WorldWideScience

Sample records for technology borehole mechanics

  1. Controlled drilling technology for HLW management. Directional drilling and mechanics/stress measurements in the borehole

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Okada, Tetsuji; Obuchi, Yasuyoshi; Sunaga, Takayuki; Hase, Kazunori

    2013-01-01

    Since 2000, Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Especially borehole pressure meter and bore hole stress measurement apparatus which can apply to the controlled drilling system was developed. The bore hole was drilled to the 1000 m long in order to intersect the Omagari fault located at Horonobe town in Hokkaido and its core recovery was 99.8% as of FY. 2011. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  2. Borehole tool outrigger arm displacement control mechanism

    International Nuclear Information System (INIS)

    Lee, A.G.

    1985-01-01

    As the outrigger arms of a borehole logging tool are flexed inwardly and outwardly according to the diameter of the borehole opening through which they pass, the corresponding axial displacements of the ends of the arms are controlled to determine the axial positions of the arms relative to the tool. Specifically, as the arm ends move, they are caused to rotate by a cam mechanism. The stiffness of the arms causes the arm ends to rotate in unison, and the exact positions of the arms on the tool are then controlled by the differential movements of the arm ends in the cams

  3. Preliminary report on geophysical and mechanical borehole measurements at Stripa

    International Nuclear Information System (INIS)

    Nelson, P.; Paulsson, B.; Rachiele, R.; Andersson, L.; Schrauf, T.; Hustrulid, W.; Duran, O.; Magnusson, K.A.

    1979-05-01

    A suite of seven logs--neutron, gamma--gamma, resistivity, gamma ray, sonic, caliper, and temperature--operated in a borehole of 380-m depth located eleven zones where the rock permeability is expected to be enhanced due to the presence of open fractures. The sonic waveform record proved especially useful in this regard. Borehole measurements were also acquired in a large number of boreholes from 5- to 14-m length located in experimental drifts some 340-m underground. Here several physical properties, including the porosity, density, sonic velocity, and borehole rugosity, are generally quite uniform, with the exception of a few local chloritic zones and a few minor fractures. However, in situ determinations of the mechanical modulus with the CSM cell indicate substantial variability, with some apparent fracture control. Uranium and thorium concentrations are quite high in the Stripa granite, with local fluctuations associated with mineralogical changes as revealed by the gamma-ray log. A differential resistance probe appears promising as a sensitive detector of fine fracturing. A cross-hole ultrasonic system indicates variations of a few percent in compressional- and shear-wave velocities, reflecting the presence of fractures and changes in fracture characteristics as the rock is heated in a simulated storage test. The geophysical and mechanical data are being compared with the results from core and television logging, with hydrological test data on static pressure and injection permeability, and with displacements induced by thermal loading

  4. The importance of tracer technology in combined borehole investigations

    International Nuclear Information System (INIS)

    Zojer, H.

    1998-01-01

    In an experimental field for a waste disposal site, investigations have been carried out applying methods from geology, hydrology hydrogeology, hydrochemistry, environmental isotope hydrology and tracer technology. All data obtained result to a dynamic drainage model of groundwater. The combined interpretation of borehole data guarantees a high-grade knowledge of groundwater exfiltrating to the surface drainage, which enables proper control measures of the disposal site and an effective groundwater protection. (author)

  5. A newly developed borehole flowmeter technology for heterogeneous aquifers

    International Nuclear Information System (INIS)

    Young, S.C.

    1990-01-01

    Extensive borehole flowmeter tests were performed at 37 fully-screened wells on a one-hectare test site to characterize the three-dimensional hydraulic conductivity field of an alluvial aquifer with a σ lnK of 4.7. During the site investigations, several major advancements with respect to borehole flowmeter technology were developed. The milestones included: (1) the development of a field-durable electromagnetic borehole flowmeter with a lower detection limit of 0.1 l/min; (2) the realization of the importance of the pumping rate with respect to the calculated value for the depth-averaged hydraulic conductivity; and (3) an evaluation of alternative methods for calculating the depth-averaged hydraulic conductivity. The predicted three-dimensional hydraulic conductivity field was compared to the results of 10 small-scale (3 to 7 m) tracer tests, information about the depositional history of the aquifer, and the results of three large-scale aquifer tests. The hydraulic conductivity data predict the major features of the tracer breakthrough curves, maps the outline of a former river meander in an aerial photograph, and leads to a geometric mean consistent with the average hydraulic conductivity of the aquifer. (Author) (14 refs., 15 figs., 2 tabs.)

  6. Borehole camera technology and its application in the Three Gorges Project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.; Sheng, Q.; Ge, X.R. [Chinese Academy of Sciences, Inst. of Rock and Soil Mechanics, Wuhan (China); Law, K.T. [Carleton Univ., Ottawa, ON (Canada)

    2002-07-01

    The China's Three Gorges Project is the world's largest hydropower project, consisting of a 1,983-meter long and 185-meter high dam and 26 power generating units. Borehole examination has been conducted at the site to ensure stability of the slope of the ship lock used for navigation. This paper describes 2 systems for borehole inspection and viewing. Both methods of camera borehole technology provide a unique way for geologic engineers to observe the condition inside a borehole. The Axial-View Borehole Television (AVBTV) provides real-time frontal view of the borehole ahead of the probe, making it possible to detect where holes are blocked and to see cracks and other distinctive features in the strata. The Digital Panoramic Borehole Camera System (DPBCS) can collect, measure, save, analyze, manage and displace geological information about a borehole. It can also be used to determine the orientation of discontinuity, generate unrolled image and virtual core graph and conduct statistical analysis. Both camera systems have been demonstrated successfully at the Three Gorges Project for qualitative description of the borehole as well as for quantitative analysis of cracks existing in the rock. It has been determined that most of the cracks dip in the same general direction as the northern slope of the permanent ship lock of the Three Gorges Project. 12 refs., 1 tab., 9 figs.

  7. An experimental study of the mechanism of failure of rocks under borehole jack loading

    Science.gov (United States)

    Van, T. K.; Goodman, R. E.

    1971-01-01

    Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.

  8. Development of controlled drilling technology and measurement method in the borehole (Phase 1)

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Suzuki, Koichi; Miyakawa, Kimio; Okada, Tetsuji; Masuhara, Yasunobu; Igeta, Noriyuki; Kobayakawa, Hiroaki; Yamamoto, Shinya

    2006-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. The key technologies of the project were defined as follows; (1) Drilling technology to bent the hole as intend. (2) Locality detection technology of the drill bit (MWD). (3) Core sampling technology to obtain the undisturbed rock core. (4) Logging and measurement technology during drilling. The drilling system and measuring system were integrated and systemized after each apparatus was manufactured and its performance was checked. The performance of the drilling system was checked to drill the artificial rock mass to the depth of 80 m before conducting in-situ drilling. The performance of the drilling and measurement systems were investigated to drill the mudstone of the Neogene Tertiary to the length of 547 m and to conduct the downhole measurement and logging in its borehole at the Horonobe site. Considering these performance testing, the flow diagram of the controlled drilling and measurement system was established. (author)

  9. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    Science.gov (United States)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  10. Research on Deep Joints and Lode Extension Based on Digital Borehole Camera Technology

    Directory of Open Access Journals (Sweden)

    Han Zengqiang

    2015-09-01

    Full Text Available Structure characteristics of rock and orebody in deep borehole are obtained by borehole camera technology. By investigating on the joints and fissures in Shapinggou molybdenum mine, the dominant orientation of joint fissure in surrounding rock and orebody were statistically analyzed. Applying the theory of metallogeny and geostatistics, the relationship between joint fissure and lode’s extension direction is explored. The results indicate that joints in the orebody of ZK61borehole have only one dominant orientation SE126° ∠68°, however, the dominant orientations of joints in surrounding rock were SE118° ∠73°, SW225° ∠70° and SE122° ∠65°, NE79° ∠63°. Then a preliminary conclusion showed that the lode’s extension direction is specific and it is influenced by joints of surrounding rock. Results of other boreholes are generally agree well with the ZK61, suggesting the analysis reliably reflects the lode’s extension properties and the conclusion presents important references for deep ore prospecting.

  11. Bulk and mechanical properties of the Paintbrush tuff recovered from borehole USW NRG-6: Data report

    International Nuclear Information System (INIS)

    Martin, R.J.; Boyd, P.J.; Noel, J.S.; Price, R.H.

    1994-11-01

    Experimental results are presented for bulk and mechanical properties measurements on specimens of the Paintbrush tuff recovered from borehole USW NRG-6 at Yucca Mountain, Nevada. Measurements have been performed on four thermal/mechanical units, TCw, PTn, TSw1 and TSw2. On each specimen the following bulk properties have been reported: dry bulk density, saturated bulk density, average grain density, and porosity. Unconfined compression to failure, confined compression to failure, and indirect tensile strength tests were performed on selected specimens recovered from the borehole. In addition, compressional and shear wave velocities were measured on specimens designated for unconfined compression and confined compression experiments. Measurements were conducted at room temperature on nominally water saturated specimens; however, some specimens of PTn were tested in a room dry condition. The nominal strain rate for the fracture experiments was 10 -5 s -1

  12. Development of controlled drilling technology and measurement method in the borehole. Phase 2. Upgrading of drilling and measurement system and its application to the fault

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Ohtsu, Masashi

    2009-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Since 2000, CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Based on the results of phase 1(2000-2004), CRIEPI has been developing the drilling and logging/measurement technologies for fault zone during phase 2 (2005-2007). The drilling technology such as drilling for fault zone, horizontal drilling, long hole drilling, coring and locality detection was developed and these applicability was confirmed while drilling. The permeability/water-sampling/imaging tool was revised to apply wider borehole and longer measuring section. The WL-LWD was improved to be tougher in the hole. The borehole pressure meter and stress measurement tools were unified. Each tools necessary for the monitoring system is manufactured. The applicability of these tools and systems were verified in the borehole. After conducting surveys for the Omagari fault distributing at the Kami-horonobe area, the drilling site and borehole trace was decided in 2005. Considering the planned trace, the bore hole was drilled to the 683.5m long and its core recovery was 99.8%. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  13. Hydro-mechanical analysis of results acquired by video-observations and deformation measurements performed in boreholes in the Opalinus clay of the URL Mont Terri supported by laboratory investigations on the hydro-mechanical behaviour of Opalinus clay

    International Nuclear Information System (INIS)

    Seeska, R.; Rutenberg, M.; Lux, K.H.

    2012-01-01

    Document available in extended abstract form only. Seven different boreholes in the Opalinus Clay formation of the Mont Terri Underground Rock Laboratory (URL Mont Terri) have been investigated by the Clausthal University of Technology (TUC) in cooperation with different partners with time, namely the National Cooperative for the Disposal of Radioactive Waste (NAGRA), the Federal Institute for Geosciences and Natural Resources (BGR) as well as the Swiss Federal Institute of Technology Zurich (ETHZ) and the Swiss Federal Nuclear Safety Inspectorate (ENSI). Aim of the investigations was to gain a large amount of high-quality and significant information on rock mass behaviour that can be used to increase knowledge about and improve understanding of time-dependent load-bearing and deformation behaviour of Opalinus Clay including pore water influences. For this purpose, an axial borehole camera and a three-arm calliper have been used. High-quality information on the load-bearing and deformation behaviour of the investigated boreholes was generated by the measurement and monitoring techniques used in the research project. The recordings reveal great as well as occasionally unexpected differences regarding the load-bearing behaviour as well as differences regarding the hydro-mechanical behaviour of the observed boreholes. While most of the boreholes have proved to be rather stable with only partial failure of the borehole wall in some areas, a complete borehole wall collapse occurred in two of the observed boreholes. The differences regarding the borehole wall stability and also the differences between the appearances of the occurring failure mechanisms are very likely due to the different orientation, the different locations within the URL Mont Terri, and the different facies the boreholes are located in. Figure 1 shows the time-dependent development of a borehole wall instability in one of the observed boreholes in a borehole section where an increase of moisture could

  14. Emplacement technology for the direct disposal of spent fuel into deep vertical boreholes

    International Nuclear Information System (INIS)

    Bollingerfehr, W.; Filbert, W.; Wehrmann, J.

    2008-01-01

    In the early sixties it was decided to investigate salt formations on its suitability to host heat generating radioactive waste in Germany. In the reference repository concept consequently the emplacement of vitrified waste canisters in deep vertical boreholes inside a salt mine was considered whereas spent fuel should be disposed of in self shielding casks (type POLLUX) in horizontal drifts. The POLLUX casks, 65 t heavy carbon steel casks, will be laid down on the floor of a horizontal drift in one of the disposal zones to be constructed in the salt dome at the 870 m level. The space between casks and drift walls will be backfilled with crushed salt. The transport, the handling und the emplacement of POLLUX casks were subject of successfully performed demonstration and in situ tests in the nineties and resulted in an adjustment of the atomic law. The borehole disposal concept comprises the emplacement of unshielded canisters with vitrified HLW in boreholes with a diameter of 60 cm and a depth of up to 300 m. In order to facilitate the fast encapsulation of the waste canister by the host rock (rock salt), no lining of the boreholes is planned. With regard to harmonize and optimize the emplacement technology for both categories of packages (vitrified waste and spent fuel) alternatives were developed. In this context the borehole emplacement technique for consolidated spent fuel as already foreseen for high-level reprocessing waste was reconsidered. This review resulted in the design of a new disposal package, a fuel rod canister (type 'BSK 3'), and an appropriate modified transport and emplacement technology. This concept (called BSK 3-concept) provides the following optimization possibilities: (i) A new steel canister of the same diameter (43 cm) as the standardized HLW canisters applied for high-level waste and compacted technological waste from reprocessing abroad can be filled with fuel rods of 3 PWR or 9 BWR fuel assemblies. (II) The standardized canister

  15. Seismic Observation in Deep Boreholes and Its Applications - Workshop Proceedings, Niigata Institute of Technology, Kashiwazaki, Japan

    International Nuclear Information System (INIS)

    2014-01-01

    4 was only 70% that of Unit 2 at the same site. Given these circumstances, JNES initiated the 'Observation and Evaluation Study of Ground Motion Amplification' project by drilling a three-kilometer deep borehole on the premises of the Niigata Institute of Technology, which is located near the Kashiwazaki site, and proposed a series of workshops related to deep underground seismic observation and ground motion evaluation to the Seismic Subgroup of the OECD/NEA/IAGE Group at the April 2010 meeting. The first was held from 24-26 November 2010 as part of the first Kashiwazaki International Symposium on seismic safety, and the second was held on 7 to 9 November 2012. In the second WS, 36 papers were presented by the participants from eight countries including two international organizations, and discussed in three sessions (i.e. observation technology, evaluation of the observed seismic motion and the multipurpose use). Regarding the observation technology session, useful lessons-learned in probe development, setup and maintenance under the challenging conditions posed by great depth were described. This information from SAFORD and Kashiwazaki was thought to be particularly valuable for the planning and operation of similar facilities. As for the seismic observations from a deep borehole, it was identified that such observations are very effective for investigation of the earthquake generating process and are important for detailed understanding of the three-dimensional underground structure. There is not yet much experience with observation and application of a deep borehole, and therefore future developments and achievements are expected. The importance of simple ground motion evaluation technology combined with geophysical exploration was also acknowledged. Examples of multipurpose utilization and the advantage of seismic observations in deep boreholes were discussed. Multipurpose use was discussed not only for seismic design and evaluation of nuclear installations

  16. Borehole logging

    International Nuclear Information System (INIS)

    Olsen, H.

    1995-01-01

    Numerous ground water investigations have been accomplished by means of borehole logging. Borehole logging can be applied to establish new water recovery wells, to control the existing water producing wells and source areas and to estimate ground water quality. (EG)

  17. Disposal Of Spent Fuel In Salt Using Borehole Technology: BSK 3 Concept

    Energy Technology Data Exchange (ETDEWEB)

    Fopp, Stefan; Graf, Reinhold [GNS Gesellschaft fuer Nuklear-Service mbH, Hollestrasse 7A, D-45127 Essen (Germany); Filbert, Wolfgang [DBE TECHNOLOGY GmbH, Eschenstrasse 55, D-31224 Peine (Germany)

    2008-07-01

    The BSK 3 concept was developed for the direct disposal of spent fuel in rock salt. It is based on the conditioning of fuel assemblies and inserting fuel rods into a steel canister which can be placed in vertical boreholes. The BSK 3 canister is suitable for spent fuel rods from 3 PWR or 9 BWR fuel assemblies. The emplacement system developed for the handling and disposal of BSK 3 canisters comprises a transfer cask which provides appropriate shielding during the transport and emplacement process, a transport cart, and an emplacement device. Using the emplacement device the transfer cask will be positioned onto the top of the borehole lock. The presentation describes the development and the design of the transfer cask and the borehole lock. A technically feasible and safe design for the transfer cask and the borehole lock was found regarding the existing safety requirements for radiation shielding, heat dissipation and handling procedure. (authors)

  18. Evaluation of technology for large- and small-diameter boreholes to characterize crystalline rock

    International Nuclear Information System (INIS)

    1985-05-01

    Testing methods that have been used in large- and small-diameter boreholes (152 and 76 mm [6 and 3 in.]) were evaluated on their ability to characterize crystalline rocks. The methods evaluated included in-hole geomechanical, geophysical, and geohydrologic techniques and associated laboratory core tests; specific emphasis was on techniques that might be used in a field characterization program involving a small number of deep (up to 1500 m [5000 ft]) boreholes. Each technique was evaluated with regard to its effectiveness and limitations, applicability to the acquisition of data for anticipated rock conditions, and adequacy for assessing the required rock/hydrologic characteristics. Many pertinent case histories that helped to assess applicability were reviewed. A principal objective of the evaluations was to assess whether the techniques would be equally useful in both large- and small-diameter boreholes. Of the techniques evaluated, most are suitable for use in both large- and small-diameter boreholes. Borehole logging, hydrologic testing, and core-testing techniques provide suitable results in both borehole diameters. Geomechanical testing techniques provide suitable data in smaller diameter boreholes and have been designed for application at primarily shallow depths. The results of this study will be of use to the Office of Crystalline Repository Development (OCRD) in determining to what degree it is appropriate to use drilling, sampling, and testing techniques in small-diameter boreholes as opposed to large-diameter methods, while at the same time collecting adequate data for characterizing crystalline rock environments for potential use as a high-level radioactive waste repository. Additionally, further developmental work and specific testing techniques are recommended

  19. Cement technology for borehole plugging: an interim report on permeability measurements of cementitious solids

    International Nuclear Information System (INIS)

    McDaniel, E.W.

    1980-01-01

    The permeability of borehole plug solids and plug-wall rock junctions is a property of major interest in the Borehole Plugging Program. This report describes the equipment and techniques used to determine the permeabilities of possible borehole plugging materials and presents results from tests on various cementitious solids and plug-rock combinations. The cementitious solids were made from mixtures of cement, sand, salt, fly ash, and water. Three different types of cement and four different fly ashes were used. Permeabilities ranged from a high value of 3 x 10 -4 darcy for a neat cement paste to a low of 5 x 10 -8 darcy for a saltcrete containing 30 wt % sodium chloride. Miniature boreholes were made in the following four different types of rock: Westerly granite, Dresser basalt, Sioux quartzite, and St. Cloud granodiorite. These small holes were plugged with a mix consisting of 23 wt % Type I Portland cement, 20 wt % bituminous fy ash, 43.2 wt % sand, and 13.8 wt % water. After curing for 91 days at ambient temperature, the permeability of the plug-wall rock junctions ranged from 3 x 10 -5 to -8 darcy. Three of the four miniature plugged boreholes exhibited permeabilities of < 10 microdarcys

  20. Application of proving-ring technology to measure thermally induced displacements in large boreholes in rock

    International Nuclear Information System (INIS)

    Patrick, W.C.; Reactor, N.L.; Butkovich, T.R.

    1984-03-01

    A strain-gauged proving-ring transducer was designed and deployed to measure small diametral displacements in 0.61-m diameter boreholes in rock. The rock surrounding the boreholes was previously heated by storage of spent nuclear fuel assemblies and measurements during post-retrieval cooling of the rock were made. To accomplish this, a transducer was designed to measure displacements in the range of 10 to 100 μm, to function in a time-varying temperature regime of 30 0 to 60 0 C at a relative humidity of 100%, to be of low stiffness, and to be easily and quickly installed. 7 references, 6 figures, 1 table

  1. Safety Characterization of the Technological Development Plant at Hontomín. Risk Structures: 2. Wells and Boreholes

    International Nuclear Information System (INIS)

    Recreo, F.; Eguilior, S.; Hurtado, A.

    2015-01-01

    Safe storage of CO2 required to guarantee the formation’s caprock seal capacity for CO2 storage during the time in which the CO2 will remain in supercritical state before moving to dissolved phase CO2aq:. Structures such as wells and boreholes affecting storage and caprock formations may play a relevant role in the behavior of the CO2 plume and act as preferential leakage paths violating the integrity of the seal rock. Although the geological history of the storage complex in cases such as depleted oil or gas fields, preferably, allow to assume a priori that the geological medium can reasonably ensure their confining role during the required time, i.e., a «long term» time period for the effective contribution of CCS to the mitigation of climate change (> 10.000 years), it is not possible to make an equivalent prognosis with regard to the behaviour of deep wells and boreholes without having a detailed knowledge of the aging process and of the mechanical and chemical aggression of its components. In any case, always will remain a high level of uncertainty to be integrated in the analysis to assess the security of the storage complex. Therefore, the integrity of the components of deep wells and boreholes that may affect both caprock seal and storage formations, both mechanically and chemically, plays an important role in the chain of elements that contribute to CO2 geological storage long-term safety, hence the importance of its study and integration. An approach to degradation processes of the components of injection and abandoned wells that can act as preferential leakage paths of CO2, consists of the decomposition of the storage system in a components and processes integrated network to estimate their interaction conditional probabilities. This report analyzes these processes, the security and operational requirements of deep wells and boreholes as well as its componentes failure scenarios

  2. Multi-component observation in deep boreholes, and its applications to earthquake prediction research and rock mechanics

    International Nuclear Information System (INIS)

    Ishii, Hiroshi

    2014-01-01

    The Tono Research Institute of Earthquake Science (TRIES) has developed a multicomponent instrument that can be operated in deep boreholes (e.g., those one km in depth). It is equipped with stress meters, strain meters, tilt meters, seismometers, magnetometers, and thermometers; in addition, these sensors can be arbitrarily combined. The stress meters, which were developed recently, can observe stress and strain; in the future, data obtained from these sensors will offer new information on seismology and rock mechanics. The size of typical probe is 12 cm diameter 7.8 m total length and 290 kg total weight. It consists of many meters in tandem connection. (authors)

  3. Borehole Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature derived from boreholes drilled into the Earth crust. Parameter keywords describe what was measured in this data set. Additional summary...

  4. Deep boreholes; Tiefe Bohrloecher

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Guido [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH Koeln (Germany); Charlier, Frank [NSE international nuclear safety engineering gmbh, Aachen (Germany); Geckeis, Horst [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Nukleare Entsorgung; and others

    2016-02-15

    The report on deep boreholes covers the following subject areas: methods for safe enclosure of radioactive wastes, requirements concerning the geological conditions of possible boreholes, reversibility of decisions and retrievability, status of drilling technology. The introduction covers national and international activities. Further chapters deal with the following issues: basic concept of the storage in deep bore holes, status of the drilling technology, safe enclosure, geomechanics and stability, reversibility of decisions, risk scenarios, compliancy with safe4ty requirements and site selection criteria, research and development demand.

  5. Borehole sealing method and apparatus

    International Nuclear Information System (INIS)

    Hartley, J.N.; Jansen, G. Jr.

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole. 5 claims, 1 figure

  6. Mechanics for materials and technologies

    CERN Document Server

    Goldstein, Robert; Murashkin, Evgenii

    2017-01-01

    This book shows impressively how complex mathematical modeling of materials can be applied to technological problems. Top-class researchers present the theoretical approaches in modern mechanics and apply them to real-world problems in solid mechanics, creep, plasticity, fracture, impact, and friction. They show how they can be applied to technological challenges in various fields like aerospace technology, biological sciences and modern engineering materials.

  7. Borehole sealing literature review of performance requirements and materials

    International Nuclear Information System (INIS)

    Piccinin, D.; Hooton, R.D.

    1985-02-01

    To ensure the safe disposal of nuclear wastes, all potential pathways for radionuclide release to the biosphere must be effectively sealed. This report presents a summary of the literature up to August 1982 and outlines the placement, mechanical property and durability-stability requirements for borehole sealing. An outline of the materials that have been considered for possible use in borehole sealing is also included. Cement grouts are recommended for further study since it is indicated in the literature that cement grouts offer the best opportunity of effectively sealing boreholes employing present technology. However, new and less well known materials should also be researched to ensure that the best possible borehole plugging system is developed. 78 refs

  8. 钻孔割缝网络化增透机制及其在底板穿层钻孔瓦斯抽采中的应用%Permeability-increasing mechanism of network slotting boreholes and application in crossing borehole gas drainage

    Institute of Scientific and Technical Information of China (English)

    林柏泉; 张其智; 沈春明; 杨威

    2012-01-01

    For the pressure relief inadequacy problem of bottom road boreholes, based on the method of combination of theoretical analysis and field tests, the permeability-increasing mechanism of network slotting boreholes was studied, and the permeability-increasing technology of network slotted boreholes crossing from floor was proposed. Filed test show that the technology can improve the extraction effect significantly,the permeability can be increased by 122 times in average, while the extraction flow increases 3.5 times and the gas concentration increases 2.3 times, and the stand- ard time of gas pre-pumping decreases more than 50%.%针对底板穿层瓦斯抽采钻孔卸压不充分的主要问题,采用理论分析与现场试验相结合的方法,研究了钻孔割缝网络化卸压增透机制,提出了底板穿层钻孔割缝网络化增透技术,并且在国内相关矿井进行了现场应用。应用结果表明:采用该技术措施后,平均透气性系数提高了122倍,瓦斯抽采流量提高了3.5倍,瓦斯抽采浓度提高了2.3倍,预抽达标时间缩短50%以上。

  9. Deep Borehole Field Test Laboratory and Borehole Testing Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrick, Courtney G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gardner, W. Payton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jang, Je-Hun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Daley, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spane, Frank A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-19

    Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).

  10. Cement technology for plugging boreholes in radioactive-waste-repository sites. Progress report, October 1, 1978-September 30, 1979

    International Nuclear Information System (INIS)

    Moore, J.G.; Morgan, M.T.; McDaniel, E.W.; Greene, H.B.; West, G.A.

    1980-08-01

    Laboratory evaluations were made of several borehole plug formulations proposed for the Bell Canyon field test. Measurements included compressive strength, permeability, density, and thermal conductivity. A few preliminary tests with saltcrete formulations showed no significant difference in physical properties of the solid as a function of fly ash or cement composition. The saltcrete proposed for the field test gave acceptable pushout strength and permeability values using miniature borehole plugs in anhydrite. Similar laboratory tests made with a freshwater formulation indicated high permeability. Electron micrographs showed dissolution cavities or cracks at the plug-wall interface. These studies showed that the reactions occurring between the borehole plug and the adjacent rock wall are an important factor in obtaining a good seal and that laboratory tests are useful to indicate the possibility of success or failure of field tests

  11. Borehole disposal design concept

    International Nuclear Information System (INIS)

    RANDRIAMAROLAHY, J.N.

    2007-01-01

    In Madagascar, the sealed radioactive sources are used in several socioeconomic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become radioactive waste and can be still dangerous because they can cause harmful effects to the public and the environment. This work entitled 'Borehole disposal design concept' consists in putting in place a site of sure storage of the radioactive waste, in particular, sealed radioactive sources. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeologic, geochemical, meteorological and demographic conditions. This type of storage is favorable for the developing countries because it is technologically simple and economic. The cost of construction depends on the volume of waste to store and the depth of the Borehole. The Borehole disposal concept provides a good level of safety to avoid the human intrusion. The future protection of the generations against the propagation of the radiations ionizing is then assured. [fr

  12. Thermophysical and Mechanical Properties of Granite and Its Effects on Borehole Stability in High Temperature and Three-Dimensional Stress

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2014-01-01

    Full Text Available When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite’s stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200°C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.

  13. Thermophysical and mechanical properties of granite and its effects on borehole stability in high temperature and three-dimensional stress.

    Science.gov (United States)

    Wang, Yu; Liu, Bao-lin; Zhu, Hai-yan; Yan, Chuan-liang; Li, Zhi-jun; Wang, Zhi-qiao

    2014-01-01

    When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200 °C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.

  14. Radiation borehole logging method

    International Nuclear Information System (INIS)

    Wylie, A.; Mathew, P.J.

    1977-01-01

    A method of obtaining an indication of the diameter of a borehole is described. The method comprises subjecting the walls of the borehole to monoenergetic gamma radiation and making measurements of the intensity of gamma radiation backscattered from the walls. The energy of the radiation is sufficiently high for the shape to be substantially independent of the density and composition of the borehole walls

  15. Outburst Prevention Technology with Borehole Hydraulic Jet Through Strata in Floor Gateway%底板巷穿层钻孔水力冲孔防突技术

    Institute of Scientific and Technical Information of China (English)

    刘明举; 郭献林; 李波; 王冕

    2011-01-01

    针对新安矿14211运输巷掘进过程中面临的煤与瓦斯突出问题,为了研究和确定适合新安煤田三软煤层赋存特点的水力冲孔工艺和消突评价体系,使其快速消除工作面突出危险性,提高煤巷掘进速度,采用底板巷穿层钻孔水力冲孔防突措施,按照考察出的冲孔影响半径均匀布置钻孔,排出部分煤体和瓦斯,使煤体卸压增透.试验结果表明,底板巷穿层水力冲孔技术较好地适应和利用了三软煤层的赋存特点,消除了工作面的突出危险性,掘进速度也由之前的40 m/月提高到75m/月,提高了87.5%.%According to coal and gas outburst problems occurred in the heading process of the No.14211 transportation gateway in Xin'an Mine, in order to study and set up the borehole hydraulic jet technique and the outburst evaluation system suitable for the three soft seam deposit features in Xin'an Coalfield, to rapidly eliminate the outburst danger of the heading face and to improve the seam gateway heading speed, the outburst prevention measures with borehole hydraulic jet through the strata in the floor gateway were applied.According the investigation of the borehole hydraulic jet influence radius, a layout of the berehole pattern was evenly set up and a partial coal and gas could be discharged.Thus the seam pressure could be released and the permeability of the seam could be improved.The experiment result showed that the borehole hydraulic jet technology passed through strata in the floor gateway would be well suitable for and utilization of the deposit features of the three soft seam and could eliminate the outburst danger of the heading face.Thus the heading speed could be improved from the previous 40 m/month to 75 m/month and the heading efficiency was improved by 87.5%.

  16. Microcrack growing and long-term mechanical stability in a HLW deep-borehole repository in granite

    International Nuclear Information System (INIS)

    Biurrun, E.; Hahne, K.

    1989-01-01

    The long-term host rock integrity assessment of a deep borehole emplacement for HLW in granite has been addressed with a detailed new constitutive model considering temperature and pressure effects on microscale phenomena (as microcracking) under repository conditions. The results of these finite element calculations have been compared with results obtained using conventional, state-of-the-art constitutive modelling. While the results of conventional modelling did suggest the existence of an important safety margin before failure, the improved calculations with the new model predict a thin but very long region of degradated host rock along the waste canister column. The results obtained up to now may well be considered as safety relevant, because they suggest that the actual long-term granite strength lies well below the conventionally determined failure limits, thus challenging the barrier properties of this host rock if the actual strength is not properly considered in the repository design

  17. PmaCO2 Project: Porosity and CO2 Trapping Mechanisms The Utrillas Formation in SD-1 borehole (Tejada - Burgos): Porosity and Porous Media Modelling

    International Nuclear Information System (INIS)

    Campos, R.; Barrios, I.; Gonzalez, A. M.

    2013-02-01

    The aim of PmaCO 2 project, supported by the Secretary of State and Research MINECO (CGL2011-24768) is to increase the knowledge of the microstructure of porous storage formations and thus contribute to the viability of CO 2 sequestration in geological formations. The microporous structure plays an important role not only in the prevalence of a particular trapping mechanism, but also on the amount of CO 2 immobilized. Utrillas facies are investigated in this project as representatives of a deep saline aquifer storage. This publication is a summary of the work done in the first year of the project. We present a study on microstructure of sandstones Utrillas, sampled in borehole, by applying the mercury intrusion porosimetry technique for the experimental determination of porosity and associated parameters. The porous medium was modeled with the PoreCor simulation code based in intrusion-extrusion curves. (Author) 78 refs.

  18. Geothermal technology development program. Annual progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, J.R. (ed.)

    1982-09-01

    The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology.

  19. Bulk and mechanical properties of the Paintbrush tuff recovered from borehole USW NRG-7/7A: Data report. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Martin, R.J.; Boyd, P.J.; Noel, J.S.; Price, R.H.

    1995-05-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves prediction of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from the USW NRG-717A borehole drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. USW NRG-7/7A was drilled to a depth of 1,513.4 feet through five thermal/mechanical units of Paintbrush tuff and terminating in the tuffaceous beds of the Calico IEUS. The thermal/mechanical stratigraphy was defined by Orfiz et al. to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy is presented. The tuff samples in this study have a wide range of welding characteristics, and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties

  20. Borehole Muon Detector Development

    Science.gov (United States)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  1. Entrepreneurial awareness and skills in mechanical technology ...

    African Journals Online (AJOL)

    This study assessed entrepreneurial awareness and skills in Mechanical Technology among Technical Education Students in Tai Solarin University of Education. Research questions focusing on the students' level of entrepreneurial awareness and the facilities available for inculcating skills in Mechanical Technology ...

  2. The Clean Development Mechanism and Technology Transfer

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    2017-01-01

    This study assesses the impact of the Clean Development Mechanism (CDM) on the transfer of clean technology in India. The reason this study is unique is because firstly, it adopts an outcome-oriented approach to define ‘technology transfer’, which means that technology transfer occurs if firms...

  3. The Kyoto mechanisms and technological innovation

    DEFF Research Database (Denmark)

    Lund, Henrik

    2006-01-01

    Climate change response, including the implementation of the Kyoto targets as the first step, calls for technological innovation of future sustainable energy systems. Based on the Danish case, this paper evaluates the type of technological change necessary. During a period of 30 years, Denmark...... countries. Consequently, the innovative technological development has changed. This paper evaluates the character of such change and makes preliminary recommendations for policies to encourage the use of the Kyoto Mechanisms as an acceleration of the necessary technological innovation....

  4. Analyses of the deep borehole drilling status for a deep borehole disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Choi, Heui Joo; Lee, Min Soo; Kim, Geon Young; Kim, Kyung Su [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of disposal for radioactive wastes is not only to isolate them from humans, but also to inhibit leakage of any radioactive materials into the accessible environment. Because of the extremely high level and long-time scale radioactivity of HLW(High-level radioactive waste), a mined deep geological disposal concept, the disposal depth is about 500 m below ground, is considered as the safest method to isolate the spent fuels or high-level radioactive waste from the human environment with the best available technology at present time. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general status of deep drilling technologies was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, very preliminary applicability of deep drilling technology for deep borehole disposal analyzed. In this paper, as one of key technologies of deep borehole disposal system, the general status of deep drilling technologies in oil industry, geothermal industry and geo scientific field was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, the very preliminary applicability of deep drilling technology for deep borehole disposal such as relation between depth and diameter, drilling time and feasibility classification was analyzed.

  5. Hanford stakeholder participation in evaluating innovative technologies: VOC product line, Passive soil vapor extraction using borehole flux tunable hybrid plasma

    International Nuclear Information System (INIS)

    Peterson, T.; McCabe, G.; Niesen, K.; Serie, P.

    1995-05-01

    A three-phased stakeholder participation program was conducted to support the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID). The US DOE's Office of Technology Development (OTD) sponsored and directed the VOC-Arid ID. Its purpose was to develop and demonstrate new technologies for remediating VOC contamination in soil and ground water. The integrated demonstration, hosted by the Hanford site in Washington State, is being transitioned into the Department of Energy's (DOE) Plume Focus Area. The Plume Focus Area has the same basic objectives as the ID, but is broader in scope and is a team effort with technology developers and technology users. The objective is to demonstrate a promising technology once, and if results warrant deploy it broadly across the DOE complex and in private sector applications

  6. Exploratory boreholes Juchlistock-Grimsel

    International Nuclear Information System (INIS)

    Mueller, W.; Keusen, H.R.

    1981-11-01

    The aim of the investigation was the completion of missing geological, hydrogeological and rock-mechanical data about a suitable site for the intended Nagra rock laboratory at Grimsel. To this aim, 6 horizontal boreholes of 100 m length and 86 mm diameter were drilled. The cores, extracted practically without loss, and mechanical data for the main investigation was an extensive evaluation of the lithographic discontinuities and anisotropies, because they are the main determinant of the hydrogeological conditions of the locality. The area is dominated by granites and granodiorite which are of variable biotite content, lamprophyres and aplites. The largest part of the investigated mountain region consists of compact unclefted rock. 478 of the 600 bore meters, i.e. about 80 % of the drilled mountain, have no open clefts. Only 22 of the 600 bore meters (3.6 %0 contain more than five clefts per meter, at which the open clefts in the boreholes SB1 and SB5 appear more frequently. At the remaining exploratory boreholes in 90 % of the mountain ther are no open clefts. 15 refs., 52 figs., 15 tabs

  7. International Conference on Mechanical Engineering and Technology

    CERN Document Server

    Mechanical Engineering and Technology

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Mechanical Engineering and Technology, held on London, UK, November 24-25, 2011.   Mechanical engineering technology is the application of physical principles and current technological developments to the creation of useful machinery and operation design. Technologies such as solid models may be used as the basis for finite element analysis (FEA) and / or computational fluid dynamics (CFD) of the design. Through the application of computer-aided manufacturing (CAM), the models may also be used directly by software to create "instructions" for the manufacture of objects represented by the models, through computer numerically controlled (CNC) machining or other automated processes, without the need for intermediate drawings.   This volume covers the subject areas of mechanical engineering and technology, and also covers interdisciplinary subject areas of computers, communications, control and automation...

  8. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  9. Electromagnetic fields in cased borehole

    International Nuclear Information System (INIS)

    Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

    2001-01-01

    Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring

  10. Technology transfer in the Clean Development Mechanism

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Haake, F.; Van der Linden, N.H.

    2007-01-01

    Technology transfer is often mentioned as an ancillary benefit of the Kyoto Protocol's Clean Development Mechanism (CDM), but this claim has never been researched or substantiated. The question of technology transfer is important from two perspectives: for host countries, whether the CDM provides a corridor for foreign, climate-friendly technologies and investment, and for industrialised countries as it provides export potential for climate-friendly technologies developed as a consequence of stringent greenhouse gas targets. In order to better understand whether technology transfer from the EU and elsewhere is occurring through the CDM, and what is the value of the associated foreign investment, this paper examines technology transfer in the 63 CDM projects that were registered on January 1st, 2006. Technology originates from outside the host country in almost 50% of the evaluated projects. In the projects in which the technology originates from outside the host country, 80% use technology from the European Union. Technologies used in non-CO2 greenhouse gas and wind energy projects, and a substantial share of the hydropower projects, use technology from outside the host country, but biogas, agricultural and biomass projects mainly use local technology. The associated investment value with the CDM projects that transferred technology is estimated to be around 470 million Euros, with about 390 coming from the EU. As the non-CO2 greenhouse gas projects had very low capital costs, the investment value was mostly in the more capital-intensive wind energy and hydropower projects

  11. Borehole disposal design concept in Madagascar

    International Nuclear Information System (INIS)

    Randriamarolahy, J.N.; Randriantseheno, H.F.; Andriambololona, Raoelina

    2008-01-01

    Full text: In Madagascar, sealed radioactive sources are used in several socio-economic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become ionizing radiations waste and can be still dangerous because they can cause harmful effects to the public and the environment. 'Borehole disposal design concept' is needed for sitting up a safe site for storage of radioactive waste, in particular, sealed radioactive sources. Borehole disposal is an option for long-term management of small quantities of radioactive waste in compliance with the internationally accepted principles for radioactive waste management. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeology, geochemical, meteorological and demographic conditions. Two sites are most acceptable in Madagascar such as Ankazobe and Fanjakana. A Borehole will be drilled and constructed using standard techniques developed for water abstraction, oil exploration. At the Borehole, the sealed radioactive sources are encapsulated. The capsule is inserted in a container. This type of storage is benefit for the developing countries because it is technologically simple and economic. The construction cost depends on the volume of waste to store and the Borehole depth. The borehole disposal concept provides a good level of safety to avoid human intrusion. The future protection of the generations against the propagation of the ionizing radiations is then assured. (author)

  12. Acoustic and Optical Televiewer Borehole Logging

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin; Nik Marzukee Nik Ibrahim; Zaidi Ibrahim; Nurul Wahida Ahmad Khairuddin; Azmi Ibrahim

    2016-01-01

    This review paper is focused on Borehole Televiewer. Borehole Televiewer or (BHTV) was used to obtain high-resolution acoustical images from the borehole wall. A probe with a high resolution downward looking camera is used. The camera has specific optics (a conical mirror with a ring of bulbs) with just one shot needed to capture the entire borehole circumference as a 360 panoramic view. Settings similar to traditional cameras (exposure, quality, light, frame rate and resolution) make it effective in almost any type of borehole fluid. After each shot, a series of horizontal pixel strings are acquired, giving a rasterized RGB picture in real-time which is transmitted to the console and finally to a monitor. The orientation device embedded in the tool, which is made of 3 inclinometers and 3 magnetometers, allows the inclination and azimuth of the probe to be computed in real-time, correctly orienting the borehole images. Besides, Acoustic and Optical Televiewer has been introduced as its advanced in technological research. Its logging has been successfully applied to geotechnical investigations and mineral exploration (Schepers et al., 2001) due to advances in beam focusing, increased dynamic range, digital recording techniques, and digital data processing (Schepers, 1991). Thus, this paper will go through to the basic principle of (BHTV) as one type of data collection today. (author)

  13. Mechanical technology for higher engineering technicians

    CERN Document Server

    Black, Peter

    1972-01-01

    Mechanical Technology for Higher Engineering Technicians deals with the mechanics of machines, thermodynamics, and mechanics of fluids. This book presents discussions and examples that deal with the strength of materials, technology of machines, and techniques used by professional engineers. The book explains the strain energy of torsion, coil springs, and the effects of axial load. The author also discusses the forces that produce bending, shearing, and bending combined with direct stress, as well as beams subjected to a uniform bending moment or simply supported beams with concentrated non-c

  14. Borehole project - Final report of phase 3

    International Nuclear Information System (INIS)

    Pusch, R.; Ramqvist, G.

    2008-03-01

    The report describes borehole plugging techniques for use in deep boreholes extending from the ground surface, and construction and placement of plugs in holes of different lengths and orientations bored from the repository rooms. The principle employed is the one proposed in earlier phases of the project, i.e. to tightly seal those parts of boreholes where the rock has few fractures and a low hydraulic conductivity, and filling of those parts that intersect water-bearing fracture zones with physically stable material that does not need to be low-permeable. Four methods for tight plugging have been identified and tested and a technique has been found for filling boreholes that are intersected by fracture zones. The upper end of boreholes extending from the ground surface needs a 'mechanical' seal for which copper metal and concrete work well. The experience from plugging of a 550 m deep borehole at Olkiluoto (OL-KR24) has been compiled and plans worked out for sampling and testing of contacting clay and concrete in this hole and in short holes in the Aespoe URL. (orig.)

  15. Permeability Increase with Deep Borehole Controlled Pre-cracking Blasting Technology in Low Permeability and High Gassy Seam"%低透气性高瓦斯煤层深孔控制预裂爆破增透技术

    Institute of Scientific and Technical Information of China (English)

    弓美疆; 池鹏; 张明杰

    2012-01-01

    为了解决低透气性高瓦斯煤层难抽采问题,运用RFPA2D数值模拟软件,建立了2种深孔控制预裂爆破力学模型,通过对模拟结果进行对比分析,得出一套适用于鹤煤八矿底板抽采的爆破参数,并进行了现场试验,爆破后煤层透气性系数平均值达到了2.23 m2/(MPa2.d),比爆破前测定的煤层原始透气性平均值提高了近3.05倍,说明该技术可以明显提高钻孔周围煤体裂隙发育程度,煤体透气性增加,达到了提高煤层瓦斯抽采量和抽采率的目的。%In order to solve the difficult gas drainage problem in low permeability and high gassy seam, the RFPA2D numerical simulation software was applied to establish two deep borehole controlled pre-cracking blasting mechanics models. With the comparison and analysis on the simulation results, a set of blasting parameters obtained which were suitable for floor gas drainage in No. 8 mine of Hegang Coal Mining and the site trial with the parameters was conducted. The results showed that after the blasting, the average value of the seam per- meability coefficient reached at 2. 23 m2/ ( MPa2 ·d) and 3.05 times higher than the average value of the seam in-situ permeability be- fore the blasting conducted. Thus the technology could obviously improve the cracking development degree of coal around the borehole and could improve the permeability of the seam. The target to improve the seam gas drainage value and the gas drainage rate could be reached.

  16. The Kyoto mechanisms and technological innovation

    International Nuclear Information System (INIS)

    Lund, Henrik

    2006-01-01

    Climate change response, including the implementation of the Kyoto targets as the first step, calls for technological innovation of future sustainable energy systems. Based on the Danish case, this paper evaluates the type of technological change necessary. During a period of 30 years, Denmark managed to stabilize primary energy supply, and CO 2 emissions decreased by 10%, during a period of 20 years. However, after the introduction of the Kyoto Mechanisms, Denmark has changed its strategy. Instead of continuing the domestic CO 2 emission controls, Denmark plans to buy CO 2 reductions in other countries. Consequently, the innovative technological development has changed. This paper evaluates the character of such change and makes preliminary recommendations for policies to encourage the use of the Kyoto Mechanisms as an acceleration of the necessary technological innovation. (author)

  17. The Kyoto Mechanisms and Technological Innovation

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    Climate change response, including implementation of the Kyoto targets as the first step, calls for technological innovation of future sustainable energy systems. One of the important agreements in several declarations, including the Kyoto protocol, has been to promote and coordinate...... the collaboration between the countries in the necessary technological development. The paper encourage that the Kyoto mechanisms will be used for acceleration of the necessary technical innovation in Denmark....

