WorldWideScience

Sample records for technology chemistry separation

  1. Separations chemistry

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Results of studies on the photochemistry of aqueous Pu solutions and the stability of iodine in liquid and gaseous CO 2 are reported. Progress is reported in studies on: the preparation of macroporous bodies filled with oxides and sulfides to be used as adsorbents; the beneficiation of photographic wastes; the anion exchange adsorption of transition elements from thiosulfate solutions; advanced filtration applications of energy significance; high-resolution separations; and, the examination of the separation agents, octylphenylphosphoric acid (OPPA) and trihexyl phosphate (THP)

  2. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  3. Innovative Separations Technologies

    Energy Technology Data Exchange (ETDEWEB)

    J. Tripp; N. Soelberg; R. Wigeland

    2011-05-01

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  4. Chemistry and nuclear technology

    International Nuclear Information System (INIS)

    De Wet, W.J.

    1977-01-01

    The underlying principles of nuclear sciece and technology as based on the two basic phenomena, namely, radioactivity and nuclear reactions, with their relatively large associated energy changes, are outlined. The most important contributions by chemists in the overall historical development are mentioned and the strong position chemistry has attained in these fields is indicated. It is concluded that chemistry as well as many other scientific discplines (apart from general benefits) have largely benefitted from these nuclear developments [af

  5. Plutonium Chemistry in the UREX+ Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

    2009-10-01

    The project "Plutonium Chemistry in the UREX+ Separation Processes” is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  6. Characterization of sodium stibogluconate by online liquid separation cell technology monitored by ICPMS and ESMS and computational chemistry

    DEFF Research Database (Denmark)

    Hansen, Helle Rusz; Hansen, Claus; Kepp, Kasper Planeta

    2008-01-01

    High-performance liquid chromatography (HPLC), mass spectrometry (MS), and computational chemistry has been applied to resolve the composition and structure of the Sb species present in dilutions of Pentostam, a first-line treatment drug against Leishmania parasites. Using HPLC-inductively coupled...... functional theory was used to study the structure of the 1:1 Sb-gluconate complex with three or four solvent molecules bound. By computing the structures and the free energies of the various possible isomers in aqueous solvation models, the most likely structures of the species were deduced. Importantly, 6...

  7. Separation science and technology

    International Nuclear Information System (INIS)

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-01-01

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO 2 thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO 2 films in reaction with chlorophenol

  8. Separation science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-12-31

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO{sub 2} thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO{sub 2} films in reaction with chlorophenol.

  9. Marcoule Institute for Separation Chemistry - 2009-2012 Scientific report

    International Nuclear Information System (INIS)

    Pellet-Rostaing, Stephane; Zemb, Thomas

    2013-01-01

    The mixed research unit 'Institute for Separation Chemistry' was created jointly by CEA, CNRS, University of Montpellier and Ecole Nationale Superieure de Chimie de Montpellier in March 2007. The building has been inaugurated in June 2009, with laboratories opened in the fall 2009 and has obtained authorisation to start experiments including a few grams of depleted uranium and natural thorium in January 2010. Last take-off was the theory group, who started in October 2009. Resources in Uranium are scarce, if only the 235 isotope is used and wastes related to nuclear energy production are potentially dangerous. The use of fast neutrons allows to multiply existing resources in national independence, but will be based on new separation processes, that can be modelled using predictive theory. Understanding and optimizing separation in the nuclear fuel cycle is the central aim of the 'Institute for Separation Chemistry' (ICSM). Enlarging this central goal to the needs for chemistry of recycling, for instance, strategic metals crucial for alternative energy, is the natural extension surfaces of needs and development of science, with a strong link for technology and implementation. This report gives an overview of the work published and submitted by ICSM since January 2009. The nine active research teams still work in the direction of the scientific open questions as defined and published by the French academy in 2007. The report is organized by scientific topics: each of the nine active research groups gathers a community of researchers and engineers from different expertises, who publish in various domains in the corresponding journals, and who participate at different international meetings. The research teams are organized as follows: 1 - Chemistry and Physical-chemistry of the Actinides; 2 - Ions at Active Interfaces; 3 - Ionic Separation from self-assembled Molecular systems; 4 - Sono-chemistry in Complex Fluids; 5 - Nano-materials for Energy and Recycling processes

  10. News: Green Chemistry & Technology

    Science.gov (United States)

    A series of 21 articles focused on different features of green chemistry in a recent issue of Chemical Reviews. Topics extended over a wide range to include the design of sustainable synthetic processes to biocatalysis. A selection of perspectives follows as part of this colu

  11. Entrepreneurial separation to transfer technology.

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, Richard R.

    2010-09-01

    Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

  12. Separation technology 2005; Separasjonsteknologi 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The conference comprises 13 presentations on the topics of separation technology aspects with emphasis on technology assessment. Some topics of particular interest are emulsion stabilization, sand technology and handling, water handling and reservoir injection, technical equipment and compression and pressure aspects.

  13. Acoustic Separation Technology; FINAL

    International Nuclear Information System (INIS)

    Fred Ahrens; Tim Patterson

    2002-01-01

    Today's restrictive environmental regulations encourage paper mills to close their water systems. Closed water systems increase the level of contaminants significantly. Accumulations of solid suspensions are detrimental to both the papermaking process and the final products. To remove these solids, technologies such as flotation using dissolved air (DAF), centrifuging, and screening have been developed. Dissolved Air Flotation systems are commonly used to clarify whitewater. These passive systems use high pressure to dissolve air into whitewater. When the pressure is released, air micro-bubbles form and attach themselves to fibers and particles, which then float to the surface where they are mechanically skimmed off. There is an economic incentive to explore alternatives to the DAF technology to drive down the cost of whitewater processing and minimize the use of chemicals. The installed capital cost for a DAF system is significant and a typical DAF system takes up considerable space. An alternative approach, which is the subject of this project, involves a dual method combining the advantages of chemical flocculation and in-line ultrasonic clarification to efficiently remove flocculated contaminants from a water stream

  14. Development of Radiochemical Separation Technology

    International Nuclear Information System (INIS)

    Lee, Eil Hee; Kim, K. W.; Yang, H. B.

    2007-06-01

    This project of the second phase was aimed at the development of basic unit technologies for advanced partitioning, and the application tests of pre-developed partitioning technologies for separation of actinides by using a simulated multi-component radioactive waste containing Am, Np, Tc, U and so on. The goals for recovery yield of TRU, and for purity of Tc are high than 99% and about 99%, respectively. The work scopes and contents were as follows. 1). For the development of basic unit technologies for advanced partitioning. 1. Development of technologies for co-removal of TRU and for mutual separation of U and TRU with a reduction-complexation reaction. 2. Development of extraction system for high-acidity co-separation of An(+3) and Ln(+3) and its radiolytic evaluation. 3. Synthesis of extractants for the selective separation of An(+3) and its relevant extraction system development. 4. Development of a hybrid system for the recovery of noble metals and its continuous separation tests. 5. Development of electrolytic system for the decompositions of N-NO3 and N-NH3 compounds to nitrogen gas. 2). For the application test of pre-developed partitioning technologies for the separation of actinide elements in a simulated multi-component solution equivalent to HLW level. 1. Co-separation of Tc, Np and U by a (TBP-TOA)/NDD system. 2. Mutual-separation of Am, Cm and RE elements by a (Zr-DEHPA)/NDD system. All results will be used as the fundamental data for the development of advanced partitioning process in the future

  15. Development of Radiochemical Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Kim, K. W.; Yang, H. B. (and others)

    2007-06-15

    This project of the second phase was aimed at the development of basic unit technologies for advanced partitioning, and the application tests of pre-developed partitioning technologies for separation of actinides by using a simulated multi-component radioactive waste containing Am, Np, Tc, U and so on. The goals for recovery yield of TRU, and for purity of Tc are high than 99% and about 99%, respectively. The work scopes and contents were as follows. 1). For the development of basic unit technologies for advanced partitioning. 1. Development of technologies for co-removal of TRU and for mutual separation of U and TRU with a reduction-complexation reaction. 2. Development of extraction system for high-acidity co-separation of An(+3) and Ln(+3) and its radiolytic evaluation. 3. Synthesis of extractants for the selective separation of An(+3) and its relevant extraction system development. 4. Development of a hybrid system for the recovery of noble metals and its continuous separation tests. 5. Development of electrolytic system for the decompositions of N-NO3 and N-NH3 compounds to nitrogen gas. 2). For the application test of pre-developed partitioning technologies for the separation of actinide elements in a simulated multi-component solution equivalent to HLW level. 1. Co-separation of Tc, Np and U by a (TBP-TOA)/NDD system. 2. Mutual-separation of Am, Cm and RE elements by a (Zr-DEHPA)/NDD system. All results will be used as the fundamental data for the development of advanced partitioning process in the future.

  16. Plutonium Chemistry in the UREX Separation Processes

    International Nuclear Information System (INIS)

    Paulenova, Alena; Vandegrift, George F. III; Czerwinski, Kenneth R.

    2009-01-01

    The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  17. Center for Advanced Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  18. Marcoule institute for separation chemistry - ICSM. Scientific report 2007 - 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The mixed research unit 'Institute for Separation Chemistry' was created jointly by CEA, CNRS, University of Montpellier and Ecole Nationale superieure de Chimie de Montpellier has obtained authorisation to start experiments including a few grams of depleted uranium and natural thorium in January 2010. Last takeoff was from our theory group, who started in October 2009. But the unit 'Institut de Chimie separative de Marcoule' existed as a team scattered in several places in France since 2007. At that time, monthly meetings gathered people for full days of open discussion every month, as 'Point ICSM', where colleagues from R/D Departments of the centre of Marcoule composed half of the audience. Scientific activity began in 2007 with progressive joining of ICSM of team leaders, co-workers, technicians and students, today with 38 permanent staff and 29 nonpermanent scientists and students. Most of the staff joined ICSM after or before participating to the European practical summer school in Analytical and separation chemistry, hold yearly for a full week including practical sessions since the first edition 2006 in Montpellier. Resources in Uranium are scarce, if only the 235 isotope is used. Wastes related to nuclear energy production are potentially dangerous. Since fifty years, the chemistry associated to nuclear energy production always followed the principles of green chemistry. Permanent attention in devoted to closing the life-cycle of materials and fuel, minimize wastes and ascertain the acceptability by a society via knowledge of chemistry and physical chemistry involved in the chemistry used for separation. Developing knowledge in order to propose new separation processes is the central aim of the ICSM. Enlarging this central goal to surfaces of materials, sono-chemistry as an example of green chemistry, chemistry and physical chemistry specific to actinides complete this picture. Thus, the ICSM is devoted to chemistry at the service of the nuclear energy of

  19. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  20. Role of analytical chemistry in accelerator technology

    International Nuclear Information System (INIS)

    Pravin Kumar, M.; Roy, S.B.; Ram Sankar, P.

    2007-01-01

    Role of analytical chemistry in accelerator technology is different from other nuclear technologies. In a reactor technology, the requirement may be dictated by the extreme physical conditions. But, in accelerator technology, it is governed mainly by the purity requirements, with special emphasis on the surface conditions of accelerator components

  1. Fast radiochemical separations with an automated rapid chemistry apparatus

    International Nuclear Information System (INIS)

    Schaedel, M.; Bruechle, W.; Haefner, B.

    1988-01-01

    The microcomputer controlled Automated Rapid Chemistry Apparatus, ARCA, is described together with the He(KCl) gas jet and the target and recoil chamber as it was developed and used in experiments at the heavy ion accelerator UNILAC. This setup allows in a fast and reproducible way to carry out automated high performance liquid chromatographic separations in a chemically inert apparatus. Its modular design makes a large variety of different types of radiochemical separations easily possible. As examples a group separation from our search for superheavy elements and a separation of the elements Md, No and Lr is discussed. (orig.)

  2. Separation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Perry, Steven T [Galloway, OH; Arora, Ravi [Dublin, OH; Qiu, Dongming [Bothell, WA; Lamont, Michael Jay [Hilliard, OH; Burwell, Deanna [Cleveland Heights, OH; Dritz, Terence Andrew [Worthington, OH; McDaniel, Jeffrey S [Columbus, OH; Rogers, Jr; William, A [Marysville, OH; Silva, Laura J [Dublin, OH; Weidert, Daniel J [Lewis Center, OH; Simmons, Wayne W [Dublin, OH; Chadwell, G Bradley [Reynoldsburg, OH

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  3. Nuclear Wastes: Technologies for Separations and Transmutation

    National Research Council Canada - National Science Library

    .... The committee examines the currently used "once-through" fuel cycle versus different alternatives of separations and transmutation technology systems, by which hazardous radionuclides are converted...

  4. Analytical chemistry and isotope technology

    International Nuclear Information System (INIS)

    Sen, B.K.; Venugopal, V.

    2007-01-01

    Isotopes both stable and radioactive, radiolabeled molecules and radiation sources are increasingly used in varied fields such as health care, industry, hydrology, agriculture, basic research and environmental studies. Analytical chemistry plays a major role in assay of the quantity as well as quality, thus enabling the characterization of the products

  5. Complex fluids, divided solids and their interfaces: Open scientific questions addressed at the Institute of Separation Chemistry of Marcoule for a sustainable nuclear energy

    International Nuclear Information System (INIS)

    Leroy, M.; Henge-Napoli, M.H.; Zemb, Th.

    2007-01-01

    Key issues in radiochemistry, physical chemistry of separation and chemistry of materials needed for a sustainable nuclear energy production are described. These driving questions are at the origin of the creation of the Institute of Separation Chemistry at Marcoule. Each of the domains has been described extensively in recent reports for science and technology of the French academy of Science. (authors)

  6. Chemistry programmes at a technological and nuclear centre

    International Nuclear Information System (INIS)

    Servian, J.L.

    1984-01-01

    The application of chemical principles and techniques have played a major role in the development of nuclear sciences and technology. The discovery of radioactivity, the isolation of radium and polonium, the discovery of artificial radioactivity and nuclear fission and the production of transuranium elements are historical landmarks that show the prominent role performed by chemistry. The purpose of this paper is to summarize the chemistry areas and experimental facilities for programmes of training, research and development, and service that might be designed for implementation at the Centre when appropriate. Though the areas are separately presented for analysis, they are closely related among themselves and also related to other activities of the Centre. (author)

  7. Separation science and technology: an ORNL perspective

    International Nuclear Information System (INIS)

    Pruett, D.J.

    1986-05-01

    This report was prepared as a summary of a fourfold effort: (1) to examine schemes for defining and categorizing the field of separation science and technology; (2) to review several of the major categories of separation techniques in order to determine the most recent developments and future research needs; (3) to consider selected problems and programs that require advances in separation science and technology as a part of their solution; and (4) to propose suggestions for new directions in separation research at Oak Ridge National Laboratory (ORNL)

  8. Water Treatment Technology - Chemistry/Bacteriology.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chemistry/bacteriology provides instructional materials for twelve competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: waterborne diseases, water sampling…

  9. Cesium and Strontium Separation Technologies Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  10. Mound Laboratory activities in chemical and physical research: July--December 1976. [Isotope separation; metal hydride research, separation chemistry and separation research

    Energy Technology Data Exchange (ETDEWEB)

    1977-05-04

    The status of the following programs is reported: isotope separation of carbon, argon, helium, krypton, neon, xenon, oxygen, and sulfur; metal hydride research; separation chemistry; and separation research. (LK)

  11. The chemistry of separations ligand degradation by organic radical cations

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Horne, G.P.; Mincher, B.J.; Zalupski, P.R.; Cook, A.R.; Wishart, J.F.

    2016-01-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R .+ ), carbon-centered radicals (R . ), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R .+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  12. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  13. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  14. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  15. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators

  16. Thermodynamics for separation-process technology

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, J.M.

    1995-10-01

    When contemplating or designing a separation process, every chemical engineer at once recognizes the thermodynamic boundary conditions that must be satisfied: when a mixture is continuously processed to yield at least partially purified products, energy and mass must be conserved and work must be done. In his daily tasks, a chemical engineer uses thermodynamic concepts as tacit, almost subconscious, knowledge. Thus, qualitative thermodynamics significantly informs process conception at its most fundamental level. However, quantitative design requires detailed knowledge of thermodynamic relations and physical chemistry. Most process engineers, concerned with flow sheets and economics, cannot easily command that detailed knowledge and therefore it is advantageous for them to maintain close contact with those specialists who do. Quantitative chemical thermodynamics provides an opportunity to evaluate possible separation processes not only because it may give support to the process engineer`s bold imagination but also because, when coupled with molecular models, it can significantly reduce the experimental effort required to determine an optimum choice of process alternatives. Six examples are presented to indicate the application of thermodynamics for conventional and possible future separation processes.

  17. Separations Technology for Clean Water and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, Gordon D [Los Alamos National Laboratory

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  18. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  19. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  20. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  1. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  2. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  3. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  4. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    International Nuclear Information System (INIS)

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  5. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  6. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  7. Development of proliferation resistant isotope separation technology

    International Nuclear Information System (INIS)

    Jeong, Doyoung; Ko, Kwanghoon; Kim, Taeksoo; Park, Hyunmin; Lim, Gwon; Cha, Yongho; Han, Jaemin; Baik, Sunghoon; Cha, Hyungki

    2012-02-01

    This project was accomplished with an aim of establishing the industrial facilities for isotope separation in Korea. The experiment for the measurement of neutrino mass that has been an issue in physics, needs very much of enriched calcium-48 isotope. However, calcium-48 isotope can be produced only by the electro-magnetic method and, thus, its price is very expensive. Therefore, we expect that ALSIS can replace the electro-magnetic method for calcium-48 isotope production. In this research stage, the research was advanced systematically with core technologies, such as atomic vapor production, the measurement of vapor characteristics and stable and powerful laser development. These researches will be the basis of the next research stages. In addition, the international research trends and cooperation results are reported in this report

  8. Separations chemistry for f elements: Recent developments and historical perspective

    International Nuclear Information System (INIS)

    Nash, K.L.; Choppin, G.R.

    1995-01-01

    With the end of the cold war, the principal mission in actinide separations has changed from production of plutonium to cleanup of the immense volume of moderately radioactive mixed wastes which resulted from fifty years of processing activities. In order to approach the cleanup task from a proper perspective, it is necessary to understand the nature of the problem and how the wastes were generated. In this report, the history of actinide separations, both the basic science and production aspects, is examined. Many of the separations techniques in use today were developed in the 40's and 50's for the identification and production of actinide elements. To respond to the modern world of actinide separations new techniques are being developed for separations ranging from analytical methods to detect ultra-trace concentrations (for bioassay and environmental monitoring) to large scale waste treatment procedures. Some of these new methods are ''improvements'' or adaptations of the historical techniques. Total actinide recovery, lanthanide/actinide separations, and selective partitioning of actinides from inert constituents are of primary concern. This report, offers a historical perspective, review the current status of f element separation processes, and suggest areas for continued research in both actinide separations and waste cleanup/environment remediation

  9. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    1999-04-01

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  10. Silicon Microstructures and Technologies in Separation Science

    NARCIS (Netherlands)

    Fintschenko, Y.; van den Berg, Albert

    1998-01-01

    The development of miniaturized total analysis systems, is driven by the desire to automate sample handling, separation or sensing, and detection of analytical instrumentation. Interest in planar structures for separation techniques, especially capillary zone electrophoresis (CZE), has grown

  11. 6. Seminar of the IIE-ININ-IMP on technological specialties. Topic 12: analytical chemistry

    International Nuclear Information System (INIS)

    1992-01-01

    The document includes 9 papers presented at the 6. Seminar of the IIE-ININ-IMP (Mexico) on technological specialties in the field of analytical chemistry. (Topic 12). 3 items were in INIS subject scope and a separate abstract was prepared for each of them

  12. 8. Seminar of the IMP-IIE-ININ on technological specialties. Topic 9: Analytical Chemistry

    International Nuclear Information System (INIS)

    1996-01-01

    The document includes four papers considered within the INIS subject scope, which were presented at the 8th Seminar of the IMP-IIE-ININ on technological specialities (Section Analytical Chemistry), held on 26 June 1996 in Cuernavaca (Mexico). A separate abstract and indexing were provided for each paper

  13. Proceedings of BARC golden jubilee year DAE-BRNS topical symposium on role of analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Swain, K.K.; Venkataramani, B.

    2007-01-01

    Among the various disciplines in Chemistry, Analytical Chemistry is unique, because it is an integral part of every aspect of technology- product and process development and deployment. In Nuclear Industry, the quality assurance criteria are very stringent. And truly, Analytical Chemistry has continued to play a pivotal role in the entire nuclear fuel cycle, since the beginning of the Indian Atomic Energy Programme. The conference covers invited talk, nuclear materials, reactor systems, thorium technology, alternate energy sources, biology, agriculture and environment, water technology, isotope, radiation and laser technology, development of analytical instruments, and reference materials and inter-comparison exercises. Papers relevant to INIS are indexed separately. (author)

  14. Sixth symposium on separation science and technology for energy applications

    International Nuclear Information System (INIS)

    Bell, J.T.; Watson, J.S.

    1990-01-01

    This meeting contained sessions on: membranes: liquid-phase and low-temperature gas-phase separations; separations in hazardous waste management; solvent extraction; membranes: high-temperature gas-phase separations; adsorption and chromatography; and novel separations in nuclear and isotope technologies

  15. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  16. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  17. Chemistry of nuclear resources, technology, and waste

    International Nuclear Information System (INIS)

    Keller, O.L. Jr.

    1978-01-01

    Chemistry is being called on today to obtain useful results in areas that have been found very difficult for it in the past, but new instrumentation and new theories are allowing much progress. The area of hydrolytic phenomena and colloid chemistry, as exemplified by the plutonium polymer problem, is clearly entering a new phase in which it can be studied in a much more controlled and understandable manner. The same is true of the little studied interfacial regions, where so much important chemistry occurs in solvent extraction and other systems. The studies of the adsorption phenomena on clays are an illustration of the new and useful modeling of geochemical phenomena that is now possible. And finally, the chemist is called upon to participate in the developement and evaluation of models for nuclear waste isolation requiring extrapolations of hundreds to hundreds of thousands of years into the future. It is shown that chemistry may be useful in keeping the extrapolations in the shorter time spans, and also in selecting the best materials for containment. 36 figures

  18. JPRS Report Science & Technology USSR: Chemistry

    Science.gov (United States)

    1991-08-29

    environmentally beneficial. However, using sawdust or wood shavings precludes production of high quality products for machine building or...12 Universal Industrial Liquid Reactor of Continuous Action [Yu. S. Ivchenko; KHIMICHESKAYA PROMYSHLENNOST No 3, Mar 91] 12 COMBUSTION ... Combustible Fluids [Ye. R. Nazin, I. V. Karpukhina; KHIMICHESKAYA PROMYSHLENNOST No 3, Mar 91] 13 ENVIRONMENTAL CHEMISTRY Apparatus for Wet

  19. Water chemistry technology. One of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke

    2013-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry should be simultaneously satisfied: (1) better reliability of reactor structures and fuel rods; (2) lower occupational exposure and (3) fewer radwaste sources. Various groups in academia have carried out basic research to support the technical bases of water chemistry in plants. The Research Committee on Water Chemistry of the Atomic Energy Society of Japan (AESJ), which has now been reorganized as the Division of Water Chemistry (DWC) of AESJ, has played important roles to promote improvements in water chemistry control, to share knowledge about and experiences with water chemistry control among plant operators and manufacturers and to establish common technological bases for plant water chemistry and then to transfer them to the next generation of plant workers engaged in water chemistry. Furthermore, the DWC has tried and succeeded arranging R and D proposals for further improvement in water chemistry control through roadmap planning. In the paper, major achievements in plant technologies and in basic research studies of water chemistry in Japan are reviewed. The contributions of the DWC to the long-term safe management of the damaged reactors at the Fukushima Daiichi Nuclear Power Plant until their decommissioning are introduced. (author)

  20. Membrane-based technologies for biogas separations.

    Science.gov (United States)

    Basu, Subhankar; Khan, Asim L; Cano-Odena, Angels; Liu, Chunqing; Vankelecom, Ivo F J

    2010-02-01

    Over the past two decades, membrane processes have gained a lot of attention for the separation of gases. They have been found to be very suitable for wide scale applications owing to their reasonable cost, good selectivity and easily engineered modules. This critical review primarily focuses on the various aspects of membrane processes related to the separation of biogas, more in specific CO(2) and H(2)S removal from CH(4) and H(2) streams. Considering the limitations of inorganic materials for membranes, the present review will only focus on work done with polymeric materials. An overview on the performance of commercial membranes and lab-made membranes highlighting the problems associated with their applications will be given first. The development studies carried out to enhance the performance of membranes for gas separation will be discussed in the subsequent section. This review has been broadly divided into three sections (i) performance of commercial polymeric membranes (ii) performance of lab-made polymeric membranes and (iii) performance of mixed matrix membranes (MMMs) for gas separations. It will include structural modifications at polymer level, polymer blending, as well as synthesis of mixed matrix membranes, for which addition of silane-coupling agents and selection of suitable fillers will receive special attention. Apart from an overview of the different membrane materials, the study will also highlight the effects of different operating conditions that eventually decide the performance and longevity of membrane applications in gas separations. The discussion will be largely restricted to the studies carried out on polyimide (PI), cellulose acetate (CA), polysulfone (PSf) and polydimethyl siloxane (PDMS) membranes, as these membrane materials have been most widely used for commercial applications. Finally, the most important strategies that would ensure new commercial applications will be discussed (156 references).

  1. American Chemical Society. Division of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The meeting of the 201st American Chemical Society Division of Nuclear Chemistry and Technology was comprised from a variety of topics in this field including: nuclear chemistry, nuclear physics, and nuclear techniques for environmental studies. Particular emphasis was given to fundamental research concerning nuclear structure (seven of the nineteen symposia) and studies of airborne particle monitoring and transport (five symposia). 105 papers were presented

  2. Surface chemistry: Key to control and advance myriad technologies

    Science.gov (United States)

    Yates, John T.; Campbell, Charles T.

    2011-01-01

    This special issue on surface chemistry is introduced with a brief history of the field, a summary of the importance of surface chemistry in technological applications, a brief overview of some of the most important recent developments in this field, and a look forward to some of its most exciting future directions. This collection of invited articles is intended to provide a snapshot of current developments in the field, exemplify the state of the art in fundamental research in surface chemistry, and highlight some possibilities in the future. Here, we show how those articles fit together in the bigger picture of this field. PMID:21245359

  3. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry.

    Science.gov (United States)

    Iranmanesh, M; Hulliger, J

    2017-10-02

    The use of strong magnetic field gradients and high magnetic fields generated by permanent magnets or superconducting coils has found applications in many fields such as mining, solid state chemistry, biochemistry and medical research. Lab scale or industrial implementations involve separation of macro- and nanoparticles, cells, proteins, and macromolecules down to small molecules and ions. Most promising are those attempts where the object to be separated is attached to a strong magnetic nanoparticle. Here, all kinds of specific affinity interactions are used to attach magnetic carrier particles to mainly objects of biological interest. Other attempts use a strong paramagnetic suspension for the separation of purely diamagnetic objects, such as bio-macromolecules or heavy metals. The application of magnetic separation to superconducting inorganic phases is of particular interest in combination with ceramic combinatorial chemistry to generate a library of e.g. cuprate superconductors.

  4. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  5. Annual report of Institute of Nuclear Chemistry and Technology 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations

  6. Handbook of green chemistry and technology

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.; MacQuarrie, D. (eds.)

    2002-05-15

    Sustainable development is now accepted as a necessary goal for achieving societal, economic and environmental objectives. Within this chemistry has a vital role to play. The chemical industry is successful but traditionally success has come at a heavy cost to the environment. The challenge for chemists and others is to develop new products, processes and services that achieve societal, economic and environmental benefits. This requires an approach that reduces the materials and energy intensity of chemical processes and products; minimises the dispersion of harmful chemicals in the environment; maximises the use of renewable resources and extends the durability and recyclability of products in a way that increases industrial competitiveness as well as improve its tarnished image. (author)

  7. High repetition rate pulsed gas lasers and their applications in chemistry and isotope separation

    International Nuclear Information System (INIS)

    Barahov, V.Y.

    1983-01-01

    Presented in this paper are the results of experimental studies of pulsed high repetition rate XeCl, CO 2 , NH 3 , and CF 4 lasers with a closed gas cycle. Some applications of these lasers in chemistry and isotope separation are discussed

  8. Technology and Bloom's Taxonomy: Tools to Facilitate Higher-Level Learning in Chemistry

    National Research Council Canada - National Science Library

    Morgan, Matthew

    1997-01-01

    This research project ties together chemistry data acquisition technology, introductory chemistry laboratory experiments, and Bloom's Taxonomy of Educational Objectives into a unified learning model...

  9. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  10. A Laboratory Course in Technological Chemistry.

    Science.gov (United States)

    Wiseman, P.

    1986-01-01

    Describes a laboratory course taught at the University of Manchester Institute of Science and Technology (United Kingdom) which focuses on the preparation, properties, and applications of end-use products of the chemical industry. Outlines laboratory experiments on dyes, fibers, herbicides, performance testing, antioxidants, and surface active…

  11. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  12. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  13. Contextualization and technologies in the Biology and Chemistry textbooks

    Directory of Open Access Journals (Sweden)

    Rozana Gomes de Abreu

    2005-12-01

    Full Text Available We analyze Biology and Chemistry school textbooks to understand how conceptions of contextualization and technologies are overtaken and hybridized. We consider that textbooks produce meanings (senses and signifieds in curricular policies. These are cultural productions that were hybridized and recontextualized according to Basil Bernstein and Stephen Ball. We argue that the focus on contextualization and technologies expressed in those textbooks are hybridized from several influences and they do not represent a consensus about those conceptions.

  14. Institute for separation chemistry of Marcoule I.C.S.M

    International Nuclear Information System (INIS)

    2007-01-01

    Institute for Separation Chemistry was created in March 2007, and the building including laboratory and offices will be opened to scientists and technicians the middle of 2008. Since resources in Uranium are scarce and wastes related to nuclear energy production are potentially dangerous, the chemistry associated to nuclear energy production always followed the principles of green chemistry: close the life-cycle of material and fuel, minimize wastes and ascertain the acceptability by a society via knowledge of chemistry and physical chemistry involved in processes. The Institute is devoted to chemistry at the service of the nuclear energy of the future, seen as an actor for sustainable development compatible with limited resources and chemical preservation of the atmosphere. Progresses in fundamental research, based on publication and education of students, engineers and young scientists, will be focused along seven identified directions, devoted to scattering and diffraction, microscopies and mainly mesoscopic modelling. The goals of the teams are described in this booklet, describing activities of the 28 scientists since two years. Separation chemistry, a branch of physical chemistry, is a key actor in 'green chemistry'. Nano-science and physical chemistry, at the roots of modern chemistry considering also non-covalent and long-range interactions, need to be included along the 'tools' involved in new processes. Three axis of research will be privileged: initial steps of separation, via dissolution by sono-chemical means, ion separation via colloids and complex fluids, and maintaining the separation between species involving self-repairing nano-materials, once the evolution of the interface fed from the evolving interface has been modelled. Eleven permanent staff scientists are already active since a few months on average at ICSM at the date of this report (5 CEA, 2 Universities and 4 CNRS). Teaching, scientific animation, summer schools and the common laboratory

  15. Factors influencing adoption of manure separation technology in The Netherlands.

    Science.gov (United States)

    Gebrezgabher, Solomie A; Meuwissen, Miranda P M; Kruseman, Gideon; Lakner, Dora; Oude Lansink, Alfons G J M

    2015-03-01

    Manure separation technologies are essential for sustainable livestock operations in areas with high livestock density as these technologies result in better utilization of manure and reduced environmental impact. Technologies for manure separation have been well researched and are ready for use. Their use, however, has been limited to the Netherlands. This paper investigates the role of farm and farmer characteristics and farmers' attitudes toward technology-specific attributes in influencing the likelihood of the adoption of mechanical manure separation technology. The analysis used survey data collected from 111 Dutch dairy farmers in 2009. The results showed that the age and education level of the farmer and farm size are important variables explaining the likelihood of adoption. In addition to farm and farmer characteristics, farmers' attitudes toward the different attributes of manure separation technology significantly affect the likelihood of adoption. The study generates useful information for policy makers, technology developers and distributors in identifying the factors that impact decision-making behaviors of farmers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Application of online chemistry monitoring programs and technology

    International Nuclear Information System (INIS)

    Perkins, D.; Choi, S.; Haas, C.

    2010-01-01

    To fully understand the impact of chemistry changes, several plant parameters must be considered and reviewed with actual chemistry analyses and compared to plant operating parameters. In some cases, this requires the ability to rapidly correlate plant operational data with laboratory and chemistry data. An effective online monitoring system should be able to: Integrate and extract online data from the plant laboratory and operating information from various plant data sources continuously; Interrogate and extract laboratory data from manually entered data on predefined frequencies; Interact with multiple laboratories in multiple locations; Evaluate data against plant limits (calculated or static) and provide personnel with action level or notification of plant exceeding limits; and, Provide the ability to evaluate against a standard and site specific set of calculations. The nuclear power industry continues to refine and apply new technologies in an effort to notify operators of changes in chemical conditions, calculate complex high temperature results, and monitor system performance. EPRI developed software specifically focused on plant chemistry program optimization using power operation and shutdown data applied with plant equipment. This software evolved into the family of software referred to as EPRI ChemWorks™ applications. As technology changed and improved, the application of online monitoring was essential for plant personnel working offsite. These changes in technology prompted EPRI to the development of SMART ChemWorks™ using the EPRI ChemWorks™ plant chemistry simulator and MULTEQ applications as the backbone for these simulations and calculations. SMART ChemWorks™ is an online monitoring system that queries plant databases and continuously monitors plant and chemistry parameters. The system uses a real-time intelligence engine to perform virtual sensing, identify normal and off-normal conditions and compare in-line instrument output to grab

  17. WORKSHOP ON NEW DEVELOPMENTS IN CHEMICAL SEPARATIONS FROM COMBINATORIAL CHEMISTRY AND RELATED SYNTHETIC STRATEGIES

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Stephen G. [University of Pittsburgh, Pittsburgh, Pennsylvania

    1998-08-22

    The power of combinatorial chemistry and related high throughput synthetic strategies is currently being pursued as a fruitful way to develop molecules and materials with new properties. The strategy is motivated, for example in the pharmaceutical industry, by the difficulty of designing molecules to bind to specific sites on target biomolecules. By synthesizing a variety of similar structures, and then finding the one that has the most potent activity, new so-called lead structures will be found rapidly. Existing lead structures can be optimized. This relatively new approach has many implications for separation science. The most obvious is the call for more separations power: higher resolution, lower concentrations, higher speed. This pressure butresses the traditional directions of research into the development of more useful separations. The advent of chip-based, electroosmotically pumped systems1 will certainly accelerate progress in this traditional direction. The progress in combinatorial chemistry and related synthetic strategies gives rise to two other, broadly significant possibilities for large changes in separation science. One possibility results from the unique requirements of the synthesis of a huge number of products simultaneously. Can syntheses and separations be designed to work together to create strategies that lead to mixtures containing only desired products but without side products? The other possibility results from the need for molecular selectivity in separations. Can combinatorial syntheses and related strategies be used in the development of better separations media? A workshop in two parts was held. In one half-day session, pedagogical presentations educated across the barriers of discipline and scale. In the second half-day session, the participants broke into small groups to flesh out new ideas. A panel summarized the breakout discussions.

  18. X-RAYS SEPARATOR: FORWARD STEP IN TECHNOLOGY OF OPTICAL SEPARATION

    OpenAIRE

    N. N. Potrakhov; S. L. Beletskiy; F. B. Musaev

    2017-01-01

    Presently the X-ray separation is used not only for research program, but it is also elaborated and applied for different sectors of economy. The seeds as biological objects that possess the complicated microstructure are very difficult to be exanimated by x-ray technology. The application of x-rays and further elaboration of optical  separators, principle  of action, basic specifications, way of their use and their efficiency was shown in the article. The x-ray separator may distinguish all ...

  19. Studies on Separation Process and Production Technology of Boron Isotope

    OpenAIRE

    LI Jian-ping

    2014-01-01

    The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material di...

  20. Evaluation of Mars CO2 Capture and Gas Separation Technologies

    Science.gov (United States)

    Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents

  1. More Colleges Charge Students a Separate Fee for Technology.

    Science.gov (United States)

    Young, Jeffrey R.

    1997-01-01

    Increasingly, colleges and universities are charging students a separate fee for campus computing facilities and using the income for improvements. Critics feel the costs should be included in tuition, but supporters feel the fees highlight the costs of advancing technology and may reduce misuse. Most fees are pegged to semester or credit hours.…

  2. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    K. C. CHONG

    2016-07-01

    Full Text Available The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA. Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology in gas separation as it requires low energy consumption and relatively moderate production volume, if compared to the conventional gas production techniques. These advantages have spurred much interest from industries and academics to speed up the commercial viability of the O2/N2 separation via membrane technology. In this review, the conventional and membrane technologies in O2/N2 separation, as well as recent development of membrane fabrication techniques and materials are reviewed. The latest membrane performance in O2/N2 separation is also tabulated and discussed.

