-01

    Competency assessment is critical for laboratory operations and is mandated by the Clinical Laboratory Improvement Amendments of 1988. However, no previous reports describe methods for assessing competency in patient safety. We developed and implemented a Web-based tool to assess performance of 875 laboratory staff from 29 laboratories in patient safety. Question categories included workplace culture, categorizing error, prioritization of patient safety interventions, strength of specific interventions, and general patient safety concepts. The mean score was 85.0%, with individual scores ranging from 56% to 100% and scores by category from 81.3% to 88.6%. Of the most difficult questions (laboratory technologists. Computer-based competency assessments help laboratories identify topics for continuing education in patient safety.

  2. Accelerator laboratories: development centers for experimental physics and technology in Mexico

    International Nuclear Information System (INIS)

    Mazari, M.

    1989-01-01

    Three years ago in this Nuclear Center the author and Professor Graef expounded the inception and development of experimental physics and new techniques centered about laboratories and equipped in our country with positive ion accelerators. Extracted here is the information on the laboratories that have allowed professional training as well as the furtherance of scientific productivity in each group. An additional proposal as to how the technical groups knowledgeable in advanced technology might contribute significantly to adequate preparation of youth at the intermediate level able to generate innocuous micro industries in their own neighbourhood. (Author). 5 refs, 2 figs, 2 tabs

  3. [AT THE CROSSROADS: THE ROLE OF LABORATORY MEDICINE IN THE PATIENT CARE PROCESS].

    Science.gov (United States)

    Geffen, Yuval; Zaidise, Itzhak

    2017-06-01

    In recent decades, the laboratory medicine profession has undergone significant changes due to both technological developments and economic constraints. Technological innovations support automation, provide faster and more accurate equipment, and allow increased efficiency through the use of commercial test kits. These changes, combined with budgetary constraints, have led to mergers and centralization of medical laboratories to optimize work and cut costs. While this centralization may be a business necessity, it leads to a disconnection between the laboratory and the clinical context. In addition, laboratory tests are treated as a commodity, which places emphasis on price only, rather than quality. In this article, we review the developments and changes that medical laboratories and the laboratory medicine profession have undergone in recent decades. We focus on technological and structural challenges affecting the functioning of medical laboratories and the relations between laboratory workers and medical teams. We then introduce vocational education changes required for the laboratory medicine profession. We propose defining the role of medical laboratory directors in terms of their basic training as medical doctors or doctors of science. We suggest that laboratory employees should become a reliable source of information regarding selection of appropriate test methods, processing data and presenting the results to the medical staff. Laboratory workers must deepen their clinical knowledge and become an integral part of the patient care process, along with medical and nursing staff. Special training programs for medical laboratory workers and directors must be developed in order to match the complex activities currently being conducted in laboratories.

  4. U.S. Ebola Treatment Center Clinical Laboratory Support

    OpenAIRE

    Jelden, Katelyn C.; Iwen, Peter C.; Herstein, Jocelyn J.; Biddinger, Paul D.; Kraft, Colleen S.; Saiman, Lisa; Smith, Philip W.; Hewlett, Angela L.; Gibbs, Shawn G.; Lowe, John J.

    2016-01-01

    Fifty-five hospitals in the United States have been designated Ebola treatment centers (ETCs) by their state and local health authorities. Designated ETCs must have appropriate plans to manage a patient with confirmed Ebola virus disease (EVD) for the full duration of illness and must have these plans assessed through a CDC site visit conducted by an interdisciplinary team of subject matter experts. This study determined the clinical laboratory capabilities of these ETCs. ETCs were electronic...

  5. Multiple myeloma in Nigeria: An insight to the clinical, laboratory ...

    African Journals Online (AJOL)

    ... the clinician to investigate along the lines of MM. Majority of patients have osteolytic lesions on X‑ray and pathological fractures, and benefit from melphalan based combinations in situations where facilities for transplant are not available. Key words: Clinical features, chemotherapy, laboratory features, multiple myeloma, ...

  6. External quality assurance performance of clinical research laboratories in sub-saharan Africa.

    Science.gov (United States)

    Amukele, Timothy K; Michael, Kurt; Hanes, Mary; Miller, Robert E; Jackson, J Brooks

    2012-11-01

    Patient Safety Monitoring in International Laboratories (JHU-SMILE) is a resource at Johns Hopkins University that supports and monitors laboratories in National Institutes of Health-funded international clinical trials. To determine the impact of the JHU-SMILE quality assurance scheme in sub-Saharan African laboratories, we reviewed 40 to 60 months of external quality assurance (EQA) results of the College of American Pathologists (CAP) in these laboratories. We reviewed the performance of 8 analytes: albumin, alanine aminotransferase, creatinine, sodium, WBC, hemoglobin, hematocrit, and the human immunodeficiency virus antibody rapid test. Over the 40- to 60-month observation period, the sub-Saharan laboratories had a 1.63% failure rate, which was 40% lower than the 2011 CAP-wide rate of 2.8%. Seventy-six percent of the observed EQA failures occurred in 4 of the 21 laboratories. These results demonstrate that a system of remote monitoring, feedback, and audits can support quality in low-resource settings, even in places without strong regulatory support for laboratory quality.

  7. Implementation science: the laboratory as a command centre.

    Science.gov (United States)

    Boeras, Debrah I; Nkengasong, John N; Peeling, Rosanna W

    2017-03-01

    Recent advances in point-of-care technologies to ensure universal access to affordable quality-assured diagnostics have the potential to transform patient management, surveillance programmes, and control of infectious diseases. Decentralization of testing can put tremendous stresses on fragile health systems if the laboratory is not involved in the planning, introduction, and scale-up strategies. The impact of investments in novel technologies can only be realized if these tests are evaluated, adopted, and scaled up within the healthcare system with appropriate planning and understanding of the local contexts in which these technologies will be used. In this digital age, the laboratory needs to take on the role of the Command Centre for technology introduction and implementation. Implementation science is needed to understand the political, cultural, economic, and behavioural context for technology introduction. The new paradigm should include: building a comprehensive system of laboratories and point-of-care testing sites to provide quality-assured diagnostic services with good laboratory-clinic interface to build trust in test results and linkage to care; building and coordinating a comprehensive national surveillance and communication system for disease control and global health emergencies; conducting research to monitor the impact of new tools and interventions on improving patient care.

  8. NONTUBERCULOUS MYCOBACTERIOSES: EPIDEMIOLOGY, CLINIC AND POSSIBILITIES OF LABORATORY DIAGNOSTICS IN MODERN CONDITIONS

    Directory of Open Access Journals (Sweden)

    Shevchenko OS

    2017-03-01

    Mycobacterium avium complex. Conclusions. In Kharkiv region there is an increase of non-tuberculous mycobacterioses, but their diagnostics is difficult due to the lack of diagnostic capabilities: it is impossible to perform CT examination in all patients, no possibility of reliable identification of the type of pathogen (no DNA strip technology, tablet technology, DNA sequencing, high-performance liquid chromatography. Among the identified cases of mycobacterioses prevailed chromogenic slow-growing NTMB. Clinical and radiographic pattern was characterized by severe thoracic (cough, shortness of breath and intoxication (fever, weight loss, weakness complaints and extensive lesions of pulmonary system. Also in this group was often found detectable by smear bacterial excretion, including massive one. It was noted that often mycobacterioses developed on the background of existing pulmonary disease. Failure to conduct complete laboratory diagnostics, identification of pathogen and determination of its individual sensitivity to drugs significantly complicates prescribing of adequate chemotherapy regimens. In this regard, we consider a priority the development of standards for diagnosis and treatment of non-tuberculous mycobacterioses and further strengthening the capacity of laboratory diagnostics.

  9. Utility of repeat testing of critical values: a Q-probes analysis of 86 clinical laboratories.

    Science.gov (United States)

    Lehman, Christopher M; Howanitz, Peter J; Souers, Rhona; Karcher, Donald S

    2014-06-01

    A common laboratory practice is to repeat critical values before reporting the test results to the clinical care provider. This may be an unnecessary step that delays the reporting of critical test results without adding value to the accuracy of the test result. To determine the proportions of repeated chemistry and hematology critical values that differ significantly from the original value as defined by the participating laboratory, to determine the threshold differences defined by the laboratory as clinically significant, and to determine the additional time required to analyze the repeat test. Participants prospectively reviewed critical test results for 4 laboratory tests: glucose, potassium, white blood cell count, and platelet count. Participants reported the following information: initial and repeated test result; time initial and repeat results were first known to laboratory staff; critical result notification time; if the repeat result was still a critical result; if the repeat result was significantly different from the initial result, as judged by the laboratory professional or policy; significant difference threshold, as defined by the laboratory; the make and model of the instrument used for primary and repeat testing. Routine, repeat analysis of critical values is a common practice. Most laboratories did not formally define a significant difference between repeat results. Repeated results were rarely considered significantly different. Median repeated times were at least 17 to 21 minutes for 10% of laboratories. Twenty percent of laboratories reported at least 1 incident in the last calendar year of delayed result reporting that clinicians indicated had adversely affected patient care. Routine repeat analysis of automated chemistry and hematology critical values is unlikely to be clinically useful and may adversely affect patient care.

  10. Clinical characteristics of biopsy-proven allergic bronchopulmonary mycosis: variety in causative fungi and laboratory findings.

    Science.gov (United States)

    Ishiguro, Takashi; Takayanagi, Noboru; Kagiyama, Naho; Shimizu, Yoshihiko; Yanagisawa, Tsutomu; Sugita, Yutaka

    2014-01-01

    The diagnosis of allergic bronchopulmonary mycosis (ABPM) has traditionally relied widely on Rosenberg's criteria, which emphasize immunologic responses while overlooking the investigation of mucous plugs as a primary criterion. Therefore, the characteristics of biopsy-proven ABPM require further elucidation. The aim of this study was to analyze the clinical characteristics of biopsy-proven ABPM and address whether full compliance with clinical criteria, such as the presence of asthma, and certain laboratory findings is necessary to establish a diagnosis of ABPM. We retrospectively analyzed 17 patients with biopsy-proven ABPM focusing on causative fungi and laboratory findings. Causative fungi included Aspergillus sp. in seven patients, Schizophyllum commune in four patients, Penicillium sp. in two patients and unknown in five patients. Bronchial asthma was observed in 10 patients, eosinophilia was observed in 10 patients and an increased serum immunoglobulin (Ig) E level was observed in 14 of the 17 patients. IgG for Aspergillus sp. was positive in six of the seven patients with ABPM due to Aspergillus and turned positive in the remaining patient during follow-up. Technological limitations prevented the measurement of specific IgE for S. commune and IgG for S. commune and Penicillium sp. in most patients. Computed tomography revealed central bronchiectasis, pulmonary infiltration and mucous plugs in all patients. Causative fungi other than Aspergillus sp. are not uncommon, and immunological tests for other fungi should be popularized. Asthma and characteristic laboratory findings, such as peripheral blood eosinophilia, increased serum IgE and precipitating antibodies, may not always be required to diagnose ABPM. The importance of typical pathologic findings of mucous plugs for diagnosing ABPM requires reevaluation. Further studies are needed to establish more elaborate diagnostic criteria for ABPM.

  11. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: guide to the Register, version 3-2010.

    LENUS (Irish Health Repository)

    McMurray, Janet

    2010-07-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 12 years, more than 2200 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Forum of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). Two previous Guides to the Register have been published, one in 1997 and another in 2003. The third version of the Guide is presented in this article and is based on the experience gained and development of the profession since the last revision. Registration is valid for 5 years and the procedure and criteria for re-registration are presented as an Appendix at the end of the article.

  12. Addressing the key communication barriers between microbiology laboratories and clinical units: a qualitative study.

    Science.gov (United States)

    Skodvin, Brita; Aase, Karina; Brekken, Anita Løvås; Charani, Esmita; Lindemann, Paul Christoffer; Smith, Ingrid

    2017-09-01

    Many countries are on the brink of establishing antibiotic stewardship programmes in hospitals nationwide. In a previous study we found that communication between microbiology laboratories and clinical units is a barrier to implementing efficient antibiotic stewardship programmes in Norway. We have now addressed the key communication barriers between microbiology laboratories and clinical units from a laboratory point of view. Qualitative semi-structured interviews were conducted with 18 employees (managers, doctors and technicians) from six diverse Norwegian microbiological laboratories, representing all four regional health authorities. Interviews were recorded and transcribed verbatim. Thematic analysis was applied, identifying emergent themes, subthemes and corresponding descriptions. The main barrier to communication is disruption involving specimen logistics, information on request forms, verbal reporting of test results and information transfer between poorly integrated IT systems. Furthermore, communication is challenged by lack of insight into each other's area of expertise and limited provision of laboratory services, leading to prolonged turnaround time, limited advisory services and restricted opening hours. Communication between microbiology laboratories and clinical units can be improved by a review of testing processes, educational programmes to increase insights into the other's area of expertise, an evaluation of work tasks and expansion of rapid and point-of-care test services. Antibiotic stewardship programmes may serve as a valuable framework to establish these measures. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  13. 75 FR 60091 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2010-09-29

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and... project; correction. SUMMARY: On September 9, 2010 (75 FR 55199), DoD published a notice concerning the...

  14. 76 FR 67154 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Program

    Science.gov (United States)

    2011-10-31

    ... to eight legacy Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration (demo) Project Plans resulting from section 1107(c) of the National Defense Authorization Act... flexibilities, modifying demo project plans, or executing Federal Register Notices has identified some areas for...

  15. Choosing the right laboratory: a review of clinical and forensic toxicology services for urine drug testing in pain management.

    Science.gov (United States)

    Reisfield, Gary M; Goldberger, Bruce A; Bertholf, Roger L

    2015-01-01

    Urine drug testing (UDT) services are provided by a variety of clinical, forensic, and reference/specialty laboratories. These UDT services differ based on the principal activity of the laboratory. Clinical laboratories provide testing primarily focused on medical care (eg, emergency care, inpatients, and outpatient clinics), whereas forensic laboratories perform toxicology tests related to postmortem and criminal investigations, and drug-free workplace programs. Some laboratories now provide UDT specifically designed for monitoring patients on chronic opioid therapy. Accreditation programs for clinical laboratories have existed for nearly half a century, and a federal certification program for drug-testing laboratories was established in the 1980s. Standards of practice for forensic toxicology services other than workplace drug testing have been established in recent years. However, no accreditation program currently exists for UDT in pain management, and this review considers several aspects of laboratory accreditation and certification relevant to toxicology services, with the intention to provide guidance to clinicians in their selection of the appropriate laboratory for UDT surveillance of their patients on opioid therapy.

  16. Exploratory analyses of the association of MRI with clinical, laboratory and radiographic findings in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Emery, Paul; van der Heijde, Désirée; Østergaard, Mikkel

    2011-01-01

    Evaluate relationships between MRI and clinical/laboratory/radiographic findings in rheumatoid arthritis (RA).......Evaluate relationships between MRI and clinical/laboratory/radiographic findings in rheumatoid arthritis (RA)....

  17. Adult Hematology and Clinical Chemistry Laboratory Reference Ranges in a Zimbabwean Population.

    Directory of Open Access Journals (Sweden)

    Wadzanai P Samaneka

    Full Text Available Laboratory reference ranges used for clinical care and clinical trials in various laboratories in Zimbabwe were derived from textbooks and research studies conducted more than ten years ago. Periodic verification of these ranges is essential to track changes over time. The purpose of this study was to establish hematology and chemistry laboratory reference ranges using more rigorous methods.A community-based cross-sectional study was carried out in Harare, Chitungwiza, and Mutoko. A multistage sampling technique was used. Samples were transported from the field for analysis at the ISO15189 certified University of Zimbabwe-University of California San Francisco Central Research Laboratory. Hematology and clinical chemistry reference ranges lower and upper reference limits were estimated at the 2.5th and 97.5th percentiles respectively.A total of 769 adults (54% males aged 18 to 55 years were included in the analysis. Median age was 28 [IQR: 23-35] years. Males had significantly higher red cell counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin compared to females. Females had higher white cell counts, platelets, absolute neutrophil counts, and absolute lymphocyte counts compared to males. There were no gender differences in eosinophils, monocytes, and absolute basophil count. Males had significantly higher levels of urea, sodium, potassium, calcium, creatinine, amylase, total protein, albumin and liver enzymes levels compared to females. Females had higher cholesterol and lipase compared with males. There are notable differences in the white cell counts, neutrophils, cholesterol, and creatinine kinase when compared with the currently used reference ranges.Data from this study provides new country specific reference ranges which should be immediately adopted for routine clinical care and accurate monitoring of adverse events in research studies.

  18. Detection of intestinal protozoa in the clinical laboratory.

    Science.gov (United States)

    McHardy, Ian H; Wu, Max; Shimizu-Cohen, Robyn; Couturier, Marc Roger; Humphries, Romney M

    2014-03-01

    Despite recent advances in diagnostic technology, microscopic examination of stool specimens remains central to the diagnosis of most pathogenic intestinal protozoa. Microscopy is, however, labor-intensive and requires a skilled technologist. New, highly sensitive diagnostic methods have been developed for protozoa endemic to developed countries, including Giardia lamblia (syn. G. intestinalis/G. duodenalis) and Cryptosporidium spp., using technologies that, if expanded, could effectively complement or even replace microscopic approaches. To date, the scope of such novel technologies is limited and may not include common protozoa such as Dientamoeba fragilis, Entamoeba histolytica, or Cyclospora cayetanensis. This minireview describes canonical approaches for the detection of pathogenic intestinal protozoa, while highlighting recent developments and FDA-approved tools for clinical diagnosis of common intestinal protozoa.

  19. IT capabilities for the realization of the laboratory without walls.

    OpenAIRE

    Covvey, H. D.

    1996-01-01

    This article presents the factors that are driving the restructuring of laboratory services and the information technology capabilities that are necessary to support the regionalized laboratory services organization. The overall need is for a trans-entity laboratory information system with point of care ordering and results reporting and enterprise-wide specimen transportation and tracking, that is interfaced with other information resources required for clinical decision-making, and patient ...

  20. Comparison of clinical associations and laboratory abnormalities in children with moderate and severe dehydration.

    Science.gov (United States)

    Hayajneh, Wail A; Jdaitawi, Hussein; Al Shurman, Abdullah; Hayajneh, Yaseen A

    2010-03-01

    To search for possible early clinical associations and laboratory abnormalities in children with severe dehydration in northern Jordan. We prospectively evaluated 251 children with acute gastroenteritis. Dehydration assessment was done following a known clinical scheme. Probable clinical associations and laboratory abnormalities were examined against the preassigned dehydration status. Children with severe dehydration had significantly more hypernatremia and hyperkalemia, less isonatremia, and higher mean levels of urea, creatinine, and glucose (P dehydration. Historic clinical characteristics of patients did not correlate to dehydration degree. Serum urea, creatinine, sodium, potassium, and glucose were useful independently in augmenting clinical examination to diagnose the degree of dehydration status among children presenting with gastroenteritis. Serum urea performed the best among all. On the contrary, none of the examined historical clinical patterns could be correlated to the dehydration status. Larger and multicenter studies are needed to validate our results and to examine their impact on final outcomes.

  1. Application of virtual reality technology in clinical medicine.

    Science.gov (United States)

    Li, Lan; Yu, Fei; Shi, Dongquan; Shi, Jianping; Tian, Zongjun; Yang, Jiquan; Wang, Xingsong; Jiang, Qing

    2017-01-01

    The present review discusses the application of virtual reality (VR) technology in clinical medicine, especially in surgical training, pain management and therapeutic treatment of mental illness. We introduce the common types of VR simulators and their operational principles in aforementioned fields. The clinical effects are also discussed. In almost every study that dealt with VR simulators, researchers have arrived at the same conclusion that both doctors and patients could benefit from this novel technology. Moreover, advantages and disadvantages of the utilization of VR technology in each field were discussed, and the future research directions were proposed.

  2. Establishing Ebola Virus Disease (EVD diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening.

    Directory of Open Access Journals (Sweden)

    Philomena Raftery

    2018-01-01

    Full Text Available The 2014-16 Ebola Virus Disease (EVD outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH, World Health Organization (WHO and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64-100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running

  3. Establishing Ebola Virus Disease (EVD) diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening.

    Science.gov (United States)

    Raftery, Philomena; Condell, Orla; Wasunna, Christine; Kpaka, Jonathan; Zwizwai, Ruth; Nuha, Mahmood; Fallah, Mosoka; Freeman, Maxwell; Harris, Victoria; Miller, Mark; Baller, April; Massaquoi, Moses; Katawera, Victoria; Saindon, John; Bemah, Philip; Hamblion, Esther; Castle, Evelyn; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert

    2018-01-01

    The 2014-16 Ebola Virus Disease (EVD) outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH), World Health Organization (WHO) and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64-100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running costs and can be

  4. Establishing Ebola Virus Disease (EVD) diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening

    Science.gov (United States)

    Condell, Orla; Wasunna, Christine; Kpaka, Jonathan; Zwizwai, Ruth; Nuha, Mahmood; Fallah, Mosoka; Freeman, Maxwell; Harris, Victoria; Miller, Mark; Baller, April; Massaquoi, Moses; Katawera, Victoria; Saindon, John; Bemah, Philip; Hamblion, Esther; Castle, Evelyn; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert

    2018-01-01

    The 2014–16 Ebola Virus Disease (EVD) outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH), World Health Organization (WHO) and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64–100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running costs and can

  5. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis.

    Science.gov (United States)

    Liu, Xuan; Jiang, Hui

    2017-12-04

    Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.

  6. Evaluation of clinical, laboratory and morphologic prognostic factors in colon cancer

    Science.gov (United States)

    Grande, Michele; Milito, Giovanni; Attinà, Grazia Maria; Cadeddu, Federica; Muzi, Marco Gallinella; Nigro, Casimiro; Rulli, Francesco; Farinon, Attilio Maria

    2008-01-01

    Background The long-term prognosis of patients with colon cancer is dependent on many factors. To investigate the influence of a series of clinical, laboratory and morphological variables on prognosis of colon carcinoma we conducted a retrospective analysis of our data. Methods Ninety-two patients with colon cancer, who underwent surgical resection between January 1999 and December 2001, were analyzed. On survival analysis, demographics, clinical, laboratory and pathomorphological parameters were tested for their potential prognostic value. Furthermore, univariate and multivariate analysis of the above mentioned data were performed considering the depth of tumour invasion into the bowel wall as independent variable. Results On survival analysis we found that depth of tumour invasion (P anismus, hematocrit, WBC count, fibrinogen value and CT scanning were significantly related to the degree of mural invasion of the cancer. On the multivariate analysis, fibrinogen value was the most statistically significant variable (P < 0.001) with the highest F-ratio (F-ratio 5.86). Finally, in the present study, the tumour site was significantly related neither to the survival nor to the mural invasion of the tumour. Conclusion The various clinical, laboratory and patho-morphological parameters showed different prognostic value for colon carcinoma. In the future, preoperative prognostic markers will probably gain relevance in order to make a proper choice between surgery, chemotherapy and radiotherapy. Nevertheless, current data do not provide sufficient evidence for preoperative stratification of high and low risk patients. Further assessments in prospective large studies are warranted. PMID:18778464

  7. Workshop on body composition in basic and clinical research and the emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.