  18. The sonic borehole logging tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1990-09-01

    This report deals with the sonic borehole tool. First a review of the various elastic wave types is given and velocity values of compressional waves in various materials listed. Next follows a discussion of 3 models for the relation between transit time and porosity, and a comparison between the 3 models is made. The design of sonic tools is described including their geometry. The path of the sonic signals is discussed. Also the effect of environmental factors on the results of the tools are considered. Finally a number of applications are described. In two appendices the mechanics of deformable bodies and formulas for the velocity of sound are reviewed. (author)

  19. Borehole television survey

    International Nuclear Information System (INIS)

    Lau, J.S.O.

    1980-01-01

    The borehole television survey can provide a measure of the orientation, depth, width and aperture of any planar discontinuity intersected by a borehole and a technique is in an advanced stage of development by the Geological Survey of Canada (GSC) to make such measurements. Much of its practical application to date has been in crystalline rocks (plutons) at research areas pertaining to the Nuclear Waste Disposal Program in Canada. It also has many other engineering applications where bedrock stability is of particular concern. The equipment required to carry out the survey can be readily transported by two panel trucks with trailers. The components consist of a camera probe, control unit, cable storage reel, cable drive, video-tape recorder, TV monitor and two electrical generators. An inclined planar structure intersected by a borehole appears as an elliptical trace on the wall of the borehole. Such an intersection line shows on the TV monitor as a sinusoidal curve with a high point and a low point as the camera rotates through an angle of 360 degrees. The azimuth of the low point, measured by a compass in the camera probe, represents the direction of the dip of the planar structure. The angle of dip is measured midway between the high and low points or is computed from the maximum-to-minimum distance of the sinusoid and the hole diameter. These observations provide the true orientation of the planar structure if the borehole is vertical. However, if the borehole is inclined, direct observations will only provide the apparent orientation. The true orientation must thus be obtained either by means of stereographic projection or spherical trigonometry. A computer program has been written to calculate the true orientation from the apparent orientation. In the field, observation data are recorded directly on a data record sheet for keypunching and input into the computer

  20. Measuring depth in boreholes

    International Nuclear Information System (INIS)

    Hodson, G.M.

    1979-01-01

    This invention relates to a method of determining the depth of rock strata and other features of a borehole. It may be employed with particular advantage when access to the top of the borehole is difficult, for example in underwater operations. A radioactive marker, such as a source of gamma rays, is positioned near the top of the riser of a sub-sea wellhead structure. A radiation detector is lowered between the marker and a radioactive stratum and the length of line supplied is measured on the floating platform. This enables the depth of the stratum to be measured irrespective of tidal variations of the height of the platform. (U.K.)

  1. Key Factors to Determine the Borehole Spacing in a Deep Borehole Disposal for HLW

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Choi, Heuijoo; Lee, Minsoo; Kim, Geonyoung; Kim, Kyeongsoo

    2015-01-01

    Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose critical radionuclides at the depth. Finally, high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept for deep borehole disposal of spent fuels or high level radioactive wastes which has been developed by some countries according to the rapid advance in the development of drilling technology, as an alternative method to the deep geological disposal method, was reviewed. After then an analysis on key factors for the distance between boreholes for the disposal of HLW was carried out. In this paper, the general concept for deep borehole disposal of spent fuels or HLW wastes, as an alternative method to the deep geological disposal method, were reviewed. After then an analysis on key factors for the determining the distance between boreholes for the disposal of HLW was carried out. These results can be used for the development of the HLW deep borehole disposal system

  2. Key Factors to Determine the Borehole Spacing in a Deep Borehole Disposal for HLW

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Choi, Heuijoo; Lee, Minsoo; Kim, Geonyoung; Kim, Kyeongsoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose critical radionuclides at the depth. Finally, high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept for deep borehole disposal of spent fuels or high level radioactive wastes which has been developed by some countries according to the rapid advance in the development of drilling technology, as an alternative method to the deep geological disposal method, was reviewed. After then an analysis on key factors for the distance between boreholes for the disposal of HLW was carried out. In this paper, the general concept for deep borehole disposal of spent fuels or HLW wastes, as an alternative method to the deep geological disposal method, were reviewed. After then an analysis on key factors for the determining the distance between boreholes for the disposal of HLW was carried out. These results can be used for the development of the HLW deep borehole disposal system.

  3. Role of fracture mechanics in modern technology

    International Nuclear Information System (INIS)

    Sih, G.C.

    1987-01-01

    The conference served as a forum not only for reviewing past concepts and technologies but it provided an opportunity for many of the designers, engineers and scientists to come forth with more advanced ideas so that fracture mechanics application can be broadened and employed more effectively to avoid unexpected failures that are annoying, costly and destructive of credibility of the engineering community in general

  4. Governance Mechanisms in Information Technology Outsourcing

    Science.gov (United States)

    Ravindran, Kiron

    2010-01-01

    While the dominance of Information Technology Outsourcing (ITO) as a sourcing strategy would seem to indicate successful and well-informed practice, frequent examples of unraveled engagements highlight the associated risks. Successful instances of outsourcing suggest that governance mechanisms effectively manage the related risks. This…

  5. Exploratory borehole Leuggern. Working program

    International Nuclear Information System (INIS)

    1984-07-01

    An extensive geophysical borehole logging programme will serve to verify the results of the core analysis and complement the core data. Numerous borehole logs are to be registered with different types of tools. These allow one to determine various parameters essential for the full description of the rock sequences penetrated. A first category of logs enables the petrographical identification of the different rock types and indicates porous zones that are either water- or hydrocarbon-bearing. A second category provides data e.g. on the degree of pore and fracture fill, rock density and rock temperature, natural gamma radiation and rock-mechanical properties. Other logs measure strike and dip of the sedimentary layers and the position of rock fractures. A fourth category provides information on the diameter and the deviation of the borehole, the quality of casing cementations and the position of casing joints. In addition, well shooting surveys will supply exact values of seismic velocities for the various rock units; data that are needed for the depth correction of the reflection profiles from Nagra's regional seismic network. With numerous hydrological tests ranging from a production tests of the Muschelkalk and Buntsandstein aquifers to labelled slug-tests in low-permeability crystalline sections, the hydraulic conditions of deep groundwater flow will be investigated. The recovered water samples will undergo full physical and geochemical analysis. Furthermore, their isotope content is to be measured in order to estimate the age of the various formation waters and their time of residence in the subsurface. To round off the scientific investigations, a series of rock-mechanical and geotechnical laboratory tests will provide characteristic values to be applied eventually in the design and construction of shafts and caverns for an underground repository

  6. Borehole DC-12 hydrostratigraphic chart

    International Nuclear Information System (INIS)

    Gephart, R.E.

    1981-09-01

    This hydrostratigraphic chart identifies the basic stratigraphy and preliminary hydrologic testing results for Borehole DC-12. This borehole was cored through the Saddle Mountains and Wanapum basalt formations and into the Grande Ronde. Selected zones were hydrologically tested during coring

  7. Borehole DC-14 hydrostratigraphic chart

    International Nuclear Information System (INIS)

    Gephart, R.E.

    1981-09-01

    This hydrostratigraphic chart identifies the basic stratigraphy and preliminary hydrologic testing results for Borehole DC-14. This borehole was cored through the Saddle Mountains and Wanapum basalt formations and into the Grande Ronde. Selected zones were hydrologically tested during coring

  8. Borehole DC-15 hydrostratigraphic chart

    International Nuclear Information System (INIS)

    Gephart, R.E.

    1981-09-01

    This hydrostratigraphic chart identifies the basic stratigraphy and preliminary hydrologic testing results for Borehole DC-15. This borehole was cored through the Saddle Mountains and Wanapum basalt formations and into the Grande Ronde. Selected zones were hydrologically tested during coring

  9. A strategy to seal exploratory boreholes in unsaturated tuff

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Case, J.B.; Givens, C.A.; Carney, B.C.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed

  10. Borehole logging system

    International Nuclear Information System (INIS)

    Allen, L.S.

    1988-01-01

    A radioactive borehole logging tool employs an epithermal neutron detector having a neutron counter surrounded by an inner thermal neutron filter and an outer thermal neutron filter. Located between the inner and outer filters is a neutron moderating material for extending the lifetime of epithermal neutrons to enhance the counting rate of such epithermal neutrons by the neutron counter

  11. Geophysical borehole logging

    International Nuclear Information System (INIS)

    McCann, D.; Barton, K.J.; Hearn, K.

    1981-08-01

    Most of the available literature on geophysical borehole logging refers to studies carried out in sedimentary rocks. It is only in recent years that any great interest has been shown in geophysical logging in boreholes in metamorphic and igneous rocks following the development of research programmes associated with geothermal energy and nuclear waste disposal. This report is concerned with the programme of geophysical logging carried out on the three deep boreholes at Altnabreac, Caithness, to examine the effectiveness of these methods in crystalline rock. Of particular importance is the assessment of the performance of the various geophysical sondes run in the boreholes in relation to the rock mass properties. The geophysical data can be used to provide additional in-situ information on the geological, hydrogeological and engineering properties of the rock mass. Fracturing and weathering in the rock mass have a considerable effect on both the design parameters for an engineering structure and the flow of water through the rock mass; hence, the relation between the geophysical properties and the degree of fracturing and weathering is examined in some detail. (author)

  12. Cleaning of boreholes

    International Nuclear Information System (INIS)

    Rautio, T.; Alaverronen, M.; Lohva, K.; Teivaala, V.

    2004-09-01

    In terms of long-term safety it is a risk that the boreholes can eventually function as short-circuits between the repository and ground surface. Therefore sealing of investigation boreholes is an important issue for the long- term safety of high-level nuclear waste repositories. In order to seal a borehole properly, the conditions of the borehole have to meet certain predetermined requirements. One of the requirements is that no instruments or materials endangering the plugging operation or the long-term function of the sealing materials, are allowed to be left in the borehole. Sometimes drilling equipment will be left in the hole or it cannot be recovered from the hole with the given constraints of time, cost and resources in spite of attempts. Additionally various measurements may be carried out in the holes after the drilling has been completed and measuring devices may get stuck in holes. Consequently cleaning of the borehole is carried out as an essential activity before sealing can be implemented. There are two common reasons identified for the drill strings to get stuck in holes. First the drill string may get stuck due to acute drilling problems. The second case is where rods are left as casing in a hole either based on the structure of the upper part of the hole or in order to support the hole. To remove the drilling or measuring equipment lost in a borehole, special techniques and professional skill must be applied. Removing measuring equipment from a hole is often demanding and time consuming work. A vital part of the cleaning operation is planning the work in advance. In order to make the plan and to select the suitable methods it is important to know the condition of the stuck material. It is also important to know the exact depth where the equipment are stuck and to have an estimate of the reasons why they have got stuck. It is also very important to know the correct dimensions of the equipment or drill string before commencing the cleaning work

  13. Excess plutonium disposition: The deep borehole option

    International Nuclear Information System (INIS)

    Ferguson, K.L.

    1994-01-01

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified

  14. The results of the investigations on rock mechanics in HDB-9-11 boreholes and update of the rock mechanical model around the Horonobe URL construction area

    International Nuclear Information System (INIS)

    Sanada, Hiroyuki; Niunoya, Sumio; Matsui, Hiroya

    2008-09-01

    Horonobe URL (Underground Research Laboratory) Project is conducted at Horonobe-cho, Teshio-gun, Hokkaido. This research report shows the result of the rock mechanical investigations which have been carried out from 2004 to 2005 as a part of the project. The objectives of the rock mechanical investigation are as follows: To obtain the data which were necessary for construction design of URL. To confirm the distribution of rock mechanical properties in and around URL construction area. The results of the investigations are summarized as follows: 1) Variation and values of depth direction of physical and mechanical properties in the laboratory construction area corresponded approximately to the results obtained from the rock mechanical investigations of HDB-1-8. 2) The major redesign had been not had about physical and mechanical properties in the laboratory construction area being able to divide into three zones and length of its own zone in updating rock mechanical model. 3) From the results of initial stress measured by hydraulic fracturing, the results that the direction of the maximum principle stress is E-W was no different from results obtained from the investigations of HDB-1-8, but the magnitude correlation among maximum, minimum principle stress and overburden pressure measured around G.L.-927 m showed different trends compared with the results of HDB-1-8. 4) Diatomaceous mudstone was yielded under isotropic compression. Cam-clay model as constitutive law of diatomaceous mudstone should be used for tunnel excavation analysis. 5) Uniaxial compression strength of rock saturated under saline water is larger than that of saturated under freshwater. Poisson's ratio of rock saturated under saline water is smaller than that of saturated under saline water. 6) The effective confining pressure increases with the equivalent opening width and permeability decreases. 7) The value of principle stress obtained from DSCA method is larger than that obtained from hydraulic

  15. VTT test borehole for bedrock investigations

    International Nuclear Information System (INIS)

    Okko, O.; Hassinen, P.; Front, K.

    1994-02-01

    A borehole of depth 150 m and diameter 56 mm has been drilled in the area adjacent to the premises of the Technical Research Centre of Finland (VTT) at Otaniemi, Espoo, for the purposes of calibrating geophysical measurements devices. This report presents the test results obtained so far and illustrates the processing of these, in which the various measurements are plotted as curves and combinations of curves. The interpretations provided so far consists of analyses of lithological variations, bedrock fracturing, the nature and occurrence of fracture zones and groundwater flow patterns. Samples were taken from those parts of the core shown by the borehole measurements to be homogenous and thin sections made from these for mineralogical determinations. The rock mechanical and petrophysical properties of the same points were examined. The core is in the possession of VTT, and the hole itself is available to outsiders for the calibration and testing of borehole measurement equipment. (orig.). (21 refs., 13 figs., 5 tabs.)

  16. Neutron borehole logging correction technique

    International Nuclear Information System (INIS)

    Goldman, L.H.

    1978-01-01

    In accordance with an illustrative embodiment of the present invention, a method and apparatus is disclosed for logging earth formations traversed by a borehole in which an earth formation is irradiated with neutrons and gamma radiation produced thereby in the formation and in the borehole is detected. A sleeve or shield for capturing neutrons from the borehole and producing gamma radiation characteristic of that capture is provided to give an indication of the contribution of borehole capture events to the total detected gamma radiation. It is then possible to correct from those borehole effects the total detected gamma radiation and any earth formation parameters determined therefrom

  17. Quantum Mechanics - Fundamentals and Applications to Technology

    Science.gov (United States)

    Singh, Jasprit

    1996-10-01

    Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. The many helpful features include * Twenty-eight application-oriented sections that focus on lasers, transistors, magnetic memories, superconductors, nuclear magnetic resonance (NMR), and other important technology-driving materials and devices * One hundred solved examples, with an emphasis on numerical results and the connection between the physics and its applications * End-of-chapter problems that ground the student in both fundamental and applied concepts * Numerous figures and tables to clarify the various topics and provide a global view of the problems under discussion * Over two hundred illustrations to highlight problems and text A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.

  18. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    Falk, L.

    1992-02-01

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  19. Single-borehole techniques

    International Nuclear Information System (INIS)

    Klotz, D.; Moser, H.; Trimborn, P.

    1978-01-01

    Proceeding on the theoretical considerations and on the experience and practice derived from laboratory and field testing, a system consisting of tracer injection units, detector units, measuring probe units and packers is presented, from which the different borehole probes required can be combined. A couple of examples of recent applications shows the position of the Single-Borehole Techniques with respect to the traditional methods used for the measurement of the ground-water flow. A confrontation of the permeabilities of different aquifers consents, both on the basis of the Single-Borehole Techniques as by pumping experiments, the determination of the reliability of the Point-Dilution-Method. The Point-Dilution-Method is giving information about the vertical and horizontal distribution of the permeabilities in an aquifer. By measuring the vertical current in two karst wells, the tributary horizons of a well have been determined, which gave valuable information for the subsequent well construction. Local leakages could be detected by measuring the vertical flow rate through observation wells arranged along a grout curtain erected on both sides of the retaining barrage of the Keban dam. (orig.) [de

  20. BWR mechanics and materials technology update

    International Nuclear Information System (INIS)

    Kiss, E.

    1983-01-01

    This paper discusses technical results obtained from a variety of important programs underway at General Electric's Nuclear Engineering Division. The principal objective of these programs is to qualify and improve BWR product related technologies that fall broadly under the disciplines of Applied Mechanics and Materials Engineering. The paper identifies and deals with current technical issues that are of general importance to the LWR industry albeit the specific focus is directed to the development and qualification of analytical predictive methods and criteria, and improved materials for use in the design of the BWR. In this paper, specific results and accomplishments are summarized to provide a braod perspective of technology advances. Results are presented in sections which discuss: dynamic analysis and modeling; fatigue and fracture evaluation; materials engineering advances; and flow induced vibration. (orig.)

  1. Geomechanical Considerations for the Deep Borehole Field Test

    Science.gov (United States)

    Park, B. Y.

    2015-12-01

    Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Conceptual Design and Requirements for Characterization and Field Test Boreholes: Deep Borehole Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrick, Courtney G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Freifeld, Barry M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daley, Tom [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-24

    Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test, introduced herein, is a demonstration of the DBD concept and these advances.

  3. Digital signal processing of data from borehole creep closure

    International Nuclear Information System (INIS)

    Chakrabarti, S.; Patrick, W.C.; Duplancic, N.

    1987-01-01

    Digital signal processing, a technique commonly used in the fields of electrical engineering and communication technology, has been successfully used to analyze creep closure data obtained from a 0.91 m diameter by 5.13 deep borehole in bedded salt. By filtering the ''noise'' component of the closure data from a test borehole, important data trends were made more evident and average creep closure rates were able to be calculated. This process provided accurate estimates of closure rates that are used in the design of lined boreholes in which heat-generating transuranic nuclear wastes are emplaced at the Waste Isolation Pilot Plant

  4. Optimisation of borehole logs in highly inclined natural gas boreholes in the new red sandstone strata of northern Germany - examples of the use of modern LWD technology; Optimierung von Bohrlochmessungen in hochgeneigten Erdgasbohrungen des norddeutschen Rotliegend - Beispiele zum Einsatz moderner LWD Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Tappe, G.; Riepe, L. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    2001-07-01

    Data acquisition and interpretation of LWD logs (''logging while drilling'') in highly inclined boreholes in new red sandstone have proved this to be a reliable alternative to conventional wireline measurements in assessing porosity and saturation. The contribution presents the results of the first measurements made in Germany using this method, which are compared with conventional wireline logs and drill core data. The LWD technology is superior in difficult boreholes and less costly if no conventional logs are made. Another advantage is the fact that the deposit is analyzed in the ''virgin'' state, i.e. before deep invasion by drilling, flushing and other invasive operations. [German] Die Datenakquisition und Interpretation von LWD (''logging while drilling'')-Messungen in hochgeneigten Rotliegend-Bohrungen haben gezeigt, dass es sich hierbei um eine zuverlaessige Alternative zu konventionellen Wireline-Messungen hinsichtlich der Porositaets- und Saettigungsbestimmung handelt. In diesem Beitrag werden insbesondere die Ergebnisse der ersten in Deutschland erfolgreich durchgefuehrten Messungen mit dem Sonic-LWD in tiefen 5 7/8{sup ''} Bohrloechern dargestellt und mit konventionellen Wireline-Logs und Kerndaten verglichen. Die operationellen Vorteile des LWD gerade in bohrtechnisch schwierigen Bohrungen wurden in der Praxis bestaetigt; Kostenvorteile sind vor allem dann gegeben, wenn auf konventionelles Loggen verzichtet wird. Ein weiterer Vorteil der echten ''Real Time''-LWD-Messungen ist zudem die Erfassung der petrophysikalischen Messungen im nahezu ''jungfraeulichen'' Zustand der Lagerstaette, d.h. bevor durch tiefe Invasion von Bohrspuelung und andere Traegerschaedigungen die Ergebnisse verfaelscht werden koennen. (orig.)

  5. Borehole DC-6 hydrostratigraphic chart

    International Nuclear Information System (INIS)

    Gephart, R.E.

    1981-09-01

    This hydrostratigraphic chart for Borehole DC-6 identifies the basic stratigraphy and preliminary hydrologic test results. This borehole was cored for obtaining stratigraphic data and only that portion within the Grande Ronde formation remains open for hydrologic testing. The upper two formations were cased and cemented off

  6. Project Mechanisms and Technology Diffusion in Climate Policy - Kyoto project mechanisms and technology diffusion

    International Nuclear Information System (INIS)

    Glachant, M.; Meniere, Y.

    2010-01-01

    The paper deals with the diffusion of GHG mitigation technologies in developing countries. We develop a model where an abatement technology is progressively adopted by firms and we use it to compare the Clean Development Mechanism (CDM) with a standard Cap and Trade scheme (C and T). In the presence of learning spillovers, we show that the CDM yields a higher social welfare than C and T if the first adopter receives CDM credits whereas the followers do not. This result lends support to the policy proposal of relaxing the CDM additionality constraint for projects which generate significant learning externalities. (authors)

  7. BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool

    Science.gov (United States)

    Schulte, Daniel O.; Bastian, Welsch; Wolfram, Rühaak; Kristian, Bär; Ingo, Sass

    2017-04-01

    Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storage (BTES) systems for seasonally fluctuating heat sources like solar thermal energy or district heating grids. The high temperature level of these heat sources prohibits the use of the shallow subsurface for environmental reasons. Therefore, deeper reservoirs have to be accessed instead. The increased depth of the systems results in high investment costs and has hindered the implementation of this technology until now. Therefore, research of medium deep BTES systems relies on numerical simulation models. Current simulation tools cannot - or only to some extent - describe key features like partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We give an update on the development of BASIMO: a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport in a dual-continuum approach. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. Thereby, partly insulated boreholes can be considered in the model. Furthermore, BASIMO can be used to improve the design of BTES systems: the tool allows for automated parameter variations and is readily coupled to other code like mathematical optimization algorithms. Optimization can be used to determine the required minimum system size or to increase the system performance.

  8. Strategic decision analysis applied to borehole seismology

    International Nuclear Information System (INIS)

    Menke, M.M.; Paulsson, B.N.P.

    1994-01-01

    Strategic Decision Analysis (SDA) is the evolving body of knowledge on how to achieve high quality in the decision that shapes an organization's future. SDA comprises philosophy, process concepts, methodology, and tools for making good decisions. It specifically incorporates many concepts and tools from economic evaluation and risk analysis. Chevron Petroleum Technology Company (CPTC) has applied SDA to evaluate and prioritize a number of its most important and most uncertain R and D projects, including borehole seismology. Before SDA, there were significant issues and concerns about the value to CPTC of continuing to work on borehole seismology. The SDA process created a cross-functional team of experts to structure and evaluate this project. A credible economic model was developed, discrete risks and continuous uncertainties were assessed, and an extensive sensitivity analysis was performed. The results, even applied to a very restricted drilling program for a few years, were good enough to demonstrate the value of continuing the project. This paper explains the SDA philosophy concepts, and process and demonstrates the methodology and tools using the borehole seismology project example. SDA is useful in the upstream industry not just in the R and D/technology decisions, but also in major exploration and production decisions. Since a major challenge for upstream companies today is to create and realize value, the SDA approach should have a very broad applicability

  9. Evaluation of geophysical borehole studies

    International Nuclear Information System (INIS)

    Brotzen, O.; Duran, O.; Magnusson, K.Aa.

    Four studies concerning geophysical investigations and TV inspection in boreholes in connection with KBS studies at Finnsjoe, Karlshamn, Kraakemaala and Stripa and PRAV's studies at Studsvik have been evaluated. This has led to proposals concerning the choice of instruments and methods for future studies and a review of future work required. The evaluation has shown that the following borehole measurements are of primary interest in the continued work: Determinations of temperature and resistivity of the borehole liquid, resistance and resistivity measurements, SP, Sonic, Caliper and VLF. TV inspection, IP and gamma-gamma should also be included in the arsenal of available test methods.(author)

  10. Borehole Seismology: Fundamentals and Applications

    International Nuclear Information System (INIS)

    Bohnhoff, Marco

    2014-01-01

    Because boring in itself is very expensive and instrumentation is required to endure high temperatures and pressures, deep borehole observation was accompanied by an economic risk. However, it has great advantages with respect to micro-earthquake observation, which is enriched with a short period vibration signal, because deep borehole observation greatly reduces short period noise. These kind advantages were explained by referring to the relationship between earthquake size and frequency range. Examples of seismic observation in a borehole in a geothermal field in El Salvador and a CO 2 confinement project in the western part of Canada were introduced. (authors)

  11. Oman Drilling Project Phase I Borehole Geophysical Survey

    Science.gov (United States)

    Matter, J. M.; Pezard, P. A.; Henry, G.; Brun, L.; Célérier, B.; Lods, G.; Robert, P.; Benchikh, A. M.; Al Shukaili, M.; Al Qassabi, A.

    2017-12-01

    The Oman Drilling Project (OmanDP) drilled six holes at six sites in the Samail ophiolite in the southern Samail and Tayin massifs. 1500-m of igneous and metamorphic rocks were recovered at four sites (GT1, GT2, GT3 and BT1) using wireline diamond core drilling and drill cuttings at two sites (BA1, BA2) using air rotary drilling, respectively. OmanDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, NASA, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, and with in-kind support in Oman from Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University and the German University of Technology. A comprehensive borehole geophysical survey was conducted in all the OmanDP Phase I boreholes shortly after drilling in April 2017. Following geophysical wireline logs, using slim-hole borehole logging equipment provided and run by the Centre National De La Recherche Scientifique (CNRS) and the Université de Montpellier/ Géosciences Montpellier, and logging trucks from the Ministry of Regional Municipalities and Water Resources, were collected in most of the holes: electrical resistivity (dual laterolog resistivity, LLd and LLs), spectral gamma ray (K, U, and Th contents), magnetic susceptibility, total natural gamma ray, full waveform sonic (Vp and Vs), acoustic borehole wall imaging, optical borehole wall imaging, borehole fluid parameters (pressure, temperature, electrical conductivity, dissolved oxygen, pH, redox potential, non-polarized spontaneous electrical potential), and caliper (borehole diameter). In addition, spinner flowmeter (downhole fluid flow rate along borehole axis) and heatpulse flow meter logs (dowhole fluid flow rate along borehole axis) were collected in BA1 to characterize downhole fluid flow rates along borehole axis. Unfortuantely, only incomplete wireline logs are available for

  12. Application of Modern Simulation Technology in Mechanical Outstanding Engineer Training

    Directory of Open Access Journals (Sweden)

    Gongfa Li

    2014-03-01

    Full Text Available This text has described the relationship between outstanding engineer training and modern simulation technology, have recommended the characteristics of mechanical outstanding engineer in detail. Aiming at the importance of the teaching practice link to course of theory of mechanics, mechanical design and mechanical signal analysis, have expounded the function of modern simulation technology in the mechanical outstanding engineer training, especially on teaching practice in the theory of mechanics, mechanical design and mechanical signal analysis. It has the advantages of economizing the teaching cost, overcoming the hardware constrains, model prediction, promoting student's innovation and manipulative ability, so can popularize and develop in a more cost-effective manner in the university.

  13. Drilling a borehole for LEP

    CERN Multimedia

    1981-01-01

    Boreholes were drilled along the earlier proposed line of the LEP tunnel under the Jura to find out the conditions likely to be encountered during the construction of the LEP tunnel (Annual Report 1981 p. 106, Fig. 10).

  14. Borehole closure in salt

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1988-12-01

    Constitutive law parameters are determined from salt behavior characterization experiments. The results are applied to predict creep (time-dependent) closure of boreholes in salt specimens subjected to various loading configurations. Rheological models (linear and nonlinear viscoelastic and viscoplastic models), empirical models, and physical theory models have been formulated from the results of uniaxial creep tests, strain and stress rate controlled uniaxial tests, constant strain rate triaxial tests, cyclic loading tests, and seismic velocity measurements. Analytical solutions for a thick-walled cylinder subjected to internal and external pressures and for a circular hole in an infinite plate subjected to a biaxial or uniaxial stressfield have been derived from each of the linear viscoelastic models and from one of the empirical laws. The experimental results indicate that the salt samples behave as an elastic-viscoplastic material. The elastic behavior tends to be linear and time-independent. The plastic deformation is time-dependent. The stress increment to strain rate increment ratio gradually decreases as the stress level increases. The transient potential creep law seems to give the simplest satisfactory governing equation describing the viscoplastic behavior of salt during the transient phase. 204 refs., 27 figs., 29 tabs

  15. Downhole television (DHTV) applications in borehole plugging

    International Nuclear Information System (INIS)

    Christensen, C.L.; Statler, R.D.; Peterson, E.W.

    1980-05-01

    The Borehole Plugging (BHP) Program is a part of the Sandia experimental program to support the Waste Isolation Pilot Plant (WIPP). The Sandia BHP program is an Office of Nuclear Waste Isolation (ONWI)-funded program designed to provide inputs to the generic plugging program while simultaneously acquiring WIPP-specific data. For this reason a close liaison is maintained between the Sandia WIPP project and the ONWI generic program. Useful technology developed within the Sandia BHP to support WIPP is made available and considered for further development and application to the generic Borehole Plugging and Repository Sealing Program at ONWI. The purpose of this report is to illustrate the usefulness of downhole television (DHTV) observations of a borehole to plan plugging operations. An indication of the wellbore conditions observed is provided. The equipment and setup procedure used in the evaluation of AEC-7 for the Bell Canyon test series are illustrated. A sequence of pictures at various depths as the DHTV rig is lowered through the wellbore is presented. Sample photographs taken with both dry and underwater lamps for illumination are included. The caliper logs for the same depth are included for comparison. General comments are provided on the illustrations

  16. Assessing technology transfer in the Clean Development Mechanism

    OpenAIRE

    Cools, Sara Lena Yri

    2007-01-01

    This paper presents an operational definition of technology transfer, to be applied in studies of technology transfer in projects under the Kyoto Protocol’s Clean Development Mechanism (CDM). Although the CDM has never been given an explicit mandate for transferring technologies, its contribution in this respect has both been hoped for and exacted. The discussions of technology transfer in CDM projects are however blurred by widely varying conceptions of what technology transfer is. Qu...

  17. Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, Bjorn N.P. [Paulsson, Inc., Van Nuys, CA (United States)

    2015-02-28

    To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.

  18. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  19. Design of a borehole data-acquisition/transmission system. Final report, Volume I

    International Nuclear Information System (INIS)

    Hancock, R.L.; Bowden, J.C.

    1981-06-01

    Objective of the BDATS program was to design, construct, and demonstrate a borehole probe and associated uphole modules that would allow downhole collection of data from any of several borehole probes and would allow digital transmission of that data uphole to a computer. Specifically, the system was electrically and mechanically configured to interface to six separate borehole probes and a computer in a R and D logging vehicle. However, the system can be used with other types of probes

  20. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  1. Continuous monitoring of volcanoes with borehole strainmeters

    Science.gov (United States)

    Linde, Alan T.; Sacks, Selwyn

    volcanic regions should be observable, continuous high sensitivity strain monitoring of volcanoes provides the potential to give short time warnings of impending eruptions. Current technology allows transmission and processing of rapidly sampled borehole strain data in real-time. Such monitoring of potentially dangerous volcanoes on a global scale would provide not only a wealth of scientific information but also significant social benefit, including the capability of diverting nearby in-flight aircraft.

  2. Borehole logging in uranium exploration

    International Nuclear Information System (INIS)

    Kulkarni, N.H.

    1992-01-01

    The ultimate objective of exploration by drilling as far as Atomic Minerals Division is concerned is to locate the ore zone in the subsurface, draw samples and analyze them for their metal content. The presence of the ore zone is also indicated by gamma-ray logging of the borehole. A gamma-ray detector is lowered in the borehole and precise depth and grade of the ore zone is established. This helps the geologist in correlating the ore horizon with the surface outcrop or the ore zone intercepted in adjoining boreholes and in deciding about further drilling and location of boreholes. Most commonly, total gamma measurements are made although some units capable of measuring the gamma-ray spectrum are also in use. It is possible to know if the mineralization is due to uranium without waiting for the laboratory results. The present write up gives a brief account of the principles, equipment and methods of borehole gamma-ray logging including density and self-potential logging. (author). 8 refs., 5 figs

  3. Mechanisms for international technology exchange, privatization, and transfer

    International Nuclear Information System (INIS)

    Mayfield, T.

    1993-01-01

    An environmental technology transfer business assistance program is needed to encourage collaboration and technology transfer within the international community. This program helped to find appropriate mechanisms to facilitate the transfer of these technologies for use by DOE environmental restoration and waste management (ER/WM) programs while assisting U.S. private industry (especially small and medium size business) in commercializing the technologies nationally and abroad

  4. Stratigraphy of the Harwell boreholes

    International Nuclear Information System (INIS)

    Gallois, R.W.; Worssam, B.C.

    1983-12-01

    Seven boreholes, five of them partially cored, were drilled at the Atomic Energy Research Establishment at Harwell as part of a general investigation to assess the feasibility of storing low- and intermediate-level radioactive waste in underground cavities. Two of the deeper boreholes were almost wholly cored to provide samples for hydrogeological, hydrochemical, mineralogical, geochemical, geotechnical, sedimentological and stratigraphical studies to enable variations in lithology and rock properties to be assessed, both vertically and laterally, and related to their regional geological setting. This report describes the lithologies, main faunal elements and stratigraphy of the Cretaceous, Jurassic, Triassic and Carboniferous sequences proved in the boreholes. More detailed stratigraphical accounts of the late Jurassic and Cretaceous sequences will be prepared when current studies of the faunal assemblages are complete. (author)

  5. Utility service entrance in boreholes

    International Nuclear Information System (INIS)

    1987-08-01

    This study evaluates alternatives for utility service entrances to the repository. We determined the requirements for a repository utility supply. These requirements were defined as safety, maintainability, flexibility, reliability, cost efficiency, voltage regulation, and simplicity of operation. The study showed that repository shafts can best satisfy all requirements for location of the utility supply without the use of borehole penetrations into the repository. It is recommended that the shafts be utilized for utility distribution to the repository, and that the current NWTS program position to minimize the number of boreholes penetrating the repository horizon be maintained. 42 refs., 2 figs., 3 tabs

  6. Radiometric calipers for borehole logging

    International Nuclear Information System (INIS)

    Charbucinski, J.; Wylie, A.W.; Jarrett, R.G.

    1976-01-01

    Two versions of a radiometric-type caliper for measuring borehole diameter are described. One, based on the bow-spring principle, is suitable for percussion (exploration) drill holes. The other, which utilizes hemispherical wall contactors actuated by springs, is suitable for blast holes. Both utilize low-power radioactive sources and employ a scintillation detector to measure the 'inverse-square law' response of the device to changes in borehole radius. The performance of the device is examined and examples of its use are illustrated. (author)

  7. Rhenium Mechanical Properties and Joining Technology

    Science.gov (United States)

    Reed, Brian D.; Biaglow, James A.

    1996-01-01

    Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.

  8. Novel Emplacement Device for a Very Deep Borehole Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Heui-joo; Lee, Jong Yul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    There is a worldwide attempt of HLW disposal into a very deep borehole of around 3-5 km depth with the advancement of an underground excavation technology recently. As it goes into deeper underground, the rock becomes more uniform and flawless. And then the underground water circulation system at 3-5 km depth is almost disconnected with near groundwater circulation system. The canister integrity is less important in this very deep borehole disposal system unlike a general geologic disposal system at 500 m. In the deep borehole disposal procedures, one SNF (Spent Nuclear Fuel) assembly is stored in one disposal canister (D30-40cm, H4.7-5.0m), and approximately 10-40 disposal canisters are connected axially, which parade length can leach to around 200m in maximum. The connected canister parade is lowered through a very deep borehole (D40-50cm) by emplacement devices. Therefore the connections between canisters and canister to lowering joint are very important for the safe operation of it. The well-known connection method between canisters is Threaded Coupled Connection method, in which releasing of the connection is almost impossible after thread fastening in the borehole. The novel joint device suggested in this paper can accommodate a canister emplacement and retrieval in the borehole disposal process. The joint can be lowered by bound to a drilling pipe, or high tension cable along 3-5 km distance. This novel device can cope with an accidental event easily without any joint head change. When canisters are damaged or stuck on the borehole wall during their descending, the canisters in trouble can be retrieved simply by the control of a lifting speed.

  9. [Mechanized system for planning technological processes].

    Science.gov (United States)

    Pashchenko, V S; Shapiro, A M

    1977-01-01

    A mechanized system for the production processes planning involving the use of an electronic code device for data preparation on a punched tape of the "EPECT-IT" type, at the base of which there are classifiers of standard operations and transitions to individual design members, is considered. A fragment of the classifier and a skeleton diagram of the system are presented. It is pointed out that the use of the system helps improve the quality of the design work, as well as to yield considerable economic advantages. The system is in operation at some enterprises of the medical engineering industry.

  10. Chemical mechanisms in mercury emission control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Olson, E.S.; Laumb, J.D.; Benson, S.A.; Dunham, G.E.; Sharma, R.K.; Mibeck, B.A.; Miller, S.J.; Holmes, M.J.; Pavlish, J.H. [University of North Dakota, Energy and Environmental Research Center, Grand Forks, ND (United States)

    2003-05-01

    The emission of elemental mercury in the flue gas from coal-burning power plants is a major environmental concern. Control technologies utilizing activated carbon show promise and are currently under intense review. Oxidation and capture of elemental mercury on activated carbon was extensively investigated in a variety of flue gas atmospheres. Extensive parametric testing with individual and a variety of combinations and concentrations of reactive flue gas components and spectroscopic examination of the sulfur and chlorine forms present before and after breakthrough have led to an improved model to explain the kinetic and capacity results. The improved model delineates the independent Lewis acid oxidation site as well as a zig-zag carbene site on the carbon edge that performs as a Lewis base in reacting with both the oxidized mercury formed at the oxidation site and with the acidic flue gas components in competing reactions to form organochlorine, sulfinate, and sulfate ester moieties on the carbon edge.

  11. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  12. Uemachi flexure zone investigated by borehole database and numeical simulation

    Science.gov (United States)

    Inoue, N.; Kitada, N.; Takemura, K.

    2014-12-01

    The Uemachi fault zone extending north and south, locates in the center of the Osaka City, in Japan. The Uemachi fault is a blind reverse fault and forms the flexure zone. The effects of the Uemachi flexure zone are considered in constructing of lifelines and buildings. In this region, the geomorphological survey is difficult because of the regression of transgression. Many organizations have carried out investigations of fault structures. Various surveys have been conducted, such as seismic reflection survey in and around Osaka. Many borehole data for construction conformations have been collected and the geotechnical borehole database has been constructed. The investigation with several geological borehole data provides the subsurface geological information to the geotechnical borehole database. Various numerical simulations have been carried out to investigate the growth of a blind reverse fault in unconsolidated sediments. The displacement of the basement was given in two ways. One is based on the fault movement, such as dislocation model, the other is a movement of basement block of hanging wall. The Drucker-Prager and elastic model were used for the sediment and basement, respectively. The simulation with low and high angle fault movements, show the good agree with the actual distribution of the marine clay inferred from borehole data in the northern and southern Uemachi fault flexure zone, respectively. This research is partly funded by the Comprehensive Research on the Uemachi Fault Zone (from FY2010 to FY2012) by The Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  13. Mechanics of materials an introduction to engineering technology

    CERN Document Server

    Ghavami, Parviz

    2015-01-01

    This book, framed in the processes of engineering analysis and design, presents concepts in mechanics of materials for students in two-year or four-year programs in engineering technology, architecture, and building construction, as well as for students in vocational schools and technical institutes. Using the principles and laws of mechanics, physics, and the fundamentals of engineering, Mechanics of Materials: An Introduction for Engineering Technology will help aspiring and practicing engineers and engineering technicians from across disciplines—mechanical, civil, chemical, and electrical—apply concepts of engineering mechanics for analysis and design of materials, structures, and machine components. The book is ideal for those seeking a rigorous, algebra/trigonometry-based text on the mechanics of materials. This book also: ·       Elucidates concepts of engineering mechanics in materials, including stress and strain, force systems on structures, moment of inertia, and shear and bending moments...

  14. Waste Isolation Pilot Plant borehole data

    International Nuclear Information System (INIS)

    1995-04-01

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable

  15. Waste Isolation Pilot Plant borehole data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.

  16. Micro and Nano-Scale Technologies for Cell Mechanics

    Directory of Open Access Journals (Sweden)

    Mustafa Unal

    2014-10-01

    Full Text Available Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS, we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS. BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.

  17. Numerical Borehole Breakdown Investigations using XFEM

    Science.gov (United States)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum

  18. Regulatory issues for deep borehole plutonium disposition

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission

  19. Borehole geophysics in nuclear power plant siting

    International Nuclear Information System (INIS)

    Crosby, J.W.; Scott, J.D.

    1979-01-01

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative perameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape

  20. Borehole geophysics in nuclear power plant siting

    International Nuclear Information System (INIS)

    Crosby, J.W.; Scott, J.D.

    1979-01-01

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative parameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape. Digital data are subsequently computer processed and plotted to scales that enhance the stratigraphic data being correlated. Retention of the data in analog format permits rapid review, whereas computer plotting allows playback and detailed examination of log sections and sequences that may be attenuated on hard copy because of the logarithmic nature of the response to the physical property being examined

  1. Working program for deep borehole investigations. HDB-6,7,8, borehole

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Takahashi, Kazuharu; Ishii, Eiichi; Takeuchi, Ryuji; Sasaki, Manabu; Kunimaru, Takanori; Eki, Nobuhiro; Matsui, Hiroya

    2003-08-01

    In the Horonobe Underground Research Laboratory project, a wide range of geoscientific research and development activities are planned to be performed in three phases, Surface-based Investigations (Phase I), Construction (Phase II) and Operations (Phase III), over period of 20 years. Surface-based investigations have been conducted since 2000. Main goals of the Horonobe project are; To establish comprehensive techniques for investigating the geological environment, and To develop a range of engineering techniques for deep underground applications. The specific goals of the surface-based investigations are, To construct geological models of the geological environment based on the surface-based investigations and develop an understanding of the deep geological environment (undisturbed, initial conditions) before excavation of the shaft and experimental drifts To formulate detailed design and plans for the construction of the shaft and experimental drifts, and To plan scientific investigations during the construction phase. Field investigations during the surface-based investigations phase are planned for completion by the end of 2005, with excavation of the main shaft, Phase 2 construction, planned to start in 2005. The diameter of the main shafts has provisionally been set at 6.5 meters and the proposed depth is 500 meters. Details of the geometry and depth of specific underground facilities, including the main shaft, the ventilation shaft and the drifts, will be defined using data on the geological environment obtained during the surface-based investigation phase. As part of the surface-based investigations, geological, geophysical, hydrogeological, hydrochemical and rock mechanical investigations were carried out. Deep borehole investigations started in 2000 in order to characterize the sedimentary rocks. Taking into account the status of the investigations as of April 2003 and the remaining time (i.e., three year) for the surface-based investigations, an

  2. Raising with long boreholes in Uranium Mines, Hamr

    International Nuclear Information System (INIS)

    Kubista, A.; Svoboda, M.; Mohyla, Z.

    1984-01-01

    The technology is described of raising with long boreholes which was used in uranium mines for breaking 15 raises to the end of 1983. Also described is the method of computing the needed charge. The described technology has the following advantages as compared with usual driving methods: 1. it secures greater work safety, 2. it allows driving atypical profiles, 3. smooth breaking secures good stability and longer life of raises, 4. allows higher productivity, 5. reduces capital costs. (Ha)

  3. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  4. The Antartic Ice Borehole Probe

    Science.gov (United States)

    Behar, A.; Carsey, F.; Lane, A.; Engelhardt, H.

    2000-01-01

    The Antartic Ice Borehole Probe mission is a glaciological investigation, scheduled for November 2000-2001, that will place a probe in a hot-water drilled hole in the West Antartic ice sheet. The objectives of the probe are to observe ice-bed interactions with a downward looking camera, and ice inclusions and structure, including hypothesized ice accretion, with a side-looking camera.

  5. The development and application of CFD technology in mechanical engineering

    Science.gov (United States)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  6. Borehole Stability in High-Temperature Formations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  7. Novel Design Aspects of the Space Technology 5 Mechanical Subsystem

    Science.gov (United States)

    Rossoni, Peter; McGill, William

    2003-01-01

    This paper describes several novel design elements of the Space Technology 5 (ST5) spacecraft mechanical subsystem. The spacecraft structure itself takes a significant step in integrating electronics into the primary structure. The deployment system restrains the spacecraft during launch and imparts a predetermined spin rate upon release from its secondary payload accommodations. The deployable instrument boom incorporates some traditional as well as new techniques for lightweight and stiffness. Analysis and test techniques used to validate these technologies are described. Numerous design choices were necessitated due to the compact spacecraft size and strict mechanical subsystem requirements.