  3. X-RAYS SEPARATOR: FORWARD STEP IN TECHNOLOGY OF OPTICAL SEPARATION

    Directory of Open Access Journals (Sweden)

    N. N. Potrakhov

    2017-01-01

    Full Text Available Presently the X-ray separation is used not only for research program, but it is also elaborated and applied for different sectors of economy. The seeds as biological objects that possess the complicated microstructure are very difficult to be exanimated by x-ray technology. The application of x-rays and further elaboration of optical  separators, principle  of action, basic specifications, way of their use and their efficiency was shown in the article. The x-ray separator may distinguish all hidden seed defects as it was described by a programmer, where owing to the use of the optical separating block in visual range it is possible to add some more details as a shape, brightness and a color of object surface being exanimated. The elaboration of such separation equipment is scientifically hard work requiring time and expenses. Last year researchers of ‘LETI’ developed the working model of industrial x-ray separator for examination of grains and nuts in different crops. This model was made on the basis of photoseparator F-5 manufactured at OAO ‘Voronezhselmash’. The instrument state and its mechanism operation are highlighted on monitor. In the regime of processing (separation and examination of each controlled batch, the passport is produced with  following  information on identification  code,  time of material receiving, time of test passed, number of grains or seeds tested. The code of receiver of material is given to each of established characteristics when working the regime of separation, determination of number of objects with characteristics tested and number of unidentified objects. The application of x-ray separators constructed on the basis of photoseparator F-5 enables to carry out the complex estimation on seed quality and separation in only instrument with the development of electronic protocol with many characteristics.

  4. Separations technology development to support accelerator-driven transmutation concepts

    International Nuclear Information System (INIS)

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-01-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  5. Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis

    Directory of Open Access Journals (Sweden)

    Flavio Fanelli

    2017-03-01

    Full Text Available Microreactor technology and flow chemistry could play an important role in the development of green and sustainable synthetic processes. In this review, some recent relevant examples in the field of flash chemistry, catalysis, hazardous chemistry and continuous flow processing are described. Selected examples highlight the role that flow chemistry could play in the near future for a sustainable development.

  6. Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis

    OpenAIRE

    Fanelli, Flavio; Parisi, Giovanna; Degennaro, Leonardo; Luisi, Renzo

    2017-01-01

    Microreactor technology and flow chemistry could play an important role in the development of green and sustainable synthetic processes. In this review, some recent relevant examples in the field of flash chemistry, catalysis, hazardous chemistry and continuous flow processing are described. Selected examples highlight the role that flow chemistry could play in the near future for a sustainable development.

  7. Micro parallel liquid chromatography: enabling technology for discovery analytical chemistry.

    Science.gov (United States)

    Lemmo, Anthony V; Hobbs, Steve; Patel, Paren

    2004-08-01

    Since the introduction of combinatorial chemistry, compound libraries have undergone a significant increase in size and diversity. The ensuing expansion and diversification of compound libraries have resulted in increased demand for analytical throughput. Following the evolution of new technologies for generating lead compounds and targets and the desire to increase research and development productivity, analytical chemistry is now gaining attention as a bottleneck that would benefit from advances in instrumentation for increased analytical throughput. The commercial introduction of the Veloce trade mark micro parallel liquid chromatography system from Nanostream offers discovery analytical chemists the capability to analyze 24 samples in parallel with as little as 0.5 microl of sample. The system offers a scalable analytical approach to address bottlenecks in historically underserved areas, such as compound library purity screening, as well as higher value-added applications, such as log P determination and aqueous solubility assessment. This article describes the Veloce system and presents representative data from several discovery analytical applications.

  8. Analytical chemistry in nuclear science and technology: a scientometric mapping

    International Nuclear Information System (INIS)

    Kademani, B.S.; Kumar, Anil; Kumar, Vijai

    2007-01-01

    This paper attempts to analyse quantitatively the growth and development of Analytical Chemistry research in Nuclear Science and Technology in terms of publication output as reflected in International Nuclear Information System (INIS) database (1970-2005). During 1970-2005 a total of 8224 papers were published. There were only seven papers published in 1970. Thereafter, a tremendous explosion of literature was observed in this area. The highest number of papers (636) were published in 1985. The average number of publications published per year was 228.44. United States topped the list with 1811 publications followed by USSR with 1688 publications, Germany with 777 publications, India with 730 publications and Hungary with 519 publications. Authorship and collaboration trend was towards multi-authored papers as 80.3 percent of the papers were collaborative is indicative of the multidisciplinary nature of research activity. The most prolific authors were: B. F. Myasoedov, AN SSSR Moscow Inst. Geokhimii I Analitisheskoi Khimii, Russian Federation with 84 publications, M. Sudersanan, Bhabha Atomic Research Centre, Mumbai, India with 67 publications, P.Vanura and V. Jedinakova Krizova both from Institute of Chemical Technology, Prague, Czech Republic with 54 publications each, S. Gangadharan, Bhabha Atomic Research Centre, Mumbai, India with 47 publications, V.M. Ivanova , M.V. Lomonosov Moscow State University, Russian Federation with 45 publications and Yu. A Zolotov Lomonosov Moscow State University, Russian Federation with 40 publications. The journals most preferred by the scientists for publication of papers were : Zhurnal Analiticheskoj Khimii with 713 papers, Journal of Radioanalytical and Nuclear Chemistry with 409 papers, Analytical Chemistry Washington with 364 papers, Fresenius' Journal of Analytical Chemistry with 324 papers, Indian Journal of Chemistry, Section A with 251 papers, and Journal of Analytical Chemistry of the USSR with 145 papers. The high

  9. Multidisciplinary approach and multi-scale elemental analysis and separation chemistry

    International Nuclear Information System (INIS)

    Mariet, Clarisse

    2014-01-01

    The development of methods for the analysis of trace elements is an important component of my research activities either for a radiometric measure or mass spectrometric detection. Many studies raise the question of the chemical signature of a sample or a process: eruptive behavior of a volcano, indicator of pollution, ion exchange in vectors vesicles of active principles,... Each time, highly sensitive analytical procedures, accurate and multi-elementary as well as the development of specific protocols were needed. Neutron activation analysis has often been used as reference procedure and allowed to validate the chemical lixiviation and the measurement by ICP-MS. Analysis of radioactive samples requires skills in analysis of trace but also separation chemistry. Two separation methods occupy an important place in the separation chemistry of radionuclides: chromatography and liquid-liquid extraction. The study of extraction of Lanthanide (III) by the oxide octyl (phenyl)-n, N-diisobutyl-carbamoylmethyl phosphine (CMPO) and a calixarene-CMPO led to better understand and quantify the influence of operating conditions on their performance of extraction and selectivity. The high concentration of salts in aqueous solutions required to reason in terms of thermodynamic activities in relying on a comprehensive approach to quantification of deviations from ideality. In order to reduce the amount of waste generated and costs, alternatives to the hydrometallurgical extraction processes were considered using ionic liquids at low temperatures as alternative solvents in biphasic processes. Remaining in this logic of effluent reduction, miniaturization of the liquid-liquid extraction is also study so as to exploit the characteristics of microscopic scale (very large specific surface, short diffusion distances). The miniaturization of chromatographic separations carries the same ambitions of gain of volumes of wastes and reagents. The miniaturization of the separation Uranium

  10. Developments for transactinide chemistry experiments behind the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    Even, Julia

    2011-01-01

    Topic of this thesis is the development of experiments behind the gas-filled separator TASCA (TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements. In the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition. Possibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements. The second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream. Furthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide - helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All

  11. Proceedings of the national conference on analytical science and technology: analytical science for technological excellence and environmental sustainability

    International Nuclear Information System (INIS)

    2015-01-01

    The topics covered are nuclear technology, separation chemistry, NDT techniques, supercritical extraction, nanotechnology, coordination chemistry, environmental and analytical chemistry, medical diagnostics, materials science and solution chemistry etc. Papers relevant to INIS are indexed separately

  12. Annual Report 2003 of the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    2004-01-01

    The INCT 2003 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies, nucleonic control systems and accelerators

  13. Efficient Separations and Processing Crosscutting Program. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The Efficient Separations and Processing (ESP) Crosscutting Program was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. The ESP funds several multi-year tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R and D) leading to demonstration or use of these separations technologies by other organizations within DOE-EM. Treating essentially all DOE defense wastes requires separation methods that concentrate the contaminants and/or purify waste streams for release to the environment or for downgrading to a waste form less difficult and expensive to dispose of. Initially, ESP R and D efforts focused on treatment of high-level waste (HLW) from underground storage tanks (USTs) because of the potential for large reductions in disposal costs and hazards. As further separations needs emerge and as waste management and environmental restoration priorities change, the program has evolved to encompass the breadth of waste management and environmental remediation problems

  14. Textbook on food chemistry and food technology. Vol. 2

    International Nuclear Information System (INIS)

    Osteroth, D.

    1991-01-01

    The textbook presents the basic material and knowledge required in the food industry, relating to food technology and food chemistry, and to the legal aspects of food processing. Apart from information on specific analytical methods, which are discussed in detail, information is given other means and approaches for a comprehensive evaluation of food quality, as e.g. sensory evaluation, statistics, microbiology, dietetics, toxicology. There is one chapter dealing with the available methods of food preservation by physical treatment, as e.g. by food irradiation. (VT) With 159 figs [de

  15. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Scientific and Technology Part II : Nuclear Chemistry; Process Technology and Radioactive Waste Management; Environment

    International Nuclear Information System (INIS)

    Sudjatmoko; Karmanto, Eko Edy; Endang-Supartini

    1996-04-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity was held by Yogyakarta Nuclear Research Centre, National Atomic Energy Agency (BATAN) for monitoring the research activity which achieved in BATAN. The Proceeding contains a proposal about basic which has Nuclear Chemistry, Process Technology, Radioactive Waste Management and Environment. This proceeding is the second part from two part which published in series. There are 61 articles which have separated index

  16. Nanoporous Membrane Technologies for Pathogen Collection, Separation, and Detection

    National Research Council Canada - National Science Library

    Lee, Sang W; Shang, Hao; Lee, Gil U; Griffin, Matthew T; Fulton, Jack

    2003-01-01

    Partial contents: Nanoporous Membranes, Membrane Chemistries, Characterization of Membrane Chemistries,Protein Fouling, Collector,Gas and Liquid Permeabilities, Membrane Permeabilities in the Presence of Water...

  17. Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry

    Science.gov (United States)

    Um, Jo-Eun; Song, Sun Gu; Yoo, Pil J.; Song, Changsik; Kim, Woo-Jae

    2018-01-01

    Single-walled carbon nanotubes (SWCNTs) can be either metallic or semiconducting, making their separation critical for applications in nanoelectronics, biomedical materials, and solar cells. Herein, we investigate a novel solution-phase separation method based on click chemistry (azide-alkyne Huisgen cycloaddition) and determine its efficiency and scalability. In this method, metallic SWCNTs in metallic/semiconducting SWCNT mixtures are selectively functionalized with alkyne groups by being reacted with 4-propargyloxybenezenediazonium tetrafluoroborate. Subsequently, silica nanoparticles are functionalized with azide groups and reacted with alkyne-bearing metallic SWCNTs in the SWCNT mixture in the presence of a Cu catalyst. As a result, metallic SWCNTs are anchored on silica powder, whereas non-functionalized semiconducting SWCNTs remain in solution. Low-speed centrifugation effectively removes the silica powder with attached metallic SWCNTs, furnishing a solution of highly pure semiconducting SWCNTs, as confirmed by Raman and UV-vis/near-infrared absorption measurements. This novel separation scheme exhibits the advantage of simultaneously separating both metallic and semiconducting SWCNTs from their mixtures, being cost-effective and therefore applicable at an industrial scale.

  18. Development of O-18 stable isotope separation technology using membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Kim, Taek Soo; Choi, Hwa Rim; Park, Sung Hee; Lee, Ki Tae; Chang, Dae Shik

    2006-06-15

    The ultimate goal of this investigation is to develop the separation technology for O-18 oxygen stable isotope used in a cyclotron as a target for production of radioisotope F-18. F-18 is a base material for synthesis of [F-18]FDG radio-pharmaceutical, which is one of the most important tumor diagnostic agent used in PET (Positron Emission Tomography). More specifically, this investigation is focused on three categories as follow, 1) development of the membrane distillation isotope separation process to re-enrich O-18 stable isotope whose isotopic concentration is reduced after used in a cyclotron, 2) development of organic impurity purification technology to remove acetone, methanol, ethanol, and acetonitrile contained in a used cyclotron O-18 enriched target water, and 3) development of a laser absorption spectroscopic system for analyzing oxygen isotopic concentration in water.

  19. Plasma enhanced C1 chemistry for green technology

    Science.gov (United States)

    Nozaki, Tomohiro

    2013-09-01

    Plasma catalysis is one of the innovative next generation green technologies that meet the needs for energy and materials conservation as well as environmental protection. Non-thermal plasma uniquely generates reactive species independently of reaction temperature, and these species are used to initiate chemical reactions at unexpectedly lower temperatures than normal thermochemical reactions. Non-thermal plasma thus broadens the operation window of existing chemical conversion processes, and ultimately allows modification of the process parameters to minimize energy and material consumption. We have been specifically focusing on dielectric barrier discharge (DBD) as one of the viable non-thermal plasma sources for practical fuel reforming. In the presentation, room temperature one-step conversion of methane to methanol and hydrogen using a miniaturized DBD reactor (microplasma reactor) is highlighted. The practical impact of plasma technology on existing C1-chemistry is introduced, and then unique characteristics of plasma fuel reforming such as non-equilibrium product distribution is discussed.

  20. Establishment of the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  1. ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2003-07-01

    Technical Progress Report describes progress made on the eight sub-projects awarded in the first year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of activity only.

  2. Chemical technology of the systems, partitioning and separation, disposal

    International Nuclear Information System (INIS)

    Volk, V.I.

    1997-01-01

    A reactor-accelerator reprocessing complex is described. The complex comprises an electronuclear transmutation installation and chemical and technological support units for maintenance of the steady-state of the blanket, separation of short-lived transmutation products to be disposed of from other components of the blanket, chemical conversion to relevant stable species of products to be disposed of for interim storage and disposal

  3. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    Separate abstracts were prepared for 48 papers in these conference proceedings. The topics covered include: analytical chemistry and the environment; environmental radiochemistry; automated instrumentation; advances in analytical mass spectrometry; Fourier transform spectroscopy; analytical chemistry of plutonium; nuclear analytical chemistry; chemometrics; and nuclear fuel technology

  4. Water chemistry - one of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, S.; Otoha, K.; Ishigure, K.

    2006-01-01

    Full text: Full text: Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry, a) better reliability of reactor structures and fuels, b) lower occupational exposure, and c) fewer radwaste sources, should be simultaneously satisfied. The research committee related to water chemistry of the Atomic Energy Society of Japan has played important roles to enhance improvement in water chemistry control, to share knowledge and experience with water chemistry among plant operators and manufacturers, to establish common technological bases for plant water chemistry and then to transfer them to the next generation related to water chemistry. Furthermore, the committee has tried to contribute to arranging R and D proposals for further improvement in water chemistry control through road map planning

  5. Managing Zirconium Chemistry and Phase Compatibility in Combined Process Separations for Minor Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Nathalie [Washington State Univ., Pullman, WA (United States); Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Washington State Univ., Pullman, WA (United States)

    2017-03-17

    In response to the NEUP Program Supporting Fuel Cycle R&D Separations and Waste Forms call DEFOA- 0000799, this report describes the results of an R&D project focusing on streamlining separation processes for advanced fuel cycles. An example of such a process relevant to the U.S. DOE FCR&D program would be one combining the functions of the TRUEX process for partitioning of lanthanides and minor actinides from PUREX(UREX) raffinates with that of the TALSPEAK process for separating transplutonium actinides from fission product lanthanides. A fully-developed PUREX(UREX)/TRUEX/TALSPEAK suite would generate actinides as product(s) for reuse (or transmutation) and fission products as waste. As standalone, consecutive unit-operations, TRUEX and TALSPEAK employ different extractant solutions (solvating (CMPO, octyl(phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide) vs. cation exchanging (HDEHP, di-2(ethyl)hexylphosphoric acid) extractants), and distinct aqueous phases (2-4 M HNO3 vs. concentrated pH 3.5 carboxylic acid buffers containing actinide selective chelating agents). The separate processes may also operate with different phase transfer kinetic constraints. Experience teaches (and it has been demonstrated at the lab scale) that, with proper control, multiple process separation systems can operate successfully. However, it is also recognized that considerable economies of scale could be achieved if multiple operations could be merged into a single process based on a combined extractant solvent. The task of accountability of nuclear materials through the process(es) also becomes more robust with fewer steps, providing that the processes can be accurately modeled. Work is underway in the U.S. and Europe on developing several new options for combined processes (TRUSPEAK, ALSEP, SANEX, GANEX, ExAm are examples). There are unique challenges associated with the operation of such processes, some relating to organic phase chemistry, others arising from the

  6. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes

  7. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  8. The development of zirconia membrane oxygen separation technology

    International Nuclear Information System (INIS)

    Chiacchi, F.T.; Badwal, S.P.S.; Velizko, V.

    2000-01-01

    The oxygen separation technology based on ceramic membranes constructed from stabilised zirconia is currently under development for applications ranging from oxygen generation or air enrichment for medical use to control of oxygen concentration or oxygen removal from gas streams and enclosures for semiconductor, food packaging and process control instrumentation industries. The technology is based on a rugged tubular design with extensive thermal cycling capability. Several single and three tube devices have been operated for periods up to 5000h. An eight tube module, as a building block for larger scale oxygen production or removal devices, has been constructed and is being evaluated. In this paper, the construction of the device, oxygen generating capacity, life time tests and performance of the ceramic membrane device under development at CSIRO will be discussed. Copyright (2000) The Australian Ceramic Society

  9. New Fragment Separation Technology for Superheavy Element Research

    International Nuclear Information System (INIS)

    Shaughnessy, D A; Moody, K J; Henderson, R A; Kenneally, J M; Landrum, J H; Lougheed, R W; Patin, J B; Stoyer, M A; Stoyer, N J; Wild, J F; Wilk, P A

    2008-01-01

    This project consisted of three major research areas: (1) development of a solid Pu ceramic target for the MASHA separator, (2) chemical separation of nuclear decay products, and (3) production of new isotopes and elements through nuclear reactions. There have been 16 publications as a result of this project, and this collection of papers summarizes our accomplishments in each of the three areas of research listed above. The MASHA (Mass Analyzer for Super-Heavy Atoms) separator is being constructed at the U400 Cyclotron at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. The purpose of the separator is to physically separate the products from nuclear reactions based on their isotopic masses rather than their decay characteristics. The separator was designed to have a separation between isotopic masses of ±0.25 amu, which would enable the mass of element 114 isotopes to be measured with outstanding resolution, thereby confirming their discovery. In order to increase the production rate of element 114 nuclides produced via the 244 Pu+ 48 Ca reaction, a new target technology was required. Instead of a traditional thin actinide target, the MASHA separator required a thick, ceramic-based Pu target that was thick enough to increase element 114 production while still being porous enough to allow reaction products to migrate out of the target and travel through the separator to the detector array located at the back end. In collaboration with UNLV, we began work on development of the Pu target for MASHA. Using waste-form synthesis technology, we began by creating zirconia-based matrices that would form a ceramic with plutonium oxide. We used samarium oxide as a surrogate for Pu and created ceramics that had varying amounts of the starting materials in order to establish trends in material density and porosity. The results from this work are described in more detail in Refs. [1,4,10]. Unfortunately, work on MASHA was delayed in Russia because it was found that

  10. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.

    Science.gov (United States)

    Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping

    2012-05-15

    In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF

  11. Institute for separation chemistry of Marcoule I.C.S.M; Institut de chimie separative de Marcoule I.C.S.M

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Institute for Separation Chemistry was created in March 2007, and the building including laboratory and offices will be opened to scientists and technicians the middle of 2008. Since resources in Uranium are scarce and wastes related to nuclear energy production are potentially dangerous, the chemistry associated to nuclear energy production always followed the principles of green chemistry: close the life-cycle of material and fuel, minimize wastes and ascertain the acceptability by a society via knowledge of chemistry and physical chemistry involved in processes. The Institute is devoted to chemistry at the service of the nuclear energy of the future, seen as an actor for sustainable development compatible with limited resources and chemical preservation of the atmosphere. Progresses in fundamental research, based on publication and education of students, engineers and young scientists, will be focused along seven identified directions, devoted to scattering and diffraction, microscopies and mainly mesoscopic modelling. The goals of the teams are described in this booklet, describing activities of the 28 scientists since two years. Separation chemistry, a branch of physical chemistry, is a key actor in 'green chemistry'. Nano-science and physical chemistry, at the roots of modern chemistry considering also non-covalent and long-range interactions, need to be included along the 'tools' involved in new processes. Three axis of research will be privileged: initial steps of separation, via dissolution by sono-chemical means, ion separation via colloids and complex fluids, and maintaining the separation between species involving self-repairing nano-materials, once the evolution of the interface fed from the evolving interface has been modelled. Eleven permanent staff scientists are already active since a few months on average at ICSM at the date of this report (5 CEA, 2 Universities and 4 CNRS). Teaching, scientific animation, summer schools and

  12. Proceedings of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Science and Technology part II : Nuclear Chemistry and Process Technology

    International Nuclear Information System (INIS)

    Kamsul Abraha; Yateman Arryanto; Sri Jauhari S; Agus Taftazani; Kris Tri Basuki; Djoko Sardjono, Ign.; Sukarsono, R.; Samin; Syarip; Suryadi, MS; Sardjono, Y.; Tri Mardji Atmono; Dwiretnani Sudjoko; Tjipto Sujitno, BA.

    2007-08-01

    The Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity held by Centre for Accelerator Technology and Material Process, National Nuclear Energy Agency, for monitoring the research activity which achieved in National Nuclear Energy Agency. The Meeting was held in Yogyakarta on July 10, 2007. The proceedings contains papers presented on the meeting about Nuclear Chemistry and Process Technology and there are 47 papers which have separated index. The proceedings is the second part of the three parts which published in series. (PPIN)

  13. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  14. Separation of HTO from water using membrane technology

    International Nuclear Information System (INIS)

    Nelson, D.A.; Duncan, J.B.; Jensen, G.A.; Burton, S.D.

    1994-01-01

    This research effort is being conducted to evaluate the use of membrane technology for the separation of tritium (via HTO) from sources containing HTO as a contaminant. Experience with membrane systems in industry indicates that they are inherently energy efficient. Due to the large volumes of contaminated water at U.S. Department of Energy sites, such energy efficiency would be welcome. Aromatic polyphosphazenes were chosen as the polymeric material for the membranes being investigated because they have been shown to possess excellent radiological, thermal and chemical stability. We prepared poly(diphenoxy)phosphazene (PN x ) and several carboxylated derivatives. Each polymer was solvent cast from dioxane onto polyethylene terephthalate support material. These composite membranes were tested with water containing 10 pCi/mL HTO under dead-end filtration conditions. The PN x provided separation (depletion) of HTO up to 36% throughout the temperature range of 2 deg - 25 deg C. The 10% carboxylated PN x -membrane has shown HTO separation (depletion) up to 74% at 2 deg - 4 deg C. However, little HTO depletion has been observed with this membrane at 25 deg C or 35 deg C. The membrane containing 5% carboxyl-groups appeared to present a similar depletion and temperature response. Higher carboxyl content (20% and 30%) was less efficient. The results of this study indicate that very low concentrations of HTO can be separated from water using polyphosphazene membranes. Continuing work will be performed with cross-flow membrane cells (to mimic reverse-osmosis conditions) and with higher concentrations of HTO. (author) 30 refs., 3 tabs

  15. Annual Report of the Institute of Nuclear Chemistry and Technology 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The INCT 2000 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  16. Separation of no-carrier-added 107,109Cd from proton induced silver target. Classical chemistry still relevant

    International Nuclear Information System (INIS)

    Moumita Maiti; Susanta Lahiri; Tomar, B.S.

    2011-01-01

    The classical chemistry like precipitation technique is relevant even in modern days trans-disciplinary research from the view point of green chemistry. A definite demand of no-carrier-added (nca) cadmium tracers, namely, 107,109 Cd, has been realized for diverse applications. Development of efficient separation technique is therefore important to address the purity of the tracers for various applications. No-carrier-added 107,109 Cd radionuclides were produced by bombarding natural silver target matrix with 13 MeV protons, which gave ∼15 MBq/μA h yield for nca 107 Cd. The nca cadmium radionuclides were separated from the natural silver target matrix by precipitating Ag as AgCl. The developed method is an example wherein green chemistry is used in trans-disciplinary research. The method is also simple, fast, cost effective and environmentally benign. (author)

  17. Identifying Gel-Separated Proteins Using In-Gel Digestion, Mass Spectrometry, and Database Searching: Consider the Chemistry

    Science.gov (United States)

    Albright, Jessica C.; Dassenko, David J.; Mohamed, Essa A.; Beussman, Douglas J.

    2009-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important bioanalytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. This is an especially powerful tool when combined with gel separation of proteins and database mining using the mass spectral data. Currently, few hands-on…

  18. Efficient heavy crude oil dehydration with centrifugal separation technology

    Energy Technology Data Exchange (ETDEWEB)

    Perschke, T. [GEA Westfalia Separator Systems GmbH, Oelde (Germany)

    2009-07-01

    Most conventional oil reservoirs are declining and the importance of unconventional heavy crude oil reservoirs is increasing. Unconventional heavy crude oils cannot be handled in the traditional way for dewatering and desalting. The industry mostly employs static dewatering and desalting systems using electrostatic field, chemicals and temperature. These systems have their limitations when it comes to lower API grades. High-speed centrifuges from GEA Westfalia Separator are utilized successfully in the exploration, delivery and treatment of crude oils and oily water applications as they combine efficiency, reliability and environmental conservation in a broad spectrum of highly specialized applications. This paper presented the basic function and fundamental principle behind the separation of particles, or water droplets, in a liquid using Stokes Law. The paper also presented the throughput equation and discussed heavy oil extraction. The solution was then presented. The paper also explained why disk stack centrifuges are used for heavy crude oil dehydration. The process parameters for disc stack centrifuge technology were also reviewed along with future considerations for using disc stack centrifuges for crude oil. It was concluded that the efficiencies of the respective types of equipment are preliminarily determined by the driving g-force in combination with the length of the settling path for the oil droplets. 1 fig.

  19. Synthesis, properties, and application in peptide chemistry of a magnetically separable and reusable biocatalyst

    Science.gov (United States)

    Liria, Cleber W.; Ungaro, Vitor A.; Fernandes, Raphaella M.; Costa, Natália J. S.; Marana, Sandro R.; Rossi, Liane M.; Machini, M. Teresa

    2014-11-01

    Enzyme-catalyzed chemical processes are selective, very productive, and generate little waste. Nevertheless, they may be optimized using enzymes bound to solid supports, which are particularly important for protease-mediated reactions since proteases undergo fast autolysis in solution. Magnetic nanoparticles are suitable supports for this purpose owing to their high specific surface area and to be easily separated from reaction media. Here we describe the immobilization of bovine α-chymotrypsin (αCT) on silica-coated superparamagnetic nanoparticles (Fe3O4@silica) and the characterization of the enzyme-nanoparticle hybrid (Fe3O4@silica-αCT) in terms of protein content, properties, recovery from reaction media, application, and reuse in enzyme-catalyzed peptide synthesis. The results revealed that (i) full acid hydrolysis of the immobilized protease followed by amino acid analysis of the hydrolyzate is a reliable method to determine immobilization yield; (ii) despite showing lower amidase activity and a lower K cat/ K m value for a specific substrate than free αCT, the immobilized enzyme is chemically and thermally more stable, magnetically recoverable from reaction media, and can be consecutively reused for ten cycles to catalyze the amide bond hydrolysis and ester hydrolysis of the protected dipeptide Z-Ala-Phe-OMe. Altogether, these properties indicate the potential of Fe3O4@silica-αCT to act as an efficient, suitably stable, and reusable catalyst in amino acid, peptide, and protein chemistry as well as in proteomic studies.

  20. Information Retrieval and Text Mining Technologies for Chemistry.

    Science.gov (United States)

    Krallinger, Martin; Rabal, Obdulia; Lourenço, Anália; Oyarzabal, Julen; Valencia, Alfonso

    2017-06-28

    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.

  1. 75 FR 37860 - Aris Industries, Inc., Bene Io, Inc., Commodore Separation Technologies, Inc., Food Integrated...

    Science.gov (United States)

    2010-06-30

    ...., Commodore Separation Technologies, Inc., Food Integrated Technologies, Inc., Gap Instrument Corp., Skysat... information concerning the securities of Food Integrated Technologies, Inc. because it has not filed any... Separation Technologies, Inc. because it has not filed any periodic reports since the period ended June 30...

  2. Cement manufacture and the environment - Part I: Chemistry and technology

    Science.gov (United States)

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  3. On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology

    Science.gov (United States)

    Zhang, Yunshen

    2017-11-01

    with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.

  4. Guidelines for Chemistry and Chemical Technology Programs in Two-Year Colleges.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    Designed for use in institutional self-studies and program reviews, these guidelines provide a comprehensive model for chemistry and chemical technology programs in two-year, associate-degree-granting colleges. The eight sections of the guide suggest 90 standards in the areas of: (1) chemistry program mission and periodic program review; (2)…

  5. Research and development separation technology: The DOE Industrial Energy Conservation Program

    Energy Technology Data Exchange (ETDEWEB)

    1987-07-01

    This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

  6. Research on the development of green chemistry technology assessment techniques: a material reutilization case.

    Science.gov (United States)

    Hong, Seokpyo; Ahn, Kilsoo; Kim, Sungjune; Gong, Sungyong

    2015-01-01

    This study presents a methodology that enables a quantitative assessment of green chemistry technologies. The study carries out a quantitative evaluation of a particular case of material reutilization by calculating the level of "greenness" i.e., the level of compliance with the principles of green chemistry that was achieved by implementing a green chemistry technology. The results indicate that the greenness level was enhanced by 42% compared to the pre-improvement level, thus demonstrating the economic feasibility of green chemistry. The assessment technique established in this study will serve as a useful reference for setting the direction of industry-level and government-level technological R&D and for evaluating newly developed technologies, which can greatly contribute toward gaining a competitive advantage in the global market.

  7. Development of Pre-Service Chemistry Teachers' Technological Pedagogical Content Knowledge

    Science.gov (United States)

    Cetin-Dindar, Ayla; Boz, Yezdan; Sonmez, Demet Yildiran; Celep, Nilgun Demirci

    2018-01-01

    In this study, a mixed-method design was employed to investigate pre-service chemistry teachers' Technological Pedagogical Content Knowledge (TPACK) development. For effective technology integration in instruction, knowledge about technology is not enough; teachers should have different knowledge types which are content, pedagogical, and…

  8. Chemistry

    International Nuclear Information System (INIS)

    Gomez G, H.

    1989-01-01

    A brief description about the development and activities executed in chemistry, in the Instituto de Asuntos Nucleares, during the last years is presented. The plans and feasibility of nuclear techniques in Colombia are also described

  9. Representational Technologies and Learner Problem-Solving Strategies in Chemistry

    Science.gov (United States)

    McCollum, Brett; Sepulveda, Ana; Moreno, Yuritzel

    2016-01-01

    Learning within the sciences is often considered through a quantitative lens, but acquiring proficiency with the symbolic representations in chemistry is arguably more akin to language learning. Representational competencies are central to successful communication of chemical information including molecular composition, structure, and properties.…

  10. Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment.

    Science.gov (United States)

    Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong

    2015-01-01

    This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies.

  11. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  12. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  13. Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation

    DEFF Research Database (Denmark)

    Spicker, Jeppe; Brunak, Søren; Frederiksen, K.S.

    2008-01-01

    are needed. This paper presents a method for data integration using a hierarchical model based on either principal component analysis or partial least squares discriminant analysis of clinical chemistry, expression, and nuclear magnetic resonance data using a toxicological study as case. The study includes...

  14. Histopathology and serum clinical chemistry evaluation of broilers with femoral head separation disorder

    Science.gov (United States)

    Femoral head disarticulation (FHD) and necrosis is a sporadic leg problem of unknown etiology in broiler breeders. To determine the underlying physiology of FHD, the blood chemistry and the histopathology of the femoral heads of the affected chickens were compared with their age matched controls. Ch...

  15. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    Science.gov (United States)

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  16. Chemistry of Stable Carbenes and «Green» Technologies

    Directory of Open Access Journals (Sweden)

    Korotkikh, N.I.

    2015-11-01

    Full Text Available Brief analysis of fundamental research in the chemistry of stable carbenes and applications in the field of «green» chemistry on their basis carried out at the L.M. Litvinenko Institute of Physical Organic & Coal Chemistry of NAS of Ukraine over the last decade is given. Carbene versions of ester Claisen condensation to form zwitterionic compounds, the Leuckart-Wallach reaction with the autoreduction of carbenoid azolium salts, Hofmann cleavage of aminocarbene insertion products, an induced tandem autotransformation of 1,2,4-triazol-5-ylidenes into 5-amidino-1,2,4-triazoles were found. New carbene reactions of ad dition, deesterification, oxidation and complexation were revealed. Effective methods of obtaining stable carbenes and carbenoids were suggested. New types of carbenes, namely benzimidazolylidenes, superstable conjugated biscarbenes and new types of carbenoids were synthesized. The existence of hypernucleophilic carbenes was theoretically predicted and experimentally confirmed. The prospects of the use of carbenes and their derivatives, in particular, carbene complexes of transition metals in catalysis of organic reactions and the search of biologically active compounds were shown.

  17. Development and Implementation of High School Chemistry Modules Using Touch-Screen Technologies

    Science.gov (United States)

    Lewis, Maurica S.; Zhao, Jinhui; Montclare, Jin Kim

    2012-01-01

    Technology was employed to motivate and captivate students while enriching their in-class education. An outreach program is described that involved college mentors introducing touch-screen technology into a high school chemistry classroom. Three modules were developed, with two of them specifically tailored to encourage comprehension of molecular…

  18. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  19. Technologies and microstructures for separation techniques in chemical analysis

    NARCIS (Netherlands)

    Spiering, Vincent L.; Spiering, V.L.; Lammerink, Theodorus S.J.; Jansen, Henricus V.; van den Berg, Albert; Fluitman, J.H.J.

    1996-01-01

    The possibilities for microtechnology in chemical analysis and separation techniques are discussed. The combination of the materials and the dimensions of structures can limit the sample and waste volumes on the one hand, but also increases the performance of the chemical systems. Especially in high

  20. Advanced chemistry of monolayers at interfaces trends in methodology and technology

    CERN Document Server

    Imae, Toyoko

    2007-01-01

    Advanced Chemistry of Monolayers at Interfaces describes the advanced chemistry of monolayers at interfaces. Focusing on the recent trends of methodology and technology, which are indispensable in monolayer science. They are applied to monolayers of surfactants, amphiphiles, polymers, dendrimers, enzymes, and proteins, which serve many uses.Introduces the methodologies of scanning probe microscopy, surface force instrumentation, surface spectroscopy, surface plasmon optics, reflectometry, and near-field scanning optical microscopy. Modern interface reaction method, lithographic tech

  1. Trends in coarse and fine grinding and separation technology ...

    African Journals Online (AJOL)

    Journal of Food Technology in Africa. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 4, No 2 (1999) >. Log in or Register to get access to full text downloads.

  2. Trends in coarse and fine grinding and separation technology ...

    African Journals Online (AJOL)

    Journal of Food Technology in Africa. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 4, No 2 (1999) >. Log in or Register to get access to full text downloads.

  3. Creation of medicinal chemistry learning communities through enhanced technology and interdisciplinary collaboration.

    Science.gov (United States)

    Henriksen, Brian; Roche, Victoria

    2012-10-12

    Objectives. To build an integrated medicinal chemistry learning community of campus and distance pharmacy students though the use of innovative technology and interdisciplinary teaching.Design. Mechanisms were implemented to bring distance students into campus-based medicinal chemistry classrooms in real time, stimulate interaction between instructors and various student cohorts, and promote group work during class. Also, pharmacy clinician colleagues were recruited to contribute to the teaching of the 3 medicinal chemistry courses.Assessment. Student perceptions on the value of technology to build community and advance learning were gleaned from course evaluations, in class feedback, and conversations with class officers and student groups. Responses on a survey of second-year students confirmed the benefits of interdisciplinary content integration on engagement and awareness of the connection between drug chemistry and pharmacy practice. A survey of clinician colleagues who contributed to teaching the 3 medicinal chemistry courses found their views were similar to those of students.Conclusions. The purposeful use of technology united learners, fostered communication, and advanced content comprehension in 3 medicinal chemistry courses taught to campus and distance students. Teaching collaboration with pharmacy clinicians enhanced learner interest in course content and provided insight into the integrated nature of the profession of pharmacy.