    2000-12-14

    A special one-day workshop was held to review the status, the need for, and the future role of BNL in the Body Composition Analysis Program (BCAP). Two speakers succinctly outlined the status and future new developments using gamma nuclear resonance technology as it applies to BCAP. Seven speakers from three institutions outlined the continued need for BCAP and presented new clinical applications of BCAP in theirs respective fields of expertise. Extensive increase in the use of surrogate instrumentation, e.g., DXA and BIA, in BCAP was recognized as a significant contributing factor to the growth in BCAP. The growing role of MRI in BCAP was also emphasized. In light of these developments BCAP at BNL, with its specialized In Vivo Neutron Activation (IVNA) facilities, was recognized as a unique user oriented resource that may serve the community hospitals in the area. Three regional large institutions expressed their desire to use these facilities. In addition, IVNA provides direct measure of the human compartments in vivo, thus providing a gold standard for the surrogate methodologies that are in use or to be developed. It was strongly felt that there is a need for a calibration center with a national stature for the different methodologies for in vivo measurements, a role that befits very well a national laboratory. This offers an exquisite justification for DOE to support this orphan technology and to develop BCAP at BNL to, 1, provide a user oriented regional resource, 2, provide a national reference laboratory, and 3, develop new advanced technologies for BCAP.

  8. Communication and computing technology in biocontainment laboratories using the NEIDL as a model.

    Science.gov (United States)

    McCall, John; Hardcastle, Kath

    2014-07-01

    The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, is a globally unique biocontainment research facility housing biosafety level 2 (BSL-2), BSL-3, and BSL-4 laboratories. Located in the BioSquare area at the University's Medical Campus, it is part of a national network of secure facilities constructed to study infectious diseases of major public health concern. The NEIDL allows for basic, translational, and clinical phases of research to be carried out in a single facility with the overall goal of accelerating understanding, treatment, and prevention of infectious diseases. The NEIDL will also act as a center of excellence providing training and education in all aspects of biocontainment research. Within every detail of NEIDL operations is a primary emphasis on safety and security. The ultramodern NEIDL has required a new approach to communications technology solutions in order to ensure safety and security and meet the needs of investigators working in this complex building. This article discusses the implementation of secure wireless networks and private cloud computing to promote operational efficiency, biosecurity, and biosafety with additional energy-saving advantages. The utilization of a dedicated data center, virtualized servers, virtualized desktop integration, multichannel secure wireless networks, and a NEIDL-dedicated Voice over Internet Protocol (VoIP) network are all discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Science.gov (United States)

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  10. Clinical manifestations and laboratory findings of 496 children with brucellosis in Van, Turkey.

    Science.gov (United States)

    Parlak, Mehmet; Akbayram, Sinan; Doğan, Murat; Tuncer, Oğuz; Bayram, Yasemin; Ceylan, Nesrin; Özlük, Suat; Akbayram, Hatice Tuba; Öner, Abdurrahman

    2015-08-01

    Brucellosis is the most common zoonotic disease worldwide and remains an important human disease especially in developing countries. The aim of the present study was to evaluate clinical manifestations and laboratory findings of childhood brucellosis in Van province of Eastern Turkey. To our knowledge, this is the largest series of childhood brucellosis reported in the literature. In this retrospective study, 496 children with brucellosis were assessed for the clinical manifestations and laboratory findings from July 2009 through December 2013. The diagnosis of brucellosis was based on clinical findings and a standard tube agglutination test (titer ≥ 1:160). Data were analyzed using Minitab version 16. The study included 496 children (boys, 60.5%) with a mean age of 10.0 ± 3.95 years (range, 1-16 years). The most frequent clinical symptoms were arthralgia (46.2%), fever (32.1%), and abdominal pain (17.1%) and the most common clinical signs were peripheral arthritis (10.1%), splenomegaly (2.2%) and hepatomegaly (1.8%). The most contagious seasons were summer and autumn (63.3%). Elevated lactate dehydrogenase and C-reactive protein and erythrocyte sedimentation rate were reported in 63.1%, 58.7%, and 55.2% of the patients, respectively. Anemia (20.4%), thrombocytopenia (15.5%), and leukopenia (12.1%) were the most common hematologic findings. Brucellosis remains a serious public health problem in Turkey. The clinical and laboratory characteristics of childhood brucellosis have been described in order to assist clinicians in diagnosing and monitoring the disease. © 2015 Japan Pediatric Society.

  11. Integration of tablet technologies in the e-laboratory of cytology: a health technology assessment.

    Science.gov (United States)

    Giansanti, Daniele; Pochini, Marco; Giovagnoli, Maria Rosaria

    2014-10-01

    Although tablet systems are becoming a powerful technology, particularly useful in every application of medical imaging, to date no one has investigated the acceptance and performance of this technology in digital cytology. The specific aims of the work were (1) to design a health technology assessment (HTA) tool to assess, in terms of performance and acceptance, the introduction of tablet technologies (wearable, portable, and non portable) in the e-laboratories of cytology and (2) to test the tool in a first significant application of digital cytology. An HTA tool was proposed operating on a domain of five dimensions of investigation comprising the basic information of the product of digital cytology, the perceived subjective quality of images, the assessment of the virtual navigation on the e-slide, the assessment of the information and communication technologies features, and the diagnostic power. Six e-slides regarding studies of cervicovaginal cytology digitalized by means of an Aperio ( www.aperio.com ) scanner and uploaded onto the www.digitalslide.it Web site were used for testing the methodology on three different network connections. Three experts of cytology successfully tested the methodology on seven tablets found suitable for the study in their own standard configuration. Specific indexes furnished by the tool indicated both a high degree of performance and subjective acceptance of the investigated technology. The HTA tool thus could be useful to investigate new tablet technologies in digital cytology and furnish stakeholders with useful information that may help them make decisions involving the healthcare system. From a global point of view the study demonstrates the feasibility of using the tablet technology in digital cytology.

  12. Clinical utility of RapidArc™ radiotherapy technology

    International Nuclear Information System (INIS)

    Infusino, Erminia

    2015-01-01

    RapidArc™ is a radiation technique that delivers highly conformal dose distributions through the complete rotation (360°) and speed variation of the linear accelerator gantry. This technique, called volumetric modulated arc therapy (VMAT), compared with conventional radiotherapy techniques, can achieve high-target volume coverage and sparing damage to normal tissues. RapidArc delivers precise dose distribution and conformity similar to or greater than intensity-modulated radiation therapy in a short time, generally a few minutes, to which image-guided radiation therapy is added. RapidArc has become a currently used technology in many centers, which use RapidArc technology to treat a large number of patients. Large and small hospitals use it to treat the most challenging cases, but more and more frequently for the most common cancers. The clinical use of RapidArc and VMAT technology is constantly growing. At present, a limited number of clinical data are published, mostly concerning planning and feasibility studies. Clinical outcome data are increasing for a few tumor sites, even if only a little. The purpose of this work is to discuss the current status of VMAT techniques in clinical use through a review of the published data of planning systems and clinical outcomes in several tumor sites. The study consisted of a systematic review based on analysis of manuscripts retrieved from the PubMed, BioMed Central, and Scopus databases by searching for the keywords “RapidArc”, “Volumetric modulated arc radiotherapy”, and “Intensity-modulated radiotherapy”

  13. Strategies for laboratory cost containment and for pathologist shortage: centralised pathology laboratories with microwave-stimulated histoprocessing and telepathology.

    Science.gov (United States)

    Leong, Anthony S Y; Leong, F Joel W M

    2005-02-01

    The imposition of laboratory cost containment, often from external forces, dictates the necessity to develop strategies to meet laboratory cost savings. In addition, the national and worldwide shortage of anatomical pathologists makes it imperative to examine our current practice and laboratory set-ups. Some of the strategies employed in other areas of pathology and laboratory medicine include improvements in staff productivity and the adoption of technological developments that reduce manual intervention. However, such opportunities in anatomical pathology are few and far between. Centralisation has been an effective approach in bringing economies of scale, the adoption of 'best practices' and the consolidation of pathologists, but this has not been possible in anatomical pathology because conventional histoprocessing takes a minimum of 14 hours and clinical turnaround time requirements necessitate that the laboratory and pathologist be in proximity and on site. While centralisation of laboratories for clinical chemistry, haematology and even microbiology has been successful in Australia and other countries, the essential requirements for anatomical pathology laboratories are different. In addition to efficient synchronised courier networks, a method of ultra-rapid tissue processing and some expedient system of returning the prepared tissue sections to the remote laboratory are essential to maintain the turnaround times mandatory for optimal clinical management. The advent of microwave-stimulated tissue processing that can be completed in 30-60 minutes and the immediate availability of compressed digital images of entire tissue sections via telepathology completes the final components of the equation necessary for making centralised anatomical pathology laboratories a reality.

  14. The impact of automation on organizational changes in a community hospital clinical microbiology laboratory.

    Science.gov (United States)

    Camporese, Alessandro

    2004-06-01

    The diagnosis of infectious diseases and the role of the microbiology laboratory are currently undergoing a process of change. The need for overall efficiency in providing results is now given the same importance as accuracy. This means that laboratories must be able to produce quality results in less time with the capacity to interpret the results clinically. To improve the clinical impact of microbiology results, the new challenge facing the microbiologist has become one of process management instead of pure analysis. A proper project management process designed to improve workflow, reduce analytical time, and provide the same high quality results without losing valuable time treating the patient, has become essential. Our objective was to study the impact of introducing automation and computerization into the microbiology laboratory, and the reorganization of the laboratory workflow, i.e. scheduling personnel to work shifts covering both the entire day and the entire week. In our laboratory, the introduction of automation and computerization, as well as the reorganization of personnel, thus the workflow itself, has resulted in an improvement in response time and greater efficiency in diagnostic procedures.

  15. [Effectiveness assessment of public clinical laboratories: the case of Belo Horizonte, Minas Gerais State].

    Science.gov (United States)

    Sancho, Leyla Gomes; Vargens, José Muniz da Costa; Sancho, Rafael Gomes

    2011-01-01

    The organization of public clinical laboratories is experiencing changes without, however, an organizational assessment of its effectiveness. The study aimed to determine a parameter of effectiveness for public clinical laboratories of Belo Horizonte, Minas Gerais State, and set cut-off points for the sections of these laboratories. In order to do so, the total production and number of hours worked during a period of 7 months in the year 2008 were consolidated. Due to the entrance of the workers in the mode of production in the laboratories network, it could be observed a variability regarding the performance of these workers. The effectiveness parameter of the network was established in 29.90 tests per hour. As a consequence of this first analysis, the cut-off points are: 15.50 for the hematology section; 67.29 for chemistry; 6.45 for parasitology; 11.35 for urinalysis; 4.94 for microbiology and 19.03 for immunology. From these results, it was concluded that the working process in laboratories can generate a decrease in effectiveness.

  16. MODERN CLINICAL AND LABORATORY FEATURES OF ENTEROVIRAL MENINGITIS

    Directory of Open Access Journals (Sweden)

    O. V. Usacheva

    2014-04-01

    Full Text Available Among numerous viral meningitises from 80% to 90% of cases are accounted for meningitis of enteroviral etiology according to the international data. Despite the favorable disease course, there are forms which are characterized by severe damage of CNS. In order to improve diagnostics of enteroviral meningitis in this article we have made a comparative analysis of clinical and laboratory parameters in 23 patients with enteroviral meningitis and 18 patients with serous meningitis of non-enteroviral etiology. Anamnesis data and the major clinical manifestations of the disease dynamics were analyzed. Particular attention is paid to the comparison of diagnoses, by which patients were sent to infectious hospital, the symptoms that occurred during patients’ admission into hospitals and their severity. The presence and severity of meningeal symptoms and the indices of cerebrospinal fluid in the patients of the comparison group were analyzed in detail. It is shown that enteroviruses are the important factor in the development of meningitis in the children of younger age. The clinical picture of enteroviral meningitis often develops gradually for 2-3 days and includes the typical syndromes: intoxication and meningeal ones. Every third patient with enterovirus infection has diarrhea and catarrhal symptoms, that’s why it is difficult to diagnose meningitis in its early stages, but it allows to assume enteroviral etiology of the disease. The meningitis of enteroviral etiology is characterized by multiple meningeal signs, while the non-enteroviral meningitis is characterized by dissociation with the prevalence of the of Kernig’s and Brudzinski’s symptoms. The analysis of the laboratory data showed that the enteroviral meningitis is characterized by low (over 50-100 cells "mixed" pleocytosis (the ratio of lymphocytes and neutrophils is about 1:1. These data can be used for differential diagnosis between enteroviral meningitis and serous meningitis of

  17. QUALITY MANAGEMENT SYSTEM IN CLINICAL LABORATORIES ACCORDING TO THE ISO 15189:2007 STANDARD - EVALUATION OF THE BENEFITS OF IMPLEMENTATION IN AN ASSISTED REPRODUCTION LABORATORY

    Directory of Open Access Journals (Sweden)

    A.D. Sialakouma

    2011-03-01

    Full Text Available Biomedical science is a sensitive discipline and presents unique challenges due to its social character, continuous development and competitiveness. The issue of quality management systems and accreditation is gaining increasing interest in this sector. All over Europe, Health Services Units have started to introduce quality management systems and harmonization of criteria for accreditation is of increasing importance. Moreover, clinical laboratories, like the Assisted Reproduction laboratories and biochemical laboratories are required to apply a Quality Management System in order to ensure their correct, scientific and effective operation. Ultimately, it is a moral obligation for every health care organisation to supply the best possible care for the patient. The specific features and the diversity of clinical laboratories led to the introduction (2003 and, recently to the revision (2007 of the international standard ISO 15189, which is the first international standard developed specifically to address the requirements for accreditation of this type of laboratory. The basic principles for the quality assurance in the clinical laboratories are: x Complete and unambiguous standardized operating procedures. x Complete and unambiguous directives of operation. x Obligatory detailed written documentation, i.e., how each action is done, who will do it, where will this action take place and when. x Suitable scheduling of calibration/control/preventive maintenance of laboratory equipment and recording of each activity. x Distribution of responsibilities among the staff and continuous education and briefing according to current scientific data. x Complete and informed record file keeping. x Continuous improvement which is monitored with the adoption of quantified indicators. x Internal and external audit of all activities. x Troubleshooting. All these principles should be supported by the Management in order that the necessary adaptations should be made

  18. Push technology at Argonne National Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Noel, R. E.; Woell, Y. N.

    1999-04-06

    Selective dissemination of information (SDI) services, also referred to as current awareness searches, are usually provided by periodically running computer programs (personal profiles) against a cumulative database or databases. This concept of pushing relevant content to users has long been integral to librarianship. Librarians traditionally turned to information companies to implement these searches for their users in business, academia, and the science community. This paper describes how a push technology was implemented on a large scale for scientists and engineers at Argonne National Laboratory, explains some of the challenges to designers/maintainers, and identifies the positive effects that SDI seems to be having on users. Argonne purchases the Institute for Scientific Information (ISI) Current Contents data (all subject areas except Humanities), and scientists no longer need to turn to outside companies for reliable SDI service. Argonne's database and its customized services are known as ACCESS (Argonne-University of Chicago Current Contents Electronic Search Service).

  19. Quality management and accreditation in a mixed research and clinical hair testing analytical laboratory setting-a review.

    Science.gov (United States)

    Fulga, Netta

    2013-06-01

    Quality management and accreditation in the analytical laboratory setting are developing rapidly and becoming the standard worldwide. Quality management refers to all the activities used by organizations to ensure product or service consistency. Accreditation is a formal recognition by an authoritative regulatory body that a laboratory is competent to perform examinations and report results. The Motherisk Drug Testing Laboratory is licensed to operate at the Hospital for Sick Children in Toronto, Ontario. The laboratory performs toxicology tests of hair and meconium samples for research and clinical purposes. Most of the samples are involved in a chain of custody cases. Establishing a quality management system and achieving accreditation became mandatory by legislation for all Ontario clinical laboratories since 2003. The Ontario Laboratory Accreditation program is based on International Organization for Standardization 15189-Medical laboratories-Particular requirements for quality and competence, an international standard that has been adopted as a national standard in Canada. The implementation of a quality management system involves management commitment, planning and staff education, documentation of the system, validation of processes, and assessment against the requirements. The maintenance of a quality management system requires control and monitoring of the entire laboratory path of workflow. The process of transformation of a research/clinical laboratory into an accredited laboratory, and the benefits of maintaining an effective quality management system, are presented in this article.

  20. Liquid Chromatography-Tandem Mass Spectrometry: An Emerging Technology in the Toxicology Laboratory.

    Science.gov (United States)

    Zhang, Yan Victoria; Wei, Bin; Zhu, Yu; Zhang, Yanhua; Bluth, Martin H

    2016-12-01

    In the last decade, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in routine toxicology laboratories. LC-MS/MS offers significant advantages over other traditional testing, such as immunoassay and gas chromatography-mass spectrometry methodologies. Major strengths of LC-MS/MS include improvement in specificity, flexibility, and sample throughput when compared with other technologies. Here, the basic principles of LC-MS/MS technology are reviewed, followed by advantages and disadvantages of this technology compared with other traditional techniques. In addition, toxicology applications of LC-MS/MS for simultaneous detection of large panels of analytes are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. [Impact of digital technology on clinical practices: perspectives from surgery].

    Science.gov (United States)

    Zhang, Y; Liu, X J

    2016-04-09

    Digital medical technologies or computer aided medical procedures, refer to imaging, 3D reconstruction, virtual design, 3D printing, navigation guided surgery and robotic assisted surgery techniques. These techniques are integrated into conventional surgical procedures to create new clinical protocols that are known as "digital surgical techniques". Conventional health care is characterized by subjective experiences, while digital medical technologies bring quantifiable information, transferable data, repeatable methods and predictable outcomes into clinical practices. Being integrated into clinical practice, digital techniques facilitate surgical care by improving outcomes and reducing risks. Digital techniques are becoming increasingly popular in trauma surgery, orthopedics, neurosurgery, plastic and reconstructive surgery, imaging and anatomic sciences. Robotic assisted surgery is also evolving and being applied in general surgery, cardiovascular surgery and orthopedic surgery. Rapid development of digital medical technologies is changing healthcare and clinical practices. It is therefore important for all clinicians to purposefully adapt to these technologies and improve their clinical outcomes.

  2. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  3. Emerging and Disruptive Technologies

    OpenAIRE

    Kricka, Larry J.

    2016-01-01

    Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home test...

  4. AstraZeneca and Covance Laboratories Clinical Bioanalysis Alliance: an evolutionary outsourcing model.

    Science.gov (United States)

    Arfvidsson, Cecilia; Severin, Paul; Holmes, Victoria; Mitchell, Richard; Bailey, Christopher; Cape, Stephanie; Li, Yan; Harter, Tammy

    2017-08-01

    The AstraZeneca and Covance Laboratories Clinical Bioanalysis Alliance (CBioA) was launched in 2011 after a period of global economic recession. In this challenging environment, AstraZeneca elected to move to a full and centralized outsourcing model that could optimize the number of people supporting bioanalytical work and reduce the analytical cost. This paper describes the key aspects of CBioA, the innovative operational model implemented, and our ways of ensuring this was much more than simply a cost reduction exercise. As we have recently passed the first 5-year cycle, this paper also summarizes some of the concluding benefits, wins and lessons learned, and how we now plan to extend and develop the relationship even further moving into a new clinical laboratory partnership.

  5. Avanços tecnológicos em hematologia laboratorial Technological advances in laboratorial haematology

    Directory of Open Access Journals (Sweden)

    Paulo C. Naoum

    2001-08-01

    Full Text Available O recente avanço científico e tecnológico direcionado à identificação imuno-hematológica de produtos celulares (ex.: citocinas, interleucinas, interferons, entre outros sintetizados por determinadas células sanguíneas, bem como na identificação de antígenos de membrana de leucócitos e células progenitoras hematopoiéticas, promoveram excepcional desenvolvimento no diagnóstico laboratorial de diversas doenças hematológicas. Somam-se a esse fato as aplicações das técnicas de biologia molecular que se tornam cada vez mais instrumentos laboratoriais de grande definição no diagnóstico e na prevenção de doenças hematológicas, notadamente aquelas de origem hereditária. O presente artigo teve o objetivo de expor as principais aplicações de novas tecnologias que deverão ser adotadas rapidamente pela moderna hematologia laboratorial, bem como a de sensibilizar os profissionais hematologistas, clínicos e laboratoriais, para a necessidade de se atualizarem numa nova ciência, a dos produtos celulares.Recent progress towards the identification of products synthesised by some blood cells (ex.: cytokines, interleukins, interferons, etc as well as the identification of white blood cell and stem cell membrane antigens, has aided the exceptional development of laboratory diagnostics of several haematological diseases. In addition to this there has been a great development in the use of molecular biology techniques which have become instrumentals of high definition in the diagnosis and prevention of haematological diseases, specifically those of hereditary origin. This article has the aim of disclosing the main applications of the new technologies that will soon be used widely in laboratory haematology.

  6. Clinical symptoms and laboratory findings supporting early diagnosis of Crimean-Congo hemorrhagic fever in Iran.

    Science.gov (United States)

    Mostafavi, Ehsan; Pourhossein, Behzad; Chinikar, Sadegh

    2014-07-01

    Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease, which is usually transmitted to humans by tick bites or contact with blood or other infected tissues of livestock. Patients suffering from CCHF demonstrate an extensive spectrum of clinical symptoms. As it can take considerable time from suspecting the disease in hospital until reaching a definitive diagnosis in the laboratory, understanding the clinical symptoms and laboratory findings of CCHF patients is of paramount importance for clinicians. The data were collected from patients who were referred to the Laboratory of Arboviruses and Viral Hemorrhagic Fevers at the Pasteur institute of Iran with a primary diagnosis of CCHF between 1999 and 2012 and were assessed by molecular and serologic tests. Referred patients were divided into two groups: patients with a CCHF positive result and patients with a CCHF negative result. The laboratory and clinical findings of these two groups were then compared. Two-thousand five hundred thirty-six probable cases of CCHF were referred to the laboratory, of which 871 cases (34.3%) were confirmed to be CCHF. Contact with infected humans and animals increased the CCHF infection risk (P important role in patient survival and the application of the findings of this study can prove helpful as a key for early diagnosis. © 2014 Wiley Periodicals, Inc.