  8. The Clean Development Mechanism and neglected environmental technologies

    International Nuclear Information System (INIS)

    Kim, Jung Eun; Popp, David; Prag, Andrew

    2013-01-01

    The Clean Development Mechanism (CDM) provides an institutional framework for developed countries to support projects that reduce greenhouse gas emissions in developing countries. Are the technologies promoted those most needed by the recipient countries? We address this question by first reviewing Technology Needs Assessments prepared by developing countries, and then comparing the stated needs to the technologies most frequently promoted via CDM. While there appears to be a good match between requested technologies and those used in CDM, desired technologies such as solar energy for remote locations, biofuels, improved cooking stoves, and efficient lighting appear “neglected” by CDM. Nonetheless, a review of costs for these technologies suggests that many could be cost effective for developing countries. For projects requiring wide dispersal of household items, such as cooking stoves or lighting, the administrative burdens of CDM provide a hurdle. In other cases, difficulties quantifying the ancillary benefits of these projects hinder the promotion of these technologies. We conclude with possible explanations for why these technologies are neglected and suggestions for future research. - Highlights: ► We identify technologies desired by developing countries but not provided via CDM. ► Solar PV is neglected due to high costs. ► The CDM process provides a hurdle for improved cooking stoves and efficient lighting. ► Implications for CDM and climate policy are discussed

  9. Experimental research on sealing of boreholes, shafts and ramps in welded tuff

    International Nuclear Information System (INIS)

    Fuenkajorn, K.

    1996-01-01

    Laboratory and in-situ experiments have been conducted to determine the mechanical and hydraulic performance of cement borehole seals in densely welded Apache Leap tuff. Test results indicate that under saturated conditions, commercial expansive cement can provide good bond strength and adequate hydraulic performance for borehole seal under changing stress conditions. The cement seal should be installed at the intact portion of the opening, and should have a length-to-diameter ratio greater than four. Drying increases borehole plug permeability and decreases mechanical and hydraulic bonds at the plug-rock interface. In-situ testing indicates that installation procedure may significantly affect the cement plug performance

  10. Rock-welding materials for deep borehole nuclear waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The concept of deep borehole nuclear waste disposal has recently been proposed. Effective sealing of a borehole after waste emplacement is generally required. In a high temperature disposal mode, the sealing function will be fulfilled by melting the ambient granitic rock with waste decay heat or an external heating source, creating a melt that will encapsulate waste containers or plug a portion of the borehole above a stack of the containers. However, there are certain drawbacks associated with natural materials, such as high melting temperatures, slow crystallization kinetics, the resulting sealing materials generally being porous with low mechanical strength, insufficient adhesion to waste container surface, and lack of flexibility for engineering controls. Here we show that natural granitic materials can be purposefully engineered through chemical modifications to enhance the sealing capability of the materials for deep borehole disposal. This work systematically explores the effect of chemical modification and crystallinity (amorphous vs. crystalline) on the melting and crystallization processes of a granitic rock system. A number of engineered granitic materials have been obtained that have decreased melting points, enhanced viscous densification, and accelerated recrystallization rates without compromising the mechanical integrity of the materials.

  11. New experiences in borehole dilution techniques

    International Nuclear Information System (INIS)

    Umesh Chandra

    1977-01-01

    A study of filtration rate and direction of groundwater flow was made at various depths in borehole using bromine-82 as groundwater tracer. The filtration rates were found to vary along the depth of borehole. Vertical flow in the borehole was observed in an alluvial aquifer even after sealing the borehole by rubber packers. The filtration rates, obtained without the packer at various depths, were much less than those obtained with packer. Microscopic hydrological information was obtained around the borehole which was useful in planning a drainage system in the area. A depth was located in the borehole where vertical flow was in opposite directions. At another depth a zone of horizontal flow was observed where vertical flow was in opposite directions. The improved instrumentation used rendered the field work extremely easy quick and readily reproducible. (author)

  12. Safety Characterization of the Technological Development Plant at Hontomín. Risk Structures: 2. Wells and Boreholes; Caracterización de la Seguridad de la Planta de Desarrollo Tecnológico de Hontomín. Estructuras de Riesgo: 2. Pozos y Sondeos

    Energy Technology Data Exchange (ETDEWEB)

    Recreo, F.; Eguilior, S.; Hurtado, A.

    2015-07-01

    Safe storage of CO2 required to guarantee the formation’s caprock seal capacity for CO2 storage during the time in which the CO2 will remain in supercritical state before moving to dissolved phase CO2aq:. Structures such as wells and boreholes affecting storage and caprock formations may play a relevant role in the behavior of the CO2 plume and act as preferential leakage paths violating the integrity of the seal rock. Although the geological history of the storage complex in cases such as depleted oil or gas fields, preferably, allow to assume a priori that the geological medium can reasonably ensure their confining role during the required time, i.e., a «long term» time period for the effective contribution of CCS to the mitigation of climate change (> 10.000 years), it is not possible to make an equivalent prognosis with regard to the behaviour of deep wells and boreholes without having a detailed knowledge of the aging process and of the mechanical and chemical aggression of its components. In any case, always will remain a high level of uncertainty to be integrated in the analysis to assess the security of the storage complex. Therefore, the integrity of the components of deep wells and boreholes that may affect both caprock seal and storage formations, both mechanically and chemically, plays an important role in the chain of elements that contribute to CO2 geological storage long-term safety, hence the importance of its study and integration. An approach to degradation processes of the components of injection and abandoned wells that can act as preferential leakage paths of CO2, consists of the decomposition of the storage system in a components and processes integrated network to estimate their interaction conditional probabilities. This report analyzes these processes, the security and operational requirements of deep wells and boreholes as well as its componentes failure scenarios.

  13. Development of a mobile borehole investigation software using augmented reality

    Science.gov (United States)

    Son, J.; Lee, S.; Oh, M.; Yun, D. E.; Kim, S.; Park, H. D.

    2015-12-01

    Augmented reality (AR) is one of the most developing technologies in smartphone and IT areas. While various applications have been developed using the AR, there are a few geological applications which adopt its advantages. In this study, a smartphone application to manage boreholes using AR has been developed. The application is consisted of three major modules, an AR module, a map module and a data management module. The AR module calculates the orientation of the device and displays nearby boreholes distributed in three dimensions using the orientation. This module shows the boreholes in a transparent layer on a live camera screen so the user can find and understand the overall characteristics of the underground geology. The map module displays the boreholes on a 2D map to show their distribution and the location of the user. The database module uses SQLite library which has proper characteristics for mobile platforms, and Binary XML is adopted to enable containing additional customized data. The application is able to provide underground information in an intuitive and refined forms and to decrease time and general equipment required for geological field investigations.

  14. Cement thickness measurements in cased boreholes

    International Nuclear Information System (INIS)

    Wahl, J.S.; Schuster, N.A.

    1978-01-01

    Methods and apparatus are provided for logging a borehole having solid matter along at least a portion of the wall thereof. Gamma radiation is emitted from the borehole into the surrounding media, and the amount of radiation which returns to the borehole is measured by three detectors located at different distances from the source of radiation, so as to be primarily sensitive to radiation which has respectively penetrated to three different depths in the surrounding media. The thickness of the solid matter on the borehole wall is then determined from the three gamma radiation measurements

  15. Preliminary analyses of the deep geoenvironmental characteristics for the deep borehole disposal of high-level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Lee, Min Soo; Choi, Heui Joo; Kim, Geon Young; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested.

  16. Preliminary analyses of the deep geoenvironmental characteristics for the deep borehole disposal of high-level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Lee, Min Soo; Choi, Heui Joo; Kim, Geon Young; Kim, Kyung Su

    2016-01-01

    Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested

  17. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  18. Influence of the stack length on the stresses and temperatures at the location of a borehole seal

    International Nuclear Information System (INIS)

    Beemsterboer, C.J.J.; Prij, J.

    1993-02-01

    This report deals with a numerical analysis to determine the sensitivity of the thermomechanical loading of the borehole seal with respect to the length of the stack of canisters. The analysis deals with the mechanical loads (stresses, deformation and temperature) caused by the rock pressure at the location of the borehole seal and by the heat producing canisters in the borehole. The aim of the analysis is to obtain insight in the temperature and stress load on the borehole seal and to define the distance above which these loads can be neglected

  19. Technology of Rock Destruction by Combined Explosion-Mechanical Load

    Directory of Open Access Journals (Sweden)

    Oleg M. Terentiev

    2017-10-01

    Full Text Available Background. Rock drilling is characterized by an energy capacity of more than 120 kWh/m3. This is due to the fact that about 90 % of the energy is expended on the “preparation” of rocks for destruction. This study proposes to combine explosive and mechanical loads to reduce specific energy consumption of rock destruction. Objective. The aim of the paper is energy effective technology development for rock destruction by combined explosive-mechanical loads. Methods. Analytical studies; regression analysis; math modeling; experimental research; technical and economic analysis. Results. Specific energy decreasing for explosive-mechanical rock drilling by 4–16 % was experimentally proved. Conclusions. As a result of the implementation of explosive-mechanical rock drilling on the created full-sized experimental device, the efficiency coefficient increased from 77 to 80 %.

  20. Quantitative and qualitative applications of the neutron-gamma borehole logging

    International Nuclear Information System (INIS)

    Charbucinski, J.; Aylmer, J.A.; Eisler, P.L.; Borsaru, M.

    1989-01-01

    Two neutron-γ borehole logging applications are described. In a quantitative application of the prompt-gamma neutron-activation analysis (PGNAA) technique, research was carried out both in the laboratory and at a mine to establish a suitable borehole logging technology for manganese-grade predictions. As an example of the qualitative application of PGNAA, the use of this method has been demonstrated for the determination of lithology. (author)

  1. Quantitative and qualitative applications of the neutron-gamma borehole logging

    International Nuclear Information System (INIS)

    Charbucinski, J.; Eisler, P.L.; Borsaru, M.; Aylmer, J.A.

    1990-01-01

    Two examples of neutron-gamma borehole logging application are described. In the quantitative application of the PGNAA technique, research was carried out both in the laboratory and at a mine to establish a suitable borehole logging technology for Mn-grade predictions. As an example of qualitative application of PGNAA, use of this method has been demonstrated for determination of lithology. (author). 4 refs, 10 figs, 7 tabs

  2. 30 CFR 75.1318 - Loading boreholes.

    Science.gov (United States)

    2010-07-01

    ... protect persons shall be done in the working place or other area where blasting is to be performed. (c) When loading boreholes drilled at an angle of 45 degrees or greater from the horizontal in solid rock... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1318 Loading boreholes. (a...

  3. 30 CFR 75.1322 - Stemming boreholes

    Science.gov (United States)

    2010-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a... deep shall be stemmed for at least half the depth of the borehole. (f) When blasting off the solid in... water stemming bag shall be within 1/4 of an inch of the diameter of the drill bit used to drill the...

  4. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  5. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  6. Borehole imaging tool detects well bore fractures

    International Nuclear Information System (INIS)

    Ma, T.A.; Bigelow, E.L.

    1993-01-01

    This paper reports on borehole imaging data which can provide high quality geological and petrophysical information to improve fracture identification, dip computations, and lithology determinations in a well bore. The ability to visually quantify the area of a borehole wall occupied by fractures and vugs enhances reservoir characterization and well completion operations. The circumferential borehole imaging log (CBIL) instrument is an acoustic logging device designed to produce a map of the entire borehole wall. The visual images can confirm computed dips and the geological features related to dip. Borehole geometry, including breakout, are accurately described by complete circumferential caliper measurements, which is important information for drilling and completion engineers. In may reservoirs, the images can identify porosity type, bedding characteristics, and petrophysical parameters

  7. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  8. Cement-latex grouting mortar for cementing boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Kateev, I S; Golyshkina, L A; Gorbunova, I V; Kurochkin, B M; Vakula, Ya V

    1980-01-01

    The need for the development of cement-latex grouting mortar for the purpose of separating strata when reinforcing boreholes at deposits in the Tatar Associated SSR is evaluated. Results of studies of the physical and mechanical properties of cement-latex grouting mortar systems (mortar plus brick) are presented. Formulas for preparing cement-latex grouting mortor are evaluated and results of industrial tests of such mortars shown.

  9. Technology of combined chemical-mechanical fabrication of durable coatings

    Science.gov (United States)

    Smolentsev, V. P.; Ivanov, V. V.; Portnykh, A. I.

    2018-03-01

    The article presents the scientific fundamentals of methodology for calculating the modes and structuring the technological processes of combined chemical-mechanical fabrication of durable coatings. It is shown that they are based on classical patterns, describing the processes of simultaneous chemical and mechanical impact. The paper demonstrates the possibility of structuring a technological process, taking into account the systematic approach to impact management and strengthening the reciprocal positive influence of each impact upon the combined process. The combined processes have been planned for fabricating the model types of chemical-mechanical coatings of durable products in machine construction. The planning methodology is underpinned by a scientific hypothesis of a single source of impact management through energy potential of process components themselves, or by means of external energy supply through mechanical impact. The control of it is fairly thoroughly studied in the case of pulsed external strikes of hard pellets, similar to processes of vibroimpact hardening, thoroughly studied and mastered in many scientific schools of Russia.

  10. Deep borehole disposal of plutonium

    International Nuclear Information System (INIS)

    Gibb, F. G. F.; Taylor, K. J.; Burakov, B. E.

    2008-01-01

    Excess plutonium not destined for burning as MOX or in Generation IV reactors is both a long-term waste management problem and a security threat. Immobilisation in mineral and ceramic-based waste forms for interim safe storage and eventual disposal is a widely proposed first step. The safest and most secure form of geological disposal for Pu yet suggested is in very deep boreholes and we propose here that the key to successful combination of these immobilisation and disposal concepts is the encapsulation of the waste form in small cylinders of recrystallized granite. The underlying science is discussed and the results of high pressure and temperature experiments on zircon, depleted UO 2 and Ce-doped cubic zirconia enclosed in granitic melts are presented. The outcomes of these experiments demonstrate the viability of the proposed solution and that Pu could be successfully isolated from its environment for many millions of years. (authors)

  11. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  12. Effective Information Technology Governance Mechanisms: An Australian Study

    Directory of Open Access Journals (Sweden)

    Syaiful Ali

    2006-01-01

    Full Text Available Growing importance of information technology (IT, as a strategic factor for organizations in achieving their objectives, have raised the concern of organizations in establishing and implementing effective IT governance. This study seeks to empirically examine the individual IT governance mechanisms that influence the overall effectiveness of IT governance. The data were obtained by using web based survey from 176 members of ISACA (Information Systems and Audit Control Association Australia. This study examines the influences of six proposed IT governance mechanisms on the overall effectiveness of IT governance. Using Factor Analysis and Multiple Regression techniques, the current study finds significant positive relationships between the overall level of effective IT governance and the following four IT governance mechanisms: the existence of ethics/ culture of compliance in IT, corporate communication systems, an IT strategy committee, and the involvement of senior management in IT.

  13. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review

    Science.gov (United States)

    Farahani, Hamid; Wagiran, Rahman; Hamidon, Mohd Nizar

    2014-01-01

    Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors), polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types. PMID:24784036

  14. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Hamid Farahani

    2014-04-01

    Full Text Available Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors, polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types.

  15. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses

    International Nuclear Information System (INIS)

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs

  16. The Influence of Interactive Multimedia Technology to Enhance Achievement Students on Practice Skills in Mechanical Technology

    Science.gov (United States)

    Made Rajendra, I.; Made Sudana, I.

    2018-01-01

    Interactive multimedia technology empowers the educational process by means of increased interaction between teachers and the students. The utilization of technology in the instructional media development has an important role in the increase of the quality of teaching and learning achievements of students. The application of multimedia technology in the instructional media development is able to integrate aspects of knowledge and skills. The success of multimedia technology has revolutionized teaching and learning methods. The design of the study was quasi-experimental with pre and post. The instrument used is the form of questionnaires and tests This study reports research findings indicated that there is a significance difference between the mean performances of students in the experimental group than those students in the control group. The students in the experimental group performed better in mechanical technology practice and in retention test than those in the control group. The study recommended that multimedia instructional tool is an effective tool to enhance achievement students on practice skills in mechanical Technology.

  17. New developments in high resolution borehole seismology and their applications to reservoir development and management

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, B.N.P. [Chevron Petroleum Technology Company, La Habra, CA (United States)

    1997-08-01

    Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

  18. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were set up, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  19. Development of mechanical design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were setup, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  20. Geophysical borehole logging test procedure: Final draft

    International Nuclear Information System (INIS)

    1986-09-01

    The purpose of geophysical borehole logging from the At-Depth Facility (ADF) is to provide information which will assist in characterizing the site geologic conditions and in classifying the engineering characteristics of the rock mass in the vicinity of the ADF. The direct goals of borehole logging include identification of lithologic units and their correlation from hole to hole, identification of fractured or otherwise porous or permeable zones, quantitative or semi-quantitative estimation of various formation properties, and evaluation of factors such as the borehole diameter and orientation. 11 figs., 4 tabs

  1. Study of borehole probing methods to improve the ground characterization

    Science.gov (United States)

    Naeimipour, Ali

    Collecting geological information allows for optimizing ground control measures in underground structures. This includes understanding of the joints and discontinuities and rock strength to develop rock mass classifications. An ideal approach to collect such information is through correlating the drilling data from the roofbolters to assess rock strength and void location and properties. The current instrumented roofbolters are capable of providing some information on these properties but not fully developed for accurate ground characterization. To enhance existing systems additional instrumentation and testing was conducted in laboratory and field conditions. However, to define the geology along the boreholes, the use of probing was deemed to be most efficient approach for locating joints and structures in the ground and evaluation of rock strength. Therefore, this research focuses on selection and evaluation of proper borehole probes that can offer a reliable assessment of rock mass structure and rock strength. In particular, attention was paid to borehole televiewer to characterize rock mass structures and joints and development of mechanical rock scratcher for determination of rock strength. Rock bolt boreholes are commonly drilled in the ribs and the roof of underground environments. They are often small (about 1.5 inches) and short (mostly 2-3 meter). Most of them are oriented upward and thus, mostly dry or perhaps wet but not filled with water. No suitable system is available for probing in such conditions to identify the voids/joints and specifically to measure rock strength for evaluation of rock mass and related optimization of ground support design. A preliminary scan of available borehole probes proved that the best options for evaluation of rock structure is through analysis of borehole images, captured by optical televiewers. Laboratory and field trials with showed that these systems can be used to facilitate measurement of the location, frequency and

  2. Crosshole investigations - results from borehole radar investigations

    International Nuclear Information System (INIS)

    Olsson, O.; Falk, L.; Sandberg, E.; Forslund, O.; Lundmark, L.

    1987-05-01

    A new borehole radar system has been designed, built and tested. The system consists of borehole transmitter and receiver probes, a signal control unit for communication with the borehole probes, and a computer unit for storage and display of data. The system can be used both in singlehole and crosshole modes and probing ranges of 115 m and 300 m, respectively, have been obtained at Stripa. The borehole radar is a short pulse system which uses center frequencies in the range 20 to 60 MHz. Single hole reflection measurements have been used to identify fracture zones and to determine their position and orientation. The travel time and amplitude of the first arrival measured in a crosshole experiment can be used as input data in a tomographic analysis. (orig./DG)

  3. Leaflet escape in a new bileaflet mechanical valve: TRI technologies.

    Science.gov (United States)

    Bottio, Tomaso; Casarotto, Dino; Thiene, Gaetano; Caprili, Luca; Angelini, Annalisa; Gerosa, Gino

    2003-05-13

    Leaflet escape is a mode of structural valve failure for mechanical prostheses. This complication previously has been reported for both monoleaflet and bileaflet valve models. We report 2 leaflet escape occurrences observed in 2 patients who underwent valve replacement with a TRI Technologies valve prosthesis. At the University of Padua, between November 2000 and February 2002, 36 TRI Technologies valve prostheses (26 aortic and 10 mitral) were implanted in 34 patients (12 women and 22 men) with a mean age of 59.9+/-10.3 years (range, 30 to 75 years). There were 5 deaths: 3 in hospital, 1 early after discharge, and 1 late. Two patients experienced a catastrophic prosthetic leaflet escape; the first patient was a 52-year-old man who died 10 days after aortic valve and ascending aorta replacement, and the second was a 58-year-old man who underwent a successful emergency reoperation 20 months after mitral valve replacement. Examination of the explanted prostheses showed in both cases a leaflet escape caused by a leaflet's pivoting system fracture. Prophylactic replacement was then successfully accomplished so far in 12 patients, without evidence of structural valve failure in any of them. Among other significant postoperative complications, we observed 3 major thromboembolisms, 1 hemorrhage, and 1 paravalvular leak. These catastrophes prompted us to interrupt the implantation program, and they cast a shadow on the durability of the TRI Technologies valve prosthesis because of its high risk of structural failure.

  4. Dimensioning of Boreholes for Geothermal Heat Pumps

    Directory of Open Access Journals (Sweden)

    Ryška Jiøí

    2004-09-01

    Full Text Available The paper deals with determination of borehole depths for geothermal heat pumps. Basic formulae are stated for heat convection in rocks. Software EED 2.0 was used for calculation of borehole depth depending on different entering parameters. The crucial parameter is thermal conductivity of rocks. The thermal conductivity could be very variable for the same kind of rock. Therefore its in-situ determination by means of formation thermal conductivity testing is briefly described.

  5. Using boreholes as windows into groundwater ecosystems.

    Directory of Open Access Journals (Sweden)

    James P R Sorensen

    Full Text Available Groundwater ecosystems remain poorly understood yet may provide ecosystem services, make a unique contribution to biodiversity and contain useful bio-indicators of water quality. Little is known about ecosystem variability, the distribution of invertebrates within aquifers, or how representative boreholes are of aquifers. We addressed these issues using borehole imaging and single borehole dilution tests to identify three potential aquifer habitats (fractures, fissures or conduits intercepted by two Chalk boreholes at different depths beneath the surface (34 to 98 m. These habitats were characterised by sampling the invertebrates, microbiology and hydrochemistry using a packer system to isolate them. Samples were taken with progressively increasing pumped volume to assess differences between borehole and aquifer communities. The study provides a new conceptual framework to infer the origin of water, invertebrates and microbes sampled from boreholes. It demonstrates that pumping 5 m(3 at 0.4-1.8 l/sec was sufficient to entrain invertebrates from five to tens of metres into the aquifer during these packer tests. Invertebrates and bacteria were more abundant in the boreholes than in the aquifer, with associated water chemistry variations indicating that boreholes act as sites of enhanced biogeochemical cycling. There was some variability in invertebrate abundance and bacterial community structure between habitats, indicating ecological heterogeneity within the aquifer. However, invertebrates were captured in all aquifer samples, and bacterial abundance, major ion chemistry and dissolved oxygen remained similar. Therefore the study demonstrates that in the Chalk, ecosystems comprising bacteria and invertebrates extend from around the water table to 70 m below it. Hydrogeological techniques provide excellent scope for tackling outstanding questions in groundwater ecology, provided an appropriate conceptual hydrogeological understanding is applied.

  6. Geophysical logging of the Harwell boreholes

    International Nuclear Information System (INIS)

    Brightman, M.A.

    1983-08-01

    A comprehensive geophysical borehole logging survey was carried out on each of three deep boreholes drilled at the Harwell research site. KOALA and PETRA computer programs were used to analyse and interpret the logs to obtain continuous quantitative estimates of the geological and hydrogeological properties of the sequences penetrated at the Harwell site. Quantitative estimates of the mineral composition and porosity of the cores samples were made. (UK)

  7. Experiments on stress dependent borehole acoustic waves.

    Science.gov (United States)

    Hsu, Chaur-Jian; Kane, Michael R; Winkler, Kenneth; Wang, Canyun; Johnson, David Linton

    2011-10-01

    In the laboratory setup, a borehole traverses a dry sandstone formation, which is subjected to a controlled uniaxial stress in the direction perpendicular to the borehole axis. Measurements are made in a single loading-unloading stress cycle from zero to 10 MPa and then back down to zero stress. The applied stress and the presence of the borehole induce anisotropy in the bulk of the material and stress concentration around the borehole, both azimuthally and radially. Acoustic waves are generated and detected in the water-filled borehole, including compressional and shear headwaves, as well as modes of monopole, dipole, quadrupole, and higher order azimuthal symmetries. The linear and non-linear elastic parameters of the formation material are independently quantified, and utilized in conjunction with elastic theories to predict the characteristics of various borehole waves at zero and finite stress conditions. For example, an analytic theory is developed which is successfully used to estimate the changes of monopole tube mode at low frequency resulted from uniaxial stress, utilizing the measured material third order elasticity parameters. Comparisons between various measurements as well as that between experiments and theories are also presented. © 2011 Acoustical Society of America

  8. Borehole stability in densely welded tuffs

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1992-07-01

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs

  9. Development of a Lunar Borehole Seismometer

    Science.gov (United States)

    Passmore, P. R.; Siegler, M.; Malin, P. E.; Passmore, K.; Zacny, K.; Avenson, B.; Weber, R. C.; Schmerr, N. C.; Nagihara, S.

    2017-12-01

    Nearly all seismic stations on Earth are buried below the ground. Burial provides controlled temperatures and greater seismic coupling at little cost. This is also true on the Moon and other planetary bodies. Burial of a seismometer under just 1 meter of lunar regolith would provide an isothermal environment and potentially reduce signal scattering noise by an order of magnitude. Here we explain how we will use an existing NASA SBIR and PIDDP funded subsurface heat flow probe deployment system to bury a miniaturized, broadband, optical seismometer 1 meter below the lunar surface. The system is sensitive, low mass and low power. We believe this system offers a compelling architecture for NASA's future seismic exploration of the solar system. We will report on a prototype 3-axis, broadband seismometer package that has been tested under low pressure conditions in lunar-regolith simulant. The deployment mechanism reaches 1m depth in less than 25 seconds. Our designed and tested system: 1) Would be deployed at least 1m below the lunar surface to achieve isothermal conditions without thermal shielding or heaters, increase seismic coupling, and decrease noise. 2) Is small (our prototype probe is a cylinder 50mm in diameter, 36cm long including electronics, potentially as small as 10 cm with sensors only). 3) Is low-mass (each sensor is 0.1 kg, so an extra redundancy 4-component seismograph plus 1.5 kg borehole sonde and recorder weighs less than 2 kg and is feasibly smaller with miniaturized electronics). 4) Is low-power (our complete 3-sensor borehole seismographic system's power consumption is about half a Watt, or 7% of Apollo's 7.1 W average and 30% of the InSight SEIS's 1.5W winter-time heating system). 5) Is broadband and highly sensitive (the "off the shelf" sensors have a wide passband: 0.005-1000 Hz - and high dynamic range of 183 dB (or about 10-9g Hz-1/2, with hopes for simple modifications to be at least an order of magnitude better). Burial also aids the

  10. Technology Transfer of Isotopes-Based Assay: Strategies and Mechanisms

    International Nuclear Information System (INIS)

    Tabbada, R.S.D.C.; Rañada, M.L.O.; Mendoza, A.D.L.; Panganiban, R.; Castañeda, S.S.; Sombrito, E.Z.; Arcamo, S.V.R.

    2015-01-01

    Receptor Binding Assay for Paralytic Shellfish Poisoning (PSP RBA) is an isotope-based assay for detection and quantification of PSP toxins in seafood. It was established in the Philippines through a national program based on the recommendations of the Expert Mission sent by the International Atomic Energy Agency (IAEA). Through the said program, the Philippines Nuclear Research Institute (PNRI) was able to put up an RBA facility and develop expertise. Advantages of the technique against Mouse Bioassay (MBA) and high-performance Liquid Chromatography (HPLC) methods were are established. RBA is being utilized by some developed countries as screening method for Harmful Algal Bloom (HAB) Monitoring. However, it was not immediately adopted by the national HAB regulatory body for the following reasons: (1) acceptance of RBA as an official national method of analysis for PSP, (2) logistics and financial concerns in building up and maintaining a RBA facility, (3) considerations on the use of radioactive materials. To address these issues, the Philippines Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD) approved a Grants-In-Aid Project to initiate and to facilitate the transfer of the RBA technology to the monitoring and regulatory body. The project has two major objectives: capacity building and technology transfer. The capacity building focuses on human resources development of HAB monitoring personnel, specifically training on RBA and on the use of radioactive materials. On the other hand, the technology transfer deals with assistance that PNRI may render in establishing the new RBA facility and over-all know-how of the project. In this is poster, the mechanisms and strategies being undertaken by PNRI, in collaboration with the regulatory and monitoring body, to address the limitation of transferring a technology that utilizes radioactive materials including the technical difficulties are presented and discussed. (author)

  11. Study on sealing of boreholes

    International Nuclear Information System (INIS)

    1987-01-01

    A bibliographical research on the problem of the backfilling and sealing of boreholes, shafts and tunnels for radioactive waste disposal has been carried out. Various materials - both natural and artificial - like clay, industrial cement, polymer concrete, geothermical and magnesium cement have been examined. Their main physico-chemical and durability characteristics have been examined. The problem of the interaction between the sealing and the geological environment has been also dealt. The final subject discussed in the bibliography is the damage caused to the host formation by the excavation of shafts and tunnels. The laboratory tests have been performed on a natural clay and other types of material (cement grout, cement grout with expansive additive, cement mortar and remoulded clay) which have been used as plug materials. The main conclusions obtained from the tests are the following: - The permeability of the cement is lower than the permeability of the clay; - no adhesion was observed between clay and cement mortar, with or without expansive additive, when cured under different ambient conditions, but without any application of load; - When curing took place under load, good adhesion was observed between the clay and the cement mortar; - The flow of water in a specimen consisting of a clay core surrounded by remoulded clay is larger than in the natural clay. These results seem to be caused by the different permeabilities of the remoulded and undisturbed clay and not to depend on flow at the contact between the two materials. A remote instrumentation package for the in situ evaluation of the performance of a plug, has been developed. In order to get rid of the uncertainty associated with the infiltration of the cables through the plug a wireless data transmission system, based on acoustic waves, has been developed

  12. Mechanical-engineering aspects of mirror-fusion technology

    International Nuclear Information System (INIS)

    Fisher, D.K.; Doggett, J.N.

    1982-01-01

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design

  13. A new mechanism for energy conservation technology services

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Feng

    1996-12-31

    In the ninth-five year plan of China, the socialist market economy model will be developed. In the stage of transferring from planning economy to market economy, the energy conservation technology services industry in China has met new challenges. Over the past ten to fifteen years, there has developed a new mechanism for financing energy efficiency investments in market economies. The process is simple. After inspecting an enterprise or an entity for energy saving opportunities, an Energy Service Company (ESCO) which business aimed at making money will review the recommended energy conservation opportunities with the enterprise or the entity (user) and implement those measures acceptable to the user at no front end cost to the user. The ESCO then guarantees that the energy savings will cover the cost of the capital renovations using the Performance Contracting.

  14. Development of mechanical structure design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Bong; Lee, Jae Han; Joo, Young Sang [and others

    2000-05-01

    In this project, fundamentals for conceptual design of mechanical structure system for LMR are independently established. The research contents are as follow; at first, conceptual design for SSC, design integration of interfaces, design consistency to keep functions and interfaces by developing arrangement of reactor system and 3 dimensional concept drawings, development and revision of preliminary design requirements and structural design basis, and evaluation of structural integrity for SSC following structural design criteria to check the conceptual design to be proper, at second, development of high temperature structure design and analysis technology and establishment of high temperature structural analysis codes and scheme, development of seismic isolation design concept to reduce seismic design loads to SCC and establishment of seismic analysis codes and scheme.

  15. Development of mechanical structure design technology for LMR

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae Han; Joo, Young Sang

    2000-05-01

    In this project, fundamentals for conceptual design of mechanical structure system for LMR are independently established. The research contents are as follow; at first, conceptual design for SSC, design integration of interfaces, design consistency to keep functions and interfaces by developing arrangement of reactor system and 3 dimensional concept drawings, development and revision of preliminary design requirements and structural design basis, and evaluation of structural integrity for SSC following structural design criteria to check the conceptual design to be proper, at second, development of high temperature structure design and analysis technology and establishment of high temperature structural analysis codes and scheme, development of seismic isolation design concept to reduce seismic design loads to SCC and establishment of seismic analysis codes and scheme

  16. The technology of mobile robot with articulated crawler mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Byung Soo; Kim, Chang Hoi; Hwang, Suk Yong; Suh, Yong Chil; Lee, Yung Kwang; Sin, Jae Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    The main application of a mobile robot are to do the inspection and maintenance tasks in the primary and auxiliary building, and to meet with the radiological emergency response in nuclear power plant. Our project to develop crawler-type mobile robot has been divided into 3 phases. In 1 st phase, the-state-of-the-arts of mobile robot technology were studied and analyzed. And then the technical report `development of mobile robot technology for the light work` was published on July, 1993. In current phase, the articulated crawler type mobile robot named as ANDROS Mark VI was purchased to evaluate deeply its mechanism and control system. Then we designed the autonomous track surface, to get the inclination angle of robot, and to control the front and rear auxiliary track autonomously during climbing up and down stairs. And also, the autonomous stair-climbing algorithm has been developed to going over stairs with high stability. For the final phase, the advanced model of articulated crawler type mobile robot is going to be developed. (Author) 13 refs., 30 figs., 12 tabs.

  17. The technology of mobile robot with articulated crawler mechanism

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Byung Soo; Kim, Chang Hoi; Hwang, Suk Yong; Suh, Yong Chil; Lee, Yung Kwang; Sin, Jae Ho

    1995-01-01

    The main application of a mobile robot are to do the inspection and maintenance tasks in the primary and auxiliary building, and to meet with the radiological emergency response in nuclear power plant. Our project to develop crawler-type mobile robot has been divided into 3 phases. In 1 st phase, the-state-of-the-arts of mobile robot technology were studied and analyzed. And then the technical report 'development of mobile robot technology for the light work' was published on July, 1993. In current phase, the articulated crawler type mobile robot named as ANDROS Mark VI was purchased to evaluate deeply its mechanism and control system. Then we designed the autonomous track surface, to get the inclination angle of robot, and to control the front and rear auxiliary track autonomously during climbing up and down stairs. And also, the autonomous stair-climbing algorithm has been developed to going over stairs with high stability. For the final phase, the advanced model of articulated crawler type mobile robot is going to be developed. (Author) 13 refs., 30 figs., 12 tabs

  18. Optimal experimental design for placement of boreholes

    Science.gov (United States)

    Padalkina, Kateryna; Bücker, H. Martin; Seidler, Ralf; Rath, Volker; Marquart, Gabriele; Niederau, Jan; Herty, Michael

    2014-05-01

    Drilling for deep resources is an expensive endeavor. Among the many problems finding the optimal drilling location for boreholes is one of the challenging questions. We contribute to this discussion by using a simulation based assessment of possible future borehole locations. We study the problem of finding a new borehole location in a given geothermal reservoir in terms of a numerical optimization problem. In a geothermal reservoir the temporal and spatial distribution of temperature and hydraulic pressure may be simulated using the coupled differential equations for heat transport and mass and momentum conservation for Darcy flow. Within this model the permeability and thermal conductivity are dependent on the geological layers present in the subsurface model of the reservoir. In general, those values involve some uncertainty making it difficult to predict actual heat source in the ground. Within optimal experimental the question is which location and to which depth to drill the borehole in order to estimate conductivity and permeability with minimal uncertainty. We introduce a measure for computing the uncertainty based on simulations of the coupled differential equations. The measure is based on the Fisher information matrix of temperature data obtained through the simulations. We assume that the temperature data is available within the full borehole. A minimization of the measure representing the uncertainty in the unknown permeability and conductivity parameters is performed to determine the optimal borehole location. We present the theoretical framework as well as numerical results for several 2d subsurface models including up to six geological layers. Also, the effect of unknown layers on the introduced measure is studied. Finally, to obtain a more realistic estimate of optimal borehole locations, we couple the optimization to a cost model for deep drilling problems.

  19. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn; Kim, Jong Wook; Choi, Woo Seok

    2002-03-01

    This report is the final documentation of the 'Development of Mechanical Design Technology for Integral Reactor' which describes the design activities including reactor vessel assembly structural modelling, normal operation and transient analysis, preparation of design specification, major component stress analysis, evaluation of structural integrity, review of fabricability, maintenance and repair scheme, etc. To establish the design requirements and applicable codes and standards, each GDC criterion was reviewed regarding the SMART structural characteristics and design status, and then the applicability and point of issues were evaluated. To accomodate the result of the core optimization program, modification of pressure vessel and reactor internal components were carried out. SG nozzles were rearranged to penetrate the pressure vessel wall instead of the annular cover. Coolant flow path through the MCP impeller was revised and the adjacent structures were modified. Dynamic analysis model was developed reflecting all the structural changes to perform the seismic and BLPB analysis. Fracture mechanics evaluation on the structural integrity of the reactor pressure vessel was also conducted. Besides, equipment maintenance and replacement plan including the refueling scheme was discussed to confirm the embodiment of SMART through construction and operation

  20. BOSS: Borehole Disposal of Disused Sealed Sources. A Technical Manual

    International Nuclear Information System (INIS)

    2011-01-01

    The management of disused radioactive sources is the responsibility of individual Member States. Accordingly, interest in technologies to allow the safe, secure and sustainable management of disused sealed radioactive sources is growing. This publication is a technical summary on preparing and planning predisposal and disposal activities with regard to the BOSS (borehole disposal of disused sealed sources) system, a safe, simple and cost effective solution for the management of disused sealed radioactive sources. It advises potential implementers and decision makers on the implementation of BOSS, which is expected to provide Member States with a successful tool to contribute to the safety and security of current and future generations.

  1. Assessment of geophysical logs from borehole USW G-2, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.; Schimschal, U.

    1993-01-01

    Commercial logging contractors, Western Atlas, Schlumberger, and Edcon obtained borehole geophysical logs at the site of a potential high level nuclear waste repository at Yucca Mountain, Nevada. Drill hole USW-G2 was picked for this test of suitable logging tools and logging technology, both representing state-of-the-art technology by these commercial companies. Experience gained by analysis of existing core data and a variety of logs obtained earlier by Birdwell and Dresser Atlas served as a guide to a choice of logs to be obtained. Logs were obtained in water-filled borehole in zeolitized tuff (saturated zone) and in air-filled borehole largely in unaltered welded tuff (unsaturated zone)

  2. Developments of borehole strain observation outside China

    Institute of Scientific and Technical Information of China (English)

    邱泽华; 石耀霖

    2004-01-01

    Borehole strain observation is playing an increasingly important role in the study on the crustal movements. It hasbeen used by many countries such as China, USA, Japan, Peru, Australia, South Africa, Iceland and Italy, in research fields of plate tectonics, earthquake, volcanic eruption, dam safety, oil field subsidence, mining collapse andso on. Borehole strainmeter has been improved rapidly and tends to get more and more components included inone probe. Based on observations by this kind of instruments, studies on seismic strain step, slow earthquake,earthquake precursor and volcanic eruption forecasting have made remarkable achievements. In the coming years,borehole strain observation is going to become one major geodetic means, together with GPS and InSAR.

  3. Experimental investigations regarding the use of sand as an inhibitor of air convection in deep seismic boreholes

    Science.gov (United States)

    Holcomb, L. Gary; Sandoval, Leo; Hutt, Bob

    1998-01-01

    in long period data. However, low levels of tilt noise persisted even at great depth; this noise was caused by air convection in the vault in which the sensors were installed. Over the years, methods were developed to control the air motion with mechanical barriers (boxes) around the sensors and by stratifying (creating a situation in which the air temperature increases with height) the air in the vault near the seismometer. These methods decreased tilt noise in deep mines to very low levels. However, deep mines, that are economically and environmentally suitable and accessible to seismology, are not plentiful and are not evenly distributed over the earth's surface. Therefore, the borehole deployable Teledyne Geotech KS-36000 and later the KS-54000 sensor systems were developed to fulfill the need for instruments that could be installed at depth wherever high quality long period data was desired. Early in the development program, it became evident to the Teledyne Geotech personnel that air convection within the borehole was going to be a significant problem in KS deployments. Experimental and theoretical investigations conducted by Teledyne Geotech (see Douze and Sherwin, 1975, and Sherwin and Cook, 1976) produced a list of recommended installation procedures for reducing the effects of air convection. These procedures consisted of wrapping the sensor in a relatively thin layer of foam insulation, filling the free space volume in the vicinity of the centralizer-bail assembly with foam insulation, and the installation of styrofoam hole plugs immediately above the cable strain relief assembly at the top of the sensor package and at the top of the borehole. This technology has performed quite satisfactorily for over 20 years but evidence of tilt noise in the system output has persisted throughout the KS deployment program (the evidence was that the horizontal components were usually noisier than the vertical components) even in deep boreholes. Some deep borehole sites

  4. STATE OF THE ART OF DRILLING LARGE DIAMETER BOREHOLES FOR DEPOSITION OF HIGH LEVEL WASTE AND SPENT NUCLEAR FUEL

    Directory of Open Access Journals (Sweden)

    Trpimir Kujundžić

    2012-07-01

    Full Text Available Deep geological disposal is internationally recognized as the safest and most sustainable option for the long-term management of high-level radioactive waste. Mainly, clay rock, salt rock and crystalline rock are being considered as possible host rocks. Different geological environment in different countries led to the various repository concepts. Main feature of the most matured repository concept is that canisters with spent nuclear fuel are emplaced in vertical or horizontal large diameter deposition holes. Drilling technology of the deposition holes depends on repository concept and geological and geomechanical characteristics of the rock. The deposition holes are mechanically excavated since drill & blast is not a possible method due to requirements on final geometry like surface roughness etc. Different methods of drilling large diameter boreholes for deposition of high-level waste and spent nuclear fuel are described. Comparison of methods is made considering performance and particularities in technology.

  5. A Hydraulic Stress Measurement System for Investigations at Depth in Slim Boreholes

    Science.gov (United States)

    Ask, M. V. S.; Ask, D.; Cornet, F. H.; Nilsson, T.; Talib, M.; Sundberg, J.

    2017-12-01

    Knowledge of the state of stress is essential to most underground work in rock mechanics as it provides means to analyze the mechanical behavior of a rock mass, serve as boundary condition in rock engineering problems, and help understand rock mass stability and groundwater flow. Luleå University of Technology (LTU) has developed and built a wire-line system for hydraulic rock stress measurements in slim boreholes together with the University of Strasbourg and Geosigma AB. The system consists of a downhole- and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The surface unit comprises of a 40-foot container permanently mounted on a trailer, which is equipped with a tripod, wire-line winches, water hydraulics, and a generator. The surface unit serves as a climate-independent on-site operations center, as well as a self-supporting transport vessel for the entire system. Three hydraulic stress testing methods can be applied: hydraulic fracturing, sleeve fracturing and hydraulic testing of pre-existing fractures. The three-dimensional stress tensor and its variation with depth within a continuous rock mass can be determined in a scientific unambiguously way by integrating results from the three test methods. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions, (3) Resistivity imager maps the orientation of tested fracture (which is highlighted); (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. These aspects highly reduce measurement-related uncertainties of stress determination. Commissioning testing and initial field tests are scheduled to occur in a 1200

  6. Site Characterization Of Borehole Disposal Facility (BOSS)

    International Nuclear Information System (INIS)

    Kamarudin Samuding; Mohd Abd Wahab Yusof; Mohd Muzamil; Nazran Harun; Nurul Fairuz Diyana Bahrudin; Ismail, C. Mohamad; Kalam

    2014-01-01

    Site characterization study is one of the major components in assessing the potential site for borehole disposal facility. The main objectives of this study are to obtain the geology, geomorphology, hydrogeology and geochemistry information in order to understand the regional geological setting, its past evolution and likely future natural evolution over the assessment time frame. This study was focused on the geological information, borehole log and hydrogeological information. Geological information involve general geology, lineament, topography, structure geology, geological terrain. Whereas Borehole log information consists of lithology, soil and rock formation, gamma logging data and physical properties of soil and rock. Hydrogeological information was emphasized on the groundwater flow, physical parameter as well as geochemical data. Geological mapping shows the study area is underlain by metamorphic rock of the Kenny Hill Formation. Lithologically, it composed of psammitic schist of sandstone origin and phyllite. Based on the borehole log profile, the study area is covered by thick layer of residual soil and estimated not less than 10 m. Those foliated rocks tend to break or split along the foliation planes. The foliation or schistosity may also serve as conduit for groundwater migration. Main structural geology features in the study area trend predominantly in North to Northeast directions. Major fault, the UKM Fault trends in NE-SW direction about 0.5 km located to the east of the proposed borehole site. The groundwater flow direction is influenced by the structure and bedding of the rock formation. Whereas the groundwater flow velocity in the borehole ranges 2.15 - 5.24 x 10 -4 m/ sec. All the data that are obtained in this study is used to support the Safety Assessment and Safety Case report. (author)

  7. Site response assessment using borehole seismic records

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function.

  8. Site response assessment using borehole seismic records

    International Nuclear Information System (INIS)

    Park, Donghee; Chang, Chunjoong; Choi, Weonhack

    2014-01-01

    In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. The Korea Meteorological Administration (KMA) and the Korea Institute of Geology and Mining (KIGAM) have installed and are operating borehole seismometers at a depth of 70∼100 meters for the precise determination of epicenters. Also, Korea Hydro and Nuclear Power Co., Ltd. (KHNP) has installed and is operating 2 borehole seismic stations near Weolseong area to observe at a depth of 140 meters seismic activities connected to fault activity. KHNP plans to operate in the second half of 2014 a borehole seismic station for depths less than 300 and 600 meters in order to study the seismic response characteristics in deep strata. As a basic study for analyzing ground motion response characteristics at depths of about 300 to 600 meters in connection with the deep geological disposal of spent nuclear fuel, the present study examined the background noise response characteristics of the borehole seismic station operated by KHNP. In order to analyze the depth-dependent impact of seismic waves at deeper depths than in Korea, seismic data collected by Japan's KIK-net seismic stations were used and the seismic wave characteristics analyzed by size and depth. In order to analyze the borehole seismic observation data from the seismic station operated by KHNP, this study analyzed the background noise characteristics by using a probability density function

  9. Borehole radar and BIPS investigations in boreholes at the Boda area

    Energy Technology Data Exchange (ETDEWEB)

    Carlsten, S.; Straahle, A. [GEOSIGMA AB, Uppsala (Sweden)

    2000-12-01

    As part of the studies conducted in the Boda area, measurements with borehole radar, borehole TV (BIPS) and deviation measurements were performed during May 2000. The investigations were carried out in four percussion-drilled boreholes with a total length of 514 m. Two boreholes are vertical and two are directed into and below the cave area. The BIPS measurement showed the presence of 14 open fractures. Largest apparent aperture width of open fractures was 133 mm. In the lowest part in boreholes 2, 3, and 4, particles in suspension deteriorated the visibility. BIPS has revealed a dominating subhorizontal fracture set and another striking NW to N-S with a dip close to vertical. Possible but very uncertain is a third fracture set striking NE and dipping steeply towards S. The open and partly open fractures forms an average block size 11 m wide and 6 m high, while the length of the block is uncertain. Of 98 borehole radar reflectors interpreted to intersect within BIPS-mapped sections, 90 were possible to combine with BIPS-mapped structures, i.e. 92% of the radar reflectors. The fractured rock around Boda is a shallow feature, since borehole radar and BIPS measurements shows no evidence of increased fracturing or the presence of caves at larger depth in the Boda area. The result indicates that the formation of the superficial fracture system (with caves included) at Boda in all probability is connected to glacial action, such as banking.