  4. Twenty-ninth ORNL/DOE conference on analytical chemistry in energy technology. Abstracts of papers

    International Nuclear Information System (INIS)

    1986-01-01

    This booklet contains separate abstracts of 55 individual papers presented at this conference. Different sections in the book are titled as follows: laser techniques; resonance ionization spectroscopy; laser applications; new developments in mass spectrometry; analytical chemistry of hazardous waste; and automation and data management

  5. Second Karlsruhe international conference on analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    1989-01-01

    Around 180 abstracts of invited lectures and poster presentations of the international analytical conference are presented in this book. They cover analytical applications throughout the fuel cycle and radioanalysis of manifold materials. Most of the abstracts are prepared separately for input in INIS and EDB. (RB)

  6. The separate and collective effects of personalization, personification, and gender on learning with multimedia chemistry instructional materials

    Science.gov (United States)

    Halkyard, Shannon

    Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations can be employed in multimedia instructional materials designed following principles understood through the Cognitive Theory of Multimedia Learning. Additionally, these materials can expand the known use of principles like personalization (addressing the learner as "you") and test prospective design principles like personification (referring to abstract objects like atoms as "she" or "he"). The purpose of this study was to use the recommendations on teaching atomic and electronic structure along with known multimedia design principles to create multimedia chemistry learning materials that can be used to test the use of personalization and personification both separately and together. The study also investigated how learning with these materials might be different for male and female students. A sample of 329 students from private northern California high schools were given an atomic structure pre-test, watched a multimedia chemistry instructional video, and took a post-test on atomic structure. Students were randomly assigned to watch one of six versions of the instructional video. Students in the six groups were compared using ANOVA procedures and no significant differences were found. Males were compared to females for the six different treatment conditions and the most significant difference was for the treatment that combined personalization (you) and female personification (she), with a medium effect size (Cohen's d=0.65). Males and females were then compared separately across the six groups using ANOVA procedures and t-tests. A significant difference was found for female students using the treatment that combined

  7. Chemistry and technology of radiation processed composite materials

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1985-01-01

    Composite materials of synthetics (based on monomers, oligomers and thermoplastics) and of natural polymers (wood and other fibrous cellulosics) prepared by radiation processing, offer valuable structural materials with enhanced coupling forces between the components. The applied polymer chemistry of such composites shows several common features with that of radiation grafting, e.g. the polymerization rate of oligomer-monomer mixtures in wood remains in most cases proportional to the square-root of the initiating dose-rate, just as in the simultaneous grafting, demonstrating that the chain termination kinetics remain regularly bimolecular in the corresponding dose-rate ranges. In the processing experiences of such composites, low dose requirement, easy process-control, and good technical feasibility have been found for composites of wood with oligomer-monomer mixtures, for coconut fibres with unsaturated polyesters and for pretreated wood fibre with polypropylene. (author)

  8. Environmental Consequences of Future Biogas Technologies based on Separated Slurry

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik

    2011-01-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving...... the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed...

  9. Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation

    Science.gov (United States)

    Bu, Yiming; Huang, Jingjing; Zhang, Shiyu; Wang, Yinghua; Gu, Shaojin; Cao, Genyang; Yang, Hongjun; Ye, Dezhan; Zhou, Yingshan; Xu, Weilin

    2018-05-01

    With the ever-increasing oil spillages, oil-water separation has attracted widespread concern in recent years. In this work, a nature-inspired polyphenol method has been developed to fabricate the durable superhydrophobic surfaces for the oil-water separation. Inspiring from the adhesion of polyphenol and reducing capacity of free catechol/pyrogallol groups in polyphenol, firstly, the simple immersion of commercial materials (melamine sponge, PET, and nonwoven cotton fabrics) in tannic acid (TA) solution allows to form a multifunctional coating on the surface of sponge or fabrics, which was used as reducing reagent to generate Ag nanoparticles (NPs). Then, decoration of 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) molecules produced superhydrophobic surfaces. The surface topological structure, chemical composition, and superhydrophobic property of the as-prepared surface are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), and water contact angle (WCA) measurements. The WCAs of as-prepared sponge and fabrics were higher than 150°. The stability, absorption capacity, and recyclability of as-prepared sponge and fabrics were investigated. The as-prepared sponge demonstrates high oil/water selectivity and high absorption capacity (66-150 g/g) for a broad variety of oils and organic solvents, and was chemically resistant, robust against abrasion, and long-term durability in harsh environments. Most important of all, it can continuously separate various kinds of oils or organic pollutants from the surface of water. This study presents a facile strategy to fabricate superhydrophobic materials for continuous oil-water separation, displaying great potential in large-scale practical application.

  10. Highly dispersive ion exchangers in the analytical chemistry of uranium, particularly regarding separation methods

    International Nuclear Information System (INIS)

    Schoening, R.

    1975-01-01

    The reaction of water-insoluble polyvinyl pyrrolidon with uranium VI was investigated and a determination method for uranium was worked out in which the polyvinyl pyrrolidon was used as specific exchanger. Good separations of uranium from numerous transition metal ions were achieved here. The application of this exchanger for a fast and simple elution and determination method was of particular importance. A possible sorption mechanism was suggested based on the capacity curve of uranium with polyvinyl pyrrolidon and nitrogen and chloride content at maximum load. The sorption occurs by coordination of the carbonyl oxygen of single pyrrolidon rings with the protons of the complex acides and uranium. This assumption is supported by IR investigations. The sorbability of other inorganic acids was also investigated and possible structures were formulated for the sorption mechanism. In addition to this, ion exchangers were prepared based on cellulose by converting cellulose powder with aziridine and tris-1-aziridinyl-phosphine oxide. A polyethylene imine cellulose of high capacity was obtained in the conversion of cellulose powder with aziridine. This exchanger absorbs cobalt III very strongly. The exchanger loaded with cobalt III was used to separate the uranium as cyanato complex. The exchanger obtained in converting chlorated cellulose with tris-1-aziridinyl phosphine oxide also absorbs uranium VI very strongly. Thus a separation method of high specifity and selectivity was developed. (orig.) [de

  11. Adapting to Student Learning Styles: Engaging Students with Cell Phone Technology in Organic Chemistry Instruction

    Science.gov (United States)

    Pursell, David P.

    2009-01-01

    Students of organic chemistry traditionally make 3 x 5 in. flash cards to assist learning nomenclature, structures, and reactions. Advances in educational technology have enabled flash cards to be viewed on computers, offering an endless array of drilling and feedback for students. The current generation of students is less inclined to use…

  12. Exploring the Gas Chemistry of Old Submarine Technologies Using Plastic Bottles as Reaction Vessels and Models

    Science.gov (United States)

    Horikoshi, Ryo; Takeiri, Fumitaka; Kobayashi, Yoji; Kageyama, Hiroshi

    2016-01-01

    We describe an activity that is suitable for high school students and makes use of plastic bottles. This activity allows students to familiarize themselves with gas chemistry by introducing technologies that were applied in old submarine systems. Plastic bottles, which are representative of submarines, are used as reaction vessels. Three simple…

  13. Enabling Chemistry Technologies and Parallel Synthesis-Accelerators of Drug Discovery Programmes.

    Science.gov (United States)

    Vasudevan, A; Bogdan, A R; Koolman, H F; Wang, Y; Djuric, S W

    There is a pressing need to improve overall productivity in the pharmaceutical industry. Judicious investments in chemistry technologies can have a significant impact on cycle times, cost of goods and probability of technical success. This perspective describes some of these technologies developed and implemented at AbbVie, and their applications to the synthesis of novel scaffolds and to parallel synthesis. © 2017 Elsevier B.V. All rights reserved.

  14. Electrochemically Modulated Gas/Liquid Separation Technology for In Situ Resource Utilization Process Streams, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this phase I program MicroCell Technologies, LLC (MCT) proposes to demonstrate the feasibility of an electrochemically modulated phase separator for in situ...

  15. Synthetic Nano- and Micromachines in Analytical Chemistry: Sensing, Migration, Capture, Delivery, and Separation.

    Science.gov (United States)

    Duan, Wentao; Wang, Wei; Das, Sambeeta; Yadav, Vinita; Mallouk, Thomas E; Sen, Ayusman

    2015-01-01

    Synthetic nano- and microscale machines move autonomously in solution or drive fluid flows by converting sources of energy into mechanical work. Their sizes are comparable to analytes (sub-nano- to microscale), and they respond to signals from each other and their surroundings, leading to emergent collective behavior. These machines can potentially enable hitherto difficult analytical applications. In this article, we review the development of different classes of synthetic nano- and micromotors and pumps and indicate their possible applications in real-time in situ chemical sensing, on-demand directional transport, cargo capture and delivery, as well as analyte isolation and separation.

  16. Enabling technologies and green processes in cyclodextrin chemistry

    Directory of Open Access Journals (Sweden)

    Giancarlo Cravotto

    2016-02-01

    Full Text Available The design of efficient synthetic green strategies for the selective modification of cyclodextrins (CDs is still a challenging task. Outstanding results have been achieved in recent years by means of so-called enabling technologies, such as microwaves, ultrasound and ball mills, that have become irreplaceable tools in the synthesis of CD derivatives. Several examples of sonochemical selective modification of native α-, β- and γ-CDs have been reported including heterogeneous phase Pd- and Cu-catalysed hydrogenations and couplings. Microwave irradiation has emerged as the technique of choice for the production of highly substituted CD derivatives, CD grafted materials and polymers. Mechanochemical methods have successfully furnished greener, solvent-free syntheses and efficient complexation, while flow microreactors may well improve the repeatability and optimization of critical synthetic protocols.

  17. Usage and applications of Semantic Web techniques and technologies to support chemistry research.

    Science.gov (United States)

    Borkum, Mark I; Frey, Jeremy G

    2014-01-01

    The drug discovery process is now highly dependent on the management, curation and integration of large amounts of potentially useful data. Semantics are necessary in order to interpret the information and derive knowledge. Advances in recent years have mitigated concerns that the lack of robust, usable tools has inhibited the adoption of methodologies based on semantics. THIS PAPER PRESENTS THREE EXAMPLES OF HOW SEMANTIC WEB TECHNIQUES AND TECHNOLOGIES CAN BE USED IN ORDER TO SUPPORT CHEMISTRY RESEARCH: a controlled vocabulary for quantities, units and symbols in physical chemistry; a controlled vocabulary for the classification and labelling of chemical substances and mixtures; and, a database of chemical identifiers. This paper also presents a Web-based service that uses the datasets in order to assist with the completion of risk assessment forms, along with a discussion of the legal implications and value-proposition for the use of such a service. We have introduced the Semantic Web concepts, technologies, and methodologies that can be used to support chemistry research, and have demonstrated the application of those techniques in three areas very relevant to modern chemistry research, generating three new datasets that we offer as exemplars of an extensible portfolio of advanced data integration facilities. We have thereby established the importance of Semantic Web techniques and technologies for meeting Wild's fourth "grand challenge".

  18. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing.

    Science.gov (United States)

    Li, Jia; Rossignol, Fabrice; Macdonald, Joanne

    2015-06-21

    Inkjet printing is emerging at the forefront of biosensor fabrication technologies. Parallel advances in both ink chemistry and printers have led to a biosensor manufacturing approach that is simple, rapid, flexible, high resolution, low cost, efficient for mass production, and extends the capabilities of devices beyond other manufacturing technologies. Here we review for the first time the factors behind successful inkjet biosensor fabrication, including printers, inks, patterning methods, and matrix types. We discuss technical considerations that are important when moving beyond theoretical knowledge to practical implementation. We also highlight significant advances in biosensor functionality that have been realised through inkjet printing. Finally, we consider future possibilities for biosensors enabled by this novel combination of chemistry and technology.

  19. Designing Catalysts for Clean Technology, Green Chemistry, and Sustainable Development

    Science.gov (United States)

    Meurig Thomas, John; Raja, Robert

    2005-08-01

    There is a pressing need for cleaner fuels (free or aromatics and of minimal sulfur content) or ones that convert chemical energy directly to electricity, silently and without production of noxious oxides and particulates; chemical, petrochemical and pharmaceutical processes that may be conducted in a one-step, solvent-free manner and that use air as the preferred oxidant; and industrial processes that minimize consumption of energy, production of waste, or the use of corrosive, explosive, volatile, and nonbiodegradable materials. All these needs and other desiderata, such as the in situ production and containment of aggressive and hazardous reagents, and the avoidance of use of ecologically harmful elements, may be achieved by designing the appropriate heterogeneous inorganic catalyst, which ideally should be cheap, readily preparable and fully characterizable, preferably under in situ reaction conditions. A range of nanoporous and nanoparticle catalysts that meet most of the stringent demands of sustainable development and responsible (clean) technology is described. Specific examples that are highlighted include the production of adipic acid (precursor of polyamides and urethanes) without the use of concentrated nitric acid nor the production of greenhouse gases such as nitrous oxide; the production of caprolactam (precursor of nylon) without the use of oleum and hydroxylamine sulfate; and the terminal oxyfunctionalization of linear alkanes in air. The topic of biocatalysis and sustainable development is also briefly discussed for the epoxidation of terpenes and fatty acid methyl esters; for the generation of polymers, polylactides, and polyesters; and for the production of 1,3-propanediol from corn.

  20. R&D Opportunities for Membranes and Separation Technologies in Building Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2017-10-01

    This report recommends innovative membrane and separation technologies that can assist the Building Technologies Office in achieving its 2030 goal. This report identifies research and development (R&D) initiatives across several building applications where further investigations could result in impactful savings.

  1. Enantiomeric Mixtures in Natural Product Chemistry: Separation and Absolute Configuration Assignment.

    Science.gov (United States)

    N L Batista, Andrea; M Dos Santos, Fernando; Batista, João M; Cass, Quezia B

    2018-02-23

    Chiral natural product molecules are generally assumed to be biosynthesized in an enantiomerically pure or enriched fashion. Nevertheless, a significant amount of racemates or enantiomerically enriched mixtures has been reported from natural sources. This number is estimated to be even larger since the enantiomeric purity of secondary metabolites is rarely checked in the natural product isolation pipeline. This latter fact may have drastic effects on the evaluation of the biological activity of chiral natural products. A second bottleneck is the determination of their absolute configurations. Despite the widespread use of optical rotation and electronic circular dichroism, most of the stereochemical assignments are based on empirical correlations with similar compounds reported in the literature. As an alternative, the combination of vibrational circular dichroism and quantum chemical calculations has emerged as a powerful and reliable tool for both conformational and configurational analysis of natural products, even for those lacking UV-Vis chromophores. In this review, we aim to provide the reader with a critical overview of the occurrence of enantiomeric mixtures of secondary metabolites in nature as well the best practices for their detection, enantioselective separation using liquid chromatography, and determination of absolute configuration by means of vibrational circular dichroism and density functional theory calculations.

  2. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry.

    Science.gov (United States)

    Holtkamp, Hannah; Grabmann, Gerlinde; Hartinger, Christian G

    2016-04-01

    Electrophoretic methods have been widely applied in research on the roles of metal complexes in biological systems. In particular, CE, often hyphenated to a sensitive MS detector, has provided valuable information on the modes of action of metal-based pharmaceuticals, and more recently new methods have been added to the electrophoretic toolbox. The range of applications continues to expand as a result of enhanced CE-to-MS interfacing, with sensitivity often at picomolar level, and evolved separation modes allowing for innovative sample analysis. This article is a followup to previous reviews about CE methods in metallodrug research (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis, 2007, 28, 3436-3446; Electrophoresis, 2012, 33, 622-634), also providing a comprehensive overview of metal species studied by electrophoretic methods hyphenated to MS. It highlights the latest CE developments, takes a sneak peek into gel electrophoresis, traces biomolecule labeling, and focuses on the importance of early-stage drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation of Novel Wet Chemistry Separation and Purification Methods to Facilitate Automation of Astatine-211 Isolation

    International Nuclear Information System (INIS)

    Wilbur, Daniel Scott

    2016-01-01

    This research is a collaborative effort between the research groups of the PIs, Dr. D. Scott Wilbur in the Department of Radiation Oncology at the University of Washington (UW) and Matthew O'Hara at the Pacific Northwest National Laboratory (PNNL). In this report only those studies conducted at UW and the budget information from UW will be reported. A separate progress and financial report will be provided by PNNL. This final report outlines the experiments (Tasks) conducted and results obtained at UW from July 1, 2013 thru June 30, 2016 (2-year project with 1 year no-cost extension). The report divides the information on the experiments and results obtained into the 5 specific objectives of the research efforts and the Tasks within those objectives. This format is used so that it is easy to see what has been accomplished in each area. A brief summary of the major findings from the studies is provided below. Summary of Major Findings from Research/Training Activities at UW: Anion and cation exchange columns did not provide adequate 211 At capture and/or extraction results under conditions studied to warrant further evaluation; PEG-Merrifield resins containing mPEG350, mPEG750, mPEG2000 and mPEG5000 were synthesized and evaluated; All of the mPEG resins with different sized mPEG moieties conjugated gave similar 211 At capture (>95%) from 8M HCl solutions and release with conc. NH 4 OH (~50-80%), but very low quantities were released when NaOH was used as an eluent; Capture and release of 211 At when loading [ 211 At]astatate appeared to be similar to that of [ 211 At]astatide on PEG columns, but further studies need to be conducted to confirm that; Capture of 211 At on PEG columns was lower (e.g. 80-90%) from solutions of 8M HNO 3 , but higher capture rates (e.g. 99%) can be obtained when 10M HNO 3 is mixed with an equal quantity of 8M HCl; Addition of reductants to the 211 At solutions did not appear to change the percent capture, but may have an effect on the

  4. CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design

    Science.gov (United States)

    Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, St.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W.

    2017-06-01

    In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.

  5. 99Mo/(99m)Tc separation: an assessment of technology options.

    Science.gov (United States)

    Dash, Ashutosh; Knapp, F F Russ; Pillai, M R A

    2013-02-01

    Several strategies for the effective separation of (99m)Tc from (99)Mo have been developed and validated. Due to the success of column chromatographic separation using acidic alumina coupled with high specific activity fission (99)Mo (F (99)Mo) for production of (99)Mo/(99m)Tc generators, however, most technologies until recently have generated little interest. The reduced availability of F (99)Mo and consequently the shortage of (99)Mo/(99m)Tc column generators in the recent past have resurrected interest in the production of (99)Mo as well as (99m)Tc by alternate routes. Most of these alternative production processes require separation techniques capable of providing clinical grade (99m)Tc from low specific activity (99)Mo or irradiated Mo targets. For this reason there has been renewed interest in alternate separation routes. This paper reviews the reported separation technologies which include column chromatography, solvent extraction, sublimation and gel systems that have been traditionally used for the fabrication of (99)Mo/(99m)Tc generator systems. The comparative advantage, disadvantage, and technical challenges toward adapting the emerging requirements are discussed. New developments such as solid-phase column extraction, electrochemical separation, extraction chromatography, supported liquid membrane (SLM) and thermochromatographic techniques are also being evaluated for their potential application in the changed scenario of providing (99m)Tc from alternate routes. Based on the analysis provided in this review, it appears that some proven separation technologies can be quickly resurrected for the separation of clinical grade (99m)Tc from macroscopic levels of reactor or cyclotron irradiated molybdenum targets. Furthermore, emerging technologies can be developed further to respond to the expected changing modes of (99m)Tc production. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Managing tight-binding receptors for new separations technologies. 1998 annual progress report

    International Nuclear Information System (INIS)

    Busch, D.H.; Givens, R.S.

    1998-01-01

    'Whereas such traditional separation methodologies as ion exchange and solvent extraction require rapid interaction between ligands and metal ions, the most strongly binding ligands invariably bind slowly; e.g., cryptates bind and dissociate more slowly than macrocycles, which are slower than open-chain chelating ligands. This project seeks to maximize the binding and dissociation rates for tight-binding receptors in order to make them more useful to separations science. An alternative slow-binding technology is also under exploration.'

  7. Proceedings of the specialists' meeting on the chemistry and technology of actinide elements 1998

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Moriyama, Hirotake

    1999-03-01

    This report contains the Proceedings of the 5th Specialist's Meeting on the Chemistry and Technology of Actinide Elements which was held at the Research Reactor Institute, Kyoto University, on December 21 and 22, 1998. In the meeting, the present status and future prospects of the studies related with the management of minor actinides were discussed. Results of the studies such as the OMEGA project were presented and discussed for future development of technologies for partitioning and transmutation of minor actinides. (J.P.N.)

  8. Using Touch-Screen Technology, Apps, and Blogs to Engage and Sustain High School Students' Interest in Chemistry Topics

    Science.gov (United States)

    Kim, Heejoo; Chacko, Priya; Zhao, Jinhui; Montclare, Jin Kim

    2014-01-01

    As part of an outreach program, we integrated chemistry apps with blogging to enhance the learning experience of students in and outside the classroom. Our outreach program involved college mentors who participated in the development and implementation of chemistry lessons alongside the classroom teacher. Three technology-rich modules that focused…

  9. Research on preventive technologies for bed-separation water hazard in China coal mines

    Science.gov (United States)

    Gui, Herong; Tong, Shijie; Qiu, Weizhong; Lin, Manli

    2018-03-01

    Bed-separation water is one of the major water hazards in coal mines. Targeted researches on the preventive technologies are of paramount importance to safe mining. This article studied the restrictive effect of geological and mining factors, such as lithological properties of roof strata, coal seam inclination, water source to bed separations, roof management method, dimensions of mining working face, and mining progress, on the formation of bed-separation water hazard. The key techniques to prevent bed-separation water-related accidents include interception, diversion, destructing the buffer layer, grouting and backfilling, etc. The operation and efficiency of each technique are corroborated in field engineering cases. The results of this study will offer reference to countries with similar mining conditions in the researches on bed-separation water burst and hazard control in coal mines.

  10. Co-crystallization as a separation technology: controlling product concentrations by co-crystals

    NARCIS (Netherlands)

    Urbanus, J.; Roelands, C.P.M.; Verdoes, D.; Jansens, P.J.; Horst, J.H. ter

    2010-01-01

    Co-crystallization is known as a product formulation technology, but it can also be used as a tool to solve crystallization problems. Product removal by co-crystallization in fermentations is used as a showcase to demonstrate the potential of co-crystallization as a separation technique. In

  11. Separation Science and Technology. Semiannual progress report, April 1993--September 1993

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C.

    1996-01-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April-September 1993. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process, (2) treatment schemes for liquid wastes stored or being generated at Argonne, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of 99 Mo for nuclear medicine uses

  12. Preliminary survey of separations technology applicable to the pretreatment of Hanford tank waste (1992--1993)

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, W.E.; Kurath, D.E.

    1994-04-01

    The US Department of Energy has established the Tank Waste Remediation System (TWRS) to manage and dispose of radioactive wastes stored at the Hanford Site. Within this program are evaluations of pretreatment system alternatives through literature reviews. The information in this report was collected as part of this project at Pacific Northwest Laboratory. A preliminary survey of literature on separations recently entered into the Hanford electronic databases (1992--1993) that have the potential for pretreatment of Hanford tank waste was conducted. Separation processes that can assist in the removal of actinides (uranium, plutonium, americium), lanthanides, barium, {sup 137}Cs, {sup 90}Sr,{sup 129 }I, {sup 63}Ni, and {sup 99}Tc were evaluated. Separation processes of interest were identified through literature searches, journal reviews, and participation in separation technology conferences. This report contains brief descriptions of the potential separation processes, the extent and/or selectivity of the separation, the experimental conditions, and observations. Information was collected on both national and international separation studies to provide a global perspective on recent research efforts.

  13. Preliminary survey of separations technology applicable to the pretreatment of Hanford tank waste (1992--1993)

    International Nuclear Information System (INIS)

    Lawrence, W.E.; Kurath, D.E.

    1994-04-01

    The US Department of Energy has established the Tank Waste Remediation System (TWRS) to manage and dispose of radioactive wastes stored at the Hanford Site. Within this program are evaluations of pretreatment system alternatives through literature reviews. The information in this report was collected as part of this project at Pacific Northwest Laboratory. A preliminary survey of literature on separations recently entered into the Hanford electronic databases (1992--1993) that have the potential for pretreatment of Hanford tank waste was conducted. Separation processes that can assist in the removal of actinides (uranium, plutonium, americium), lanthanides, barium, 137 Cs, 90 Sr, 129 I, 63 Ni, and 99 Tc were evaluated. Separation processes of interest were identified through literature searches, journal reviews, and participation in separation technology conferences. This report contains brief descriptions of the potential separation processes, the extent and/or selectivity of the separation, the experimental conditions, and observations. Information was collected on both national and international separation studies to provide a global perspective on recent research efforts

  14. Thirty-seventh ORNL/DOE conference on analytical chemistry in energy technology: Abstracts of papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Abstracts only are given for papers presented during the following topical sessions: Opportunities for collaboration: Industry, academic, national laboratories; Developments in sensor technology; Analysis in containment facilities; Improving the quality of environmental data; Process analysis; Field analysis; Radiological separations; Interactive analytical seminars; Measurements and chemical industry initiatives; and Isotopic measurements and mass spectroscopy.

  15. Proceedings of the specialists' meeting on the chemistry and technology of actinide elements 2011

    International Nuclear Information System (INIS)

    Ikeda, Yasuhisa; Yamana, Hajimu

    2012-07-01

    This report contains the Proceedings of the 17th Specialists' Meeting on the Chemistry and Technology of Actinide Elements, which was held at Research Reactor Institute, Kyoto University, on February 15, 2012. This specialists' meeting has been held annually since 1994, and this is the 17th meeting for the fiscal year 2011. The accident of Fukushima Daiich Nuclear Power Plant, which occurred on March 11, 2011, showed the presence of defect in Japanese past approach to keep nuclear system safe. There is the need to improve existing technological and operational problems, as well as regulatory problems, but we should be aware of the significance of recovering social trust and peoples' peace of mind with the nuclear power. It should be noted that public's anxiety on the backend issue of nuclear system is remarkably big, and thus we must try to provide an understandable solution to them. In this meeting, we dealt with actinide chemistry and technology, which are related to the advanced nuclear fuel cycle development and the disposal of the HLW or TRU wastes. This is because, in the backend of the nuclear system, Actinide and TRU elements have substantial importance, because all of reprocessing, geologic disposal, and partitioning and transmutation depend significantly on the chemistry and technology of Actinides. Therefore, we have continued discussion and information exchange on the Actinide issues over 16 years, and this year's 17th meeting had a special meaning as the first one after the accident. In this context in this 17th meeting, we tried to return to the fundamentals of molten salt chemistry, which is the base of the dry reprocessing development. In addition, in order to expand our attitude by crossing over the fence of nuclear society, we tried to explore the potential of the adoption of molten salt chemistry to the general industry. This was a small new attempt in compliance with the recent tendency to nuclear power reduction in

  16. Recent advances in medicinal chemistry and pharmaceutical technology--strategies for drug delivery to the brain.

    Science.gov (United States)

    Denora, Nunzio; Trapani, Adriana; Laquintana, Valentino; Lopedota, Angela; Trapani, Giuseppe

    2009-01-01

    This paper provides a mini-review of some recent approaches for the treatment of brain pathologies examining both medicinal chemistry and pharmaceutical technology contributions. Medicinal chemistry-based strategies are essentially aimed at the chemical modification of low molecular weight drugs in order to increase their lipophilicity or the design of appropriate prodrugs, although this review will focus primarily on the use of prodrugs and not analog development. Recently, interest has been focused on the design and evaluation of prodrugs that are capable of exploiting one or more of the various endogenous transport systems at the level of the blood brain barrier (BBB). The technological strategies are essentially non-invasive methods of drug delivery to malignancies of the central nervous system (CNS) and are based on the use of nanosystems (colloidal carriers) such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, polymeric micelles and dendrimers. The biodistribution of these nanocarriers can be manipulated by modifying their surface physico-chemical properties or by coating them with surfactants and polyethylene-glycols (PEGs). Liposomes, surfactant coated polymeric nanoparticles, and solid lipid nanoparticles are promising systems for delivery of drugs to tumors of the CNS. This mini-review discusses issues concerning the scope and limitations of both the medicinal chemistry and technological approaches. Based on the current findings, it can be concluded that crossing of the BBB and drug delivery to CNS is extremely complex and requires a multidisciplinary approach such as a close collaboration and common efforts among researchers of several scientific areas, particularly medicinal chemists, biologists and pharmaceutical technologists.

  17. Textbook on food chemistry and food technology. Vol. 2. Taschenbuch fuer Lebensmittelchemiker und -technologen. Bd. 2

    Energy Technology Data Exchange (ETDEWEB)

    Osteroth, D. (Karlsruhe Univ. (Germany) Fachhochschule Lippe, Lemgo (Germany)) (ed.)

    1991-01-01

    The textbook presents the basic material and knowledge required in the food industry, relating to food technology and food chemistry, and to the legal aspects of food processing. Apart from information on specific analytical methods, which are discussed in detail, information is given other means and approaches for a comprehensive evaluation of food quality, as e.g. sensory evaluation, statistics, microbiology, dietetics, toxicology. There is one chapter dealing with the available methods of food preservation by physical treatment, as e.g. by food irradiation. (VT) With 159 figs.

  18. Synthetics, mineral oils, and bio-based lubricants chemistry and technology

    CERN Document Server

    Rudnick, Leslie R

    2005-01-01

    As the field of tribology has evolved, the lubrication industry is also progressing at an extraordinary rate. Updating the author's bestselling publication, Synthetic Lubricants and High-Performance Functional Fluids, this book features the contributions of over 60 specialists, ten new chapters, and a new title to reflect the evolving nature of the field: Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. The book contains chapters on all major lubricant fluids used in a wide range of applications. For each type of lubricant, the authors discuss the historical develo

  19. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors.

    Science.gov (United States)

    Scognamiglio, Viviana; Antonacci, Amina; Lambreva, Maya D; Litescu, Simona C; Rea, Giuseppina

    2015-12-15

    Biosensors are powerful tunable systems able to switch between an ON/OFF status in response to an external stimulus. This extraordinary property could be engineered by adopting synthetic biology or biomimetic chemistry to obtain tailor-made biosensors having the desired requirements of robustness, sensitivity and detection range. Recent advances in both disciplines, in fact, allow to re-design the configuration of the sensing elements - either by modifying toggle switches and gene networks, or by producing synthetic entities mimicking key properties of natural molecules. The present review considered the role of synthetic biology in sustaining biosensor technology, reporting examples from the literature and reflecting on the features that make it a useful tool for designing and constructing engineered biological systems for sensing application. Besides, a section dedicated to bioinspired synthetic molecules as powerful tools to enhance biosensor potential is reported, and treated as an extension of the concept of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules. Thus, the design of synthetic molecules, such as aptamers, biomimetics, molecular imprinting polymers, peptide nucleic acids, and ribozymes were encompassed as "products" of biomimetic chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Freeze-drying technology: A separation technique for liquid nuclear materials

    International Nuclear Information System (INIS)

    Musgrave, J.A.; Efurd, D.W.; Banar, J.C.

    1997-01-01

    Freeze-drying technology (FDT) has been around for several decades as a separation technology. Most commonly, FDT is associated with the processing of food, but the largest industrial-scale use of FDT is in the pharmaceutical industry. Through a Cooperative Research and Development Agreement (CRADA) with BOC Edwards Calumatic, we are demonstrating the feasibility of FDT as a waste minimization and pollution prevention technology. This is a novel and innovative application of FDT. In addition, we plan to demonstrate that the freeze-dried residue is an ideal feed material for ceramic stabilization of radioactive waste and excess fissile material. The objective of this work is to demonstrate the feasibility of FDT for the separation of complex radioactive and nonradioactive materials, including liquids, slurries, and sludges containing a wide variety of constituents in which the separation factors are >10 8 . This is the first application of FDT in which the condensate is of primary importance. Our focus is applying this technology to the elimination of radioactive liquid discharges from facilities at Los Alamos National Laboratory (LANL) and within the U.S. Department of Energy complex; however, successful demonstration will lead to nuclear industry-wide applications

  1. Separation technology for radioactive iodine from off-gas streams of nuclear facilities

    International Nuclear Information System (INIS)

    Fukasawa, Tetsuo; Funabashi, Kiyomi; Kondo, Yoshikazu.

    1994-01-01

    Iodine separation technology using an inorganic adsorption material has been investigated in order to apply the technology to the off-gas treatment systems of nuclear facilities. Iodine removal efficiencies were checked by laboratory experiments using simulated off-gas streams of various conditions and the developed adsorbent, silver impregnated alumina (AgA). Laboratory test results demonstrated effective iodine removal with high decontamination factors (DF's) at relatively high temperatures (≥100degC). Then the removal efficiency were confirmed using actual off-gas streams sampled from the dissolver off-gas treatment system of the Karlsruhe reprocessing plant. The DF's were over 10 3 with the AgA bed depth of 10 cm and showed little change during the adsorption period, which indicated applicability of the iodine removal technology with AgA to nuclear fuel reprocessing plants. Iodine absorption capacity and its release property were also investigated using simulated off-gas streams. The former had a value of ∼0.22 g/g-AgA and this value could well predict the breakthrough property. The adsorbed iodine was judged stable during the storage of AgA saturated with iodine in air at temperatures below 500degC and in water at ∼20degC after changing the adsorbed iodine form from AgIO 3 to AgI. Thus, the separation technology provided effective and stable iodine separation from the off-gas of nuclear facilities. (author)

  2. Energy Saving Separations Technologies for the Petroleum Industry: An Industry-University-National Laboratory Research Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Dorgan, John R.; Stewart, Frederick F.; Way, J. Douglas

    2003-03-28

    This project works to develop technologies capable of replacing traditional energy-intensive distillations so that a 20% improvement in energy efficiency can be realized. Consistent with the DOE sponsored report, Technology Roadmap for the Petroleum Industry, the approach undertaken is to develop and implement entirely new technology to replace existing energy intensive practices. The project directly addresses the top priority issue of developing membranes for hydrocarbon separations. The project is organized to rapidly and effectively advance the state-of-the-art in membranes for hydrocarbon separations. The project team includes ChevronTexaco and BP, major industrial petroleum refiners, who will lead the effort by providing matching resources and real world management perspective. Academic expertise in separation sciences and polymer materials found in the Chemical Engineering and Petroleum Refining Department of the Colorado School of Mines is used to invent, develop, and test new membrane materials. Additional expertise and special facilities available at the Idaho National Engineering and Environmental Laboratory (INEEL) are also exploited in order to effectively meet the goals of the project. The proposed project is truly unique in terms of the strength of the team it brings to bear on the development and commercialization of the proposed technologies.

  3. Pyrochemical separations technologies envisioned for the U. S. accelerator transmutation of waste system

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, J. J.

    2000-02-17

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system.

  4. [Use of fractional plasma separation and adsorption (Prometheus technology) in the treatment of acute liver failure].

    Science.gov (United States)

    Denisova, E N; Sharipova, V R; Purlo, N V; Sukhanova, G A; Biriukova, L S

    2009-01-01

    This paper presents the results of treating 8 patients with acute liver failure, by using the separation and adsorption of fractional plasma (Prometheus technology). Twenty-five procedures lasting 5-6 hours were performed. Anticoagulation with heparin was made under guidance of coagulogram parameters. The results of testing blood parameters before and after a procedure and hemodynamic parameters are given. The investigations have demonstrated the effectiveness and safety of the procedure.

  5. Airborne Separation Assurance and Traffic Management: Research of Concepts and Technology

    Science.gov (United States)

    Ballin, Mark G.; Wing, David J.; Hughes, Monica F.; Conway, Sheila R.

    1999-01-01

    To support the need for increased flexibility and capacity in the future National Airspace System, NASA is pursuing an approach that distributes air traffic separation and management tasks to both airborne and ground-based systems. Details of the distributed operations and the benefits and technical challenges of such a system are discussed. Technology requirements and research issues are outlined, and NASA s approach for establishing concept feasibility, which includes development of the airborne automation necessary to support the concept, is described.

  6. Electron beam facilities and technologies developed in the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Walis, L.; Zimek, Z.

    1992-01-01

    The operation of the first electron accelerator has been started at Institute /former Institute for Nuclear Research/ in 1971. This LAE-13/9 accelerator is a two-section lineac with adjustable energy of electrons: 5 to 13 MeV and the beam power up to 9 kW. The main technologies developed on the basis of LAE-13/9 are: sterilization, manufacturing of thermoshrinkable materials and modification of semiconductors. The accelerator is operated 4000 hours per year and used for small scale production and services in these fields. The other problems investigated in laboratory scale are: food preservation and hygenization, hygenization of municipal sewage sludge, and bio-conversion of pig-farm wastes into animal fodder. The laboratory experiments are basis for pilot construction and other industrial applications. The mentioned technology of thermoshrinkable tube production was implemented in industrial scale at ZWUT Czluchow which factory is equipped in the accelerator ILU-6 /20 kW, 2 MeV/. On the basis of similar unit a technological installation was built at Institute. The plant is furnished with a conveyer and the rewinding machines for tubes and tapes manufacturing. This allows continuous production of these materials. The plant will start operation next year and linear accelerator /10 MeV, 15 kW/ for this purpose is already delivered. The pilot plant for food preservation and hygenization has been built. It is equipped in small pilot accelerator 10 MeV, 1 kW and will be furnished with 10 MeV, 10 kW lineac this year. Beside of this technological lines Institute is furnished in Van de Graff accelerator /2, MeV, 100 μA/ and another laboratory unit LAE-10 /10 MeV, 10-100 ns 2 us/ is under construction. (J.P.N.)