  7. Clinical and laboratory characteristics of women with uterine leiomiyoma

    Directory of Open Access Journals (Sweden)

    Özgür ÖZKUL

    2009-06-01

    Full Text Available The aim of this study was to compare clinical and laboratory findings of women with or without uterine leiomyoma.Study group consisted of 82 women with uterine leiomyoma and the control group comprised 42 healthy women. Women’s age, gravity, parity, blood groups, pattern of menstrual cycles, complaints at presentation, fertility, ultrasonographical findings, surgical operations and thyroid function tests were evaluated.There were no significant differences in blood group distribution, gravity, parity and thyroid function test results between the patients and the control subjects (P>0.05. A significant difference was found in the complaints at presentation between two groups (P<0.001. Mentrual cycles irregularity was more frequently found in the patients compared with the controls (57.3% vs. 42.9%, respectively, P=0.009. Although no infertile woman was found in the control group, 8.5% of patients were found to have infertility. The sensitivity of ultrasonography was found to be 97.6%. Except for the existence of higher infertility rate and the menstrual cycles irregularities, no significant difference was found in the clinical and laboratory findings between women with or without uterine leiomyoma. Therefore, physical examination and imaging methods are remained as the most important diagnostic tools for uterine leiomyoma.

  8. National survey on internal quality control for tumour markers in clinical laboratories in China.

    Science.gov (United States)

    Wang, Wei; Zhong, Kun; Yuan, Shuai; He, Falin; Du, Yuxuan; Hu, Zhehui; Wang, Zhiguo

    2018-06-15

    This survey was initiated to obtain knowledge on the current situation of internal quality control (IQC) practice for tumour markers (TMs) in China. Additionally, we tried to acquire the most appropriate quality specifications. This survey was a current status survey. The IQC information had been collected via online questionnaires. All of 1821 clinical laboratories which participated in the 2016 TMs external quality assessment (EQA) programme had been enrolled. The imprecision evaluation criteria were the minimal, desirable, and optimal allowable imprecisions based on biological variations, and 1/3 total allowable error (TEa) and 1/4 TEa. A total of 1628 laboratories answered the questionnaires (89%). The coefficients of variation (CVs) of the IQC of participant laboratories varied greatly from 1% (5 th percentile) to 13% (95 th percentile). More than 82% (82 - 91%) of participant laboratories two types of CVs met 1/3 TEa except for CA 19-9. The percentiles of current CVs were smaller than cumulative CVs. A number of 1240 laboratories (76%) reported their principles and systems used. The electrochemiluminescence was the most used principle (45%) and had the smallest CVs. The performance of laboratories for TMs IQC has yet to be improved. On the basis of the obtained results, 1/3 TEa would be realistic and attainable quality specification for TMs IQC for clinical laboratories in China.

  9. A Survey of Established Veterinary Clinical Skills Laboratories from Europe and North America: Present Practices and Recent Developments.

    Science.gov (United States)

    Dilly, Marc; Read, Emma K; Baillie, Sarah

    Developing competence in clinical skills is important if graduates are to provide entry-level care, but it is dependent on having had sufficient hands-on practice. Clinical skills laboratories provide opportunities for students to learn on simulators and models in a safe environment and to supplement training with animals. Interest in facilities for developing veterinary clinical skills has increased in recent years as many veterinary colleges face challenges in training their students with traditional methods alone. For the present study, we designed a survey to gather information from established veterinary clinical skills laboratories with the aim of assisting others considering opening or expanding their own facility. Data were collated from 16 veterinary colleges in North America and Europe about the uses of their laboratory, the building and associated facilities, and the staffing, budgets, equipment, and supporting learning resources. The findings indicated that having a dedicated veterinary clinical skills laboratory is a relatively new initiative and that colleges have adopted a range of approaches to implementing and running the laboratory, teaching, and assessments. Major strengths were the motivation and positive characteristics of the staff involved, providing open access and supporting self-directed learning. However, respondents widely recognized the increasing demands placed on the facility to provide more space, equipment, and staff. There is no doubt that veterinary clinical skills laboratories are on the increase and provide opportunities to enhance student learning, complement traditional training, and benefit animal welfare.

  10. [Laboratory unification: advantages and disadvantages for clinical microbiology].

    Science.gov (United States)

    Andreu, Antonia; Matas, Lurdes

    2010-10-01

    This article aims to reflect on which areas or tasks of microbiology laboratories could be unified with those of clinical biochemistry, hematology, immunology or pathology laboratories to benefit patients and the health system, as well as the areas that should remain independent since their amalgamation would not only fail to provide a benefit but could even jeopardize the quality of microbiological diagnosis, and consequently patient care. To do this, the distinct analytic phases of diagnosis are analyzed, and the advantages and disadvantages of amalgamation are evaluated in each phase. The pros and cons of the unification of certain areas such as the computer system, occupational risk units, customer service, purchasing logistics, and materials storage, etc, are also discussed. Lastly, the effect of unification on urgent microbiology diagnosis is analyzed. Microbiological diagnosis should be unique. The microbiologist should perform an overall evaluation of the distinct techniques used for a particular patient, both those that involve direct diagnosis (staining, culture, antigen detection techniques or molecular techniques) and indirect diagnosis (antibody detection). Moreover, the microbiology laboratory should be independent, with highly trained technicians and specialists in microbiology that provide added value as experts in infection and as key figures in the process of establishing a correct etiological diagnosis. Copyright © 2010 Elsevier España S.L. All rights reserved.

  11. Blockchain technology for improving clinical research quality

    OpenAIRE

    Benchoufi, Mehdi; Ravaud, Philippe

    2017-01-01

    Reproducibility, data sharing, personal data privacy concerns and patient enrolment in clinical trials are huge medical challenges for contemporary clinical research. A new technology, Blockchain, may be a key to addressing these challenges and should draw the attention of the whole clinical research community. Blockchain brings the Internet to its definitive decentralisation goal. The core principle of Blockchain is that any service relying on trusted third parties can be built in a transpar...

  12. Technique and equipment for measuring volume activity of radon in the air of radon laboratories and clinics

    International Nuclear Information System (INIS)

    Vorob'ev, I.B.; Krivokhatskij, A.S.; Nekrasov, E.V.; Nikolaev, V.A.; Potapov, V.G.; Terent'ev, M.V.

    1990-01-01

    Usability of a new equipment-technique combination for measuring radon activity in the air of radon laboratories and balneological clinics is studied. The complex includes nitrate-cellulose detector, radon chamber, Aist, Istra type spark counters and technique of spark counting. The method sensitivity is 50 Bqxm 3 , the error is 30%. Usability and advisability of track method in radon laboratories and balneological clinics for simultaneous measurement in several points of integral volumetric radon activities are confirmred. The method permits to carry out rapid and accurate bulk investigations. The results of determining mean volumetric radon activity in the air in different points of radon laboratory and radon clinics are presented

  13. ASVCP quality assurance guidelines: control of preanalytical, analytical, and postanalytical factors for urinalysis, cytology, and clinical chemistry in veterinary laboratories.

    Science.gov (United States)

    Gunn-Christie, Rebekah G; Flatland, Bente; Friedrichs, Kristen R; Szladovits, Balazs; Harr, Kendal E; Ruotsalo, Kristiina; Knoll, Joyce S; Wamsley, Heather L; Freeman, Kathy P

    2012-03-01

    In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts. © 2012 American Society for Veterinary Clinical Pathology.

  14. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The... Development and Clinical Science Research and Development Services Scientific Merit Review Board have changed...

  15. Monsanto Mound Laboratory tritium waste control technology development program

    International Nuclear Information System (INIS)

    Bixel, J.C.; Kershner, C.J.; Rhinehammer, T.B.

    1975-01-01

    Over the past four years, implementation of tritium waste control programs has resulted in a 30-fold reduction in the gaseous tritium effluents from Mound Laboratory. However, to reduce tritium waste levels to the ''as low as practicable'' guideline poses problems that are beyond ready solution with state-of-the-art tritium control technology. To meet this advanced technology need, a tritium waste control technology program was initiated. Although the initial thrust of the work under this program was oriented toward development of gaseous effluent treatment systems, its natural evolution has been toward the liquid waste problem. It is thought that, of all the possible approaches to disposal of tritiated liquid wastes, recovery offers the greatest advantages. End products of the recovery processes would be water detritiated to a level below the Radioactivity Concentration Guide (RCG) or detritiated to a level that would permit safe recycle in a closed loop operation and enriched tritium. The detritiated water effluent could be either recycled in a closed loop operation such as in a fuel reprocessing plant or safely released to the biosphere, and the recovered tritium could be recycled for use in fusion reactor studies or other applications

  16. A FMEA clinical laboratory case study: how to make problems and improvements measurable.

    Science.gov (United States)

    Capunzo, Mario; Cavallo, Pierpaolo; Boccia, Giovanni; Brunetti, Luigi; Pizzuti, Sante

    2004-01-01

    The authors have experimented the application of the Failure Mode and Effect Analysis (FMEA) technique in a clinical laboratory. FMEA technique allows: a) to evaluate and measure the hazards of a process malfunction, b) to decide where to execute improvement actions, and c) to measure the outcome of those actions. A small sample of analytes has been studied: there have been determined the causes of the possible malfunctions of the analytical process, calculating the risk probability index (RPI), with a value between 1 and 1,000. Only for the cases of RPI > 400, improvement actions have been implemented that allowed a reduction of RPI values between 25% to 70% with a costs increment of FMEA technique can be applied to the processes of a clinical laboratory, even if of small dimensions, and offers a high potential of improvement. Nevertheless, such activity needs a thorough planning because it is complex, even if the laboratory already operates an ISO 9000 Quality Management System.

  17. Clinical Chemistry Laboratory Automation in the 21st Century - Amat Victoria curam (Victory loves careful preparation)

    Science.gov (United States)

    Armbruster, David A; Overcash, David R; Reyes, Jaime

    2014-01-01

    The era of automation arrived with the introduction of the AutoAnalyzer using continuous flow analysis and the Robot Chemist that automated the traditional manual analytical steps. Successive generations of stand-alone analysers increased analytical speed, offered the ability to test high volumes of patient specimens, and provided large assay menus. A dichotomy developed, with a group of analysers devoted to performing routine clinical chemistry tests and another group dedicated to performing immunoassays using a variety of methodologies. Development of integrated systems greatly improved the analytical phase of clinical laboratory testing and further automation was developed for pre-analytical procedures, such as sample identification, sorting, and centrifugation, and post-analytical procedures, such as specimen storage and archiving. All phases of testing were ultimately combined in total laboratory automation (TLA) through which all modules involved are physically linked by some kind of track system, moving samples through the process from beginning-to-end. A newer and very powerful, analytical methodology is liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). LC-MS/MS has been automated but a future automation challenge will be to incorporate LC-MS/MS into TLA configurations. Another important facet of automation is informatics, including middleware, which interfaces the analyser software to a laboratory information systems (LIS) and/or hospital information systems (HIS). This software includes control of the overall operation of a TLA configuration and combines analytical results with patient demographic information to provide additional clinically useful information. This review describes automation relevant to clinical chemistry, but it must be recognised that automation applies to other specialties in the laboratory, e.g. haematology, urinalysis, microbiology. It is a given that automation will continue to evolve in the clinical laboratory

  18. Predicting tularemia with clinical, laboratory and demographical findings in the ED.

    Science.gov (United States)

    Yapar, Derya; Erenler, Ali Kemal; Terzi, Özlem; Akdoğan, Özlem; Ece, Yasemin; Baykam, Nurcan

    2016-02-01

    We aimed to determine clinical, laboratory and demographical characteristics of tularemia on admission to Emergency Department (ED). Medical data of 317 patients admitted to ED and subsequently hospitalized with suspected tularemia between January 1, 2011, and May 31, 2015, were collected. Patients were divided into 2 groups according to microagglutination test results, as tularemia (+) and tularemia (-). Of the 317 patients involved, 49 were found to be tularemia (+) and 268 were tularemia (-). Mean age of the tularemia (+) patients was found to be higher than that of tularemia (-) patients. When compared to tularemia (-) patients, a significant portion of patients in tularemia (+) patients were elderly, living in rural areas and had contact with rodents. When clinical and laboratory findings of the 2 groups were compared, any statistical significance could not be determined. Tularemia is a disease of elderly people living in rural areas. Contact with rodents also increases risk of tularemia in suspected patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Clinical pharmacology quality assurance program: models for longitudinal analysis of antiretroviral proficiency testing for international laboratories.

    Science.gov (United States)

    DiFrancesco, Robin; Rosenkranz, Susan L; Taylor, Charlene R; Pande, Poonam G; Siminski, Suzanne M; Jenny, Richard W; Morse, Gene D

    2013-10-01

    Among National Institutes of Health HIV Research Networks conducting multicenter trials, samples from protocols that span several years are analyzed at multiple clinical pharmacology laboratories (CPLs) for multiple antiretrovirals. Drug assay data are, in turn, entered into study-specific data sets that are used for pharmacokinetic analyses, merged to conduct cross-protocol pharmacokinetic analysis, and integrated with pharmacogenomics research to investigate pharmacokinetic-pharmacogenetic associations. The CPLs participate in a semiannual proficiency testing (PT) program implemented by the Clinical Pharmacology Quality Assurance program. Using results from multiple PT rounds, longitudinal analyses of recovery are reflective of accuracy and precision within/across laboratories. The objectives of this longitudinal analysis of PT across multiple CPLs were to develop and test statistical models that longitudinally: (1) assess the precision and accuracy of concentrations reported by individual CPLs and (2) determine factors associated with round-specific and long-term assay accuracy, precision, and bias using a new regression model. A measure of absolute recovery is explored as a simultaneous measure of accuracy and precision. Overall, the analysis outcomes assured 97% accuracy (±20% of the final target concentration of all (21) drug concentration results reported for clinical trial samples by multiple CPLs). Using the Clinical Laboratory Improvement Act acceptance of meeting criteria for ≥2/3 consecutive rounds, all 10 laboratories that participated in 3 or more rounds per analyte maintained Clinical Laboratory Improvement Act proficiency. Significant associations were present between magnitude of error and CPL (Kruskal-Wallis P Kruskal-Wallis P < 0.001).

  20. Clinical and Laboratory Characteristics of Leishmaniasis in Armenia

    Directory of Open Access Journals (Sweden)

    A.L. Kazinian

    2014-11-01

    Full Text Available This work presents the clinical and laboratory characteristics of visceral leishmaniasis according to the data from Clinical hospital of infectious diseases «Nork» in Yerevan for 2013. It is shown that Armenia is a country endemic for visceral leishmaniasis. Most patients (81 % were males. About half of the patients were young children (up to 2 years. It was found that the majority of patients had acute onset of the disease with fever up to 40 °C, severe symptoms of intoxication and single hemorrhages on the skin. Enlargement of the liver and spleen was noted in all patients. The enlargement of the spleen was more pronounced, and it reached the level of the pelvis. One of the cardinal symptoms of visceral leishmaniasis — anemia — developed in all patients admitted to the hospital, and a significant change in the hemogram was observed in young children.

  1. Perceived Frequency of Peer-Assisted Learning in the Laboratory and Collegiate Clinical Settings

    Science.gov (United States)

    Henning, Jolene M.; Weidner, Thomas G.; Snyder, Melissa; Dudley, William N.

    2012-01-01

    Context: Peer-assisted learning (PAL) has been recommended as an educational strategy to improve students' skill acquisition and supplement the role of the clinical instructor (CI). How frequently students actually engage in PAL in different settings is unknown. Objective: To determine the perceived frequency of planned and unplanned PAL (peer modeling, peer feedback and assessment, peer mentoring) in different settings. Design: Cross-sectional study. Setting: Laboratory and collegiate clinical settings. Patients or Other Participants: A total of 933 students, 84 administrators, and 208 CIs representing 52 (15%) accredited athletic training education programs. Intervention(s): Three versions (student, CI, administrator) of the Athletic Training Peer Assisted Learning Survey (AT-PALS) were administered. Cronbach α values ranged from .80 to .90. Main Outcome Measure(s): Administrators' and CIs' perceived frequency of 3 PAL categories under 2 conditions (planned, unplanned) and in 2 settings (instructional laboratory, collegiate clinical). Self-reported frequency of students' engagement in 3 categories of PAL in 2 settings. Results: Administrators and CIs perceived that unplanned PAL (0.39 ± 0.22) occurred more frequently than planned PAL (0.29 ± 0.19) regardless of category or setting (F1,282 = 83.48, P < .001). They perceived that PAL occurred more frequently in the collegiate clinical (0.46 ± 0.22) than laboratory (0.21 ± 0.24) setting regardless of condition or category (F1,282 = 217.17, P < .001). Students reported engaging in PAL more frequently in the collegiate clinical (3.31 ± 0.56) than laboratory (3.26 ± 0.62) setting regardless of category (F1,860 = 13.40, P < .001). We found a main effect for category (F2,859 = 1318.02, P < .001), with students reporting they engaged in peer modeling (4.01 ± 0.60) more frequently than peer mentoring (2.99 ± 0.88) (P < .001) and peer assessment and feedback (2.86 ± 0.64) (P < .001). Conclusions: Participants

  2. Definition of an XML markup language for clinical laboratory procedures and comparison with generic XML markup.

    Science.gov (United States)

    Saadawi, Gilan M; Harrison, James H

    2006-10-01

    Clinical laboratory procedure manuals are typically maintained as word processor files and are inefficient to store and search, require substantial effort for review and updating, and integrate poorly with other laboratory information. Electronic document management systems could improve procedure management and utility. As a first step toward building such systems, we have developed a prototype electronic format for laboratory procedures using Extensible Markup Language (XML). Representative laboratory procedures were analyzed to identify document structure and data elements. This information was used to create a markup vocabulary, CLP-ML, expressed as an XML Document Type Definition (DTD). To determine whether this markup provided advantages over generic markup, we compared procedures structured with CLP-ML or with the vocabulary of the Health Level Seven, Inc. (HL7) Clinical Document Architecture (CDA) narrative block. CLP-ML includes 124 XML tags and supports a variety of procedure types across different laboratory sections. When compared with a general-purpose markup vocabulary (CDA narrative block), CLP-ML documents were easier to edit and read, less complex structurally, and simpler to traverse for searching and retrieval. In combination with appropriate software, CLP-ML is designed to support electronic authoring, reviewing, distributing, and searching of clinical laboratory procedures from a central repository, decreasing procedure maintenance effort and increasing the utility of procedure information. A standard electronic procedure format could also allow laboratories and vendors to share procedures and procedure layouts, minimizing duplicative word processor editing. Our results suggest that laboratory-specific markup such as CLP-ML will provide greater benefit for such systems than generic markup.

  3. LabPush: a pilot study of providing remote clinics with laboratory results via short message service (SMS in Swaziland, Africa.

    Directory of Open Access Journals (Sweden)

    Wen-Shan Jian

    Full Text Available BACKGROUND: Turnaround time (TAT is an important indicator of laboratory performance. It is often difficult to achieve fast TAT for blood tests conducted at clinics in developing countries. This is because clinics where the patient is treated are often far away from the laboratory, and transporting blood samples and test results between the two locations creates significant delay. Recent efforts have sought to mitigate this problem by using Short Message Service (SMS to reduce TAT. Studies reporting the impact of this technique have not been published in scientific literature however. In this paper we present a study of LabPush, a system developed to test whether SMS delivery of HIV related laboratory results to clinics could shorten TAT time significantly. METHOD: LapPush was implemented in six clinics of the Kingdom of Swaziland. SMS results were sent out from the laboratory as a supplement to normal transport of paper results. Each clinic was equipped with a mobile phone to receive SMS results. The laboratory that processes the blood tests was equipped with a system for digital input of results, and transmission of results via SMS to the clinics. RESULTS: Laboratory results were received for 1041 different clinical cases. The total number of SMS records received (1032 was higher than that of paper records (965, indicating a higher loss rate for paper records. A statistical comparison of TAT for SMS and paper reports indicates a statistically significant improvement for SMS. Results were more positive for more rural clinics, and an urban clinic with high workload. CONCLUSION: SMS can be used to reduce TAT for blood tests taken at clinics in developing countries. Benefits are likely to be greater at clinics that are further away from laboratories, due to the difficulties this imposes on transport of paper records.

  4. Emerging and Disruptive Technologies.

    Science.gov (United States)

    Kricka, Larry J

    2016-08-01

    Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home testing formats), new types of specimens (e.g., cell free DNA), big biology/data (e.g., million genome projects), and new regulations (e.g., for laboratory developed tests). In addition, there are many emerging technologies (e.g., planar arrays, mass spectrometry) that might find even broader application in the future and therefore also disrupt current practice. One interesting source of disruptive technology may prove to be the Qualcomm Tricorder XPrize, currently in its final stages.

  5. Simple clinical and laboratory predictors of Chikungunya versus dengue infections in adults.

    Directory of Open Access Journals (Sweden)

    Vernon J Lee

    Full Text Available BACKGROUND: Dengue and chikungunya are co-circulating vector-borne diseases with substantial overlap in clinical presentations. It is important to differentiate between them during first presentation as their management, especially for dengue hemorrhagic fever (DHF, is different. This study compares their clinical presentation in Singapore adults to derive predictors to assist doctors in diagnostic decision-making. METHODS: We compared 117 patients with chikungunya infection diagnosed with reverse transcription-polymerase chain reaction (RT-PCR with 917 dengue RT-PCR-positive adult patients (including 55 with DHF. We compared dengue fever (DF, DHF, and chikungunya infections by evaluating clinical characteristics of dengue and chikungunya; developing classification tools via multivariate logistic regression models and classification trees of disease etiology using clinical and laboratory factors; and assessing the time course of several clinical variables. FINDINGS: At first presentation to hospital, significantly more chikungunya patients had myalgia or arthralgia, and fewer had a sore throat, cough (for DF, nausea, vomiting, diarrhea, abdominal pain, anorexia or tachycardia than DF or DHF patients. From the decision trees, platelets <118 × 10(9/L was the only distinguishing feature for DF versus chikungunya with an overall correct classification of 89%. For DHF versus chikungunya using platelets <100 × 10(9/L and the presence of bleeding, the overall correct classification was 98%. The time course analysis supported platelet count as the key distinguishing variable. INTERPRETATION: There is substantial overlap in clinical presentation between dengue and chikungunya infections, but simple clinical and laboratory variables can predict these infections at presentation for appropriate management.

  6. Clinical and laboratory features of 48 feline hyperthyroidism cases in Japan

    Directory of Open Access Journals (Sweden)

    Shinichi Namba

    2014-02-01

    Full Text Available Feline hyperthyroidism (HT is a common endocrine disorder worldwide, but clinical and laboratory features might vary geographically. The aim of this retrospective study was to evaluate feline HT in Japan, and compare results to those of previous study for feline HT. We evaluated 48 feline HT cases clinical and laboratory features. Surprisingly, the youngest patient was 32 months of age (2 year 9 months. There was no significant difference among the study subjects in sex, but frequency of spayed/castrated cats was high (85.4%. Median age was 186 months (32-272 months. 91.3% (n=42 of subjects were over 10 years of age, and 8.7% (n=4 were under 10 years of age. Clinical symptoms included vomiting, 56.3% (n=27; diarrhea, 2.1% (n=1; hyperactivity, 12.5% (n=6; emaciation, 41.7% (n=20; polyuria and polydipsia, 22.9% (n=11; chronic weight loss, 60.4% (n=29; and palpated enlarged thyroid, 2.1% (n=1. Concurrent findings included chronic kidney disease, 20.8% (n=10; congestive heart failure, 20.8% (n=10; tachycardia (over 240 beats/min, 18.8% (n=9; gallop rhythm, 31.3% (n=15; neurological disorders such as hind-limb paralysis, 14.6% (n=7; cystitis, 8.7% (n=4; gingivitis, 4.2% (n=2; diabetes mellitus, 4.2% (n=2; and arterial thromboembolism, 6.3% (n=3. In addition, laboratory features (complete blood counts and biochemistry differed from those of previous reports in certain respects. Our results show that it might be important for practitioners to comprehend epidemiologic differences regarding feline HT worldwide.