  10. Borehole radar and BIPS investigations in boreholes at the Boda area

    International Nuclear Information System (INIS)

    Carlsten, S.; Straahle, A.

    2000-12-01

    As part of the studies conducted in the Boda area, measurements with borehole radar, borehole TV (BIPS) and deviation measurements were performed during May 2000. The investigations were carried out in four percussion-drilled boreholes with a total length of 514 m. Two boreholes are vertical and two are directed into and below the cave area. The BIPS measurement showed the presence of 14 open fractures. Largest apparent aperture width of open fractures was 133 mm. In the lowest part in boreholes 2, 3, and 4, particles in suspension deteriorated the visibility. BIPS has revealed a dominating subhorizontal fracture set and another striking NW to N-S with a dip close to vertical. Possible but very uncertain is a third fracture set striking NE and dipping steeply towards S. The open and partly open fractures forms an average block size 11 m wide and 6 m high, while the length of the block is uncertain. Of 98 borehole radar reflectors interpreted to intersect within BIPS-mapped sections, 90 were possible to combine with BIPS-mapped structures, i.e. 92% of the radar reflectors. The fractured rock around Boda is a shallow feature, since borehole radar and BIPS measurements shows no evidence of increased fracturing or the presence of caves at larger depth in the Boda area. The result indicates that the formation of the superficial fracture system (with caves included) at Boda in all probability is connected to glacial action, such as banking

  11. Characterization of crystalline rocks in deep boreholes. The Kola, Krivoy Rog and Tyrnauz boreholes

    International Nuclear Information System (INIS)

    1992-12-01

    SKB studies, as one alternative, the feasibility of disposing of spent nuclear fuel in very deep boreholes. As a part of this work NEDRA has compiled geoscientific data from three superdeep boreholes within the former Soviet Union. The holes considered were: the Kola borehole, 12261 m deep and located on the Kola Peninsula, the Krivoy Rog borehole, 5000 m deep and located in Ukraine, and the Tyrnauz borehole, 4001 m deep and located between the Black Sea and the Caspian Sea. These boreholes all penetrate crystalline formations, but major differences are found when their tectonic environments are compared. Excluding the uppermost horizon affected by surface phenomena, data do not indicate any general correlation between depth and the state of rock fracturing, which is instead governed by site specific, lithological and tectonical factors. This applies also to fracture zones, which are found at similar frequencies at all depths. As opposed to the structural data, the hydrogeological and hydrochemical information reveals a vertical zonation, with clear similarities between the three boreholes. An upper zone with active circulation and fresh or slightly mineralized groundwaters reaches down 1000-2000 m. The interval from 1000-2000 m down to 4000-5000 m can be characterized as a transition zone with lower circulation rates and gradually increasing mineralisation. Below 4000-5000 m, strongly mineralized, stagnant, juvenile or metamorphogenic waters are found. Geothermal data verify the existence of this zonation. 28 figs, 30 tabs

  12. Borehole temperature variability at Hoher Sonnblick, Austria

    Science.gov (United States)

    Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia

    2016-04-01

    The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in

  13. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.

    Science.gov (United States)

    Nancharaiah, Y V; Kiran Kumar Reddy, G

    2018-01-01

    Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. PmaCO{sub 2} Project: Porosity and CO{sub 2} Trapping Mechanisms The Utrillas Formation in SD-1 borehole (Tejada - Burgos): Porosity and Porous Media Modelling; PROYECTO PmaCO{sub 2}: Porosidad y Mecanismos de Atrapamiento de CO{sub 2} La Formacion Utrillas en el Sondeo SD-1 (Tejada - Burgos): Porosidad y Modelizacion del Sistema Poroso

    Energy Technology Data Exchange (ETDEWEB)

    Campos, R.; Barrios, I.; Gonzalez, A. M.

    2013-03-01

    The aim of PmaCO{sub 2} project, supported by the Secretary of State and Research MINECO (CGL2011-24768) is to increase the knowledge of the microstructure of porous storage formations and thus contribute to the viability of CO{sub 2} sequestration in geological formations. The microporous structure plays an important role not only in the prevalence of a particular trapping mechanism, but also on the amount of CO{sub 2} immobilized. Utrillas facies are investigated in this project as representatives of a deep saline aquifer storage. This publication is a summary of the work done in the first year of the project. We present a study on microstructure of sandstones Utrillas, sampled in borehole, by applying the mercury intrusion porosimetry technique for the experimental determination of porosity and associated parameters. The porous medium was modeled with the PoreCor simulation code based in intrusion-extrusion curves. (Author) 78 refs.

  15. Reference design and operations for deep borehole disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-01-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  16. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  17. A Hydraulic Stress Measurement System for Deep Borehole Investigations

    Science.gov (United States)

    Ask, Maria; Ask, Daniel; Cornet, Francois; Nilsson, Tommy

    2017-04-01

    Luleå University of Technology (LTU) is developing and building a wire-line system for hydraulic rock stress measurements, with funding from the Swedish Research Council and Luleå University of Technology. In this project, LTU is collaborating with University of Strasbourg and Geosigma AB. The stress state influences drilling and drillability, as well as rock mass stability and permeability. Therefore, knowledge about the state of in-situ stress (stress magnitudes, and orientations) and its spatial variation with depth is essential for many underground rock engineering projects, for example for underground storage of hazardous material (e.g. nuclear waste, carbon dioxide), deep geothermal exploration, and underground infrastructure (e.g. tunneling, hydropower dams). The system is designed to conduct hydraulic stress testing in slim boreholes. There are three types of test methods: (1) hydraulic fracturing, (2) sleeve fracturing and (3) hydraulic testing of pre-existing fractures. These are robust methods for determining in situ stresses from boreholes. Integration of the three methods allows determination of the three-dimensional stress tensor and its spatial variation with depth in a scientific unambiguously way. The stress system is composed of a downhole and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions (N=76 mm, H=96 mm, and P=122 mm), (3) Resistivity imager maps the orientation of tested fracture; (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. At EGU General Assembly 2017, we would like to

  18. comparison of performance of public and private boreholes

    African Journals Online (AJOL)

    User

    comparison of the performance of three categories of boreholes namely: public operated boreholes ... Port Harcourt in River State of Nigeria is a fast developing state. ..... World. Bank. Dujam, Consultants (1988). Nation-wide water. Supply and.

  19. Processing mechanics of alternate twist ply (ATP) yarn technology

    Science.gov (United States)

    Elkhamy, Donia Said

    Ply yarns are important in many textile manufacturing processes and various applications. The primary process used for producing ply yarns is cabling. The speed of cabling is limited to about 35m/min. With the world's increasing demands of ply yarn supply, cabling is incompatible with today's demand activated manufacturing strategies. The Alternate Twist Ply (ATP) yarn technology is a relatively new process for producing ply yarns with improved productivity and flexibility. This technology involves self plying of twisted singles yarn to produce ply yarn. The ATP process can run more than ten times faster than cabling. To implement the ATP process to produce ply yarns there are major quality issues; uniform Twist Profile and yarn Twist Efficiency. The goal of this thesis is to improve these issues through process modeling based on understanding the physics and processing mechanics of the ATP yarn system. In our study we determine the main parameters that control the yarn twist profile. Process modeling of the yarn twist across different process zones was done. A computational model was designed to predict the process parameters required to achieve a square wave twist profile. Twist efficiency, a measure of yarn torsional stability and bulk, is determined by the ratio of ply yarn twist to singles yarn twist. Response Surface Methodology was used to develop the processing window that can reproduce ATP yarns with high twist efficiency. Equilibrium conditions of tensions and torques acting on the yarns at the self ply point were analyzed and determined the pathway for achieving higher twist efficiency. Mechanistic modeling relating equilibrium conditions to the twist efficiency was developed. A static tester was designed to zoom into the self ply zone of the ATP yarn. A computer controlled, prototypic ATP machine was constructed and confirmed the mechanistic model results. Optimum parameters achieving maximum twist efficiency were determined in this study. The

  20. Final disposal in deep boreholes using multiple geological barriers. Digging deeper for safety. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Guido; Hurst, Stephanie; Merkel, Broder; Mueller, Birgit; Schilling, Frank

    2016-03-15

    The proceedings of the workshop on final disposal in deep boreholes using multiple geological barriers - digging deeper for safety include contributions on the following topics: international status and safety requirements; geological and physical barriers; deep drilling - shaft building; technical barriers and emplacement technology for high P/T conditions; recovery (waste retrieval); geochemistry and monitoring.

  1. Healthcare Technology Management (HTM) of mechanical ventilators by clinical engineers.

    Science.gov (United States)

    Yoshioka, Jun; Nakane, Masaki; Kawamae, Kaneyuki

    2014-01-01

    Mechanical ventilator failures expose patients to unacceptable risks, and maintaining mechanical ventilator safety is an important issue. We examined the usefulness of maintaining mechanical ventilators by clinical engineers (CEs) using a specialized calibrator. These evaluations and the ability to make in-house repairs proved useful for obviating the need to rent ventilators which, in turn, might prove faulty themselves. The CEs' involvement in maintaining mechanical ventilators is desirable, ensures prompt service, and, most importantly, enhances safe management of mechanical ventilators.

  2. Hydrological and hydrogeochemical investigations in boreholes

    International Nuclear Information System (INIS)

    Carlsson, L.; Olsson, T.

    1985-07-01

    Underground investigations in boreholes are presumed to be an important investigation technique for the detailed design of a final repository for nuclear waste. The siting of the repository will be based on surface investigations, but for detailed investigations when the access shafts are sunk, investigations in underground boreholes from the initial shafts and tunnels will be of importance. The hydrogeological investigations in boreholes aimed at testing and developing of hydrogeological techniques and instruments for use in an underground environment in order to reflect actual working and testing conditions. This report is the final report from the hydrogeological investigations in boreholes, and it summarizes the different activities carried out during the course of the program. Most of the included activities are reported in separate internal reports, and therefore only the most important results are included, together with the experiences and conclusions gained during the investigations. The hydrogeochemical part of the program is in a separate final report, consequently no hydrogeochemical information is in the current report. (Author)

  3. DISTRIBUTION OF BOREHOLES IN RESIDENTIAL LAYOUTS AND ...

    African Journals Online (AJOL)

    IPPIS NAU

    2017-07-01

    Jul 1, 2017 ... Lack of adequate public water supply to the inhabitants of Awka urban area since the urban water supply scheme at Imo ... investigate the distribution pattern of boreholes in some new settlements within the urban area to see whether their ..... The urban sprawl has resulted in the conversion of hitherto rural ...

  4. Method for orienting a borehole core

    International Nuclear Information System (INIS)

    Henry, W.

    1980-01-01

    A method is described for longitudinally orienting a borehold core with respect to the longitudinal axis of the drill string which drilled said borehold core in such a manner that the original longitudinal attitude of said borehold core within the earth may be determined. At least a portion of said borehold core is partialy demagnetized in steps to thereby at least partially remove in steps the artificial remanent magnetism imparted to said borehole core by said drill string. The artifical remanent magnetism is oriented substantially parallel to the longitudinal axis of said drill string. The direction and intensity of the total magnetism of said borehold core is measured at desired intervals during the partial demagnetizing procedure. An artificial remanent magnetism vector is established which extends from the final measurement of the direction and intensity of the total magnetism of said borehole core taken during said partial demagnetizing procedure towards the initial measurement of the direction and intensity of the total magnetism of said borehold core taken during said partial demagnetizing procedure. The borehold core is oriented in such a manner that said artificial remanent magnetism vector points at least substantially downwardly towards the bottom of said borehold core for a borehold in the northern hemisphere and points at least substantailly upwardly towards the top of said borehole core for a borehole in the southern hemisphere

  5. Deep Borehole Field Test Research Activities at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsang, Chin-Fu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kneafsey, Timothy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Borglin, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piceno, Yvette [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andersen, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nakagawa, Seiji [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nihei, Kurt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Doughty, Christine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reagan, Matthew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-19

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  6. Deep Borehole Field Test Research Activities at LBNL

    International Nuclear Information System (INIS)

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy; Borglin, Sharon; Piceno, Yvette; Andersen, Gary; Nakagawa, Seiji; Nihei, Kurt; Rutqvist, Jonny; Doughty, Christine; Reagan, Matthew

    2016-01-01

    The goal of the U.S. Department of Energy Used Fuel Disposition's (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  7. An optimization procedure for borehole emplacement in fractured media

    International Nuclear Information System (INIS)

    Billaux, D.; Guerin, F.

    1998-01-01

    Specifying the position and orientation of the 'next borehole(s)' in a fractured medium, from prior incomplete knowledge of the fracture field and depending on the objectives assigned to this new borehole(s), is a crucial point in the iterative process of site characterization. The work described here explicitly includes site knowledge and specific objectives in a tractable procedure that checks possible borehole characteristics, and rates all trial boreholes according to their compliance with objectives. The procedure is based on the following ideas : Firstly, the optimization problem is strongly constrained, since feasible borehole head locations and borehole dips are generally limited. Secondly, a borehole is an 'access point' to the fracture network. Finally, when performing a flow or tracer test, the information obtained through the monitoring system will be best if this system detects the largest possible share of the flow induced by the test, and if it cuts the most 'interesting' flow paths. The optimization is carried out in four steps. 1) All possible borehole configurations are defined and stored. Typically, several hundred possible boreholes are created. Existing boreholes are also specified. 2) Stochastic fracture networks reproducing known site characteristics are generated. 3) A purely geometrical rating of all boreholes is used to select the 'geometrically best' boreholes or groups of boreholes. 4) Among the boreholes selected by the geometrical rating, the best one(s) is chosen by simulating the experiment for which it will be used and checking flowrates through possible boreholes. This method is applied to study the emplacement of a set of five monitoring boreholes prior to the sinking of a shaft for a planned underground laboratory in a granite massif in France (Vienne site). Twelve geometrical parameters are considered for each possible borehole. A detailed statistical study helps decide on the shape of a minimization function. This is then used

  8. Stakeholder acceptance analysis: Passive soil vapor extraction using borehole flux

    International Nuclear Information System (INIS)

    Peterson, T.S.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning passive soil vapor extraction (PSVE) derived from a three-year program of stakeholder involvement. PSVE takes advantage of the naturally occurring tendency of soil vapor to leave the subsurface during periods of low barometric pressure. PSVE seeks to expedite the release of volatile contaminants through the use of boreholes and technological enhancements. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of PSVE to the remediation problems they face. The report provides: stakeholders' final evaluation of the acceptability of PSVE in light of the technology's field test; stakeholders' principal comments concerning PSVE; requirements that stakeholders have of any remediation technology. Technology decision makers should take these conclusions into account in evaluating the effectiveness and acceptability of any remedial method proposed for their site. In addition, the report presents data requirements for the technology's field demonstration defined by stakeholders associated with the Hanford site in Washington State, as well as detailed comments on PSVE from stakeholders from Sandia National Laboratory, Rocky Flats, Idaho National Engineering Laboratory, and Los Alamos National Laboratory

  9. Healthcare Technology Management (HTM) of mechanical ventilators by clinical engineers

    OpenAIRE

    Yoshioka, Jun; Nakane, Masaki; Kawamae, Kaneyuki

    2014-01-01

    Mechanical ventilator failures expose patients to unacceptable risks, and maintaining mechanical ventilator safety is an important issue. We examined the usefulness of maintaining mechanical ventilators by clinical engineers (CEs) using a specialized calibrator. These evaluations and the ability to make in-house repairs proved useful for obviating the need to rent ventilators which, in turn, might prove faulty themselves. The CEs' involvement in maintaining mechanical ventilators is desirable...

  10. Soil and Sediment remediation, mechanisms, technologies and applications

    NARCIS (Netherlands)

    Lens, P.N.L.; Grotenhuis, J.T.C.; Malina, G.; Tabak, H.H.

    2005-01-01

    Technologies for the treatment of soils and sediments in-situ (landfarming, bioscreens, bioventing, nutrient injection, phytoremediation) and ex-situ (landfarming, bio-heap treatment, soil suspension reactor) will be discussed. The microbiological, process technological and socio-economical aspects

  11. Alternative food-preservation technologies: efficacy and mechanisms.

    Science.gov (United States)

    Lado, Beatrice H; Yousef, Ahmed E

    2002-04-01

    High-pressure processing, ionizing radiation, pulsed electric field and ultraviolet radiation are emerging preservation technologies designed to produce safe food, while maintaining its nutritional and sensory qualities. A sigmoid inactivation pattern is observed in most kinetic studies. Damage to cell membranes, enzymes or DNA is the most commonly cited cause of death of microorganisms by alternative preservation technologies.

  12. Identifying and Assessing Effective Mechanisms for Technology Transfer

    Science.gov (United States)

    2007-03-01

    There is a distinct manner in which civilian technology is protected; even though secrecy is one option, as is the case with the Coca - Cola formula...done with the appropriate dedicated resources. They also placed heavy emphasis on acquiring early sponsorship for the technology and be able to set

  13. Subtle mechanisms of growth: technology and economic growth

    Directory of Open Access Journals (Sweden)

    Glauco Arbix

    Full Text Available The article deals with obstacles faced by developing countries to reach economic development. Passivity in technological learning, low productivity in relation to developed economies, adoption of spurious competitive advantages and reproduction of technological delay are presented as challenges to overcome. It states that breaking the passive strategy is the only way for these countries to build a better future.

  14. Optimization evaluation of cutting technology based on mechanical parts

    Science.gov (United States)

    Wang, Yu

    2018-04-01

    The relationship between the mechanical manufacturing process and the carbon emission is studied on the basis of the process of the mechanical manufacturing process. The formula of carbon emission calculation suitable for mechanical manufacturing process is derived. Based on this, a green evaluation method for cold machining process of mechanical parts is proposed. The application verification and data analysis of the proposed evaluation method are carried out by an example. The results show that there is a great relationship between the mechanical manufacturing process data and carbon emissions.

  15. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson, Bjorn N.P. [Paulsson, Inc., Van Nuys, CA (United States); Thornburg, Jon A. [Paulsson, Inc., Van Nuys, CA (United States); He, Ruiqing [Paulsson, Inc., Van Nuys, CA (United States)

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The current state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown

  16. Deep Boreholes Seals Subjected to High P, T conditions – Preliminary Experimental Studies

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norskog, Katherine Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maner, James Lavada [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-18

    The objective of this planned experimental work is to evaluate physio-chemical processes for ‘seal’ components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits. Deep borehole experimental work will constrain the Pressure, Temperature (P, T) conditions which “seal” material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include the silicic (granitic gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries.

  17. Optimization of borehole measurements in highly deviated gas wells of the NW German Rotliegend. Examples for the application of modern LWD-technology; Optimierung von Bohrlochmessungen in hochgeneigten Erdgasbohrungen des norddeutschen Rotliegend. Beispiele zum Einsatz moderner LWD-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Tappe, G.; Riepe, L. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    2002-01-01

    LWD (Logging While Drilling) measurements are a potential alternative to conventional wireline logging for the optimisation of log data acquistion strategies in highly deviated or horizontal deep wells, and to safeguard petrophysical informations e.g. from partly depleted tight gas sands in the German Rotliegend formations. In this paper the results of the first sonic LWD 'slimhole' measurements in 5 7/8'' boreholes in Germany are presented and compared with conventional wireline logs and core data. Since 1996, BEB has meanwhile successfully run the Halliburton/Pathfinder SCLSS (Slimhole Compensated Long Space Sonic) LWD tool in four deep highly deviated, partly depleted wells as a cost effective and reliable alternative to conventional Coiled Tubing- or pipe conveyed wireline logging. In addition to a potentially reduced risk of operational problems (e.g. by differential sticking) in difficult wells, the LWD measurements have the further advantage to provide 'real time' measurements at nearly 'virgin' reservoir conditions, i.e. before a potential formation damage or saturation change by a deep invasion of drilling muds. This is especially relevant for the saturation evaluations from resistivity data. The analysis of the LWD sonic data and the comparison with wireline sonic logs and core data proved, that the sonic transit times from the shear wave arrivals can be regarded as more reliable than those from the compressional wave arrivals. Thus we recommend to preferentially use the shear wave data for petrophysical evaluations, e.g. for the determination of porosity. (orig.)

  18. Vertical boreholes in salt - An industrial demonstration program -

    International Nuclear Information System (INIS)

    Bollingerfehr, W.; Filbert, W.

    2006-01-01

    In order to synchronize and optimize the emplacement technologies used for both categories of waste (vitrified waste and spent fuel) the borehole emplacement technique for consolidated spent fuel was reconsidered in Germany. The appropriate design resulted in a fuel rod canister of the type 'BSK 3'. This BSK 3 steel canister is of the same diameter as the standard HLW-canister which allows the use of a common transfer and handling technique. The canister is tightly sealed by welding and designed to withstand petrostatic pressure. Thermal calculations showed that the emplacement of a BSK 3-canister into a vertical borehole in a salt repository is possible after only about 3 to 7 years after reactor unloading of the fuel assemblies. Thus, the emplacement of BSK 3-canisters allows a complete revision of the schedule of spent fuel disposal concepts and may lead to a considerable reduction of time and costs. Accordingly, a research program was launched in 2004 within the framework of the 6th European Research Program to develop the transport and emplacement components, the functionality and reliability of which are to be tested in a one-year demonstration phase which will commence at the beginning of 2008. (author)

  19. Microencapsulation: concepts, mechanisms, methods and some applications in food technology

    Directory of Open Access Journals (Sweden)

    Pablo Teixeira da Silva

    2014-07-01

    Full Text Available Microencapsulation is a process in which active substances are coated by extremely small capsules. It is a new technology that has been used in the cosmetics industry as well as in the pharmaceutical, agrochemical and food industries, being used in flavors, acids, oils, vitamins, microorganisms, among others. The success of this technology is due to the correct choice of the wall material, the core release form and the encapsulation method. Therefore, in this review, some relevant microencapsulation aspects, such as the capsule, wall material, core release forms, encapsulation methods and their use in food technology will be briefly discussed.

  20. Factors influencing the technology upgrading and catch-up of Chinese wind turbine manufacturers: Technology acquisition mechanisms and government policies

    International Nuclear Information System (INIS)

    Qiu, Yueming; Ortolano, Leonard; David Wang, Yi

    2013-01-01

    This paper uses firm level data for the Chinese wind turbine manufacturing industry from 1998 to 2009 to quantify the effects of technology acquisition mechanisms – purchasing production licenses from foreign manufacturers, joint design with foreign design firms, joint-ventures and domestic R and D – on wind turbine manufacturers' technology levels (as measured by turbine size, in megawatts). It also examines the impacts of government policies on manufacturer technology levels. Technology upgrading (measured by increase of turbine size) and catch-up (measured by decrease in the distance to the world technology frontier in terms of turbine size) are used to measure advances in technology level. Results from econometric modeling studies indicate that firms' technology acquisition mechanisms and degree of business diversification are statistically significant factors in influencing technology upgrading. Similar results were found for the catch-up variable (i.e., distance to the world technology frontier). The influence of government policies is significant for technology upgrading but not catch-up. These and other modeling results are shown to have implications for both policymakers and wind turbine manufacturers. - Highlights: ► Technology acquired through joint design has the highest level. ► Technology acquired through purchasing production license has the lowest level. ► Technology acquired through domestic R and D has the level in between. ► A firm with related other businesses tends to have a higher level of technology. ► The influence of policies is significant for technology upgrade but not catch-up

  1. Outcomes management of mechanically ventilated patients: utilizing informatics technology.

    Science.gov (United States)

    Smith, K R

    1998-11-01

    This article examines an informatics system developed for outcomes management of the mechanically ventilated adult population, focusing on weaning the patient from mechanical ventilation. The link between medical informatics and outcomes management is discussed, along with the development of methods, tools, and data sets for outcomes management of the mechanically ventilated adult population at an acute care academic institution. Pros and cons of this system are identified, and specific areas for improvement of future health care outcomes medical informatics systems are discussed.

  2. Novel Experimental Techniques to Investigate Wellbore Damage Mechanisms

    Science.gov (United States)

    Choens, R. C., II; Ingraham, M. D.; Lee, M.; Dewers, T. A.

    2017-12-01

    A new experimental technique with unique geometry is presented investigating deformation of simulated boreholes using standard axisymmetric triaxial deformation equipment. The Sandia WEllbore SImulation, SWESI, geometry, uses right cylinders of rock 50mm in diameter and 75mm in length. A 11.3mm hole is drilled perpendicular to the axis of the cylinder in the center of the sample to simulate a borehole. The hole is covered with a solid metal cover, and sealed with polyurethane. The metal cover can be machined with a high-pressure port to introduce different fluid chemistries into the borehole at controlled pressures. Samples are deformed in a standard load frame under confinement, allowing for a broad range of possible stresses, load paths, and temperatures. Experiments in this study are loaded to the desired confining pressure, then deformed at a constant axial strain rate or 10-5 sec-1. Two different suites of experiments are conducted in this study on sedimentary and crystalline rock types. The first series of experiments are conducted on Mancos Shale, a finely laminated transversely isotropic rock. Samples are cored at three different orientations to the laminations. A second series of experiments is conducted on Sierra White granite with different fluid chemistries inside the borehole. Numerical modelling and experimental observations including CT-microtomography demonstrate that stresses are concentrated around the simulated wellbore and recreate wellbore deformation mechanisms. Borehole strength and damage development is dependent on anisotropy orientation and fluid chemistry. Observed failure geometries, particularly for Mancos shale, can be highly asymmetric. These results demonstrate uncertainties in in situ stresses measurements using commonly-applied borehole breakout techniques in complicated borehole physico-chemical environments. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering

  3. Development of Fluid and I and C Systems Design Technology for LMR - Development of mechanical structure design technology for LMR

    International Nuclear Information System (INIS)

    Lee, Jae Han; Joo, Young Sang; Lee, Hueong Yeon and others

    2005-03-01

    The key research items during the fiscal years of Phase 3 of the mechanical design technology development for liquid metal reactor are described. The objective of this project is to develop the design technology for the mechanical system of 600MWe, pool type liquid metal reactor with sodium coolant, and the structural integrity evaluation technology for mechanical system of the reactor system, structures and equipments. In the design technology development for mechanical structures, the reactor internal structures, reactor head and piping system, reactor containment structures have been studied, and new structural concepts compatible with the new reactor have been proposed. The thermal protection devices of reactor vessel and the refueling system have been conceptually established and the feasibility study for 3-D seismic isolation of reactor building was performed. The structural damage detection technology for reactor internal structures has been studied and its application has been confirmed. In the structural integrity evaluation technology development, the sensitivities of material constants for inelastic analysis codes have been studied and the applicabilities of the developed codes are enhanced. The high temperature creep-fatigue structural behavior test has been conducted so that high temperature structural damage test and evaluation technology were ensured at first in domestic. The high temperature seismic buckling analysis method to evaluate the buckling of thin reactor shell structure under the transient thermal load was established. In addition, the core seismic response analysis code reflected the fluid effect of core was developed and its accuracy was confirmed with a scale-down model test

  4. Borehole stoneley waves and permeability: Laboratory results

    International Nuclear Information System (INIS)

    Winkler, K.W.; Plona, T.J.; Froelich, B.; Liu, H.L.

    1987-01-01

    Recent interest in full waveform sonic logging has created the need for full waveform laboratory experiments on model boreholes. Of particular interest is the investigation of Stoneley waves and their interaction with permeable formations. The authors describe experimental results that show how Stoneley wave slowness and attenuation are affected by formation permeability. Both slowness and attenuation (1/Q) are observed to increase with formation permeability. This increase is frequency dependent, being greatest at low frequencies. The presence of simulated mudcakes on the borehole wall reduces the permeability effect on Stoneley waves, but does not eliminate it. The mudcake effect is frequency dependent, being greatest at low frequencies. In our experiments on rocks, the laboratory data is in qualitative agreement with theoretical predictions. In a very well characterized synthetic porous material, theory and experiment are in good quantitative agreement

  5. Borehole instrument for scintillation gamma spectrometer

    International Nuclear Information System (INIS)

    Sinitsyn, A.Ya.; Gabitov, R.M.

    1979-01-01

    Described are a schematic diagram and main specifications of a borehole instrument with autostabilization of energy scale measure by gamma bench-mark of 137 Cs, intended for the application in a logging gamma spectrometer to determine separately the concentrations of nature radioactive elements. The instrument may be connected to the KOBDFM-2 cable of 600 m length. It contains a scintillation counter for gamma quanta consisting of 30x70 mm NaI(Tl) crystal and a FEU-85 photoamplifier, an input conforming stage, a diagram of threshold pulse formation and regulating high-voltage generator. The borehole instrument has been proved under laboratory and field conditions at 10-40 deg C

  6. Behavior of cement paste as backfill in waste disposal boreholes

    International Nuclear Information System (INIS)

    Ferreira, Eduardo G.A.; Isiki, Vera L.K.; Miyamoto, Hissae; Marumo, Julio T.; Vicente, Roberto

    2011-01-01

    The Radioactive Waste Management Laboratory (GRR) at the Nuclear and Energy Research Institute (IPEN) in Sao Paulo, Brazil, is developing the concept a repository for disposition of disused sealed radioactive sources in a deep borehole, aiming at providing a feasible and inexpensive alternative for final disposal. A relevant fraction of the Brazilian inventory of sources has long half-life which prevents them to be disposed of in shallow ground disposal facilities. In the concept of repository under study, Portland cement paste is intended to be used as a backfill between the steel casing and the geological formation around the borehole. Cement paste will function as structural, an additional barrier against the migration of radionuclides outside the repository, and as a blockage against the transport of water between the different strata of the geological setting. The durability of cementitious materials under the conditions prevailing at the depth of disposal is as yet unknown. The objective of this research is to investigate the behavior of the cement paste and to estimate its service life. In this paper we present the results of mechanical strength measurements and chemical and mineralogical analysis of samples to detect the changes caused by radiation, temperature and aggressive chemicals present in ground water. Techniques of analysis included Inductively Coupled Plasma Atomic Emission Spectroscopy, Ion Chromatography, X-Ray Diffraction, and Thermo-Gravimetric Analysis. (author)

  7. Geochemical factors in borehole-shaft plug longevity

    International Nuclear Information System (INIS)

    Roy, D.M.

    1981-01-01

    Geochemical investigations that address factors controlling the longevity of repository sealing materials in a geochemical environment are discussed. Studies are being made of cement-based materials as major candidates for seals for borehole plugging, and shaft and tunnel sealing in certain potential repository environments. Factors controlling the extent of attainment of equilibrium of the plug components with time and the rate of approach to a state of stable equilibrium of the plug component chemical subsystem within the total system are discussed. The effect of these factors on changes in physical, mechanical and thermal properties of a seal system, and the consequent effectiveness of the seal in preventing transport of radioactive waste species are the dominant features to be determined. Laboratory experiments on the effects of anticipated temperature, pressure, and environmental factors (including chemical composition and specific rock type) are described. Thermodynamic studies are used to determine the potentially stable reaction products under conditions similar to those anticipated for the repository boreholes, shafts, and tunnels during and after the operating stage. Multitemperature reaction series are studied, and reaction kinetics are investigated for the purpose of predicting the course of likely reactions. Detailed studies of permeability, diffusion, and interfacial properties and chemical and microphase characterization of the products of experiments are carried out. Characterization studies of old and ancient cements, mortars, and concretes and prototype man-made seal materials are performed to further assess the factors associated with longevity

  8. Nuclear borehole logging for oil exploration

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1989-01-01

    Reactor physics can be applied to the logging of boreholes for the exploration of oil and gas and the results obtained can be interpreted more correctly by use of reactor physics models, e.g. one-dimensional multi-group diffusion theory adapted for gamma quanta. The standard nuclear logging tools are: natural gamma, gamma density, neutron porosity and the pulsed-neutron tool. The models and interpretation procedures are discussed. 1 fig

  9. Borehole Plugging-Materials Development Program

    International Nuclear Information System (INIS)

    Gulick, C.W. Jr.

    1978-06-01

    This report discusses the background and first year's results of the grouting materials development program for plugging boreholes associated with the Nuclear Waste Isolation Pilot Plant. The grouts are to be pumpable, impermeable, and durable for many thousands of years. The work was done at the Concrete Laboratory of the U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi. The workability, strength, porosity, bonding, expansion, and permeability data are summarized and discussed. The work is continuing at WES

  10. About the Possibility of Disposal of HLRW in Deep Boreholes in Germany

    Directory of Open Access Journals (Sweden)

    Guido Bracke

    2017-07-01

    Full Text Available Using deep boreholes for the final disposal of high-level radioactive waste (HLRW can take advantage of multiple geologic barriers as safety features and aims for the safe containment of radionuclides by containment-providing rock zones (CPRZ. The great depth efficiently prolongs or hinders radionuclide transport and also impedes proliferation. Finally, there may be a time benefit with regard to technical implementation and costs. Due to the phase-out from nuclear energy in Germany the number of boreholes could be less than 100. A simplified, generic safety concept, and the requirements for the diameter of boreholes and containers are derived in this paper. Furthermore, the operational safety of emplacement, the retrieval of waste and sealing of the boreholes is discussed. It is outlined that boreholes can be sealed quickly and over long distances with proven technologies, for example, using the creep properties of salt rock formations. This concept is assessed for its compliance with the safety requirements of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB, and the requirements and criteria for site selection defined by the German commission on “Storage of high-level radioactive waste”. The retrievability of HLRW is assessed to be technically feasible based on today´s knowledge, but recoverability after closure cannot be guaranteed for long time spans. Further developments in details of the concept of deep borehole disposal (DBD, a demonstration of its technical feasibility and an assessment of operational and long-term safety are still necessary to make DBD an approved option.

  11. A Proposed Borehole Scientific Laboratory in Quay County, New Mexico, USA

    Science.gov (United States)

    Nielson, Dennis; Eckels, Marc; Mast, Peter; Zellman, Mark; Creed, Robert

    2017-04-01

    Our team has received funding from the US Department of Energy to initiate a Deep Borehole Field Test that will develop a subsurface test site to evaluate the drilling and scientific aspects of deep borehole disposal of nuclear waste in crystalline rock. Phase 1 of the project will focus on Public Outreach and land acquisition whereas Phase 2 will generate a drilling and testing plan and secure regulatory approvals. Phase 3 will complete the Drilling and Testing Plan and Phase 4 will include the drilling and testing. Phase 5 will be devoted to borehole science and experiments with emplacement technology. Although we are specifically considering issues associated with the disposal of waste, this project is a proof of concept, and no waste will be emplaced at our site. In brief, the concept envisions an 8-1/2 inch open-hole completion at a depth of 5000 m in crystalline rock. There will be an extensive program of sample collection (including core) and analysis as well as geophysical logging and borehole testing. Critical issues will be low permeability in the crystalline rock as well as the ability to manage borehole quality. Our team has proposed a site in Quay County, New Mexico that has an 850 meter thick Paleozoic section overlying homogeneous Precambrian granite. A subsequent phase of the project may drill a second hole with a 17-1/2 inch completion located about 200 m from the first. Our long-term plan is that this site will be managed as a deep scientific observatory that also provides a facility for scientific experiments and testing of borehole infrastructure and drilling equipment.

  12. Deep Borehole Field Test Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  13. Can deep boreholes solve America's nuclear waste problem?

    International Nuclear Information System (INIS)

    Bates, E.A.; Driscoll, M.J.; Lester, R.K.; Arnold, B.W.

    2014-01-01

    The United States is in need of a new and more adaptive long-term strategy for spent nuclear fuel. In this communication, we outline the fundamental reasons why deep borehole disposal should receive more detailed investigation, alongside traditional shallow mined repositories. This potential solution is supported by advancing drilling technologies and an improving understanding of extremely long fluid residence times in deep bedrock. Radionuclide isolation is supported by verifiable and stable geologic barriers such as long transport distances to aquifers, low permeability, and reducing chemical conditions. The modular nature of implementing deep borehole disposal could offer unique programmatic and economic advantages. Experience with a pilot borehole program will be required to confirm the feasibility of drilling and emplacement operations, and key chemical and hydraulic conditions. - Highlights: • To meet obligations, the U.S. should diversify used nuclear fuel disposal options. • Hydraulic and chemical systems isolated for ≥10 My can be found in deep bedrock. • Robust concepts in nuclear fuel disposal are enabled by maturing drilling technology. • Disposal in deep boreholes could ease siting, provide modularity, and lower costs

  14. Geophysical borehole logging in Lavia borehole - results and interpretation of sonic and tube wave measurements

    International Nuclear Information System (INIS)

    Andersson, P.; Stenberg, L.

    1985-02-01

    Swedish Nuclear Fuel and Waste Management Co, SKB has been contracted by Industrial Power Company LTD, TVO to perform geophysical logging in a borehole at Lavia in Western Finland. The logging has been conducted by Swedish Geological Co, SGAB in accordance with an agreement for cooperation with SKB. The depth of the borehole is 1001 m, diameter 56 mm and inclination 10-20 degrees to the vertical. The aim of the logging was to determine the various geophysical parameters in the borehole in order to interpret and understand the rock mass properties in the vicinity of the borehole. According to the contract the report covers the following main objectives: a technical description of the field work and the equipment used; a review of the theoretical base for the sonic and tube wave methods; an interpretation and presentation of the results obtained by sonic and tube wave mesurements. The evaluation of the sonic and tube wave measurements shows good correlation. On a qualitative basis there seems to be a correlation between tube wave generating points, the relative tube wave amplitudes and the hydraulic conductivity measurements performed as hydraulical tests between packers in the borehole. The low velocity anamalies in the sonic log are mainly caused by tectonic features like fractures and fracture zones but to some extent also by contacts between granite and diorite. The estimation of elastic properties of the rock mass from observation of tube wave velocity are in accordance with laboratory determinations made on core samples. (author)

  15. Randomness in quantum mechanics: philosophy, physics and technology

    Science.gov (United States)

    Nath Bera, Manabendra; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W.; Lewenstein, Maciej

    2017-12-01

    This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.

  16. Randomness in quantum mechanics: philosophy, physics and technology.

    Science.gov (United States)

    Bera, Manabendra Nath; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W; Lewenstein, Maciej

    2017-12-01

    This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.

  17. The Kyoto mechanisms and the diffusion of renewable energy technologies in the BRICS

    International Nuclear Information System (INIS)

    Bodas Freitas, Isabel Maria; Dantas, Eva; Iizuka, Michiko

    2012-01-01

    This paper examines whether the Kyoto mechanisms have stimulated the diffusion of renewable energy technologies in the BRICS, i.e. Brazil, Russian, India China and South Africa. We examine the patterns of diffusion of renewable energy technologies in the BRICS, the factors associated with their diffusion, and the incentives provided by the Kyoto mechanisms. Preliminary analysis suggests that the Kyoto mechanisms may be supporting the spread of existing technologies, regardless if such technologies are still closely tied to environmental un-sustainability, rather than the development and diffusion of more sustainable variants of renewable energy technologies. This raises questions about the incentives provided by the Kyoto mechanisms for the diffusion of cleaner variants of renewable energy technologies in the absence of indigenous technological efforts and capabilities in sustainable variants, and national policy initiatives to attract and build on Kyoto mechanism projects. We provide an empirical analysis using aggregated national data from the World Development Indicators, the International Energy Agency, the United Nations Framework Convention on Climate Change and secondary sources. - Highlights: ► The Kyoto mechanisms may be supporting the diffusion of existing technologies. ► They may not be supporting the diffusion of sustainable renewable energy technologies. ► In the absence of appropriate capabilities and policies further diffusion is limited.

  18. Transactions of the 10th international conference on structural mechanics in reactor technology

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1989-01-01

    This book covers all aspects of engineering mechanics pertaining to mechanical and structural components and the relevant systems in nuclear reactors. Subjects covered include: theoretical developments in structural mechanics, loading conditions, behavior of materials, fluid mechanics, operating experience, accident sequences, and calculational procedures. Problems of structural mechanics analysis are focused within the general context of the design, reliability, and safety of nuclear reactors. Operating plant performance and life extension, waste repository technology and regulatory research have been formalized as distinct Divisions

  19. Influence of technological and mechanical properties ratio of nickel ...

    African Journals Online (AJOL)

    One of the conditions ensuring the competitive advantages of a final product is the possibility of carrying out complex, resource-saving technological processes of workpiece shaping from the materials that provide necessary operational properties. In particular, such processes include the deep drawing of products.

  20. The Mechanism for Organising and Propelling Educational Technology in China

    Science.gov (United States)

    Yongqian, Liu; Dongyuan, Cheng; Xinli, Liu

    2010-01-01

    Having started early in the 1920s as a spontaneously launched educational activity by civil organisations under the influence of American audio-visual theory and practice, Chinese educational technology was later put under governmental management. This paper is composed of five parts covering mainly the historical development of educational…

  1. A Novel Method for Borehole Blockage Removal and Experimental Study on a Hydraulic Self-Propelled Nozzle in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Zhaolong Ge

    2016-08-01

    Full Text Available When coal bed methane (CBM drainage boreholes cross fractured, soft, or water-swelling strata, they collapse and block frequently. Borehole blockages result in a rapid decrease in CBM extraction ability, which leads to a reduction in CBM output and threatens coal mine safety production. To solve these problems, a novel method that uses a self-propelled water-jet nozzle to dredge blocked boreholes in coal seams has been proposed on the basis of the existing technology. Based on a theoretical analysis of the reason for borehole caving and the theory of blockage removal, we optimized the nozzle inlet pressure and selected an appropriate high-pressure resin pipe. A field experiment on the blockage removal of blocked CBM drainage boreholes using the proposed method was run in the Fengchun coal mine, Qijiang, Chongqing, southwest China. In this field trial, the time spent to unblock a borehole varied between 18.52 and 34.98 min, which is much shorter than using a drilling rig. After blockage removal, the average pure volume of the methane drainage of a single borehole was increased from 0.03 L/min to ~1.91–7.30 L/min, and the methane drainage concentration of a single borehole increased from 5% to ~44%–85%. The extraction effect increased significantly.

  2. A novel muon detector for borehole density tomography

    Science.gov (United States)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.

    2017-04-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in density - a proxy for fluid migration - at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.

  3. Affect and technology acceptance: A test of two mechanisms

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Grunert, Klaus G.; Søndergaard, Helle Alsted

    Commercialization of new technologies may be hampered by stakeholder resistance and a sceptical public. Genetic modification (GM) has suffered particularly from such problems. At present, for example, practically no products exist on the shelves of European retailers that are labelled as containi...... and practice, focusing on point-of-sale promotions that could be the key element in the launch of the first genetically modified foods in markets that are as yet GM-free....

  4. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology

    Directory of Open Access Journals (Sweden)

    Erqing Zhang

    2014-06-01

    Full Text Available Since the measurement of mechanical sealing film thickness and just-lift-off time is very difficult, the sealing film condition monitoring method based on acoustic emission signal is proposed. The mechanical seal acoustic emission signal present obvious characteristics of time-varying nonlinear and pulsating. In this paper, the acoustic emission signal is used to monitor the seal end faces just-lift-off time and friction condition. The acoustic emission signal is decomposed by empirical mode decomposition into a series of intrinsic mode function with independent characteristics of different time scales and different frequency band. The acoustic emission signal only generated by end faces friction is obtained by eliminating the false intrinsic mode function components. The correlation coefficient of acoustic emission signal and Multi-scale Laplace Wavelet is calculated. It is proved that the maximum frequency (8000 Hz of the correlation coefficient is appeared at the spindle speed of 300 rpm. And at this time (300 rpm the end faces have just lifted off. By a set of mechanical oil seal running test, it is demonstrated that this method could accurately identify mechanical seal end faces just-lift-off time and friction condition.

  5. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses; Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs.

  6. 2007 Mississippi Curriculum Framework: Postsecondary Agricultural Mechanics Technology. (Program CIP: 01.0201 - Agricultural Mechanics and Equipment/Machine Technology)

    Science.gov (United States)

    Massey, Jeremy; Louwerens, Shane; Galey, Joe

    2007-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  7. An extension of fracture mechanics/technology to larger and smaller cracks/defects

    Science.gov (United States)

    Abé, Hiroyuki

    2009-01-01

    Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper. PMID:19907123

  8. Utilization of test boreholes in prospecting and mining operations

    International Nuclear Information System (INIS)

    Sierak, J.P.