  7. Proceeding of the Scientific Meeting and Presentation on Basic Research of Nuclear Science and Technology: Book II. Nuclear Chemistry, Process Technology, and Radioactive Waste Processing and Environment

    International Nuclear Information System (INIS)

    1996-06-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on on Basic Research of Nuclear Science and Technology, held in Yogyakarta, 25-27 April 1995. This proceeding is second part of two books published for the meeting contains papers on nuclear chemistry, process technology, and radioactive waste management and environment. There are 62 papers indexed individually. (ID)

  8. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Ruiz, R.H., E-mail: rhestrada@itsaltillo.edu.mx; Flores-Campos, R., E-mail: rcampos@itsaltillo.edu.mx; Gámez-Altamirano, H.A., E-mail: hgamez@itsaltillo.edu.mx; Velarde-Sánchez, E.J., E-mail: ejvelarde@itsaltillo.edu.mx

    2016-07-05

    Highlights: • Small sizes of particles are required in order to separate the different fractions. • Inverse flotation process is an efficient green technology to separate fractions. • Superficial air velocity is the main variable in the inverse flotation process. • Inverse flotation is a green process because the pulṕs pH is 7.0 during the test. - Abstract: The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained.

  9. Advanced separation technology for flue gas cleanup. Final report, February 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Tagg, T.; Riggs, T.; Ventura, S.; Sirkar, K.K.; Majumdar, S.; Bhaumick, D.

    1998-06-01

    The objective of this work by SRI International was to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. High efficiency, hollow fiber contactors (HFCs) were proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system would be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process would generate only marketable by-products, if any (no waste streams are anticipated). The major cost item in existing technology is capital investment. Therefore, the approach was to reduce the capital cost by using high-efficiency, hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. The authors also introduced new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. The process and progress in its development are described.

  10. Dramatically improve the Safety Performance of Li ion Battery Separators and Reduce the Manufacturing Cost Using Ultraviolet Curing and High Precision Coating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Gary [Miltec UV International, LLC, Stevensville, MD (United States); Arnold, John [Miltec UV International, LLC, Stevensville, MD (United States)

    2017-06-30

    The objective of this project was to improve the safety of operation of Lithium ion batteries (LIB)and at the same time significantly reduce the manufacturing cost of LIB separators. The project was very successful in demonstrating the improved performance and reduced cost attributed to using UV curable binder and high speed printing technology to place a very thin and precisely controlled ceramic layer on the surface of base separators made of polyolefins such as Polyethylene, Polypropylene and combinations of the two as well as cellulosic base separators. The underlying need for this new technology is the recently identified potential of fire in large format Lithium ion batteries used in hybrid, plug-in hybrid and electric vehicles. The primary potential cause of battery fire is thermal runaway caused by several different electrical or mechanical mechanisms; such as, overcharge, puncture, overheating, compaction, and internal short circuit. During thermal runaway, the ideal separator prevents ion flow and continues to physically separate the anode from the cathode. If the temperature of the battery gets higher, the separator may melt and partially clog the pores and help prevent ion flows but it also can shrink which can result in physical contact of the electrodes and accelerate thermal run-away even further. Ceramic coated separators eliminate many of the problems related to the usage of traditional separators. The ceramic coating provides an electrically insulating layer that retains its physical integrity at high temperature, allows for more efficient thermal heat transfer, helps reduce thermal shrinkage, and inhibits dendrite growth that could create a potential short circuit. The use of Ultraviolet (UV) chemistry to bind fine ceramic particles on separators is a unique and innovative approach primarily because of the instant curing of the UV curable binder upon exposure to UV light. This significant reduction in drying/curing time significantly reduces the

  11. Separations Science and Technology, Semiannual progress report, October 1991--March 1992

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Betts, S.; Chamberlain, D.B.

    1994-01-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1991--March 1992. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Two other projects are underway with the objective of developing (1) a membrane-assisted solvent extraction method for treating natural and process waters contaminated by volatile organic compounds and (2) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process

  12. Separations Science and Technology, Semiannual progress report, October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, G.F.; Betts, S.; Chamberlain, D.B. [and others

    1994-01-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1991--March 1992. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Two other projects are underway with the objective of developing (1) a membrane-assisted solvent extraction method for treating natural and process waters contaminated by volatile organic compounds and (2) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process.

  13. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Mohammad Songolzadeh

    2014-01-01

    Full Text Available Increasing concentrations of greenhouse gases (GHGs such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  14. The U.S. Advanced Fuel Cycle Initiative: Development of separations technologies

    International Nuclear Information System (INIS)

    Laidler, James J.; Bresee, James C.

    2004-01-01

    Spent nuclear fuel from 103 operating U.S. commercial nuclear power reactors is accumulating at a rate of about 2,000 metric tons per year. At this rate, the legislated capacity of the Yucca Mountain geologic repository (63,000 tons of commercial spent fuel) will be exceeded by 2015. Accordingly, the U.S. Department of Energy has instituted a new program, the Advanced Fuel Cycle Initiative, which is intended to provide the technologies necessary for the economical and environmentally sound processing of spent fuel. The goal of this technology development program is to preclude or significantly delay the need for a second geologic repository. Separations technologies are being developed that will support the processing of commercial spent fuel as well as the spent fuel arising from the operation of future advanced reactors

  15. Effects of Information and Communication Technology (ICT on Students’ Academic Achievement and Retention in Chemistry at Secondary Level

    Directory of Open Access Journals (Sweden)

    Ishtiaq Hussain

    2017-06-01

    Full Text Available The current paper investigated the effects of information and communication technology on the students’ academic achievement and retention in chemistry. Fifty students of 9th grade were selected randomly from Kohsar Public School and College Latamber Karak. The students were grouped into equivalent groups based on pretest score. In order to collect data, pretest posttest equivalent groups design was used. Mean, standard deviation and independent samples t-test were applied through SPSS for data analysis. Based on statistical analysis, it came to light that information and communication technology positively affects students’ academic achievement and retention and ICT was found more compelling, effective and valuable in teaching of chemistry when contrasted with conventional techniques of teaching. It is recommended that information and communication technology should be used in teaching chemistry for enhancing students’ academic achievement at secondary level.

  16. Development and analysis of educational technologies for a blended organic chemistry course

    Science.gov (United States)

    Evans, Michael James

    Blended courses incorporate elements of both face-to-face and online instruction. The extent to which blended courses are conducted online, and the proper role of the online components of blended courses, have been debated and may vary. What can be said in general, however, is that online tools for blended courses are typically culled together from a variety of sources, are often very large scale, and may present distractions for students that decrease their utility as teaching tools. Furthermore, large-scale educational technologies may not be amenable to rigorous, detailed study, limiting evaluation of their effectiveness. Small-scale educational technologies run from the instructor's own server have the potential to mitigate many of these issues. Such tools give the instructor or researcher direct access to all available data, facilitating detailed analysis of student use. Code modification is simple and rapid if errors arise, since code is stored where the instructor can easily access it. Finally, the design of a small-scale tool can target a very specific application. With these ideas in mind, this work describes several projects aimed at exploring the use of small-scale, web-based software in a blended organic chemistry course. A number of activities were developed and evaluated using the Student Assessment of Learning Gains survey, and data from the activities were analyzed using quantitative methods of statistics and social network analysis methods. Findings from this work suggest that small-scale educational technologies provide significant learning benefits for students of organic chemistry---with the important caveat that instructors must offer appropriate levels of technical and pedagogical support for students. Most notably, students reported significant learning gains from activities that included collaborative learning supported by novel online tools. For the particular context of organic chemistry, which has a unique semantic language (Lewis

  17. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    Science.gov (United States)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was

  18. The Investigation of Separability of Particles Smaller Than 5 mm by Eddy Current Separation Technology. Part I : Rotating Type Eddy Current Separators

    NARCIS (Netherlands)

    Zhang, S.; Rem, P.C.; Forssberg, E.

    1999-01-01

    Owing to the growing emergence of the end-of-life electrical and electronic products with complex material structures and an ever-diminishing particle size of the valuable metals involved, development of eddy current separators (ECS) has been targeting selective separation of small non-ferrous metal

  19. Proceedings of the Scientific Meeting and Presentation on Basic Researchin Nuclear Science and Technology part II: Nuclear Chemistry, Process Technology, Radioactive Waste Management and Environment

    International Nuclear Information System (INIS)

    Sukarsono, R.; Karmanto, Eko-Edy; Suradjijo, Ganang

    2000-01-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Scienceand Technology is an annual activity held by Centre for Research and Development of Advanced Technology, National Nuclear Energy Agency, for monitoring research activities achieved by the Agency. The papers presented in the meeting were collected into proceedings. These are the second part of the proceedings that contain 71 articles in the fields of nuclear chemistry, process technology, radioactive waste management, and environment (PPIN).

  20. Single-Site Heterogeneous Catalysts: Innovations, Advantages, and Future Potential in Green Chemistry and Sustainable Technology

    Science.gov (United States)

    Raja, Robert; Thomas, John Meurig

    The advantages that flow from the availability of single-site heterogeneous catalysts are many. They facilitate the determination of the kinetics and mechanism of catalytic turnover and render accessible the energetics of various intermediates. More importantly, it is possible to prepare soluble molecular fragments that circumscribe the single site, thus enabling a direct comparison to be made between the catalytic performance of the same active site when functioning as a heterogeneous or a homogeneous catalyst. Our approach adopts the principles and practices of solid-state chemistry, augmented by lessons derived from enzymology, as well as computational chemistry. We have succeeded in designing a range of new catalysts to effect, inter alia, shape-selective, regioselective, bifunctional, and enantioselective catalytic conversions. In particular, large fractions of these catalysts are ideally suited for the era of clean technology in which single-step and/or solvent-free processes abound, and in which benign oxidants such as air or oxygen and inexpensive nanoporous materials are employed.

  1. Separation Science and Technology. Semiannual progress report, April 1993--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C. [and others

    1996-01-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April-September 1993. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process, (2) treatment schemes for liquid wastes stored or being generated at Argonne, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of {sup 99}Mo for nuclear medicine uses.

  2. Separation science and technology. Semiannual progress report, October 1993--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, G.F.; Aase, S.B.; Buchholz, B. [and others

    1997-12-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory (ANL), in the period October 1993-March 1994. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process, (2) treatment schemes for liquid wastes stored are being generated at ANL, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of {sup 99}Mo for nuclear medicine uses.

  3. Separation science and technology. Semiannual progress report, October 1993 - March 1994

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Aase, S.B.; Buchholz, B.

    1997-12-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory (ANL), in the period October 1993-March 1994. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process, (2) treatment schemes for liquid wastes stored are being generated at ANL, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of 99 Mo for nuclear medicine uses

  4. Green Chemistry Technology and Product Development. Final Report for Intermediary Biochemicals, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Zeikus, J. Gregory [Michigan State Univ., East Lansing, MI (United States). Dept. of Microbiology & Molecular Genetics

    2010-08-28

    The DOE funds in this award were applied to developing systems to cost effectively produce intermediate (1 dollar$-$1,000 dollars per kg) and fine ($1,000 per kg) chemicals from renewable feedstocks using environmentally responsible processes via collaboration with academic research laboratories to provide targeted technology and early product development. Specifically, development of a thermostable alkaline phosphatase overexpression system to provide supplies and reagents for improved biological test kits, creation of a microbial strain for the efficient production of aspartate from glucose (replacing oil-derived fumarate in aspartate production), and early development research for an electrochemical bioreactor for the conversion of glucose to mannitol were targeted by this research. Also, establishing this positive academic/industrial collaboration with Michigan State University Laboratories and fostering greater inter-laboratory collaboration would also support the strategy of efficiently transitioning academic green chemistry research into the commercial sector and open an avenue to low cost early product development coupled with scientific training.

  5. LLNL medical and industrial laser isotope separation: large volume, low cost production through advanced laser technologies

    International Nuclear Information System (INIS)

    Comaskey, B.; Scheibner, K. F.; Shaw, M.; Wilder, J.

    1998-01-01

    The goal of this LDRD project was to demonstrate the technical and economical feasibility of applying laser isotope separation technology to the commercial enrichment (>lkg/y) of stable isotopes. A successful demonstration would well position the laboratory to make a credible case for the creation of an ongoing medical and industrial isotope production and development program at LLNL. Such a program would establish LLNL as a center for advanced medical isotope production, successfully leveraging previous LLNL Research and Development hardware, facilities, and knowledge

  6. Improvements on heavy water separation technology by isotopic water-hydrogen sulfide exchange

    International Nuclear Information System (INIS)

    Peculea, M.

    1987-01-01

    A series of possible variance is presented for the heavy water separation technology by isotopic H 2 O-H 2 S exchange at dual temperatures. The critical study of these variants, which are considered as characteristic quantities for the isotopes transport (production) and the extraction level is related to a dual temperature plant fed by liquid and cold column, which is the up-to-date technology employed in all heavy water production plants as variants of following plants are studied: dual temperature plant with double feeding; dual-temperature plant with equilibrium column (booster); dual-temperature-dual-pressure plant. Attention is paid to the variant with equilibration column (booster), executed and tested at the State Committee for Nuclear Energy and to the dual-temperature-dual pressure plant which presents the highest efficiency. (author)

  7. The nature of science and technology for pre-service chemistry teacher: A case of techno-chemistry experiment "From Stannum Metalicum to conductive glass"

    Science.gov (United States)

    Mudzakir, A.; Widhiyanti, T.; Hernani, Arifin, M.; Lestari, A. N.; Jauhariansyah, S.

    2017-08-01

    The study was conducted to address the problems related to low Indonesian students' scientific literacy as revealed in the PISA (Program for International Student Assessment) since 2000-2015. Science teachers (e.g. chemistry teacher) must recognize the nature of science (NOS) to assist their students in preparing an explanation of a phenomenon scientifically correctly. Teachers also need to understand critically about nature of technology (NOT) and it relationship with science as well as society. To integrate those two kinds of knowledge (NOS and NOT), we can conduct a techno-science activity, which integrate the technology to science course in pre-service teacher education program, so that they can improve their knowledge about nature of science and technology (NOST) and pedagogical content knowledge related to NOST. The purpose of this study was to construct an inquiry based laboratory activity worksheet for making conductive glass so that the pre-service teacher could explain how the structure of the semiconductor Fluor doped Tin Oxide (SnO2.F) affect their performance. This study we conducted, described how to design a pre-service chemistry teacher education course that can improve recognizing view of NOST by using a framework called model of educational reconstruction (MER). The scientific activities in the course were guided inquiry based techno-chemistry experiments involving "From Stannum Metallicum to Conductive Glass". Conductive glasses are interesting subject research for several reason. The application of this technology could be found on solar cell, OLED, and display panel. The doped Tin dioxide has been deposited on glass substrate using the spray pyrolysis technique at 400-550°C substrate temperature, 4-5 times, 20 cm gap between glass and sprayer and 450 angle to form a thin film which will act as electrical contact. The resistivity is about 0.5 - 15Ω. The product resulted on this study was rated by several expert to find if the worksheet could

  8. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 11, October 1994--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bhown, A.S.; Alvarado, D.; Pakala, N. [and others

    1994-12-01

    The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (a) a novel method for regeneration of spent SO{sub 2} scrubbing liquor and (b) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub x} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process will make only marketable byproducts, if any (no waste streams). The major cost item in existing technology is capital investment. Therefore, our approach is to reduce the capital cost by using high efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. For example, we will extract the SO{sub 2} from the aqueous scrubbing liquor into an oligomer of dimethylaniline to avoid the problem of organic liquid losses in the regeneration of the organic liquid.

  9. Crisis, change and creativity in science and technology: chemistry in the aftermath of twentieth-century global wars.

    Science.gov (United States)

    Johnson, Jeffrey Allan

    2011-07-01

    This paper presents the organising ideas behind the symposium "Chemistry in the Aftermath of World Wars," held at the 23rd International Congress of History of Science and Technology, Budapest, 2009, whose theme was "Ideas and Instruments in Social Context." After first recounting the origins of the notion of "crisis" as a decisive turning point in general history as well as in the history of science, the paper presents war and its aftermath as a form of crisis that may affect science and technology, including chemistry, in a variety of contexts and leading to a variety of types of change. The twentieth-century world wars were exemplary forms of crisis, whose aftermaths shaped the contexts for decisive changes in modern chemistry, which continue to offer challenging opportunities for historical research. In discussing these, the paper cites selected current literature and briefly describes how the individual papers of the symposium, including the three papers published in this volume, approached these challenges.

  10. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  11. Chemistry Teacher Candidates' Acceptance and Opinions about Virtual Reality Technology for Molecular Geometry

    Science.gov (United States)

    Saritas, M. T.

    2015-01-01

    The meaningful knowledge creation about molecular geometry has always been the challenge of chemistry learning. In particular, microscopic world of chemistry science (example, atoms, molecules, structures) used in traditional two dimensional way of chemistry teaching can lead to such problem as students create misconceptions. In recent years,…

  12. 77 FR 43131 - Designation of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry...

    Science.gov (United States)

    2012-07-23

    ... Cooperation (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh Pursuant to Executive Order 13382... (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh Pursuant to E.O. 13382. SUMMARY... Cooperation (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh, have engaged, or attempted to...

  13. 78 FR 13142 - Designation of the Center for Innovation and Technology Cooperation (CITC), Pentane Chemistry...

    Science.gov (United States)

    2013-02-26

    ... Cooperation (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh Pursuant to Executive Order 13382... (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh Pursuant to E.O. 13382. SUMMARY... Cooperation (CITC), Pentane Chemistry Industries (PCI), and Hossein Tanideh, have engaged, or attempted to...

  14. Membrane Materials and Technology for Xylene Isomers Separation and Isomerization via Pervaporation

    KAUST Repository

    Bilaus, Rakan

    2014-11-01

    P-xylene is one of the highly influential commodities in the petrochemical industry. It is used to make 90% of the world’s third largest plastic production, polyethylene terephthalate (PET). With a continuously increasing demand, the current technology’s high energy intensity has become a growing concern. Membrane separation technology is a potential low-energy alternative. Polymeric membranes were investigated in a pervaporation experiment to separate xylene isomers. Polymers of intrinsic microporosity (PIMs) as well as polyimides (PIM-PI), including thermally cross-linked PIM-1, PIM-6FDA-OH and thermally-rearranged PIM-6FDA-OH were investigated as potential candidates. Although they exhibited extremely high permeability to xylenes, selectivity towards p-xylene was poor. This was attributed to the polymers low chemical resistance which was apparent in their strong tendency to swell in xylenes. Consequently, a perfluoro-polymer, Teflon AF 2400, with a high chemical resistance was tested, which resulted in a slightly improved selectivity. A super acid sulfonated perfluoro-polymer (Nafion-H) was used as reactive membrane for xylenes isomerization. The membrane exhibited high catalytic activity, resulting in 19.5% p-xylene yield at 75ᵒC compared to 20% p-xylene yield at 450ᵒC in commercial fixed bed reactors. Nafion-H membrane outperforms the commercial technology with significant energy savings.

  15. Separators used in microbial electrochemical technologies: Current status and future prospects.

    Science.gov (United States)

    Daud, Siti Mariam; Kim, Byung Hong; Ghasemi, Mostafa; Daud, Wan Ramli Wan

    2015-11-01

    Microbial electrochemical technologies (METs) are emerging green processes producing useful products from renewable sources without causing environmental pollution and treating wastes. The separator, an important part of METs that greatly affects the latter's performance, is commonly made of Nafion proton exchange membrane (PEM). However, many problems have been identified associated with the Nafion PEM such as high cost of membrane, significant oxygen and substrate crossovers, and transport of cations other than protons protons and biofouling. A variety of materials have been offered as alternative separators such as ion-exchange membranes, salt bridges, glass fibers, composite membranes and porous materials. It has been claimed that low cost porous materials perform better than PEM. These include J-cloth, nylon filter, glass fiber mat, non-woven cloth, earthen pot and ceramics that enable non-ion selective charge transfer. This paper provides an up-to-date review on porous separators and plots directions for future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of Information and Communication Technology (ICT) on Students' Academic Achievement and Retention in Chemistry at Secondary Level

    Science.gov (United States)

    Hussain, Ishtiaq; Suleman, Qaiser; ud Din, M. Naseer; Shafique, Farhan

    2017-01-01

    The current paper investigated the effects of information and communication technology on the students' academic achievement and retention in chemistry. Fifty students of 9th grade were selected randomly from Kohsar Public School and College Latamber Karak. The students were grouped into equivalent groups based on pretest score. In order to…

  17. Presidential Green Chemistry Challenge: 2001 Greener Reaction Conditions Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2001 award winner, Novozymes North America, developed BioPreparation, an enzyme technology to separate natural waxes, oils, and contaminants from cotton before it is made into fabric.

  18. Separating the effects of organic matter-mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene.

    Science.gov (United States)

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2008-06-01

    Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.

  19. Lamination technology for separation of solid wastes; La tecnologia de la Laminacion para separacion de residuos solidos compuestos

    Energy Technology Data Exchange (ETDEWEB)

    Rocas, J.

    1998-07-01

    The lamination technology has been developed, and introduces a form of separation of solid wastes totally new in its concept and development. No longer will be a problem the economic and ecological efficient separation of wastes like tetra-brick, compound of metals and plastics, aluminum scum, electric or electronic wastes and many other. (Author)

  20. Biomimetic polymers in analytical chemistry. Part 1: preparation and applications of MIP (Molecularly Imprinted Polymers) in extraction and separation techniques

    International Nuclear Information System (INIS)

    Tarley, Cesar Ricardo Teixeira; Sotomayor, Maria del Pilar Taboada; Kubota, Lauro Tatsuo

    2005-01-01

    MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented. (author)

  1. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Woosoon [Univ. of Nevada, Las Vegas, NV (United States); Bae, Chulsung [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-10-28

    The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in order to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling

  2. Exploring Liquid Sequential Injection Chromatography to Teach Fundamentals of Separation Methods: A Very Fast Analytical Chemistry Experiment

    Science.gov (United States)

    Penteado, Jose C.; Masini, Jorge Cesar

    2011-01-01

    Influence of the solvent strength determined by the addition of a mobile-phase organic modifier and pH on chromatographic separation of sorbic acid and vanillin has been investigated by the relatively new technique, liquid sequential injection chromatography (SIC). This technique uses reversed-phase monolithic stationary phase to execute fast…

  3. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    Science.gov (United States)

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  4. NATO Advanced Study Institute on Fundamental and Technological Aspects of Organo-f-Element Chemistry

    CERN Document Server

    Fragalà, Ignazio

    1985-01-01

    The past decade has seen a dramatic acceleration of activity and interest in phenomena surrounding lanthanide and actinide organo­ metallic compounds. Around the world, active research in organo-f­ element synthesis, chemistry, catalysis, crystallography, and quantum chemistry is in progress. This activity has spanned a remarkably wide range of disciplines, from synthetic/mechanistic inorganic and organic chemistry to radiochemistry, catalytic chemistry, spectroscopy (vibra­ tional, optical, magnetic resonance, photoelectron, Mossbauer), X-ray and neutron diffraction structural analysis, as well as to crystal field and molecular orbital theoretical studies at the interface of chemistry and physics. These investigations have been motivated both by fundamental and applied goals. The evidence that f-element organo­ metallic compounds have unique chemical and physical properties which cannot be duplicated by organometallic compounds of d-block elements has suggested many new areas of endeavor and application....

  5. Significant steps in the evolution of analytical chemistry--is the today's analytical chemistry only chemistry?

    Science.gov (United States)

    Karayannis, Miltiades I; Efstathiou, Constantinos E

    2012-12-15

    In this review the history of chemistry and specifically the history and the significant steps of the evolution of analytical chemistry are presented. In chronological time spans, covering the ancient world, the middle ages, the period of the 19th century, and the three evolutional periods, from the verge of the 19th century to contemporary times, it is given information for the progress of chemistry and analytical chemistry. During this period, analytical chemistry moved gradually from its pure empirical nature to more rational scientific activities, transforming itself to an autonomous branch of chemistry and a separate discipline. It is also shown that analytical chemistry moved gradually from the status of exclusive serving the chemical science, towards serving, the environment, health, law, almost all areas of science and technology, and the overall society. Some recommendations are also directed to analytical chemistry educators concerning the indispensable nature of knowledge of classical analytical chemistry and the associated laboratory exercises and to analysts, in general, why it is important to use the chemical knowledge to make measurements on problems of everyday life. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Assessment of Carbon- and Metal-Based Nanoparticle DNA Damage with Microfluidic Electrophoretic Separation Technology.

    Science.gov (United States)

    Schrand, Amanda M; Powell, Thomas; Robertson, Tiffany; Hussain, Saber M

    2015-02-01

    In this study, we examined the feasibility of extracting DNA from whole cell lysates exposed to nanoparticles using two different methodologies for evaluation of fragmentation with microfluidic electrophoretic separation. Human lung macrophages were exposed to five different carbon- and metal-based nanoparticles at two different time points (2 h, 24 h) and two different doses (5 µg/ml, 100 µg/ml). The primary difference in the banding patterns after 2 h of nanoparticle exposure is more DNA fragmentation at the higher NP concentration when examining cells exposed to nanoparticles of the same composition. However, higher doses of carbon and silver nanoparticles at both short and long dosing periods can contribute to erroneous or incomplete data with this technique. Also comparing DNA isolation methodologies, we recommend the centrifugation extraction technique, which provides more consistent banding patterns in the control samples compared to the spooling technique. Here we demonstrate that multi-walled carbon nanotubes, 15 nm silver nanoparticles and the positive control cadmium oxide cause similar DNA fragmentation at the short time point of 2 h with the centrifugation extraction technique. Therefore, the results of these studies contribute to elucidating the relationship between nanoparticle physicochemical properties and DNA fragmentation results while providing the pros and cons of altering the DNA isolation methodology. Overall, this technique provides a high throughput way to analyze subcellular alterations in DNA profiles of cells exposed to nanomaterials to aid in understanding the consequences of exposure and mechanistic effects. Future studies in microfluidic electrophoretic separation technologies should be investigated to determine the utility of protein or other assays applicable to cellular systems exposed to nanoparticles.

  7. A new electron linac for pulse radiolysis experiments at the Institute of Nuclear Chemistry and Technology, Poland

    International Nuclear Information System (INIS)

    Zimek, Z.

    1990-01-01

    A new electron accelerator LAE 10 is under construction at the Institute of Nuclear Chemistry and Technology in Warsaw. This facility will be dedicated to pulse radiolysis and related experiments. The basic parameters of the linac are the following: electron energy 10 MeV, pulse durations 10-100 ns, peak current 10-2 A respectively. Accelerator structure traveling wave type powered by klystron operated at a frequency 1818 MHz is applied. (author)

  8. A new electron linac for pulse radiolysis experiments at the Institute of Nuclear Chemistry and Technology, Poland

    Science.gov (United States)

    Zimek, Z.

    A new electron accelerator LAE 10 is under construction at the Institute of Nuclear Chemistry and Technology in Warsaw. This facility will be dedicated to pulse radiolysis and related experiments. The basic parameters of the linac are the following: electron energy 10 MeV, pulse durations 10-100 ns, peak current 10-2 A respectively. Accelerator structure traveling wave type powered by klystron operated at a frequency 1818 MHz is applied.

  9. Analytical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The division for Analytical Chemistry continued to try and develope an accurate method for the separation of trace amounts from mixtures which, contain various other elements. Ion exchange chromatography is of special importance in this regard. New separation techniques were tried on certain trace amounts in South African standard rock materials and special ceramics. Methods were also tested for the separation of carrier-free radioisotopes from irradiated cyclotron discs

  10. Development of Decontamination Technology for Separating Radioactive Constituents from Contaminated Concrete Waste

    International Nuclear Information System (INIS)

    Min, B. Y.; Kim, G. N.; Lee, G. W.; Choi, W. K.; Jung, U. S.

    2010-01-01

    The large amount of contaminated concrete produced during decommissioning procedures and available decontamination. In Korea, more than more than 60 tons of concrete wastes contaminated with uranium compounds have been generated from UCP (Uranium Conversion Plant) by dismantling. A recycling or a volume reduction of the concrete wastes through the application of appropriate treatment technologies have merits from the view point of an increase in a resource recycling as well as a decrease in the amount of wastes to be disposed of resulting in a reduction of a disposal cost and an enhancement of the disposal safety. For unconditional release of building and reduction of radioactive concrete waste, mechanical methods and thermal stress methods have been selected. In the advanced countries, such as France, Japan, Germany, Sweden, and Belgium, techniques for reduction and reuse of the decommissioning concrete wastes have applied to minimize the total radioactive concrete waste volume by thermal and mechanical processes. It was found that volume reduction of contaminated concrete can be achieved by separation of the fine cement stone and coarse gravel. Typically, the contaminated layer is only 1∼10mm thick because cementitious materials are porous media, the penetration of radionuclides may occur up to several centimenters from the surface of a material. Most of the dismantled concrete wastes are slightly contaminated rather than activated. This decontamination can be accomplished during the course of a separation of the concrete wastes contaminated with radioactive materials through a thermal treatment step of the radionuclide (e.g. cesium and strontium), transportation of the radionuclide to fine aggregates through a mechanical treatment step. Concrete is a structural material which generally consists of a binder (cement), water, and aggregate. The interaction between highly charged calcium silicate hydrate (C-S-H) particles in the presence of divalent calcium

  11. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology part II : Nuclear Chemistry, Process Technology, Radioactive Waste Management and Environment

    International Nuclear Information System (INIS)

    Sukarsono, R.; Ganang Suradjijo

    2002-01-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity held by Centre for Research and Development of Advanced Technology, National Nuclear Energy Agency, for monitoring the research activity which achieved in National Nuclear Energy Agency. This proceedings contains a proposal about basic research in nuclear technology which has environment. This proceedings is the second part of the two parts which published in series. There are 57 articles which have separated index. (PPIN)

  12. Using digital technologies to enhance chemistry students' understanding and representational skills

    DEFF Research Database (Denmark)

    Hilton, Annette

    Abstract Chemistry students need to understand chemistry on molecular, symbolic and macroscopic levels. Students find it difficult to use representations on these three levels to interpret and explain data. One approach is to encourage students to use writing-to-learn strategies in inquiry settings...... to present and interpret their laboratory results. This paper describes findings from a study on the effects on students’ learning outcomes of creating multimodal texts to report on laboratory inquiries. The study involved two senior secondary school chemistry classes (n = 22, n = 27). Both classes completed...

  13. Benchtop Technologies for Circulating Tumor Cells Separation Based on Biophysical Properties

    Directory of Open Access Journals (Sweden)

    Wan Shi Low

    2015-01-01

    Full Text Available Circulating tumor cells (CTCs are tumor cells that have detached from primary tumor site and are transported via the circulation system. The importance of CTCs as prognostic biomarker is leveraged when multiple studies found that patient with cutoff of 5 CTCs per 7.5 mL blood has poor survival rate. Despite its clinical relevance, the isolation and characterization of CTCs can be quite challenging due to their large morphological variability and the rare presence of CTCs within the blood. Numerous methods have been employed and discussed in the literature for CTCs separation. In this paper, we will focus on label free CTCs isolation methods, in which the biophysical and biomechanical properties of cells (e.g., size, deformability, and electricity are exploited for CTCs detection. To assess the present state of various isolation methods, key performance metrics such as capture efficiency, cell viability, and throughput will be reported. Finally, we discuss the challenges and future perspectives of CTC isolation technologies.

  14. A NOVEL SEPARATION TECHNOLOGY FOR NANO PARTICLES AT DISCHARGE OF COMBUSTION AND INCINERATION EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Daniele Accornero

    2012-07-01

    Full Text Available Still today, the issue of safely and efficiently avoiding the atmospheric release of the nano-particles produced by combustion and incineration processes is a critical and open challenge. This study addresses the conception, the technological realization and the first experimental testing of a new device suitable for in-duct filtration and separation of nano particles dispersed into flue-gas streams. The active filtering material is a membrane made from ptfe foil, in origin impermeable but suitable to allow creation, once properly stretched, of an inner texture of permeable micro- and nano-tubes, thus inducing activation of van der Waals effects to the advantage of improved particles’ sticking. The experimental tests confirm attainment of a remarkable filtration capacity, way better than the so-called ‘absolute filters’. Moreover, the filtration material allows to undergo a simple and safe “regeneration cleaning”  process by which the particles can be re-collected off-duct without any filter dismantling.

  15. Costs of slurry separation technologies and alternative use of the solid fraction for biogas production or burning

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2011-01-01

    separation, in order to establish the overall costs. Key parameters are livestock density, transport distance, price of additional land and cost of separation. The conclusion is that unless land prices or prices on slurry agreements are very high, traditional handling of animal manure has the lowest costs......The purpose of this paper is to analyse different separation concepts in order to evaluate the overall costs based on a systems approach from stable to field. When livestock are produced in livestock intensive areas the distribution of manure without creating a surplus of nutrients is often...... for P-balance is stricter in Denmark than before, but developments in feeding, changes in regulation and the reduction of livestock numbers have made separation less favourable. This article compares dominant separation technologies in Denmark, such as decanter and flocculation, as well as source...

  16. Analytical chemistry

    Czech Academy of Sciences Publication Activity Database

    Křivánková, Ludmila

    -, č. 22 (2011), s. 718-719 ISSN 1472-3395 Institutional research plan: CEZ:AV0Z40310501 Keywords : analytical chemistry * analytical methods * nanotechnologies Subject RIV: CB - Analytical Chemistry, Separation http://edition.pagesuite-professional.co.uk/launch.aspx?referral=other&pnum=&refresh=M0j83N1cQa91&EID=82bccec1-b05f-46f9-b085-701afc238b42&skip=

  17. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  18. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  19. Traveling around Cape Horn: Otolith chemistry reveals a mixed stock of Patagonian hoki with separate Atlantic and Pacific spawning grounds

    Science.gov (United States)

    Schuchert, P.C.; Arkhipkin, A.I.; Koenig, A.E.

    2010-01-01

    Trace element fingerprints of edge and core regions in otoliths from 260 specimens of Patagonian hoki, Macruronus magellanicus L??nnberg, 1907, were analyzed by LA-ICPMS to reveal whether this species forms one or more population units (stocks) in the Southern Oceans. Fish were caught on their spawning grounds in Chile and feeding grounds in Chile and the Falkland Islands. Univariate and multivariate analyses of trace element concentrations in the otolith edges, which relate to the adult life of fish, could not distinguish between Atlantic (Falkland) and Pacific (Chile) hoki. Cluster analyses of element concentrations in the otolith edges produced three different clusters in all sample areas indicating high mixture of the stocks. Cluster analysis of trace element concentrations in the otolith cores, relating to juvenile and larval life stages, produced two separate clusters mainly distinguished by 137Ba concentrations. The results suggest that Patagonian hoki is a highly mixed fish stock with at least two spawning grounds around South America. ?? 2009 Elsevier B.V.

  20. Evaluation of Novel Wet Chemistry Separation and Purification Methods to Facilitate Automation of Astatine-­211 Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, Daniel Scott [Univ. of Washington, Seattle, WA (United States)

    2016-07-19

    This research is a collaborative effort between the research groups of the PIs, Dr. D. Scott Wilbur in the Department of Radiation Oncology at the University of Washington (UW) and Matthew O’Hara at the Pacific Northwest National Laboratory (PNNL). In this report only those studies conducted at UW and the budget information from UW will be reported. A separate progress and financial report will be provided by PNNL. This final report outlines the experiments (Tasks) conducted and results obtained at UW from July 1, 2013 thru June 30, 2016 (2-­year project with 1 year no-­cost extension). The report divides the information on the experiments and results obtained into the 5 specific objectives of the research efforts and the Tasks within those objectives. This format is used so that it is easy to see what has been accomplished in each area. A brief summary of the major findings from the studies is provided below. Summary of Major Findings from Research/Training Activities at UW: Anion and cation exchange columns did not provide adequate 211At capture and/or extraction results under conditions studied to warrant further evaluation; PEG-­Merrifield resins containing mPEG350, mPEG750, mPEG2000 and mPEG5000 were synthesized and evaluated; All of the mPEG resins with different sized mPEG moieties conjugated gave similar 211At capture (>95%) from 8M HCl solutions and release with conc. NH4OH (~50-­80%), but very low quantities were released when NaOH was used as an eluent; Capture and release of 211At when loading [211At]astatate appeared to be similar to that of [211At]astatide on PEG columns, but further studies need to be conducted to confirm that; Capture of 211At on PEG columns was lower (e.g. 80-­90%) from solutions of 8M HNO3, but higher capture rates (e.g. 99%) can be obtained when 10M HNO3 is mixed with an equal quantity of 8M HCl; Addition of reductants to the

  1. An outlook on chlorogenic acids-occurrence, chemistry, technology, and biological activities.

    Science.gov (United States)

    Upadhyay, Rohit; Mohan Rao, L Jagan

    2013-01-01

    Phenolics are widespread dietary antioxidants. Among these, chlorogenic acids (CGAs) received considerable attention for their wide distribution and part of human diet with potential biological effects. CGAs (71 compounds), being esters of derivatives of cinnamic acids with quinic acid are widely distributed in plant materials. Coffee is among the highest found in plants, ranging from 4 to 14%. Besides, these are reported in plant foods such as apples, pears, carrot, tomato, sweet potato, Phyllostachys edulis, oilseeds, Prunus domestica L, cherries, and eggplant. The traditional Chinese medicinal plants such as flowers and buds of Lonicera japonica Thunb and the leaves of Eucommia ulmodies contained CGAs as bioactive compound. These play an important role in the formation of roasted coffee flavor and have a marked influence on coffee cup quality. CGAs are considered as main precursors of coffee flavor and pigments. Recent technological advancements in the separation and purification of CGAs such as molecular-imprinted polymer technique; microwave-assisted extraction; pH gradient counter current chromatography has also been described. The consumption of coffee correlated to several health benefits such as reducing the risk of human chronic diseases such as inflammation, diabetes, and cardiovascular disease owing to its antioxidant potential.