  7. Outbreak of chikungunya in Johor Bahru, Malaysia: clinical and laboratory features of hospitalized patients.

    Science.gov (United States)

    Chew, L P; Chua, H H

    2009-09-01

    In 2008, an outbreak of chikungunya infection occurred in Johor. We performed a retrospective review of all laboratory confirmed adult chikungunya cases admitted to Hospital Sultanah Aminah, Johor Bahru from April to August 2008, looking into clinical and laboratory features. A total of 18 laboratory confirmed cases of chikungunya were identified with patients presenting with fever, joint pain, rash and vomiting. Haemorrhagic signs were not seen. Lymphopenia, neutropenia, thrombocytopenia, raised liver enzymes and deranged coagulation profile were the prominent laboratory findings. We hope this study can help guide physician making a diagnosis of chikungunya against other arborviruses infection.

  8. Radiation protection in clinical chemical laboratories

    International Nuclear Information System (INIS)

    Jacob, K.

    1980-01-01

    In the clinical-chemical laboratory, the problems of the personal radiation protection can be handled relatively simply. Important conditions are certain requirements as far as the building is concerned and the keeping to protection measures to invoid ingestion, inhalation, and resorption of open radioactive substances. Very intensive attention must be paid to a clean working technique in order to be able to exclude the danger of contamination which is very disturbing during the extremely sensitive measurements. The higgest problem in the handling of open radioactive substances, however, is in our opinion the waste management because it requires which space and personnel this causing high costs. Furthermore, since 1 January 1979, the permission for the final storage of radioactive waste in the shut down mine ASSE was taken back from the county collection places and it cannot be said yet if and when this permission will be given again. (orig./HP) [de

  9. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  10. Systematic review of the global epidemiology, clinical and laboratory profile of enteric fever

    Directory of Open Access Journals (Sweden)

    Asma Azmatullah

    2015-12-01

    Full Text Available Children suffer the highest burden of enteric fever among populations in South Asian countries. The clinical features are non–specific, vary in populations, and are often difficult to distinguish clinically from other febrile illnesses, leading to delayed or inappropriate diagnosis and treatment. We undertook a systematic review to assess the clinical profile and laboratory features of enteric fever across age groups, economic regions, level of care and antibiotic susceptibility patterns.

  11. Application of indices Cp and Cpk to improve quality control capability in clinical biochemistry laboratories.

    Science.gov (United States)

    Chen, Ming-Shu; Wu, Ming-Hsun; Lin, Chih-Ming

    2014-04-30

    The traditional criteria for acceptability of analytic quality may not be objective in clinical laboratories. To establish quality control procedures intended to enhance Westgard multi-rules for improving the quality of clinical biochemistry tests, we applied the Cp and Cpk quality-control indices to monitor tolerance fitting and systematic variation of clinical biochemistry test results. Daily quality-control data of a large Taiwanese hospital in 2009 were analyzed. The test items were selected based on an Olympus biochemistry machine and included serum albumin, aspartate aminotransferase, cholesterol, glucose and potassium levels. Cp and Cpk values were calculated for normal and abnormal levels, respectively. The tolerance range was estimated with data from 50 laboratories using the same instruments and reagents. The results showed a monthly trend of variation for the five items under investigation. The index values of glucose were lower than those of the other items, and their values were usually quality control, but also for revealing inter-laboratory qualitycontrol capability differences.

  12. [Standardization of terminology in laboratory medicine I].

    Science.gov (United States)

    Yoon, Soo Young; Yoon, Jong Hyun; Min, Won Ki; Lim, Hwan Sub; Song, Junghan; Chae, Seok Lae; Lee, Chang Kyu; Kwon, Jung Ah; Lee, Kap No

    2007-04-01

    Standardization of medical terminology is essential for data transmission between health-care institutions or clinical laboratories and for maximizing the benefits of information technology. Purpose of our study was to standardize the medical terms used in the clinical laboratory, such as test names, units, terms used in result descriptions, etc. During the first year of the study, we developed a standard database of concept names for laboratory terms, which covered the terms used in government health care centers, their branch offices, and primary health care units. Laboratory terms were collected from the electronic data interchange (EDI) codes from National Health Insurance Corporation (NHIC), Logical Observation Identifier Names and Codes (LOINC) database, community health centers and their branch offices, and clinical laboratories of representative university medical centers. For standard expression, we referred to the English-Korean/ Korean-English medical dictionary of Korean Medical Association and the rules for foreign language translation. Programs for mapping between LOINC DB and EDI code and for translating English to Korean were developed. A Korean standard laboratory terminology database containing six axial concept names such as components, property, time aspect, system (specimen), scale type, and method type was established for 7,508 test observations. Short names and a mapping table for EDI codes and Unified Medical Language System (UMLS) were added. Synonym tables for concept names, words used in the database, and six axial terms were prepared to make it easier to find the standard terminology with common terms used in the field of laboratory medicine. Here we report for the first time a Korean standard laboratory terminology database for test names, result description terms, result units covering most laboratory tests in primary healthcare centers.

  13. Technological advances in the hemostasis laboratory.

    Science.gov (United States)

    Lippi, Giuseppe; Plebani, Mario; Favaloro, Emmanuel J

    2014-03-01

    Automation is conventionally defined as the use of machines, control systems, and information technologies to optimize productivity. Although automation is now commonplace in several areas of diagnostic testing, especially in clinical chemistry and immunochemistry, the concept of extending this process to hemostasis testing has only recently been advanced. The leading drawbacks are still represented by the almost unique biological matrix because citrated plasma can only be used for clotting assays and few other notable exceptions, and by the highly specific pretreatment of samples, which is particularly distinct to other test systems. Despite these important limitations, a certain degree of automation is also now embracing hemostasis testing. The more relevant developments include the growing integration of routine hemostasis analyzers with track line systems and workcells, the development of specific instrumentation tools to enhance reliability of testing (i.e., signal detection with different technologies to increase test panels, plasma indices for preanalytical check of interfering substances, failure patterns sensors for identifying insufficient volume, clots or bubbles, cap-piercing for enhancing operator safety, automatic reflex testing, automatic redilution of samples, and laser barcode readers), preanalytical features (e.g., positive identification, automatic systems for tube(s) labeling, transillumination devices), and postphlebotomy tools (pneumatic tube systems for reducing turnaround time, sample transport boxes for ensuring stability of specimens, monitoring systems for identifying unsuitable conditions of transport). Regardless of these important innovations, coagulation/hemostasis testing still requires specific technical and clinical expertise, not only in terms of measurement procedures but also for interpreting and then appropriately utilizing the derived information. Thus, additional and special caution has to be used when designing projects of

  14. Laboratory and clinical trials of cocamide diethanolamine lotion against head lice

    Directory of Open Access Journals (Sweden)

    Ian F. Burgess

    2015-11-01

    Full Text Available Context. During the late 1990s, insecticide resistance had rendered a number of treatment products ineffective; some companies saw this as an opportunity to develop alternative types of treatment. We investigated the possibility that a surfactant-based lotion containing 10% cocamide diethanolamine (cocamide DEA was effective to eliminate head louse infestation.Settings and Design. Initial in vitro testing of the lotion formulation versus laboratory reared body/clothing lice, followed by two randomised, controlled, community-based, assessor blinded, clinical studies.Materials and Methods. Preliminary laboratory tests were performed by exposing lice or louse eggs to the product using a method that mimicked the intended use. Clinical Study 1: Children and adults with confirmed head louse infestation were treated by investigators using a single application of aqueous 10% cocamide DEA lotion applied for 60 min followed by shampooing or a single 1% permethrin creme rinse treatment applied to pre-washed hair for 10 min. Clinical Study 2: Compared two treatment regimens using 10% cocamide DEA lotion that was concentrated by hair drying. A single application left on for 8 h/overnight was compared with two applications 7 days apart of 2 h duration, followed by a shampoo wash.Results. The initial laboratory tests showed a pediculicidal effect for a 60 min application but limited ovicidal effect. A longer application time of 8 h or overnight was found capable of killing all eggs but this differed between batches of test material. Clinical Study 1: Both treatments performed badly with only 3/23 (13% successful treatments using cocamide DEA and 5/25 (23.8% using permethrin. Clinical Study 2: The single overnight application of cocamide DEA concentrated by hair drying gave 10/56 (17.9% successes compared with 19/56 (33.9% for the 2 h application regimen repeated after 1 week. Intention to treat analysis showed no significant difference (p = 0.0523 between the

  15. Clinical operations generation next… The age of technology and outsourcing

    Directory of Open Access Journals (Sweden)

    Priya Temkar

    2015-01-01

    Full Text Available Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations.

  16. Clinical operations generation next… The age of technology and outsourcing.

    Science.gov (United States)

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations.

  17. Clinical operations generation next… The age of technology and outsourcing

    Science.gov (United States)

    Temkar, Priya

    2015-01-01

    Huge cost pressures and the need to drive faster approvals has driven a technology transformation in the clinical trial (CT) industry. The CT industry is thus leveraging mobile data, cloud computing, social media, robotic automation, and electronic source to drive efficiencies in a big way. Outsourcing of clinical operations support services to technology companies with a clinical edge is gaining tremendous importance. This paper provides an overview of current technology trends, applicable Food and Drug Administration (FDA) guidelines, basic challenges that the pharma industry is facing in trying to implement such changes and its shift towards outsourcing these services to enable it to focus on site operations. PMID:26623386

  18. Improvement in the performance of external quality assessment in Korean HIV clinical laboratories using unrecalcified human plasma.

    Science.gov (United States)

    Wang, Jin-Sook; Kee, Mee-Kyung; Choi, Byeong-Sun; Kim, Chan-Wha; Kim, Hyon-Suk; Kim, Sung Soon

    2012-01-01

    The external quality assessment schemes (EQAS) organizer provides a suitable program to monitor and improve the quality of human immunodeficiency virus (HIV) testing laboratories with EQAS panels prepared under various conditions. The aim of the current study was to investigate the effects of human plasma samples on the EQAS results of HIV obtained from hospital-based clinical laboratories. From 2007 to 2009, HIV EQAS panels consisted of four to six samples that consisted of undiluted positive and negative samples and were provided to laboratories twice per year. Up until the first half EQAS in 2008, EQAS panel materials were obtained by converting acid citrate dextrose treated plasma to serum via chemical treatment with CaCl2. Beginning with the second EQAS in 2008, all materials were prepared without the defibrination process. Approximately 300 HIV clinical laboratories participated in this program. The overall performance of clinical laboratories was shown to be improved when using unrecalcified plasma panels compared with recalcified panels. Significant differences were observed in EIA analyses of plasma for both positive (plaboratories.

  19. Dental technology services and industry trends in New Zealand from 2010 to 2012.

    Science.gov (United States)

    Alameri, S S; Aarts, J M; Smith, M; Waddell, J N

    2014-06-01

    To provide a snapshot of the New Zealand dental technology industry and influencing factors. Developing an understanding of the commercial dental laboratory environment in New Zealand can provide insight into the entire dental industry. A web-based survey was the primary method for data collection, with separate questionnaires used for dental laboratory owners and dental technician employees. The mean net income for dental laboratory owners in New Zealand was similar to that of the United Kingdom, at $40.50 per hour. Clinical dental technicians are the highest paid employees, with a mean of $33.49 per hour. The mean technical charge for complete dentures was $632.59; including clinical services, it was $1907.00. The mean charge for a porcelain-fused-to-metal (PFM) crown was $290.27. Dental laboratory owners expressed fear about the possibility of losing dental clients to overseas laboratories due to the availability and cheap charge of offshore work. Only 25.4% of dental laboratories surveyed had computer-aided design (CAD) facilities, and even fewer (7.9%) had computer-aided manufacturing (CAM) systems. Clinical dental technology appears to be prospering. The dental technology industry appears to be adapting and remains viable, despite facing many challenges.

  20. Technology and organization behavior: the relationship between the tools of technology and the structure and functioning of high-energy physics research laboratories. (Volumes I and II)

    International Nuclear Information System (INIS)

    Kernaghan, J.A.

    1983-01-01

    This dissertation focuses upon the changes at the intraorganizational level - the institutionalization of organization behavior - at five high-energy physics laboratories in the United States. Institutionalization was defined as a shift from a Gemeinschaft (or Community) type social system and methods of control to a system characterized by a Gesellschaft (or Industrialized) approach to organizing and controlling social relationships and activities in basic research. It was hypothesized that this type of control strategy was implemented by the administration of the laboratories in order to cope with the problems imposed on the organization by an increase in the inertia of the technology on which the laboratories depend for their output. Data were collected at five high-energy physics laboratories over a three-year period. It was found that as the technology employed by the laboratories became more costly, larger in scale, and more complex, automated, and scarce, the management of the laboratories increased the degree of institutional control over the behavior of organizational members to compensate for management's lack of control over the technical element in the socio-technical system

  1. 50th anniversary of Clinical Chemistry and Laboratory Medicine--a historical overview.

    Science.gov (United States)

    Körber, Friedrich; Plebani, Mario

    2013-01-01

    In the early 1960s, Joachim Brugsch, one of the founders of Clinical Chemistry and Laboratory Medicine (CCLM) (then Zeitschrift für Klinische Chemie), had the idea to found a journal in the upcoming field of clinical chemistry. He approached Ernst Schütte, who was associated with the De Gruyter publishing house through another journal, to participate, and Schütte thus became the second founder of this Journal. The aim was to create a vehicle allowing the experts to express their opinions and raise their voices more clearly than they could in a journal that publishes only original experimental papers, a laborious and difficult, but important endeavor, as the profession of clinical chemistry was still in the early stages of development at this time. The first issue of this Journal was published in early 1963, and today, we are proud to celebrate the 50th anniversary of CCLM. This review describes the development of this Journal in light of the political situation of the time when it was founded, the situation of the publisher Walter De Gruyter after the erection of the Berlin Wall, and the development of clinical chemistry, and later on, laboratory medicine as a well-acknowledged discipline and profession.

  2. Pre-analytical issues in the haemostasis laboratory: guidance for the clinical laboratories.

    Science.gov (United States)

    Magnette, A; Chatelain, M; Chatelain, B; Ten Cate, H; Mullier, F

    2016-01-01

    Ensuring quality has become a daily requirement in laboratories. In haemostasis, even more than in other disciplines of biology, quality is determined by a pre-analytical step that encompasses all procedures, starting with the formulation of the medical question, and includes patient preparation, sample collection, handling, transportation, processing, and storage until time of analysis. This step, based on a variety of manual activities, is the most vulnerable part of the total testing process and is a major component of the reliability and validity of results in haemostasis and constitutes the most important source of erroneous or un-interpretable results. Pre-analytical errors may occur throughout the testing process and arise from unsuitable, inappropriate or wrongly handled procedures. Problems may arise during the collection of blood specimens such as misidentification of the sample, use of inadequate devices or needles, incorrect order of draw, prolonged tourniquet placing, unsuccessful attempts to locate the vein, incorrect use of additive tubes, collection of unsuitable samples for quality or quantity, inappropriate mixing of a sample, etc. Some factors can alter the result of a sample constituent after collection during transportation, preparation and storage. Laboratory errors can often have serious adverse consequences. Lack of standardized procedures for sample collection accounts for most of the errors encountered within the total testing process. They can also have clinical consequences as well as a significant impact on patient care, especially those related to specialized tests as these are often considered as "diagnostic". Controlling pre-analytical variables is critical since this has a direct influence on the quality of results and on their clinical reliability. The accurate standardization of the pre-analytical phase is of pivotal importance for achieving reliable results of coagulation tests and should reduce the side effects of the influence

  3. Assessment of Application Technology of Natural User Interfaces in the Creation of a Virtual Chemical Laboratory

    Science.gov (United States)

    Jagodzinski, Piotr; Wolski, Robert

    2015-01-01

    Natural User Interfaces (NUI) are now widely used in electronic devices such as smartphones, tablets and gaming consoles. We have tried to apply this technology in the teaching of chemistry in middle school and high school. A virtual chemical laboratory was developed in which students can simulate the performance of laboratory activities similar…

  4. Quality assurance consideration for cement-based grout technology programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Tallent, O.K.; Sams, T.L.; Delzer, D.B.

    1987-01-01

    Oak Ridge National Laboratory has developed and is continuing to refine a method of immobilizing low-level radioactive liquid wastes by mixing them with cementitious dry-solid blends. A quality assurance program is vital to the project because Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA) and state environmental regulations must be demonstrably met (the work must be defensible in a court of law). The end result of quality assurance (QA) is, by definition, a product of demonstrable quality. In the laboratory, this entails traceability, repeatability, and credibility. This paper describes the application of QA in grout technology development at Oak Ridge National Laboratory

  5. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    Science.gov (United States)

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  6. [The analytical reliability of clinical laboratory information and role of the standards in its support].

    Science.gov (United States)

    Men'shikov, V V

    2012-12-01

    The article deals with the factors impacting the reliability of clinical laboratory information. The differences of qualities of laboratory analysis tools produced by various manufacturers are discussed. These characteristics are the causes of discrepancy of the results of laboratory analyses of the same analite. The role of the reference system in supporting the comparability of laboratory analysis results is demonstrated. The project of national standard is presented to regulate the requirements to standards and calibrators for analysis of qualitative and non-metrical characteristics of components of biomaterials.

  7. Patient and tissue identification in the assisted reproductive technology laboratory.

    Science.gov (United States)

    Pomeroy, Kimball O; Racowsky, Catherine

    2012-06-01

    Several high-profile cases involving in vitro fertilization have recently received considerable media attention and highlight the importance of assuring patient and tissue identification. Within the assisted reproductive technology (ART) laboratory, there are many steps where wrong patient or tissue identity could have drastic results. Erroneous identity can result in tragic consequences for the patient, the laboratory, and for those working in the program as a whole. Such errors can result in enormous psychological and financial costs, as well as a loss in confidence. There are several critical steps that should be taken every single time and for each specific procedure performed in the ART laboratory to ensure the correct identification of patients and their tissue. These steps should be detailed in protocols that include the method of identification, the two unique identifiers that will be used, the sources of these identifiers, and often a system in which more than one person is involved in the identification. Each protocol should ideally include a checklist that is actively used for the implementation of each procedure. The protocol should also indicate what to do if the identification does not match up, including rapid handling and notification of the patient involved in the error. All ART laboratories should instill in their employees an atmosphere of full and open disclosure for cases where mistakes are made. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Clinical and laboratory signs associated to serious dengue disease in hospitalized children

    Directory of Open Access Journals (Sweden)

    Sheila Moura Pone

    2016-09-01

    Conclusions: Lethargy, abdominal distension, pleural effusion, and hypoalbuminemia were the best clinical and laboratorial markers of serious dengue disease in hospitalized children, while bleeding, severe hemorrhage, hemoconcentration and thrombocytopenia did not reach adequate diagnostic accuracy. In pediatric referral hospitals, the absence of hemoconcentration does not imply absence of plasma leakage, particularly in children with previous fluid replacement. These findings may contribute to the clinical management of dengue in children at referral hospitals.

  9. Reduction in Unnecessary Clinical Laboratory Testing Through Utilization Management at a US Government Veterans Affairs Hospital.

    Science.gov (United States)

    Konger, Raymond L; Ndekwe, Paul; Jones, Genea; Schmidt, Ronald P; Trey, Marty; Baty, Eric J; Wilhite, Denise; Munshi, Imtiaz A; Sutter, Bradley M; Rao, Maddamsetti; Bashir, Chowdry M

    2016-03-01

    To implement an electronic laboratory utilization management system (laboratory expert system [LES]) to provide safe and effective reductions in unnecessary clinical laboratory testing. The LES is a set of frequency filter subroutines within the Veterans Affairs hospital and laboratory information system that was formulated by an interdisciplinary medical team. Since implementing the LES, total test volume has decreased by a mean of 11.18% per year compared with our pre-LES test volume. This change was not attributable to fluctuations in outpatient visits or inpatient days of care. Laboratory cost savings were estimated at $151,184 and $163,751 for 2012 and 2013, respectively. A significant portion of these cost savings was attributable to reductions in high-volume, large panel testing. No adverse effects on patient care were reported, and mean length of stay for patients remained unchanged. Electronic laboratory utilization systems can effectively reduce unnecessary laboratory testing without compromising patient care. Published by Oxford University Press on behalf of the American Society for Clinical Pathology, 2016. This work is written by US Government employees and is in the public domain in the US.

  10. Application of failure mode and effect analysis in an assisted reproduction technology laboratory.

    Science.gov (United States)

    Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola

    2016-08-01

    Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. [The challenges of standardization in clinical diagnostic laboratories of medical organizations].

    Science.gov (United States)

    Men'shikov, V V

    2013-04-01

    The generalized data concerning the conditions of application of regulations of national standards in clinical diagnostic laboratories of medical organizations is presented. The primary information was provided by 14 regions of 6 federal administrative okrugs of Russia. The causes of challenges of application of requirements of standards are presented. They are mostly related with insufficient financial support, lacking of manpower, difficulties with reagents supply, inadequate technical maintenance of devices and absence of support of administration of medical organizations. The recommendations are formulated concerning the necessity of publishing the document of Minzdrav of Russia to determine the need in application of standards in laboratory practice.

  12. Developing linear-alpha-olefins technology. From laboratory to a commercial plant

    Energy Technology Data Exchange (ETDEWEB)

    Meiswinkel, A.; Woehl, A.; Mueller, W.; Boelt, H. [Linde AG, Pullach (Germany)

    2011-07-01

    Linear {alpha}-Olefins (LAOs) are used in several applications in chemical industry. Together with SABIC (Saudi Basic Industries Corporation) Linde jointly developed the {alpha}-SABLIN technology for a full range LAO plant as well as a 1-Hexene selective ''On Purpose'' technology (LAO OP) to cover the rapidly increasing demand for this specific comonomer. The {alpha}-SABLIN as well as the OP technology are both homogenously catalyzed systems. This is raising special challenges concerning process and reactor design compared to much more established heterogeneous systems in chemical industry. E.g., the reactor concept is a bubble-column which allows efficient mixing as well as cooling of the reaction mixture. The development of the process was based on laboratory experiments which - based on an initial conceptual design for a large scale technical process - were first transformed into a pilot device before the commercial plant was designed, engineered and successfully started up and declared as commercialized. Today the {alpha}-SABLIN technology is the only LAO technology with a commercial reference which is free for licensing. A lot of experience and knowledge from the {alpha}-SABLIN development and commercial operation was gained. Although newly developed OP technology is based on a different catalytic system, this experience is now utilized and transformed within the commercialization of this new technological development. (orig.)