    1987-01-01

    Test boreholes are of fundamental importance for mining and prospecting operations. The drilling techniques are suited to the geological conditions and to the nature of the information desired. At Cogema, non-coring test boreholes, mainly drilled by a rotary percussive method, represent over 90% of the footage drilled; they achieve impressive performances at a cost which is by far less than that of coring test boreholes. The geological exploitation of these test boreholes is effected by a combined investigation of well logging and of cuttings. These investigations lead to an assessment for certain substances like uranium or coal or they mark the limits for favourable zones which alone will form the object of coring boreholes. In mining operations, boreholes indicate the definition for workable panels; they ensure at less cost the distribution of fluids, the forwarding of stowing material and the mine ventilation [fr

  9. Structural mechanics in reactor technology facing new century

    International Nuclear Information System (INIS)

    Gu Fangyu; Sun Lei

    2001-01-01

    In recent twenty years, the SMiRT in China has been grown with high-speed. A great quantity problem in theory and application had been solved. It has taken great contributions in the development and application of nuclear technology. At the beginning of new century, summarizing the past experiences and predicting the future, the author hoped to give a relatively systematic discussion and conception of challenges and development directions that SMiRT with face up to in the new century, and put down some immature opinions for discussion

  10. GIS-technologies as a mechanism to study geological structures

    Science.gov (United States)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the

  11. Thermal Performance Analysis of a Geologic Borehole Repository

    Energy Technology Data Exchange (ETDEWEB)

    Reagin, Lauren [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-16

    The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of two WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used, and results obtained from the thermal analyses were close to

  12. Development of nuclear physics and its connections to borehole geophysics

    International Nuclear Information System (INIS)

    Loetzsch, W.

    1990-01-01

    Starting from the discovery of radioactivity, the development of nuclear physics and its close connections to geoscience, especially to borehole geophysics, are outlined. The discovery of a nuclear physical phenomenon is always followed by an examination for its applications in nuclear geophysics, which since about 1960 has developed into a special discipline of applied geophysics. As an example for this development in the GDR the application of neutron capture γ-ray spectroscopy for iron ore exploration is described. A table listing important present-day nuclear well logging techniques with detectable elements and their detection limits is presented. Examples of measurements with some of these logging techniques reveal their particularities and show their element-specific character and the nuclear physical mechanisms involved. Finally the state of art of nuclear well logging and prospects in this field are outlined. (author)

  13. Nuclear borehole probes - theory and experiments

    International Nuclear Information System (INIS)

    Joergensen, J.L.; Korsbech, U.; Gynther Nielsen, K.; Oelgaard, P.L.

    1985-06-01

    The report gives a summary of the theoretical and expeimental work on borehole probes that has been performed since 1971 at The Department of Electrophysics, The Technical University of Denmark. The first part of the report concerns the use of a spectral natural gamma-ray probe (SNG-probe), which is used for measurements of the spectral distribution of the gamma-rays of the geological strata around a borehole. In general the spectrum is divided into three parts - the gamma-rays from potassium-40, from thorium-232 and daughters, and from uranium-238 and daughters. A set of curves showing the intensities of the gamm-radiation from K, Th, and U versus depth is called a SNG-log. If proper calibrated, the SNG-log gives the concentration of Th, U, and K in the formation surrounding the borehole. Initially the basis for an interpretation of SNG-logs is discussed. Then follows a description og some SNG-problems designed and built by The Department of Electrophysics, and a discussion of the calibration of SNG-probes. Some examples of SNG-logs are presented, and some general comments on the use of SNG-logs are given. The second part of the report concerns mainly the development of theoretical models for neutron-neutron probes, gamma-gamma probes, and pulsed-neutron probes. The purpose of this work has been to examine how well the models correlate with measured results and - where reasonable agreement is found - to use the models in studies of the factors that affect the probe responses in interpretation of experimental results and in probe design. (author)

  14. Application of Gas Pre-drainage Using Layer-through Borehole Technology from Strip Mining Region in Zhaozhuang Coal Mine%穿层钻孔预抽煤巷条带煤层瓦斯在赵庄矿的应用

    Institute of Scientific and Technical Information of China (English)

    李付涛

    2015-01-01

    According to the coal seam permeability difference and the not -ideal drainage effect, pre -drainage based an drilling through the floor roadway is used in Zhaozhuang Mine.analysis and study of the effecs gas drainage,including the bottom layer selec-tion, borehole layout and hole sealing technology,confirmed the feasibility and good gas treatment effect of this measure, which provi-ding security for the long-term development of the coal mine.%针对煤层透气性差、抽采效果不理想的问题,赵庄矿应用了底板岩巷穿层钻孔预抽措施。通过对底抽巷的层位选择、穿层钻孔的布置、封孔工艺等影响瓦斯抽采效果的各个环节的分析研究,验证了采用底抽巷实施穿层钻孔预抽煤巷条带煤层瓦斯掩护巷道掘进的可行性和良好的瓦斯治理效果,为矿井的长远发展提供了安全保障。

  15. Quantum Mechanics for Everyone: Can it be done with Technology?

    Science.gov (United States)

    Zollman, Dean

    2004-10-01

    The Visual Quantum Mechanics project has created a series of teaching/learning units to introduce quantum physics to a variety of audiences ranging from high school students who normally would not study these topics to undergraduate physics majors. Most recently we have been developing materials relating modern medical procedures and contemporary physics. In all of these materials interactive computer visualizations are coupled with hands-on experiences to create a series of activities which help students learn about some aspects of quantum mechanics. Our goal is to enable students to obtain a qualitative and, where appropriate, a quantitative understanding of contemporary ideas in physics. Included in the instructional materials are student-centered activities that address a variety of concepts in quantum physics and applications to devices such as the light emitting diode, the electron microscope, an inexpensive infrared detection card, and the Star Trek Transporter. Whenever possible the students begin the study of a new concept with an experiment using inexpensive equipment. They, then, build models of the physical phenomenon using interactive computer visualization and conclude by applying those models to new situations. For physics students these visualizations are usually followed by a mathematical approach. For others the visualizations provide a framework for understanding the concepts. Thus, Visual Quantum Mechanics allows a wide range of students to begin to understand the basic concepts, implications and interpretations of quantum physics. At present we are building on this foundation to create materials which show the connection between contemporary physics and modern medical diagnosis. Additional information is available at http://web.phys.ksu.edu/.

  16. Moisture monitoring in large diameter boreholes

    International Nuclear Information System (INIS)

    Tyler, S.

    1985-01-01

    The results of both laboratory and field experiments indicate that the neutron moisture gauge traditionally used in soil physics experiments can be extended for use in large diameter (up to 15 cm) steel-cased boreholes with excellent results. This application will permit existing saturated zone monitoring wells to be used for unsaturated zone monitoring of recharge, redistribution and leak detection from waste disposal facilities. Its applicability to large diameter cased wells also gives the soil physicist and ground-water hydrologist and new set of monitoring points in the unsaturated zone to study recharge and aquifer properties. 6 refs., 6 figs., 2 tabs

  17. Repository and deep borehole disposition of plutonium

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1996-02-01

    Control and disposition of excess weapons plutonium is a growing issue as both the US and Russia retire a large number of nuclear weapons> A variety of options are under consideration to ultimately dispose of this material. Permanent disposition includes tow broad categories: direct Pu disposal where the material is considered waste and disposed of, and Pu utilization, where the potential energy content of the material is exploited via fissioning. The primary alternative to a high-level radioactive waste repository for the ultimate disposal of plutonium is development of a custom geologic facility. A variety of geologic facility types have been considered, but the concept currently being assessed is the deep borehole

  18. Understanding natural moisturizing mechanisms: implications for moisturizer technology.

    Science.gov (United States)

    Chandar, Prem; Nole, Greg; Johnson, Anthony W

    2009-07-01

    Dry skin and moisturization are important topics because they impact the lives of many individuals. For most individuals, dry skin is not a notable concern and can be adequately managed with current moisturizing products. However, dry skin can affect the quality of life of some individuals because of the challenges of either harsh environmental conditions or impaired stratum corneum (SC) dry skin protection processes resulting from various common skin diseases. Dry skin protection processes of the SC, such as the development of natural moisturizing factor (NMF), are complex, carefully balanced, and easily perturbed. We discuss the importance of the filaggrin-NMF system and the composition of NMF in both healthy and dry skin, and also reveal new insights that suggest the properties required for a new generation of moisturizing technologies.

  19. Technology for noninvasive mechanical ventilation: looking into the black box

    Directory of Open Access Journals (Sweden)

    Ramon Farré

    2016-03-01

    Full Text Available Current devices for providing noninvasive respiratory support contain sensors and built-in intelligence for automatically modifying ventilation according to the patient's needs. These devices, including automatic continuous positive airway pressure devices and noninvasive ventilators, are technologically complex and offer a considerable number of different modes of ventilation and setting options, the details of which are sometimes difficult to capture by the user. Therefore, better predicting and interpreting the actual performance of these ventilation devices in clinical application requires understanding their functioning principles and assessing their performance under well controlled bench test conditions with simulated patients. This concise review presents an updated perspective of the theoretical basis of intelligent continuous positive airway pressure and noninvasive ventilation devices, and of the tools available for assessing how these devices respond under specific ventilation phenotypes in patients requiring breathing support.

  20. Aim and points of this workshop: The 2. Workshop on Seismic Observation in Deep Borehole (SODB) and its Applications

    International Nuclear Information System (INIS)

    Sugiyama, Yuichi

    2014-01-01

    The achievements of the first WS and the aim of the Second WS were explained. The purposes of this Second WS were: to re-recognize the significance of seismic ground motion evaluation based on newly added deep borehole seismic observation in addition to existing borehole investigation, geological surveys, and geophysical exploration; to acknowledge deep borehole seismic observation and geophysical exploration (hardware) as well as the site characteristic evaluation method (software) required for seismic ground motion evaluation; and to consolidate opinions on multi-purpose application of observation technology and data as well as acknowledge issues to be addressed and technological problems. The final goals of this WS were to clarify items and issues that present challenges for the future based on the discussions in this WS. (author)

  1. Bench top and portable mineral analysers, borehole core analysers and in situ borehole logging

    International Nuclear Information System (INIS)

    Howarth, W.J.; Watt, J.S.

    1982-01-01

    Bench top and portable mineral analysers are usually based on balanced filter techniques using scintillation detectors or on low resolution proportional detectors. The application of radioisotope x-ray techniques to in situ borehole logging is increasing, and is particularly suited for logging for tin and higher atomic number elements

  2. Molecular mechanisms of mutagenesis determined by the recombinant DNA technology

    International Nuclear Information System (INIS)

    Lee, W.R.

    1985-01-01

    A study of the alteration of the DNA in the mutant gene can determine mechanisms of mutation by distinguishing between mutations induced by transition, transversion, frameshifts of a single base and deletions involving many base pairs. The association of a specific pattern of response with a mutagen will permit detecting mutants induced by the mutagen with a reduced background by removing mutations induced by other mechanisms from the pool of potential mutants. From analyses of studies that have been conducted, it is quite apparent that there are substantial differences among mutagens in their modes of action. Of 31 x-ray induced mutants, 20 were large deletions while only 3 showed normal Southern blots. Only one mutant produced a sub-unit polypeptide of normal molecular weight and charge in the in vivo test whereas in vitro synthesis produced a second one. In contrast, nine of thirteen EMS induced mutants produced cross-reacting proteins with sub-unit polypeptide molecular weights equivalent to wild type. Two of three ENU induced mutants recently analyzed in our laboratory produced protein with sub-unit polypeptide molecular weight and electrical charge similar to the wild type stock in which the mutants were induced. One ENU induced mutation is a large deletion. 21 refs., 1 fig

  3. Systematic comparison of mechanical and thermal sludge disintegration technologies.

    Science.gov (United States)

    Wett, B; Phothilangka, P; Eladawy, A

    2010-06-01

    This study presents a systematic comparison and evaluation of sewage sludge pre-treatment by mechanical and thermal techniques. Waste activated sludge (WAS) was pre-treated by separate full scale Thermo-Pressure-Hydrolysis (TDH) and ball milling facilities. Then the sludge was processed in pilot-scale digestion experiments. The results indicated that a significant increase in soluble organic matter could be achieved. TDH and ball milling pre-treatment could offer a feasible treatment method to efficiently disintegrate sludge and enhance biogas yield of digestion. The TDH increased biogas production by ca. 75% whereas ball milling allowed for an approximately 41% increase. The mechanisms of pre-treatment were investigated by numerical modeling based on Anaerobic Digestion Model No. 1 (ADM1) in the MatLab/SIMBA environment. TDH process induced advanced COD-solubilisation (COD(soluble)/COD(total)=43%) and specifically complete destruction of cell mass which is hardly degradable in conventional digestion. While the ball mill technique achieved a lower solubilisation rate (COD(soluble)/COD(total)=28%) and only a partial destruction of microbial decay products. From a whole-plant prospective relevant release of ammonia and formation of soluble inerts have been observed especially from thermal hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Comprehensive borehole management for shorter drilling time; Umfassendes Bohrfortschrittsmanagement zur Verkuerzung der Bohrprojektdauer

    Energy Technology Data Exchange (ETDEWEB)

    Roehrlich, M. [ExxonMobil Production Deutschland GmbH, Hannover (Germany)

    2007-09-13

    In 2006, the trademarked ExxonMobil Fast Drill Process (FDP) was introduced also in the German ExxonMobil boreholes. The process is to maximize the drilling speed for every meter drilled. The process makes it possible to ensure borehole management on the basis of quantitative data and in consideration of all phases that are relevant for sinking a borehole. The FDP is used world-wide in all ExxonMobil drilling departments. More than 1.35 million meters are drilled annually in many different boreholes with different geological conditions, drilling profiles and international sites. The results were similar in many cases, with a significant increase in ROP and drill bit life, and with less damage caused by vibrations. FDP was developed on the basis of real time monitoring of the specific mechanical energy (MSE) required for drilling. MSE monitoring was found to be an effective tool dor detecting inefficient functioning of the drill bit and the overall system. To make operation more efficient, the causes must be identified and measures must be taken accordingly, taking into account the potential risks involved in such measures. MSE monitoring is a tool while FDPL is a broad management process ensuring that MSE and many other data sources are used effectively for optimisation of the ROP. Consequent implementation of the process resulted in a significant increase of the ROP. The major elements required for achieving this goal are discussed. (orig.)

  5. Mechanism of Food Ordering in A Restaurant Using Android Technology

    Science.gov (United States)

    Aulia, Rachmat; Zakir, Ahmad; Dafitri, Haida; Siregar, Dodi; Hasdiana

    2017-12-01

    A Restaurant is a gathering place for many people to taste the favorite foods are in there. The restaurant which visited many people sure will increase the attraction of them to visit it. Of course, the owner will get more benefit. However, what happens when a restaurant is famous still uses a service without technology, such as making orders using pens and paper, inspects the food stocks manually, and delivering orders to the kitchen using manpower, and more. Therefore, it designed a system that can accelerate the ordering and processing food in the restaurant. This system replaces the use of pen and paper with digital devices such as tablets/smartphones based on Android. Not only that, order data can be sent through a wireless network which connects tablets/smartphones with the kitchen's computer. It can be read by kitcheners and showed directly on the LCD screen. By the application is expected to reduce the level of error in the processing of the consumer's order.

  6. Circular induction accelerator for borehole logging

    International Nuclear Information System (INIS)

    Chen, F.K.; Bertozzi, W.; Corris, G.W.; Diamond, W.; Doucet, J.A.; Schweitzer, J.S.

    1992-01-01

    This patent describes a downhole logging sonde adapted to be moved through a borehole, a source of gamma rays in the sonde for irradiating earth formations traversed by the borehole, one or more gamma ray detectors for detecting gamma rays scattered back to the sonde from the irradiated earth formations, and means for transmitting signals representative of the detected gamma rays to the earth's surface for processing. This patent describes improvement in the gamma ray source comprises a magnetic induction particle accelerator, including: a magnetic circuit having a field magnet, generally circular opposed pole pieces, and a core magnet metal ions from the group consisting of Mn, Zn and Ni; an excitation circuit including a field coil surrounding the field magnet and the core magnet and a core coil surrounding the central axially leg of the core magnet; an annular acceleration chamber interposed between the pole pieces; means for applying time-varying acceleration voltage pulses across the primary excitation circuit; means for injecting charged particles into orbit within the acceleration chamber; means for compressing the particle orbits to trap particles within generally circular orbits within the acceleration chamber; means for generating a particle accelerating magnetic flux in the magnetic circuit; and means for ejecting charged particles from the generally circular orbits and into contact with a target to produce gamma ray photons

  7. Second ILAW Site Borehole Characterization Plan

    International Nuclear Information System (INIS)

    Reidel, S.P.

    2000-01-01

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m 3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment

  8. Borehole locations on seven interior salt domes

    International Nuclear Information System (INIS)

    Simcox, A.C.; Wampler, S.L.

    1982-08-01

    This report is designed as an inventory of all wells known to have been drilled within a five-mile radius of each of seven salt domes within the Interior Salt Basin in east Texas, northern Louisiana and Mississippi. There are 72 boreholes that entered salt above an elevation of -3000 feet mean sea level. For these, details of location, drilling dates, depth of casing and cement, elevation of top of caprock and salt, etc., are given on tables in the appendix. Of the seven domes, Oakwood has the largest number of boreholes, thirty-eight (including two sidetracked wells) that enter the salt stock above -3000 feet mean sea level; another dome in northeast Texas, Keechi, has eight; in northern Louisiana, Rayburn's has four and Vacherie has five; in southern Mississippi, Cypress Creek has seven, Lampton has one, and Richton has nine. In addition, all wells known outside the supra-domal area, but within a five-mile radius of the center of the 7 domes are separately catalogued

  9. Bhtv looks right down the borehole

    Energy Technology Data Exchange (ETDEWEB)

    1969-04-01

    A borehole televiewer uses acoustic pulses to produce a camera-like picture of downhole conditions. A block diagram shows the borehole televiewer logging system. The diameter of the tool is 3-3/8 in., but slimmer tools can be built. The nominal logging speed is 15 ft per min. Vertical fractures will show on the log as double vertical lines, horizontal fractures as single horizontal lines, and dipping fractures as curves that are roughly symmetrical. The orientation of the minimum of the curve is the dip direction of the fracture. The original idea was to find a tool to give guidance in fracturing jobs, and so far the tool has been primarily used for that purpose. It will also be a tremendous help for geologists and engineers on wildcate wells who have to make the agonizing decision to complete or abandon. It will show fracture porosity that no other currently available tool will show. It also will be a very useful supplement for the dipmeter. It can accurately locate vugs and washouts, and show changes in porosity and lithology. Mobil Oil is now using the tool as a standard log on all its wildcat wells.

  10. Laboratory testing of gneissic rocks in Olkiluoto borehole OL-KR24

    International Nuclear Information System (INIS)

    Eloranta, P.

    2006-10-01

    The stress-strain behaviour of anisotropic gneissic rocks from Olkiluoto, Finland, was studied for a total of 25 rock mechanics tests. Samples were selected from borehole OLKR24 at a depth level of 417-442 m. Tests included 15 uniaxial compression tests, 10 indirect tensile strength tests and 6 triaxial compression tests. Strain gauges were installed in five samples to evaluate the anisotropic properties, and acoustic emission sensors were installed in ten samples to estimate the stress damage levels. The specimen preparation and tests were carried out at the Laboratory of Rock Engineering, Helsinki University of Technology, Finland. Specimens were tested under laboratory-air-dry conditions and were photographed before and after the tests. The values obtained for the uniaxial compressive strength were in the range 56.5 - 165.9 MPa and for the indirect tensile strength 7.7 - 12.1 MPa. The anisotropic ratio of Young's modulus, E/E', was of the order of 1.1. (orig.)

  11. Numerical simulation on reasonable hole-sealing depth of boreholes for gas extraction

    Science.gov (United States)

    Zhao, Dan; Pan, Jingtao

    2018-04-01

    To overcome the low efficiency of extracting gas in coal reservoirs with a low gas permeability, some boreholes were drilled for gas extraction in No. 2 coal reservoir of Wangjialing Coalmine in Shanxi Province, China and reasonably sealed. Aiming at shortfalls such as rapid attenuation of volume for extracted gas as well as low gas permeability when using boreholes in the No. 2 coal reservoir, the traditional COMSOL MultiphysicsMT Earth Science Module was used to couple the three governing equations (Darcy-Brinkman-Navier-Stokes) for fluids. On this basis, numerical simulation on the seepage law along the directions of roadways and boreholes was carried out. The simulation results indicated that when the hole-sealing length was within the width range of fractures in roadways, the negative pressure not only led the gas in surrounding rock masses to flow to the boreholes, but also made the air flow in roadways to permeate into coal walls. As a result, gas and air flows both entered into the boreholes through the loosening zone containing fractures, resulting in seepage of air in roadway to the boreholes. The seepage velocity along the roadway direction under condition with a hole-sealing length of 12 m was obviously slower than that when the hole-sealing length was 8 m. While, the method by simply increasing the length of the hole-sealing section for boreholes failed to effectively stop the air flow in roadways from permeating into the coal wall and then entering the boreholes. Moreover, the increase in the hole-sealing length brought about much more difficulties to the hole-sealing construction. So, the method is not operable in practical condition of the coal mine. Therefore, it is necessary to improve the traditional hole-sealing technology based on foamed macromolecular materials which are mainly made of polyurethane (PU) and use the fluid wall-type hole-sealing technology based on solid-liquid coupling. Then, the effects of gas extraction before and after using

  12. Numerical simulation on reasonable hole-sealing depth of boreholes for gas extraction

    Directory of Open Access Journals (Sweden)

    Dan Zhao

    2018-04-01

    Full Text Available To overcome the low efficiency of extracting gas in coal reservoirs with a low gas permeability, some boreholes were drilled for gas extraction in No. 2 coal reservoir of Wangjialing Coalmine in Shanxi Province, China and reasonably sealed. Aiming at shortfalls such as rapid attenuation of volume for extracted gas as well as low gas permeability when using boreholes in the No. 2 coal reservoir, the traditional COMSOL MultiphysicsMT Earth Science Module was used to couple the three governing equations (Darcy-Brinkman–Navier-Stokes for fluids. On this basis, numerical simulation on the seepage law along the directions of roadways and boreholes was carried out. The simulation results indicated that when the hole-sealing length was within the width range of fractures in roadways, the negative pressure not only led the gas in surrounding rock masses to flow to the boreholes, but also made the air flow in roadways to permeate into coal walls. As a result, gas and air flows both entered into the boreholes through the loosening zone containing fractures, resulting in seepage of air in roadway to the boreholes. The seepage velocity along the roadway direction under condition with a hole-sealing length of 12 m was obviously slower than that when the hole-sealing length was 8 m. While, the method by simply increasing the length of the hole-sealing section for boreholes failed to effectively stop the air flow in roadways from permeating into the coal wall and then entering the boreholes. Moreover, the increase in the hole-sealing length brought about much more difficulties to the hole-sealing construction. So, the method is not operable in practical condition of the coal mine. Therefore, it is necessary to improve the traditional hole-sealing technology based on foamed macromolecular materials which are mainly made of polyurethane (PU and use the fluid wall-type hole-sealing technology based on solid-liquid coupling. Then, the effects of gas extraction

  13. Innovative Agro-food Technologies Implementation through Instructional Communication Mechanisms

    Directory of Open Access Journals (Sweden)

    Gianita BLEOJU

    2012-04-01

    Full Text Available The current research represents the valorization of the dissemination the design framework of an interdisciplinary area of research, validated through SPAS European FP6 project and a national BIOSIG- PN2 and has as objective to channel communication on target market, through personalized solution of instructional communication mechanisms. The main objective of the national research grant being the implementation of innovative biotechnology on agro-food market, in order to improve the fish diet’s benefits, the prospects must be provided with valuable explicit information. This paper is about the commitment to embedding the actual consumer experience from PN2 fish market research and agro-food agents’ capitalization knowledge behavior from SPAS virtual platform, through designing the adequate communication framework, in order to support and accelerate the implementation of the innovation biotechnology, through improving the target market experience. The projected solution is mainly concerning to offer adequate solutions to insure against current consumers fragilities, but we also underline the vulnerabilities of the whole agro food value chain, in terms of communication strategy, which is lacking of adequate common interest coordination. The current research solution is regarding the rising awareness about the translation from consumer preferences to perceived detriment by integrating previous validated solution of agro food market analysis.

  14. Cast iron for reactor technology - special structural and mechanical properties

    International Nuclear Information System (INIS)

    Janakiev, N.

    The graphitic phase, its formation and the effect on the mechanical properties of cast iron used for reactor shielding are described. Tensile strength, bending strength and Brinell hardness were studied. With the specimen wall thickness of 400 mm the average measured tensile strength was 180 N/mm 2 , which satisfies the given requirements as do the values of bending strength and material hardness. As against materials 200 mm in thickness, graphite was found by metallographic tests to be of a significantly coarser structure, which may be explained by slower cooling. Tensile strength was also tested for nodular cast irons and lamellar graphite cast irons. It was shown that compression increased with decreasing specimen diameter at constant pressure, at a constant diameter compression increased nearly in proportion to compressive stress. No significant differences were found if compressive stress was 80% of fracture stress. The modulus of elasticity was found to decrease with increasing graphite content while it was found to increase with fine graphite lamellae at the same carbon concentration. It also decreased with increasing straining. A Mo-alloyed cast iron was found to show slower creep rates at a compressive stress of up to 90 N/mm 2 (calculated to the same initial strengths) than Cu-alloyed cast iron. Upon increasing compressive stress to 140 N/mm 2 and creep time to more than 2000 hours, the creep behaviour of Cu-alloyed cast iron was better. Coarser perlite is likely to be more creep resistant than fine perlite. In neutron irradiation of cast iron a clear trend towards hardening was found due to the effect of neutrons on the cast iron structure. (J.B.)

  15. Moving to Google Cloud: Renovation of Global Borehole Temperature Database for Climate Research

    Science.gov (United States)

    Xiong, Y.; Huang, S.

    2013-12-01

    Borehole temperature comprises an independent archive of information on climate change which is complementary to the instrumental and other proxy climate records. With support from the international geothermal community, a global database of borehole temperatures has been constructed for the specific purpose of the study on climate change. Although this database has become an important data source in climate research, there are certain limitations partially because the framework of the existing borehole temperature database was hand-coded some twenty years ago. A database renovation work is now underway to take the advantages of the contemporary online database technologies. The major intended improvements include 1) dynamically linking a borehole site to Google Earth to allow for inspection of site specific geographical information; 2) dynamically linking an original key reference of a given borehole site to Google Scholar to allow for a complete list of related publications; and 3) enabling site selection and data download based on country, coordinate range, and contributor. There appears to be a good match between the enhancement requirements for this database and the functionalities of the newly released Google Fusion Tables application. Google Fusion Tables is a cloud-based service for data management, integration, and visualization. This experimental application can consolidate related online resources such as Google Earth, Google Scholar, and Google Drive for sharing and enriching an online database. It is user friendly, allowing users to apply filters and to further explore the internet for additional information regarding the selected data. The users also have ways to map, to chart, and to calculate on the selected data, and to download just the subset needed. The figure below is a snapshot of the database currently under Google Fusion Tables renovation. We invite contribution and feedback from the geothermal and climate research community to make the

  16. Borehole heater test at KAERI Underground Research Tunnel

    International Nuclear Information System (INIS)

    Kwon, S. K.; Cho, W. J.; Jeon, S. W.

    2009-09-01

    At HLW repository, the temperature change due to the decay heat in near field can affect the hydraulic, mechanical, and chemical behaviors and influence on the repository safety. Therefore, the understanding of the thermal behavior in near field is essential for the site selection, design, as well as operation of the repository. In this study, various studies for the in situ heater test, which is for the investigation of the thermo-mechanical behavior in rock mass, were carried out. At first, similar in situ tests at foreign URLs were reviewed and summarized the major conclusions from the tests. After then an adequate design of heater, observation sensors, and data logging system were developed and installed with a consideration of the site condition and test purposes. In order to minimize the effect of hydraulic phenomenon, a relatively day zone was chosen for the in situ test. Joint distribution and characteristics in the zone were surveyed and the rock mass properties were determined with various laboratory tests. In this study, an adequate location for an in situ borehole heater test was chosen. Also a heater for the test was designed and manufactured and the sensors for measuring the rock behavior were installed. It was possible to observe that stiff joints are developed overwhelmingly in the test area from the joint survey at the tunnel wall. The major rock and rock mass properties at the test site could be determined from the thermo-mechanical laboratory tests using the rock cores retrieved from the site. The measured data were implemented in the three-dimensional computer simulation. From the modeling using FLAC3D code, it was possible to find that the heat convection through the tunnel wall can influence on temperature distribution in rock. Because of that it was necessary to installed a blocking wall to minimize the effect of ventilation system on the heater test, which is carrying out nearby the tunnel wall. The in situ borehole heater test is the first

  17. Comparative study of coliform contamination of public boreholes ...

    African Journals Online (AJOL)

    This study was carried out to determine the coliform contamination of public boreholes and pipe borne water supplies within Bosso town. Twenty (20) water samples comprising of 10 each of borehole and pipe borne samples were aseptically collected from Bosso Town and analyzed using membrane filtration technique.

  18. Elastic waves along a cylindrical borehole in a poroelastic medium ...

    Indian Academy of Sciences (India)

    In the oil industry, acoustic borehole logging is commonly practiced. A borehole is drilled in a potential hydro-carbon reservoir and then probed with an acoustic ...... The non-dimensional phase velocity c/Vmin, Vmin = min(V1,V2,V3,V4) is computed at different values of non-dimensional wavenumber ka varying from 0 to 85.

  19. ASSESSMENT OF HEAVY METAL STATUS OF BOREHOLES IN ...

    African Journals Online (AJOL)

    Osondu

    2012-02-13

    Feb 13, 2012 ... monitoring and assessment of boreholes mostly the indiscriminate sinking of boreholes in the ... Ethiopian Journal of Environmental Studies and Management Vol. 5 No.1 2012 ... may enter a water supply by industrial and ... issues of present day research on risk .... and pigments for paints, cement, paper,.

  20. Performance of MarSite Multi parameter Borehole Instrumentation

    Science.gov (United States)

    Guralp, Cansun; Tunc, Suleyman; Ozel, Oguz; Meral Ozel, Nurcan; Necmioglu, Ocal

    2017-04-01

    In this paper we present two year results obtained from the integrated multiparameter borehole system at Marsite. The very broad band (VBB) system have been operating since installation in November 2014; one year in a water filled borehole and one year in a dry Borehole. from January 2016. The real time data has been available to the community. The two Borehole environments are compared showing the superior performance of dry borehole environ- ment compared to water filled for a very broad band (VBB) seismometer. The practical considerations applied in both borehole installations are compared and the best borehole practical installation techniques are presented and discussed. The data is also compared with a surface 120 second broad band sensor and the seismic arrays with in MarSite region. The very long term performance, (one year data in a dry hole) of the VBB Borehole seismometer and the Dilatometer will be presented The high frequency performance of the VBB seismometer which extends to 150 Hz and the dilatometer are compared characterizing the results from the dilatometer.

  1. Comparison of Performance of Public and Private Boreholes ...

    African Journals Online (AJOL)

    In the last fifteen years, a remarkable increase in the number of privately owned. There has been an increase in the individually owned and operated boreholes within the state because it is claimed that government owned boreholes breakdown too often. Hence, this study is aimed at comparison of the performance of three ...

  2. 30 CFR 75.388 - Boreholes in advance of mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes in advance of mining. 75.388 Section... of mining. (a) Boreholes shall be drilled in each advancing working place when the working place... cannot be examined, and before mining continues, a certified person shall, if possible, determine— (1...

  3. Occurrence of a Severe Acute Livestock Poisoning by Borehole ...

    African Journals Online (AJOL)

    This article reports on an outbreak of acute livestock poisoning by borehole water that occurred at Kargi in Marsabit District, Kenya in 2000. The borehole had been out of use for 3 years and after its rehabilitation, 7,000 animals died within a day after drinking the water. The most affected were shoats, cattle, camels and dogs ...

  4. An application of interactive computer graphics technology to the design of dispersal mechanisms

    Science.gov (United States)

    Richter, B. J.; Welch, B. H.

    1977-01-01

    Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems.

  5. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    International Nuclear Information System (INIS)

    Boris, G.F.; Bamberger, J.A.

    1999-01-01

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove approximately98% of the waste, approximately3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing borehole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team

  6. Modeling operation of mechanism of holistic management of technological processes at enterprise

    Science.gov (United States)

    Igorevich Shanin, Igor; Aleksandrovna Boris, Olga

    2018-03-01

    Enterprises applying modeling and technological process management approaches represent a sector of a new innovative economic system. First of all, they are innovators using innovative proposals and various resources to solve practical problems. Their work leads to balanced positive technological changes. In other words, they constitute industrial entrepreneurship with innovative goals and vice versa - innovative entrepreneurship with industrial objectives. It should be noted that the mechanism of holistic management of technological processes at the enterprise combines a traditional industrial organization of production, an innovative and technological enterprise. The enterprise borrows industrial targets from the latter one, an innovative component - from innovative activity and entrepreneurial approaches to holistic management - from a commercial firm.

  7. Borehole Logging for Uranium by Gamma-Ray Spectrometry

    DEFF Research Database (Denmark)

    Løvborg, Leif; Nyegaard, P.; Christiansen, E. M.

    1980-01-01

    The resources in a large syngenetic deposit of low-grade uranium (U) ore with thorium at Kvanefjeld, South Greenland, were evaluated by spectrometric gamma-ray logging of 23 boreholes, 46 mm in diameter and 200 m deep. The borehole probe's detector contained 22 cm3 of sodium-iodide, and the photo......The resources in a large syngenetic deposit of low-grade uranium (U) ore with thorium at Kvanefjeld, South Greenland, were evaluated by spectrometric gamma-ray logging of 23 boreholes, 46 mm in diameter and 200 m deep. The borehole probe's detector contained 22 cm3 of sodium...... of the spectrometer system were determined by calculating the average number of U and thorium (Th) counts per meter of borehole and comparing these with the U-Th concentrations in 1-m sections of analyzed drill core. The sensitivity and the background count rate in the uranium window varied appreciably from one hole...

  8. The assessment of the geophysical investigations of boreholes

    International Nuclear Information System (INIS)

    Brotzen, O.; Duran, O.; Magnusson, K.-Aa.

    1980-02-01

    Four geophysical investigations and a televiewer inspection of boreholes have been evaluated in connection with the examinations at Finnsjoen, Karlshamn, Kraakemaala, Stripa and Studsvik. A cooperative assessment of the systems for the measurement of boreholes by Lawrence Berkeley Laboratories and the Geological Survey of Sweden has been made at Stripa. The following methods should be selected for future measurements: determination of the resistivity and temperature of the fluid in the borehole, determination of the resistivity and temperature of the fluid in the borehole, determination of the self-potential, resistivity and resistance of the rock as well as the measurement of sonar waves, the diameter of the borehole and the very low frequency effects. (G.B.)

  9. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    International Nuclear Information System (INIS)

    Gustafsson, Jaana; Gustafsson, Christer

    2010-01-01

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  10. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jaana; Gustafsson, Christer (Malaa Geoscience AB (Sweden))

    2010-01-15

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  11. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  12. The borehole disposal of spent sources (BOSS)

    International Nuclear Information System (INIS)

    Heard, R.G.

    2002-01-01

    During the International Atomic Energy Agency (IAEA) Regional Training Course on 'The Management of Low-Level Radioactive Waste from Hospitals and Other Nuclear Applications' hosted by the Atomic Energy Corporation of SA Ltd. (AEC), now NECSA, during July/August 1995, the African delegates reviewed their national radioactive waste programmes. Among the issues raised, which are common to most African countries, were the lack of adequate storage facilities, lack of disposal solutions and a lack of equipment to implement widely used disposal concepts to dispose of their spent sources. As a result of this meeting, a Technical Co-operation (TC) project was launched to look at the technical feasibility and economic viability of such a concept. Phase I and II of the project have been completed and the results can be seen in three reports produced by NECSA. The Safety Assessment methodology used in the evaluation of the concept was that developed during the ISAM programme and detailed in Van Blerk's PhD thesis. This methodology is specifically developed for shallow land repositories, but was used in this case as the borehole need not be more than 100m deep and could fit into the definition of a shallow land disposal system. The studies found that the BOSS concept would be suitable for implementation in African countries as the borehole has a large capacity for sources and it is possible that an entire country's disused sources can be placed in a single borehole. The costs are a lot lower than for a shallow land trench, and the concept was evaluated using radium (226) sources as the most limiting inventory. The conclusion of the initial safety assessment was that the BOSS concept is robust, and provides a viable alternative for the disposal of radium needles. The concept is expected to provide good assurance of safety at real sites. The extension of the safety assessment to other types of spent sources is expected to be relatively straightforward. Disposal of radium needles

  13. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  14. The Clean Development Mechanism as a Vehicle for Technology Transfer and Sustainable Development - Myth or Reality?

    Directory of Open Access Journals (Sweden)

    Gary Cox

    2010-09-01

    Full Text Available This paper critically examines the clean development mechanism (CDM established under Article 12 of the Kyoto Protocol in terms of its effectiveness as a vehicle for technology transfer to developing countries, a specific commitment under the UNFCCC. Fundamentally, the paper poses the question of whether technology transfer as part of the CDM is a myth or a reality in the broader context of sustainable development. Technology transfer between countries of the North and South is explored in a historical context and the emergence of technology transfer obligations is traced in multilateral environmental agreements. The architecture of the UNFCCC and the Kyoto Protocol are examined in relation to technology transfer obligations. Empirical studies are reviewed to gain an understanding of how CDM operates in practice, with a closer examination of a small number of recent CDM projects. There is an update on the Technology Mechanism being established under the Copenhagen Accord. The paper concludes with a summary of the benefits of CDM to date and its current limitations in achieving the scaling-up of affordable environmentally sound technology transfer envisaged in the Bali Action Plan. The conclusion is that technology transfer must be a much more explicit objective of CDM with better targeting of projects in order to achieve locally sustainable equitable outcomes. Furthermore, the link between CDM and technology transfer needs to be much more explicitly made in order that, in the long run, such interventions will lead to viable low emission development pathways in developing countries.

  15. Borehole plugging by compaction process. Final report

    International Nuclear Information System (INIS)

    Fernandez, R.; MacGowan, C.; Nolan, E.; Morey, R.; Palty, A.

    1976-08-01

    The requirements of an overall program to preserve the integrity of a repository formation are documented. The repository is intended to be in stable earth stratum used as a safe and permanent storage area for nuclear waste material. These wastes represent an environmental hazard for a period of up to 200,000 years. An engineering analysis, a reliability and quality-assurance program, and a development program for borehole plugging by compaction process, using natural earthen materials, are presented. Part 1 provides the engineering analysis of downhole compaction methods and related instrumentation along with a recommended development plan from concept through a pilot in-situ experiment. Part 2 provides a reliability and quality-assurance program from laboratory testing of materials through an in-situ experiment

  16. Filling bore-holes with explosive

    Energy Technology Data Exchange (ETDEWEB)

    Alfredsson, S H

    1965-03-02

    In this device for filling boreholes formed in a rock formation with particulate explosive, the explosive is conveyed into the hole by means of a pressure fluid through a tube which has a lesser diameter than the hole. The tube is characterized by a lattice work arranged externally on it, and having a structure adapted to allow passage of a pressure fluid returning between the tube and the wall of the hole, but retaining particles of explosive entrained by the returning pressure fluid. In another arrangement of the device, the lattice work has the form of a brush, including filaments or bristles which are dimensioned to bridge the spacing between the tube and the wall of the hole. (12 claims)

  17. Temperature profiles in the Harwell boreholes

    International Nuclear Information System (INIS)

    Robins, N.S.

    1983-03-01

    Heat flow at Harwell is estimated at 45 mWm -2 (milli Watt per metre squared is the unit of heat flow). Thermal conductivity values for the formations penetrated range from 1.0 to 4.6 Wm -1 K -1 . The temperature profiles recorded in the boreholes enable the vertical groundwater flow patterns within two poorly permeable mudrock units to be evaluated. The two mudrock units act as leaky barriers each separating a pair of aquifer units which induce a vertical hydraulic gradient across the mudrocks. The flow velocity results for the upper mudrock units derived from the temperature profile are compatible with values for groundwater potential derived from hydraulic data (10 -9 ms -1 from the temperature profile and 10 -12 ms -1 from the hydraulic observations). The results from the lower mudrock sequence are incompatible and this may be due to some other overiding influence upon the temperature profile. (author)

  18. Multiple position borehole extensometer procedure: Final draft

    International Nuclear Information System (INIS)

    1986-08-01

    The purpose of the Multiple Position Borehole Extensometer Procedure is to provide detailed information for MPBXs installed at the salt Deaf Smith County ESF. This procedure includes design of equipment, installation, instructions, instrument locations, measurement requirements, support requirements, quality assurance procedures, and data acquisition requirements. Data reduction procedures are also discussed; however, the relevance of the data is discussed elsewhere in the appropriate test plans. Sufficient detail is provided in this procedure to allow for integrating the requirements of this procedure into both the facility construction and overall underground testing programs; identifying necessary equipment for procurement; determining data acquisition requirements as input to Automatic Data Acquisition System (ADAS) design; providing step-by-step procedures for training personnel as well as for directing field operations; establishing quality assurance (QA) checkpoints and implementation methods; and defining data reduction methods and providing the anticipated accuracy of the system. 11 refs., 14 figs

  19. Waste package emplacement borehole option study

    International Nuclear Information System (INIS)

    Streeter, W.S.

    1992-03-01

    This study evaluates the cost and thermal effects of various waste package emplacement configurations that differ in emplacement orientation, number of containers per borehole, and standoff distance at the potential Yucca Mountain nuclear waste repository. In this study, eight additional alternatives to the vertical and horizontal orientation options presented in the Site Characterization Plan Conceptual Design Report are considered. Typical panel layout configurations based on thermal analysis of the waste and cost estimates for design and construction, operations, and closure and decommissioning were made for each emplacement option. For the thermal analysis average waste 10 years out of reactor and the SIM code were used to determine whether the various configurations temperatures would exceed the design criteria for temperature. This study does not make a recommendation for emplacement configuration, but does provide information for comparison of alternatives

  20. Proceedings of 18th international conference on structural mechanics in reactor technology

    International Nuclear Information System (INIS)

    2005-07-01

    The 18th International Conference on Structural Mechanics in Reactor Technology was held on August 7-12, 2005 in Beijing, China, and Sponsored by International Association for Structural Mechanics in Reactor Technology, Chinese Nuclear Society, Chinese Society of Theoretical and Applied Mechanics, and Tsinghua University. 486 abstracts are Collected. The contents includes: opening, plenary and keynote presentations; computational mechanics; fuel and core structures; aging, life extension, and license renewal; design methods and rules for components; fracture mechanics; concrete material, containment and other structures; analysis and design for dynamic and extreme loads; seismic analysis, design and qualification; structural reliability and probabilistic safety assessment (PSA); operation, inspection and maintenance; severe accident management and structural evaluation; advanced reactors and generation IV reactors; decommissioning of nuclear facilities and waste management.

  1. Let's push things forward: disruptive technologies and the mechanics of tissue assembly.

    Science.gov (United States)

    Varner, Victor D; Nelson, Celeste M

    2013-09-01

    Although many of the molecular mechanisms that regulate tissue assembly in the embryo have been delineated, the physical forces that couple these mechanisms to actual changes in tissue form remain unclear. Qualitative studies suggest that mechanical loads play a regulatory role in development, but clear quantitative evidence has been lacking. This is partly owing to the complex nature of these problems - embryonic tissues typically undergo large deformations and exhibit evolving, highly viscoelastic material properties. Still, despite these challenges, new disruptive technologies are enabling study of the mechanics of tissue assembly in unprecedented detail. Here, we present novel experimental techniques that enable the study of each component of these physical problems: kinematics, forces, and constitutive properties. Specifically, we detail advances in light sheet microscopy, optical coherence tomography, traction force microscopy, fluorescence force spectroscopy, microrheology and micropatterning. Taken together, these technologies are helping elucidate a more quantitative understanding of the mechanics of tissue assembly.

  2. Borehole sealing with highly compactd Na bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1981-12-01

    This report describes the use of highly compacted Na bentonite for borehole plugging. Bentonites have an extremely low permeability and a low diffusivity, and a swelling ability which produces a nonleaching boundary between clay and rock if the initial bulk density of the bentonite is sufficiently high. The suggested technique, which is applicable to long vertical, and inclined, as well as horizontal boreholes, is based on the use of perforated copper pipes to insert elements of compacted bentonite. Such pipe segments are connected at the rock surface and successively inserted in the hole. When the hole is equipped, the clay takes up water spontaneously and swells through the perforation, and ultimately forms an almost completely homogenous clay core. It embeds the pipe which is left in the hole. Several tests were conducted in the laboratory and one field test was run in Stripa. They all showed that a gel soon fills the slot between the pipe and the confinement which had the form of metal pipes in the laboratory investigations. Subsequently, more clay migrates through the perforation and produces a stiff clay filling in the slot. The redistribution of minerals, leading ultimately to a high degree of homogeneity, can be described as a diffusion process. The rate of redistribution depends on the joint geometry and water flow pattern in the rock. In the rock with an average joint frequence of one per meter or higher, very good homogeneity and sealing ability of the clay are expected within a few months after the application of the plug. (author)

  3. Construction of System for Seismic Observation in Deep Borehole (SODB) - Overview and Achievement Status of the Project

    International Nuclear Information System (INIS)

    Kobayashi, Genyu

    2014-01-01

    The seismic responses of each unit at the Kashiwazaki-Kariwa NPP differed greatly during the 2007 Niigata-ken Chuetsu-oki Earthquake; the deep sedimentary structure around the site greatly affected these differences. To clarify underground structure and to evaluate ground motion amplification and attenuation effects more accurately in accordance with deep sedimentary structure, JNES initiated the SODB project. Deployment of a vertical seismometer array in a 3000-meter deep borehole was completed in June 2012 on the premises of NIIT. Horizontal arrays were also placed on the ground surface. Experiences and achievements in the JNES project were introduced, including development of seismic observation technology in deep boreholes, site amplification measurements from logging data, application of borehole observation data to maintenance of nuclear power plant safety, and so on. Afterwards, the relationships of other presentations in this WS, were explained. (authors)

  4. The Impact of Technology on Hawaii's Automotive Mechanics: An Analysis with Recommendations. Technological Impact Study Series.