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: STORMWATER SOURCE AREA TREATMENT DEVICE — BAYSAVER TECHNOLOGIES, INC. BAYSAVER SEPARATION SYSTEM, MODEL 10K

    Science.gov (United States)

    Verification testing of the BaySaver Separation System, Model 10K was conducted on a 10 acre drainage basin near downtown Griffin, Georgia. The system consists of two water tight pre-cast concrete manholes and a high-density polyethylene BaySaver Separator Unit. The BaySaver Mod...

  3. Evaluation of a new pulping technology for pre-treating source-separated organic household waste prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Larsen, Bjarne

    2016-01-01

    A new technology for pre-treating source-separated organic household waste prior to anaerobic digestion was assessed, and its performance was compared to existing alternative pre-treatment technologies. This pre-treatment technology is based on waste pulping with water, using a specially developed...... screw mechanism. The pre-treatment technology rejects more than 95% (wet weight) of non-biodegradable impurities in waste collected from households and generates biopulp ready for anaerobic digestion. Overall, 84-99% of biodegradable material (on a dry weight basis) in the waste was recovered......-pulping technology showed higher biodegradable material recovery, lower electricity consumption and comparable water consumption. The higher material recovery achieved with the technology was associated with greater transfer of nutrients (N and P), carbon (total and biogenic) but also heavy metals (except Pb...

  4. Approaches to Technology in Biology and Chemistry Classes: An Alternative Perspective.

    Science.gov (United States)

    Jervis, Charles K.

    This paper argues for extending the definition of "technology" in education to include much more than just computers, and for recognizing the dangers of using technology for its entertainment purposes. Two conceptions of the proper use of technology in science classrooms are offered: (1) technology as tool; and (2) technology as topic. Specific…

  5. Factors related to the economic sustainability of two-year chemistry-based technology training programs

    Science.gov (United States)

    Backus, Bridgid A.

    Two-year chemistry-based technology training (CBTT) programs in the U.S. are important in the preparation of the professional technical workforce. The purpose of this study was to identify, examine, and analyze factors related to the economic sustainability of CBTT programs. A review of literature identified four clustered categories of 31 sub-factors related to program sustainability. Three research questions relating to program sustainability were: (1) What is the relative importance of the identified factors?, (2) What differences exist between the opinions of administrators and faculty?, and (3) What are the interrelationships among the factors? In order to answer these questions, survey data gathered from CBTT programs throughout the United States were analyzed statistically. Conclusions included the following: (1) Rank order of the importance to sustainability of the clustered categories was: (1) Partnerships, (2) Employer and Student Educational Goals, (3) Faculty and Their Resources, and (4) Community Perceptions and Marketing Strategies. (2) Significant correlations between ratings of sustainability and the sub-factors included: degree of partnering, college responsiveness, administration involvement in partnerships, experiential learning opportunities, employer input in curriculum development, use of skill standards, number of program graduates, student job placement, professional development opportunities, administrator support, presence of a champion, flexible scheduling, program visibility, perception of chemical technicians, marketing plans, and promotion to secondary students. (3) Faculty and administrators differed significantly on only two sub-factor ratings: employer assisted curriculum development, and faculty workloads. (4) Significant differences in ratings by small program faculty and administrators and large program faculty and administrators were indicated, with most between small program faculty and large program administrators. The study

  6. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J. R.; Wang, D. [Gas Technology Institute; Bischoff, B.; Ciora, [Media and Process Technology; Radhakrishnan, B.; Gorti, S. B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina

  7. Evaluation of a new pulping technology for pre-treating source-separated organic household waste prior to anaerobic digestion.

    Science.gov (United States)

    Naroznova, Irina; Møller, Jacob; Larsen, Bjarne; Scheutz, Charlotte

    2016-04-01

    A new technology for pre-treating source-separated organic household waste prior to anaerobic digestion was assessed, and its performance was compared to existing alternative pre-treatment technologies. This pre-treatment technology is based on waste pulping with water, using a specially developed screw mechanism. The pre-treatment technology rejects more than 95% (wet weight) of non-biodegradable impurities in waste collected from households and generates biopulp ready for anaerobic digestion. Overall, 84-99% of biodegradable material (on a dry weight basis) in the waste was recovered in the biopulp. The biochemical methane potential for the biopulp was 469 ± 7 mL CH4/g ash-free mass. Moreover, all Danish and European Union requirements regarding the content of hazardous substances in biomass intended for land application were fulfilled. Compared to other pre-treatment alternatives, the screw-pulping technology showed higher biodegradable material recovery, lower electricity consumption and comparable water consumption. The higher material recovery achieved with the technology was associated with greater transfer of nutrients (N and P), carbon (total and biogenic) but also heavy metals (except Pb) to the produced biomass. The data generated in this study could be used for the environmental assessment of the technology and thus help in selecting the best pre-treatment technology for source separated organic household waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Alternative polymer separation technology by centrifugal force in a melted state

    International Nuclear Information System (INIS)

    Dobrovszky, Károly; Ronkay, Ferenc

    2014-01-01

    Highlights: • Waste separation should take place at high purity. • Developed a novel, alternative separation method, where the separation occurred in a melted state by centrifugal forces. • Possibility of separation two different plastics into neat fractions. • High purity fractions were established at granulates and also at prefabricated blend. • Results were verified by DSC, optical microscopy and Raman spectroscopy. - Abstract: In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal force in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy

  9. Advancement in reactor coolant chemistry management programs and related technology development in Taiwan

    International Nuclear Information System (INIS)

    Huang, C.S.; Lin, Chien C.

    2000-01-01

    Taiwan Power Company (TPC) has three nuclear power plants in operation with a total capacity of 51 GWe, contributing about 30% of electricity generation in Taiwan. The first two plants, Chinshan (CSNPP) and Kuosheng (KSNPP), are boiling water reactor plants, and the third one, Maanshan (MASNPP), is a pressurized water reactor plant. Each plant has two identical reactors. As many nuclear power plant operators worldwide, TPC is committed to operate the plants efficiently, economically, and safely. TPC has developed and implemented several chemistry improvement programs in recent years to improve the coolant chemistry in order to ( l ) protect structure materials from corrosion, (2) reduce radiation exposures to workers and (3) reduce radwaste production and radiation release to the environment. This paper describes TPC's experience in some water chemistry management, radwaste reduction and radiation exposure control programs. Future programs under planning, including implementation of hydrogen water chemistry (HWC) in BWRs, installation of condensate pre-filters, and development of on-line water chemistry monitoring system, are also be briefly discussed. In addition, some material related research and development programs will also be presented. (author)

  10. The impact of technology on chemistry students' construction of meaning from a laboratory investigation of Boyle's law

    Science.gov (United States)

    Rigeman, Sally Ann

    2000-10-01

    In the rush to implement technology in the science classroom, rarely does the classroom teacher have time to question whether a new methodology is better than the one it replaces. The purpose of this experimental study (N = 187) was to determine the effect that substituting a data-collecting sensor in a chemistry investigation had on students' construction of meaning about the relationship between the pressure and volume of a fixed amount of gas at constant temperature and ambient conditions (Boyle's law). A pretest was administered to students before the beginning of the Chemistry I course at a large urban high school. The twelve chemistry sections were randomly assigned to three treatment groups. In one group, students generated and collected Boyle's law data using a glass syringe and lead weights. In the two experimental groups, students generated and collected Boyle's law data using one of two different technology systems---the Calculator-Based Laboratory (CBL) system by Texas Instruments or the Scientific Workshop system by PASCO. Each system used similar pressure sensors but different display devices. Posttest I was administered one week after the experiment to measure changes in student knowledge resulting from the Boyle's law laboratory. Posttest II was administered three weeks later to measure retention and any changes in knowledge resulting from a formal gas laws lecture. A multiple regression analysis of student scores on the test instruments and their grade-equivalent scores from the Iowa Tests of Educational Development (TTED) Science, Quantitative Thinking, and Reading-Vocabulary subtests showed consistent correlation. A repeated-measures analysis of variance indicated that no significant differences existed between the Traditional and Technology groups in their representation of the pressure-volume relationship from their laboratory experience, F (2, 184) = .44, p < .05. Time, however, was a factor in student performance on the Posttest I instrument

  11. Perceptions of the effects of clicker technology on student learning and engagement: a study of freshmen Chemistry students

    Directory of Open Access Journals (Sweden)

    Jenepher Lennox Terrion

    2012-03-01

    Full Text Available While technology – in the form of laptops and cellphones – may be the cause of much of the distraction in university and college classrooms, some, including the personal or classroom response system (PRS/CRS or clicker, also present pedagogical opportunities to enhance student engagement. The current study explored the reactions of students to clicker implementation in a large, introductory chemistry class. During the final class of the semester, 200 students in an introductory chemistry class responded to an attitudinal and informational student survey using both Likert-type and non-Likert type questions to evaluate their perception of the implementation of the clickers and their impact on student learning and engagement. The results demonstrated that, when implemented effectively, clickers contribute to greater student engagement and, ultimately, an opportunity for professors to enact best practices in higher education pedagogy. This study points to the importance of effective pedagogy in making clickers worthwhile.

  12. Isotope and nuclear chemistry division. Annual report, FY 1987. Progress report, October 1986-September 1987

    International Nuclear Information System (INIS)

    Barr, D.W.; Heiken, J.H.

    1988-05-01

    This report describes progress in the major research and development programs carried out in FY 1987 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical weapons diagnostics and research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  13. Novel highly integrated biodiesel production technology in a centrifugal contactor separator device

    NARCIS (Netherlands)

    Kraai, G. N.; Schuur, B.; van Zwol, F.; van de Bovenkamp, H. H.; Heeres, H. J.

    2009-01-01

    The base catalyzed production of biodiesel (FAME) from sunflower oil and methanol in a continuous centrifugal contactor separator (CCS) with integrated reaction and phase separation was studied. The effect of catalyst loading (sodium methoxide), temperature, rotational frequency and flow rates of

  14. Chemistry of high energies

    International Nuclear Information System (INIS)

    Bugaenko, L.T.; Kuz'min, M.G.; Polak, L.S.

    1988-01-01

    An attempt was made to integrate plasma chemistry, radiation chemistry and photochemistry under the name of ''Chemistry of high energies''. Theoretical background of these disciplines, as well as principles of their technology (methods of energy supply, methods of absorbed energy determination, apparatus and processes) are considered. Application of processes of high energy chemistry in engineering is discussed. 464 refs.; 85 figs.; 59 tabs

  15. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    International Nuclear Information System (INIS)

    Kohman, T.P.

    1976-01-01

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time

  16. Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement

    Science.gov (United States)

    Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.

    2013-01-01

    We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…

  17. Efficient process intensification of fine chemical production: a new classification tool for flow chemistry technologies

    NARCIS (Netherlands)

    Lexmond, A.S.; Roelands, C.P.M.; Graaff, M.P. de; Bassett, J.M.

    2010-01-01

    The fine chemicals and pharmaceuticals industry needs to innovate to beat international competition and resolve environmental issues. Process intensification by flow chemistry is the most promising route for this change, as it can reduce raw material and energy consumption, waste production, lead

  18. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Kohman, T.P.

    1976-05-28

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time. (JSR)

  19. Lanthanide Chemistry: From Coordination in Chemical Complexes Shaping Our Technology to Coordination in Enzymes Shaping Bacterial Metabolism.

    Science.gov (United States)

    Martinez-Gomez, Norma Cecilia; Vu, Huong N; Skovran, Elizabeth

    2016-10-17

    Lanthanide chemistry has only been extensively studied for the last 2 decades, when it was recognized that these elements have unusual chemical characteristics including fluorescent and potent magnetic properties because of their unique 4f electrons.1,2 Chemists are rapidly and efficiently integrating lanthanides into numerous compounds and materials for sophisticated applications. In fact, lanthanides are often referred to as "the seeds of technology" because they are essential for many technological devices including smartphones, computers, solar cells, batteries, wind turbines, lasers, and optical glasses.3-6 However, the effect of lanthanides on biological systems has been understudied. Although displacement of Ca 2+ by lanthanides in tissues and enzymes has long been observed,7 only a few recent studies suggest a biological role for lanthanides based on their stimulatory properties toward some plants and bacteria.8,9 Also, it was not until 2011 that the first biochemical evidence for lanthanides as inherent metals in bacterial enzymes was published.10 This forum provides an overview of the classical and current aspects of lanthanide coordination chemistry employed in the development of technology along with the biological role of lanthanides in alcohol oxidation. The construction of lanthanide-organic frameworks will be described. Examples of how the luminescence field is rapidly evolving as more information about lanthanide-metal emissions is obtained will be highlighted, including biological imaging and telecommunications.11 Recent breakthroughs and observations from different exciting areas linked to the coordination chemistry of lanthanides that will be mentioned in this forum include the synthesis of (i) macrocyclic ligands, (ii) antenna molecules, (iii) coordination polymers, particularly nanoparticles, (iv) hybrid materials, and (v) lanthanide fuel cells. Further, the role of lanthanides in bacterial metabolism will be discussed, highlighting the

  20. Contributions for the chemistry, physics and technology of the elementary carbon in various states for the Carbon '76

    International Nuclear Information System (INIS)

    Delle, W.W.

    1976-07-01

    This report is the compilation of a number of papers prepared by KFA Juelich for the 2nd International Carbon Conference CARBON '76 at Baden-Baden, June 28th - July 2nd, 1976. The presentations deal with objectives of chemistry, physics and technology of the elementary carbon in various states including irradiation induced effects on graphite and pyrolytic carbon. The work was partly sponsored by the Bundesministerium fuer Forschung und Technologie of the Federal Republic of Germany as well as by the Government of North-Rhine-Westfalia. (orig.) [de

  1. Production technology readiness assessment of surfactant in the research center for Chemistry-Indonesian Institute of Sciences

    Science.gov (United States)

    Setiawan, Arief Ameir Rahman; Sulaswatty, Anny

    2017-11-01

    The common problem faced by the institution working on research, innovation and technology development is lack of quantitative measures to determine the technology readiness of research. No common communication language between R & D Institutions and industry about the level of preparedness of a research resulting a barrier to technology diffusion interaction. This lack of connection between R & D institutes with industry may lead to "sluggishness" occurs in innovating. For such circumstance, assessing technology readiness of research is very important. One of wide spread methods for the assessment is Technology Readiness Level (TRL, also known as Technometer), which is introduced by NASA (National Aeronautics and Space Administration). TRL is a general guide that provides an overview of maturity level of a technology. This study aims to identify and demonstrate the implementation of TRL to assess a number of surfactant researches in the Research Center for Chemistry, Indonesian Institute of Sciences. According to the assessment, it has been obtained the surfactant recommended for further development towards commercialization of R & D results, i.e. Glycerol Mono Stearate (GMS), which has reached the level of TRL 7.

  2. Data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (DAWAC). Additional information. Report of a coordinated research project 2001-2005

    International Nuclear Information System (INIS)

    2006-06-01

    The CD-ROM attached to the printed version of TECDOC 1505 'Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants (DAWAG)' includes the report itself, detailed progress reports of three research coordination meetings (Annexes I-III) and the final country reports. This publication provides information on the current status and development trends in monitoring, diagnostics and control of water chemistry and corrosion of core and primary circuit materials in water cooled power reactors. It summarizes the results of an IAEA Coordinated Research Project and focuses on the methods for development, qualification and implementation of water chemistry expert systems at nuclear power plants. These systems are needed to have full benefit from using on-line sensors in real time mode when sensor signals, and other chemistry and operational data, are collected and continuously analysed with data acquisition and evaluation software. Technical knowledge was acquired in water chemistry control techniques (grab sampling, on-line monitoring, data collecting and processing, etc), plant chemistry and corrosion diagnostics, plant monitoring (corrosion, chemistry, activity)and plant chemistry improvement (analytical models and practices). This publication covers contributions from leading experts in water chemistry/corrosion, representing organizations from 16 countries with the largest nuclear capacities

  3. Higher-Order Blind Signal Feature Separation: An Enabling Technology for Battlefield Awareness

    National Research Council Canada - National Science Library

    Su, Wei; Kosinski, John A

    2006-01-01

    Higher-order transform blind signal feature classification is discussed for separating bar-shaped, circular, squared, circular-squared, and offset-diamonded constellation patterns of digital linear signals...

  4. Effect of different technologies and animal manures on solid-liquid separation efficiencies

    Directory of Open Access Journals (Sweden)

    Giorgia Cocolo

    2012-09-01

    Full Text Available Solid-liquid separation is a widely used manure treatment option. However, little information is available to predict separator performance in a specific operating condition. This study investigates the effect on the separation efficiency of animal species (cattle and swine, use of flocculants, and separator construction and operating characteristics (filtration, pressurised filtration, settling and centrifugation. Using data available from published experiments, we evaluated correlations of the separation efficiencies with the physical and chemical characteristics of the inlet slurries (dry matter, total nitrogen, ammoniacal nitrogen, phosphorus and potassium. Dry matter concentration of the input manure was found to be the best parameter used to calculate and validate regression equations. Regres sions for the operating conditions of 7 of the 14 subgroups evaluated were significant (P<0.05 for at least one parameter. Pressurised filtration seems to be the process best represented by these regressions that can predict dry matter and nitrogen efficiency with relative root mean squared errors of less than 50%. However, they could only be used for some of the parameters and separation techniques. Therefore, it was not possible to use the available experimental data to define and validate empirical predictive models for all the conditions. Specific studies are needed to define more precise and physically-based models.

  5. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  6. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  7. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Amy, Fabrice [Air Products and Chemicals Inc., Allentown, PA (United States); Hufton, Jeffrey [Air Products and Chemicals Inc., Allentown, PA (United States); Bhadra, Shubhra [Air Products and Chemicals Inc., Allentown, PA (United States); Weist, Edward [Air Products and Chemicals Inc., Allentown, PA (United States); Lau, Garret [Air Products and Chemicals Inc., Allentown, PA (United States); Jonas, Gordon [Air Products and Chemicals Inc., Allentown, PA (United States)

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  8. Life Cycle Assessment of pretreatment technologies for anaerobic digestion of source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2013-01-01

    traditional pretreatment method using a screw press. The inventory of the technologies was constructed including the mass balance, amount of biogas produced, nutrient recovery rates, and produced biomass quality. The technologies were modelled in the LCA-model EASETECH and the potential environmental impacts...

  9. Review and assessment of technologies for the separation of strontium from alkaline and acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Orth, R.J.; Kurath, D.E.

    1994-01-01

    A literature survey has been conducted to identify and evaluate methods for the separation of strontium from acidic and alkaline media as applied to Hanford tank waste. The most promising methods of solvent extraction, precipitation, and ion exchange are described. The following criteria were used for evaluating the separation methods: Appreciable strontium removal must be demonstrated; Strontium selectivity over bulk components must be demonstrated; The method must show promise for evolving into a practical and fairly simple process; The process should be safe to operate; The method must be robust (i.e., capable of separating strontium from various waste types); Secondary waste generation must be minimized; and The method must show resistance to radiation damage. The methods discussed did not necessarily satisfy all of the above criteria; thus, key areas requiring further development are also given for each method. Less promising solvent extraction, precipitation, and ion exchange methods were also identified; areas for potential development are included in this report.

  10. Numerical Study of Water Control with Downhole Oil-Water Separation Technology

    Directory of Open Access Journals (Sweden)

    Yin Khor Yin

    2014-07-01

    Full Text Available The maturing oil fields with increasing water production can pose a challenging produced water handling and disposal issues. This paper presents a numerical study of a motorless hydrocyclone to enhance understanding of the downhole oil-water separation. The turbulence of fluid flow is obtained using K-ε Realizable Turbulence model for complex swirl dominated flow, while the interface between hydrocarbon and water is described using the Discrete Phase model. In this approach, factors which contribute to the hydrocyclone separation instability were discussed. Discussion is then extended to the relationship of residence time with pressure difference between overflow and underflow. These pressure differences are able to relate to pressure condition for high water cut well which require downhole separation.

  11. Technology assessment and impact analysis of separation methods applied to radioactive waste management

    International Nuclear Information System (INIS)

    Goldstein, M.; Gangwer, T.; Braun, C.; Lester, R.

    1977-03-01

    A computer program has been written to estimate actinide production and accumulation in the high-level waste generated by an expanding nuclear economy over a 100-year period. The total weight of the actinides remaining in the biosphere was estimated for the recycle transmutation option and for two no-recycle options. A novel photochemical method for separating actinides from high-level waste or from each other is described based on selective ligand exchange reactions. A preliminary cost comparison of plutonium separation using standard photoredox techniques has been accomplished and is reported. The energy requirements for photochemically separating all of the actinides are estimated to be only a fraction of the energy supplied by the fuel. The potential advantages and disadvantages of actinide partitioning as a waste management option are discussed. Conclusions and recommendations are made regarding both the direction of technical development and policy analysis

  12. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  13. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  14. XIII International science and technology conference High-tech chemical technologies-2010 with elements of Scientific school for young people Innovations in chemistry: achievements and prospects. Summaries of reports

    International Nuclear Information System (INIS)

    2010-01-01

    Materials of the XIII International science and technology conference High-tech chemical technologies-2010 with elements of Scientific school for young people Innovations in chemistry: achievements and prospects (29 June-2 July 2010, Ivanovo) are presented. During the conference the following areas: theoretical aspects of chemical technology; technology of deep oil refining and the production of organic substances; technology of drugs and biologically active substances; technology of inorganic materials, polymers and composites based on them - the technological principles and methods of synthesis, modification, and processing; environmental and economic problems of chemical technologies and their solutions are considered [ru

  15. Improving Separation Performance and Detection Capabilities in Liquid Chromatography Using Active Flow Technology: A Review

    NARCIS (Netherlands)

    Camenzuli, M.; Shalliker, R.A.

    2015-01-01

    The development of sub-2-mu m particles, core shell particles, and monolithic columns has improved separation performance in liquid chromatography (LC) over the past 20 years. However, a key limitation that still prevents LC columns from reaching their full potential is the heterogeneity in the flow

  16. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    Science.gov (United States)

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-06

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally.

  17. Low-temperature technology for the separation of krypton in reprocessing plants under nuclear conditions

    International Nuclear Information System (INIS)

    Gutowski, H.; Schroeder, E.

    1979-01-01

    The present status of the design work aiming at an Installation for the Purification of Dissolver Off-gas (AZUR) is outlined. The technological measures taken to cope with the problems resulting from the specific nuclear conditions are described in detail. The demonstration of a high availability of this technology in hot operation will be an important step towards the realisation of a fuel reprocessing plant. (orig.) [de

  18. Temperature-controlled micro-TLC: a versatile green chemistry and fast analytical tool for separation and preliminary screening of steroids fraction from biological and environmental samples.

    Science.gov (United States)

    Zarzycki, Paweł K; Slączka, Magdalena M; Zarzycka, Magdalena B; Bartoszuk, Małgorzata A; Włodarczyk, Elżbieta; Baran, Michał J

    2011-11-01

    This paper is a continuation of our previous research focusing on development of micro-TLC methodology under temperature-controlled conditions. The main goal of present paper is to demonstrate separation and detection capability of micro-TLC technique involving simple analytical protocols without multi-steps sample pre-purification. One of the advantages of planar chromatography over its column counterpart is that each TLC run can be performed using non-previously used stationary phase. Therefore, it is possible to fractionate or separate complex samples characterized by heavy biological matrix loading. In present studies components of interest, mainly steroids, were isolated from biological samples like fish bile using single pre-treatment steps involving direct organic liquid extraction and/or deproteinization by freeze-drying method. Low-molecular mass compounds with polarity ranging from estetrol to progesterone derived from the environmental samples (lake water, untreated and treated sewage waters) were concentrated using optimized solid-phase extraction (SPE). Specific bands patterns for samples derived from surface water of the Middle Pomerania in northern part of Poland can be easily observed on obtained micro-TLC chromatograms. This approach can be useful as simple and non-expensive complementary method for fast control and screening of treated sewage water discharged by the municipal wastewater treatment plants. Moreover, our experimental results show the potential of micro-TLC as an efficient tool for retention measurements of a wide range of steroids under reversed-phase (RP) chromatographic conditions. These data can be used for further optimalization of SPE or HPLC systems working under RP conditions. Furthermore, we also demonstrated that micro-TLC based analytical approach can be applied as an effective method for the internal standard (IS) substance search. Generally, described methodology can be applied for fast fractionation or screening of the

  19. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances.

    Science.gov (United States)

    Belton, David J; Deschaume, Olivier; Perry, Carole C

    2012-05-01

    Biomineral formation is widespread in nature, and occurs in bacteria, single-celled protists, plants, invertebrates, and vertebrates. Minerals formed in the biological environment often show unusual physical properties (e.g. strength, degree of hydration) and often have structures that exhibit order on many length scales. Biosilica, found in single-celled organisms through to higher plants and primitive animals (sponges), is formed from an environment that is undersaturated with respect to silicon, and under conditions of approximately neutral pH and relatively low temperatures of 4-40 °C compared to those used industrially. Formation of the mineral may occur intracellularly or extracellularly, and specific biochemical locations for mineral deposition that include lipids, proteins and carbohydrates are known. In most cases, the formation of the mineral phase is linked to cellular processes, an understanding of which could lead to the design of new materials for biomedical, optical and other applications. In this contribution, we describe the aqueous chemistry of silica, from uncondensed monomers through to colloidal particles and 3D structures, that is relevant to the environment from which the biomineral forms. We then describe the chemistry of silica formation from alkoxides such as tetraethoxysilane, as this and other silanes have been used to study the chemistry of silica formation using silicatein, and such precursors are often used in the preparation of silicas for technological applications. The focus of this article is on the methods, experimental and computational, by which the process of silica formation can be studied, with an emphasis on speciation. © 2012 The Authors Journal compilation © 2012 FEBS.

  20. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  1. Incorporating spectroscopy and measurement technology into the high school chemistry laboratory

    Science.gov (United States)

    Harbert, Emily Ann

    Science and technology are becoming increasingly important in maintaining a healthy economy at home and a competitive edge on the world stage, though that is just one facet affected by inadequate science education in the United States. Engaging students in the pursuit of knowledge and giving them the skills to think critically are paramount. One small way to assist in achieving these goals is to increase the quality and variety of technology-rich activities conducted in high school classrooms. Incorporating more laboratory measurement technology into high schools may incite more student interest in the processes and practices of science and may allow students to learn to think more critically about their data and what it represents. The first objective of the work described herein was to determine what measurement technology is being used in schools and to what extent, as well as to determine other teacher needs and preferences. Second, the objective was to develop a new program to provide incoming freshmen (or rising seniors) with measurement technology training they did not receive in high school, and expose them to new research and career opportunities in science. The final objective was to create a technology-rich classroom laboratory activity for use in high schools.

  2. The Investigation of Separability of Particles Smaller Than 5mm by Eddy-Current Separation Technology - Part II : Novel Design Concepts

    NARCIS (Netherlands)

    Rem, P.C.; Zhang, S.; Forssberg, E.; De Jong, T.P.R.

    2000-01-01

    Separability and separation mechanisms of small particles in modern rotating type eddycurrent separators (ECSs) were discussed in Part I. In order to address problems associated with this design concept, a number of novel ECSs, each with a unique design, have been developed. Part II reports on

  3. A reflection on the relationship between technology and teacher education : synergy or separate entities?

    NARCIS (Netherlands)

    Collis, Betty

    1994-01-01

    The basis of this paper is the observation, supported by various international surveys and discussions, that much of the 'education' teachers receive concerning the applications of computer-related technology has occurred not only apart from a direct relationship to research about information

  4. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    International Nuclear Information System (INIS)

    Haji-Saeid, M.; Sampa, M.H.; Ramamoorthy, N.; Gueven, O.; Chmielewski, A.G.

    2007-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information

  5. Eco-sewerage System Design for Modern Office Buildings: based on Vacuum and Source-separation Technology

    Science.gov (United States)

    Xu, Kangning; Wang, Chengwen; Zheng, Min; Yuan, Xin

    2010-11-01

    This study aimed to construct an on-site eco-sewerage system for modern office buildings in urban area based on combined innovative technologies of vacuum and source-separation. Results showed that source-separated grey water had low concentrations of pollutants, which helped the reuse of grey water. However, the system had a low separation efficiency between the yellow water and the brown water, which was caused by the plug problem in the urine collection from the urine-diverting toilets. During the storage of yellow water for liquid fertilizer production, nearly all urea nitrogen transferred to ammonium nitrogen and about 2/3 phosphorus was lost because of the struvite precipitation. Total bacteria and coliforms increased first in the storage, but then decreased to low concentrations. The anaerobic/anoxic/aerobic MBR had high elimination rates of COD, ammonium nitrogen and total nitrogen of the brown water, which were 94.2%, 98.1% and 95.1%, respectively. However, the effluent still had high contents of colority, nitrate and phosphorus, which affected the application of the effluent for flushing water. Even though, the effluent might be used as dilution water for the yellow water fertilizer. Based on the results and the assumption of an ideal operation of the vacuum source-separation system, a future plan for on-site eco-sewerage system of modern office buildings was constructed. Its sustainability was validated by the analysis of the substances flow of water and nutrients.

  6. Investigation on an innovative technology for wet separation of plastic wastes.

    Science.gov (United States)

    Lupo, Emanuela; Moroni, Monica; La Marca, Floriana; Fulco, Simone; Pinzi, Valentina

    2016-05-01

    This paper presents an original device for the separation of plastic polymers from mixtures. Due to the combination of a characteristic flow pattern developing within the apparatus and density, shape and size differences among two or more polymers, this device allows their separation into two products, one collected within the instrument and the other one expelled through its outlet ducts. Experimental tests have been conducted to investigate the effectiveness of the apparatus, using two geometric arrangements, nine hydraulic configurations and three selections of polymers at three stages of a material life cycle. Tests with samples composed of a single typology of polymer have been used to understand the interaction between the particles and the carrying fluid within the apparatus in different hydraulic configurations and geometric arrangements. Multi-material tests are essential to simulate the real conditions in an industrial recycling plant. The separation results have been evaluated in terms of grade and recovery of a useful material. Under the proper hydraulic configurations, the experimentation showed that it is possible to produce an almost pure concentrate of Polyethylene Terephthalate (PET) from a mixture of 85% PET and 15% Polycarbonate (PC) (concentrate grade and recovery equal to 99.5% and 95.1%) and a mixture of 85% PET and 15% Polyvinyl Chloride (PVC) (concentrate grade and recovery equal to 97.9% and 100.0%). It is further demonstrated that almost pure concentrates of PVC and PC can be produced from a mixture of 85% PVC and 15% PC (PVC grade and recovery equal to 99.9% and 99.7%) and a mixture of 85% PC and 15% PVC (PC grade and recovery equal to 99.0% and 99.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Proceedings of the 17. Annual Meeting of the Brazilian Chemistry Society; 7. National Symposium on Inorganic Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    These 17. Annual Meeting of the Brazilian Chemistry Society and 7. National Symposium on Inorganic Chemistry present several subjects of different interests for the participants, including sections about inorganic chemistry; organic chemistry; environmental chemistry; technological chemistry; electrochemistry; physical chemistry; photochemistry; chemical education; natural products; analytical chemistry and biological chemistry. (C.G.C.)

  8. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    International Nuclear Information System (INIS)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH 2 ) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  9. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-11-15

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH{sub 2}) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  10. Uranium hexafluoride - chemistry and technology of a raw material of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Bacher, W.; Jacob, E.

    1986-01-01

    Uranium hexafluoride exhibits an unusual combination of properties: UF 6 is both a large-scale industrial product, and also one of the most reactive compounds known. Its industrial application arises from the need to use enriched uranium with up to 4% 235 U as fuel in light water reactors. Enrichment is performed in isotope separation plants with UF 6 as the working gas. Its volatility and thermal stability make UF 6 suitable for this application. UF 6 handling is difficult because of its high reactivity and its radioactivity, and special experience and equipment are required which are not commonly available in laboratories or industrial facilities. The chemical reactions of UF 6 are characterized by its marked fluorination efficiency which is similar to that of F 2 . Of special importance in connection with the handling of UF 6 is its extreme sensitivity to hydrolysis. Because they all use UF 6 , the isotope separation processes currently in use (gas diffusion, gas centrifuge, separation nozzle process) have a number of common features. For instance, they are all beset by the problem of formation of solid UF 6 decomposition products, e.g. by radiolysis of UF 6 molecules induced by its own radiation. Reconversion of UF 6 into UO 2 is achieved by three well-known methods (ADU, AUC, IDP-process). To produce uranium metal, UF 6 is first reduced to UF 4 , which is subsequently reduced by Ca 6 or Mg metal. 158 refs

  11. Novel electrode structures for large scale dielectrophoretic separations based on textile technology.

    Science.gov (United States)

    Abidin, Zurina Z; Downes, Les; Markx, Gerard H

    2007-06-15

    The use of dielectrophoresis (DEP) to date has mainly been limited to processing small volumes due to difficulties in the fabrication of microelectrodes over large surface areas. To overcome this problem a novel approach to the construction of micro-electrode arrays has been developed based on weaving. A plain weave cloth was made from 100 microm diameter stainless steel wires and 75 decitex polyester yarns. The stainless steel wires formed the weft, and were kept parallel and apart by a warp of flexible polyester yarns, with a gap of around 150 microm between the metal wires. The metal wires were alternately connected to earth and signal of an AC power source, and it was shown that it was possible to collect yeast cells suspended in deionised water at the metal wire surfaces by dielectrophoresis. The polyester yarn was also found to distort the electric field, creating further areas of electric field non-uniformity around the polyester yarns, further enhancing the capability of the system to attract cells. A 14 ml separation chamber was built from the cloth by alternately sandwiching perspex slabs and cloth together. The DEP chamber was able to effectively collect life yeast from a flow of suspended cells through the cloth using an applied field of 1 MHz at flow rates up to 5 ml min-1. However, some loss occurred due to sedimentation. Also, the chamber was able to separate dead and live yeast cells at 30 Vpk-pk, 2 MHz, with some cell loss due to sedimentation.

  12. Aluminum Oxide Nanoparticles for Highly Efficient Asphaltene Separation from Crude Oil Using Ceramic Membrane Technology

    Directory of Open Access Journals (Sweden)

    Rezakazemi Mashallah

    2017-11-01

    Full Text Available The effects of aluminum oxide nanoparticles on the removal of asphaltenes from an Iranian crude oil (Soroush using a ceramic membrane with pore size of 0.2 µm were investigated. In order to achieve superior asphaltene separation by ultrafiltration, it is essential to make some changes for destabilizing asphaltene in crude oil. The asphaltene destabilization was done using crude oil contact with an acid containing dissolved metal ions. Metal oxide nanoparticles adsorbed asphaltene molecules and increased their molecular size. The nanoparticle of aluminum oxide was applied to alter precipitation and peptization properties of asphaltenes. Dynamic Light Scattering (DLS was used to measurement of the asphaltene molecular size dissolved in toluene. Raman spectroscopy and the Tuinstra equation were used to determine the aromatic sheet diameter (La via the integrated intensities of the G and D1 modes. This revealed that the asphaltene particles react with nano aluminum oxide and the average molecular size of asphaltene was raised from 512.754 to 2949.557 nm and La from 5.482 to 13.787. The obtained results showed that using nano aluminum oxides, asphaltene separation increased from 60–85 wt% to 90–97 wt% based on the asphaltene content of crude oil.

  13. Development of Pyro-separation Technology Based on Molten Salt Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Joon Bo; Kim, E. H.; Yoo, J. H. (and others)

    2007-06-15

    The focus of this study was to develop recovery technologies in the pyroprocessing. The unit processes of the project can be classified into two groups; electro-refining process to recover uranium and long-lived nuclides, and cathode processing to produce a metal ingot both from a salt-contained metal and from Cd-contained metal. This project has been carried out for the third phase period of the long-term nuclear R and D program, and focused on the development of key technologies of the pyroprocessing such as electrorefining, draw down and cathode processing. Mock-up system of 1 kg-U/batch was built for performance tests which were conducted to ensure the adequacy of the research and development of the pyroprocessing technology. The experiments were carried out through bench-scale inactive tests except for uranium. In particular, the sticking problem was inevitable in the US's Mark-V and PEER electrorefiner. As a result of this study, a graphite cathode was developed, which exhibited self-scraping behavior and did not need scraping step. The design of an electrorefiner could be simplified, and the throughput was enhanced due to an increased cathode area. A long-term R and D plan was established to develop pyroprocessing technology. In the near term, the results of the current project will be utilized in the next phase of the R and D plan ('07 - '10), and long-term wise, is expected to contribute to recovering fuel materials for transmutation in a Gen-IV reactor.