  13. Towards an evaluation framework for Laboratory Information Systems.

    Science.gov (United States)

    Yusof, Maryati M; Arifin, Azila

    Laboratory testing and reporting are error-prone and redundant due to repeated, unnecessary requests and delayed or missed reactions to laboratory reports. Occurring errors may negatively affect the patient treatment process and clinical decision making. Evaluation on laboratory testing and Laboratory Information System (LIS) may explain the root cause to improve the testing process and enhance LIS in supporting the process. This paper discusses a new evaluation framework for LIS that encompasses the laboratory testing cycle and the socio-technical part of LIS. Literature review on discourses, dimensions and evaluation methods of laboratory testing and LIS. A critical appraisal of the Total Testing Process (TTP) and the human, organization, technology-fit factors (HOT-fit) evaluation frameworks was undertaken in order to identify error incident, its contributing factors and preventive action pertinent to laboratory testing process and LIS. A new evaluation framework for LIS using a comprehensive and socio-technical approach is outlined. Positive relationship between laboratory and clinical staff resulted in a smooth laboratory testing process, reduced errors and increased process efficiency whilst effective use of LIS streamlined the testing processes. The TTP-LIS framework could serve as an assessment as well as a problem-solving tool for the laboratory testing process and system. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  14. Laboratory challenges in the scaling up of HIV, TB, and malaria programs: The interaction of health and laboratory systems, clinical research, and service delivery.

    Science.gov (United States)

    Birx, Deborah; de Souza, Mark; Nkengasong, John N

    2009-06-01

    Strengthening national health laboratory systems in resource-poor countries is critical to meeting the United Nations Millennium Development Goals. Despite strong commitment from the international community to fight major infectious diseases, weak laboratory infrastructure remains a huge rate-limiting step. Some major challenges facing laboratory systems in resource-poor settings include dilapidated infrastructure; lack of human capacity, laboratory policies, and strategic plans; and limited synergies between clinical and research laboratories. Together, these factors compromise the quality of test results and impact patient management. With increased funding, the target of laboratory strengthening efforts in resource-poor countries should be the integrating of laboratory services across major diseases to leverage resources with respect to physical infrastructure; types of assays; supply chain management of reagents and equipment; and maintenance of equipment.

  15. Evaluating a mobile application for improving clinical laboratory test ordering and diagnosis.

    Science.gov (United States)

    Meyer, Ashley N D; Thompson, Pamela J; Khanna, Arushi; Desai, Samir; Mathews, Benji K; Yousef, Elham; Kusnoor, Anita V; Singh, Hardeep

    2018-04-20

    Mobile applications for improving diagnostic decision making often lack clinical evaluation. We evaluated if a mobile application improves generalist physicians' appropriate laboratory test ordering and diagnosis decisions and assessed if physicians perceive it as useful for learning. In an experimental, vignette study, physicians diagnosed 8 patient vignettes with normal prothrombin times (PT) and abnormal partial thromboplastin times (PTT). Physicians made test ordering and diagnosis decisions for 4 vignettes using each resource: a mobile app, PTT Advisor, developed by the Centers for Disease Control and Prevention (CDC)'s Clinical Laboratory Integration into Healthcare Collaborative (CLIHC); and usual clinical decision support. Then, physicians answered questions regarding their perceptions of the app's usefulness for diagnostic decision making and learning using a modified Kirkpatrick Training Evaluation Framework. Data from 368 vignettes solved by 46 physicians at 7 US health care institutions show advantages for using PTT Advisor over usual clinical decision support on test ordering and diagnostic decision accuracy (82.6 vs 70.2% correct; P < .001), confidence in decisions (7.5 vs 6.3 out of 10; P < .001), and vignette completion time (3:02 vs 3:53 min.; P = .06). Physicians reported positive perceptions of the app's potential for improved clinical decision making, and recommended it be used to address broader diagnostic challenges. A mobile app, PTT Advisor, may contribute to better test ordering and diagnosis, serve as a learning tool for diagnostic evaluation of certain clinical disorders, and improve patient outcomes. Similar methods could be useful for evaluating apps aimed at improving testing and diagnosis for other conditions.

  16. Using the e-Chasqui, web-based information system, to determine laboratory guidelines and data available to clinical staff.

    Science.gov (United States)

    Blaya, Joaquin A; Yagui, Martin; Contreras, Carmen C; Palma, Betty; Shin, Sonya S; Yale, Gloria; Suarez, Carmen; Fraser, Hamish S F

    2008-11-06

    13% of all drug susceptibility tests (DSTs) performed at a public laboratory in Peru were duplicate. To determine reasons for duplicate requests an online survey was implemented in the e-Chasqui laboratory information system. Results showed that 59.6% of tests were ordered because clinical staff was unaware of ordering guidelines or of a previous result. This shows a benefit of using a web-based system and the lack of laboratory information available to clinical staff in Peru.

  17. Contamination of the Clinical Microbiology Laboratory with Vancomycin-Resistant Enterococci and Multidrug- Resistant Enterobacteriaceae: Implications for Hospital and Laboratory Workers

    Science.gov (United States)

    Collins, Susan M.; Hacek, Donna M.; Degen, Lisa A.; Wright, Marc O.; Noskin, Gary A.; Peterson, Lance R.

    2001-01-01

    We surveyed environmental surfaces in our clinical microbiology laboratory to determine the prevalence of vancomycin-resistant enterococci (VRE) and multidrug-resistant Enterobacteriaceae (MDRE) during a routine working day. From a total of 193 surfaces, VRE were present on 20 (10%) and MDRE were present on 4 (2%) of the surfaces tested. In a subsequent survey after routine cleaning, all of the 24 prior positive surfaces were found to be negative. Thus, those in the laboratory should recognize that many surfaces may be contaminated by resistant organisms during routine processing of patient specimens. PMID:11574615

  18. Epidemiological, clinical and sleep laboratory evaluations of insomnia

    Science.gov (United States)

    Bixler, E. O.; Kales, A.; Kales, J. D.

    1975-01-01

    Epidemiological studies have contributed to the understanding of the total scope of the insomnia problem, both in terms of the incidence of sleep difficulties, and the extent and frequency of hypnotic drug use. Clinical studies - at the Sleep Research and Treatment Center - have been used to evaluate the medical, psychological, pharmacological and situational factors contributing to insomnia, and to evaluate the psychotherapy and chemotherapy best suited to treatment of insomnia. The sleep laboratory studies were of two types: (1) the study of sleep induction, sleep maintenance, and sleep stages, and (2) the use of hypnotic drugs, emphasizing their effectiveness in inducing and maintaining sleep, and the duration of this effectiveness.

  19. Use of High-Definition Audiovisual Technology in a Gross Anatomy Laboratory: Effect on Dental Students' Learning Outcomes and Satisfaction.

    Science.gov (United States)

    Ahmad, Maha; Sleiman, Naama H; Thomas, Maureen; Kashani, Nahid; Ditmyer, Marcia M

    2016-02-01

    Laboratory cadaver dissection is essential for three-dimensional understanding of anatomical structures and variability, but there are many challenges to teaching gross anatomy in medical and dental schools, including a lack of available space and qualified anatomy faculty. The aim of this study was to determine the efficacy of high-definition audiovisual educational technology in the gross anatomy laboratory in improving dental students' learning outcomes and satisfaction. Exam scores were compared for two classes of first-year students at one U.S. dental school: 2012-13 (no audiovisual technology) and 2013-14 (audiovisual technology), and section exams were used to compare differences between semesters. Additionally, an online survey was used to assess the satisfaction of students who used the technology. All 284 first-year students in the two years (2012-13 N=144; 2013-14 N=140) participated in the exams. Of the 140 students in the 2013-14 class, 63 completed the survey (45% response rate). The results showed that those students who used the technology had higher scores on the laboratory exams than those who did not use it, and students in the winter semester scored higher (90.17±0.56) than in the fall semester (82.10±0.68). More than 87% of those surveyed strongly agreed or agreed that the audiovisual devices represented anatomical structures clearly in the gross anatomy laboratory. These students reported an improved experience in learning and understanding anatomical structures, found the laboratory to be less overwhelming, and said they were better able to follow dissection instructions and understand details of anatomical structures with the new technology. Based on these results, the study concluded that the ability to provide the students a clear view of anatomical structures and high-quality imaging had improved their learning experience.

  20. Clinical and laboratory signs associated to serious dengue disease in hospitalized children

    Directory of Open Access Journals (Sweden)

    Sheila Moura Pone

    Full Text Available Abstract Objective: To evaluate the validity of clinical and laboratory signs to serious dengue disease in hospitalized children. Methods: Retrospective cohort of children (19 and negative likelihood ratio <0.6. Pleural effusion and abdominal distension had higher sensitivity (82.6%. History of bleeding (epistaxis, gingival or gastrointestinal bleeding and severe hemorrhage (pulmonary or gastrointestinal bleeding in physical examination were more frequent in serious dengue disease (p < 0.01, but with poor accuracy (positive likelihood ratio = 1.89 and 3.89; negative likelihood ratio = 0.53 and 0.60, respectively. Serum albumin was lower in serious dengue forms (p < 0.01. Despite statistical significance (p < 0.05, both groups presented thrombocytopenia. Platelets count, hematocrit, and hemoglobin parameters had area under the curve <0.5. Conclusions: Lethargy, abdominal distension, pleural effusion, and hypoalbuminemia were the best clinical and laboratorial markers of serious dengue disease in hospitalized children, while bleeding, severe hemorrhage, hemoconcentration and thrombocytopenia did not reach adequate diagnostic accuracy. In pediatric referral hospitals, the absence of hemoconcentration does not imply absence of plasma leakage, particularly in children with previous fluid replacement. These findings may contribute to the clinical management of dengue in children at referral hospitals.

  1. Hypereosinophilic syndrome: Clinical, laboratory, and imaging manifestations in patients with hepatic involvement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gi Beom; Lee, Jong Min; Sung, Yeong Soon; Kang, Duk Sik [Kyungpook Natioanl University College of Medicine, Daegu (Korea, Republic of); Kim, Ok Hwoa [Dongkang general Hospital, Ulsan (Korea, Republic of)

    1993-07-15

    The hypereosinophilic syndrome (HES) commonly involves liver and spleen but only a few literature has reported the imaging features. In this article, we present the imaging features of the liver and spleen in HES patients together with clinical and laboratory features. This study included 5 HES patients with hepatic involvement. Extensive laboratory tests including multiple hematologic, serologic, parasitological, and immunologic examinations were performed. Imaging studies included CT, ultrasound (US)of upper abdomen and hepatosplenic scintigraphy. All patients were periodically examined by laboratory and imaging studies for 4 to 24 months. The common clinical presentations were weakness, mild fever, and dry cough. All patients revealed leukocytosis with eosinophilia of 40 to 80% and benign eosinophilic hyperplasia of the bone marrow. The percutaneous biopsy of the hepatic focal lesions performed in 2 patients showed numerous benigin eosinophilic infiltrates and one of them revealed combined calibration necrosis of hepatocytes. All cases revealed hepatomegaly with multiple focal lesions on at least on of CT, US, or scintigraphy. These findings completely disappeared in 2 to 6 months following medication of corticosteroid or antihistamines. The HES involved the liver and CT, US, or scintigraphic studies showed hepatic multifocal lesions with hepatomegaly. Differential diagnosis of these findings should include metastatic disease, lymphoma, leukemia, candidiasis or other opportunistic infections.

  2. Hypereosinophilic syndrome: Clinical, laboratory, and imaging manifestations in patients with hepatic involvement

    International Nuclear Information System (INIS)

    Kim, Gi Beom; Lee, Jong Min; Sung, Yeong Soon; Kang, Duk Sik; Kim, Ok Hwoa

    1993-01-01

    The hypereosinophilic syndrome (HES) commonly involves liver and spleen but only a few literature has reported the imaging features. In this article, we present the imaging features of the liver and spleen in HES patients together with clinical and laboratory features. This study included 5 HES patients with hepatic involvement. Extensive laboratory tests including multiple hematologic, serologic, parasitological, and immunologic examinations were performed. Imaging studies included CT, ultrasound (US)of upper abdomen and hepatosplenic scintigraphy. All patients were periodically examined by laboratory and imaging studies for 4 to 24 months. The common clinical presentations were weakness, mild fever, and dry cough. All patients revealed leukocytosis with eosinophilia of 40 to 80% and benign eosinophilic hyperplasia of the bone marrow. The percutaneous biopsy of the hepatic focal lesions performed in 2 patients showed numerous benigin eosinophilic infiltrates and one of them revealed combined calibration necrosis of hepatocytes. All cases revealed hepatomegaly with multiple focal lesions on at least on of CT, US, or scintigraphy. These findings completely disappeared in 2 to 6 months following medication of corticosteroid or antihistamines. The HES involved the liver and CT, US, or scintigraphic studies showed hepatic multifocal lesions with hepatomegaly. Differential diagnosis of these findings should include metastatic disease, lymphoma, leukemia, candidiasis or other opportunistic infections

  3. Radiation and Health Technology Laboratory Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-07-15

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  4. Autoimmune thyroiditis goitrogenic. Aspects of clinical and laboratorial diagnostic

    International Nuclear Information System (INIS)

    Costa, H.F.Z. da.

    1986-01-01

    To asses the accuracy achieved by the A.C.A.T. and other clinical and laboratorial criterion in the diagnoses of T.A.I.B. we investigated twenty patients with goiter and antimicrossomal antibodies titres of 1/1.600 or more. Analysing the parameters useful in the diagnosis, we found a significant correlation between the antimicrossomal antibodies titres and the basal TSH concentration, an elevated basal TSH and an exaggerated response to TRH independent of the patient clinical status reflecting in the majority of the cases a state of subclinical hypotyroidism; an irregular appearance of the radioisotope thyroid scan and a positive response to a perchlorate discharge test. We conclude that from the parameters useful in the T.A.I.B. diagnosis, the A.C.A.T. detection mainly the antimicrossomal antibodies, is an excellent tool to detect patients with a clinical suspect of thyroid auto-immune disease and when we found high tires in a patient with goiter and an elevated basal TSH concentration we can suggest T.A.I.B. diagnosis. (author)

  5. Environmental Audit at Santa Barbara Operations, Special Technologies Laboratory, Remote Sensing Laboratory, North Las Vegas Facilities

    International Nuclear Information System (INIS)

    1991-03-01

    This report documents the results of the Environmental Audit of selected facilities under the jurisdiction of the DOE Nevada Operations Office (NV) that are operated by EG and G Energy Measurements, Incorporated (EG and G/EM). The facilities included in this Audit are those of Santa Barbara Operation (SBO) at Goleta, California; the Special Technologies Laboratory (STL) at Santa Barbara, California; and Las Vegas Area Operations (LVAO) including the Remote Sensing Laboratory (RSL) at Nellis Air Force Base in Nevada, and the North Las Vegas Facilities (NLVF) at North Las Vegas, Nevada. The Environmental Audit was conducted by the US Department of Energy's (DOE) Office of Environmental Audit, commencing on January 28, 1991 and ending on February 15, 1991. The scope of the Audit was comprehensive, addressing environmental activities in the technical areas of air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, radiation, inactive waste sites, and environmental management. Also assessed was compliance with applicable Federal, state, and local regulations and requirements; internal operating requirements; DOE Orders; and best management practices. 8 tabs

  6. Innovative environmental restoration and waste management technologies at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Helt, J.E.

    1993-01-01

    Cleanup of contaminated sites and management of wastes have become major efforts of the US Department of Energy. Argonne National Laboratory (ANL) is developing several new technologies to meet the needs of this national effort. Some of these efforts are being done in collaboration with private sector firms. An overview of the ANL and private sector efforts will be presented. The following four specific technologies will be discussed in detail: (1) a minimum additive waste stabilization (MAWS) system for treating actinide-contaminated soil and groundwater; (2) a magnetic separation system, also for cleanup of actinide-contaminated soil and groundwater; (3) a mobile evaporator/concentrator system for processing aqueous radioactive and mixed waste; and (4) a continuous emission monitor for ensuring that waste incineration meets environmental goals

  7. A importância da qualidade da água reagente no laboratório clínico The importance of water quality in clinical laboratory reagent

    Directory of Open Access Journals (Sweden)

    Maria Elizabete Mendes

    2011-06-01

    Full Text Available A água é um reagente utilizado na maioria dos testes laboratoriais e por isso deve seguir um padrão de controle de qualidade rigoroso. O fornecimento urbano de água apresenta moléculas orgânicas, íons inorgânicos, partículas, coloides, gases, bactérias e seus produtos, que podem alterar os resultados dos exames laboratoriais e causar eventuais erros e falhas mecânicas em equipamentos analíticos. Para remover essas impurezas, é necessário recorrer a uma combinação de tecnologias de purificação. Há várias organizações que especificam normas sobre a água reagente, a fim de minimizar sua interferência nos ensaios laboratoriais. A maioria dos laboratórios utiliza as normas estabelecidas pelo Clinical and Laboratory Standards Institute (CLSI que classifica a água em: clinical laboratory reagent water (CLRW, special reagent water (SRW e instrumental feed water (IFW. O monitoramento da qualidade é realizado pela determinação de resistividade, condutividade, carbono orgânico total (TOC, controle microbiológico e endotoxinas. Os parâmetros são avaliados de acordo com a periodicidade estabelecida pela norma utilizada. Neste artigo, discutem-se a importância da água utilizada nos procedimentos laboratoriais, o controle da qualidade e as interferências nos ensaios laboratoriais.Water is a reagent used in most laboratory tests and, therefore, must follow stringent quality control standards. The urban water supply has organic molecules, inorganic ions, particles, colloids, gases, bacteria and their products, which may alter laboratory test results and cause occasional errors and mechanical failures in diagnostic equipment. To remove these impurities, it is necessary to use a combination of purification technologies. There are several organizations that specify reagent water standards to minimize its interference in laboratory assays. Most laboratories set standards established by the Clinical and Laboratory Standards

  8. Clinical and laboratory features of systemic sclerosis complicated with localized scleroderma.

    Science.gov (United States)

    Toki, Sayaka; Motegi, Sei-ichiro; Yamada, Kazuya; Uchiyama, Akihiko; Kanai, Sahori; Yamanaka, Masayoshi; Ishikawa, Osamu

    2015-03-01

    Localized scleroderma (LSc) primarily affects skin, whereas systemic sclerosis (SSc) affects skin and various internal organs. LSc and SSc are considered to be basically different diseases, and there is no transition between them. However, LSc and SSc have several common characteristics, including endothelial cell dysfunction, immune activation, and excess fibrosis of the skin, and there exist several SSc cases complicated with LSc during the course of SSc. Clinical and laboratory characteristics of SSc patients with LSc remain unclear. We investigated the clinical and laboratory features of 8 SSc patients with LSc among 220 SSc patients (3.6%). The types of LSc included plaque (5/8), guttate (2/8), and linear type (1/8). All cases were diagnosed as having SSc within 5 years before or after the appearance of LSc. In three cases of SSc with LSc (37.5%), LSc skin lesions preceded clinical symptoms of SSc. Young age, negative antinuclear antibody, and positive anti-RNA polymerase III antibody were significantly prevalent in SSc patients with LSc. The positivity of anticentromere antibody tended to be prevalent in SSc patients without LSc. No significant difference in the frequency of complications, such as interstitial lung disease, reflux esophagitis, and pulmonary artery hypertension, was observed. The awareness of these characteristic of SSc with LSc are essential to establish an early diagnosis and treatment. © 2015 Japanese Dermatological Association.

  9. Nursing students' experiences of and satisfaction with the clinical learning environment: the role of educational models in the simulation laboratory and in clinical practice.

    Science.gov (United States)

    Cremonini, Valeria; Ferri, Paola; Artioli, Giovanna; Sarli, Leopoldo; Piccioni, Enrico; Rubbi, Ivan

    2015-01-01

    Student satisfaction is an important element of the effectiveness of clinical placement, but there is little consensus in the literature as to the preferred model of clinical experience for undergraduate nursing students. The aim of this study was assess, for each academic year, students' perception of the roles of nurse teachers (NT) and clinical nurse supervisors (CNS) who perform tutoring in both apprenticeship and laboratories and to identify and evaluate students' satisfaction with the environment of clinical learning. This analytic cross-sectional study was conducted in a sample of 173 nursing students in the Northern Italy. The research instrument used is the Clinical learning environment, supervision and nurse teacher (CLES+T) evaluation scale. Data were statistically analysed. 94% of our sample answered questionnaires. Students expressed a higher level of satisfaction with their training experiences. The highest mean value was in the sub-dimension "Pedagogical atmosphere on the ward". Third year students expressed higher satisfaction levels in their relationship with the CNS and lower satisfaction levels in their relationship with the NT. This result may be due to the educational model that is adopted in the course, in which the simulation laboratory didactic activities of the third year are conducted by CNS, who also supervises experiences of clinical learning in the clinical practice. The main finding in this study was that the students' satisfaction with the supervisory relationship and the role of NT depend on how supervision in the clinical practice and in the simulation laboratory is organized.

  10. Physician satisfaction with clinical laboratory services: a College of American Pathologists Q-probes study of 138 institutions.

    Science.gov (United States)

    Jones, Bruce A; Bekeris, Leonas G; Nakhleh, Raouf E; Walsh, Molly K; Valenstein, Paul N

    2009-01-01

    Monitoring customer satisfaction is a valuable component of a laboratory quality improvement program. To survey the level of physician satisfaction with hospital clinical laboratory services. Participating institutions provided demographic and practice information and survey results of physician satisfaction with defined aspects of clinical laboratory services, rated on a scale of 1 (poor) to 5 (excellent). One hundred thirty-eight institutions participated in this study and submitted a total of 4329 physician surveys. The overall satisfaction score for all institutions ranged from 2.9 to 5.0. The median overall score for all participants was 4.1 (10th percentile, 3.6; 90th percentile, 4.5). Physicians were most satisfied with the quality/reliability of results and staff courtesy, with median values of excellent or good ratings of 89.9%. Of the 5 service categories that received the lowest percentage values of excellent/good ratings (combined scores of 4 and 5), 4 were related to turnaround time for inpatient stat, outpatient stat, routine, and esoteric tests. Surveys from half of the participating laboratories reported that 96% to 100% of physicians would recommend the laboratory to other physicians. The category most frequently selected as the most important category of laboratory services was quality/reliability of results (31.7%). There continues to be a high level of physician satisfaction and loyalty with clinical laboratory services. Test turnaround times are persistent categories of dissatisfaction and present opportunities for improvement.