    Science.gov (United States)

    Allen, Robert

    Because of the increasing use of microelectronic componentry in automobiles, vocational educators must reexamine existing automotive mechanics curricula to ensure that they can continue to provide relevant job training. After examining recent trends in the impact of computers and electronics on automotive design and engineering, existing auto…

  5. Behaviour of the Callovo-Oxfordian clay around a converging heated borehole: thermal free wall experiment

    International Nuclear Information System (INIS)

    Garitte, B.; Gens, A.; Vaunat, J.; Armand, G.; Conil, N.

    2012-01-01

    measured temperature and pore water pressure response compared with computations performed using Code-Bright, a Thermo-Hydro-Mechanical finite element code developed at UPC. The pore water pressure response triggered by application of heat was found to be mostly dependent on: The temperature evolution, dependent on its turn on the thermal conductivity; The thermal expansion coefficient of water, dependent on temperature; The thermal expansion of the skeleton; The thermal expansion of the solid grain; The water compressibility; The water permeability; The compressibility of the skeleton. A plane strain computation was run using a heat loss coefficient to account for the longitudinal heat flux that is zero in the plane strain computation. The measurements were reproduced in a satisfactory way adopting the same parameters used in previous heating experiments in which the heating borehole was not allowed to converge. This suggests that the influence of the drilling damage zone may be negligible. The pore water pressure state at the start of heating is influenced by drainage towards the heating borehole since its drilling. The simulation reproduces well the initial pore pressure in TER1907, although drainage has been slightly overestimated in TER 1906. For comparison purposes, simulation results during the heating phase have been reset to measured values at start of heating for sensor TER1906. The coupling between temperature and pore water pressure is evident and further discussed in the full paper. During the heating phase, a priori unexplained variations of the pore water pressure were observed. Those are reproduced by the simulation and associated with small power variations. In the full paper, we also present a sensitivity analysis of the parameters given above to investigate their influence. We also pay particular attention to anisotropic rock features and to the potential influence of the drilling damage zone and to the development of damage during heating. The results

  6. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    Energy Technology Data Exchange (ETDEWEB)

    Erik C. Westman

    2003-10-24

    Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

  7. Research on borehole stability of shale based on seepage-stress-damage coupling model

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ran

    2014-01-01

    Full Text Available In oil drilling, one of the most complicated problems is borehole stability of shale. Based on the theory of continuum damage mechanics, a modified Mohr-Coulomb failure criterion according to plastic damage evolution and the seepage-stress coupling is established. Meanwhile, the damage evolution equation which is based on equivalent plastic strain and the permeability evolution equation of shale are proposed in this paper. The physical model of borehole rock for a well in China western oilfield is set up to analyze the distribution of damage, permeability, stress, plastic strain and displacement. In the calculation process, the influence of rock damage to elastic modulus, cohesion and permeability is involved by writing a subroutine for ABAQUS. The results show that the rock damage evolution has a significant effect to the plastic strain and stress in plastic zone. Different drilling fluid density will produce different damage in its value, range and type. This study improves the theory of mechanical mechanism of borehole collapse and fracture, and provides a reference for the further research of seepage-stress-chemical-damage coupling of wall rock.

  8. Techniques for Field Operation of Straddle-packer System in Deep Borehole

    International Nuclear Information System (INIS)

    Kim, Kyung Su; Park, Kyung Woo; Kim, Geon Young; Ji, Sung Hoon; Koh, Yong Kwon; Choi, Jong Won

    2010-05-01

    It is necessary to establish an appropriate hydro-testing tool for the qualified characterization of deep geological environments, especially for the hydraulic properties of rock formation. This research project had been initiated for the purpose of establishment of advanced infra-structures in KURT. The straddle packer system was developed for hydraulic characterization of geological formation using deep borehole. This technical report consists of design concept, basic requirements, function of each part, field operation procedures and techniques, detail design drawings, and specifications. The qualified hydro-testing tool, which is suitable for medium to low permeable formation, using large and deep borehole, has been developed. This tool will be applied for the research project on development of HLW disposal technologies and the site characterization activities of LILW disposal project. Prior to field operation using this hydro-testing equipment, every researchers should be well acquainted with this technical report

  9. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    Science.gov (United States)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  10. Some problems in mechanics of growing solids with applications to AM technologies

    Science.gov (United States)

    Manzhirov, A. V.

    2018-04-01

    Additive Manufacturing (AM) technologies are an exciting area of the modern industrial revolution and have applications in engineering, medicine, electronics, aerospace industry, etc. AM enables cost-effective production of customized geometry and parts by direct fabrication from 3D data and mathematical models. Despite much progress in AM technologies, problems of mechanical analysis for AM fabricated parts yet remain to be solved. This paper deals with three main mechanical problems: the onset of residual stresses, which occur in the AM process and can lead to failure of the parts, the distortion of the final shape of AM fabricated parts, and the development of technological solutions aimed at improving existing AM technologies and creating new ones. An approach proposed deals with the construction of adequate analytical model and effective methods for the simulation of AM processes for fabricated solid parts.

  11. The clean development mechanism versus international permit trading: The effect on technological change

    International Nuclear Information System (INIS)

    Hagem, Cathrine

    2009-01-01

    The clean development mechanism of the Kyoto Protocol may induce technological change in developing countries. As an alternative to the clean development mechanism regime, developing countries may accept a (generous) cap on their own emissions, allow domestic producers to invest in new efficient technologies, and sell the excess emission permits on the international permit market. The purpose of this article is to show how the gains from investment, and hence the incentive to invest in new technology in developing countries, differ between the two alternative regimes. We show that the difference in the gains from investment depends on whether the producers in developing countries face competitive or noncompetitive output markets, whether the investment affects fixed or variable production costs, and whether producers can reduce emissions through means other than investing in new technology. (author)

  12. Numerical Modeling of a Shallow Borehole Thermal Energy Storage System

    Science.gov (United States)

    Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.

    2014-12-01

    Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES

  13. Final storage of radioactive waste in deep boreholes

    International Nuclear Information System (INIS)

    Eichmeyer, H.; Wolff, H.

    1985-01-01

    The plans of the Danish Atomic Energy Authority expect the storage of 4500 containers with high activity waste each weighing 15 tonnes in deep boreholes in rock salt over a period of 30 years. The Danish plans are concerned with the storage medium salt in one of the many salt mines in North Germany and Denmark with a depth of 1200 metres, because of the high plasticity, good thermal conductivity and non-permeability to liquids and gases. Eight deep boreholes with a diameter of 750 mm are provided in a circle of radius r=250 metres. With a deviation of 0 , the boreholes will be piped down to 1000 metres and after completion, will be filled with clay slurry and barium sulphate. At the start of storage of the waste in containers 6.8 metres long, the clay slurry is replaced by cement slurry with saturated NaCl solution. Another possibility is to fill the borehole volume with saturated NaCl solution, in order to let the convergence act on the annular space between the container and the borehole wall. After filling the borehole, the open borehole should be sealed over a distance of 200 metres with rock salt and over 50 metres with a concrete stopper. It is planned to provide a dense and corrosion-proof seal with bitumen above the concrete. (orig./GB) [de

  14. Laboratory studies of fluid flow through borehole seals

    International Nuclear Information System (INIS)

    South, D.L.

    1983-01-01

    Boreholes in the vicinity of a nuclear waste repository must be reliably sealed to prevent rapid migration of radionuclide contaminated water from the vicinity of the repository to the accessible environment. Few data currently exist regarding the effectiveness of borehole sealing. The objective of this research was to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. The approach used to evaluate borehole seals was to compare flow through a sealed borehole with flow through intact rock. Granite, basalt, and tuff were tested, using either cement or bentonite as the seal material. The main conclusions reached as a result of the experiments is that currently existing materials are capable of forming high quality seals when placed under laboratory conditions. Variation of triaxial stress state about a borehole does not significantly affect seal performance if the rock is stiffer than the seal material. Temperature/moisture variations (drying) degraded the quality of cement seals significantly. Performance partially recovered upon resaturation. Significant remaining questions include field emplacement techniques; field vertification of plug quality; plug performance over long time periods, particularly with respect to temperature/moisture variations and chemical stability; and radionuclide sorption capabilities. Scale effects are also important, as shafts and drifts must be sealed as well as larger diameter boreholes

  15. Difference flow measurements in borehole KOV01 at Oskarshamn

    International Nuclear Information System (INIS)

    Poellaenen, J.; Rouhiainen, P.

    2001-09-01

    Posiva Flow Log/Difference Flow method can be used for relatively fast determination of hydraulic conductivity and hydraulic head in fractures or fractured zones in cored boreholes. This report presents the principles of the method as well as the results of the measurements carried out in borehole KOV01 at Oskarshamn in February and March 2001. The aim of the measurements presented in this report was to determine the depth and flow rate of flowing fractures in borehole KOV01 prior to groundwater sampling. The measurements in borehole KOV01 were carried out between 100-1000 m depth using the so called detailed flow logging mode; the flow rate into a 5 m long test section was measured. Detailed flow logging was repeated at the location of the detected flow anomalies using 0.5 m section length and 0.1 m point intervals. The borehole was pumped during these measurements. The occurrence of saline water in the borehole was studied by electric conductivity measurements. The flow guide encloses also an electrode for measuring of single point resistance of the bedrock. It was measured with 0.01 m point intervals during the detailed flow logging. Depth calibration was made on the basis of the known depth marks in the borehole. The depth marks were detected by caliper measurements and by single point resistance measurements

  16. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  17. Borehole drilling for sewage disposal at Asuka Station, East Antarctica

    OpenAIRE

    Ishizawa,Kenji; Takahashi,Akiyoshi

    1994-01-01

    A borehole for sewage disposal was drilled at Asuka Station (71°31′34″S, 24°08′17″E, 930m a. s. l.) in January 1987. The borehole, 400mm in diameter and 27.5m in depth, was drilled 50m distant from the main hut using a steam drilling system. The drilling speed was 4m/h between the snow surface and 20m depth. The total amount of kerosene used for melting snow and steam generation was 110/. Sewage stored in the tank was directed to the borehole through a heated pipe. The cumulative amount of se...

  18. Design of a slimline directional borehole radar antenna using FDTD

    CSIR Research Space (South Africa)

    Vogt, D

    2008-06-01

    Full Text Available , dielectric. I. INTRODUCTION Borehole radar is the application of Ground Penetrating Radar (GPR) within a borehole [11]. GPR is a technique used to delineate structures and features of a subsurface. The borehole radar technique has been used successfully..., the direction of the incoming EM wave can be determined [6]. III. FILLER MATERIAL INSIDE ANTENNA ARRAY Ideally, there is no material between the antenna body and the rock surrounding it. In that case, the filler material would be matched to the dielectric...

  19. Additive Manufacturing and Casting Technology Comparison: Mechanical Properties, Productivity and Cost Benchmark

    Science.gov (United States)

    Vevers, A.; Kromanis, A.; Gerins, E.; Ozolins, J.

    2018-04-01

    The casting technology is one of the oldest production technologies in the world but in the recent years metal additive manufacturing also known as metal 3D printing has been evolving with huge steps. Both technologies have capabilities to produce parts with internal holes and at first glance surface roughness is similar for both technologies, which means that for precise dimensions parts have to be machined in places where precise fit is necessary. Benchmark tests have been made to find out if parts which are produced with metal additive manufacturing can be used to replace parts which are produced with casting technology. Most of the comparative tests have been made with GJS-400-15 grade which is one of the most popular cast iron grades. To compare mechanical properties samples have been produced using additive manufacturing and tested for tensile strength, hardness, surface roughness and microstructure and then the results have been compared with the samples produced with casting technology. In addition, both technologies have been compared in terms of the production time and production costs to see if additive manufacturing is competitive with the casting technology. The original paper has been written in the Latvian language as part of the Master Thesis within the framework of the production technology study programme at Riga Technical University.

  20. APPLICATIONS OF BOREHOLE-ACOUSTIC METHODS IN ROCK MECHANICS.

    Science.gov (United States)

    Paillet, Frederick L.

    1985-01-01

    Acoustic-logging methods using a considerable range of wavelengths and frequencies have proven very useful in the in situ characterization of deeply buried crystalline rocks. Seismic velocities are useful in investigating the moduli of unfractured rock, and in producing a continuous record of rock quality for comparison with discontinuous intervals of core. The considerable range of frequencies makes the investigation of scale effects possible in both fractured and unfractured rock. Several specific methods for the characterization of in situ permeability have been developed and verified in the field.

  1. Comparison between results of detailed tectonic studies on borehole core vs microresistivity images of borehole wall from gas-bearing shale complexes, Baltic Basin, Poland.

    Science.gov (United States)

    Bobek, Kinga; Jarosiński, Marek; Pachytel, Radomir

    2017-04-01

    Structural analysis of borehole core and microresistivity images yield an information about geometry of natural fracture network and their potential importance for reservoir stimulation. Density of natural fractures and their orientation in respect to the maximum horizontal stress has crucial meaning for hydraulic fractures propagation in unconventional reservoirs. We have investigated several hundred meters of continuous borehole core and corresponding microresistivity images (mostly XRMI) from six boreholes in the Pomeranian part of the Early Paleozoic Baltic Basin. In general, our results challenge the question about representatives of statistics based on structural analyses on a small shale volume represented by borehole core or borehole wall images and credibility of different sets of data. Most frequently, fractures observed in both XRMI and cores are steep, small strata-bound fractures and veins with minor mechanical aperture (0,1 mm in average). These veins create an orthogonal joint system, locally disturbed by fractures associated with normal or by gently dipping thrust faults. Mean fractures' height keeps in a range between 30-50 cm. Fracture density differs significantly among boreholes and Consistent Lithological Units (CLUs) but the most frequent means falls in a range 2-4 m-1. We have also payed an attention to bedding planes due to their expected coupling with natural fractures and their role as structural barriers for vertical fracture propagation. We aimed in construction for each CLU the so-called "mean brick", which size is limited by an average distance between two principal joint sets and between bedding fractures. In our study we have found out a discrepancy between structural profiles based on XRMI and core interpretation. For some CLUs joint fractures densities, are higher in cores than in XRMI. In this case, numerous small fractures were not recorded due to the limits of XRMI resolution. However, the most veins with aperture 0,1 mm

  2. Research borehole drilling activity for boreholes DH-18, DH-19, DC-12, DC-13, DC-14, DC-15, and deepening of existing borehole DC-7

    International Nuclear Information System (INIS)

    1979-09-01

    This report is an environmental evaluation of the impacts of proposed borehole drilling activities at the Hanford Site, northwest of Richland, Washington. The proposed action is to drill six research boreholes ranging in depth from 137 to 1372 meters (m) [250 to 4500 +- feet (ft)]. In addition, an existing borehole (DC-7) will be extended from 1249 to 1524 m (4099 to 5000 +- ft). The purpose of the US Department of Energy's (DOE) borehole drilling activities is to collect data on in situ rock formations that are considered potentialy suitable for nuclear waste repositories. The technical program efforts necessary to identify and qualify specific underground waste facility sites in candidate rock formations include geologic and hydrologic studies (seismicity and tectonics, rock structure and stratigraphy, lithology, etc.). Borehole drilling is an integral part of the geological studies and is essential to a thorough understanding of potentially suitable geologic formations. The purpose of the proposed drilling activities is to obtain data for evaluating Columbia River basalts that are being evaluated by the National Waste Terminal Storage (NWTS) Program to determine their suitability potential for nuclear waste repositories. Unavoidable impact to the environment is limited primarily to the clearing of land needed for access and drilling operations. Considerations exercised during site preparation, drilling, and subsequent site restoration will limit modification of the natural environment to the minimum required for accomplishment of test objectives

  3. Borehole Breakout Growth and In-Situ Stress Orientation in the Central Scandinavian Caledonides: Results from the Cosc-1 Borehole

    Science.gov (United States)

    Wenning, Q.; Zappone, A.; Berthet, T.; Ask, M. V. S.; Rosberg, J. E.; Almqvist, B. S. G.

    2017-12-01

    Borehole breakouts are often assumed to form near instantaneously due to stress perturbations around boreholes after the rock mass was removed. Recent observations in sediments [e.g., Moore et al., 2011] and crystalline rocks [e.g., Berard and Cornet, 2003], as well as numerical modelling results [e.g., Schoenball et al., 2014], suggest that there are cases in which borehole breakout grows radially over time, forcing us to reconsider subsurface stress estimation. These observations are rare due to drilling difficulties (i.e., cementing and casing the borehole after drilling), often only allowing a single image logging campaign. In 2014, the Collisional Orogeny in the Scandinavian Caledonides deep scientific borehole (COSC-1) was drilled to a depth of 2.5 km. To date the borehole is open and uncased, allowing two acoustic televiewer logging campaigns, with more than one year between campaigns. The borehole is still available for supplementary data collactions. These logs provide detailed images along the full length of the 2.5 km deep borehole with 1.6 km of overlapping logs for breakout and drilling induced tensile fracture analysis. The results show from the sparse occurrence of breakouts and drilling induced tensile fractures a NW-SE average maximum horizontal stress direction, consistent with the general trend in Scandinavia. The unique acquisition of image logs in two successions allows for analysis of time-dependent borehole deformation, indicating that six breakout zones have crept, both along the borehole axis and radially (up to 20° growth) around the borehole. While some breakouts have grown, the formation of new breakouts has not occurred. The occurrence of breakouts and their growth appear to be independent of lithology. The observed growth after the second logging campaign suggests that under conditions where the stress exceeded the strength of the rock, the resulting breakout causes perturbations in the stresses around the borehole in the near

  4. Problems and criteria of quality improvement in end face mechanical seal rings through technological methods

    Science.gov (United States)

    Tarelnik, V.; Belous, A.; Antoszewski, B.; Zukov, A.

    2017-08-01

    In this paper are presented the recommendations for material’s selections of the mechanical seals rings and basic productive and operating requirements. The system of a directional selection of technology that ensures the required quality of working surfaces of the mechanical seals rings covers their entire life cycle. The mathematical frictional model is proposed as an instrument for calculating a linear and weighing abrasion of the mechanical seals rings and helps to improve selection’s criteria and the most rational method of strengthening.

  5. Micro-electro-mechanical systems (MEMS: Technology for the 21st century

    Directory of Open Access Journals (Sweden)

    Đakov Tatjana A.

    2014-01-01

    Full Text Available Micro-electro-mechanical systems (MEMS are miniturized devices that can sense the environment, process and analyze information, and respond with a variety of mechanical and electrical actuators. MEMS consists of mechanical elements, sensors, actuators, electrical and electronics devices on a common silicon substrate. Micro-electro-mechanical systems are becoming a vital technology for modern society. Some of the advantages of MEMS devices are: very small size, very low power consumption, low cost, easy to integrate into systems or modify, small thermal constant, high resistance to vibration, shock and radiation, batch fabricated in large arrays, improved thermal expansion tolerance. MEMS technology is increasingly penetrating into our lives and improving quality of life, similar to what we experienced in the microelectronics revolution. Commercial opportunities for MEMS are rapidly growing in broad application areas, including biomedical, telecommunication, security, entertainment, aerospace, and more in both the consumer and industrial sectors on a global scale. As a breakthrough technology, MEMS is building synergy between previously unrelated fields such as biology and microelectronics. Many new MEMS and nanotechnology applications will emerge, expanding beyond that which is currently identified or known. MEMS are definitely technology for 21st century.

  6. Mechanical Properties of Steel P92 Welded Joints Obtained By TIG Technology

    Science.gov (United States)

    Mohyla, P.; Havelka, L.; Schmidová, E.; Vontorová, J.

    2017-11-01

    Mechanical properties of P92 steel welded joints obtained using the TIG (141) technology have been studied upon post-welding heat treatment (PWHT). The microhardness, tensile strength, and impact toughness of metal in the weld and heat-affected zone are determined. The PWHT is shown to be obligatory.

  7. Mechanical Design Technology--Modified. (Computer Assisted Drafting, Computer Aided Design). Curriculum Grant 84/85.

    Science.gov (United States)

    Schoolcraft Coll., Livonia, MI.

    This document is a curriculum guide for a program in mechanical design technology (computer-assisted drafting and design developed at Schoolcraft College, Livonia, Michigan). The program helps students to acquire the skills of drafters and to interact with electronic equipment, with the option of becoming efficient in the computer-aided…

  8. Combination of low energy and mechanical cooling technologies for buildings in Central Europe

    NARCIS (Netherlands)

    Lain, M.; Hensen, J.L.M.

    2004-01-01

    This paper discusses options for incorporating low energy cooling technologies combined with standard mechanical cooling in buildings in central Europe. Case studies, design recommendations and role of computer simulation of building and system in the design process are presented. Applicability of

  9. Imaging CO2 reservoirs using muons borehole detectors

    Science.gov (United States)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial

  10. Drilling and the associated borehole measurements of the pilot hole ONK-PH2

    International Nuclear Information System (INIS)

    Oehberg, A.; Aaltonen, I.; Kemppainen, K.; Mattila, J.; Heikkinen, E.; Lahti, M.; Pussinen, V.; Niemonen, J.; Paaso, N.; Rouhiainen, P.

    2005-11-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are boreholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes will mostly aim to confirm the quality of the rock mass for tunnel construction, and in particular at identifying water conductive fractured zones and at providing information that could result in modifications of the existing construction plans. The pilot hole ONK-PH2 was drilled in December 2004. The length of the borehole is about 122 metres. The aim during the drilling work was to orientate core samples as much as possible. The deviation of the borehole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity and hydraulic head in fractures and fractured zones in the borehole. The overlapping i.e. the detailed flow logging mode was used. The flow logging was performed with 0.5 m section length and with 0.1 m depth increments. Geophysical borehole logging and optical imaging surveys of the pilot hole PH2 included the field work of all the surveys, the integration of the data as well as interpretation of the acoustic and borehole radar data. One of the objectives of the geochemical study was to get information of composition of ONKALO's groundwater before the construction will

  11. Drilling and the associated borehole measurements of the pilot hole ONK-PH3

    International Nuclear Information System (INIS)

    Oehberg, A.; Heikkinen, E.; Hirvonen, H.; Kemppainen, K.; Majapuro, J.; Niemonen, J.; Poellaenen, J.; Rouhiainen, P.

    2006-03-01

    The construction of the ONKALO access tunnel started in September 2004 at Olkiluoto. Most of the investigations related to the construction of the access tunnel aim to ensure successful excavations, reinforcement and sealing. Pilot holes are boreholes, which are core drilled along the tunnel profile. The length of the pilot holes typically varies from several tens of metres to a couple of hundred metres. The pilot holes will mostly aim to confirm the quality of the rock mass for tunnel construction, and in particular at identifying water conductive fractured zones and at providing information that could result in modifications of the existing construction plans. The pilot hole ONK-PH3 was drilled in September 2005. The length of the borehole is 145.04 metres. The aim during the drilling work was to orientate core samples as much as possible. The deviation of the borehole was measured during and after the drilling phase. Electric conductivity was measured from the collected returning water samples. Logging of the core samples included the following parameters: lithology, foliation, fracturing, fracture frequency, RQD, fractured zones, core loss and weathering. The rock mechanical logging was based on Q-classification. The tests to determine rock strength and deformation properties were made with a Rock Tester-equipment. Difference Flow method was used for the determination of hydraulic conductivity in fractures and fractured zones in the borehole. The overlapping i.e. the detailed flow logging mode was used. The flow logging was performed with 0.5 m section length and with 0.1 m depth increments. Water loss tests (Lugeon tests) and a pressure build-up test were used to give background information for the grouting design. Geophysical borehole logging and optical imaging surveys of the pilot hole PH3 included the field work of all the surveys, the integration of the data as well as interpretation of the acoustic and borehole radar data. One of the objectives of the

  12. Core-logs of borehole VI down to 505 m

    International Nuclear Information System (INIS)

    Carlsson, L.; Olsson, T.; Stejskal, V.

    1981-01-01

    In the hydrogeological program of the Stripa project the vertical borehole V1 has been drilled 505.5 m. The drillcore has been logged with regard to rock characteristic, fracture frequency, dipping and filling. The results presented as cumulative fracture diagram have formed the base for subdivision of the borehole according to fracture frequency. The variation in the fracture dipping was also taken into account. Chlorite is the most common of the infilling material in the fractures. For the borehole 0-466 m the average fracture frequency is 1.46 fractures/m. Below 466 m the core is highly fractured and crushed indicating that the borehole has entered a crushed zone. Because of this the drilling is temporarily stopped. (Auth.)

  13. Global Database of Borehole Temperatures and Climate Reconstructions - CA-0003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data collected from borehole site CA-0003. For an accurate assessment of the relative roles of natural variability and anthropogenic influence in the Earth's...

  14. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schimschal, U.; Nelson, P.H.

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. The authors show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available

  15. Borehole depth and regolith aquifer hydraulic characteristics of ...

    African Journals Online (AJOL)

    EJIRO

    composition tend to exhibit similar hydraulic characteristics. But the poor performance of ... mum borehole depth in the regolith aquifer for the area and also reveals that ..... most important end products of chemical weathering of rocks of granitic ...

  16. Comparative Study of Coliform Contamination of Public Boreholes ...

    African Journals Online (AJOL)

    PROF HORSFALL

    boreholes and pipe borne water supplies within Bosso town. Twenty (20) water ... result from inadequately treated sewage discharged from various septic tanks, and .... enforce proper hygienic practices, especially around public water supply ...

  17. Methods for use in detecting seismic waves in a borehole

    Science.gov (United States)

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  18. Methodology for Radiological Risk Assessment of Deep Borehole Disposal Operations

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest; Su, Jiann-Cherng; Peretz, Fred(ORNL)

    2017-03-01

    The primary purpose of the preclosure radiological safety assessment (that this document supports) is to identify risk factors for disposal operations, to aid in design for the deep borehole field test (DBFT) engineering demonstration.

  19. Analysis and interpretation of borehole hydraulic tests in deep boreholes: principles, model development, and applications

    International Nuclear Information System (INIS)

    Pickens, J.F.; Grisak, G.E.; Avis, J.D.; Belanger, D.W.

    1987-01-01

    A review of the literature on hydraulic testing and interpretive methods, particularly in low-permeability media, indicates a need for a comprehensive hydraulic testing interpretive capability. Physical limitations on boreholes, such as caving and erosion during continued drilling, as well as the high costs associated with deep-hole rigs and testing equipment, often necessitate testing under nonideal conditions with respect to antecedent pressures and temperatures. In these situations, which are common in the high-level nuclear waste programs throughout the world, the interpretive requirements include the ability to quantitatively account for thermally induced pressure responses and borehole pressure history (resulting in a time-dependent pressure profile around the borehole) as well as equipment compliance effects in low-permeability intervals. A numerical model was developed to provide the capability to handle these antecedent conditions. Sensitivity studies and practical applications are provided to illustrate the importance of thermal effects and antecedent pressure history. It is demonstrated theoretically and with examples from the Swiss (National Genossenschaft fuer die Lagerung radioaktiver Abfaelle) regional hydrogeologic characterization program that pressure changes (expressed as hydraulic head) of the order of tens to hundreds of meters can results from 1 0 to 2 0 C temperature variations during shut-in (packer isolated) tests in low-permeability formations. Misinterpreted formation pressures and hydraulic conductivity can also result from inaccurate antecedent pressure history. Interpretation of representative formation properties and pressures requires that antecedent pressure information and test period temperature data be included as an integral part of the hydraulic test analyses

  20. Coupled Thermo-Mechanical and Photo-Chemical Degradation Mechanisms that determine the Reliability and Operational Lifetimes for CPV Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dauskardt, Reinhold H. [Stanford Univ., CA (United States)

    2017-04-30

    This project sought to identify and characterize the coupled intrinsic photo-chemo-mechanical degradation mechanisms that determine the reliability and operational lifetimes for CPV technologies. Over a three year period, we have completed a highly successful program which has developed quantitative metrologies and detailed physics-based degradation models, providing new insight into the fundamental reliability physics necessary for improving materials, creating accelerated testing protocols, and producing more accurate lifetime predictions. The tasks for the program were separated into two focus areas shown in the figure below. Focus Area 1, led by Reinhold Dauskardt and Warren Cai with a primary collaboration with David Miller of NREL, studied the degradation mechanisms present in encapsulant materials. Focus Area 2, led by Reinhold Dauskardt and Ryan Brock with a primary collaboration with James Ermer and Peter Hebert of Spectrolab, studied stress development and degradation within internal CPV device interfaces. Each focus area was productive, leading to several publications, including findings on the degradation of silicone encapsulant under terrestrial UV, a model for photodegradation of silicone encapsulant adhesion, quantification and process tuning of antireflective layers on CPV, and discovery of a thermal cycling degradation mechanism present in metal gridline structures.

  1. The U-tube: A new paradigm in borehole fluid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, B. M.

    2009-10-01

    Fluid samples from deep boreholes can provide insights into subsurface physical, chemical, and biological conditions. Recovery of intact, minimally altered aliquots of subsurface fluids is required for analysis of aqueous chemistry, isotopic composition, and dissolved gases, and for microbial community characterization. Unfortunately, for many reasons, collecting geofluids poses a number of challenges, from formation contamination by drilling to maintaining integrity during recovery from depths. Not only are there substantial engineering issues in retrieval of a representative sample, but there is often the practical reality that fluid sampling is just one of many activities planned for deep boreholes. The U-tube geochemical sampling system presents a new paradigm for deep borehole fluid sampling. Because the system is small, its ability to integrate with other measurement systems and technologies opens up numerous possibilities for multifunctional integrated wellbore completions. To date, the U-tube has been successfully deployed at four different field sites, each with a different deployment modality, at depths from 260 m to 2 km. While the U-tube has proven to be highly versatile, these installations have resulted in data that provide additional insights for improving future U-tube deployments.

  2. The analysis on the basic technology and radiation induced voltaic mechanism for nuclear battery

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B. O.; Min, B. T.; Kang, H. Y.; Kim, B. H.; Park, J. H.; Seo, H. S.

    2000-12-01

    Present study is for nuclear battery technology directly converting radiation energy to electricity among various nuclear energy, and it is anticipated that an interest in direct conversion of nuclear energy into electricity shall be increased as the conversion efficiency enhances. The battery should promise cheap, reliable power from a package small and light enough to be mobile, and with energy density great enough for use as a space based power supply. Various radiation-electricity conversion mechanism so far have been reported since G.J. Moseley reported the operation of a high-voltage nuclear battery using radium. The most important conversion mechanisms are RTG (Radioisotope Thermoelectric Generator) converting the heat produced from radioisotope to electricity using the temperature difference, and NRG (Nuclear Resonance Generator) using free electrons from the collision between α, βrays and copper coil. It is well known that RTG and NRG mechanisms are most practical way because their efficiencies high. The basic technology on radiation-electricity conversion mechanism, interaction mechanism between β ray and material, shielding for β ray, and technical backgrounds and a state of the art for RTG and NRG technologies, are analyzed in this report. Basic data on the conceptual design for the prototype of nuclear battery are prepared

  3. The analysis on the basic technology and radiation induced voltaic mechanism for nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, B. O.; Min, B. T.; Kang, H. Y.; Kim, B. H.; Park, J. H.; Seo, H. S

    2000-12-01

    Present study is for nuclear battery technology directly converting radiation energy to electricity among various nuclear energy, and it is anticipated that an interest in direct conversion of nuclear energy into electricity shall be increased as the conversion efficiency enhances. The battery should promise cheap, reliable power from a package small and light enough to be mobile, and with energy density great enough for use as a space based power supply. Various radiation-electricity conversion mechanism so far have been reported since G.J. Moseley reported the operation of a high-voltage nuclear battery using radium. The most important conversion mechanisms are RTG (Radioisotope Thermoelectric Generator) converting the heat produced from radioisotope to electricity using the temperature difference, and NRG (Nuclear Resonance Generator) using free electrons from the collision between {alpha}, {beta}rays and copper coil. It is well known that RTG and NRG mechanisms are most practical way because their efficiencies high. The basic technology on radiation-electricity conversion mechanism, interaction mechanism between {beta} ray and material, shielding for {beta} ray, and technical backgrounds and a state of the art for RTG and NRG technologies, are analyzed in this report. Basic data on the conceptual design for the prototype of nuclear battery are prepared.

  4. Experimental and Numerical Comparison of Two Borehole Heat Exchangers

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs

    2014-01-01

    This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S.......This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S....

  5. Observations of joint persistence and connectivity across boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, B.B.; Karasaki, K.

    1996-01-01

    Observations of joint persistence and connectivity are made by comparison of digital borehole wall images of fractures, fluid conductivity logs and hydraulic injections test results. The fractures were found to be generally impersistent across vertical boreholes about 8 m apart. Many hydraulic connections were found in the same volume of rock. Direct connections through single fractures seem to be rare and connectivity appears to be controlled by fracture networks, even over small volumes.

  6. Transactions of the 10th international conference on structual mechanics in reactor technology

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1989-01-01

    In this book, a wide spectrum of subjects is covered, including theoretical developments in structural mechanics, loading conditions, behavior of materials, fluid mechanics, operating experience, accident sequences, and calculational procedures. As a result, problems of structural mechanics analysis are focused within the general context of the design, reliability, and safety of nuclear reactors. Operating plant performance and life extension, waste repository technology and regulatory research have been formalized as distinct Divisions. The papers are theoretical or applied, or they address both of these aspects to demonstrate application of developed methods to solve specific design problems and show how well actual behavior correlates with theory. These paper explore in detail the mechanical design and system integration of fusion power reactors; thermohydraulics, structural mechanics and life-time evaluations of reactor components as first wall diverter/limiter, plasma heating devices, breeding blanket and shielding, magnet coils and supports, and vacuum containment systems, and structural analysis and comparison with measured data

  7. A Case Study of Effective Support Working Resistance and Roof Support Technology in Thick Seam Fully-Mechanized Face Mining with Hard Roof Conditions

    Directory of Open Access Journals (Sweden)

    Wei-bin Guo

    2017-06-01

    Full Text Available This paper presents the engineering geological properties and roof control tecnology for a thick coal seam fully-mechanized face mining with hard roof conditions (THC at the Jinhuagong Coal Mine (JCM, northwest China. The effective support working resistance and appropriate roof control technology are two critical factors for safe and productive mining in the THC. The load-estimate-method (LOEM is the effective method to determine the support working resistance for normal working conditions (the mining height less than 3.5 m. In order to prevent support crushing accidents from happening and to ensure the safety and high-efficiency in the THC, the LOEM was modified based on the structure of the overlying strata in the THC. The strata which can form the voussoir beam structure in normal working conditions and will break in the form of cantilever beam in the THC is defined as the key strata in the immediate roof. Therefore, the hanging length of the key strata in the immediate roof was considered in the LOEM. Furthermore, a method for calculating the hanging length of the key strata in the immediate roof and its influencing factors were proposed using cantilever beam theory analysis of the structure of the overlying strata. Moreover, in order to fully fill the goaf area with caving roof to reduce the energy accumulation of main roof movement, it was decided to apply destress blasting technique (DEBT at the JCM to control the large hanging length of the hard roof, so as to reduce the impact of the hard main roof movement on the working face. The key technique parameters of the roof caving borehole were also proposed. The obtained results demonstrated that the theoretical analysis is reasonable, and the chosen support type and the DEBT could meet the roof control requirements. The THC has achieved safety and high-efficiency mining.

  8. Construction Technology and Mechanical Properties of a Cement-Soil Mixing Pile Reinforced by Basalt Fibre

    Directory of Open Access Journals (Sweden)

    Yingwei Hong

    2017-01-01

    Full Text Available A new type of cement-soil mixing pile reinforced by basalt fibre is proposed for increasing the bearing capacity of cement-soil mixing piles. This work primarily consists of three parts. First, the process of construction technology is proposed, which could allow uniform mixing of the basalt fibre in cement-soil. Second, the optimal proportions of the compound mixtures and the mechanical properties of the pile material are obtained from unconfined compression strength test, tensile splitting strength test, and triaxial shear test under different conditions. Third, the reliability of the construction technology, optimal proportions, and mechanical properties are verified by testing the mechanical properties of the drilling core sample on site.

  9. Lithology, hydro-dynamism and thermicity in the multi-layer sedimentary system intersected by the Andra deep borehole of Montiers-sur-Saulx (Meuse, France)

    International Nuclear Information System (INIS)

    Landrein, Philippe; Vigneron, Georges; Delay, Jacques; Lebon, Patrick; Pagel, Maurice

    2013-01-01

    with low vertical and lateral extensions. Moreover, the faults soften towards the top in t he Lias and take root at the base of the massive salt. Therefore they cannot act as a drainage linking the aquifer formations. Thus, at this stage of knowledge, in the vicinity of the EST433 borehole, exchanges of solute elements between the Buntsandstein aquifer and more superficial ones can only be conceived through diffusive mechanisms over very long periods of time. During testing at a depth of 1879 to 1904 mMD (measured depth), 1862 to 1887 mTVD (true vertical depth), the Buntsandstein upper aquifer showed a production of water at 66 C and a high salinity of about 180 g/l. Comparison of these results with data of geothermal boreholes in the Paris region shows that the temperature measured in EST433 borehole is similar to the lowest temperatures used, the salinity is higher (6.5 to 35 g/l in the Paris region) and transmissivity is in the same range. These not exceptional characteristics (in terms of potential resource for geothermal use) combined with the difficulties of operating durably an aquifer in clayey sandstone show that geothermal resource is not attractive in current technological and economic conditions. The EST433 borehole has provided new information on the deep formations of the Paris basin in a sector where oil exploration ended 25 years ago. The study has demonstrated the absence of significant aquifers between the Trias and the Dogger and the low geothermal potential of the sector. The borehole has also revealed the variability of the 'Gres a roseaux' and Raethian sandstone formations. (authors)

  10. The experimental results and analysis of a borehole radar prototype

    International Nuclear Information System (INIS)

    Liu, Sixin; Wu, Junjun; Dong, Hang; Fu, Lei; Wang, Fei

    2012-01-01

    A prototype of borehole radar has been successfully tested in three sites for different purposes under a field condition. The objective of the prototype is providing an effective down-hole tool for detecting targets in deep boreholes situated in a relatively high conductivity area such as the metal ores. The first testing site is at a geothermal field. The fractures extending more than 20 m from the borehole are delineated by the borehole radar in the single-hole reflection mode. The second testing site is located in a jade mine for basement evaluation. The cross-hole measurement mode was used to detect the cavities made by previous unorganized mining activities. Several high-velocity anomalies were found in the velocity profile and presumably the targets of the mine shafts and tunnels. The third test site is located in a mineralized belt characterized by low resistivity less than 1000 Ohm m, the surface-borehole measurement was carried out and the data were processed with velocity tomography. The low-velocity zone corresponds to a mineralized zone from geological records. The three testing results proved the readiness of this borehole radar prototype for further deployment in more complicated and realistic field situations. (paper)

  11. Regional Cooperation Agreement for Asia and the Pacific (RCA). A mechanism for nuclear technology transfer

    International Nuclear Information System (INIS)

    Bin Muslim, N.

    1993-01-01

    The paper presents the regional cooperation programs of the IAEA which have as purpose to promote the applications of peaceful uses of atomic energy and to transfer technology to the developing countries. The paper focusses on the (RCA) program for Asia and the Pacific, it is considered the most important mechanism for genuine technology transfer. The annex no 1 lists the full text of the Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology, 1987 (13 articles). The annex no.3 lists also the full text of the African Regional Cooperative Agreement for Research, Development and training Related to Nuclear Science and Technology (14 articles). 11 refs., 17 tabs

  12. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  13. Characterization of cement paste as engineered barrier of borehole repository

    International Nuclear Information System (INIS)

    Ferreira, Eduardo G.A.; Isiki, Vera L. K.; Miyamoto, Hissae; Marumo, Julio T.; Vicente, Roberto

    2009-01-01

    Results of axial rupture by compression of cylindrical cement paste samples are presented. This is part of a research on cement paste behavior aiming at investigating the durability of cementitious materials in the environment of repositories for radioactive waste. Portland cement paste is intended to be used as a backfill in a deep borehole for disposal of sealed radiation sources which concept is under development. The service life of the engineered barrier materials plays an important role in the long term safety of such facilities. Accelerated tests in laboratory are being used to evaluate the performance of cement paste under the temperature expected at some hundred meters below grade, under exposure to the radiation emitted by the sources, and under the attack of aggressive chemicals dissolved in the groundwater, during the millennia necessary for the decay of the most active and long-lived radionuclides present in the waste. The large variability in results of mechanical strength as measured by axial compression of cylindrical samples is the subject of this short communication. (author)

  14. Geophysical borehole logging and optical imaging of the boreholes KR34, KR35 and KR36, at Olkiluoto 2005

    Energy Technology Data Exchange (ETDEWEB)

    Majapuro, J. [Suomen Malmi Oy, Espoo (Finland)

    2005-09-15

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of the boreholes KR34, KR35 and KR36 at the Olkiluoto site in Eurajoki during May - June 2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all surveys, interpretation and processing of the acoustic and borehole radar data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  15. Geophysical borehole logging and optical imaging of the boreholes KR34, KR35 and KR36, at Olkiluoto 2005

    International Nuclear Information System (INIS)

    Majapuro, J.

    2005-09-01

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of the boreholes KR34, KR35 and KR36 at the Olkiluoto site in Eurajoki during May - June 2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all surveys, interpretation and processing of the acoustic and borehole radar data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  16. Hydrogeological Characteristics of Fractured Rocks around the In-DEBS Test Borehole at the Underground Research Facility (KURT)

    Science.gov (United States)

    Ko, Nak-Youl; Kim, Geon Young; Kim, Kyung-Su

    2016-04-01

    In the concept of the deep geological disposal of radioactive wastes, canisters including high-level wastes are surrounded by engineered barrier, mainly composed of bentonite, and emplaced in disposal holes drilled in deep intact rocks. The heat from the high-level radioactive wastes and groundwater inflow can influence on the robustness of the canister and engineered barrier, and will be possible to fail the canister. Therefore, thermal-hydrological-mechanical (T-H-M) modeling for the condition of the disposal holes is necessary to secure the safety of the deep geological disposal. In order to understand the T-H-M coupling phenomena at the subsurface field condition, "In-DEBS (In-Situ Demonstration of Engineered Barrier System)" has been designed and implemented in the underground research facility, KURT (KAERI Underground Research Tunnel) in Korea. For selecting a suitable position of In-DEBS test and obtaining hydrological data to be used in T-H-M modeling as well as groundwater flow simulation around the test site, the fractured rock aquifer including the research modules of KURT was investigated through the in-situ tests at six boreholes. From the measured data and results of hydraulic tests, the range of hydraulic conductivity of each interval in the boreholes is about 10-7-10-8 m/s and that of influx is about 10-4-10-1 L/min for NX boreholes, which is expected to be equal to about 0.1-40 L/min for the In-DEBS test borehole (diameter of 860 mm). The test position was determined by the data and availability of some equipment for installing In-DEBS in the test borehole. The mapping for the wall of test borehole and the measurements of groundwater influx at the leaking locations was carried out. These hydrological data in the test site will be used as input of the T-H-M modeling for simulating In-DEBS test.

  17. Planning and leading of the technological processes by mechanical working with microsoft project

    Science.gov (United States)

    Nae, I.; Grigore, N.

    2016-08-01

    Nowadays, fabrication systems and methods are being modified; new processing technologies come up, flow sheets develop a minimum number of phases, the flexibility of the technologies grows up, new methods and instruments of monitoring and leading the processing operations also come up. The technological course (route, entry, scheme, guiding) referring to the series of the operation, putting and execution phases of a mark in order to obtain the final product from the blank is represented by a sequence of activities realized by a logic manner, on a well determined schedule, with a determined budget and resources. Also, a project can be defined as a series of specific activities, methodical structured which they aim to finish a specific objective, within a fixed schedule and budget. Within the homogeneity between the project and the technological course, this research is presenting the defining of the technological course of mechanical chip removing process using Microsoft Project. Under these circumstances, this research highlights the advantages of this method: the celerity using of other technological alternatives in order to pick the optimal process, the job scheduling being constrained by any kinds, the standardization of some processing technological operations.

  18. Drop of canistered spent fuel segments into a deep borehole and subsequent aerosol release

    International Nuclear Information System (INIS)

    Bantle, S.; Herbe, H.; Miu, J.

    1991-09-01

    The source term of the released aerosols is estimated. First, the number of failing canisters is calculated for the case of an axial symmetric canister (POLLUX) pile, and then, for the case of a 'zig-zag' pile, as found in reality. The weight-specific energy acting on the fuel - a measure for the degree of fuel fractioning - is determined from the acceleration acting on the pin segments. In the borehole prevails a steady-state flow pattern which is stimulated by the heat of the disposed waste canister, and is also influenced by the ventilation of the drift above the borehole. Based on this stationary flow pattern flow velocities are calculated by means of fluid mechanical methods. Further investigations deal with the unsteady case which occurs during and immediately after the canister drop as well as with the wake behind the canister. The most relevant result is that under the considered boundary conditions no release form the borehole into the repository is to be expected. (orig./HP) [de

  19. Thermophysical parameters from laboratory measurements and tests in borehole heat exchangers

    Science.gov (United States)

    Pacetti, Chiara; Giuli, Gabriele; Invernizzi, Chiara; Chiozzi, Paolo; Verdoya, Massimo

    2017-04-01

    Besides the type of thermal regime, the performance of borehole heat exchangers relies on the overall thermal resistance of the borehole. This parameter strongly depends on the underground thermal conductivity, which accounts for most of the heat that can be extracted. The geometric configuration and the increase of thermal conductivity of the grout filling back the bore can yield a non-negligible enhancement in thermal performances. In this paper, we present a study on a pilot geothermal plant consisting of two borehole heat exchangers, 95 m deep and 9 m apart. Laboratory and in situ tests were carried out with the aim of investigating underground thermal properties, mechanisms of heat transfer and thermal characteristics of the filling grouts. Samples of grouting materials were analysed in the lab for assessing the thermal conductivity. An attempt to improve the thermal conductivity was made by doping grouts with alumina. Results showed that alumina large concentrations can increase the thermal conductivity by 25-30%. The in situ experiments included thermal logs under conditions of thermal equilibrium and thermal response tests (TRTs). The analysis of the temperature-depth profiles, based on the mass and energy balance in permeable horizons with uniform thermo-hydraulic and steady-state conditions, revealed that the underground thermal regime is dominated by conduction. TRTs were performed by injecting a constant heat rate per unit length into the boreholes for 60-90 hours. After TRTs, the temperature drop off (TDO) was recorded at 20-m-depth intervals for one week in both holes. The TRT time series were interpreted according to the classical model of the infinite line source (ILS), to infer the underground thermal conductivity. The TDO records allowed the inference of the underground thermal properties variation with depth. The results of thermal conductivity inferred with the ILS method are consistent with the values obtained from the TDO analysis.