  14. The Chemistry and Technology of Furfural Production in Modern Lignocellulose-Feedstock Biorefineries

    NARCIS (Netherlands)

    Marcotullio, G.

    2011-01-01

    This dissertation deals with biorefinery technology development, i.e. with the development of sustainable industrial methods aimed at the production of chemicals, fuels, heat and power from lignocellulosic biomass. This work is particularly focused on the production of furfural from

  15. Aspects of the physics, chemistry, and technology of high intensity heavy ion sources

    International Nuclear Information System (INIS)

    Alton, G.D.

    1980-01-01

    Particular emphasis is placed on the technology of plasma discharge ion sources which utilize solid elemental or molecular compounds to produce vapor for the ionization process. A brief discussion is made of the elementary concepts underlying the formation and extraction of ion beams from plasma discharge sources. A limited review of low charge state positive ion sources suitable for accelerator use is also given

  16. Using Technology and Other Assistive Strategies to Aid Students with Disabilities in Performing Chemistry Lab Tasks

    Science.gov (United States)

    Neely, Mary Bethe

    2007-01-01

    This paper describes a project undertaken as an interdisciplinary effort among four science departments, two disabilities services offices, and special education personnel to investigate the use and success of assistive technology devices as well as other equipment modifications in an attempt to transform science laboratories into environments…

  17. Cellulose fibers: bio- and nano-polymer composites ; green chemistry and technology

    National Research Council Canada - National Science Library

    Kalia, Susheel; Kaith, B. S; Inderjeet Kaur

    2011-01-01

    ... on eco-friendly materials, and the steps taken in this direction will lead toward GreenScience and Green-Technology. Cellulosics account for about half of the dry weight of plant biomass and approximately half of the dry weight of secondary sources of waste biomass. At this crucial moment, cellulose fibers are pushed due to their "gr...

  18. Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): an overview.

    Science.gov (United States)

    Sowbhagya, H B

    2014-01-01

    Celery is a commercially important seed spice belonging to the family Umbelliferrae. Celery is used in various forms such as fresh herb, stalk, seeds, oil, and oleoresin for flavoring of foods and for medicinal purposes. Celery seed contains 2% volatile oil that finds application for flavoring of foods and also in perfumery industry. Limonene and selinene form about 60% and 20% of the oil, respectively. However, the important flavor constituents of the oil responsible for the typical aroma are 3-n-butyl-4-5-dihydrophthalide (sedanenolide), 3-n-butyl phthalide, sedanolide, and sedanonic anhydride present in very low levels (1-3%). Celery contains 15% fatty oil with the fatty acids: petroselenic (64.3%), oleic (8.1%), linoleic (18%), linolenic (0.6%), and palmitic acids. Phthalides especially sedanenaloide possess many health benefits. Celery extracts are reported to possess many nutraceutical properties, viz., antioxidant, hypolipidemic, hypoglycemic, and anti-platelet aggregation. In the present review, the chemistry, processing, and biological activities of celery and the components responsible are discussed.

  19. Physics, chemistry, technology and quality assurance in radionuclide production for medical applications

    International Nuclear Information System (INIS)

    Qaim, Syed M.

    2006-01-01

    A brief description of the types of radionuclides used in medicine is given. The role of physics, particularly of nuclear data, in the optimisation of a production process is described, and the importance of chemical methods, especially of radiochemical separations, in obtaining the desired radionuclide in a chemically pure form is discussed. The sophisticated targetry needed for cyclotron production of short-lived radionuclides for Positron Emission Tomography (PET) is treated in some detail. The quality control of radionuclides produced for medical applications is discussed. (author)

  20. Radioanalytical chemistry

    International Nuclear Information System (INIS)

    1982-01-01

    The bibliography of Hungarian literature in the field of radioanalytical chemistry covers the four-year period 1976-1979. The list of papers contains 290 references in the alphabetical order of the first authors. The majority of the titles belongs to neutron activation analysis, labelling, separation and determination of radioactive isotopes. Other important fields like radioimmunoassay, environmental protection etc. are covered as well. (Sz.J.)

  1. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  2. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review.

    Science.gov (United States)

    Sirés, Ignasi; Brillas, Enric

    2012-04-01

    In the last years, the decontamination and disinfection of waters by means of direct or integrated electrochemical processes are being considered as a very appealing alternative due to the significant improvement of the electrode materials and the coupling with low-cost renewable energy sources. Many electrochemical technologies are currently available for the remediation of waters contaminated by refractory organic pollutants such as pharmaceutical micropollutants, whose presence in the environment has become a matter of major concern. Recent reviews have focused on the removal of pharmaceutical residues upon the application of other important methods like ozonation and advanced oxidation processes. Here, we present an overview on the electrochemical methods devised for the treatment of pharmaceutical residues from both, synthetic solutions and real pharmaceutical wastewaters. Electrochemical separation technologies such as membrane technologies, electrocoagulation and internal micro-electrolysis, which only isolate the pollutants from water, are firstly introduced. The fundamentals and experimental set-ups involved in technologies that allow the degradation of pharmaceuticals, like anodic oxidation, electro-oxidation with active chlorine, electro-Fenton, photoelectro-Fenton and photoelectrocatalysis among others, are further discussed. Progress on the promising solar photoelectro-Fenton process devised and further developed in our laboratory is especially highlighted and documented. The abatement of total organic carbon or reduction of chemical oxygen demand from contaminated waters allows the comparison between the different methods and materials. The routes for the degradation of the some pharmaceuticals are also presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. WikiHyperGlossary (WHG): an information literacy technology for chemistry documents.

    Science.gov (United States)

    Bauer, Michael A; Berleant, Daniel; Cornell, Andrew P; Belford, Robert E

    2015-01-01

    The WikiHyperGlossary is an information literacy technology that was created to enhance reading comprehension of documents by connecting them to socially generated multimedia definitions as well as semantically relevant data. The WikiHyperGlossary enhances reading comprehension by using the lexicon of a discipline to generate dynamic links in a document to external resources that can provide implicit information the document did not explicitly provide. Currently, the most common method to acquire additional information when reading a document is to access a search engine and browse the web. This may lead to skimming of multiple documents with the novice actually never returning to the original document of interest. The WikiHyperGlossary automatically brings information to the user within the current document they are reading, enhancing the potential for deeper document understanding. The WikiHyperGlossary allows users to submit a web URL or text to be processed against a chosen lexicon, returning the document with tagged terms. The selection of a tagged term results in the appearance of the WikiHyperGlossary Portlet containing a definition, and depending on the type of word, tabs to additional information and resources. Current types of content include multimedia enhanced definitions, ChemSpider query results, 3D molecular structures, and 2D editable structures connected to ChemSpider queries. Existing glossaries can be bulk uploaded, locked for editing and associated with multiple social generated definitions. The WikiHyperGlossary leverages both social and semantic web technologies to bring relevant information to a document. This can not only aid reading comprehension, but increases the users' ability to obtain additional information within the document. We have demonstrated a molecular editor enabled knowledge framework that can result in a semantic web inductive reasoning process, and integration of the WikiHyperGlossary into other software technologies, like

  4. Query-by-Example Music Information Retrieval by Score-Informed Source Separation and Remixing Technologies

    Directory of Open Access Journals (Sweden)

    Goto Masataka

    2010-01-01

    Full Text Available We describe a novel query-by-example (QBE approach in music information retrieval that allows a user to customize query examples by directly modifying the volume of different instrument parts. The underlying hypothesis of this approach is that the musical mood of retrieved results changes in relation to the volume balance of different instruments. On the basis of this hypothesis, we aim to clarify the relationship between the change in the volume balance of a query and the genre of the retrieved pieces, called genre classification shift. Such an understanding would allow us to instruct users in how to generate alternative queries without finding other appropriate pieces. Our QBE system first separates all instrument parts from the audio signal of a piece with the help of its musical score, and then it allows users remix these parts to change the acoustic features that represent the musical mood of the piece. Experimental results showed that the genre classification shift was actually caused by the volume change in the vocal, guitar, and drum parts.

  5. The Unsuspected Roles of Chemistry in Nuclear Power Plants: Special Chemical Technologies for Enhanced Safety and Increased Performance

    International Nuclear Information System (INIS)

    Sempere Belda, Luis

    2008-01-01

    The plant's chemists main responsibility is the establishment and monitoring of an adequate water chemistry to minimize corrosion and in PWRs, to control the neutron flux. But this is by no means the only way in which chemical applications contribute to the performance and safety of a NPP during its entire life: The use of special coatings and treatment protects the plant's components from aggressive environmental conditions. The chemical scale removal in steam generators improves the power output of aging plants, helping even to achieve permissions for NPP life extension. The use of special adhesives can replace welding in complicated or high-dose areas, even underwater. And chemical decontamination is used to remove activity from the components of the primary circuit prior to maintenance or replacement works in order to decrease the radiation exposure of the plant's personnel, employing revolutionary methods of waste minimization to limit the amount of generated radioactive waste to a minimum. The AREVA Group, in its pursue of excellence in all stages of the nuclear cycle, has devoted years of research and development to be able to provide the most advanced technological solutions in this field. The awareness of the existing possibilities will help present and future nuclear professionals, chemists and non-chemists alike, to benefit from the years of experience and continuous development in chemical technologies at the service of the nuclear industry. (authors)

  6. Technology of oxygen production in the membranecryogenic air separation system for a 600 MW oxy-type pulverized bed boiler

    Science.gov (United States)

    Berdowska, Sylwia; Skorek-Osikowska, Anna

    2012-09-01

    In this paper the results of the thermodynamic analysis of the oxy-combustion type pulverized bed boiler integrated with a hybrid, membrane- cryogenic oxygen separation installation are presented. For the calculations a 600 MW boiler with live steam parameters at 31.1 MPa /654.9 oC and reheated steam at 6.15 MPa/672.4 oC was chosen. In this paper the hybrid membrane-cryogenic technology as oxygen production unit for pulverized bed boiler was proposed. Such an installation consists of a membrane module and two cryogenic distillation columns. Models of these installations were built in the Aspen software. The energy intensity of the oxygen production process in the hybrid system was compared with the cryogenic technology. The analysis of the influence of membrane surface area on the energy intensity of the process of air separation as well as the influence of oxygen concentration at the inlet to the cryogenic installation on the energy intensity of a hybrid unit was performed.

  7. Contextualizing Technology in the Classroom via Remote Access: Using Space Exploration Themes and Scanning Electron Microscopy as Tools to Promote Engagement in Geology/Chemistry Experiments

    Science.gov (United States)

    Rodriguez, Brandon; Jaramillo, Veronica; Wolf, Vanessa; Bautista, Esteban; Portillo, Jennifer; Brouke, Alexandra; Min, Ashley; Melendez, Andrea; Amann, Joseph; Pena-Francesch, Abdon; Ashcroft, Jared

    2018-01-01

    A multidisciplinary science experiment was performed in K-12 classrooms focusing on the interconnection between technology with geology and chemistry. The engagement and passion for science of over eight hundred students across twenty-one classrooms, utilizing a combination of hands-on activities using relationships between Earth and space rock…

  8. Research on distributed strain separation technology of fiber Brillouin sensing system combining an electric power optical fiber cable

    Science.gov (United States)

    Lei, Yuqing; Chen, Xi; Li, Jihui; Tong, Jie

    2013-12-01

    Brillouin-based optical fiber sensing system has been taken more and more attentions in power transmission line in recent years. However, there exists a temperature cross sensitivity problem in sensing system. Hence, researching on strain separation technology of fiber brillouin sensing system is an urgent requirement in its practical area. In this paper, a real-time online distributed strain separation calculation technology of fiber Brillouin sensing combining an electric power optical fiber cable is proposed. The technology is mainly composed of the Brillouin temperature-strain distributed measurement system and the Raman temperature distributed measurement system. In this technology, the electric power optical fiber cable is a special optical phase conductor (OPPC); the Brillouin sensing system uses the Brillouin optical time domain analysis (BOTDA) method. The optical unit of the OPPC includes single-mode and multimode fibers which can be used as sensing channel for Brillouin sensing system and Raman sensing system respectively. In the system networking aspect, the data processor of fiber Brillouin sensing system works as the host processor and the data processor of fiber Raman sensing system works as the auxiliary processor. And the auxiliary processor transfers the data to the host processor via the Ethernet interface. In the experiment, the BOTDA monitoring system and the Raman monitoring system work on the same optical unit of the OPPC simultaneously; In the data processing aspect, the auxiliary processor of Raman transfers the temperature data to the host processor of Brillouin via the Ethernet interface, and then the host processor of Brillouin uses the temperature data combining itself strain-temperature data to achieve the high sampling rate and high-precision strain separation via data decoupling calculation. The data decoupling calculation is achieved through the interpolation, filtering, feature point alignment, and the singular point prediction

  9. Chemogenomics: a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence.

    Science.gov (United States)

    Maréchal, Eric

    2008-09-01

    Chemogenomics is the study of the interaction of functional biological systems with exogenous small molecules, or in broader sense the study of the intersection of biological and chemical spaces. Chemogenomics requires expertises in biology, chemistry and computational sciences (bioinformatics, cheminformatics, large scale statistics and machine learning methods) but it is more than the simple apposition of each of these disciplines. Biological entities interacting with small molecules can be isolated proteins or more elaborate systems, from single cells to complete organisms. The biological space is therefore analyzed at various postgenomic levels (genomic, transcriptomic, proteomic or any phenotypic level). The space of small molecules is partially real, corresponding to commercial and academic collections of compounds, and partially virtual, corresponding to the chemical space possibly synthesizable. Synthetic chemistry has developed novel strategies allowing a physical exploration of this universe of possibilities. A major challenge of cheminformatics is to charter the virtual space of small molecules using realistic biological constraints (bioavailability, druggability, structural biological information). Chemogenomics is a descendent of conventional pharmaceutical approaches, since it involves the screening of chemolibraries for their effect on biological targets, and benefits from the advances in the corresponding enabling technologies and the introduction of new biological markers. Screening was originally motivated by the rigorous discovery of new drugs, neglecting and throwing away any molecule that would fail to meet the standards required for a therapeutic treatment. It is now the basis for the discovery of small molecules that might or might not be directly used as drugs, but which have an immense potential for basic research, as probes to explore an increasing number of biological phenomena. Concerns about the environmental impact of chemical industry

  10. Sustainable Solution for Crude Oil and Natural Gas Separation using Concentrated Solar Power Technology

    Science.gov (United States)

    Choudhary, Piyush; Srivastava, Rakesh K.; Nath Mahendra, Som; Motahhir, Saad

    2017-08-01

    In today’s scenario to combat with climate change effects, there are a lot of reasons why we all should use renewable energy sources instead of fossil fuels. Solar energy is one of the best options based on features like good for the environment, independent of electricity prices, underutilized land, grid security, sustainable growth, etc. This concept paper is oriented primarily focused on the use of Solar Energy for the crude oil heating purpose besides other many prospective industrial applications to reduce cost, carbon footprint and moving towards a sustainable and ecologically friendly Oil & Gas Industry. Concentrated Solar Power technology based prototype system is proposed to substitute the presently used system based on natural gas burning method. The hybrid system which utilizes the solar energy in the oil and gas industry would strengthen the overall field working conditions, safety measures and environmental ecology. 40% reduction on natural gas with this hybrid system is estimated. A positive implication for an environment, working conditions and safety precautions is the additive advantage. There could also decrease air venting of CO2, CH4 and N2O by an average of 30-35%.

  11. Improvement of auditing technology of safety analysis through thermal-hydraulic separate effect tests

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Park, Hyun Sik; Kim, Hyoung Tae; Moon, Young Min; Choi, Sung Won; Hwang, Do Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-03-15

    The direct-contact condensation hear transfer coefficients are experimentally obtained in the following conditions : pure steam/steam in the presence of noncondensible gas, horizontal/slightly inclined pipe, cocurrent/countercurrent stratified flow with water. The empirical correlation for liquid Nusselt number is developed in conditions of the slightly inclined pipe and the cocurrent stratified flow. The several models - the wall friction coefficient, the interfacial friction coefficient, the correlation of direct-contact condensation with noncondensible gases, and the correlation of wall film condensation - in the RELAP5/MOD3.2 code are modified, As results, RELAP5/MOD3.2 is improved. The present experimental data is used for evaluating the improved code. The standard RELAP5/MOD3.2 code is modified using the non-iterative modeling, which is a mechanistic model and does not require any interfacial information such as the interfacial temperature, The modified RELAP5/MOD3.2 code os used to simulate the horizontally stratified in-tube condensation experiment which represents the direct-contact condensation phenomena in a hot leg of a nuclear reactor. The modeling capabilities of the modified code as well as the standard code are assessed using several hot-leg condensation experiments. The modified code gives better prediction over local experimental data of liquid void fraction and interfacial heat transfer coefficient than the standard code. For the separate effect test of the thermal-hydraulic phenomena in the pressurizer, the scaling analysis is performed to obtain a similarity of the phenomena between the Korea Standard Nuclear Power Plant(KSNPP) and the present experimental facility. The diameters and lengths of the hot-leg, the surge line and the pressurizer are scaled down with the similitude of CCFL and velocity. The ratio of gas flow rate is 1/25. The experimental facility is composed of the air-water supply tank, the horizontal pipe, the surge line and the

  12. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making

  13. The Role of IAEA in Coordinating Research and Transferring Technology in Radiation Chemistry and Processing of Polymers

    International Nuclear Information System (INIS)

    Haji Saeid, M.

    2006-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through Technical Cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The CRP brings together typically 10 - 15 groups of participants to share and complement core competencies and work on specific areas of development needed to benefit from an emerging radiation technique and its applications. The technical cooperation (TC) programme helps Member States realize their development priorities through the application of appropriate radiation technology. TC builds national capacities through training, expert advice and delivery of equipment. The impact of the IAEA's efforts is visible by the progress noticeable in adoption of radiation technology and/or growth in the range of activities in several MS in different regions. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. A number of technical cooperation projects have been implemented in this field to strengthen the capability of developing Member States and to create awareness in the industries about the technical

  14. Cryo magnetic separation adaptation to environment technologies: application to industrial effluents; Adaptation de la separation cryomagnetique aux technologies de l`environnement: application a l`epuration d`effluents liquides industriels

    Energy Technology Data Exchange (ETDEWEB)

    Bureau, V.

    1993-12-20

    Cryomagnetic separation adaptation to environment technologies application to industrial liquid effluents. The performance, obtained by superconducting high filed - high gradient magnetic separation, permitted to foresee the magnetic treatment of heavy metals in rinse waters, derived from the surface finishing industry. The paramagnetic ions, precipitated in basic media as hydroxides, present a very hydrated amorphous structure, which masks their subjacent magnetic properties. Coprecipitation of a `magnetic carrier`, jointly with the heavy metals, has been studied: ferric chloride forms in basic media, an hydrated iron oxide. Its structure is of the goethite type, and it stabilizes as hematite. The magnetic susceptibility of the obtained product is still weak and its crystalline structure is not enough affirmative to utilize magnetic filtration with efficiency. Mixture of ferrous sulphate and ferric chloride forms, in a basic media, an hydrated magnetite. Initial ideal ratio between divalent iron and trivalent iron, varies between 0,5 and 1,2. This mixture, coprecipitated with the heavy metals, permits to optimize the magnetic cleaning of the fluids in a high field - high gradient filter. (author)

  15. Radioactive waste treatment strategy in Poland - A contribution of research performed at Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, Grazyna

    2009-01-01

    Full text: Radioactive waste in Poland arises from research reactors and from various applications of radioisotopes in industry, medicine and science. The waste from all of country is collected, processed and prepared for disposal in Radioactive Waste Management Plant (RWMP) - state-owned public utility, located in Swierk, near Warsaw. RWMP is responsible for collecting, processing, transporting, storage and disposal of solidified waste in National Radioactive Waste Repository at Rozan. The system of radioactive waste management facilities includes radioactive waste management farm (comprising several storage tanks of different volumes), radioactive waste treatment station (with the evaporator, chemical treatment station, reverse osmosis plant, bailing equipment and cementing plant), temporary waste storage facility (for conditioned waste before shipment to the repository, smoke detectors, waste for decay), decontamination building (for decontamination of small equipment, smoke detectors dismantling area, laundry) and radioactive waste repository at Rozan. First step of liquid low-level radioactive waste processing is reduction of the volume of radioactive species. Various methods for concentration of radioactive matter are studied and developed at Institute of Nuclear Chemistry and Technology. Reverse Osmosis process was implemented at Radioactive Waste Management Plant. The other methods like ultrafiltration, membrane distillation, adsorption and different integrated processes are studied within the scope of national and international projects. Development of Polish Nuclear Power Program will imply necessary activities concerning the future strategy of radioactive waste treatment and elaboration of programs for research on new methods and processes that will be feasible to treat liquid wastes coming from nuclear power station operation and related activities. Polish nuclear institutions will constitute the scientific back-up of the first nuclear power plant that

  16. Investigations on electron beam flue gas treatment held in the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Iller, E.; Zimek, Z.; Licki, J.

    1992-01-01

    Two different research installations have been built. The first one, laboratory unit has a flow capacity of approx. 400 Nm 3 /h of flue gas from two gas fired boilers. The composition of gas can be adjusted. An irradiator, accelerator ILU-6, is used with electron beam energy in the range 600-1000 keV. The unit is mostly used for aerosol formation and filtration research. This laboratory installation is being adapted for electron beam/microwave combined gas molecule excitation. The second unit, a pilot with a plant of flow rate up to 20 000 Nm 3 /h has been constructed in EPS Kaweczyn. Pit coal is used as a fuel in a boiler from which flue gas is purified. Two accelerators, ELW-3, of beam power 40-50 kW and electrons energy 700 keV are applied. The arrangement of accelerators in series allows cascade, step by step gas mixture irradiation. The installation is equipped in a spray cooler, ammonia dosage system and bag filter. The irradiation/reaction part of the plant was put in operation in April 1991. Separately, laboratory research on grain bed aerosol filtration is performed to study the possibility of such filtration unit as a prefilter application. Agriculture tests of the byproduct have been performed. Two types of the byproduct with and without additive were tested. Comparative vegetation tests have shown that application of the pure product gives similar results as application of market fertilizer - ammonia sulfate. The elemental analysis have shown that content of the heavy metals do not exceed acceptable value. For both systems dosimetric measurements were performed. The electron penetration depth and dose distribution profiles were established. The results of preliminary tests both laboratory and pilot plant units have proved high efficiency of SO 2 and NO X removal. (J.P.N.)

  17. Evaluation report on the R and D of the membrane separation process introduction technology; Makubunri process donyu gijutsu no kenkyu kaihatsu hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper reported the R and D of the membrane separation process introduction technology during a period of 1994 through 1998. The membrane separation technology is not associated with the phase change which requires large energy and expected to be an energy saving process. For the production of membranes required of high functions, the vapor deposition polymerization method was considered, and high order structure control of the membrane, control of adhesion and attachment, and control of orientation, and development of the high polymerization technology were required. For the high grade control of vapor polymerization, the substrate surface structure/quality were important. The molecular level analysis of the vapor deposition surface was also needed. Therefore, the paper took notice of STM (scanning tunneling microscopy), AFM (atomic force microscopy) and HREELS (high resolution electron energy loss spectroscopy) as surface atomic/molecular configuration analysis technology, and designed/fabricated and studied the high resolving power and high sensitivity analysis equipment using the analysis equipment which combined HREELS and STM and the analysis equipment using SFG (sum frequency generation) which can detect signals in the low frequency region. Making full use of the highest technology, technology was able to be developed for substrate surface analysis and surface reaction analysis technologies which become the basis of the high performance separation membrane fabrication technology by the vapor deposition polymerization method indispensable for introduction of the membrane separation process. The technology can be the base applicable to a lot of fields where surfaces and interfaces are concerned

  18. Interpreting chemistry and technology of lime binders and implementing it in the conservation field

    Directory of Open Access Journals (Sweden)

    Georgia Zacharopoulou

    2009-01-01

    Full Text Available The objective of the paper is the compilation, review and dissemination of updated scientific knowledge on lime theory and technology in the field of heritage conservation. The strong evidence of the last decade's research on the positive effect of the - not demonstrable by a chemical equation – 'key' missing link of the maturation process is highlighted. It is demonstrated that the exceptional perfor -mance characteristics of durable lime based mortars predominately rely on the capacity for rapid, efficient and extensive carbonation of the air-hardening phase of limes, in particular when matured (nanoparticle wet slaked lime putties are used; and on the chemical and mechanical stability of the strength components (principally CSHs of the hydraulic phase of limes, which is higher in their more crystalline forms of historical lime-pozzolan mixtures than in their amorphous forms of modern cements. Hence, physicochemical adhesion and cohesion bonds both at the lime matrix and at the binder/aggregate interfaces are ensured imparting minimization of cracks and durability to lime based mortars and historic masonries. The comprehensive documentation of the former leads to optimal materials and procedures to preserve our cultural heritage.

  19. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  20. Development of Technological and Pedagogical Content Knowledge of the Chemistry by Teachers in Training Through the Reflection of PaP-eRs and Videos

    Directory of Open Access Journals (Sweden)

    Boris Fernando Candela

    2018-01-01

    Full Text Available This article described how trainee teachers identified and developed some elements of the Technological and Pedagogical Knowledge of Chemistry Content (CTPC, along the course of educational and pedagogical context by "reflective orientation". The methodological perspective was qualitative by case study, which was configured by two interwoven areas of reflection, namely: (a reflecting on the opinions of experts about the teaching of a content, through the readings proposed in the training programs; and (b reflecting on the teaching carried out by experienced teachers through case videos and the Repertoire of Professional and Pedagogical Experiences (PaP-eRs. This heuristic reduced the complexity of teaching in a manageable story located in a specific context, so that teachers could identify and reflect on their theories about the teaching and learning of chemistry. This study showed that teachers in training identified and developed the following elements of the CTPC of chemistry: general pedagogy, language as a learning tool, difficulties and alternative conceptions, knowledge of technology as an instrument to represent the contents and manage the chemistry classroom, and the formative evaluation. Definitely, the reflection of the critical events of the PaP-eRs and videos of cases was considered an appropriate heuristic that allowed the future teachers to articulate the knowledge coming from the literature in education in chemistry, with the virtual experiences of teaching-learning of a real context. Of course, this reflection was mediated by reading, discussing and reflecting on the intelligent actions of an exemplary teacher when guiding singular students from a sociocultural perspective, with the purpose of beginning to refine their theories of teaching and learning chemistry.

  1. The effect of technology assisted therapy for intellectually and visually impaired adults suffering from separation anxiety: Conquering the fear.

    Science.gov (United States)

    Hoffman, N; Sterkenburg, P S; Van Rensburg, E

    2017-10-16

    Persons with an intellectual disability (ID) are at risk of developing separation anxiety (SA) and, if left untreated, this can be a risk factor for the development of psychopathology. The effects of an intervention, namely technology assisted therapy for SA (TTSA), were examined on the SA, challenging behavior, psychosocial functioning, and quality of life (QOL) experienced by moderate to mild intellectually and visually disabled adults. This study aimed to determine whether TTSA reduces SA and challenging behavior in persons with ID and visual impairment, and if this results in increased psychosocial functioning and QOL. A pre-experimental within-group design with randomized multiple baselines and staggered intervention start-points was used (n = 6). The variables were monitored with standardized instruments. The frequencies of each participant's use of the technology and the frequency and intensity of their behavior were recorded over time. Results indicate that the SA and challenging behavior experienced by the participants decreased significantly and their psychosocial functioning and QOL increased significantly. The conclusions are that TTSA has the potential to be a valid intervention to address SA in adults with visual and moderate to mild IDs.

  2. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  3. Finding the Connections between a High-School Chemistry Curriculum and Nano-Scale Science and Technology

    Science.gov (United States)

    Blonder, Ron; Sakhnini, Sohair

    2017-01-01

    The high-school chemistry curriculum is loaded with many important chemical concepts that are taught at the high-school level and it is therefore very difficult to add modern contents to the existing curriculum. However, many studies have underscored the importance of integrating modern chemistry contents such as nanotechnology into a high-school…

  4. Pedagogy-Based-Technology and Chemistry Students' Performance in Higher Institutions: A Case of Debre Berhan University

    Science.gov (United States)

    Demissie, Tesfaye; Ochonogor, Chukunoye E.; Engida, Temechegn

    2011-01-01

    Many students have difficulty in learning abstract and complex lessons of chemistry. This study investigated how students develop their understandings of abstract and complex lessons in chemistry with the aid of visualizing tools: animation, simulation and video that allow them to build clear concepts. Animation, simulation and video enable…

  5. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  6. The JAERI and Universities joint project research reports on the 4th joint research project between JAERI and Universities on backend chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    In the Joint Research Project between JAERI and Universities on Backend Chemistry, the 4th-term researches of it were performed on sixteen themes from April of 1999 to March of 2001 under the four categories, i.e. Nuclear-chemistry and physical-chemistry properties of actinides', 'Solid state chemistry and nuclear fuel engineering of actinides', 'Solution chemistry and technologies for separation and analysis of actinides' and Treatment of radioactive waste and environmental chemistry'. The present report compiled the papers contributed to the Joint Research Project. (author)

  7. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  8. Recent development in computational actinide chemistry

    International Nuclear Information System (INIS)

    Li Jun

    2008-01-01

    Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first-principle theory and computational modeling. Actinide compounds are challenging to computational chemistry because of their complicated electron correlation effects and relativistic effects, including spin-orbit coupling effects. There have been significant developments in theoretical studies on actinide compounds in the past several years. The theoretical capabilities coupled with new experimental characterization techniques now offer a powerful combination for unraveling the complexities of actinide chemistry. In this talk, we will provide an overview of our own research in this field, with particular emphasis on applications of relativistic density functional and ab initio quantum chemical methods to the geometries, electronic structures, spectroscopy and excited-state properties of small actinide molecules such as CUO and UO 2 and some large actinide compounds relevant to separation and environment science. The performance of various density functional approaches and wavefunction theory-based electron correlation methods will be compared. The results of computational modeling on the vibrational, electronic, and NMR spectra of actinide compounds will be briefly discussed as well [1-4]. We will show that progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry. (authors)

  9. Green chemistry

    International Nuclear Information System (INIS)

    Colonna, P.

    2006-01-01

    The depletion of world fossil fuel reserves and the involvement of greenhouse gases in the global warming has led to change the industrial and energy policies of most developed countries. The goal is now to reserve petroleum to the uses where it cannot be substituted, to implement renewable raw materials obtained from plants cultivation, and to consider the biodegradability of molecules and of manufactured objects by integrating the lifetime concept in their expected cycle of use. The green chemistry includes the design, development and elaboration of chemical products and processes with the aim of reducing or eliminating the use and generation of harmful compounds for the health and the environment, by adapting the present day operation modes of the chemical industry to the larger framework of the sustainable development. In addition to biofuels, this book reviews the applications of green chemistry in the different industrial processes in concern. Part 1 presents the diversity of the molecules coming from renewable carbon, in particular lignocellulose and the biotechnological processes. Part 2 is devoted to materials and treats of the overall available technological solutions. Part 3 focusses on functional molecules and chemical intermediates, in particular in sugar- and fats-chemistry. Part 4 treats of biofuels under the aspects of their production and use in today's technologies. The last part deals with the global approaches at the environmental and agricultural levels. (J.S.)

  10. Technology of extraction by solvent in pulsed columns

    International Nuclear Information System (INIS)

    Ros, P.

    1992-01-01

    Since its creation, the CEA (Commissariat a l'energie atomique) has produced several separation processes for natural or enriched uranium treatment and the treatment of spent fuels coming from nuclear reactors. Among these technologies, extraction by solvent is broadly used for separation and purification of nuclear matters. This technology can be used for other applications as hydrometallurgy, chemistry, pharmaceutics, depollution, agro-industry

  11. Technology assessment: Chlorine chemistry

    International Nuclear Information System (INIS)

    Wolff, H.; Alwast, H.; Buttgereit, R.

    1994-01-01

    Chlorine is not just one of many chemical feedstocks which is used in a few definitely harmful products like PVC or CFC but is irrelevant in all other respects. Just the opposite is true: There is hardly any product line of the chemical industry that can do without chlorine, from herbicides and pesticides to dyes, plastics, pharmaceuticals, photographic atricles, and cosmetics. Chlorine is not only a key element of chemical production but also an ubiquitous element of everyday life in civilisation. There are even many who would agree that the volume of chlorine production is an indicator of the competitive strength and national wealth of a modern society. By now, however, it has become evident that the unreflected use of chlorine is no longer ecologically acceptable. The consequences of a chlorine phase-out as compared to the continued chlorine production at the present level were investigated scientifically by a PROGNOS team. They are presented in this book. (orig.) [de

  12. 'Development of mutual separation technology of minor actinides by the novel hydrophilic and lipophilic diamide compounds' summary of the researches for three years (Contract research)

    International Nuclear Information System (INIS)

    Sasaki, Yuji; Tsubata, Yasuhiro; Kitatsuji, Yoshihiro; Shirasu, Noriko; Sugo, Yumi; Ikeda, Yasuhisa; Kawasaki, Takeshi; Suzuki, Tomoya; Mimura, Hitoshi; Usuda, Shigekazu; Yamanishi, Kei

    2014-06-01

    The researches on Development of mutual separation technology of minor actinides by the novel hydrophilic and lipophilic diamide compounds, entrusted to 'Japan Atomic Energy Agency' by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), from 2010 to 2012 are summarized. This project was composed of three themes, those are (1) Development of total recovery of MA+Ln: basic researches for new extractant, DOODA, (2) Development of mutual separation of Am/Cm/Ln: basic researches of Ln-complex, solvent extraction, and extraction chromatography, and (3) Evaluation of separation technique: process simulation. For topic (1), we summarized the information on characteristic of DOODA extractant. For topic (2), we summarized the information on structures of Ln-complexes, solvent extraction and chromatography. For topic (3), we summarized the information on conditions of mixer-settler and evaluation of each fraction separated. (author)

  13. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.

    Science.gov (United States)

    Guirimand, Gregory; Sasaki, Kengo; Inokuma, Kentaro; Bamba, Takahiro; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-04-01

    Xylitol, a value-added polyol deriving from D-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with β-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications.

  14. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  15. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H. (ed.)

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  16. Green chemistry

    International Nuclear Information System (INIS)

    Warner, John C.; Cannon, Amy S.; Dye, Kevin M.

    2004-01-01

    A grand challenge facing government, industry, and academia in the relationship of our technological society to the environment is reinventing the use of materials. To address this challenge, collaboration from an interdisciplinary group of stakeholders will be necessary. Traditionally, the approach to risk management of materials and chemicals has been through inerventions intended to reduce exposure to materials that are hazardous to health and the environment. In 1990, the Pollution Prevention Act encouraged a new tact-elimination of hazards at the source. An emerging approach to this grand challenge seeks to embed the diverse set of environmental perspectives and interests in the everyday practice of the people most responsible for using and creating new materials--chemists. The approach, which has come to be known as Green Chemistry, intends to eliminate intrinsic hazard itself, rather than focusing on reducing risk by minimizing exposure. This chapter addresses the representation of downstream environmental stakeholder interests in the upstream everyday practice that is reinventing chemistry and its material inputs, products, and waste as described in the '12 Principles of Green Chemistry'

  17. 13th IUPAC International Congress of Pesticide Chemistry: Crop, Environment, and Public Health Protection, Technologies for a Changing World.

    Science.gov (United States)

    McConnell, Laura L; Racke, Kenneth D; Hapeman, Cathleen J; Seiber, James N

    2016-01-13

    This introductory paper provides an overview of Perspectives papers written by plenary speakers from the 13th IUPAC International Congress of Pesticide Chemistry held in San Francisco, CA, USA, in August 2014. This group of papers emphasizes some of the emerging issues and challenges at the forefront of agricultural research: sustainability; agriculture's response to climate change and population growth; pollinator health and risk assessment; and global food production and food security. In addition, as part of the Congress, a workshop on "Developing Global Leaders for Research, Regulation, and Stewardship of Crop Protection Chemistry in the 21st Century" identified specific recommendations to attract the best scientists to agricultural science, to provide opportunities to study and conduct research on crop protection chemistry topics, and to improve science communication skills.

  18. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 2; Gas Separation Technology--State of the Art

    Science.gov (United States)

    Reynolds, Thomas L.; Eklund, Thor I.; Haack, Gregory A.