  11. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    International Nuclear Information System (INIS)

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed

  12. Collection, transport and general processing of clinical specimens in Microbiology laboratory.

    Science.gov (United States)

    Sánchez-Romero, M Isabel; García-Lechuz Moya, Juan Manuel; González López, Juan José; Orta Mira, Nieves

    2018-02-06

    The interpretation and the accuracy of the microbiological results still depend to a great extent on the quality of the samples and their processing within the Microbiology laboratory. The type of specimen, the appropriate time to obtain the sample, the way of sampling, the storage and transport are critical points in the diagnostic process. The availability of new laboratory techniques for unusual pathogens, makes necessary the review and update of all the steps involved in the processing of the samples. Nowadays, the laboratory automation and the availability of rapid techniques allow the precision and turn-around time necessary to help the clinicians in the decision making. In order to be efficient, it is very important to obtain clinical information to use the best diagnostic tools. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  13. The laboratory information float, time-based competition, and point-of-care testing.

    Science.gov (United States)

    Friedman, B A

    1994-01-01

    A new term, the laboratory information float, should be substituted for turnaround-time when evaluating the performance of the clinical laboratory because it includes the time necessary to make test results both available (ready to use) and accessible (easy to use) to clinicians ordering tests. The laboratory information float can be greatly reduced simply by telescoping the analytic phase of laboratory testing into the preanalytic phase. Significant costs are incurred by such a change, some of which can be reduced by developing a mobile clinical laboratory (sometimes referred to as a "lab-on-a-slab" or "rolling thunder") to transport the analytic devices directly to patient care units. The mobile clinical laboratory should be equipped with an integrated personal computer that can communicate continuously with the host laboratory information system and achieve some semblance of continuous flow processing despite test performance in point-of-care venues. Equipping clinicians with palmtop computers will allow the mobile clinician to access test results and order tests on the run. Such devices can be easily configured to operate in a passive mode, accessing relevant information automatically instead of forcing clinicians to query the laboratory information system periodically for the test results necessary to render care to their patients. The laboratory information float of the year 2,000 will surely be measured in minutes through the judicious deployment of relevant technology such as mobile clinical laboratories and palmtop computers.

  14. Patients satisfaction with laboratory services at antiretroviral therapy clinics in public hospitals, Addis Ababa, Ethiopia.

    Science.gov (United States)

    Mindaye, Tedla; Taye, Bineyam

    2012-07-04

    Despite the fact that Ethiopia has scale up antiretroviral treatment (ART) program, little is known about the patient satisfaction with ART monitoring laboratory services in health facilities. We therefore aimed to assess patient satisfaction with laboratory services at ART clinics in public hospitals. Hospital based, descriptive cross sectional study was conducted from October to November 2010 among clients attending in nine public hospitals ART clinics in Addis Ababa Ethiopia. Patients' satisfaction towards laboratory services was assessed using exit interview structured questionnaire. Data were coded and entered using EPI info 2002 (Centers for Disease Control and Prevention Atlanta, GA) and analyzed using SPSS version 15 software (SPSS INC, Chicago, IL, USA). A total of 406 clients were involved in the study. Of these 255(62.8%) were females. The overall satisfaction rate for ART monitoring laboratory services was (85.5%). Patients were satisfied with measures taken by health care providers to keep confidentiality and ability of the person drawing blood to answer question (98.3% and 96.3% respectively). Moreover, the finding of this study revealed, statistical significant associations between the overall patients' satisfaction with waiting time to get blood drawing service, availability of ordered laboratory tests and waiting time to get laboratory result with (p ART monitoring laboratory services compared to those who underwent for more than 30 minutes. Overall, the satisfaction survey showed, most respondents were satisfied with ART monitoring laboratory services. However, factors such as improving accessibility and availability of latrines should be taken into consideration in order to improve the overall satisfaction.

  15. Lean-Agile Adaptations in Clinical Laboratory Accredited ISO 15189

    Directory of Open Access Journals (Sweden)

    Carlos Vilaplana Pérez

    2015-12-01

    Full Text Available It’s introduced Lean techniques in a Clinical Laboratory to improve the operability and the efficiency in continuous processes of analysis, failsafe systems, analysis of areas of value pursuit of zero defects and reduction of waste, and it promote continuous improvement in presented difficulties in adapting to the changing needs of the healthcare environment. Whereas it is necessary to incorporate certification and accreditation, note that the adaptability of the clinical laboratory to the changing needs of physicians in obtaining analytical information is reduced. The application of an agile methodology on analytical systems can provide a line of work that allows the incorporation of planning short work cycles on equips quickly with operational autonomy on the basis of demand and respecting the accreditation requirements and flexibility to ensure adequate performance as the intercomparison of results from the different units analytics, analytical quality and turnaround times. Between 2012 and 2014, a process of analysis and improvement was applied to circuits, a 5 s system, transportation of samples, inventory of reactive and samples, motion of personal and samples, reductions of waiting and delays, overproduction, over processing, and defects of results and reports. At last it seems necessary to apply the Agile methodology to adapt to the evolving necessities in time and the different origins of the samples. It’s have used modular systems where the modules of this study are programmed with immunoassay techniques and it has reduced the operative modules depending on the required activity, ensuring the goals of turnaround times, analytic quality, service, health care continuity, and keeping up with the ISO 15189 accreditation requirements. The results of applying the concept of Lean-Agile to a modular system allows us to reduce the associated costs to the seasonal variation of the health care demand and to adapt the system to the changes on

  16. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  17. Assembly and evaluation of an inventory of guidelines that are available to support clinical hematology laboratory practice.

    Science.gov (United States)

    Hayward, C P M; Moffat, K A; George, T I; Proytcheva, M

    2015-05-01

    Practice guidelines provide helpful support for clinical laboratories. Our goal was to assemble an inventory of publically listed guidelines on hematology laboratory topics, to create a resource for laboratories and for assessing gaps in practice-focused guidelines. PubMed and website searches were conducted to assemble an inventory of hematology laboratory-focused guidelines. Exclusions included annual, technical, or collaborative study reports, clinically focused guidelines, position papers, nomenclature, and calibration documents. Sixty-eight guidelines were identified on hematology laboratory practice topics from 12 organizations, some as joint guidelines. The median year of publication was 2010 and 15% were >10 years old. Coagulation topics had the largest numbers of guidelines, whereas some areas of practice had few guidelines. A minority of guidelines showed evidence of periodic updates, as some organizations did not remove or identify outdated guidelines. This inventory of current practice guidelines will encourage awareness and uptake of guideline recommendations by the worldwide hematology laboratory community, with the International Society for Laboratory Hematology facilitating ongoing updates. There is a need to encourage best guideline development practices, to ensure that hematology laboratory community has current, high-quality, and evidence-based practice guidelines that cover the full scope of hematology laboratory practice. © 2015 John Wiley & Sons Ltd.

  18. Verification of examination procedures in clinical laboratory for imprecision, trueness and diagnostic accuracy according to ISO 15189:2012: a pragmatic approach.

    Science.gov (United States)

    Antonelli, Giorgia; Padoan, Andrea; Aita, Ada; Sciacovelli, Laura; Plebani, Mario

    2017-08-28

    Background The International Standard ISO 15189 is recognized as a valuable guide in ensuring high quality clinical laboratory services and promoting the harmonization of accreditation programmes in laboratory medicine. Examination procedures must be verified in order to guarantee that their performance characteristics are congruent with the intended scope of the test. The aim of the present study was to propose a practice model for implementing procedures employed for the verification of validated examination procedures already used for at least 2 years in our laboratory, in agreement with the ISO 15189 requirement at the Section 5.5.1.2. Methods In order to identify the operative procedure to be used, approved documents were identified, together with the definition of performance characteristics to be evaluated for the different methods; the examination procedures used in laboratory were analyzed and checked for performance specifications reported by manufacturers. Then, operative flow charts were identified to compare the laboratory performance characteristics with those declared by manufacturers. Results The choice of performance characteristics for verification was based on approved documents used as guidance, and the specific purpose tests undertaken, a consideration being made of: imprecision and trueness for quantitative methods; diagnostic accuracy for qualitative methods; imprecision together with diagnostic accuracy for semi-quantitative methods. Conclusions The described approach, balancing technological possibilities, risks and costs and assuring the compliance of the fundamental component of result accuracy, appears promising as an easily applicable and flexible procedure helping laboratories to comply with the ISO 15189 requirements.

  19. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

  20. Retrospect over past 25 years at Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Aoki, Shigebumi

    1983-01-01

    Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, was established on April 1, 1956, with the aims of the investigation on the peaceful use of nuclear energy and of the education of scientists and engineers in this field. This report reviews the history of the Laboratory during 25 years and traces the process of growth concerning research divisions, buildings, large-scale experimental facilities and the education in the graduate course for nuclear engineering. In addition, considering what the Laboratory has to be and what the future plan will be, it is mentioned that the research interest should be extended to the field of nuclear fusion reactor, especially the blanket engineering, as a long-term future project of the Research Laboratory. (author)

  1. Clinical and laboratory characteristics of infectious mononucleosis by Epstein-Barr virus in Mexican children.

    Science.gov (United States)

    González Saldaña, Napoleón; Monroy Colín, Victor Antonio; Piña Ruiz, Georgina; Juárez Olguín, Hugo

    2012-07-20

    Infectious mononucleosis (IM) or Mononucleosis syndrome is caused by an acute infection of Epstein-Barr virus. In Latin American countries, there are little information pertaining to the clinical manifestations and complications of this disease. For this reason, the purpose of this work was to describe the clinical and laboratory characteristics of infection by Epstein-Barr virus in Mexican children with infectious mononucleosis. A descriptive study was carried out by reviewing the clinical files of patients less than 18 years old with clinical and serological diagnosis of IM by Epstein-Barr virus from November, 1970 to July, 2011 in a third level pediatric hospital in Mexico City. One hundred and sixty three cases of IM were found. The most frequent clinical signs were lymphadenopathy (89.5%), fever (79.7%), general body pain (69.3%), pharyngitis (55.2%), hepatomegaly (47.2%). The laboratory findings were lymphocytosis (41.7%), atypic lymphocytes (24.5%), and increased transaminases (30.9%), there were no rupture of the spleen and no deaths among the 163 cases. Our results revealed that IM appeared in earlier ages compared with that reported in industrialized countries, where adolescents are the most affected group. Also, the order and frequency of the clinical manifestations were different in our country than in industrialized ones.

  2. SeqReporter: automating next-generation sequencing result interpretation and reporting workflow in a clinical laboratory.

    Science.gov (United States)

    Roy, Somak; Durso, Mary Beth; Wald, Abigail; Nikiforov, Yuri E; Nikiforova, Marina N

    2014-01-01

    A wide repertoire of bioinformatics applications exist for next-generation sequencing data analysis; however, certain requirements of the clinical molecular laboratory limit their use: i) comprehensive report generation, ii) compatibility with existing laboratory information systems and computer operating system, iii) knowledgebase development, iv) quality management, and v) data security. SeqReporter is a web-based application developed using ASP.NET framework version 4.0. The client-side was designed using HTML5, CSS3, and Javascript. The server-side processing (VB.NET) relied on interaction with a customized SQL server 2008 R2 database. Overall, 104 cases (1062 variant calls) were analyzed by SeqReporter. Each variant call was classified into one of five report levels: i) known clinical significance, ii) uncertain clinical significance, iii) pending pathologists' review, iv) synonymous and deep intronic, and v) platform and panel-specific sequence errors. SeqReporter correctly annotated and classified 99.9% (859 of 860) of sequence variants, including 68.7% synonymous single-nucleotide variants, 28.3% nonsynonymous single-nucleotide variants, 1.7% insertions, and 1.3% deletions. One variant of potential clinical significance was re-classified after pathologist review. Laboratory information system-compatible clinical reports were generated automatically. SeqReporter also facilitated quality management activities. SeqReporter is an example of a customized and well-designed informatics solution to optimize and automate the downstream analysis of clinical next-generation sequencing data. We propose it as a model that may envisage the development of a comprehensive clinical informatics solution. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  3. Laboratory-acquired brucellosis

    DEFF Research Database (Denmark)

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9......Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  4. Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar.

    Science.gov (United States)

    Harrison, Steven M; Dolinsky, Jill S; Knight Johnson, Amy E; Pesaran, Tina; Azzariti, Danielle R; Bale, Sherri; Chao, Elizabeth C; Das, Soma; Vincent, Lisa; Rehm, Heidi L

    2017-10-01

    Data sharing through ClinVar offers a unique opportunity to identify interpretation differences between laboratories. As part of a ClinGen initiative, four clinical laboratories (Ambry, GeneDx, Partners Healthcare Laboratory for Molecular Medicine, and University of Chicago Genetic Services Laboratory) collaborated to identify the basis of interpretation differences and to investigate if data sharing and reassessment resolve interpretation differences by analyzing a subset of variants. ClinVar variants with submissions from at least two of the four participating laboratories were compared. For a subset of identified differences, laboratories documented the basis for discordance, shared internal data, independently reassessed with the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines, and then compared interpretations. At least two of the participating laboratories interpreted 6,169 variants in ClinVar, of which 88.3% were initially concordant. Laboratories reassessed 242/724 initially discordant variants, of which 87.2% (211) were resolved by reassessment with current criteria and/or internal data sharing; 12.8% (31) of reassessed variants remained discordant owing to differences in the application of the ACMG-AMP guidelines. Participating laboratories increased their overall concordance from 88.3 to 91.7%, indicating that sharing variant interpretations in ClinVar-thereby allowing identification of differences and motivation to resolve those differences-is critical to moving toward more consistent variant interpretations.Genet Med advance online publication 09 March 2017.

  5. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.J. (comp.)

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed.

  6. Technological Advances in Cardiovascular Safety Assessment Decrease Preclinical Animal Use and Improve Clinical Relevance.

    Science.gov (United States)

    Berridge, Brian R; Schultze, A Eric; Heyen, Jon R; Searfoss, George H; Sarazan, R Dustan

    2016-12-01

    Cardiovascular (CV) safety liabilities are significant concerns for drug developers and preclinical animal studies are predominately where those liabilities are characterized before patient exposures. Steady progress in technology and laboratory capabilities is enabling a more refined and informative use of animals in those studies. The application of surgically implantable and telemetered instrumentation in the acute assessment of drug effects on CV function has significantly improved historical approaches that involved anesthetized or restrained animals. More chronically instrumented animals and application of common clinical imaging assessments like echocardiography and MRI extend functional and in-life structural assessments into the repeat-dose setting. A growing portfolio of circulating CV biomarkers is allowing longitudinal and repeated measures of cardiac and vascular injury and dysfunction better informing an understanding of temporal pathogenesis and allowing earlier detection of undesirable effects. In vitro modeling systems of the past were limited by their lack of biological relevance to the in vivo human condition. Advances in stem cell technology and more complex in vitro modeling platforms are quickly creating more opportunity to supplant animals in our earliest assessments for liabilities. Continuing improvement in our capabilities in both animal and nonanimal modeling should support a steady decrease in animal use for primary liability identification and optimize the translational relevance of the animal studies we continue to do. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Downtime procedures for the 21st century: using a fully integrated health record for uninterrupted electronic reporting of laboratory results during laboratory information system downtimes.

    Science.gov (United States)

    Oral, Bulent; Cullen, Regina M; Diaz, Danny L; Hod, Eldad A; Kratz, Alexander

    2015-01-01

    Downtimes of the laboratory information system (LIS) or its interface to the electronic medical record (EMR) disrupt the reporting of laboratory results. Traditionally, laboratories have relied on paper-based or phone-based reporting methods during these events. We developed a novel downtime procedure that combines advance placement of orders by clinicians for planned downtimes, the printing of laboratory results from instruments, and scanning of the instrument printouts into our EMR. The new procedure allows the analysis of samples from planned phlebotomies with no delays, even during LIS downtimes. It also enables the electronic reporting of all clinically urgent results during downtimes, including intensive care and emergency department samples, thereby largely avoiding paper- and phone-based communication of laboratory results. With the capabilities of EMRs and LISs rapidly evolving, information technology (IT) teams, laboratories, and clinicians need to collaborate closely, review their systems' capabilities, and design innovative ways to apply all available IT functions to optimize patient care during downtimes. Copyright© by the American Society for Clinical Pathology.

  8. Factors shaping effective utilization of health information technology in urban safety-net clinics.

    Science.gov (United States)

    George, Sheba; Garth, Belinda; Fish, Allison; Baker, Richard

    2013-09-01

    Urban safety-net clinics are considered prime targets for the adoption of health information technology innovations; however, little is known about their utilization in such safety-net settings. Current scholarship provides limited guidance on the implementation of health information technology into safety-net settings as it typically assumes that adopting institutions have sufficient basic resources. This study addresses this gap by exploring the unique challenges urban resource-poor safety-net clinics must consider when adopting and utilizing health information technology. In-depth interviews (N = 15) were used with key stakeholders (clinic chief executive officers, medical directors, nursing directors, chief financial officers, and information technology directors) from staff at four clinics to explore (a) nonhealth information technology-related clinic needs, (b) how health information technology may provide solutions, and (c) perceptions of and experiences with health information technology. Participants identified several challenges, some of which appear amenable to health information technology solutions. Also identified were requirements for effective utilization of health information technology including physical infrastructural improvements, funding for equipment/training, creation of user groups to share health information technology knowledge/experiences, and specially tailored electronic billing guidelines. We found that despite the potential benefit that can be derived from health information technologies, the unplanned and uninformed introduction of these tools into these settings might actually create more problems than are solved. From these data, we were able to identify a set of factors that should be considered when integrating health information technology into the existing workflows of low-resourced urban safety-net clinics in order to maximize their utilization and enhance the quality of health care in such settings.

  9. Precise turnaround time measurement of laboratory processes using radiofrequency identification technology.

    Science.gov (United States)

    Mayer, Horst; Brümmer, Jens; Brinkmann, Thomas

    2011-01-01

    To implement Lean Six Sigma in our central laboratory we conducted a project to measure single pre-analytical steps influencing turnaround time (TAT) of emergency department (ED) serum samples. The traditional approach of extracting data from the Laboratory Information System (LIS) for a retrospective calculation of a mean TAT is not suitable. Therefore, we used radiofrequency identification (RFID) chips for real time tracking of individual samples at any pre-analytical step. 1,200 serum tubes were labelled with RFID chips and were provided to the emergency department. 3 RFID receivers were installed in the laboratory: at the outlet of the pneumatic tube system, at the centrifuge, and in the analyser area. In addition, time stamps of sample entry at the automated sample distributor and communication of results from the analyser were collected from LIS. 1,023 labelled serum tubes arrived at our laboratory. 899 RFID tags were used for TAT calculation. The following transfer times were determined (median 95th percentile in min:sec): pneumatic tube system --> centrifuge (01:25/04:48), centrifuge --> sample distributor (14:06/5:33), sample distributor --> analysis system zone (02:39/15:07), analysis system zone --> result communication (12:42/22:21). Total TAT was calculated at 33:19/57:40 min:sec. Manual processes around centrifugation were identified as a major part of TAT with 44%/60% (median/95th percentile). RFID is a robust, easy to use, and error-free technology and not susceptible to interferences in the laboratory environment. With this study design we were able to measure significant variations in a single manual sample transfer process. We showed that TAT is mainly influenced by manual steps around the centrifugation process and we concluded that centrifugation should be integrated in solutions for total laboratory automation.

  10. Clinical and Laboratory Characteristics of a Tinea Capitis Outbreak Among Novice Buddhist Monks.

    Science.gov (United States)

    Bunyaratavej, Sumanas; Leeyaphan, Charussri; Rujitharanawong, Chuda; Muanprasat, Chanai; Matthapan, Lalita

    2017-05-01

    Sixty novice Buddhist monks with tinea capitis confirmed according to clinical presentation and mycological laboratory finding were included in this study. Mixed-type clinical presentation was observed in approximately half of all cases, together with scarring alopecia (95%) and superficial fungal skin infection at locations other than the scalp (43.3%). The major isolated organism was Trichophyton violaceum, and mixed-organism infection was found in 27 cases (45%). Slow-onset presentation and an extensive area of infection were significantly associated with mixed-type clinical presentation. © 2017 Wiley Periodicals, Inc.

  11. An approach to quality and performance control in a computer-assisted clinical chemistry laboratory.

    Science.gov (United States)

    Undrill, P E; Frazer, S C

    1979-01-01

    A locally developed, computer-based clinical chemistry laboratory system has been in operation since 1970. This utilises a Digital Equipment Co Ltd PDP 12 and an interconnected PDP 8/F computer. Details are presented of the performance and quality control techniques incorporated into the system. Laboratory performance is assessed through analysis of results from fixed-level control sera as well as from cumulative sum methods. At a simple level the presentation may be considered purely indicative, while at a more sophisticated level statistical concepts have been introduced to aid the laboratory controller in decision-making processes. PMID:438340

  12. Knowledge and Practices of Toxoplasmosis among Clinical Laboratory Professionals: A Cross-Sectional Study in Durango, Mexico.

    Science.gov (United States)

    Alvarado-Esquivel, Cosme; Sánchez-Anguiano, Luis Francisco; Berumen-Segovia, Luis Omar; Hernández-Tinoco, Jesús; Rico-Almochantaf, Yazmin Del Rosario; Cisneros-Camacho, Alfredo; Cisneros-Martínez, Jorge Arturo

    2017-11-18

    Background : The aim of this study was to determine the level of knowledge and practices about toxoplasmosis in a sample of clinical laboratory professionals in Mexico. Methods : 192 clinical laboratory professionals were surveyed. They were asked about (1) Toxoplasma gondii ; (2) clinical manifestations, diagnosis, treatment, and epidemiology of toxoplasmosis; and (3) their practices with respect to toxoplasmosis. Results : The range of animals infected by T. gondii was known by 44.8% of participants. Clinical aspects of toxoplasmosis were known by up to 44.3% of subjects. Correct answers about the interpretation of serological markers of T. gondii infection were provided by up to 32.8% of participants. A minority (32.2%) of participants knew about a high number of false positive results of anti- T. gondii IgM antibody tests. Most participants (90.1%) did not know what the anti- T. gondii IgG avidity test was. Up to 55.7% of participants provided incorrect answers about the interpretation of serology tests for the treatment of pregnant women. Common routes of T. gondii infection were known by toxoplasmosis and a limited practice of laboratory tests among the professionals surveyed.

  13. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Defense Systems & Assessments: About Us Sandia National Laboratories Exceptional service in ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  14. The Usefulness of Clinical and Laboratory Parameters for Predicting Severity of Dehydration in Children with Acute Gastroenteritis

    OpenAIRE

    Hoxha, Teuta Faik; Azemi, Mehmedali; Avdiu, Muharrem; Ismaili-jaha, Vlora; Grajqevci, Violeta; Petrela, Ela

    2014-01-01

    ABSTRACT Background: An accurate assessment of the degree of dehydration in infants and children is important for proper decision-making and treatment. This emphasizes the need for laboratory tests to improve the accuracy of clinical assessment of dehydration. The aim of this study was to assess the relationship between clinical and laboratory parameters in the assessment of dehydration. Methods: We evaluated prospectively 200 children aged 1 month to 5 years who presented with diarrhea, vomi...