  20. Fracture Modes and Identification of Fault Zones in Wenchuan Earthquake Fault Scientific Drilling Boreholes

    Science.gov (United States)

    Deng, C.; Pan, H.; Zhao, P.; Qin, R.; Peng, L.

    2017-12-01

    After suffering from the disaster of Wenchuan earthquake on May 12th, 2008, scientists are eager to figure out the structure of formation, the geodynamic processes of faults and the mechanism of earthquake in Wenchuan by drilling five holes into the Yingxiu-Beichuan fault zone and Anxian-Guanxian fault zone. Fractures identification and in-situ stress determination can provide abundant information for formation evaluation and earthquake study. This study describe all the fracture modes in the five boreholes on the basis of cores and image logs, and summarize the response characteristics of fractures in conventional logs. The results indicate that the WFSD boreholes encounter enormous fractures, including natural fractures and induced fractures, and high dip-angle conductive fractures are the most common fractures. The maximum horizontal stress trends along the borehole are deduced as NWW-SEE according to orientations of borehole breakouts and drilling-induced fractures, which is nearly parallel to the strikes of the younger natural fracture sets. Minor positive deviations of AC (acoustic log) and negative deviation of DEN (density log) demonstrate their responses to fracture, followed by CNL (neutron log), resistivity logs and GR (gamma ray log) at different extent of intensity. Besides, considering the fact that the reliable methods for identifying fracture zone, like seismic, core recovery and image logs, can often be hampered by their high cost and limited application, this study propose a method by using conventional logs, which are low-cost and available in even old wells. We employ wavelet decomposition to extract the high frequency information of conventional logs and reconstruction a new log in special format of enhance fracture responses and eliminate nonfracture influence. Results reveal that the new log shows obvious deviations in fault zones, which confirm the potential of conventional logs in fracture zone identification.

  1. Thermal modelling of borehole heat exchangers and borehole thermal energy stores; Zur thermischen Modellierung von Erdwaermesonden und Erdsonden-Waermespeichern

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dan

    2011-07-15

    The thermal use of the underground for heating and cooling applications can be done with borehole heat exchangers. This work deals with the further development of the modelling of thermal transport processes inside and outside the borehole as well as with the application of the further developed models. The combination of high accuracy and short computation time is achieved by the development of three-dimensional thermal resistance and capacity models for borehole heat exchangers. Short transient transport processes can be calculated by the developed model with a considerable higher dynamic and accuracy than with known models from literature. The model is used to evaluate measurement data of a thermal response test by parameter estimation technique with a transient three-dimensional model for the first time. Clear advantages like shortening of the test duration are shown. The developed borehole heat exchanger model is combined with a three-dimensional description of the underground in the Finite-Element-Program FEFLOW. The influence of moving groundwater on borehole heat exchangers and borehole thermal energy stores is then quantified.

  2. KASAM Hearing on the Deep Borehole Concept

    International Nuclear Information System (INIS)

    Hedberg, Bjoern

    2008-01-01

    Bjoern Hedberg from KASAM, Sweden, reported on the organisation's new Transparency Programme on nuclear waste. The first event of this programme, which took place in March 2007, was a hearing on the deep borehole concept (DBH) as a possible alternative method for final disposal. The hearing was triggered by an increasing attention paid to DBH by several stakeholders, including NGOs, municipalities and the media. Issues of technical feasibility, long-term safety and safety philosophy were addressed, among others. The RISCOM-model for transparency was used for structuring the discussions. In this model transparency is achieved through the 'stretching' of various actors, aimed at exploring the facts, values and judgements underlying the arguments. Mr Hedberg indicated that the KASAM hearing has resulted in generating and surfacing of new knowledge related to the technical feasibility of the DBH concept. He observed that although there was a consensus between key actors on basic facts, there were divergent views on their implications. Based on the hearing, Mr Hedberg concluded that at this time the DBH concept cannot be seen as an alternative of the KBS-3 method. To make a final decision, however, more research is needed, for example, on the issue whether the DBH concept supports retrievability. He emphasised that the RISCOM structure proved to be useful since the stretching of actors by KASAM committee members and staff has led to new insights. The effectiveness of the process could be further enhanced by increasing the stretching capacity, i.e. time devoted to the hearing and in-depth preparation, and active participation of KASAM members

  3. The electrical resistivity method in cased boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, C.J.

    1991-05-01

    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  4. Borehole plugging by hydrothermal transport. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roy, D.M.; White, W.B.

    1976-02-28

    Calcium silicate--and aluminosilicate--compositions based on mixtures of fine grained quartz with various cements or calcium silicate compounds have been investigated under hydrothermal conditions in the temperature range 110-250/sup 0/C and pressure range 1,000-10,000 psi, pressures which are always in excess of that required to maintain liquid H/sub 2/O, and approximate the confining pressures which might be anticipated in deep boreholes. All silicate cement combinations investigated produce materials having adequate strength after reaction times of 1 day or longer. The calcium aluminate cement was also adequate with respect to strength but would need to be investigated more extensively for overall properties because of its highly reactive chemistry. The mini-rock cylinder-cement plug hydrothermal experiments in both limestone and sandstone resulted in reasonable magnitudes of bonding strength. The typical shear strength of a hydrothermally treated cement-sandstone plug is 1030 psi, and the compressive strength of the extruded cement plug is 9550 psi. Reactions having a potential for producing calcium carbonate plugs in holes drilled in carbonate rocks were studied. It should be noted that most cements are calcium silicate systems and are chemically compatible with the CaCO/sub 3/ and CaMg(CO/sub 3/)/sub 2/ in the rock walls of the hole. A side benefit from this research is some insight into the suitability of massive carbonate rocks as disposal sites. Carbonate rocks by themselves are highly impermeable, have low exchange capacity, and a low water content--all properties that are desirable in the storage medium. A major drawback is the presence of secondary permeability in the form of solutionally modified joints, fractures, and bedding planes.

  5. Borehole plugging by hydrothermal transport. Final report

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1976-01-01

    Calcium silicate--and aluminosilicate--compositions based on mixtures of fine grained quartz with various cements or calcium silicate compounds have been investigated under hydrothermal conditions in the temperature range 110-250 0 C and pressure range 1,000-10,000 psi, pressures which are always in excess of that required to maintain liquid H 2 O, and approximate the confining pressures which might be anticipated in deep boreholes. All silicate cement combinations investigated produce materials having adequate strength after reaction times of 1 day or longer. The calcium aluminate cement was also adequate with respect to strength but would need to be investigated more extensively for overall properties because of its highly reactive chemistry. The mini-rock cylinder-cement plug hydrothermal experiments in both limestone and sandstone resulted in reasonable magnitudes of bonding strength. The typical shear strength of a hydrothermally treated cement-sandstone plug is 1030 psi, and the compressive strength of the extruded cement plug is 9550 psi. Reactions having a potential for producing calcium carbonate plugs in holes drilled in carbonate rocks were studied. It should be noted that most cements are calcium silicate systems and are chemically compatible with the CaCO 3 and CaMg(CO 3 ) 2 in the rock walls of the hole. A side benefit from this research is some insight into the suitability of massive carbonate rocks as disposal sites. Carbonate rocks by themselves are highly impermeable, have low exchange capacity, and a low water content--all properties that are desirable in the storage medium. A major drawback is the presence of secondary permeability in the form of solutionally modified joints, fractures, and bedding planes

  6. Design and fabrication of a micro parallel mechanism system using MEMS technologies

    Science.gov (United States)

    Chin, Chi-Te

    A parallel mechanism is seen as an attractive method of fabricating a multi-degree of freedom micro-stage on a chip. The research team at Arizona State University has experience with several potential parallel mechanisms that would be scaled down to micron dimensions and fabricated by using the silicon process. The researcher developed a micro parallel mechanism that allows for planar motion having two translational motions and one rotational motion (e.g., x, y, theta). The mask design shown in Appendix B is an example of a planar parallel mechanism, however, this design would only have a few discrete positions given the nature of the fully extended or fully retracted electrostatic motor. The researcher proposes using a rotary motor (comb-drive actuator with gear chain system) coupled to a rack and pinion for finer increments of linear motion. The rotary motor can behave as a stepper motor by counting drive pulses, which is the basis for a simple open loop control system. This system was manufactured at the Central Regional MEMS Research Center (CMEMS), National Tsing-Hua University, and supported by the National Science Council, Taiwan. After the microstructures had been generated, the proceeding devices were released and an experiment study was performed to demonstrate the feasibility of the proposed micro-stage devices. In this dissertation, the micro electromechanical system (MEMS) fabrication technologies were introduced. The development of this parallel mechanism system will initially focus on development of a planar micro-stage. The design of the micro-stage will build on the parallel mechanism technology, which has been developed for manufacturing, assembly, and flight simulator applications. Parallel mechanism will give the maximum operating envelope with a minimum number of silicon levels. The ideally proposed mechanism should comprise of a user interface, a micro-stage and a non-silicon tool, which is difficult to accomplish by current MEMS technology

  7. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  8. Transactions of the 8th International Conference on Structure Mechanics in Reactor Technology

    International Nuclear Information System (INIS)

    Browzin, B.S.

    1985-06-01

    These Transactions of the JK-panel session include preprints of papers or abstracts which are listed in Volume A, ''Introduction, General Contents, Authors Index,'' Proceedings of the 8th International Conference on Structural Mechanics in Reactor Technology. These papers represent the body of the JK-panel session, ''Status of Research in Structural and Mechanical Engineering for Nuclear Power Plants,'' sponsored by the US Nuclear Regulatory Commission. Additional papers are expected at this session, which will be available at the session. The purpose of publishing these Transactions is to inform the participants of the JK-panel session in advance on the papers to be presented and discussed at the session

  9. Development of a body motion interactive system with a weight voting mechanism and computer vision technology

    Science.gov (United States)

    Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien

    2012-09-01

    This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.

  10. MECHANICAL PROPERTIES OF PARTS OF MEDICAL PRODUCTS PRODUCED USING ADDITIVE MANUFACTURING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Filip Górski

    2017-06-01

    Full Text Available The paper presents results of tests conducted on the elements of medical devices - slings used with medical lifts - manufactured using additive technologies. Project assumptions were: to produce 100 samples of clips with varying design, material and orientation parameter. Samples were manufactured using FDM and SLA processes and then tested for mechanical strength, load transmission and functionality, using certified equipment. Paper shows full methodology and obtained test results.

  11. Status of borehole plugging and shaft sealing for geologic isolation of radioactive waste

    International Nuclear Information System (INIS)

    1979-01-01

    Activities in programs devoted to disposal of radioactive waste in deep geologic formations are reported. Research on borehole plugging and shaft sealing is emphasized. Past and current activities related to penetration sealing were assessed through an exhaustive literature review and contacts with industrial, governmental, and research organizations. Cited references are included along with a bibliography assembled for this study. Evaluation of literature reviewed and presentation of information obtained from personal contacts are summarized. Technical considerations for penetration sealing as related to nuclear waste isolation, but which may differ from conventional technology, are presented and research needs are identified

  12. Maw and spent HTR Fuel Element Test storage in Boreholes in rock salt

    International Nuclear Information System (INIS)

    Barnert, E.; Brucher, P.H.; Kroth, K.; Merz, E.; Niephaus, D.

    1986-01-01

    The Budesminister fur Forschung und Technolgie (BMFT, Federal Ministry for Research and Technology) is sponsoring a project at the Kernforschungsanlage Julich (KFA, Juelich Nuclear Research Centre) entitled ''MAW and HTR Fuel Element Test disposal in Boreholes.'' The aim of this project is to develop a technique for the final disposal of (1) dissolver sludge, (2) cladding hulls/structural components and (3) spent HTR fuels elements in salt, and to test this technique in the abandoned Asse salt mine, including safety calculations and safety engineering demonstrations. The project is divided into the sub-projects I ''Disposal/sealing technique'' and II ''Retrievable disposal test.''

  13. On the Fidelity of “CORK” Borehole Hydrologic Observatory Pressure Records

    Directory of Open Access Journals (Sweden)

    Keir Becker

    2007-09-01

    Full Text Available Long-term formation pressure monitoring in Ocean Drilling Program (ODP and Integrated Ocean Drilling Program (IODP boreholes using evolving Circulation Obviation Retrofit Kit (CORK hydrologic observatory technology has led to unanticipated applications as a result of the growing duration of recording intervals and the improvement of measurement fidelity. Current capabilities provide geologically meaningful observations over a broad range of time scales from static state to 1 Hz, allowing investigations of many coupled hydrologic, geodynamic, and seismologic phenomena. In this review, we present observations that provide constraints on current limits to recording fidelity, and examples of how leakage can affect pressure observations.

  14. PBO Borehole Strainmeters and Pore Pressure Sensors: Recording Hydrological Strain Signals

    Science.gov (United States)

    Gottlieb, M. H.; Hodgkinson, K. M.; Mencin, D.; Henderson, D. B.; Johnson, W.; Van Boskirk, E.; Pyatt, C.; Mattioli, G. S.

    2017-12-01

    UNAVCO operates a network of 75 borehole strainmeters along the west coast of the United States and Vancouver Island, Canada as part of the Plate Boundary Observatory (PBO), the geodetic component of the NSF-funded Earthscope program. Borehole strainmeters are designed to detect variations in the strain field at the nanostrain level and can easily detect transient strains caused by aseismic creep events, Episodic Tremor and Slip (ETS) events and seismically induced co- and post-seimic signals. In 2016, one strainmeter was installed in an Oklahoma oil field to characterize in-situ deformation during CO2 injection. Twenty-three strainmeter sites also have pore pressure sensors to measure fluctuations in groundwater pressure. Both the strainmeter network and the pore pressure sensors provide unique data against which those using water-level measurements, GPS time-series or InSAR data can compare possible subsidence signals caused by groundwater withdrawal or fluid re-injection. Operating for 12 years, the PBO strainmeter and pore pressure network provides a long-term, continuous, 1-sps record of deformation. PBO deploys GTSM21 tensor strainmeters from GTSM Technologies, which consist of four horizontal strain gauges stacked vertically, at different orientations, within a single 2 m-long instrument. The strainmeters are typically installed at depths of 200 to 250 m and grouted into the bottom of 15 cm diameter boreholes. The pore pressure sensors are Digiquartz Depth Sensors from Paros Scientific. These sensors are installed in 2" PVC, sampling groundwater through a screened section 15 m above the co-located strainmeter. These sensors are also recording at 1-sps with a resolution in the hundredths of hPa. High-rate local barometric pressure data and low-rate rainfall data also available at all locations. PBO Strainmeter and pore pressure data are available in SEED, SAC-ASCII and time-stamped ASCII format from the IRIS Data Managements Center. Strainmeter data are

  15. Deep Borehole Field Test Requirements and Controlled Assumptions.

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  16. VHBORE: A code to compute borehole fluid conductivity profiles with pressure changes in the borehole

    International Nuclear Information System (INIS)

    Hale, F.V.; Tsang, C.F.

    1994-06-01

    This report describes the code VHBORE which can be used to model fluid electric conductivity profiles in a borehole intersecting fractured rock under conditions of changing pressure in the well bore. Pressure changes may be due to water level variations caused by pumping or fluid density effects as formation fluid is drawn into the borehole. Previous reports describe the method of estimating the hydrologic behavior of fractured rock using a time series of electric conductivity logs and an earlier code, BORE, to generate electric conductivity logs under constant pressure and flow rate conditions. The earlier model, BORE, assumed a constant flow rate, q i , for each inflow into the well bore. In the present code the user supplies the location, constant pressure, h i , transmissivity, T i , and storativity, S i , for each fracture, as well as the initial water level in the well, h w (0), In addition, the input data contains changes in the water level at later times, Δh w (t), typically caused by turning a pump on or off. The variable density calculation also requires input of the density of each of the inflow fluids, ρ i , and the initial uniform density of the well bore fluid, ρ w (0). These parameters are used to compute the flow rate for each inflow point at each time step. The numerical method of Jacob and Lohman (1952) is used to compute the flow rate into or out of the fractures based on the changes in pressure in the wellbore. A dimensionless function relates flow rate as a function of time in response to an imposed pressure change. The principle of superposition is used to determine the net flow rate from a time series of pressure changes. Additional reading on the relationship between drawdown and flow rate can be found in Earlougher (1977), particularly his Section 4.6, open-quotes Constant-Pressure Flow Testingclose quotes

  17. Dynamics of technology shifts in the household sector-implications for clean development mechanism

    International Nuclear Information System (INIS)

    Reddy, B. Sudhakara; Balachandra, P.

    2006-01-01

    The present paper attempts to analyse the dynamics of energy end-use technology shifts in the household sector in India. The technology shifts can be categorized as naturally occurring shifts (with increasing household incomes and availability of energy carriers) and policy-induced shifts (by creating a favourable environment). Initially, the households energy usage patterns, types of energy carriers and the technologies in use are analysed using the data from the National Sample Survey (1999-2000). The energy consumption is disaggregated according to end-use activity and by income groups for rural as well as urban households. It is observed that large variations in energy use exist across different sections of households-urban/rural, low/high-income groups, etc. Further, the paper provides a methodological framework for the diffusion of energy-efficient technologies, and the implications of such diffusions for the Clean Development Mechanism (CDM). It analyses the reasons for the gap between possible and practical implementation of energy-efficient measures, study the reasons for households not using the cost-effective technologies available to them, the benefits of innovation of energy efficiency, and the required policies and specific proposals for government intervention to achieve the potential for the CDM

  18. Water quality analysis of the commercial boreholes in Mubi Metropolis, Adamawa State, Nigeria: geographic information system approach.

    Science.gov (United States)

    Mayomi, Ikusemoran; Elisha, Ibrahim

    2011-12-01

    It is observed that most of the commercial boreholes in Mubi Metropolis are located along River Yedzeram which is the main river that runs across the town. Unfortunately, due to the geographical location of the town in savanna region with minimal water supply, water related small scale industries such as sachet water, block making, irrigation agriculture, cloth dying, car wash and other pollution activities such as mechanical workshops and public toilets are also located along the same River Yedzeram. Moreover, the inhabitants of the town either dump their refuse in the River or spread it on their farmlands as there is no provision of refuse dump site by the government. Therefore, five parameters (Nitrate, Magnesium, Copper, Calcium and Iron) were used to test thewater quality of water samples that were collected from twenty two commercial boreholes along the river, using the standard examination of water and waste water of the World Health Organization to determine the water quality of the boreholes. The study revealed that only eight out of the twenty two boreholes are of good quality, while the others are either of bad quality or not portable. ArcGIS 9.2 and ILWIS 3.3 software were used to analyze the laboratory results through the use of SQL queries. It was recommended that the government should provide portable water, establish water quality control board and make use of GIS for creation of database and analysis.

  19. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Lane, J.W. Jr.; Joesten, P.K.; Pohll, Greg; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna. Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m. Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures. Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  20. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    Science.gov (United States)

    Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  1. Method and apparatus for logging inclined earth boreholes

    International Nuclear Information System (INIS)

    Youmans, A.H.

    1981-01-01

    An improved technique is provided for comparing the velocity of an elongated well logging instrument traversing an inclined earth borehole with the playout velocity of the well logging cable at the earth's surface to control both the cable hoist drum rotation and the rate of movement of the subsurface instrument and thus insure cable playout is in equilibrium with the logging instrument movement. Method and apparatus are described for detecting any reduction in movement of the logging instrument through the borehole and for reducing the velocity of the logging cable playout in response thereto by reducing drum rotation. Further, when the velocity of cable playout slows to a preselected value, a monitoring circuit generates control signals which actuate a means of power attached to or integral with the logging instrument which, upon initiation, apply a force to move the logging instrument upward or downward within the borehole

  2. Exploratory borehole Schafisheim: constructional- and environmental aspects, drilling technique

    International Nuclear Information System (INIS)

    1991-04-01

    The Schafisheim borehole was the fourth borehole in the Nagra deep drilling programme in Northern Switzerland. The drilling work began on the 26th of November 1983. The final depth of 2000.6 m was reached on June 29th, 1984 and this was followed by a transition to a test phase which lasted until 25th February 1985. To reach the final depth, the borehole passed through around 1500 m of sediments and 500 m of crystalline rock. More than 50% of the drilled section, including more or less all of the crystalline rock, was cored. This report describes the drilling activities, the construction work relating to the Schafisheim site and the measures taken to ensure environmental protection. The report closes with a chapter dealing with the supervisory commission consisting of members of the federal, cantonal and local authorities and with the report series on the drilling work. (author) figs., tabs

  3. Electrical resistivity borehole measurements: application to an urban tunnel site

    Science.gov (United States)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  4. Geophysical borehole logging. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Rouhiainen, P.

    1984-01-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 meters in the year 1984. The report deals with geophysical borehole logging methods, which could be used for the studies. The aim of geophysical borehole logging methods is to descripe specially hydrogeological and structural features. Only the most essential methods are dealt with in this report. Attention is paid to the information produced with the methods, derscription of the methods, interpretation and limitations. The feasibility and possibilities for the aims are evaluated. The evaluations are based mainly on the results from Sweden, England, Canada and USA as well as experiencies gained in Finland

  5. Summary of the Lavia borehole investications in 1984

    International Nuclear Information System (INIS)

    Aeikaes, T.; Oehberg, A.; Ryhaenen, V.

    1985-02-01

    Industrial Power Company Ltd (TVO) drilled in the spring 1984 a 1001 m deep borehole, diameter 56 mm, in Lavia. The borehole is used during the years 1984-85 for developing and testing research methods and equipment needed in site investigations of spent fuel final disposal in the future. In 1984 hydraulical and geophysical tests were made and groundwater samples were taken. The drilling site is a wide outcropped area in the northern part of the porphyritic granite formation of Lavia. Geological and fracture mapping as well as geophysical measurements on the surface were made in the area surrounding the drilling site. The bedrock consists of homonous porphyritic granite, in which quartzdiorite occurs in thin incalations. Magnetic or electric anomalies were not observed. Fracture frequency is low and the fractures appear mainly in two sets. The rock types vary in the borehole from porphyritic granite to diorite. Due to slight mineralogical variations, the diorite is either granodiorite, quartzdiorite or tonalite. Granite occurs as veins. Hydraulic conductivity was measured systematically with a packer separation of 30 m between the depths 73-973 m. Hydraulic conductivity is generally 10 -10 -10 -11 m/s. Electric, radiometric, magnetic and acoustic measurements were made in the borehole. In addition, the caliper and the temperature of the borehole were measured. The results of these geophysical measurements indicate the properties of rock types and fracturing in the borehole. On the basis of the results e.g. fracture porosity was interpreted. The results of acoustic tube wave measurement correlate well with hydraulic conductivity. Water samples were taken from four depths. The deepest level was 910 m. The samples were taken with a packer separation of 5 m. In the water analyses it was observed that at several depths remarkable amounts of flushing water from drilling were still remaining in the rock

  6. Deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  7. Mechanisms of Communicating Health Information Through Facebook: Implications for Consumer Health Information Technology Design.

    Science.gov (United States)

    Menefee, Hannah K; Thompson, Morgan J; Guterbock, Thomas M; Williams, Ishan C; Valdez, Rupa S

    2016-08-11

    Consumer health information technology (IT) solutions are designed to support patient health management and have the ability to facilitate patients' health information communication with their social networks. However, there is a need for consumer health IT solutions to align with patients' health management preferences for increased adoption of the technology. It may be possible to gain an understanding of patients' needs for consumer health IT supporting their health information communication with social networks by explicating how they have adopted and adapted social networking sites, such as Facebook, for this purpose. Our aim was to characterize patients' use of all communication mechanisms within Facebook for health information communication to provide insight into how consumer health IT solutions may be better designed to meet patients' communication needs and preferences. This study analyzed data about Facebook communication mechanisms use from a larger, three-phase, sequential, mixed-methods study. We report here on the results of the study's first phase: qualitative interviews (N=25). Participants were over 18, used Facebook, were residents or citizens of the United States, spoke English, and had a diagnosis consistent with type 2 diabetes. Participants were recruited through Facebook groups and pages. Participant interviews were conducted via Skype or telephone between July and September 2014. Data analysis was grounded in qualitative content analysis and the initial coding framework was informed by the findings of a previous study. Participants' rationales for the use or disuse of a particular Facebook mechanism to communicate health information reflected six broad themes: (1) characteristics and circumstances of the person, (2) characteristics and circumstances of the relationship, (3) structure and composition of the social network, (4) content of the information, (5) communication purpose, and (6) attributes of the technology. The results of this

  8. Background subtraction system for pulsed neutron logging of earth boreholes

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1983-01-01

    The invention provides a method for determining the characteristics of earth formations surrounding a well borehole comprising the steps of: repetitively irradiating the earth formations surrounding the well bore with relatively short duration pulses of high energy neutrons; detecting during each pulse of high energy neutrons, gamma radiation due to the inelastic scattering of neutrons by materials comprising the earth formations surrounding the borehole and providing information representative thereof; detecting immediately following each such pulse of high energy neutrons, background gamma radiation due to thermal neutron capture and providing information representative thereof; and correcting the inelastic gamma representative information to compensate for said background representative information

  9. Model of the final borehole geometry for helical laser drilling

    Science.gov (United States)

    Kroschel, Alexander; Michalowski, Andreas; Graf, Thomas

    2018-05-01

    A model for predicting the borehole geometry for laser drilling is presented based on the calculation of a surface of constant absorbed fluence. It is applicable to helical drilling of through-holes with ultrashort laser pulses. The threshold fluence describing the borehole surface is fitted for best agreement with experimental data in the form of cross-sections of through-holes of different shapes and sizes in stainless steel samples. The fitted value is similar to ablation threshold fluence values reported for laser ablation models.

  10. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  11. Method for detecting cement voids or borehole washouts

    International Nuclear Information System (INIS)

    Smith, M.P.

    1978-01-01

    A fast neutron source is used to irradiate earth formations in the vicinity of a well borehole. Dual spaced epithermal neutron detectors are used to sample the epithermal neutron population at two different spaced distances from the source. A compensated formation porosity is obtained from the ratio of counting rates at the dual spaced detectors. An uncompensated porosity value is obtained from the count rate at the short spaced detector. Borehole washout or cement void regions are located by comparing the compensated and uncompensated values of formation porosity obtained in this manner

  12. Data Communication PC/NaI-borehole probe (Hardware & Software)

    DEFF Research Database (Denmark)

    Madsen, Peter Buch

    Development of new hard- & software to a NaI borehole probe on a PC. Save data from the probe each 10'th sec, handle the data from the probe and make calculations every 10'th sec and show the results on the monitor.......Development of new hard- & software to a NaI borehole probe on a PC. Save data from the probe each 10'th sec, handle the data from the probe and make calculations every 10'th sec and show the results on the monitor....

  13. Using RFID Positioning Technology to Construct an Automatic Rehabilitation Scheduling Mechanism.

    Science.gov (United States)

    Wang, Ching-Sheng; Hung, Lun-Ping; Yen, Neil Y

    2016-01-01

    Accurately and efficiently identifying the location of patients during the course of rehabilitation is an important issue. Wireless transmission technology can reach this goal. Tracking technologies such as RFID (Radio frequency identification) can support process improvement and improve efficiencies of rehabilitation. There are few published models or methods to solve the problem of positioning and apply this technology in the rehabilitation center. We propose a mechanism to enhance the accuracy of positioning technology and provide information about turns and obstacles on the path; and user-centered services based on location-aware to enhanced quality care in rehabilitation environment. This paper outlines the requirements and the role of RFID in assisting rehabilitation environment. A prototype RFID hospital support tool is established. It is designed to provide assistance for monitoring rehabilitation patients. It can simultaneously calculate the rehabilitant's location and the duration of treatment, and automatically record the rehabilitation course of the rehabilitant, so as to improve the management efficiency of the rehabilitation program.

  14. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    International Nuclear Information System (INIS)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-01-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three

  15. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-09-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three

  16. Mechanisms and sources of radon entry in buildings constructed with modern technologies

    International Nuclear Information System (INIS)

    Zhukovsky, M.V.; Vasilyev, A.V.

    2014-01-01

    To investigate the influence of modern building construction technologies on the accumulation of radon indoor, 20 rooms in buildings constructed using mostly monolithic concrete or aerated concrete blocks have been studied. Dominance of the diffusion mechanism of radon entry in buildings constructed with modern technologies has been established. As a result of computer simulations it was found that the main contribution to the variability of radon concentration was made by changes in the ventilation rate. At a low ventilation rate ( -1 ) radon concentration above 200 Bq m -3 can be observed for residential buildings. There is a need for the regulation of the radium-specific activity in building materials. According to the estimates of this study, the content of 226 Ra in building materials should not exceed the value of 100 Bq kg -1 . (authors)

  17. Final deposition of high-level nuclear waste in very deep boreholes. An evaluation based on recent research of bedrock conditions at great depths

    International Nuclear Information System (INIS)

    Aahaell, Karl-Inge

    2007-01-01

    This report evaluates the feasibility of very deep borehole disposal of high-level nuclear waste, e.g., spent nuclear fuel, in the light of recent technological developments and research on the characteristics of bedrock at extreme depths. The evaluation finds that new knowledge in the field of hydrogeology and technical advances in drilling technology have advanced the possibility of using very deep boreholes (3-5 km) for disposal of the Swedish nuclear waste. Decisive factors are (1) that the repository can be located in stable bedrock at a level where the groundwater is isolated from the biosphere, and (2) that the waste can be deposited and the boreholes permanently sealed without causing long-term disturbances in the density-stratification of the groundwater that surrounds the repository. Very deep borehole disposal might offer important advantage compared to the relatively more shallow KBS approach that is presently planned to be used by the Swedish nuclear industry in Sweden, in that it has the potential of being more robust. The reason for this is that very deep borehole disposal appears to permit emplacement of the waste at depths where the entire repository zone would be surrounded by stable, density-stratified groundwater having no contact with the surface, whereas a KBS-3 repository would be surrounded by upwardly mobile groundwater. This hydro-geological difference is a major safety factor, which is particularly apparent in all scenarios that envisage leakage of radioactive substances. Another advantage of a repository at a depth of 3 to 5 km is that it is less vulnerable to impacts from expected events (e.g., changes in groundwater conditions during future ice ages) as well as undesired events (e.g. such as terrorist actions, technical malfunction and major local earthquakes). Decisive for the feasibility of a repository based on the very deep borehole concept is, however, the ability to emplace the waste without failures. In order to achieve this

  18. The way to zeros: The future of semiconductor device and chemical mechanical polishing technologies

    Science.gov (United States)

    Tsujimura, Manabu

    2016-06-01

    For the last 60 years, the development of cutting-edge semiconductor devices has strongly emphasized scaling; the effort to scale down current CMOS devices may well achieve the target of 5 nm nodes by 2020. Planarization by chemical mechanical polishing (CMP), is one technology essential for supporting scaling. This paper summarizes the history of CMP transitions in the planarization process as well as the changing degree of planarity required, and, finally, introduces innovative technologies to meet the requirements. The use of CMP was triggered by the replacement of local oxidation of silicon (LOCOS) as the element isolation technology by shallow trench isolation (STI) in the 1980s. Then, CMP’s use expanded to improving embedability of aluminum wiring, tungsten (W) contacts, Cu wiring, and, more recently, to its adoption in high-k metal gate (HKMG) and FinFET (FF) processes. Initially, the required degree of planarity was 50 nm, but now 0 nm is required. Further, zero defects on a post-CMP wafer is now the goal, and it is possible that zero psi CMP loading pressure will be required going forward. Soon, it seems, everything will have to be “zero” and perfect. Although the process is also chemical in nature, the CMP process is actually mechanical with a load added using slurry particles several tens of nm in diameter. Zero load in the loading process, zero nm planarity with no trace of processing, and zero residual foreign material, including the very slurry particles used in the process, are all required. This article will provide an overview of how to achieve these new requirements and what technologies should be employed.

  19. Numerical procedure for determining pressure limits on borehole instability problems; Procedimento numerico para determimacao dos limites de pressao em problemas de instabilidade de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Muller, A.L. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Grupo de Tecnologia em Computacao Grafica (TecGraf); Vargas Junior, E.A. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Civil; Vaz, L.E. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Engenharia. Dept. de Mecanica Aplicada e Estruturas; Goncalves, C.J. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In the boreholes projects, the minimization of the instability problems is extreme importance. In the boreholes instability analysis, two failure mechanisms are generally considered, namely, failure due to either tensile or compressive stresses. Considering these mechanisms, the correct determination of the lower and upper limits of pressures, generated by the drilling fluid in the walls of the boreholes, is an alternative for minimization of the instability problems. The mechanisms of compression or tensile failure can be described in terms of mechanical and fluid flow responses of the transient fluid mechanical coupling problem. This paper proposes a numerical procedure, using finite elements, of the coupled fluid mechanical processes, for automatically determining the lower and upper limits of pressures on the walls of borehole, to ensure, according assumptions and criteria of failure pre-established, the stability of the same. The automatic obtaining those values has the purpose of replace the approximate obtaining by trial and error processes. A hypothetical example of application is show, and from this, inferred considerations about the proposed procedure. (author)

  20. Vertical-borehole ground-coupled heat pumps: A review of models and systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Cui, P. [Renewable Energy Research Group, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Fang, Z. [Ground Source Heat Pump Research Center, Shandong Jianzhu University, Jinan (China)

    2010-01-15

    A large number of ground-coupled heat pump (GCHP) systems have been used in residential and commercial buildings throughout the world due to the attractive advantages of high efficiency and environmental friendliness. This paper gives a detailed literature review of the research and developments of the vertical-borehole GCHP technology for applications in air-conditioning. A general introduction on the ground source heat pump system and its development is briefly presented first. Then, the most typical simulation models of the vertical ground heat exchangers currently available are summarized in detail including the heat transfer processes outside and inside the boreholes. The various design/simulation programs for vertical GCHP systems primarily based on the typical simulation models are also reviewed in this paper. Finally, the various hybrid GCHP systems for cooling or heating-dominated buildings are well described. It is found that the GCHP technology can be used both in cold and hot weather areas and the energy saving potential is significant. (author)

  1. Geophysical borehole logging of the boreholes KR23 extension, KR29 and KR29b at Olkiluoto 2004

    International Nuclear Information System (INIS)

    Lahti, M.; Heikkinen, E.

    2005-04-01

    Suomen Malmi Oy conducted geophysical borehole logging of the boreholes KR23 extension, KR25b, KR29 and KR29b at the Olkiluoto site in Eurajoki during October 2004. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The assignment included the field work and processing of the acoustic data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  2. Geophysical borehole logging of the boreholes KR23 extension, KR29 and KR29b at Olkiluoto 2004

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, M. [Suomen Malmi Oy, Espoo (Finland); Heikkinen, E. [JP-Fintact Oy, Vantaa (Finland)

    2005-04-15

    Suomen Malmi Oy conducted geophysical borehole logging of the boreholes KR23 extension, KR25b, KR29 and KR29b at the Olkiluoto site in Eurajoki during October 2004. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The assignment included the field work and processing of the acoustic data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  3. Geophysical borehole logging of the boreholes KR37, KR37B and KR38, at Olkiluoto 2005

    International Nuclear Information System (INIS)

    Majapuro, J.

    2006-03-01

    Suomen Malmi Oy conducted geophysical borehole logging of the boreholes KR37, KR37b and KR38 at the Olkiluoto site in Eurajoki during September and October 2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The assignment included the field work and processing of the acoustic data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  4. Informing international UNFCCC technology mechanisms from the ground up: Using biogas technology in South Africa as a case study to evaluate the usefulness of potential elements of an international technology agreement in the UNFCCC negotiations process

    International Nuclear Information System (INIS)

    Boyd, Anya

    2012-01-01

    Transfer of low carbon technologies to developing countries is 1 approach for tackling rising global emissions. An international technology transfer mechanism has been proposed under the UNFCCC; however, it remains unclear how this international mechanism would translate into local level technology implementation. This study uses biogas technology in South Africa to obtain empirical data inductively related to technology transfer. Observations and activities specific to the biogas sector in South Africa are put forward based on site visits and stakeholder discussions in South Africa, the UK, Germany and Sweden. This paper presents empirical findings on technology transfer in the biogas sector in South Africa and analyses the role of an international technology mechanism in supporting the uptake of biogas. Many of the barriers to biogas technology in South Africa are national level constraints such as lack of supportive policy environment, financial incentives and information sharing. This case study supports the argument that it will be unrealistic for international technology mechanisms to capture the necessary specificities of individual technologies at a country level. Therefore, as demonstrated through the example of biogas technology in South Africa, there is a need for both effective national and international engagement to support technology implementation. - Highlights: ► The UNFCCC technology mechanism aims to increase low carbon technology deployment. ► The interface of global technology frameworks and national implementation is unclear. ► Biogas is a widely used technology yet its uptake in South Africa (SA) is minimal. ► Empirical data is gathered from biogas sites in SA, UK, Germany and Sweden. ► Findings show biogas uptake in SA requires national and international support

  5. Technology development for cutting a reactor pressure vessel using a mechanical cutting technique

    International Nuclear Information System (INIS)

    Watanabe, Masaaki; Miyasaka, Yasuhiko; Miyao, Hidehiko; Ooki, Arahiko; Ninomiya, Toshiaki; Koiwai, Masami

    2001-01-01

    On decommissioning of nuclear facilities, the thermal cutting technique such as an oxygen-acetylene gas cutting and a plasma arc cutting are generally used for cutting massive and thick steel structures in consideration with cutting speed and control performance. These techniques generate dust, smoke, aerosol and a large quantity of secondary waste. Mechanical cutting technique has an advantage of small amount of secondary waste, and the metal chips from the kerf recovered easily compared with these thermal cutting technique. The remote mechanical cutting system for highly activated RPV has been developed with the manner which achieves the safety and cost effectiveness. The development has been performed on consignment to RANDEC from the Science and Technology Agency of Japan. (author)

  6. Game Mechanics and Bodily Interactions: Designing Interactive Technologies for Sports Training

    DEFF Research Database (Denmark)

    Jensen, Mads Møller

    and enjoyment. Thus, despite being two coexisting research areas, they do not extend or contribute to one another per se. However, bridging this gap by combining skill acquisition knowledge from sports training technologies with motivational game mechanics from bodily games holds great potential for designing...... and developing relevant and engaging training experiences. I term this combination interactive sports training games. This dissertation bridges this gap by exploring how to design and develop bodily interactions that leverage the quality and engagement of sports training by using game mechanics, but also how...... to identify and avoid the pitfalls and challenges that emerge in the process. It further explores how competition can be facilitated in bodily games and how it affects players. These explorations are done by designing, developing and evaluating innovative interactive sports training games. The results...

  7. Mechanical damage due to corrosion of parts of pump technology and valves of LWR power installations

    International Nuclear Information System (INIS)

    Hron, J.; Krumpl, M.

    1986-01-01

    Two types are described of uneven corrosion of austenitic chromium-nickel steel: pitting and slit corrosion. The occurrence of slit corrosion is typical of parts of pumping technology and valves. The corrosion damage of austenitic chromium-nickel steels spreads as intergranular, transgranular or mixed corrosion. In nuclear power facilities with LWR's, intergranular corrosion is due to chlorides and sulphur compounds while transgranular corrosion is due to the presence of dissolved oxygen and chlorides. In mechanically stressed parts, stress corrosion takes place. The recommended procedures are discussed of reducing the corrosion-mechanical damage of pumping equipment of light water reactors during design, production and assembly. During the service of the equipment, corrosion cracks are detected using nondestructive methods and surface cracks are repaired by grinding and welding. (E.S.)

  8. Research on the mechanical behaviour of an airplane component made by selective laser melting technology

    Directory of Open Access Journals (Sweden)

    Păcurar Răzvan

    2017-01-01

    Full Text Available The main objective of the presented research consists in the redesign of an airplane component to decrease its weight, without affecting the mechanical behaviour of the component, at the end. Femap NX Nastran and ANSYS FEA programs were used for the shape optimization and for the estimation of the mechanical behaviour of a fixing clamp that was used to sustain the hydraulic pipes that are passing through an airplane fuselage, taking into consideration two types of raw materials – Ti6Al4V and AlSi12 powder from which this component could be manufactured by using the selective laser melting (SLM technology. Based on the obtained results, the airplane component was finally manufactured from titanium alloy using the SLM 250 HL equipment that is available at SLM Solutions GmbH company from Luebeck, in Germany.

  9. Development of a geophysical methodology from boreholes for the study of granitic formation storage site

    International Nuclear Information System (INIS)

    Le Masne, D.

    1983-01-01

    The aim of this work is the characterization of the fracturation of a granitic formation by the examination of borehole environment. Two types of methods are used. Methods using one borehole only: well logging (electrical and nuclear). Didier logs (electric dipole-dipole), Eric probes (electromagnetic dipole-dipole) and methods between boreholes (grounding). These methods were applied to two boreholes of 500m and 1000 meters drilled into granite at Auriat (France)

  10. Construction of Interactive Teaching System for Course of Mechanical Drawing Based on Mobile Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Juan Cheng

    2018-02-01

    Full Text Available The teaching aim of Mechanical Drawing is to cultivate the students' graphics interpreting ability, plotting ability, inter-space imagination and innovation ability. For engineering students in China Universities, Mechanical Drawing course with the characteristics of 3D and 2D inter-space transformation, is often difficult to master. The ordinary dull teaching method is not enough for stimulating students’ spatial imagination capability, interest in learning, and cannot meet teachers’ teaching needs to explain complicated graphs relationships. In this paper, we design an interactive teaching system based on mobile augmented reality to improve the learning efficiency of Mechanical Drawing course. To check the effect of the proposed system, we carried out a case study of course teaching of Mechanical Drawing. The results demonstrate that the class for which interactive teaching system based on mobile augmented reality technology was adopted is significantly superior to the class for which the ordinary dull teaching approach was adopted with regard to the degree of proficiency of course key and difficult points content,spatial imagination capability, students’ interest in learning and study after class, especially in respect of students’ learning interest and spatial imagination capability.

  11. Borehole radar for oil production monitoring

    NARCIS (Netherlands)

    Miorali, M.

    2012-01-01

    The area of smart well technology, or closed-loop reservoir management, aims at enhancing oil recovery through a combination of monitoring and control. Monitoring is performed with a wide range of sensors deployed downhole or at the surface. These sensors allow for capturing changes in the reservoir

  12. Concentration of Trace Metals in Boreholes in the Ankobra Basin ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    Most of the boreholes with high trace metal concentrations were located in and around the Bawdie-Bogoso-Prestea area. Introduction. Ankobra basin is one of the main mining areas in Ghana. The major minerals mined in this area include gold, manganese, bauxite and diamond. Gold mining in this basin dates about 500 ...

  13. Bacteriological analysis of borehole water in Uli, Nigeria | Ibe ...

    African Journals Online (AJOL)

    The highest counts were consistently found in the sample from Cagramento Lodge, where the borehole was located in an unsanitary environment, near a pit laterine. Escherichia coli, Klebsiella sp., Proteus sp., Enterobacter sp., Pseudomonas sp., and Staphylococcus aureus were isolated from the samples. The findings ...

  14. Shock-induced borehole waves and fracture effects

    NARCIS (Netherlands)

    Fan, H.; Smeulders, D.M.J.

    2012-01-01

    We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure

  15. physicochemical quality of borehole water in abonnema and its ...

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    AND ITS PUBLIC HEALTH IMPORTANCE. GLORIA N. ... + 0.4, while conductivity values for Briggs and Obonoma compounds were 47.8 and 50.6 µs/cm respectively. However, the study ... boreholes, boiling and filtering of drinking water as well as improved sanitary conditions and personal hygiene were advocated.

  16. Determination of subsurface geological structure with borehole gravimetry

    International Nuclear Information System (INIS)

    Clark, S.R.; Hearst, J.R.

    1983-07-01

    Conventional gamma-gamma and gravimetric density measurements are routinely gathered for most holes used for underground nuclear tests. The logs serve to determine the subsurface structural geology near the borehole. The gamma-gamma density log measures density of the rock within about 15 cm of the borehole wall. The difference in gravity measured at two depths in a borehole can be interpreted in terms of the density of an infinite, homogeneous, horizontal bed between those depths. When the gravimetric density matches the gamma-gamma density over a given interval it is assumed that the bed actualy exists, and that rocks far from the hole must be the same as those encountered adjacent to the borehole. Conversely, when the gravimetric density differs from the gamma-gamma density it is apparent that the gravimeter is being influenced by a rock mass of different density than that at the hole wall. This mismatch can be a powerful tool to deduce the local structural geology. The geology deduced from gravity mesurements in emplacement hole, U4al, and the associated exploratory hole, UE4al, is an excellent example of the power of the method

  17. Development of a stress gauge for borehole using photoelasticity

    International Nuclear Information System (INIS)

    Massal, P.; Caye, R.; Recan, M.

    1986-01-01

    In the framework of the research and development program on storage and disposal in geologic formation stresses in boreholes are measured by overcoring. The principle is stress release by coring around the rock where determinations are carried out. The aim of the present work is the realisation in laboratory of a gauge model based on this principle and measuring deformations by photoelasticity

  18. Application of Ge/Li/-spectrometry in boreholes

    International Nuclear Information System (INIS)

    Chrusciel, E.