    2001-01-01

    This purpose of this contract study task was to investigate the State of the Art in Gas Separation Technologies utilized for separating air into both nitrogen and oxygen gases for potential applications on commercial aircraft. The intended applications included: nitrogen gas for fuel tank inerting, cargo compartment fire protection, and emergency oxygen for passenger and crew use in the event of loss of cabin pressure. The approach was to investigate three principle methods of gas separation: Hollow Fiber Membrane (HFM), Ceramic Membrane (CM), and liquefaction: Total Atmospheric Liquefaction of Oxygen and Nitrogen (TALON). Additional data on the performance of molecular sieve pressure swing adsorption (PSA) systems was also collected and discussed. Performance comparisons of these technologies are contained in the body of the report.

  19. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  20. Chemistry Division annual progress report for period ending January 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

  1. Chemistry Division annual progress report for period ending July 31, 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery

  2. Chemistry Division annual progress report for period ending July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

  3. The suspended magnetic separator with large blocks from NdFeB magnets and its long term technological tests

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2011-01-01

    Roč. 8, č. 1 (2011), s. 89-97 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic separation * magnetic separators * magnetic circuits Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/01_11/8_Zezulka.pdf

  4. Costs of slurry separation technologies and alternative use of the solid fraction for biogas production or burning

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2011-01-01

    parameters are livestock density, transport distance and cost of separation. The conclusion is that unless land prices or prices on slurry agreements are very high, traditional handling of animal manure has the lowest costs. Decanter separation can be the cheapest if area is limited and co...

  5. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies.

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Bobbink, F.D.; Hulla, M.; Klepic, M.; Friess, K.; Hovorka, Š.; Dyson, P.J.

    2018-01-01

    Roč. 83, č. 1 (2018), s. 7-18 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA17-00089S; GA ČR GA17-05421S Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * ionic liquids * membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.797, year: 2016

  6. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies.

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Bobbink, F.D.; Hulla, M.; Klepic, M.; Friess, K.; Hovorka, Š.; Dyson, P.J.

    2018-01-01

    Roč. 83, č. 1 (2018), s. 7-18 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA17-00089S; GA ČR GA17-05421S Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * ionic liquid s * membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.797, year: 2016

  7. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  8. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  9. Future directions for separation science in nuclear and radiochemistry

    International Nuclear Information System (INIS)

    Pruett, D.J.

    1986-01-01

    Solvent extraction and ion exchange have been the most widely used separation techniques in nuclear and radiochemistry since their development in the 1940s. Many successful separations processes based on these techniques have been used for decades in research laboratories, analytical laboratories, and industrial plants. Thus, it is easy to conclude that most of the fundamental and applied research that is needed in these areas has been done, and that further work in these ''mature'' fields is unlikely to be fruitful. A more careful review, however, reveals that significant problems remain to be solved, and that there is a demand for the development of new reagents, methods, and systems to solve the increasingly complex separations problems in the nuclear field. Specifically, new separation techniques based on developments in membrane technology and biotechnology that have occurred over the last 20 years should find extensive applications in radiochemical separations. Considerable research is needed in such areas as interfacial chemistry, the design and control of highly selective separation agents, critically evaluated data bases and mathematical models, and the fundamental chemistry of dilute solutions if these problems are to be solved and new techniques developed in a systematic way. Nonaqueous separation methods, such as pyrochemical and fluoride volatility processes, have traditionally played a more limited role in nuclear and radiochemistry, but recent developments in the chemistry and engineering of these processes promises to open up new areas of research and application in the future

  10. Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture

    Science.gov (United States)

    Lee, Min-Sang; Park, Mira; Kim, Hak Yong; Park, Soo-Jin

    2016-03-01

    In this study, N-containing pitch-based activated carbons (NPCs) were prepared using petroleum pitch with a low softening point and melamine with a high nitrogen content. The major advantage of the preparation method is that it enables variations in chemical structures and textural properties by steam activation at high temperatures. The adequate micropore structures, appropriate chemical modifications, and high adsorption enthalpies of NPCs are favorable for CO2 adsorption onto carbon surfaces. Furthermore, the structure generates a considerable gas/N-containing carbon interfacial area, and provides selective access to CO2 molecules over N2 molecules by offering an increased number of active sites on the carbon surfaces. The highest CO2/N2 selectivity, i.e., 47.5, and CO2 adsorption capacity for a CO2/N2 (0.15:0.85) binary gas mixture, i.e., 5.30 wt%, were attained at 298 K. The NPCs also gave reversible and durable CO2-capturing performances. All the results suggest that NPCs are promising CO2 sorbents, which can meet the challenges of current CO2 capture and separation techniques.

  11. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  12. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  13. Chemistry Division annual progress report for period ending January 31, 1986

    International Nuclear Information System (INIS)

    1986-05-01

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics

  14. Chemistry Division annual progress report for period ending January 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics. (PLG)

  15. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    Science.gov (United States)

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Frontiers in nuclear chemistry

    International Nuclear Information System (INIS)

    Sood, D.D.; Reddy, A.V.R.; Pujari, P.K.

    1996-01-01

    This book contains articles on the landmarks in nuclear and radiochemistry which takes through scientific history spanning over five decades from the times of Roentgen to the middle of this century. Articles on nuclear fission and back end of the nuclear fuel cycle give an insight into the current status of this subject. Reviews on frontier areas like lanthanides, actinides, muonium chemistry, accelerator based nuclear chemistry, fast radiochemical separations and nuclear medicine bring out the multidisciplinary nature of nuclear sciences. This book also includes an article on environmental radiochemistry and safety. Chapters relevant to INIS are indexed separately

  17. Development of long-lived radionuclide partitioning technology - Preparation of ion exchanges for selective separation of radioactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Joong; Jeong, Hae In; Shim, Min Sook [Korea University, Seoul (Korea, Republic of); Kim, Jeong [Seonam University, Namwon (Korea, Republic of)

    1995-07-01

    Ion exchanger contained nitrogen-oxygen donor macrocyclic units was synthesized, and immobilization process was carried out by adsorption of the exchanger to silica gel. The binding constants were measured with acid concentration. From the binding constants, selectivity for Pt(II) ion and acid concentration of eluents were determined. The most optimum conditions for the separation were also determined from investigating the effects of amount of immobile phase and column length. And liarit aza-crown ethers were synthesized and selectively separated Cs/Sr ion from mixed metal solution. 37= refs., 24 tabs., 40 figs. (author)

  18. Web technology in the separation of strontium and cesium from INEL-ICPP radioactive acid waste (WM-185)

    International Nuclear Information System (INIS)

    Bray, L.A.; Brown, G.N.

    1995-01-01

    Strontium and cesium were successfully removed from radioactive acidic waste (WM-185) at the Idaho National Engineering Laboratory, Idaho Chemical Processing Plant (ICPP), with web technology from 3M and IBC Advanced Technologies, Inc. (IBC). A technical team from Pacific Northwest Laboratory, ICPP, 3M and IBC conducted a very successful series of experiments from August 15 through 18, 1994. The ICPP, Remote Analytical Laboratory, Idaho Falls, Idaho, provided the hot cell facilities and staff to complete these milestone experiments. The actual waste experiments duplicated the initial 'cold' simulated waste results and confirmed the selective removal provided by ligand-particle web technology

  19. Anaerobic treatment as a core technology for energy, nutrients and water from source-separated domestic waste(water)

    NARCIS (Netherlands)

    Zeeman, G.; Kujawa, K.; Mes, de T.Z.D.; Graaff, de M.S.; Abu-Ghunmi, L.N.A.H.; Mels, A.R.; Meulman, B.; Temmink, B.G.; Buisman, C.J.N.; Lier, van J.B.; Lettinga, G.

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas

  20. Gas separation using porous cement membrane.

    Science.gov (United States)

    Zhang, Weiqi; Gaggl, Maria; Gluth, Gregor J G; Behrendt, Frank

    2014-01-01

    Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied.

  1. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  2. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  3. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  4. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  5. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  6. Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water

    KAUST Repository

    Duong, Hoang Hanh Phuoc

    2014-02-01

    Large amounts of oily wastewater have been produced from various industries. The main challenge of oily wastewater treatments is to separate the stable emulsified oil particles from water. Therefore, the aim of this study is to investigate the effectiveness of forward osmosis (FO) processes to treat the stable oil-water emulsions. The FO technique has been demonstrated successfully for the treatment of a wide range of oil-water emulsions from a low to a very high concentration up to 200,000. ppm. The dependence of separation performance on oily feed concentration and flow rate has been investigated. Water can be separated from oily feeds containing 500. ppm or 200,000. ppm emulsified oil at a relatively high flux of 16.5±1.2. LMH or 11.8±1.6. LMH respectively by using a thin film composite membrane PAN-TFC and 1. M NaCl as the draw solution. Moreover, this membrane can achieve an oil rejection of 99.88% to produce water with a negligible oil level. Due to the presence of emulsified oil particles in the oily feed solutions, the membrane fouling has been addressed in this study. Better anti-fouling TFC FO membranes are needed. © 2013 Elsevier B.V.

  7. Asymmetric aza-Morita-Baylis-Hillman reactions of chiral N-phosphonyl imines with acrylates via GAP chemistry/technology.

    Science.gov (United States)

    Yang, Bing; Ji, Xiaozhou; Xue, Yunsheng; Zhang, Haowei; Shen, Minxing; Jiang, Bo; Li, Guigen

    2016-07-07

    Chiral N-phosphonyl imines have been proven to be efficient electrophilic acceptors for asymmetric aza-Morita-Baylis-Hillman (aza-MBH) reactions with acrylates under convenient conditions. Thirty examples of β-amino acrylates were generated in high yields (up to 99.4%) and diastereoselectivity (up to >99 : 1 dr) in an atom-economical fashion. The synthesis was proved to follow the GAP (group-assisted purification) chemistry, i.e., the pure products can be obtained simply by washing the crude products with hexane/ethyl acetate (v/v, 10/1) without the use of chromatography or recrystallization. DFT calculations were also conducted to support an asymmetric induction model accounting for high diastereoselectivity.

  8. Microfluidics in inorganic chemistry.

    Science.gov (United States)

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  9. Catalysis as a foundational pillar of green chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, Paul T. [White House Office of Science and Technology Policy, Department of Chemistry, University of Nottingham Nottingham, (United Kingdom); Kirchhoff, Mary M. [U.S. Environmental Protection Agency and Trinity College, Washington, DC (United States); Williamson, Tracy C. [U.S. Environmental Protection Agency, Washington, DC (United States)

    2001-11-30

    are serving as a strong incentive to industry to adopt greener technologies. Developing green chemistry methodologies is a challenge that may be viewed through the framework of the Twelve Principles of Green Chemistry . These principles identify catalysis as one of the most important tools for implementing green chemistry. Catalysis offers numerous green chemistry benefits including lower energy requirements, catalytic versus stoichiometric amounts of materials, increased selectivity, and decreased use of processing and separation agents, and allows for the use of less toxic materials. Heterogeneous catalysis, in particular, addresses the goals of green chemistry by providing the ease of separation of product and catalyst, thereby eliminating the need for separation through distillation or extraction. In addition, environmentally benign catalysts such as clays and zeolites, may replace more hazardous catalysts currently in use. This paper highlights a variety of ways in which catalysis may be used as a pollution prevention tool in green chemistry reactions. The benefits to human health, environment, and the economic goals realized through the use of catalysis in manufacturing and processing are illustrated by focusing on the catalyst design and catalyst applications.

  10. Chemistry of Technetium

    International Nuclear Information System (INIS)

    Omori, Takashi

    2001-01-01

    Since the late 1970's the coordination chemistry of technetium has been developed remarkably. The background of the development is obviously related to the use of technetium radiopharmaceuticals for diagnosis in nuclear medicine. Much attention has also been denoted to the chemical behavior of environmental 99 Tc released from reprocessing plants. This review covers the several aspects of technetium chemistry, including production of radioisotopes, analytical chemistry and coordination chemistry. In the analytical chemistry, separation of technetium, emphasizing chromatography and solvent extraction, is described together with spectrophotometric determination of technetium. In the coordination chemistry of technetium, a characteristic feature of the chemistry of Tc(V) complexes is referred from the view point of the formation of a wide variety of highly stable complexes containing the Tc=O or Tc≡N bond. Kinetic studies of the preparation of Tc(III) complexes using hexakis (thiourea) technetium(III) ion as a starting material are summarized, together with the base hydrolysis reactions of Tc(III), Tc(IV) and Tc(V) complexes. (author)

  11. The laboratory technology of discrete molecular separation: the historical development of gel electrophoresis and the material epistemology of biomolecular science, 1945-1970.

    Science.gov (United States)

    Chiang, Howard Hsueh-hao

    2009-01-01

    Preparative and analytical methods developed by separation scientists have played an important role in the history of molecular biology. One such early method is gel electrophoresis, a technique that uses various types of gel as its supporting medium to separate charged molecules based on size and other properties. Historians of science, however, have only recently begun to pay closer attention to this material epistemological dimension of biomolecular science. This paper substantiates the historiographical thread that explores the relationship between modern laboratory practice and the production of scientific knowledge. It traces the historical development of gel electrophoresis from the mid-1940s to the mid-1960s, with careful attention to the interplay between technical developments and disciplinary shifts, especially the rise of molecular biology in this time-frame. Claiming that the early 1950s marked a decisive shift in the evolution of electrophoretic methods from moving boundary to zone electrophoresis, I reconstruct various trajectories in which scientists such as Oliver Smithies sought out the most desirable solid supporting medium for electrophoretic instrumentation. Biomolecular knowledge, I argue, emerged in part from this process of seeking the most appropriate supporting medium that allowed for discrete molecular separation and visualization. The early 1950s, therefore, marked not only an important turning point in the history of separation science, but also a transformative moment in the history of the life sciences as the growth of molecular biology depended in part on the epistemological access to the molecular realm available through these evolving technologies.

  12. Analytical Chemistry Division, annual report for the year 1973

    International Nuclear Information System (INIS)

    1974-01-01

    Research and development activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, Bombay (India), for the year 1973 are reported. From the point of view of nuclear science and technology, the following are worth mentioning: (1) radiochemical analysis of mercury in marine products (2) rapid anion exchange separation and spectrophotometric determination of gadolinium in uranium dioxide-gadolinium oxide blend and (3) neutron activation analysis for forensic purpose. (M.G.B.)

  13. Leveraging Technology for Chemical Sciences Education: An Early Assessment of WebCT Usage in First-Year Chemistry Courses

    Science.gov (United States)

    Charlesworth, Paul; Vician, Chelley

    2003-11-01

    In this article, early results of combining information technologies with the intent of improving the science-learning environment in terms of student motivation and learning are presented. The assessment focuses on student reactions to these instructional innovations. Results show that students appreciate the scheduling flexibility found in technology supported learning (TSL) and take advantage of this to maximize their scores on online quizzes and exams. Results also show that students perceive a more positive impact on their learning and confidence when using the TSL environment.

  14. Some progress on radiation chemistry of substances of biological interests and biological applications of radiation technology in China

    International Nuclear Information System (INIS)

    Wu Jilan; Fang Xingwang

    1995-01-01

    Studies in China on the detection method of irradiated food, mechanism of DNA damage induced by peroxidation, radiolysis of natural products and herbs are reviewed on the update open literature, and some progress on applications of radiation technology is summarized. (author)

  15. Perceptions of the Effects of Clicker Technology on Student Learning and Engagement: A Study of Freshmen Chemistry Students

    Science.gov (United States)

    Terrion, Jenepher Lennox; Aceti, Victoria

    2012-01-01

    While technology--in the form of laptops and cellphones--may be the cause of much of the distraction in university and college classrooms, some, including the personal or classroom response system (PRS/CRS) or clicker, also present pedagogical opportunities to enhance student engagement. The current study explored the reactions of students to…

  16. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  17. The utilization of uranium industry technology and relevant chemistry to leach uranium from mixed-waste solids

    International Nuclear Information System (INIS)

    Mattus, A.J.; Farr, L.L.

    1991-01-01

    Methods for the chemical extraction of uranium from a number of refractory uranium-containing minerals found in nature have been in place and employed by the uranium mining and milling industry for nearly half a century. These same methods, in conjunction with the principles of relevant uranium chemistry, have been employed at the Oak Ridge National Laboratory (ORNL) to chemically leach depleted uranium from mixed-waste sludge and soil. The removal of uranium from what is now classified as mixed waste may result in the reclassification of the waste as hazardous, which may then be delisted. The delisted waste might eventually be disposed of in commercial landfill sites. This paper generally discusses the application of chemical extractive methods to remove depleted uranium from a biodenitrification sludge and a storm sewer soil sediment from the Y-12 weapons plant in Oak Ridge. Some select data obtained from scoping leach tests on these materials are presented along with associated limitations and observations which might be useful to others performing such test work. 6 refs., 2 tabs

  18. The utilization of uranium industry technology and relevant chemistry to leach uranium from mixed-waste solids

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, A.J.; Farr, L.L.

    1991-01-01

    Methods for the chemical extraction of uranium from a number of refractory uranium-containing minerals found in nature have been in place and employed by the uranium mining and milling industry for nearly half a century. These same methods, in conjunction with the principles of relevant uranium chemistry, have been employed at the Oak Ridge National Laboratory (ORNL) to chemically leach depleted uranium from mixed-waste sludge and soil. The removal of uranium from what is now classified as mixed waste may result in the reclassification of the waste as hazardous, which may then be delisted. The delisted waste might eventually be disposed of in commercial landfill sites. This paper generally discusses the application of chemical extractive methods to remove depleted uranium from a biodenitrification sludge and a storm sewer soil sediment from the Y-12 weapons plant in Oak Ridge. Some select data obtained from scoping leach tests on these materials are presented along with associated limitations and observations which might be useful to others performing such test work. 6 refs., 2 tabs.

  19. Scientific Information Analysis of Chemistry Dissertations Using Thesaurus of Chemistry

    Directory of Open Access Journals (Sweden)

    Taghi Rajabi

    2017-09-01

    Full Text Available : Concept maps of chemistry can be obtained from thesaurus of chemistry. Analysis of information in the field of chemistry is done at graduate level, based on comparing and analyzing chemistry dissertations by using these maps. Therefore, the use of thesaurus for analyzing scientific information is recommended. Major advantage of using this method, is that it is possible to obtain a detailed map of all academic researches across all branches of science. The researches analysis results in chemical science can play a key role in developing strategic research policies, educational programming, linking universities to industries and postgraduate educational programming. This paper will first introduce the concept maps of chemistry. Then, emerging patterns from the concept maps of chemistry will be used to analyze the trend in the academic dissertations in chemistry, using the data collected and stored in our database at Iranian Research Institute for Information Science and Technology (IranDoc over the past 10 years (1998-2009.

  20. Research and development of basic technologies for next-generation industry. Ultimate evaluation report on research and development of highly efficient polymeric separation membrane material; Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Kokoritsu kobunshi bunrimaku zairyo saishu kenkyu kaihatsu hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-05-01

    For the enhancement of separation process efficiency and energy efficiency in the chemical industry, etc., basic technologies are developed involving high-performance separation membrane materials which are excellent in durability and usable in the field where separation by membranes has been impractical. The liquid mixtures subjected to separation are a neutral organic compound/water system, an acidic organic compound/water system, and a polar organic compound/water system; the gas mixtures subjected to separation are an oxygen/nitrogen system and a carbon monoxide/nitrogen system. After a 10-year/3-phase development endeavors, the initially intended goals are sufficiently achieved. Among those that have to be mentioned is the development of a nonaqueous separation membrane, a supported liquid membrane with amino acid optically active high performance separation capability, a high-precision evaluation unit for gas separation membrane characteristics, a selective permeation membrane with high-level oxygen and carbon monoxide carriers and reactivation technology, a high-performance ethanol separation membrane, a water/polar organic compound separation membrane, and a water/acetic acid separation membrane and stability providing technology. In particular, the water selective permeation membrane for a mixture of water and alcohol has already arrived at the stage of bench plant demonstration. (NEDO)

  1. Present address of cutting-edge chemistry in Korea

    International Nuclear Information System (INIS)

    2007-01-01

    This introduces the research center, company and chemistry department with excellent results. This book lists the name of those, which are organic molecule design laboratory by Sunmun university, intelligence Nano technology research center by Biotechnology, Ewha university, Nano chemistry laboratory by Department of chemistry, Yonsei university, science education research center by Haying university, solid chemistry laboratory by Department of Nano science, Ewha university, the center of innovation of chemistry industry with R and D by LG chemistry, Korea Research Institute of Chemical Technology, Department of Chemistry, Sogang university, Department of Chemistry, Busan university and Department of Chemistry, Dankook university.

  2. Data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (DAWAC). Report of a coordinated research project 2001-2005

    International Nuclear Information System (INIS)

    2006-06-01

    This publication provides information on the current status and development trends in monitoring, diagnostics and control of water chemistry and corrosion of core and primary circuit materials in water cooled power reactors. It summarizes the results of an IAEA Coordinated Research Project and focuses on the methods for development, qualification and implementation of water chemistry expert systems at nuclear power plants. These systems are needed to have full benefit from using on-line sensors in real time mode when sensor signals, and other chemistry and operational data, are collected and continuously analysed with data acquisition and evaluation software. Technical knowledge was acquired in water chemistry control techniques (grab sampling, on-line monitoring, data collecting and processing, etc), plant chemistry and corrosion diagnostics, plant monitoring (corrosion, chemistry, activity) and plant chemistry improvement (analytical models and practices). This publication covers contributions from leading experts in water chemistry/corrosion, representing organizations from 16 countries with the largest nuclear capacities

  3. THE ADVANCED CHEMISTRY BASINS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  4. Metals Separation by Liquid Extraction.

    Science.gov (United States)

    Malmary, G.; And Others

    1984-01-01

    As part of a project focusing on techniques in industrial chemistry, students carry out experiments on separating copper from cobalt in chloride-containing aqueous solution by liquid extraction with triisoctylamine solvent and search the literature on the separation process of these metals. These experiments and the literature research are…

  5. Organic chemistry

    International Nuclear Information System (INIS)

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  6. Rare earth separations by selective borate crystallization

    Science.gov (United States)

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-03-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation.

  7. Catalysis and sustainable (green) chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Centi, Gabriele; Perathoner, Siglinda [Dipartimento di Chimica Industriale ed Ingegneria dei Materiali, University of Messina, Salita Sperone 31, 98166 Messina (Italy)

    2003-01-15

    Catalysis is a key technology to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and a brief assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry is discussed and illustrated via an analysis of some selected and relevant examples. Emphasis is also given to the concept of catalytic technologies for scaling-down chemical processes, in order to develop sustainable production processes which reduce the impact on the environment to an acceptable level that allows self-depuration processes of the living environment.

  8. A new technology for separation and recovery of materials from waste printed circuit boards by dissolving bromine epoxy resins using ionic liquid.

    Science.gov (United States)

    Zhu, P; Chen, Y; Wang, L Y; Qian, G Y; Zhou, M; Zhou, J

    2012-11-15

    Recovery of valuable materials from waste printed circuit boards (WPCBs) is quite difficult because WPCBs is a heterogeneous mixture of polymer materials, glass fibers, and metals. In this study, WPCBs was treated using ionic liquid (1-ethyl-3-methylimizadolium tetrafluoroborate [EMIM+][BF4-]). Experimental results showed that the separation of the solders went to completion, and electronic components (ECs) were removed in WPCBs when [EMIM+][BF4-] solution containing WPCBs was heated to 240 °C. Meanwhile, metallographic observations verified that the WPCBs had an initial delamination. When the temperature increased to 260 °C, the separation of the WPCBs went to completion, and coppers and glass fibers were obtained. The used [EMIM+][BF4-] was treated by water to generate a solid-liquid suspension, which was separated completely to obtain solid residues by filtration. Thermal analyses combined with infrared ray spectra (IR) observed that the solid residues were bromine epoxy resins. NMR (nuclear magnetic resonance) showed that hydrogen bond played an important role for [EMIM+][BF4-] dissolving bromine epoxy resins. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent environmental pollution from WPCBs effectively. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. Managing tight-binding receptors for new separations technologies. Annual progress report, September 15, 1996 - June 10, 1997

    International Nuclear Information System (INIS)

    Busch, D.H.; Givens, R.S.

    1997-01-01

    'This program is fully staffed and all proposed investigations are proceeding as outlined in the Task Schedule of the original proposal. The program aims remain unchanged and excellent progress is reported below. The authors anticipate no substantial unexpended funds from the first year''s budget at the end of the first year of support. Any such remaining funds will certainly be less than 10% of the budget; less than 5% is expected. Three projects make up this program and each focuses on a single aspect of the major problem of overcoming the inherent slow reaction rates of tight-binding ligands. In a logical order, Project 1 addresses the rates of formation of metal complexes using tight-binding ligands; Project 2 addresses the rate of release of metal ions from complexes with tight-binding ligands; and Project 3 provides the possibility of a new technology that should be unimpeded by the inherent dilatory rates.'

  10. Managing tight-binding receptors for new separations technologies. Annual progress report, September 15, 1996--June 10, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Busch, D.H.; Givens, R.S.

    1997-01-01

    'This program is fully staffed and all proposed investigations are proceeding as outlined in the Task Schedule of the original proposal. The program aims remain unchanged and excellent progress is reported below. The authors anticipate no substantial unexpended funds from the first year''s budget at the end of the first year of support. Any such remaining funds will certainly be less than 10% of the budget; less than 5% is expected. Three projects make up this program and each focuses on a single aspect of the major problem of overcoming the inherent slow reaction rates of tight-binding ligands. In a logical order, Project 1 addresses the rates of formation of metal complexes using tight-binding ligands; Project 2 addresses the rate of release of metal ions from complexes with tight-binding ligands; and Project 3 provides the possibility of a new technology that should be unimpeded by the inherent dilatory rates.'

  11. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  12. FY1998 research report on the R and D on high- temperature CO{sub 2} separation, recovery and recycling technologies; 1998 nendo nisanka tanso koon bunri kaishu sairiyo gijutsu kekyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims to develop high-temperature (over 300 degrees C) CO{sub 2} separation, recovery and recycling technologies. For separation membranes, control technology of micro-pore structure using templates, and that of a permeation gas affinity by metal ion exchange and metallic element addition to separation membrane textures were developed. The result gave the guide to control, design and evaluation of permeation and separation properties. The prototype module was prepared, and improvement of joining technology and evaluation of material fatigue property were also carried out. As for optimization of the developed system and research on its marketability, study was mainly made on the ripple effect of inorganic membranes. The current state and trend of technologies were studied also for power plants. In the concept design of the module, further study was made on high-temperature sealing technology and inorganic membrane technology for H{sub 2} gas separation. Use of CO{sub 2} gas separation technology for steelmaking process was newly studied. The ripple effect was studied for future important fields. (NEDO)

  13. Status of the Development of In-Tank/At-Tank Separations Technologies for High-Level Waste Processing for the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, William R.; Machara, N.; Peterson, Reid A.; Bush, Sheryl R.

    2011-10-01

    Within the U.S. Department of Energy’s (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in “tank farms”). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are “first-of-a-kind” and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE’s specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford’s Waste Treatment and Immobilization Plant (WTP) or Savannah River’s Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration.

  14. Chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Schaedel, M.

    2012-01-01

    The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)

  15. CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Helen Kerr

    2004-04-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union (DG Res & DG Tren), Norway (Klimatek) and the U.S.A. (Department of Energy)). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion--technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel--where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with wet high concentrations of CO{sub 2} for storage. (4) Capture Technology, Pre-Combustion--in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening--analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV)--providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies

  16. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre

  17. STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, G.; Wilmarth, B.

    2011-09-19

    Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River

  18. Status Of The Development Of In-Tank/At-Tank Separations Technologies For High-Level Waste Processing For The U.S. Department Of Energy

    International Nuclear Information System (INIS)

    Aaron, G.; Wilmarth, B.

    2011-01-01

    Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R and D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the

  19. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  20. Chemistry of plutonium revealed

    International Nuclear Information System (INIS)

    Connick, R.E.

    1992-01-01

    In 1941 one goal of the Manhattan Project was to unravel the chemistry of the synthetic element plutonium as rapidly as possible. In this paper the work carried out at Berkeley from the spring of 1942 to the summer of 1945 is described briefly. The aqueous chemistry of plutonium is quite remarkable. Important insights were obtained from tracer experiments, but the full complexity was not revealed until macroscopic amounts (milligrams) became available. Because processes for separation from fission products were based on aqueous solutions, such solution chemistry was emphasized, particularly precipitation and oxidation-reduction behavior. The latter turned out to be unusually intricate when it was discovered that two more oxidation states existed in aqueous solution than had previously been suspected. Further, an equilibrium was rapidly established among the four aqueous oxidation states, while at the same time any three were not in equilibrium. These and other observations made while doing a crash study of a previously unknown element are reported

  1. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  2. Management strategies on the industrialization road of state-of-the-art technologies for e-waste recycling: the case study of electrostatic separation--a review.

    Science.gov (United States)

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2013-02-01

    Electronic waste (e-waste) management is pressing as global production has increased significantly in the past few years and is rising continuously at a fast rate. Many countries are facing hazardous e-waste mountains, most of which are disposed of by backyard recyclers, creating serious threats to public health and ecosystems. Industrialization of state-of-the-art recycling technologies is imperative to enhance the comprehensive utilization of resources and to protect the environment. This article aims to provide an overview of management strategies solving the crucial problems during the process of industrialization. A typical case study of electrostatic separation for recycling waste printed circuit boards was discussed in terms of parameters optimization, materials flow control, noise assessment, risk assessment, economic evaluation and social benefits analysis. The comprehensive view provided by the review could be helpful to the progress of the e-waste recycling industry.

  3. Studies of the chemistry of transuranium elements and technetium at the Institute of Physical Chemistry, Russian Academy of Sciences, supported by the US Department of Energy

    International Nuclear Information System (INIS)

    Peretrukhin, V.F.

    1995-04-01

    Studies at Hanford in the 1980s revealed the potential for actinides to form stable soluble complexes in alkaline media, simulating radioactive tank waste. Pu(IV) hydrous oxide and Pu(VI) solubility increased with hydroxide concentration, ionic strength, and aluminate/carbonate concentrations. Subsequent contacts between US and Russian researchers in 1993 led to a technical literature review of the chemistry of TRU and Tc in alkaline media; this review addresses oxidation states, solubility, speciation, redox reactions, electrochemistry, radiation chemistry, and separations in alkaline media. As an outgrowth, a program of fundamental and applied chemistry studies of TRU and Tc is being conducted at IPC/RAS with US DOE support: solubility, redox reagents, coprecipitation, and radiation chemistry. This overview provides information on the Hanford Site tank waste system, US DOE technological needs, and IPC/RAS developments

  4. Environmental control technology survey of selected US strip mining sites. Volume 2B. Alabama. Water quality impacts and overburden chemistry of Alabama study site

    Energy Technology Data Exchange (ETDEWEB)

    Henricks, J D; Bogner, J E; Olsen, R D; Schubert, J P; Sobek, A A; Johnson, D O

    1980-05-01

    As part of a program to examine the ability of existing control technologies to meet federal guidelines for the quality of aqueous effluents from coal mines, an intensive study of water, coal, and overburden chemistry was conducted at a surface coal mine in Alabama from May 1976 through July 1977. Sampling sites included the pit sump, a stream downgrade from the mine, the discharge from the water treatment facility, and a small stream outside the mine drainage. Water samples were collected every two weeks by Argonne subcontractors at the Alabama Geological Survey and analysed for the following parameters: specific conductance, pH, temperature, acidity, bicarbonate, carbonate, chloride, total dissolved solids, suspended solids, sulfate, and 20 metals. Analysis of the coal and overburden shows that no potential acid problem exists at this mine. Water quality is good in both streams sampled, and high levels of dissolved elements are found only in water collected from the pit sump. The mine effluent is in compliance with Office of Surface Mining water quality standards.

  5. A new technology for separation and recovery of materials from waste printed circuit boards by dissolving bromine epoxy resins using ionic liquid

    International Nuclear Information System (INIS)

    Zhu, P.; Chen, Y.; Wang, L.Y.; Qian, G.Y.; Zhou, M.; Zhou, J.

    2012-01-01

    Highlights: ► WPCBs were heated in [EMIM + ][BF 4 − ] for recovering solider at 240 °C. ► The bromine epoxy resins in WPCBs were all dissolved in [EMIM + ][BF 4 − ] at 260 °C. ► Used [EMIM + ][BF 4 − ] is treated by water to obtain regeneration. - Abstract: Recovery of valuable materials from waste printed circuit boards (WPCBs) is quite difficult because WPCBs is a heterogeneous mixture of polymer materials, glass fibers, and metals. In this study, WPCBs was treated using ionic liquid (1-ethyl-3-methylimizadolium tetrafluoroborate [EMIM + ][BF 4 − ]). Experimental results showed that the separation of the solders went to completion, and electronic components (ECs) were removed in WPCBs when [EMIM + ][BF 4 − ] solution containing WPCBs was heated to 240 °C. Meanwhile, metallographic observations verified that the WPCBs had an initial delamination. When the temperature increased to 260 °C, the separation of the WPCBs went to completion, and coppers and glass fibers were obtained. The used [EMIM + ][BF 4 − ] was treated by water to generate a solid–liquid suspension, which was separated completely to obtain solid residues by filtration. Thermal analyses combined with infrared ray spectra (IR) observed that the solid residues were bromine epoxy resins. NMR (nuclear magnetic resonance) showed that hydrogen bond played an important role for [EMIM + ][BF 4 − ] dissolving bromine epoxy resins. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent environmental pollution from WPCBs effectively.

  6. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  7. [Near-infrared spectroscopy technology for online monitoring of the column separation and purification process of active components of Centella asiatica L. Urban].

    Science.gov (United States)

    Liu, Hua; Ye, Xiao-Lan; Yang, Guang; Qi, Yun-Peng; Fan, Guo-Rong

    2013-01-01

    The present paper is to study and develop a method for online monitoring of the column separation and purification process of active components that are madecassoside and asiaticoside of Centella asiatica L. Urban using near-infrared (NIR) spectroscopy technology. After collecting 50%-ethanol eluant, we detected their NIR spectra and developed the high performance liquid chromatography (HPLC) assay method of active components. Then, partial least square (PLS) was used to develop linear correlation between their NIR spectra and contents. During modeling, correlation coefficient (R2) and root mean square errors of cross-validation (RMSECV) were regarded as the indexes to select optimal wavenumbers and preprocessing methods. The optimal wavenumbers of madecassoside and asiaticoside were in the range of 12 000.8-7 499.8 cm(-1) and 12 000.8-9 750.3 cm(-1), respectively; R2 were 96.44 and 96.07, respectively, and RMSECV were 0.084 80 and 0.000 99, respectively. The above developed model was used for online monitoring of the contents of madecassoside and asiaticoside during the column separation and purification process of Centella asiatica L. Urban. The predicted results were satisfactory. This method was proved to be fast, convenient and precise. It can be used in online monitoring and quality control of the manufacturing of madecassoside and asiaticoside.

  8. Future perspectives of radiation chemistry

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    2009-01-01

    Future perspectives of radiation chemistry are discussed by the analysis of the related information in detail as obtained from our recent surveys of publications and scientific meetings in radiation chemistry and its neighboring research fields, giving some examples, and are summarized as follows. (1) Traditionally important core-parts of radiation chemistry should be activated more. The corresponding research programs are listed in detail. (2) Research fields of physics, chemistry, biology, medicine, and technology in radiation research should interact more among them with each other. (3) Basic research of radiation chemistry should interact more with its applied research. (4) Interface research fields with radiation chemistry should be produced more with mutually common viewpoints and research interests between the two. Interfaces are not only applied research but also basic one.

  9. Chemistry of silybin

    Czech Academy of Sciences Publication Activity Database

    Biedermann, David; Vavříková, Eva; Cvak, L.; Křen, Vladimír

    2014-01-01

    Roč. 31, č. 9 (2014), s. 1138-1157 ISSN 0265-0568 R&D Projects: GA ČR(CZ) GAP301/11/0662; GA MŠk LH13097; GA MŠk(CZ) LD14096; GA MŠk(CZ) LD13042 Institutional support: RVO:61388971 Keywords : silybin * Silybum marianum * separation Subject RIV: CC - Organic Chemistry Impact factor: 10.107, year: 2014

  10. Technetium Chemistry in HLW

    International Nuclear Information System (INIS)

    Hess, Nancy J.; Felmy, Andrew R.; Rosso, Kevin M.; Xia Yuanxian

    2005-01-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry

  11. Global medicinal chemistry and GPCR conference: interview with Stevan Djuric.

    Science.gov (United States)

    Djuric, Stevan

    2018-04-01

    Stevan Djuric speaks to Benjamin Walden, Commissioning Editor. Stevan Djuric is head of the global Medicinal Chemistry Leadership Team at AbbVie and is also Vice President of the Discovery Chemistry and Technology organization within their Discovery organization and chemistry outsourcing activities. He spoke at the Global-Medicinal-Chemistry and GPCR summit on the imperative to develop chemistry related technology that can reduce cycle time, cost of goods and improve probability of success. To this end, he discussed his efforts in the chemistry technology area with a focus on integrated synthesis-purification bioassay, and flow photochemistry and high temperature chemistry platforms.

  12. Status of the development of in-tank/at-tank separations technologies for high-level waste processing for the U.S. Department Of Energy - 59109

    International Nuclear Information System (INIS)

    Wilmarth, William R.; Bush, Sheryl R.; Machara, Nicholas P.; Peterson, Reid A.