  15. [Laboratory accreditation and proficiency testing].

    Science.gov (United States)

    Kuwa, Katsuhiko

    2003-05-01

    ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories.

  16. The future of laboratory medicine - a 2014 perspective.

    Science.gov (United States)

    Kricka, Larry J; Polsky, Tracey G; Park, Jason Y; Fortina, Paolo

    2015-01-01

    Predicting the future is a difficult task. Not surprisingly, there are many examples and assumptions that have proved to be wrong. This review surveys the many predictions, beginning in 1887, about the future of laboratory medicine and its sub-specialties such as clinical chemistry and molecular pathology. It provides a commentary on the accuracy of the predictions and offers opinions on emerging technologies, economic factors and social developments that may play a role in shaping the future of laboratory medicine. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Technology-based strategies for promoting clinical reasoning skills in nursing education.

    Science.gov (United States)

    Shellenbarger, Teresa; Robb, Meigan

    2015-01-01

    Faculty face the demand of preparing nursing students for the constantly changing health care environment. Effective use of online, classroom, and clinical conferencing opportunities helps to enhance nursing students' clinical reasoning capabilities needed for practice. The growth of technology creates an avenue for faculty to develop engaging learning opportunities. This article presents technology-based strategies such as electronic concept mapping, electronic case histories, and digital storytelling that can be used to facilitate clinical reasoning skills.

  18. External quality assessment on detection of hepatitis C virus RNA in clinical laboratories of China.

    Science.gov (United States)

    Wang, Lu-nan; Zhang, Rui; Shen, Zi-yu; Chen, Wen-xiang; Li, Jin-ming

    2008-06-05

    As with many studies carried out in European countries, a quality assurance program has been established by the National Center for Clinical Laboratories in China (NCCL). The results showed that the external quality assessment significantly improves laboratory performance for quantitative evaluation of hepatitis C virus (HCV) RNA. Serum panels were delivered twice annually to the clinical laboratories which performed HCV RNA detection in China. Each panel made up of 5 coded samples. All laboratories were requested to carry out the detection within the required time period and report on testing results which contained qualitative and/or quantitative test findings, reagents used and relevant information about apparatus. All the positive samples were calibrated against the first International Standard for HCV RNA in a collaborative study and the range of comparison target value (TG) designated as +/- 0.5 log. The numbers of laboratories reporting on qualitative testing results for the first and second time external quality assessment were 168 and 167 in the year of 2003 and increased to 209 and 233 in 2007; the numbers of laboratories reporting on quantitative testing results were 134 and 147 in 2003 and rose to 340 and 339 in 2007. Deviation between the mean value for quantitative results at home in 2003 and the target value was above 0.5 log, which was comparatively high. By 2007, the target value was close to the national average except for the low concentrated specimens (10(3) IU/ml). The percentage of results within the range of GM +/- 0.5 log(10) varied from 8.2% to 93.5%. Some laboratories had some difficulties in the exact quantification of the lowest (3.00 log IU/ml) as well as of the highest viral levels (6.37 log IU/ml) values, very near to the limits of the dynamic range of the assays. The comparison of these results with the previous study confirms that a regular participation in external quality assessment (EQA) assures the achievement of a high

  19. Tuberculous meningits in adults in Turkey: Epidemiology, diagnosis, clinic and laboratory

    International Nuclear Information System (INIS)

    Hosoglu, S.; Geyik, M.F.; Balik, I.; Aygen, B.; Erol, S.; Aygencel, S.G.; Mert, A.; Saltoglu, N.; Doekmetas, I.; Felek, S.; Suembuel, M.; Irmak, H.; Aydin, K.; Ayaz, C.; Koekoglu, O.F.; Ucmak, H.; Satilmis, S.

    2003-01-01

    A retrospective study was performed to assess the epidemiology, diagnosis, clinic, and laboratory of the patients with tuberculous meningitis (TBM) in a multicentral study. The medical records of adult cases with TBM treated at 12 university hospitals throughout Turkey, between 1985 and 1998 were reviewed using a standardized protocol. The diagnosis of TMB was established with the clinical and laboratory findings and/or microbiological confirmation in cerebrospinal fluid (CSF). The non-microbiologically confirmed cases were diagnosed with five diagnostic sub-criteria which CSF findings, radiological findings, extra-neural tuberculosis, epidemiological findings and response to antituberculous therapy. A total of 469 patients were included in this study. Majority of the patients were from Southeast Anatolia (164 patients, 35.0%) and (108 patients, 23.0%) from East Anatolia regions. There was a close contact with a tuberculous patient in 88 of 341 patients (25.8%) and with a tuberculous family member in 53 of 288 patients (18.4%). BCG scar was positive in 161 of 392 patients (41.1%). Tuberculin skin test was done in 233 patients and was found to be negative in 75. Totally 115 patients died (24.5%) of whom 23 died in 24 hour after admittance. The diagnosis was confirmed with clinical findings and CSF culture and/or Ziehl-Nelson staining in 88 patients (18.8%). Besides clinical criteria, there were three or more diagnostic sub-criteria in 252 cases (53.7%), two diagnostic sub-criteria in 99 cases (21.1%), and any diagnostic sub-criteria in 30 patients (6.4%). Since TBM is a very critical disease, early diagnosis and treatment may reduce fatal outcome and morbidity

  20. Cost evaluation of clinical laboratory in Taiwan's National Health System by using activity-based costing.

    Science.gov (United States)

    Su, Bin-Guang; Chen, Shao-Fen; Yeh, Shu-Hsing; Shih, Po-Wen; Lin, Ching-Chiang

    2016-11-01

    To cope with the government's policies to reduce medical costs, Taiwan's healthcare service providers are striving to survive by pursuing profit maximization through cost control. This article aimed to present the results of cost evaluation using activity-based costing performed in the laboratory in order to throw light on the differences between costs and the payment system of National Health Insurance (NHI). This study analyzed the data of costs and income of the clinical laboratory. Direct costs belong to their respective sections of the department. The department's shared costs, including public expenses and administrative assigned costs, were allocated to the department's respective sections. A simple regression equation was created to predict profit and loss, and evaluate the department's break-even point, fixed cost, and contribution margin ratio. In clinical chemistry and seroimmunology sections, the cost per test was lower than the NHI payment and their major laboratory tests had revenues with the profitability ratio of 8.7%, while the other sections had a higher cost per test than the NHI payment and their major tests were in deficit. The study found a simple linear regression model as follows: "Balance=-84,995+0.543×income (R2=0.544)". In order to avoid deficit, laboratories are suggested to increase test volumes, enhance laboratory test specialization, and become marginal scale. A hospital could integrate with regional medical institutions through alliances or OEM methods to increase volumes to reach marginal scale and reduce laboratory costs, enhancing the level and quality of laboratory medicine.

  1. Simulation Technology Laboratory Building 970 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters

  2. 10 CFR 31.11 - General license for use of byproduct material for certain in vitro clinical or laboratory testing.

    Science.gov (United States)

    2010-01-01

    ... therefrom, to human beings or animals. (2) Iodine-131, in units not exceeding 10 microcuries each for use in... microcuries each for use in in vitro clinical or laboratory tests not involving internal or external... (tritium), in units not exceeding 50 microcuries each for use in in vitro clinical or laboratory tests not...

  3. Buried Transuranic Waste Studies Program at the Idaho National Engineering Laboratory: Annual technology assessment and progress report

    International Nuclear Information System (INIS)

    Low, J.O.; Allman, D.W.; Shaw, P.G.; Sill, C.W.

    1987-01-01

    In-situ grouting, an improved-confinement technology that could be applied to the Idaho National Engineering Laboratory (INEL) shallow-land-buried transuranic (TRU) waste, is being investigated by EG and G Idaho, Inc. In situ grouting has been demonstrated as the culmination of a two-year engineering feasibility test at the INEL. In situ stabilization and hydrologic isolation of a simulated buried TRU waste trench at an arid site were performed using an experimental dynamic compaction in situ grouting process developed by Rockwell Hanford Operations (RHO). A series of laboratory evaluations relative to the grout permeation characteristics of microfine particulate cements with INEL-type soil was performed prior to the grouting operations. In addition, an extensive pre-grouting hydrologic assessment of the test trench was performed to support the performance assessment analysis. Laboratory testing of various chemical materials yielded a suitable hydrologic tracer for use in the hydrologic monitoring phase of the experiment. Various plutonium transport laboratory evaluations were performed to assess the plutonium retention capabilities of a microfine grout/INEL-soil waste product similar to that expected to result if the grout is injected in situ into the INEL test trench. The test trench will be hydrologically assessed in FY 1987 to determine if the RHO grouting system attained the performance acceptance criteria of the experiment. The report includes a technology assessment of buried waste technologies developed by other DOE sites. Field demonstrations at ORNL and Hanford are reported under this technology assessment. Also included is information on activities related to buried waste management at the INEL. These include environmental surveillance of the Radioactive Waste Management Complex and the Subsurface Migration Studies Program

  4. Drug delivery system innovation and Health Technology Assessment: Upgrading from Clinical to Technological Assessment.

    Science.gov (United States)

    Panzitta, Michele; Bruno, Giorgio; Giovagnoli, Stefano; Mendicino, Francesca R; Ricci, Maurizio

    2015-11-30

    Health Technology Assessment (HTA) is a multidisciplinary health political instrument that evaluates the consequences, mainly clinical and economical, of a health care technology; the HTA aim is to produce and spread information on scientific and technological innovation for health political decision making process. Drug delivery systems (DDS), such as nanocarriers, are technologically complex but they have pivotal relevance in therapeutic innovation. The HTA process, as commonly applied to conventional drug evaluation, should upgrade to a full pharmaceutical assessment, considering the DDS complexity. This is useful to study more in depth the clinical outcome and to broaden its critical assessment toward pharmaceutical issues affecting the patient and not measured by the current clinical evidence approach. We draw out the expertise necessary to perform the pharmaceutical assessment and we propose a format to evaluate the DDS technological topics such as formulation and mechanism of action, physicochemical characteristics, manufacturing process. We integrated the above-mentioned three points in the Evidence Based Medicine approach, which is data source for any HTA process. In this regard, the introduction of a Pharmaceutics Expert figure in the HTA could be fundamental to grant a more detailed evaluation of medicine product characteristics and performances and to help optimizing DDS features to overcome R&D drawbacks. Some aspects of product development, such as manufacturing processes, should be part of the HTA as innovative manufacturing processes allow new products to reach more effectively patient bedside. HTA so upgraded may encourage resource allocating payers to invest in innovative technologies and providers to focus on innovative material properties and manufacturing processes, thus contributing to bring more medicines in therapy in a sustainable manner. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Development of excavation technologies at the Canadian underground research laboratory

    International Nuclear Information System (INIS)

    Kuzyk, Gregory W.; Martino, Jason B.

    2008-01-01

    Several countries, Canada being among them, are developing concepts for disposal of used fuel from power generating nuclear reactors. As in underground mining operations, the disposal facilities will require excavation of many kilometres of shafts and tunnels through the host rock mass. The need to maintain the stability of excavations and safety of workers will be of paramount importance. Also, excavations required for many radioactive waste repositories will ultimately need to be backfilled and sealed to maintain stability and minimize any potential for migration of radionuclides, should they escape their disposal containers. The method used to excavate the tunnels and shafts, and the rock damage that occurs due to excavation, will greatly affect the performance characteristics of repository sealing systems. The underground rock mechanics and geotechnical engineering work performed at the Canadian Underground Research Laboratory (URL) has led to the development of excavation technologies that reduce rock damage in subsurface excavations. This paper discusses the excavation methods used to construct the URL and their application in planning for the construction of similar underground laboratories and repositories for radioactive wastes. (author)

  6. Clinical and laboratory features of patients of Vietnamese descent with systemic lupus erythematosus.

    Science.gov (United States)

    Phan, J C; Bush, T M; Donald, F; Ward, M

    1999-01-01

    The prevalence rate and disease manifestations of systemic lupus erythematosus (SLE) have been noted to vary among different ethnic groups. There has been no description in the English literature of SLE in the Vietnamese population. This is the first report, which details the clinical and laboratory features as well as an estimation of the prevalence of SLE in patients with a Vietnamese ancestry living in the United States. We performed a retrospective chart review of clinical and laboratory features of patients of Vietnamese descent with SLE. The case finding was performed by a review of the rheumatology clinic records at two large teaching hospitals in Santa Clara County searching for patients with SLE with a Vietnamese surname. In addition, we recruited patients by contacting all of the rheumatologists practicing in the county. Twenty-three patients of Vietnamese descent were identified with SLE in Santa Clara County. The estimated prevalence of SLE in the patients of Vietnamese descent was 42 cases per 100 000 persons. Eighty-seven per cent of the cases were born in Vietnam. The clinical and laboratory features of SLE were similar to prior published reviews except for a relatively high prevalence of anti-RNP antibody (54%). The patients with anti-RNP antibody exhibited features of overlap syndrome. There was a high rate of exposure to tuberculosis (TB). Fifty-eight per cent of patients had a positive purified protein derivative (PPD) skin test and 27% of patients had a history of clinical TB. Forty-four per cent of patients had evidence of hepatitis B exposure. The prevalence of SLE in the Vietnamese population in Santa Clara County is similar to that of other Asian populations. There was a relatively high prevalence of anti-RNP antibody in our patient group which was associated with overlap features. As expected in an immigrant population from Southeast Asia, there was a high rate of prior exposure to tuberculosis and hepatitis B. Clinicians should diligently

  7. Physician Satisfaction With Clinical Laboratory Services: A College of American Pathologists Q-Probes Study of 81 Institutions.

    Science.gov (United States)

    McCall, Shannon J; Souers, Rhona J; Blond, Barbara; Massie, Larry

    2016-10-01

    -Assessment of customer satisfaction is a vital component of the laboratory quality improvement program. -To survey the level of physician satisfaction with hospital clinical laboratory services. -Participating institutions provided demographic information and survey results of physician satisfaction, with specific features of clinical laboratory services individually rated on a scale of 5 (excellent) to 1 (poor). -Eighty-one institutions submitted 2425 surveys. The median overall satisfaction score was 4.2 (10th percentile, 3.6; 90th percentile, 4.6). Of the 16 surveyed areas receiving the highest percentage of excellent/good ratings (combined scores of 4 and 5), quality of results was highest along with test menu adequacy, staff courtesy, and overall satisfaction. Of the 4 categories receiving the lowest percentage values of excellent/good ratings, 3 were related to turnaround time for inpatient "STAT" (tests performed immediately), outpatient STAT, and esoteric tests. The fourth was a new category presented in this survey: ease of electronic order entry. Here, 11.4% (241 of 2121) of physicians assigned below-average (2) or poor (1) scores. The 5 categories deemed most important to physicians included quality of results, turnaround times for inpatient STAT, routine, and outpatient STAT tests, and clinical report format. Overall satisfaction as measured by physician willingness to recommend their laboratory to another physician remains high at 94.5% (2160 of 2286 respondents). -There is a continued trend of high physician satisfaction and loyalty with clinical laboratory services. Physician dissatisfaction with ease of electronic order entry represents a new challenge. Test turnaround times are persistent areas of dissatisfaction, representing areas for improvement.

  8. Review of clinical and laboratory features of human Brucellosis

    Directory of Open Access Journals (Sweden)

    Mantur B

    2007-01-01

    Full Text Available Infection with Brucella spp. continues to pose a human health risk globally despite strides in eradicating the disease from domestic animals. Brucellosis has been an emerging disease since the discovery of Brucella melitensis by Sir David Bruce in 1887. Although many countries have eradicated B. abortus from cattle, in some areas B. melitensis and B. suis have emerged as causes of this infection in cattle, leading to human infections. Currently B. melitensis remains the principal cause of human brucellosis worldwide including India. The recent isolation of distinct strains of Brucella from marine mammals as well as humans is an indicator of an emerging zoonotic disease. Brucellosis in endemic and non-endemic regions remains a diagnostic puzzle due to misleading non-specific manifestations and increasing unusual presentations. Fewer than 10% of human cases of brucellosis may be clinically recognized and treated or reported. Routine serological surveillance is not practiced even in Brucella - endemic countries and we suggest that this should be a part of laboratory testing coupled with a high index of clinical suspicion to improve the level of case detection. The screening of family members of index cases of acute brucellosis in an endemic area should be undertaken to pick up additional unrecognised cases. Rapid and reliable, sensitive and specific, easy to perform and automated detection systems for Brucella spp. are urgently needed to allow early diagnosis and adequate antibiotic therapy in time to decrease morbidity / mortality. The history of travel to endemic countries along with exposure to animals and exotic foods are usually critical to making the clinical diagnosis. Laboratory testing is indispensable for diagnosis. Therefore alertness of clinician and close collaboration with microbiologist are essential even in endemic areas to correctly diagnose and treat this protean human infection. Existing treatment options, largely based on

  9. The Clinical Proteomic Technologies for Cancer | Antibody Portal

    Science.gov (United States)

    An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.

  10. 76 FR 56406 - Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army...

    Science.gov (United States)

    2011-09-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army Research, Development and Engineering Command; Tank... personnel management demonstration project for eligible TARDEC employees. Within that notice the table...

  11. Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Claggett, S.L.

    1999-01-01

    This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years

  12. Clinical and Laboratory Findings in Various Reasons of Thrombocytopenia

    Directory of Open Access Journals (Sweden)

    Serkan Akin

    2017-12-01

    Full Text Available Background: Thrombocytopenia is an important cause of bleeding. Different clinical conditions associated with thrombocytopenia and their reflections to the hemostatic table will be examined in this study. Methods: A total of 100 patients with thrombocytopenia who were treated in Hacettepe University between 1993 and 2013, 29 with thrombotic thrombocytopenic purpura (TTP, 36 with immune thrombocytopenic purpura (ITP, and 35 with aplastic anemia (AA, were included in the study. Clinical features and laboratory values were reviewed. Results: Thrombosis, fever, and sepsis were more frequently seen in TTP. The most common bleeding type was subcutaneous bleeding in all patient groups. Among patients with TTP, twenty-five patients (86, 2% had fever, 26 patients (89, 7% had a neurologic disorder, and 16 patients (55, 1% had renal dysfunction. Regarding the diagnostic criteria of TTP, 13 patients (44, 8% met five, 12 (41, 4% patients met four and 4 (13, 8% patients met three criteria. The median session of plasmapheresis was 17 (range; 2-127. There was no relation between session count and remission (p=0.28. Conclusion: The severity of clinical presentation and underlying disorders are the most important points with which to approach patients with thrombocytopenia. Clinical reflections may help to identify the cause of thrombocytopenia but not sufficiently demonstrative for diagnosis. [J Contemp Med 2017; 7(4.000: 316-322

  13. Medical technology advances from space research

    Science.gov (United States)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  14. From professional monopoly to corporate oligopoly:the clinical laboratory industry in transition.

    Science.gov (United States)

    Bailey, R M

    1977-02-01

    Until the mid-1960s the nonhospital clinical laboratory industry was dominated by pathologists. The ethics of medical professionalism protected the pathologists' market from price competition and from any serious threat from new entrants into the market. Immune from the competitive pressures of the marketplace, pathologists exerted monopoly control in local markets. That power was eroded by laboratories operated by technologists and bioanalysts and was finally overcome by the entry of large corporations into the industry. The market power of the largest corporate laboratories is now growing to a point where competition may again be thwarted. The professional ethics of pathologists allowed high prices, but there was little push toward higher volume. The commercial ethics of the corporate entrants brought lower prices but resulted in strong pressure for greater test quantities. In either case, the power wielded by the dominant producer would seem to go against the consumer's interests.

  15. Biocarbon urinary conduit: laboratory experience and clinical applications.

    Science.gov (United States)

    Kobashi, L I; Raible, D A

    1980-07-01

    A new urinary conduit utilizing pure vitreous carbon has been used successfully in dogs. Pure carbon appears to be inert with respect to urine and urothelium. Lack of urinary salt encrustation on the exposed surface provides a well-functioning urinary conduit for vesical drainage. Twenty-one vesicostomies were performed in dogs. Careful follow-up and histologic studies of removed specimens were done to establish the biocompatibility of pure carbon. All vesicostomies functioned well. A description of the device, protocol, and results of laboratory experimentation are outlined. The surgical procedure is explained in detail. Results encourage the clinical trial of these devices in humans. Indications include patients with neurogenic vesicla dysfunction and those with total urinary incontinence, both of which require permanent indwelling catheters.

  16. Developing a clinical proton accelerator facility: Consortium-assisted technology transfer

    International Nuclear Information System (INIS)

    Slater, J.M.; Miller, D.W.; Slater, J.W.

    1991-01-01

    A hospital-based proton accelerator facility has emerged from the efforts of a consortium of physicists, engineers and physicians from several high-energy physics laboratories, industries and universities, working together to develop the requirements and conceptual design for a clinical program. A variable-energy medical synchrotron for accelerating protons to a prescribed energy, intensity and beam quality, has been placed in a hospital setting at Loma Linda University Medical Center for treating patients with localized cancer. Treatments began in October 1990. Scientists from Fermi National Accelerator Laboratory; Harvard Cyclotron Laboratory; Lawrence Berkeley Laboratories; the Paul Scherrer Institute; Uppsala, Sweden; Argonne, Brookhaven and Los Alamos National Laboratories; and Loma Linda University, all cooperated to produce the conceptual design. Loma Linda University contracted with Fermi National Accelerator Laboratory to design and build a 250 MeV synchrotron and beam transport system, the latter to guide protons into four treatment rooms. Lawrence Berkeley Laboratories consulted with Loma Linda University on the design of the beam delivery system (nozzle). A gantry concept devised by scientists at Harvard Cyclotron Laboratory, was adapted and fabricated by Science Applications International Corporation. The control and safety systems were designed and developed by Loma Linda University Radiation Research Laboratory. Presently, the synchrotron, beam transport system and treatment room hardware have been installed and tested and are operating satisfactorily

  17. Bringing ayahuasca to the clinical research laboratory.

    Science.gov (United States)

    Riba, Jordi; Barbanoj, Manel J

    2005-06-01

    Since the winter of 1999, the authors and their research team have been conducting clinical studies involving the administration of ayahuasca to healthy volunteers. The rationale for conducting this kind of research is twofold. First, the growing interest of many individuals for traditional indigenous practices involving the ingestion of natural psychotropic drugs such as ayahuasca demands the systematic study of their pharmacological profiles in the target species, i.e., human beings. The complex nature of ayahuasca brews combining a large number of pharmacologically active compounds requires that research be carried out to establish the safety and overall pharmacological profile of these products. Second, the authors believe that the study of psychedelics in general calls for renewed attention. Although the molecular and electrophysiological level effects of these drugs are relatively well characterized, current knowledge of the mechanisms by which these compounds modify the higher order cognitive processes in the way they do is still incomplete, to say the least. The present article describes the development of the research effort carried out at the Autonomous University of Barcelona, commenting on several methodological aspects and reviewing the basic clinical findings. It also describes the research currently underway in our laboratory, and briefly comments on two new studies we plan to undertake in order to further our knowledge of the pharmacology of ayahuasca.