    2012-01-01

    Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At- Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R and D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the

  13. Smart Cities Will Need Chemistry

    Directory of Open Access Journals (Sweden)

    Alexandru WOINAROSCHY

    2016-06-01

    Full Text Available A smart city is a sustainable and efficient urban centre that provides a high quality of life to its inhabitants through optimal management of its resources. Chemical industry has a key role to play in the sustainable evolution of the smart cities. Additionally, chemistry is at the heart of all modern industries, including electronics, information technology, biotechnology and nano-technology. Chemistry can make the smart cities project more sustainable, more energy efficient and more cost effective. There are six broad critical elements of any smart city: water management systems; infrastructure; transportation; energy; waste management and raw materials consumption. In all these elements chemistry and chemical engineering are deeply involved.

  14. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  15. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  16. Isotope separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1978-11-01

    Separation of isotopes is treated in a general way, with special reference to the production of enriched uranium. Uses of separated isotopes are presented quickly. Then basic definitions and theoretical concepts are explained: isotopic effects, non statistical and statistical processes, reversible and irreversible processes, separation factor, enrichment, cascades, isotopic separative work, thermodynamics. Afterwards the main processes and productions are reviewed. Finally the economical and industrial aspects of uranium enrichment are resumed [fr

  17. Supramolecular Chemistry

    Indian Academy of Sciences (India)

    antigen interactions. working in different areas such as chemical science, biological science, physical science, material science and so on. On the whole, supramolecular chemistry focuses on two over- lapping areas, 'supramolecules' and ...

  18. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  19. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  20. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  1. Energy and technology review

    International Nuclear Information System (INIS)

    Quirk, W.J.; Bookless, W.A.

    1994-05-01

    The Lawrence Livermore National Laboratory, operated by the University of California for the United States Department of Energy, was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, in response to new national needs, we have added other major programs, including technology transfer, laser science (fusion, isotope separation, materials processing), biology and biotechnology, environmental research and remediation, arms control and nonproliferation, advanced defense technology, and applied energy technology. These programs, in turn, require research in basic scientific disciplines, including chemistry and materials science, computing science and technology, engineering, and physics. The Laboratory also carries out a variety of projects for other federal agencies. Energy and Technology Review is published monthly to report on unclassified work in all our programs. This issue reviews work performed in the areas of modified retoring for waste treatment and underground stripping to remove contamination

  2. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.4--nuclear material

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally.This is the fourth one, the content is about nuclear materials, isotope separation, nuclear chemistry and radiological chemistry.

  3. Organic separations with membranes

    International Nuclear Information System (INIS)

    Funk, E.W.

    1993-01-01

    This paper presents an overview of present and emerging applications of membrane technology for the separation and purification of organic materials. This technology is highly relevant for programs aimed at minimizing waste in processing and in the treatment of gaseous and liquid effluents. Application of membranes for organic separation is growing rapidly in the petrochemical industry to simplify processing and in the treatment of effluents, and it is expected that this technology will be useful in numerous other industries including the processing of nuclear waste materials

  4. Liaison activities with the Institute of Physical Chemistry, Russian Academy of Sciences: FY 1997

    International Nuclear Information System (INIS)

    Delegard, C.H.; Elovich, R.J.

    1997-09-01

    The Institute of Physical Chemistry of the Russian Academy of Sciences is conducting a program of fundamental and applied research into the chemistry of the actinides and technetium in alkaline media such as are present in the Hanford Site underground waste storage tanks. This work is being coordinated and the results disseminated through a technical liaison maintained at the Pacific Northwest National Laboratory. The technical liaison is performing laboratory studies on plutonium chemistry in alkaline media. The activities at the Institute of Physical Chemistry and through the liaison are pursued to improve understanding of the chemical behavior of key long-lived radioactive elements under current operating and proposed tank waste processing conditions. Both activities are supported by the Efficient Separations and Processing Crosscutting Program under the Office of Science and Technology of the U.S. Department of Energy

  5. A separator

    Energy Technology Data Exchange (ETDEWEB)

    Prokopyuk, S.G.; Dyachenko, A.Ye.; Mukhametov, M.N.; Prokopov, O.I.

    1982-01-01

    A separator is proposed which contains separating slanted plates and baffle plates installed at a distance to them at an acute angle to them. To increase the effectiveness of separating a gas and liquid stream and the throughput through reducing the secondary carry away of the liquid drops and to reduce the hydraulic resistance, as well, openings are made in the plates. The horizontal projections of each opening from the lower and upper surfaces of the plate do not overlap each other.

  6. Circumstellar chemistry

    International Nuclear Information System (INIS)

    Glassgold, A.E.

    1989-01-01

    Circumstellar chemistry has a special role in astrochemistry because the astrophysical conditions in the circumstellar envelopes of red giants are frequently well known and clear tests of chemical models are feasible. Recent advances in astronomical observations now offer opportunities to test relevant theories of molecule formation, especially in carbon-rich environments. Many new molecules have recently been discovered using radio and infrared techniques and high spatial resolution maps obtained with large telescopes and interferometers indicate where complex molecules are being formed in these envelopes. A large body of observational data can be understood in terms of the photochemical model, which embraces relevant elements of equilibrium chemistry, photodissociation, and ion-molecule chemistry of the photo-products. A critical review of the photochemical model will be presented together with new results on the synthesis of hydrocarbon molecules and silicon and sulfur compounds

  7. Environmental Assessment for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Finney County, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    n/a

    2003-03-11

    The U.S. Department of Energy (DOE) proposes to provide partial funding to the Sunflower Electric Power Corporation (Sunflower), to demonstrate the commercial application of Low-NO{sub x} Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve NO{sub x} emission reduction to the level of 0.15 to 0.22 pounds per million British thermal units (lb/MM Btu). The proposed project station is Sunflower's 360 MW coal-fired generation station, Holcomb Unit No. 1 (Holcomb Station). The station, fueled by coal from Wyoming's Powder River Basin, is located near Garden City, in Finney County, Kansas. The period of performance is expected to last approximately 2 years. The Holcomb Station, Sunflower LNB/SOFA integrated system would be modified in three distinct phases to demonstrate the synergistic effect of layering NO{sub x} control technologies. Once modified, the station would demonstrate that a unit equipped with an existing low-NO{sub x} burner system can be retrofitted with a new separated over-fire air (SOFA) system, coal flow measurement and control, and enhanced combustion monitoring to achieve about 45 percent reduction in nitrogen oxides (NO{sub x}) emissions. The proposed project would demonstrate a technology alternative to Selective Catalytic Reduction (SCR) systems. While SCR does generally achieve high reductions in NO{sub x} emissions (from about 0.8 lb/MM to 0.12 lb/MM Btu), it does so at higher capital and operating cost, requires the extensive use of critical construction labor, requires longer periods of unit outage for deployment, and generally requires longer periods of time to complete shakedown and full-scale operation. Cost of the proposed project technology would be on the order of 15-25 percent of that for SCR, with consequential benefits derived from reductions in construction manpower requirements and periods of power outages. This proposed technology demonstration would generally be applicable to boilers using opposed

  8. Electrochemical separation is an attractive strategy for development of radionuclide generators for medical applications.

    Science.gov (United States)

    Chakravarty, Rubel; Dash, Ashutosh; Pillai, M R A

    2012-07-01

    Electrochemical separation techniques are not widely used in radionuclide generator technology and only a few studies have been reported [1-4]. Nevertheless, this strategy is useful when other parent-daughter separation techniques are not effective or not possible. Such situations are frequent when low specific activity (LSA) parent radionuclides are used for instance with adsorption chromatographic separations, which can result in lower concentration of the daughter radionuclide in the eluent. In addition, radiation instability of the column matrix in many cases can affect the performance of the generator when long lived parent radionuclides are used. Intricate knowledge of the chemistry involved in the electrochemical separation is crucial to develop a reproducible technology that ensures that the pure daughter radionuclide can be obtained in a reasonable time of operation. Crucial parameters to be critically optimized include the applied potential, choice of electrolyte, selection of electrodes, temperature of electrolyte bath and the time of electrolysis in order to ensure that the daughter radionuclide can be reproducibly recovered in high yields and high purity. The successful electrochemical generator technologies which have been developed and are discussed in this paper include the (90)Sr/(90)Y, (188)W/(188)Re and (99)Mo/(99m)Tc generators. Electrochemical separation not only acts as a separation technique but also is an effective concentration methodology which yields high radioactive concentrations of the daughter products. The lower consumption of reagents and minimal generation of radioactive wastes using such electrochemical techniques are compatible with 'green chemistry' principles.

  9. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  10. Indoor Chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Carslaw, Nicola

    2018-01-01

    This review aims to encapsulate the importance, ubiquity, and complexity of indoor chemistry. We discuss the many sources of indoor air pollutants and summarize their chemical reactions in the air and on surfaces. We also summarize some of the known impacts of human occupants, who act as sources...... and sinks of indoor chemicals, and whose activities (e.g., cooking, cleaning, smoking) can lead to extremely high pollutant concentrations. As we begin to use increasingly sensitive and selective instrumentation indoors, we are learning more about chemistry in this relatively understudied environment....

  11. General chemistry

    International Nuclear Information System (INIS)

    Kwon, Yeong Sik; Lee, Dong Seop; Ryu, Haung Ryong; Jang, Cheol Hyeon; Choi, Bong Jong; Choi, Sang Won

    1993-07-01

    The book concentrates on the latest general chemistry, which is divided int twenty-three chapters. It deals with basic conception and stoichiometry, nature of gas, structure of atoms, quantum mechanics, symbol and structure of an electron of ion and molecule, chemical thermodynamics, nature of solid, change of state and liquid, properties of solution, chemical equilibrium, solution and acid-base, equilibrium of aqueous solution, electrochemistry, chemical reaction speed, molecule spectroscopy, hydrogen, oxygen and water, metallic atom; 1A, IIA, IIIA, carbon and atom IVA, nonmetal atom and an inert gas, transition metals, lanthanons, and actinoids, nuclear properties and radioactivity, biochemistry and environment chemistry.

  12. Separations and Actinide Science -- 2005 Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    2005-09-01

    The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be

  13. Towards Bildung-Oriented Chemistry Education

    Science.gov (United States)

    Sjöström, Jesper

    2013-07-01

    This paper concerns Bildung-oriented chemistry education, based on a reflective and critical discourse of chemistry. It is contrasted with the dominant type of chemistry education, based on the mainstream discourse of chemistry. Bildung-oriented chemistry education includes not only content knowledge in chemistry, but also knowledge about chemistry, both about the nature of chemistry and about its role in society. In 2004 Mahaffy suggested a tetrahedron model based on Johnstone's chemical triangle. The latter represents the formal aspects of chemistry teaching (macro, submicro, and symbolic) and the top of the tetrahedron represents a human element. In the present paper the following subdivision of the top is suggested (starting from the bottom): (1) applied chemistry, (2) socio-cultural context, and (3) critical-philosophic approach. The professional identity of the Bildung-oriented chemistry teacher differs from that of the chemist and is informed by research fields such as Philosophy of Chemistry, Science and Technology Studies, and Environmental Education. He/she takes a socio-critical approach to chemistry, emphasising both the benefits and risks of chemistry and its applications.

  14. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  15. Electron Driven Chemistry In Microreactors

    NARCIS (Netherlands)

    Agiral, A.

    2009-01-01

    This thesis describes the development of novel process windows by the combination of atmospheric pressure plasmas with microreaction technology. In the first chapter, recent literature on microreactor technology and non-equilibirum microplasma chemistry is discussed. The focus is on microplasmas in

  16. Nuclear Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  17. Nuclear technology programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  18. Enhancing prospective chemistry teachers cognitive structures in the topics of bonding and hybridization by internet-assisted chemistry applications

    OpenAIRE

    Özge Özyalçın Oskay, Sinem Dinçol

    2011-01-01

    The purpose of this study is to determine the effects of internet-assisted chemistry applications on prospective chemistry teachers’ cognitive structures in the topics of bonding and hybridization. The sample of the study consisted of 36 prospective chemistry teachers attending Hacettepe University, Faculty of Education, the Department of Chemistry Education in 2010-2011 academic year and taking Basic Chemistry I lesson. In the study, students were separated into experimental and control gr...

  19. Confectionary Chemistry.

    Science.gov (United States)

    Levine, Elise Hilf

    1996-01-01

    Presents activities and demonstrations that enable teachers to use various types of confections as tactile experiences to spark chemistry students' interest and generate enthusiasm for learning. Presents uses of candy in teaching about atomic structure, spontaneous nuclear decay, chemical formulas, fractoluminescence, the effect of a molecular…

  20. Supramolecular Chemistry

    Indian Academy of Sciences (India)

    by-product from the 'unattractive goo' of an experiment which had gone wrong. Pederson examined the product and the struc- ture of dibenzo-18-crown-6 was determined (Figure 2A). Inter- estingly, in presence. 1. N Jayaraman, 2016 Nobel. Prize in Chemistry: Confer- ring Molecular Machines as. Engines of Creativity ...

  1. Food carbohydrate chemistry

    National Research Council Canada - National Science Library

    Wrolstad, R. E

    2012-01-01

    .... Now in Food Carbohydrate Chemistry, author Wrolstad emphasizes the application of carbohydrate chemistry to understanding the chemistry, physical and functional properties of food carbohydrates...

  2. Handbook of heterocyclic chemistry

    National Research Council Canada - National Science Library

    Katritzky, Alan R

    2010-01-01

    ... Heterocyclic Chemistry I (1984) Comprehensive Heterocyclic Chemistry II (1996) Comprehensive Heterocyclic Chemistry III (2008) Comprehensive Organic Functional Group Transformations I (1995) Compreh...

  3. Promoting sustainability through green chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kirchhoff, Mary M. [American Chemical Society, 1155 Sixteenth Street, NW, Washington, DC 20036 (United States)

    2005-06-15

    Green chemistry is an important tool in achieving sustainability. The implementation of green chemistry, the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances, is essential if the expanding global population is to enjoy an increased standard of living without having a negative impact on the health of the planet. Cleaner technologies will allow the chemical enterprise to provide society with the goods and services on which it depends in an environmentally responsible manner. Green chemistry provides solutions to such global challenges as climate change, sustainable agriculture, energy, toxics in the environment, and the depletion of natural resources. A collaborative effort by industry, academia, and government is needed to promote the adoption of the green chemistry technologies necessary to achieve a sustainable society.

  4. Digital biology and chemistry.

    Science.gov (United States)

    Witters, Daan; Sun, Bing; Begolo, Stefano; Rodriguez-Manzano, Jesus; Robles, Whitney; Ismagilov, Rustem F

    2014-09-07

    This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and

  5. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  6. Chiral separations in capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Vespalec, Radim; Boček, Petr

    2000-01-01

    Roč. 100, č. 10 (2000), s. 3715-3753 ISSN 0009-2665 R&D Projects: GA AV ČR IAA4031703; GA ČR GA203/99/0044; GA MŠk VS96021; GA MŠk VS97014 Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 21.244, year: 1999

  7. Separability of local reactivity descriptors

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 5. Separability of local ... We derive analytic results of these descriptors calculated using finite difference approximation. In particular, we studied ... Tanwar1 Sourav Pal1. Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India ...

  8. On Study of New Progress and Application of Coordination Chemistry in Chemistry and Chemical Industry in Recent Years

    Science.gov (United States)

    Zhang, Yunshen

    2017-12-01

    Coordination chemistry refers to a branch of chemistry, and its research results are widely used in industry and people's daily life. Many edge disciplines emerge during the development, which propels the process of disciplines and technology. This paper briefly discusses new progress of coordination chemistry and its application in chemistry and chemical industry in recent years.

  9. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  10. Current status and future perspectives of electron interactions with molecules, clusters, surfaces, and interfaces [Workshop on Fundamental challenges in electron-driven chemistry; Workshop on Electron-driven processes: Scientific challenges and technological opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt H.; McCurdy, C. William; Orlando, Thomas M.; Rescigno, Thomas N.

    2000-09-01

    This report is based largely on presentations and discussions at two workshops and contributions from workshop participants. The workshop on Fundamental Challenges in Electron-Driven Chemistry was held in Berkeley, October 9-10, 1998, and addressed questions regarding theory, computation, and simulation. The workshop on Electron-Driven Processes: Scientific Challenges and Technological Opportunities was held at Stevens Institute of Technology, March 16-17, 2000, and focused largely on experiments. Electron-molecule and electron-atom collisions initiate and drive almost all the relevant chemical processes associated with radiation chemistry, environmental chemistry, stability of waste repositories, plasma-enhanced chemical vapor deposition, plasma processing of materials for microelectronic devices and other applications, and novel light sources for research purposes (e.g. excimer lamps in the extreme ultraviolet) and in everyday lighting applications. The life sciences are a rapidly advancing field where the important role of electron-driven processes is only now beginning to be recognized. Many of the applications of electron-initiated chemical processes require results in the near term. A large-scale, multidisciplinary and collaborative effort should be mounted to solve these problems in a timely way so that their solution will have the needed impact on the urgent questions of understanding the physico-chemical processes initiated and driven by electron interactions.

  11. Vision 2020: 2000 Separations Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Stephen [Center for Waster Reduction Technologies; Beaver, Earl [Practical Sustainability; Bryan, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Robinson, Sharon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watson, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2000-01-01

    This report documents the results of four workshops on the technology barriers, research needs, and priorities of the chemical, agricultural, petroleum, and pharmaceutical industries as they relate to separation technologies utilizing adsorbents, crystallization, distillation, extraction, membranes, separative reactors, ion exchange, bioseparations, and dilute solutions.

  12. Presidential Green Chemistry Challenge: 2004 Academic Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2004 award winners, Professors Charles A. Eckert and Charles L. Liotta, use supercritical CO2 as a solvent to combine reactions and separations, improve efficiency, and reduce waste.

  13. Separated Shoulder

    Science.gov (United States)

    ... ligaments that hold your collarbone (clavicle) to your shoulder blade. In a mild separated shoulder, the ligaments might ... the ligaments that hold your collarbone to your shoulder blade. Risk factors Participating in contact sports, such as ...

  14. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  15. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  16. Chemical Technology Division annual progress report for period ending March 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The status is reported for various research programs including waste management, transuranium-element processing, isotopic separations, preparation of /sup 233/UO/sub 2/, separations chemistry, biomedical technology, environmental studies, coal technology program, actinide oxides and nitrides and carbides, chemical engineering, controlled thermonuclear program, iodine studies, reactor safety, NRC programs, and diffusion of adsorbed species in porous media. Details of these programs are given in topical reports and journal articles. (JSR)

  17. Chemical Technology Division annual progress report for period ending March 31, 1976

    International Nuclear Information System (INIS)

    1976-09-01

    The status is reported for various research programs including waste management, transuranium-element processing, isotopic separations, preparation of 233 UO 2 , separations chemistry, biomedical technology, environmental studies, coal technology program, actinide oxides and nitrides and carbides, chemical engineering, controlled thermonuclear program, iodine studies, reactor safety, NRC programs, and diffusion of adsorbed species in porous media. Details of these programs are given in topical reports and journal articles

  18. Product separator

    International Nuclear Information System (INIS)

    Welsh, R.A.; Deurbrouck, A.W.

    1976-01-01

    A description is given of a secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted, nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present

  19. Application of polymeric foams for separation, storage and absorption of hydrogen

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Nemestóthy, N.; Bélafi-Bakó, K.

    2009-01-01

    Roč. 241, 1-3 (2009), s. 106-110 ISSN 0011-9164. [Membrane Science and Technology Conference of Visegrad Countries PERMEA 2007 /3./. Siofok, 02.09.2007-06.09.2007] R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas separation * hydrogen * polymeric foam Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.034, year: 2009

  20. Acidic deposition: State of science and technology. Report 14. Methods for projecting future changes in surface water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Thornton, K.W.; Marmorek, D.; Ryan, P.F.; Heltcher, K.; Robinson, D.

    1990-09-01

    The objectives of the report are to: critically evaluate methods for projecting future effects of acidic deposition on surface water acid-base chemistry; review and evaluate techniques and procedures for analyzing projection uncertainty; review procedures for estimating regional lake and stream population attributes; review the U.S. Environmental Protection Agency (EPA) Direct/Delayed Response Project (DDRP) methodology for projecting the effects of acidic deposition on future changes in surface water acid-base chemistry; and present the models, uncertainty estimators, population estimators, and proposed approach selected to project the effects of acidic deposition on future changes in surface water acid-base chemistry in the NAPAP 1990 Integrated Assessment and discuss the selection rationale

  1. Fine chemistry

    International Nuclear Information System (INIS)

    Laszlo, P.

    1988-01-01

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included [fr

  2. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  3. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.4--isotope separation sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 37 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fourth one, the content is about isotope separation sub-volume

  4. Chemistry in and from nuclear fusion

    International Nuclear Information System (INIS)

    Okamoto, M.

    1989-01-01

    The time, of the realization of nuclear fusion reactor is not clear even now. However, it is generally believed that the nuclear fusion is only one candidate of the big power source for humanbeing. We may be not able to, but our children or grandchildren would be able to see the nuclear fusion reactors. The nuclear fusion development may be the last and biggest technology program for us, so it will take so long leading time. Now, we are in the first stage of this leading time, I think. As being found in the history of every technology, chemistry is essential to develop the fusion nuclear technology. To assure the safety of the nuclear fusion system, chemistry should play the main role. There have been already not a few advanced chemistry initiated by the connected technologies with the nuclear fusion researches. The nuclear fusion needs chemistry and the nuclear fusion leads some of the new phases of chemistry. (author)

  5. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  6. Chemical Technology Division, Annual technical report, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  7. Chemical Technology Division annual technical report, 1994

    International Nuclear Information System (INIS)

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  8. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  9. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  10. Laser ablation in analytical chemistry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  11. Separable algebras

    CERN Document Server

    Ford, Timothy J

    2017-01-01

    This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

  12. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  13. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.

    1981-01-01

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential

  14. Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry.

    Science.gov (United States)

    Frey, John E.

    1990-01-01

    Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)

  15. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  16. USDA-ARS research update: Improved solid-liquid separation using polymers in flushing systems and new technology to recover the ammonia from covered lagoons

    Science.gov (United States)

    Part 1: Improved method for recovery of organic solids from diluted swine manure: Solid-liquid separation of the raw manure increases the capacity of decision making and opportunities for treatment. The high-rate separation up-front using flocculants allows recovery of most of the organic compounds,...

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT: BROME AGRI SALES, LTD., MAXIMIZER SEPARATOR, MODEL MAX 1016 - 03/01/WQPC-SWP

    Science.gov (United States)

    Verification testing of the Brome Agri Sales Ltd. Maximizer Separator, Model MAX 1016 (Maximizer) was conducted at the Lake Wheeler Road Field Laboratory Swine Educational Unit in Raleigh, North Carolina. The Maximizer is an inclined screen solids separator that can be used to s...

  18. Research and development project in fiscal 1989 for fundamental technologies for next generation industries. Achievement report on research and development on high-efficiency polymer separating film materials; 1989 nendo kokoritsu kobunshi bunrimaku zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    With an objective to improve efficiency and energy conservation in separation processes used in the chemical industry, researches have been performed on high-efficiency liquid separating film and air separating film materials. This paper summarizes the achievements in fiscal 1989. With regard to molecule recognizing films, researches were made on oxygen and carbon monoxide carriers, and on the elementary technology for fabricating the carrier films. In the research of metal complex fixing thin films, discussions were given on causes for deactivation in complex films. In the research of high-functional complex films, discussions were given on the structure of polymer ligand/carrier complex system solid films, and on oxygen adsorption and desorption properties. Solid film structures were selected that suit the oxygen separating films. In the research of alcohol condensation films, discussions were given on polydimethylsiloxane constituent that shows ethanol selectivity and permeability, and a multi-phase system polymeric film composed of one other constituent. In the research of water-acetic acid separating films, the basic performance of polyurea film was discussed, and evaluation was given by means of a durability test. In the research of particle separation method utilizing liquid films, a prototype continuous particle separating device was fabricated. (NEDO)

  19. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.

    1977-02-01

    Several types of corrosion damage are currently chronic problems in PWR recirculating steam generators. One probable cause of damage is a local high concentration of an aggressive chemical even though only trace levels are present in feedwater. A wide variety of trace chemicals can find their way into feedwater, depending on the sources of condenser cooling water and the specific feedwater treatment. In February 1975, Nuclear Water and Waste Technology Corporation (NWT), was contracted to characterize secondary system water chemistry at five operating PWRs. Plants were selected to allow effects of cooling water chemistry and operating history on steam generator corrosion to be evaluated. Calvert Cliffs 1, Prairie Island 1 and 2, Surry 2, and Turkey Point 4 were monitored during the program. Results to date in the following areas are summarized: (1) plant chemistry variations during normal operation, transients, and shutdowns; (2) effects of condenser leakage on steam generator chemistry; (3) corrosion product transport during all phases of operation; (4) analytical prediction of chemistry in local areas from bulk water chemistry measurements; and (5) correlation of corrosion damage to chemistry variation

  20. Interstellar chemistry

    Science.gov (United States)

    Klemperer, William

    2006-01-01

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature. PMID:16894148

  1. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  2. Research and development of basic technologies for next generation industries, 'high-efficiency polymeric separation membrane material'. Evaluation on second term final research and development (first report); Jisesdai sangyo kiban gijutsu kenkyu kaihatsu. Kokoritsu bunshi bunrimaku zairyo (dainiki kenkyu kaihatsu hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    This study is intended to establish a basic technology for innovative high-efficiency separation membrane materials that can be used in areas in which application of membrane separation has been impossible. The water/ethanol separation membrane (for water selective permeation) and water/acetic acid separation membrane (for water selective permeation) achieved separation coefficient and permeation velocity of the world's highest level. The water/ethanol separation membrane (for ethanol selective permeation), although its separation coefficient is lower than the world's highest performance, has high permeation velocity, providing the performance of the worldwide level as seen from the comprehensive viewpoint. The carbon monoxide/nitrogen separation membrane achieved separation coefficient and permeation velocity of the world's highest level. The oxygen/nitrogen separation membrane requires further enhancement in the permeation velocity and stability. Establishment has been performed on separation technologies for membrane separation of non-water soluble aqueous solutions, optical division by using chiral crown ether, high-performance liquid separation by means of plasma surface treatment, and particle separation. Basic analysis has been advanced also on evaluation technologies for gaseous body separation membrane and liquid separation membrane, of which future progress is expected. (NEDO)

  3. Bibliographies on radiation chemistry

    International Nuclear Information System (INIS)

    Hoffman, M.Z.; Ross, A.B.

    1986-01-01

    The one-electron oxidation and reduction of metal ions and complexes can yield species in unusual oxidation states, and ligand-radicals coordinated to the central metal. These often unstable species can be mechanistically important intermediates in thermal, photochemical, and electrochemical reactions involving metal-containing substances. Their generation via radiolysis provides an alternate means of characterizing them using kinetic and spectroscopic techniques. We hope these bibliographies on the radiation chemistry of metal ions and complexes, presented according to periodic groups, will prove useful to researchers in metallo-redox chemistry. These bibliographies contain only primary literature sources; reviews are not included. However, a list of general review articles on the radiation chemistry of metal ions and complexes is presented here in the first section which covers cobalt, rhodium and iridium, Group 9 in the new IUPAC notation. Additional parts of the bibliography are planned, covering other periodic groups. Part A of the bibliography was prepared by a search of the Radiation Chemistry Data Center Bibliographic Data Base (RCDCbib) through January 1986 for papers on rhodium, iridium and cobalt compounds, and radiolysis (both continuous and pulsed). Papers in which the use of metal compounds was incidental to the primary objective of the study were excluded. Excluded also were publications in unrefereed and obscure sources such as meeting proceedings, internal reports, dissertations, and patents. The majority of the studies in the resultant compilation deal with experiments performed on solutions, mainly aqueous, although a substantial fraction is devoted to solid-state esr measurements. The references are listed in separate sections for each of the metals, and are presented in approximate chronological order. (author)

  4. Russian separation program

    International Nuclear Information System (INIS)

    Rea, J.L.

    1993-01-01

    A small contract signed in FY92 with the Khlopin Radium Institute marked the beginning of the Russian Separations program. Under this contract the Khlopin Radium Institute performed laboratory and dynamic hot-cell testing using cobalt dicarbollide technology on simulated radioactive wastes similar to those found at DOE sites in the United States. The current scope of investigation has been extended to identify prospective technologies for application to other United States needs. The Khlopin Radium Institute project served as a model for three other pilot scale technology development projects. The premise of the pilot scale projects is to enable Russian scientists to demonstrate their technology in the context of DOE needs, using Russian technical expertise has proven to be a cost-effective means of screening Russian technologies

  5. Physical chemistry and the environment

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.; Kolb, C.E. Jr.; Shaw, R.W.; Choppin, G.R.; Wagner, A.F.

    1994-08-01

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ''Physical Chemistry and the Environment'' was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community

  6. Industrial ecology: Environmental chemistry and hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States). Dept. of Chemistry

    1999-01-01

    Industrial ecology may be a relatively new concept -- yet it`s already proven instrumental for solving a wide variety of problems involving pollution and hazardous waste, especially where available material resources have been limited. By treating industrial systems in a manner that parallels ecological systems in nature, industrial ecology provides a substantial addition to the technologies of environmental chemistry. Stanley E. Manahan, bestselling author of many environmental chemistry books for Lewis Publishers, now examines Industrial Ecology: Environmental Chemistry and Hazardous Waste. His study of this innovative technology uses an overall framework of industrial ecology to cover hazardous wastes from an environmental chemistry perspective. Chapters one to seven focus on how industrial ecology relates to environmental science and technology, with consideration of the anthrosphere as one of five major environmental spheres. Subsequent chapters deal specifically with hazardous substances and hazardous waste, as they relate to industrial ecology and environmental chemistry.

  7. Isotope separation

    International Nuclear Information System (INIS)

    Coleman, G.H.; Bett, R.; Cuninghame, J.G.; Sims, H.

    1982-01-01

    In the separation of short-lived isotopes for medical usage, a solution containing sup(195m)Hg is contacted with vicinal dithiol cellulose which adsorbs and retains the sup(195m)Hg. sup(195m)Au is eluted from the vicinal dithiol cellulose by using a suitable elutant. The sup(195m)Au arises from the radioactive decay of the sup(195m)Hg. The preferred elutant is a solution containing CN - ion. (author)

  8. Gas separating

    Science.gov (United States)

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  9. Line Up, Line Up: Using Technology to Align and Enhance Peer Learning and Assessment in a Student Centred Foundation Organic Chemistry Module

    Science.gov (United States)

    Ryan, Barry J.

    2013-01-01

    This paper describes how three technologies were utilised in combination to align student learning and assessment as part of a case study. Multiple choice questions (MCQs) were central to all these technologies. The peer learning technologies; Personal Response Devices (a.k.a. "Clickers") and "PeerWise"…

  10. Chemical Technology Division annual technical report 1989

    International Nuclear Information System (INIS)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing 99 Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL)

  11. Water chemistry of nuclear reactor systems 5

    International Nuclear Information System (INIS)

    The water chemistry aspects of nuclear reactors are of critical importance. This book is a state-of-the-art review of the best international experience. It embodies the expertise presented at the fifth triennial international conference on the water chemistry of nuclear reactor systems in October 1989. The book is published in two volumes. Topics covered range widely and are grouped into eight sections. These include PWR experience (13 papers), radiation control measures (8 papers), BWR operational experience (10 papers), radiolysis in BWR coolants (11 papers), decontamination (10 papers), secondary-side chemistry (8 papers), water chemistry purification (8 papers), and fission product chemistry (4 papers). There are also 45 poster papers on aspects of water chemistry. All the papers are indexed separately. Discussion on the papers is included in volume 2 but is not indexed. (author)

  12. Comparison of performance of classical clinical chemistry analysers with test-strip devices (Reflotron) and those based on film technology (Vitros) in external quality assessment (EQA) surveys.

    Science.gov (United States)

    Wood, William Graham

    2008-01-01

    This article reports on the performance of two "dry" chemistry devices, (Reflotron, Roche Diagnostics and Vitros, Johnson & Johnson) and compared them with classical "wet" chemistry analysers in four commercially produced quality assessment samples (Roche PNU and PPU and Seronorm Human and Human High Controls) sent repeatedly over a 12-month observation period. Eleven analytes (including five enzymes) were studied, eight of which had target values set by reference method procedures. The results showed that both devices gave comparative results for the same sample sent in different EQA-surveys. Statistically significant differences which occurred were due to the high precision of measurement with a minimal shift in the measured concentrations. They had no clinical relevance in interpretation of results. Comparisons between "dry" and "wet" chemistry results for the same analyte were almost always statistically significantly different and often large enough to influence the clinical interpretation of results. Examples here were glucose and uric acid measured with the Reflotron and compared with other Roche devices (Cobas, Hitachi). The Vitros showed deviant values for urea and creatinine, when compared with other measuring devices using liquid reagents. Differences seen were constant over time, but must be seen in context with the matrices of the samples sent. The results show the long term stability of both reagents and test kits, a necessary prerequisite for long-term controlling of precision and indirectly accuracy of patient measurements.

  13. What History Tells Us about the Distinct Nature of Chemistry.

    Science.gov (United States)

    Chang, Hasok

    2018-01-08

    Attention to the history of chemistry can help us recognise the characteristics of chemistry that have helped to maintain it as a separate scientific discipline with a unique identity. Three such features are highlighted in this paper. First, chemistry has maintained a distinct type of theoretical thinking, independent from that of physics even in the era of quantum chemistry. Second, chemical research has always been shaped by its ineliminable practical relevance and usefulness. Third, the lived experience of chemistry, spanning the laboratory, the classroom and everyday life, is distinctive in its multidimensional sensuousness. Furthermore, I argue that the combination of these three features makes chemistry an exemplary science.

  14. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  15. Chemistry Division: Annual progress report for period ending March 31, 1987

    International Nuclear Information System (INIS)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics

  16. Chemistry Division: Annual progress report for period ending March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  17. Cyclodextrin chemistry

    International Nuclear Information System (INIS)

    Khan, M.Z.; Chuaqui, C.A.

    1990-05-01

    The chemistry of cyclodextrins was studied. This study included synthesising some cyclodextrin derivatives, preparing selected inclusion complexes with cyclodextrin and investigating the effects of gamma irradiation on cyclodextrins and certain linear oligosaccharides. This report presents a brief review of the structure and properties of cyclodextrins, the synthesis of cyclodextrin derivatives, their complexation and applications. This is followed by a description of the synthesis of some cyclodextrin derivatives and the preparation of inclusion complexes of cyclodextrin with some organic compounds. Finally, the effects of gamma irradiation on cyclodextrins, some of their derivatives and certain structurally related carbohydrates are discussed. The gamma irradiation studies were carried out for two reasons: to study the effects of gamma irradiation on cyclodextrins and their derivatives; and to investigate selectivity during the gamma irradiation of cyclodextrin derivatives

  18. Theoretical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Work in theoretical chemistry was organized under the following topics: scattering theory and dynamics (elastic scattering of the rare gas hydrides, inelastic scattering in Li + H 2 , statistical theory for bimolecular collisions, model study of dissociative scattering, comparative study of elastic scattering computational methods), studies of atmospheric diatomic and triatomic species, structure and spectra of diatomic molecules, the evaluation of van der Waals forces, potential energy surfaces and structure and dynamics, calculation of molecular polarizabilities, and development of theoretical techniques and computing systems. Spectroscopic parameters are tabulated for NO 2 , N 2 O, H 2 O + , VH, and NH. Self-consistent-field wave functions were computed for He 2 in two-center and three-center bases. Rare gas hydride intermolecular potentials are shown. (9 figures, 14 tables) (U.S.)

  19. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  20. A Physicochemical Method for Separating Rare Earths: Addressing an Impending Shortfall

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2017-03-14

    There are currently zero operating suppliers of critical rare earth elements La–Lu, Sc, Y (REs), in the western hemisphere. REs are critical materials due to their importance in clean energy and defense applications, including permanent magnets in wind turbines and phosphors in energy efficient lighting. It is not economically viable to produce pure REs in the U.S. given current separations technology. REs production is dominated by suppliers in the People’s Republic of China (PRC) because of their capacity in liquid­liquid solvent extraction (SX) used to purify mixtures. Weak environmental regulations in the PRC also contribute to a competitive advantage. SX is a cost, time, solvent and waste intensive process but is highly optimized and scalable. The low efficiency of SX derives from the small thermodynamic differences in solvation enthalpy between the RE3+ cations. To foster stable domestic RE production there is a critical need for fundamentally new REs chemistry that contributes to disruptive technologies in RE separations. The overall goal of this project was to develop new thermodynamic bases, and apply them, for the solution separation of rare earth metals. We have developed the chemistry of rare earth metals: La–Lu, Sc and Y, with redox active ligands. Our hypothesis for the project was that electron­hole coupling in complexes of certain lanthanide metals with redox active ligands can be used to manifest chemical distinctiveness and affect separations. We also developed separations based on unique solution equilibria from tailored ligands.