  18. Meeting the challenges of globalisation and miniaturisation in laboratory services.

    Science.gov (United States)

    Melo, Murilo R; Rosenfeld, Luiz Gastão

    2007-12-01

    In the recent years, two trends emerged in the clinical laboratory: the miniaturisation of equipments to provide point-of-care testing (POCT) and a concentration of laboratories through mergers and acquisitions. New technology has expanded both opportunities. POCT provides the benefit of a convenient test where it is needed, i.e. near the patient. For companies, it is easier and cheaper to develop such tests, since technical requirements are somewhat less stringent, being an interesting area for start-ups. Nanotechnology is one of the most fascinating technical advances, with some advocating a US$1 trillion market-size for it by 2015. Laboratory tests and biomaterials will probably be greatly influenced by it, with new approaches for molecular diagnosis, with tests that can target both DNA and proteins in a process that eliminates PCR and allows multiplex analysis. On the other hand, there is a strong trend towards the globalisation of clinical laboratories and that occurs in four areas: a) Consumption of health services abroad; b) Movement of Health Personnel; c) Cross-Border delivery of trade; and d) Commercial presence. Each of these areas presents new challenges and opportunities for clinical laboratories, what will certainly shape the way we work today and in the future.

  19. On the improvement of blood sample collection at clinical laboratories.

    Science.gov (United States)

    Grasas, Alex; Ramalhinho, Helena; Pessoa, Luciana S; Resende, Mauricio G C; Caballé, Imma; Barba, Nuria

    2014-01-09

    Blood samples are usually collected daily from different collection points, such hospitals and health centers, and transported to a core laboratory for testing. This paper presents a project to improve the collection routes of two of the largest clinical laboratories in Spain. These routes must be designed in a cost-efficient manner while satisfying two important constraints: (i) two-hour time windows between collection and delivery, and (ii) vehicle capacity. A heuristic method based on a genetic algorithm has been designed to solve the problem of blood sample collection. The user enters the following information for each collection point: postal address, average collecting time, and average demand (in thermal containers). After implementing the algorithm using C programming, this is run and, in few seconds, it obtains optimal (or near-optimal) collection routes that specify the collection sequence for each vehicle. Different scenarios using various types of vehicles have been considered. Unless new collection points are added or problem parameters are changed substantially, routes need to be designed only once. The two laboratories in this study previously planned routes manually for 43 and 74 collection points, respectively. These routes were covered by an external carrier company. With the implementation of this algorithm, the number of routes could be reduced from ten to seven in one laboratory and from twelve to nine in the other, which represents significant annual savings in transportation costs. The algorithm presented can be easily implemented in other laboratories that face this type of problem, and it is particularly interesting and useful as the number of collection points increases. The method designs blood collection routes with reduced costs that meet the time and capacity constraints of the problem.

  20. Implementation of Cloud based next generation sequencing data analysis in a clinical laboratory.

    Science.gov (United States)

    Onsongo, Getiria; Erdmann, Jesse; Spears, Michael D; Chilton, John; Beckman, Kenneth B; Hauge, Adam; Yohe, Sophia; Schomaker, Matthew; Bower, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2014-05-23

    The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories. To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample. We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.

  1. Solid oxide cell R&D at Riso National Laboratory-and its transfer to technology

    DEFF Research Database (Denmark)

    Linderoth, Søren

    2009-01-01

    Risø National Laboratory has conducted R&D on solid oxide cells for almost 20 years—all the time together with industries with interest in deploying the technology when mature. Risø National Laboratory (Risø) and Topsoe Fuel Cell A/S (TOFC) have for several years jointly carried out a development...... programme focusing on low cost manufacturing of flat planar anode-supported cells and stacks employing metallic interconnects. The consortium of Risø and TOFC has up-scaled its production capacity of anode-supported cells to about 1,100 per week. New generations of SOFCs are being developed...

  2. Financial incentives, quality improvement programs, and the adoption of clinical information technology.

    Science.gov (United States)

    Robinson, James C; Casalino, Lawrence P; Gillies, Robin R; Rittenhouse, Diane R; Shortell, Stephen S; Fernandes-Taylor, Sara

    2009-04-01

    Physician use of clinical information technology (CIT) is important for the management of chronic illness, but has lagged behind expectations. We studied the role of health insurers' financial incentives (including pay-for-performance) and quality improvement initiatives in accelerating adoption of CIT in large physician practices. National survey of all medical groups and independent practice association (IPA) physician organizations with 20 or more physicians in the United States in 2006 to 2007. The response rate was 60.3%. Use of 19 CIT capabilities was measured. Multivariate statistical analysis of financial and organizational factors associated with adoption and use of CIT. Use of information technology varied across physician organizations, including electronic access to laboratory test results (medical groups, 49.3%; IPAs, 19.6%), alerts for potential drug interactions (medical groups, 33.9%; IPAs, 9.5%), electronic drug prescribing (medical groups, 41.9%; IPAs, 25.1%), and physician use of e-mail with patients (medical groups, 34.2%; IPAs, 29.1%). Adoption of CIT was stronger for physician organizations evaluated by external entities for pay-for-performance and public reporting purposes (P = 0.042) and for those participating in quality improvement initiatives (P < 0.001). External incentives and participation in quality improvement initiatives are associated with greater use of CIT by large physician practices.

  3. Point-of-care testing (POCT) and evidence-based laboratory medicine (EBLM) - does it leverage any advantage in clinical decision making?

    Science.gov (United States)

    Florkowski, Christopher; Don-Wauchope, Andrew; Gimenez, Nuria; Rodriguez-Capote, Karina; Wils, Julien; Zemlin, Annalise

    Point-of-care testing (POCT) is the analysis of patient specimens outside the clinical laboratory, near or at the site of patient care, usually performed by clinical staff without laboratory training, although it also encompasses patient self-monitoring. It is able to provide a rapid result near the patient and which can be acted upon immediately. The key driver is the concept that clinical decision making may be delayed when samples are sent to the clinical laboratory. Balanced against this are considerations of increased costs for purchase and maintenance of equipment, staff training, connectivity to the laboratory information system (LIS), quality control (QC) and external quality assurance (EQA) procedures, all required for accreditation under ISO 22870. The justification for POCT depends upon being able to demonstrate that a more timely result (shorter turnaround times (TATs)) is able to leverage a clinically important advantage in decision making compared with the central laboratory (CL). In the four decades since POCT was adapted for the self-monitoring of blood glucose levels by subjects with diabetes, numerous new POCT methodologies have become available, enabling the clinician to receive results and initiate treatment more rapidly. However, these instruments are often operated by staff not trained in laboratory medicine and hence are prone to errors in the analytical phase (as opposed to laboratory testing where the analytical phase has the least errors). In some environments, particularly remote rural settings, the CL may be at a considerable distance and timely availability of cardiac troponins and other analytes can triage referrals to the main centers, thus avoiding expensive unnecessary patient transportation costs. However, in the Emergency Department, availability of more rapid results with POCT does not always translate into shorter stays due to other barriers to implementation of care. In this review, we apply the principles of evidence

  4. FEATURES OF TECHNOLOGIES CREATE INTERACTIVE ELECTRONIC DOCUMENT FOR SUPPORT OF LABORATORY PRACTICAL PHYSICS

    Directory of Open Access Journals (Sweden)

    Mykola A. Meleshko

    2014-02-01

    Full Text Available The article discusses the content of the «flash-book» construct, defining its properties and possible components. There are presented some examples of components programming steps of “authoring flash – book”, considered the possibility of using such an electronic document to optimize the learning process at the Technical University in the performance of laboratory training on general physics. The technique of its using to provide individualized approach to learning and the use of various experimental base from classical to digital equipment laboratories is proposed. It was carried out the analysis of ways to improve such interactive electronic document for the development of information technology competence of engineering students.

  5. Implementation of workflow engine technology to deliver basic clinical decision support functionality.

    Science.gov (United States)

    Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B

    2011-04-10

    Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology

  6. Implementation of workflow engine technology to deliver basic clinical decision support functionality

    Science.gov (United States)

    2011-01-01

    Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of

  7. The economic impact of poor sample quality in clinical chemistry laboratories: results from a global survey.

    Science.gov (United States)

    Erdal, Erik P; Mitra, Debanjali; Khangulov, Victor S; Church, Stephen; Plokhoy, Elizabeth

    2017-03-01

    Background Despite advances in clinical chemistry testing, poor blood sample quality continues to impact laboratory operations and the quality of results. While previous studies have identified the preanalytical causes of lower sample quality, few studies have examined the economic impact of poor sample quality on the laboratory. Specifically, the costs associated with workarounds related to fibrin and gel contaminants remain largely unexplored. Methods A quantitative survey of clinical chemistry laboratory stakeholders across 10 international regions, including countries in North America, Europe and Oceania, was conducted to examine current blood sample testing practices, sample quality issues and practices to remediate poor sample quality. Survey data were used to estimate costs incurred by laboratories to mitigate sample quality issues. Results Responses from 164 participants were included in the analysis, which was focused on three specific issues: fibrin strands, fibrin masses and gel globules. Fibrin strands were the most commonly reported issue, with an overall incidence rate of ∼3%. Further, 65% of respondents indicated that these issues contribute to analyzer probe clogging, and the majority of laboratories had visual inspection and manual remediation practices in place to address fibrin- and gel-related quality problems (55% and 70%, respectively). Probe maintenance/replacement, visual inspection and manual remediation were estimated to carry significant costs for the laboratories surveyed. Annual cost associated with lower sample quality and remediation related to fibrin and/or gel globules for an average US laboratory was estimated to be $100,247. Conclusions Measures to improve blood sample quality present an important step towards improved laboratory operations.

  8. Tritium technology development in EEC laboratories contributions to design goals for NET

    International Nuclear Information System (INIS)

    Dinner, P.; Chazalon, M.; Leger, D.; Rohrig, H.D.; Penzhorn, R.D.

    1988-01-01

    An overview is given of the tritium technology activities carried out in the European national laboratories associated with the European Fusion Programme and in the European Joint Research Center. The relationship of these activities to the Next European Torus (NET) design priorities is discussed, and the current status of the research is summarised. Future developments, required for NET, which will be addressed in the definition of the next 5-year programme are also presented

  9. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials-A systematic review.

    Science.gov (United States)

    Heintze, Siegward D; Ilie, Nicoleta; Hickel, Reinhard; Reis, Alessandra; Loguercio, Alessandro; Rousson, Valentin

    2017-03-01

    To evaluate a range of mechanical parameters of composite resins and compare the data to the frequency of fractures and wear in clinical studies. Based on a search of PubMed and SCOPUS, clinical studies on posterior composite restorations were investigated with regard to bias by two independent reviewers using Cochrane Collaboration's tool for assessing risk of bias in randomized trials. The target variables were chipping and/or fracture, loss of anatomical form (wear) and a combination of both (summary clinical index). These outcomes were modelled by time and material in a linear mixed effect model including random study and experiment effects. The laboratory data from one test institute were used: flexural strength, flexural modulus, compressive strength, and fracture toughness (all after 24-h storage in distilled water). For some materials flexural strength data after aging in water/saliva/ethanol were available. Besides calculating correlations between clinical and laboratory outcomes, we explored whether a model including a laboratory predictor dichotomized at a cut-off value better predicted a clinical outcome than a linear model. A total of 74 clinical experiments from 45 studies were included involving 31 materials for which laboratory data were also available. A weak positive correlation between fracture toughness and clinical fractures was found (Spearman rho=0.34, p=0.11) in addition to a moderate and statistically significant correlation between flexural strength and clinical wear (Spearman rho=0.46, p=0.01). When excluding those studies with "high" risk of bias (n=18), the correlations were generally weaker with no statistically significant correlation. For aging in ethanol, a very strong correlation was found between flexural strength decrease and clinical index, but this finding was based on only 7 materials (Spearman rho=0.96, p=0.0001). Prediction was not consistently improved with cutoff values. Correlations between clinical and laboratory

  10. Improvement of the quality control program of the clinical dosimeters calibration laboratory of the IPEN/CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Damatto, Willian B.; Potiens, Maria da Penha A.; Vivolo, Vitor, E-mail: wbdamatto@ipen.br, E-mail: mppotiens@ipen.br, E-mail: vivolo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    A set of clinical dosimeters (thimble ionization chamber coupled to an electrometer) commonly used in radiotherapy in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analysis parameters for the dosimeters behaviour were established, specifying their sensitivities and operating characteristics. Applied tests were: repeatability, reproducibility and current leakage. Thus it was possible to determine the most common defects found in these equipment and the actions that could be taken to prevent it (clinical dosimeters quality control programs). The behaviour of 167 dosimeters was analyzed and in this study, 62 of them have been tested. The main problem detected during calibration tests was current leakage, i.e. electronic noise. The tests were applied to the routine measurements at the Calibration Laboratory implementing an ideal calibration procedure. New calibration criteria were established following international recommendations. Therefore, it was made the improvement of the quality control programme of the clinical dosimeters calibration laboratory, benefiting the users of such equipment with better consistent calibration measurements. (author)

  11. Improvement of the quality control program of the clinical dosimeters calibration laboratory of the IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Damatto, Willian B.; Potiens, Maria da Penha A.; Vivolo, Vitor

    2013-01-01

    A set of clinical dosimeters (thimble ionization chamber coupled to an electrometer) commonly used in radiotherapy in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analysis parameters for the dosimeters behaviour were established, specifying their sensitivities and operating characteristics. Applied tests were: repeatability, reproducibility and current leakage. Thus it was possible to determine the most common defects found in these equipment and the actions that could be taken to prevent it (clinical dosimeters quality control programs). The behaviour of 167 dosimeters was analyzed and in this study, 62 of them have been tested. The main problem detected during calibration tests was current leakage, i.e. electronic noise. The tests were applied to the routine measurements at the Calibration Laboratory implementing an ideal calibration procedure. New calibration criteria were established following international recommendations. Therefore, it was made the improvement of the quality control programme of the clinical dosimeters calibration laboratory, benefiting the users of such equipment with better consistent calibration measurements. (author)

  12. Technology '90

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report

  13. Quality Management Systems in the Clinical Laboratories in Latin America

    Science.gov (United States)

    2015-01-01

    The implementation of management systems in accordance with standards like ISO 9001:2008 (1,2) in the clinical laboratories has conferred and added value of reliability and therefore a very significant input to patient safety. As we know the ISO 9001:2008 (1) a certification standard, and ISO 15189:2012 (2) an accreditation standard, both, at the time have generated institutional memory where they have been implemented, the transformation of culture focused on correct execution, control and following, evidence needed and the importance of register. PMID:27683495

  14. Assessing Clinical Laboratory Quality: A College of American Pathologists Q-Probes Study of Prothrombin Time INR Structures, Processes, and Outcomes in 98 Laboratories.

    Science.gov (United States)

    Howanitz, Peter J; Darcy, Theresa P; Meier, Frederick A; Bashleben, Christine P

    2015-09-01

    The anticoagulant warfarin has been identified as the second most frequent drug responsible for serious, disabling, and fatal adverse drug events in the United States, and its effect on blood coagulation is monitored by the laboratory test called international normalized ratio (INR). To determine the presence of INR policies and procedures, INR practices, and completeness and timeliness of reporting critical INR results in participants' clinical laboratories. Participants reviewed their INR policies and procedure requirements, identified their practices by using a questionnaire, and studied completeness of documentation and timeliness of reporting critical value INR results for outpatients and emergency department patients. In 98 participating institutions, the 5 required policies and procedures were in place in 93% to 99% of clinical laboratories. Fifteen options for the allowable variations among duplicate results from different analyzers, 12 different timeliness goals for reporting critical values, and 18 unique critical value limits were used by participants. All required documentation elements were present in 94.8% of 192 reviewed INR validation reports. Critical value INR results were reported within the time frame established by the laboratory for 93.4% of 2604 results, but 1.0% of results were not reported. Although the median laboratories successfully communicated all critical results within their established time frames and had all the required validation elements based in their 2 most recent INR calculations, those participants at the lowest 10th percentile were successful in 80.0% and 85.7% of these requirements, respectively. Significant opportunities exist for adherence to INR procedural requirements and for practice patterns and timeliness goals for INR critical results' reporting.

  15. Critical appraisal of the Vienna consensus: performance indicators for assisted reproductive technology laboratories.

    Science.gov (United States)

    Lopez-Regalado, María Luisa; Martínez-Granados, Luis; González-Utor, Antonio; Ortiz, Nereyda; Iglesias, Miriam; Ardoy, Manuel; Castilla, Jose A

    2018-05-24

    The Vienna consensus, based on the recommendations of an expert panel, has identified 19 performance indicators for assisted reproductive technology (ART) laboratories. Two levels of reference values are established for these performance indicators: competence and benchmark. For over 10 years, the Spanish embryology association (ASEBIR) has participated in the definition and design of ART performance indicators, seeking to establish specific guidelines for ART laboratories to enhance quality, safety and patient welfare. Four years ago, ASEBIR took part in an initiative by AENOR, the Spanish Association for Standardization and Certification, to develop a national standard in this field (UNE 17900:2013 System of quality management for assisted reproduction laboratories), extending the former requirements, based on ISO 9001, to include performance indicators. Considering the experience acquired, we discuss various aspects of the Vienna consensus and consider certain discrepancies in performance indicators between the consensus and UNE 179007:2013, and analyse the definitions, methodology and reference values used. Copyright © 2018. Published by Elsevier Ltd.

  16. Survey of Laboratories and Implementation of the Federal Defense Laboratory Diversification Program. Annex B. Department of the Navy Domestic Technology Transfer

    Science.gov (United States)

    1993-10-01

    overseas laboratories. Dental capabilities include oral microbiology, manufacturing technology for unique (dental prosthetic ) items, dental materials...with the National Center of Excellence in Metalworking to rectify production problems in manufacturing low loss, high pressure valves used in...34 Proceedings of the ASTE Fifth Symposium on Composite Materials: Fatigue and Fracture , May 1993. Chen, J. S. J., T. J. Praisner, L. A. Fields, R. T. Norhold and

  17. Sexually transmitted infections in women: A correlation of clinical and laboratory diagnosis in cases of vaginal discharge syndrome

    Directory of Open Access Journals (Sweden)

    Vidyalaxmi Chauhan

    2014-01-01

    Full Text Available Aims: This study compares the clinical and laboratory diagnosis of vaginal discharge syndrome. Settings and Design: This cross-sectional study was carried out at the gynaecology outpatient department of a tertiary care hospital in Gujarat, India. Material and Methods: Total of 180 females diagnosed as vaginal discharge or cervicitis based on syndromic approach and were recruited for the study. Their clinical profile was noted and they were investigated for bacterial vaginosis, trichomoniasis, candidiasis, gonorrhoea and chlamydia infection. Results: Lower abdominal pain (35% followed by burning micturition (23.9% were the common associated complaints. Bacterial vaginosis was the most common clinical diagnosis, while trichomoniasis was least common. Upon laboratory investigation, 35.6% of cases of vaginal discharge and 12% of cases of cervicitis tested positive. Percentage of cases confirmed by laboratory investigation was 50, 27.8 and 41.7 for bacterial vaginosis, trichomoniasis and candidiasis respectively. Conclusion: Among all the females diagnosed as vaginal discharge syndrome, a very small percentage actually turned out to be positive upon laboratory testing.

  18. Staff and students' perceptions and experiences of teaching and assessment in Clinical Skills Laboratories: interview findings from a multiple case study.

    Science.gov (United States)

    Houghton, Catherine E; Casey, Dympna; Shaw, David; Murphy, Kathy

    2012-08-01

    The Clinical Skills Laboratory has become an essential structure in nurse education and several benefits of its use have been identified. However, the literature identifies the need to examine the transferability of skills learned there into the reality of practice. This research explored the role of the Clinical Skills Laboratory in preparing nursing students for the real world of practice. This paper focuses specifically on the perceptions of the teaching and assessment strategies employed there. Qualitative multiple case study design. Five case study sites. Interviewees (n=58) included academic staff, clinical staff and nursing students. Semi-structured interviews. The Clinical Skills Laboratory can provide a pathway to practice and its authenticity is significant. Teaching strategies need to incorporate communication as well as psychomotor skills. Including audio-visual recording into assessment strategies is beneficial. Effective relationships between education institutions and clinical settings are needed to enhance the transferability of the skills learned. The Clinical Skills Laboratory should provide an authentic learning environment, with the appropriate use of teaching strategies. It is crucial that effective links between educators and clinical staff are established and maintained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Variability of creatinine measurements in clinical laboratories: results from the CRIC study.

    Science.gov (United States)

    Joffe, Marshall; Hsu, Chi-yuan; Feldman, Harold I; Weir, Matthew; Landis, J R; Hamm, L Lee

    2010-01-01

    Estimating equations using serum creatinine (SCr) are often used to assess glomerular filtration rate (GFR). Such creatinine (Cr)-based formulae may produce biased estimates of GFR when using Cr measurements that have not been calibrated to reference laboratories. In this paper, we sought to examine the degree of this variation in Cr assays in several laboratories associated with academic medical centers affiliated with the Chronic Renal Insufficiency Cohort (CRIC) Study; to consider how best to correct for this variation, and to quantify the impact of such corrections on eligibility for participation in CRIC. Variability of Cr is of particular concern in the conduct of CRIC, a large multicenter study of subjects with chronic renal disease, because eligibility for the study depends on Cr-based assessment of GFR. A library of 5 large volume plasma specimens from apheresis patients was assembled, representing levels of plasma Cr from 0.8 to 2.4 mg/dl. Samples from this library were used for measurement of Cr at each of the 14 CRIC laboratories repetitively over time. We used graphical displays and linear regression methods to examine the variability in Cr, and used linear regression to develop calibration equations. We also examined the impact of the various calibration equations on the proportion of subjects screened as potential participants who were actually eligible for the study. There was substantial variability in Cr assays across laboratories and over time. We developed calibration equations for each laboratory; these equations varied substantially among laboratories and somewhat over time in some laboratories. The laboratory site contributed the most to variability (51% of the variance unexplained by the specimen) and variation with time accounted for another 15%. In some laboratories, calibration equations resulted in differences in eligibility for CRIC of as much as 20%. The substantial variability in SCr assays across laboratories necessitates calibration

  20. Competence and lastingness in specialized clinical laboratories: technical report about requirements concerning quality of users competence and used processes in immunochemical diagnostic procedures using isotopic and non-isotopic tracer technologies

    International Nuclear Information System (INIS)

    Wiegel, B.

    2005-01-01

    From the citizens view this technical report about immunochemical diagnostic procedures using radioactive and nonradioactive tracer technologies describes the requirements in special laboratory diagnostics concerning competency and process control. Governmental or administrational obligations of inspecting both skill and sites to guarantee patients security are pointed out. (orig.)