    1976-01-01

    The paper presents the results of Ge/Li/ spectrometry applications in boreholes. The natural radioactivity measurements as well as rare elements determinations with the use of 252 Cf neutron source and capture-gamma and activation techniques are described. The minimum concentrations of certain elements to be determined in the field circumstances are evaluated on the basis of the model experiments. (author)

  19. Hydrofracturing water boreholes in hard rock aquifers in Scotland

    CSIR Research Space (South Africa)

    Cobbing, J

    2007-01-01

    Full Text Available rural areas of the UK, low-productivity aquifers are an important resource for small public water supplies. Where a borehole in low-productivity crystalline rocks proves too low yielding for its designed purpose, hydrofracturing is a cost-effective means...

  20. 30 CFR 75.1315 - Boreholes for explosives.

    Science.gov (United States)

    2010-07-01

    .... (e) When blasting slab rounds off the solid, opener holes shall not be drilled beyond the rib line... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for...; and (2) Shots fired in anthracite mines for battery starting or for blasting coal overhangs. No person...

  1. Hydrogeological investigations in two boreholes in the Stripa test station

    International Nuclear Information System (INIS)

    Hansson, K.; Almen, K.-E.; Ekman, L.

    1978-01-01

    The investigations included the following: water injection tests in a horizontal core-borehole, Dbh 2; hydrostatic pressure tests in Dbh2; determination of permeability in a vertical core-borehole, Dbh VI. The results of the water injection tests gave very little information due to the fact, that an air cushion was trapped in the borehole. The hydrostatic pressure tests in Dbh 2 were made in that part of the borehole, which is situated beyond the drift (45 - 97 m). Most of the pressure curves were difficult to interpret. The hydrostatic pressure in the section 89 - 97 m (end of the hole) was calculated to 1,67 Mpa. Near the end of the drift (46.00 - 49.71 m) the pressure was 0.22 Mpa. The permeability tests in Dbh VI were performed by measuring the water-flow and hydrostatic pressure in different levels. The calculated average permeability was 6.5x10 -10 m/s

  2. Geology of the Waste Treatment Plant Seismic Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  3. Sealing of investigation boreholes, Phase 4 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Drawrite AB, Luleaa Technical University, Luleaa (Sweden); Ramqvist, Gunnar [El-Tekno AB, Figeholm (Sweden); Bockgaard, Niclas [Golder Associates, Goeteborg (Sweden); Ekman, Lennart [LE Geokonsult AB, Baelinge (Sweden)

    2011-09-15

    The report describes the outcome of Phase 4 of the project 'Sealing of investigation boreholes', which deals with 1) characterization and planning of borehole sealing, 2) performance and quality assessment, 3) sealing of large diameter holes, and 4) interaction of clay and concrete plugs. A specific goal was to find ways to characterize, plan and seal of boreholes so that their impact on the overall hydraulic performance of the repository rock can predicted and controlled. The work comprised selection of representative 'reference holes' at the Laxemar and Forsmark sites for development of a general programme for planning and simulating implementation of borehole plugging campaigns, considering also cost issues. A second aim was to define and quantify the role of seals in the reference holes for finding out how important sealing really is. A third was to test a practical way to seal large diameter boreholes and a fourth to find out how concrete matures and performs in contact with smectite clay. The study demonstrated, in conclusion, the need for developing techniques for preparing deep boreholes before lasting seals are installed in them, since poor sealing can short-circuit hydraulically important fracture zones intersected by the holes. The practically oriented sealing activities showed that the technique developed for tight sealing of large-diameter boreholes is practical and feasible. The issue of chemical stability was investigated by testing the performance and constitution of a plug consisting of CBI concrete in contact with smectite-rich seals for almost three years. This study showed that none of them underwent substantial degradation in this period of time, but chemical reactions and thereby generated changes in physical behaviour of the plug components had taken place, particularly in the clay. The rate of degradation is, however, not yet known. It was concluded from this study that it is suitable to carry out a corresponding

  4. Sealing of investigation boreholes, Phase 4 - Final report

    International Nuclear Information System (INIS)

    Pusch, Roland; Ramqvist, Gunnar; Bockgaard, Niclas; Ekman, Lennart

    2011-09-01

    The report describes the outcome of Phase 4 of the project 'Sealing of investigation boreholes', which deals with 1) characterization and planning of borehole sealing, 2) performance and quality assessment, 3) sealing of large diameter holes, and 4) interaction of clay and concrete plugs. A specific goal was to find ways to characterize, plan and seal of boreholes so that their impact on the overall hydraulic performance of the repository rock can predicted and controlled. The work comprised selection of representative 'reference holes' at the Laxemar and Forsmark sites for development of a general programme for planning and simulating implementation of borehole plugging campaigns, considering also cost issues. A second aim was to define and quantify the role of seals in the reference holes for finding out how important sealing really is. A third was to test a practical way to seal large diameter boreholes and a fourth to find out how concrete matures and performs in contact with smectite clay. The study demonstrated, in conclusion, the need for developing techniques for preparing deep boreholes before lasting seals are installed in them, since poor sealing can short-circuit hydraulically important fracture zones intersected by the holes. The practically oriented sealing activities showed that the technique developed for tight sealing of large-diameter boreholes is practical and feasible. The issue of chemical stability was investigated by testing the performance and constitution of a plug consisting of CBI concrete in contact with smectite-rich seals for almost three years. This study showed that none of them underwent substantial degradation in this period of time, but chemical reactions and thereby generated changes in physical behaviour of the plug components had taken place, particularly in the clay. The rate of degradation is, however, not yet known. It was concluded from this study that it is suitable to carry out a corresponding investigation of the plugs

  5. Results of geo-radio-monitoring for radioactive waste storage in large diameter boreholes in clayey ground

    International Nuclear Information System (INIS)

    Dmitriev, S.; Litinsky, Y.; Tkachenko, A.

    2010-01-01

    Document available in extended abstract form only. Full text of publication follows: The main purpose of the work carried out at the site of SUE MosSIA 'Radon' is to develop the system of geo-radio-monitoring for new type of storage facility (large diameter borehole) integrated into existing monitoring system of the whole site, check its effectiveness and improve the system, obtain initial results on safety aspects for using large diameter boreholes for RAW storage. Technology of large diameter boreholes (LDB) construction for low- and intermediate-level waste (LILW) isolation in moraine loams is being under development at SUE MosSIA 'Radon' site since the end of the last century. A project for construction of a demonstration unit for LILW storage in large diameter boreholes at the SUE MosSIA 'Radon' site in Sergiev Posad region has been developed taking into account specific site conditions. The main aim of the project is to develop the technology of LDB repository construction, operational procedures such as loading and retrieval, to develop and improve monitoring system for the new repository type, to get practical data on safety of radioactive wastes storage in new repositories, hermeticity of construction, and behavior of waste, waste packages, construction materials and near-field. In the case of LDB applications for LILW storage, the waste are removed from the scope of human activity into a stable geological medium. Waste are placed below the frost zone where damage of engineered barriers due to climatic factors is practically impossible. Two boreholes with 1.5 m internal diameter and 38 m depth have been drilled in 1997, equipped with engineering barriers including bentonite-concrete stone, licensed as storage facilities in 2003 and are in use now for solid and solidified RAW storage. Specific automated system of geo-radio-monitoring has been developed especially for the LDB-type repository, covering both the interior and the

  6. Determination of correction factors for borehole natural gamma-ray measurements by Monte Carlo simulations

    NARCIS (Netherlands)

    Maucec, M.; Hendriks, Peter; Limburg, J.; de Meijer, R. J.

    2009-01-01

    The analysis of natural gamma-ray spectra measured in boreholes has to take into account borehole parameters such as the presence of casings and borehole diameter. For large, high-efficiency gamma-ray detectors, such as BGO-based systems, which employ full-spectrum data analysis, corresponding

  7. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Science.gov (United States)

    2010-07-01

    ...) Boreholes shall be drilled in such a manner to insure that the advancing face will not accidently break into... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines...

  8. Geological interpretation of borehole image and sonic logs. A case study from the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Vahle, C. [Eriksfiord GmbH, Walldorf (Germany)

    2013-08-01

    Borehole imagers and dipole sonic tools form the ideal pair of instruments for observation and evaluation of structural tilt, faulting and fracturing as well as sediment transport direction and depositional architecture. In addition, the stress field can be inverted in combination with rock mechanical data. The structural tilt and its variation along the well are evaluated in stereograms and projections along the well trace. Changes in structural tilt are attributed to fault block rotation as well as angular unconformities. Fault zones are usually easily recognised in borehole images by e.g. juxtaposition of different strata/facies and deformation of adjacent layering. Integration with micro-scale core data as well as macro-scale seismics, if available, is of vital importance. Furthermore, calibration against core observations is helpful for e.g. fracture characterisation. The stress field orientation is interpreted from breakout and drilling-induced fractures, which are usually easy to detect in borehole images. However, in case of slanted and highly deviated wells the full stress tensor including the stress magnitudes is necessary to evaluate the stress field orientation. The full stress tensor is inverted by utilising rock mechanical data from core measurement and/or from empirical relations with elastic properties such as Poission's ratio and Young's modulus with respect to breakout and drilling-induced fractures. In addition, the stress field can be simulated using numerical methods to match the current observations. Sedimentary features such as cross-beds or slumps may indicate sediment transport directions after the data set was corrected for structural tilt. Image facies and their stacking patterns in combination with standard petrophysical curves are interpreted with respect to the depositional environment and included in a sequence stratigraphic framework. A correlation with core observations provides important calibration of the image facies

  9. Optimization of Deep Borehole Systems for HLW Disposal

    International Nuclear Information System (INIS)

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-01-01

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (@@@ 1%) saline water content showed that vertical convection induced by the waste's decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  10. Climate reconstruction from borehole temperatures influenced by groundwater flow

    Science.gov (United States)

    Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.

    2017-12-01

    Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate

  11. Optimization of Deep Borehole Systems for HLW Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buongiorno, Jacopo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lester, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Brady, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, B. W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≤ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  12. A mechanism for proven technology foresight for emerging fast reactor designs and concepts

    International Nuclear Information System (INIS)

    Anuar, Nuraslinda; Muhamad Pauzi, Anas

    2016-01-01

    The assessment of emerging nuclear fast reactor designs and concepts viability requires a combination of foresight methods. A mechanism that allows for the comparison and quantification of the possibility of being a proven technology in the future, β for the existing fast reactor designs and concepts is proposed as one of the quantitative foresight method. The methodology starts with the identification at the national or regional level, of the factors that would affect β. The factors are then categorized into several groups; economic, social and technology elements. Each of the elements is proposed to be mathematically modelled before all of the elemental models can be combined. Once the overall β model is obtained, the β min is determined to benchmark the acceptance as a candidate design or concept. The β values for all the available designs and concepts are then determined and compared with the β min , resulting in a list of candidate designs that possess the β value that is larger than the β min . The proposed methodology can also be applied to purposes other than technological foresight

  13. A mechanism for proven technology foresight for emerging fast reactor designs and concepts

    Energy Technology Data Exchange (ETDEWEB)

    Anuar, Nuraslinda, E-mail: nuraslinda@uniten.edu.my; Muhamad Pauzi, Anas, E-mail: anas@uniten.edu.my [College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    The assessment of emerging nuclear fast reactor designs and concepts viability requires a combination of foresight methods. A mechanism that allows for the comparison and quantification of the possibility of being a proven technology in the future, β for the existing fast reactor designs and concepts is proposed as one of the quantitative foresight method. The methodology starts with the identification at the national or regional level, of the factors that would affect β. The factors are then categorized into several groups; economic, social and technology elements. Each of the elements is proposed to be mathematically modelled before all of the elemental models can be combined. Once the overall β model is obtained, the β{sub min} is determined to benchmark the acceptance as a candidate design or concept. The β values for all the available designs and concepts are then determined and compared with the β{sub min}, resulting in a list of candidate designs that possess the β value that is larger than the β{sub min}. The proposed methodology can also be applied to purposes other than technological foresight.

  14. Borehole plugging experiment in OL-KR24 at Olkiluoto, Finland

    International Nuclear Information System (INIS)

    Rautio, T.

    2006-04-01

    Sealing of investigation boreholes has been studied by Svensk Koernbroenslehantering AB (SKB) and Posiva Oy (Posiva) as a part of final disposal research. The proposed principle is that investigation boreholes drilled at a site must not act as a continuous flow path for groundwater but be sealed to become as tight as the surrounding rock. As a part of the investigations SKB and Posiva started the third phase of the joint project 'Cleaning and sealing of investigation boreholes' in 2005. One of the sub-projects was the plugging experiment in borehole OL-KR24 at Olkiluoto. The aim of the experiment was to test all main procedures of borehole sealing concept in practise in a deep borehole. Borehole KR24 was drilled to the depth of 551.11 metres in 2003 and it was located inside the shaft profile in Onkalo. From the surface to the depth of about 120 m the borehole diameter is 98 mm. The rest of the borehole is 75.7 mm in diameter. The borehole is vertical and the inclination is quite accurately 90 degrees. The plugging experiment in borehole OL-KR24 consisted of four main activities: (1) cleaning of the borehole, (2) characterization of the borehole (3) selective stabilisation of the borehole, and (4) emplacement of plugs. The comprehensive cleaning of the borehole was to be done in the first stage to provide the basis for other activities. The aim of characterization was to study the borehole in order to determine the sections for selective stabilisation and the locations for plugs. The characterization phase consisted of caliper measurements, dummy probing and optical borehole imaging (OBI). The aim of selective stabilisation was to show that selected borehole sections can be stabilised using new techniques and methods. One borehole section was reamed from Ω 76 mm to Ω 98 mm. The reamed borehole section should have been filled with sufficient amount of cement-based material to achieve a stable 'concrete tube' after redrilling, but due to encountered problems and

  15. Proceedings of the international conference on nascent technologies in the engineering fields of mechanical, electrical, electronics and telecommunication and computer/information technology: souvenir

    International Nuclear Information System (INIS)

    2015-01-01

    This conference contains papers on grid computing, advanced networking, data mining, biometric technologies, social networks and social aspects of information technology, robotics and mechatronics, advances in manufacturing technology, modelling and simulation of mechanical systems, recent trends in refrigeration and air conditioning, energy conservation and alternative fuels and advances in vibration control and its techniques. It also addresses issues in the field of power generation transmission and distribution, energy management and energy efficiency, applications of power electronics and solid state devices, renewable energy technology, distributed generation and micro grid, drives, controls and automation and power quality. The electronics and telecommunication track received good response in the fields of wired and wireless communication, advanced communications, digital signal processing and its applications, optical and microwave communication, embedded and VLSI technology, micro electronics and nano-technology, antenna applications and solid state devices. Papers relevant to INIS are indexed separately

  16. Deposition of high-level radioactive waste products in bore-holes with buffer substance

    International Nuclear Information System (INIS)

    Jacobsson, A.; Pusch, R.

    1977-05-01

    The present investigation comprised a compilation of available literature data concerning the possible use of clayey masses as buffer substances in bore-holes (in rock) with canisters containing radioactive waste products. The aim was to find a suitable composition of the buffer mass and to recommend a suitable storing technique. The criteria concerning the function of the buffer substance were: Sufficient mechanical supporting power, suitable mechanical properties, prevention of free circulation of ground water, ion-adsorption ability, sufficiently good heat conduction properties. These criteria suggest that a buffer substance containing Na-montmorillonite would be suitable. Literature studies and own experience show that montmorillonite is permanently stable at 100 degrees C temperature and 5 MPa pressure when pH is within the range of 6.5-10 while quartz is stable at pH <9. The authors conclude that the suggested principle of storing the canisters in sealed bore-holes filled with a 10 percent bentonite/90 percent quartz (silt, sand) mass is suitable provided that the tunnel system, from which the holes are bored, is sealed with a dense buffer mass consisting of quartz (silt, sand) and 20-50 percent bentonite powder. (author)

  17. Detection of buried pipes by polarimetric borehole radar; Polarimetric borehole radar ni yoru maisetsukan no kenshutsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Niitsuma, H. [Tohoku University, Sendai (Japan); Nakauchi, T. [Osaka Gas Co. Ltd., Osaka (Japan)

    1997-05-27

    If the borehole radar is utilized for detection of buried pipes, the underground radar measurement becomes possible even in the situation where the mesurement on the earth surface is difficult, for example, such a place as under the road where there is much traffic. However, since buried pipes are horizontally installed and the existing borehole radar can send/receive only vertical polarization, the measurement conducted comes to be poor in efficiency from a viewpoint of the polarization utilization. Therefore, by introducing the polarimetric borehole radar to the detection of buried pipes, a basic experiment was conducted for the effective detection of horizontal buried pipes. Proposing the use of a slot antenna which can send/receive horizontal polarization in borehole in addition to a dipole antenna which sends/receives vertical polarization, developed was a step frequency type continuous wave radar of a network analyzer basis. As a result of the experiment, it was confirmed that reflection from buried pipes is largely dependent on polarization. Especially, it was found that in the slot dipole cross polarization mesurement, reflection from buried pipes can be emphasized. 4 refs., 5 figs.

  18. Assessment of rock mass quality based on rock quality designation and rock block index. Taking the Borehole BS01 in Beishan HLW disposal repository as example

    International Nuclear Information System (INIS)

    Xu Jian; Wang Ju

    2006-01-01

    Rock mass quality assessment plays an important role in the security for all kinds of large-scale buildings, especially for the underground buildings. In this paper, based on two parameters of RQD and RBI, taking the Borehole BS01 as example, lots of measured data prove that the rock block index can reflect the integrity and corresponding variation of mechanical properties of core from Borehole BS01 to some extent. Meanwhile, the rock mass classification around the Borehole BS01 is given in this paper. Finally, comparison of the results for rock mass assessment between RBI and RQD is made. The research result shows that the rock block index has remarkable significance in engineering and advantages in rock mass quality assessment. (authors)

  19. Infusion of Emerging Technologies and New Teaching Methods into the Mechanical Engineering Curriculum at the City College of New York

    Science.gov (United States)

    Delale, Feridun; Liaw, Benjamin M.; Jiji, Latif M.; Voiculescu, Ioana; Yu, Honghui

    2011-01-01

    From October 2003 to April 2008 a systemic reform of the Mechanical Engineering program at The City College of New York was undertaken with the goal of incorporating emerging technologies (such as nanotechnology, biotechnology, Micro-Electro-Mechanical Systems (MEMS), intelligent systems) and new teaching methodologies (such as project based…

  20. Deep borehole disposition of surplus fissile materials-The site selection process

    International Nuclear Information System (INIS)

    Heiken, G.; WoldeGabriel, G.; Morley, R.; Plannerer, H.

    1996-01-01

    One option for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology exists to immediately begin the design of this means of disposition and there are many attractive sites available within the conterminous US. The borehole system utilizes mainly natural barriers to preven migration of Pu and U to the Earth's surface. Careful site selection ensures favorable geologic conditions that provide natural long-lived migration barriers; they include deep, extremely stable rock formations, strongly reducing brines that exhibit increasing salinity with depth, and most importantly, demonstrated isolation or non-communication of deep fluids with the biosphere for millions of years. This isolation is the most important characteristic, with the other conditions mainly being those that will enhance the potential of locating and maintaining the isolated zones. Candidate sites will probably be located on the craton in very old Precambrian crystalline rocks, most likely the center of a granitic pluton. The sites will be located in tectonically stable areas with no recent volcanic or seismic activity, and situated away from tectonic features that might become active in the near geologic future

  1. Analysis of decision alternatives of the deep borehole filter restoration problem

    International Nuclear Information System (INIS)

    Abdildin, Yerkin G.; Abbas, Ali E.

    2016-01-01

    The energy problem is one of the biggest challenges facing the world in the 21st century. The nuclear energy is the fastest-growing contributor to the world energy and uranium mining is the primary step in its chain. One of the fundamental problems in the uranium extraction industry is the deep borehole filter restoration problem. This decision problem is very complex due to multiple objectives and various uncertainties. Besides the improvement of uranium production, the decision makers often need to meet internationally recognized standards (ISO 14001) of labor protection, safety measures, and preservation of environment. The problem can be simplified by constructing the multiattribute utility function, but the choice of the appropriate functional form requires the practical evaluation of different methods. In present work, we evaluate the alternatives of this complex problem by two distinct approaches for analyzing decision problems. The decision maker and the assessor is a Deputy Director General of a transnational corporation. - Highlights: • Analyzes 5 borehole recovery methods across the 4 most important attributes (criteria). • Considers financial, technological, environmental, and safety factors. • Compares two decision analysis approaches and the profit analysis. • Illustrates the assessments of the decision maker's preferences. • Determines that the assumption of independence of attributes yields imprecise recommendations.

  2. Thermal and exhumation histories from borehole thermochronometer samples in the Swiss Molasse Basin

    Science.gov (United States)

    Fillon, Charlotte; Ehlers, Todd; Enkelmann, Eva; Becker, Jens K.; Schnellmann, Michael

    2016-04-01

    In the last decade, significant interest has emerged to better understand the links between the foreland basin evolution and the erosion history of the Alps. For this, the European Alps are indeed a well-suited study region since the hinterland and the Swiss Molasse basin erosion rates and timing were extensively studied using basin analysis, and low-temperature thermochronology 1-4,5,6. However, the driving mechanisms for the post-Miocene erosion of the Swiss Molasse basin remains controversial, and several papers discuss whether global climatic changes1 or local variations of base level7,8,9 have controlled the erosion of the basin. With this study, we add quantitative constraints on the late-stage history of the basin by presenting new AFT and AHe dataset (respectively 16 and 19 samples) from two boreholes located ~30 km apart from each other, one located close to the center (Sonnengarten, depth of 3500 m) and one located to the North (Benken, depth of 100 m) of the basin. The data are derived from Triassic to Pliocene sand deposits as well as the underlying gneissic basement rocks and both AFT and AHe results are ranging from Pliocene to Triassic ages. The two dataset present very different age patterns which make the direct interpretation difficult. Therefore, thermal models using the QTQt software10,11 have been performed. This software is capable to evaluate cooling rates and timing using multiple samples from a single borehole. To test the robustness of the simulations, several runs for each borehole based on different data sets were performed, and showed some discrepancies between the resulting thermal histories. We provide, based on the simulations results, the most probable erosion estimates which are in the same range as the ones proposed in previous studies in the basin. For the borehole Benken, we reproduce a long and slow erosion phase starting at 23 Ma, with an overall estimate of the amount of eroded sediments ranging between 1.2 to 2 km. For the

  3. Transactions of the 9th international conference on structural mechanics in reactor technology. Vol. M

    International Nuclear Information System (INIS)

    Wittmann, F.H.

    1987-01-01

    For obvious reasons reliability plays a dominant role in reactor technology. The area to be covered by Division M which deals with this subject, can be briefly summarized as follows: Probabilistic safety assessment (PSA) of structures and uncertainty modelling in structural design. Pre-service and in-service inspection with respect to evaluation of the probability of failure in time of structure. Stochastic loads modelling. External events (earthquakes, aircraft-impacts, etc.). Stochastic damage models of materials and structures. Probabilistic fracture mechanics. Model for ageing of components and structures. Reliability analysis of large and complex systems. Benchmark exercises. Analysis of operational experience. Precursor-studies. Man-machine interactions. Relationship between availability and PSA. Using probabilistic methods in setting up codes, standards and safety goals. Risk assessment of nuclear power plants and of nuclear fuel cycle installations. All 65 papers are separately indexed in the database. (orig./HP)

  4. Experiments in Creative Engineering at the Department of Mechanical Engineering in Kurume National College of Technology

    Science.gov (United States)

    Tanaka, Hiroshi; Hashimura, Shinji; Hiroo, Yasuaki

    We present a program to learn ability to solve problems on engineering. This program is called “Experiments in creative engineering” in the department of mechanical engineering in Kurume National College of Technology advanced engineering school. In the program, students have to determine own theme and manufacture experimental devices or some machines by themselves. The students must also perform experiments to valid the function and performance of their devices by themselves. The restriction of the theme is to manufacture a device which function dose not basically exist in the world with limited cost (up to 20,000Yen) . As the results of questionnaire of students, the program would be very effective to the creative education for the students.

  5. Storage of nuclear waste in long boreholes

    International Nuclear Information System (INIS)

    Sandstedt, H.; Wichmann, C.; Pusch, R.; Boergesson, L.; Loennerberg, B.

    1991-08-01

    This report constitutes a feasibility study for the storage of high level radioactive waste in long TBM drilled tunnels. The report will form the basis for a comparison with other concepts in future analysis of the isolation performance in a typical Swedish rock structure. The suggested repository concept consists of three parallel, 4.5 km long, horizontal tunnels at a depth of 500 m constructed using TBM technology. The tunnel diameter will be about 2.4 m for deployment of canisters with a diameter of 1.6 m. The space between the canisters and rock will be totally sealed off by bentonite. The study comprises the design of canisters, canister handling and deposition, near field design, near field sealing and behaviour, and technical design of the repository. The report also includes a tentative time schedule and cost estimate, incorporating the construction phase and deployment of canisters. (au)

  6. Mechanical Thrombectomy in Patients With Acute Ischemic Stroke: A Health Technology Assessment

    Science.gov (United States)

    2016-01-01

    Background In Ontario, current treatment for eligible patients who have an acute ischemic stroke is intravenous thrombolysis (IVT). However, there are some limitations and contraindications to IVT, and outcomes may not be favourable for patients with stroke caused by a proximal intracranial occlusion. An alternative is mechanical thrombectomy with newer devices, and a number of recent studies have suggested that this treatment is more effective for improving functional independence and clinical outcomes. The objective of this health technology assessment was to evaluate the clinical effectiveness and cost-effectiveness of new-generation mechanical thrombectomy devices (with or without IVT) compared to IVT alone (if eligible) in patients with acute ischemic stroke. Methods We conducted a systematic review of the literature, limited to randomized controlled trials that examined the effectiveness of mechanical thrombectomy using stent retrievers and thromboaspiration devices for patients with acute ischemic stroke. We assessed the quality of the evidence using the GRADE approach. We developed a Markov decision-analytic model to assess the cost-effectiveness of mechanical thrombectomy (with or without IVT) versus IVT alone (if eligible), calculated incremental cost-effectiveness ratios using a 5-year time horizon, and conducted sensitivity analyses to examine the robustness of the estimates. Results There was a substantial, statistically significant difference in rate of functional independence (GRADE: high quality) between those who received mechanical thrombectomy (with or without IVT) and IVT alone (odds ratio [OR] 2.39, 95% confidence interval [CI] 1.88–3.04). We did not observe a difference in mortality (GRADE: moderate quality) (OR 0.80, 95% CI 0.60–1.07) or symptomatic intracerebral hemorrhage (GRADE: moderate quality) (OR 1.11, 95% CI 0.66–1.87). In the base-case cost-utility analysis, which had a 5 year time horizon, the costs and effectiveness for

  7. Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Fangtian Wang

    2017-09-01

    Full Text Available A thin coal seam mined as a protective coal seam above a gas outburst coal seam plays a central role in decreasing the degree of stress placed on a protected seam, thus increasing gas permeability levels and desorption capacities to dramatically eliminate gas outburst risk for the protected seam. However, when multiple layers of coal seams are present, stress-relieved gas from adjacent coal seams can cause a gas explosion. Thus, the post-drainage of gas from fractured and de-stressed strata should be applied. Comprehensive studies of gas permeability evolution mechanisms and gas seepage rules of protected seams close to protective seams that occur during protective seam mining must be carried out. Based on the case of the LongWall (LW 23209 working face in the Hancheng coal mine, Shaanxi Province, this paper presents a seepage model developed through the FLAC3D software program (version 5.0, Itasca Consulting Group, Inc., Minneapolis, MI, USA from which gas flow characteristics can be reflected by changes in rock mass permeability. A method involving theoretical analysis and numerical simulation was used to analyze stress relief and gas permeability evolution mechanisms present during broken rock mass compaction in a goaf. This process occurs over a reasonable amount of extraction time and in appropriate locations for comprehensive gas extraction technologies. In using this comprehensive gas drainage technological tool, the safe and efficient co-extraction of thin coal seams and gas resources can be realized, thus creating a favorable environment for the safe mining of coal and gas outburst seams.

  8. An Analysis of Change Mechanisms in Government Budgets on Science and Technology

    Science.gov (United States)

    Jung, C.

    2012-12-01

    Recent studies on policy changes have shown that there are limitations of incrementalism and that there no longer exists a general theory that can explain policy change. A number of studies have been conducted to examine policy changes in terms of drastic changes in budgets or policy agenda. According to the Punctuated Equilibrium Theory (PET), policy change is punctuated by long periods of stability, and large, but rare, changes due to shifts in society or the government. Although the reasons for these drastic changes are interpreted mainly from external events, the exact mechanisms of these changes are still not known. In this study, we assume that the punctuated budget changes are a result of not only external events but also the bureaucratic power of government departments. We attempt to identify the regularity of budget change pattern due to these internal characteristics (bureaucratic power). In order to understand budget changes caused by external events, especially for science and technology, the ARIMA-Intervention analysis was implemented. The results showed that the ARIMA-Intervention analysis explained the abrupt change in budget well. This means that a change in budget cannot be explained as incrementalism. Also, we analyzed the budget change kurtosis of government department along with various policy and organization types. Normally, a high kurtosis means there is a high probability of a punctuated equilibrium. The results show that science and technology agency as well as productive, delivery, and transfer agencies have a relatively high kurtosis.;

  9. Treatment technologies and mechanisms for three odorants at trace level: IPMP, IBMP, and TCA.

    Science.gov (United States)

    Li, Xin; Lin, Pengfei; Wang, Jun; Liu, Yuanyuan; Li, Yong; Zhang, Xiaojian; Chen, Chao

    2016-01-01

    Odour episodes caused by algal metabolites are gaining more and more attention in recent years. Besides geosmin and 2-methylisoborneol (MIB), 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), and 2,4,6-trichloroanisole (TCA) have emerged to be important off-flavour sources. Their low odour threshold concentrations (several ng ·L(-1)), which are even lower than those of MIB and geosmin, pose challenges for treatment strategies. Hence, a practical and efficient mitigation technology is needed. The possible practical technologies, including powdered activated carbon (PAC) adsorption and oxidation by chlorine and potassium permanganate, were investigated. The results indicated that chlorine and potassium permanganate oxidation of the three odorants were unfeasible while PAC adsorption was effective. As for adsorption, TCA, followed by IBMP and IPMP, was most easily removed by PAC. The Freundlich model could well describe the adsorption isotherm data. The adsorption capacities for IPMP, IBMP, and TCA were described as follows: [Formula: see text], [Formula: see text], and [Formula: see text]. For five earthy/musty odorants including geosmin and MIB, octanol/water partition coefficient, molecular weight, and polarizability all promoted adsorption while aqueous solubility showed a negative influence. The hydrophobic interaction was believed to be the dominant force in the adsorption mechanism while the π-electron interaction enhanced adsorption when a benzene ring was present. This result could be used to predict the adsorption performance of emerging odorants.

  10. Hemocompatibility of Axial Versus Centrifugal Pump Technology in Mechanical Circulatory Support Devices.

    Science.gov (United States)

    Schibilsky, David; Lenglinger, Matthias; Avci-Adali, Meltem; Haller, Christoph; Walker, Tobias; Wendel, Hans Peter; Schlensak, Christian

    2015-08-01

    The hemocompatible properties of rotary blood pumps commonly used in mechanical circulatory support (MCS) are widely unknown regarding specific biocompatibility profiles of different pump technologies. Therefore, we analyzed the hemocompatibility indicating markers of an axial flow and a magnetically levitated centrifugal device within an in vitro mock loop. The HeartMate II (HM II; n = 3) device and a CentriMag (CM; n = 3) adult pump were investigated in a human whole blood mock loop for 360 min using the MCS devices as a driving component. Blood samples were analyzed by enzyme-linked immunosorbent assay for markers of coagulation, complement system, and inflammatory response. There was a time-dependent activation of the coagulation (thrombin-antithrombin complexes [TAT]), complement (SC5b-9), and inflammation system (polymorphonuclear [PMN] elastase) in both groups. The mean value of TAT (CM: 4.0 μg/L vs. 29.4 μg/L, P technologies and a magnetically levitated centrifugal pump design might be superior. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals Inc.

  11. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies

    International Nuclear Information System (INIS)

    Amirante, Riccardo; Cassone, Egidio; Distaso, Elia; Tamburrano, Paolo

    2017-01-01

    Highlights: • World energy demand is analyzed. • Promising energy storage systems are shown to explore their potentials. • Different storage are considered and compared. • The efficiency and costs of each are shown. • Easy guidelines for selection of energy storage are provided. - Abstract: Energy production is changing in the world because of the need to reduce greenhouse gas emissions, to reduce the dependence on carbon/fossil sources and to introduce renewable energy sources. Despite the great amount of scientific efforts, great care to energy storage systems is necessary to overcome the discontinuity in the renewable production. A wide variety of options and complex characteristic matrices make it difficult and so in this paper the authors show a clear picture of the available state-of-the-art technologies. The paper provides an overview of mechanical, electrochemical and hydrogen technologies, explaining operation principles, performing technical and economic features. Finally a schematic comparison among the potential utilizations of energy storage systems is presented.

  12. Fostering a renewable energy technology industry: an international comparison of wind industry policy support mechanisms

    International Nuclear Information System (INIS)

    Lewis, J.I.; Wiser, R.H.

    2007-01-01

    This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in 12 countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which is turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry. (author)

  13. Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms

    International Nuclear Information System (INIS)

    Lewis, Joanna I.; Wiser, Ryan H.

    2007-01-01

    This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in 12 countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry

  14. Report to the United States Congress clean coal technology export markets and financing mechanisms

    International Nuclear Information System (INIS)

    1994-05-01

    This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country's coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently

  15. Review of geoscientific data of relevance to disposal of spent nuclear fuel in deep boreholes in crystalline rock

    International Nuclear Information System (INIS)

    Marsic, Nico; Grundfelt, Bertil

    2013-09-01

    In this report a compilation of recent geoscientific data of relevance to disposal of spent nuclear fuel in deep boreholes in Sweden is presented. The goal of the study has been limited to identifying and briefly describing such geoscientific information of relevance to disposal in deep boreholes that was not available at the time when previous compilations were made. Hence, the study is not to be regarded as a general up-date of new geoscientific information. Disposal of spent nuclear fuel in deep boreholes has been studied in Sweden since the second half of the 1980s. The currently studied concept has been proposed by Sandia National Laboratories in the USA. In this concept the spent fuel elements are encapsulated in cylindrical steel canisters that are joined together in strings of 40 canisters and lowered into five kilometres deep boreholes. Ten such strings are stacked between three and five kilometres depth separated from each other by concrete plugs. The study started with a review of boreholes that have been reported after the previous reviews that were published in 1998 and 2004. A total of 12 boreholes of potential relevance were identified. Further study showed that only four out of these holes penetrated into crystalline rock. Two of these were deemed to be less relevant because they were drilled in areas with much higher geothermal gradient than in the parts of the Fennoscandian shield that realistically could host a Swedish deep borehole repository. Of the two remaining boreholes, only one, a geoscientific hole drilled at Outokumpu in Finland, is associated with a reasonably complete geoscientific data set. It is worth mentioning that a large part of this hole is drilled through meta sedimentary rock (mica schist) rather than granitic rock. The information collected and reviewed has been gathered under the headings hydraulic conditions, geothermal conditions, hydrogeochemical conditions, bacteriological activity and rock mechanical properties. Only

  16. Review of geoscientific data of relevance to disposal of spent nuclear fuel in deep boreholes in crystalline rock

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, Nico; Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-09-15

    In this report a compilation of recent geoscientific data of relevance to disposal of spent nuclear fuel in deep boreholes in Sweden is presented. The goal of the study has been limited to identifying and briefly describing such geoscientific information of relevance to disposal in deep boreholes that was not available at the time when previous compilations were made. Hence, the study is not to be regarded as a general up-date of new geoscientific information. Disposal of spent nuclear fuel in deep boreholes has been studied in Sweden since the second half of the 1980s. The currently studied concept has been proposed by Sandia National Laboratories in the USA. In this concept the spent fuel elements are encapsulated in cylindrical steel canisters that are joined together in strings of 40 canisters and lowered into five kilometres deep boreholes. Ten such strings are stacked between three and five kilometres depth separated from each other by concrete plugs. The study started with a review of boreholes that have been reported after the previous reviews that were published in 1998 and 2004. A total of 12 boreholes of potential relevance were identified. Further study showed that only four out of these holes penetrated into crystalline rock. Two of these were deemed to be less relevant because they were drilled in areas with much higher geothermal gradient than in the parts of the Fennoscandian shield that realistically could host a Swedish deep borehole repository. Of the two remaining boreholes, only one, a geoscientific hole drilled at Outokumpu in Finland, is associated with a reasonably complete geoscientific data set. It is worth mentioning that a large part of this hole is drilled through meta sedimentary rock (mica schist) rather than granitic rock. The information collected and reviewed has been gathered under the headings hydraulic conditions, geothermal conditions, hydrogeochemical conditions, bacteriological activity and rock mechanical properties. Only

  17. Uranium borehole logging using delayed or prompt fission neutrons

    International Nuclear Information System (INIS)

    Schulze, G.; Wuerz, H.

    1977-04-01

    The measurement of induced fission neutrons using Cf 252 and 14 MeV neutrons is a sensitive method for an in situ determination of Uranium. Applying this methods requires a unique relation between concentration of Uranium and intensity of induced fission neutrons. A discussion of parameters influencing the determination of concentration is given. A simple method is developed allowing an elemination of the geochemistry of the deposit and of the borehole configuration. Borehole probes using the methods described are of considerable help during the phase of detailed exploration of uranium ore deposits. These on-line tools allow an immediate determination of concentration. Thus avoiding the expensive and time consuming step of core drilling and subsequent chemical analysis. (orig./HP) [de

  18. Proceedings of the workshop on borehole and shaft plugging

    International Nuclear Information System (INIS)

    1980-01-01

    Geologic disposal of radioactive waste relies on the capability of many geological formations to provide long-term containment of the waste. The disposal operations could significantly modify the original conditions. In addition to the underground excavations and the thermal input of the waste their is the problem of boreholes and shafts that constitute a potential by-pass of the geological barriers. It is therefore essential to develop techniques and procedures for effective plugging of all penetrations connecting the disposal zone with the surface or with water bearing layers. It will be necessary to produce plugs which effectively restore the original characteristics of the isolating formations. In addition these plugs must be chemically stable in the existing geochemical environment in order to remain effective for very long periods of time and the plugs of disposal holes can be exposed to high temperatures and radiation doses. All countries with geologic disposal programmes will have to face the problem of borehole and shapt plugging

  19. Waste isolation pilot plant (WIPP) borehole plugging program description

    International Nuclear Information System (INIS)

    Christensen, C.L.; Hunter, T.O.

    1979-08-01

    The tests and experiments described attempt to provide a mix of borehole (with limited access) and in-mine (with relatively unlimited access) environments in which assessment of the various issues involved can be undertaken. The Bell Canyon Test provides the opportunity to instrument and analyze a plug in a high pressure region. The Shallow Hole Test permits application of best techniques for plugging and then access to both the top and bottom of the plug for further analysis. The Diagnostic Test Hole permits recovery of bench scale size samples for analysis and establishes an in-borehole laboratory in which to conduct testing and analysis in all strata from the surface into the salt horizon. The additional in mine experiments provide the opportunity to investigate in more detail specific effects on plugs in the salt region and allows evaluation of instrumentation systems

  20. Metamorphic rocks in the deep boreholes near Maribor

    Directory of Open Access Journals (Sweden)

    Mirka Trajanova

    2002-12-01

    Full Text Available Six research-captive boreholes for thermal water passed through a pile of metamorphic rocks near Maribor (Eastern Slovenia that is on average about 1000 m thick. The succession of metamorphic rocks is characteristic for the Pohorje Mt. and eastern Kobansko region. In the area of the boreholes two tectonic zones are more pronounced: the upper one, at a depth of about 510 to 550 m at the contact of the Štelenska Gora and Phyllite formations and the deeper one at a depth of about 460 to 590 m, indicating the reverse fault junction of the Phyllite and Kobansko formations. They belong to the second andthe third thrust unit of the accretionary wedge formed at the collision of the European and African plates. Four Alpine nappe units are proven in the Slovenian part of the Eastern Alps.

  1. Cause of depth error of borehole logging and its correction

    International Nuclear Information System (INIS)

    Iida, Yoshimasa; Ikeda, Koki; Tsuruta, Tadahiko; Ito, Hiroaki; Goto, Junichi.

    1996-01-01

    Data by borehole logging can be used for detailed analysis of geological structures. Depths measured by portable borehole loggers commonly shift a few meters on the level of 400 to 500 meters deep. Therefore, the cause of depth error has to be recognized to make proper corrections for detailed structural analysis. Correlation between depths of drill core and in-rod radiometric logging has been performed in detail on exploration drill holes in the Athabasca basin, Canada. As a result, a common tendency of logging depth shift has been recognized, and an empirical formula (quadratic equation) for this has been obtained. The physical meaning of the formula and the cause of the depth error has been considered. (author)

  2. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  3. Sealing of boreholes using natural, compatible materials: Granular salt

    International Nuclear Information System (INIS)

    Finley, R.E.; Zeuch, D.H.; Stormont, J.C.; Daemen, J.J.K.

    1994-01-01

    Granular salt can be used to construct high performance permanent seals in boreholes which penetrate rock salt formations. These seals are described as seal systems comprised of the host rock, the seal material, and the seal rock interface. The performance of these seal systems is defined by the complex interactions between these seal system components through time. The interactions are largely driven by the creep of the host formation applying boundary stress on the seal forcing host rock permeability with time. The immediate permeability of these seals is dependent on the emplaced density. Laboratory test results suggest that careful emplacement techniques could results in immediate seal system permeability on the order of 10 -16 m 2 to 10 -18 m 2 (10 -4 darcy to 10 -6 ). The visco-plastic behavior of the host rock coupled with the granular salts ability to ''heal'' or consolidate make granular salt an ideal sealing material for boreholes whose permanent sealing is required

  4. Express Control of the Mechanical Properties of High-Strength and Hard-to-Machine Materials at All Stages of the Technological Cycle of Producing Mechanical Engineering Products

    Science.gov (United States)

    Matyunin, V. M.; Marchenkov, A. Yu.; Demidov, A. N.; Karimbekov, M. A.

    2017-12-01

    It is shown that depth-sensing indentation can be used to perform express control of the mechanical properties of high-strength and hard-to-machine materials. This control can be performed at various stages of a technological cycle of processing materials and parts without preparing and testing tensile specimens, which will significantly reduce the consumption of materials, time, and labor.

  5. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  6. The geomicrobiology of the Harwell and Altnabreac boreholes

    International Nuclear Information System (INIS)

    Christofi, N.; West, J.M.; Robbins, J.E.; McKinley, I.G.

    1983-01-01

    Waste repositories in deep environments are likely to contain autochthonous and allochthonous microbial populations which may influence near and far-field conditions. Studies of boreholes in argillaceous and crystalline formations at research sites in the U.K. have revealed the presence of several types of contaminant microorganisms which could affect the integrity of materials used in repository construction, alter the geochemistry and may encourage the release of radionuclides from the near-field environment. (author)

  7. Ferroprobe transformer of the angle of inclination of the borehole

    Energy Technology Data Exchange (ETDEWEB)

    Kovshov, G.N.; Kuznetsov, G.F.; Lavrov, B.V.

    1981-02-15

    The transformer can be used in systems of control of passage of slant boreholes. Increasing the accuracy of measurement is achieved by decreasing the temperature error of the transformer. For this transformer is equipped with an auxillary ferroprobe installed on the external framework. Its axis is parallel to the magnetic axis of one of the coils, and its center is positioned on the axis of rotation of the interior framework.

  8. Physicochemical quality of borehole water in Abonnema and its ...

    African Journals Online (AJOL)

    Physicochemical quality of borehole water in Abonnema and its public health importance. ... The result of the analysis showed that the pH values across the zones had a mean range of 6.2 + 0.2 to 6.8 + 0.4, while conductivity values for Briggs and Obonoma compounds were 47.8 and 50.6 μs/cm respectively. However, the ...

  9. Quality control of radioactive waste disposal container for borehole project

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Suhairy Sani; Azhar Azmi; Ilham Mukhriz Zainal Abidin

    2014-01-01

    This paper explained quality control of radioactive disposal container for the borehole project. Non-destructive Testing (NDT) is one of the quality tool used for evaluating the product. The disposal container is made of 316L stainless steel. The suitable NDT method for this object is radiography, ultrasonic, penetrant and eddy current testing. This container will be filled with radioactive capsules and cement mortar is grouted to fill the gap. The results of NDT measurements are explained and discussed. (author)

  10. Improved system for pumping slurry of gel explosives into boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Collins, T K; Clay, R B; Udy, L L

    1967-05-16

    A method is described for injecting an explosive slurry into a borehole containing water. The slurry is heavier than water and is pumped through the tubing to a depth close to the bottom of the well. Injection is continued until all water has been displaced above the lower end of the tubing. This type of immiscible displacement results in substantially no mixing between the water and the explosive. (15 claims)

  11. Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology

    Science.gov (United States)

    Yount, Bryan C.; Arnold, James O.; Gage, Peter J.; Mockelman, Jeffrey; Venkatapathy, Ethiraj

    2012-01-01

    System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and

  12. Borehole disposal of spent radiation sources: 1. Principles

    International Nuclear Information System (INIS)

    Blerk, J.J. van; Kozak, M.W.

    2000-01-01

    Large numbers of spent radiation sources from the medical and other technical professions exist in many countries, even countries that do not possess facilities related to the nuclear fuel cycle, that have to be disposed. This is particularly the case in Africa, South America and some members of the Russian Federation. Since these sources need to be handled separately from the other types of radioactive waste, mainly because of their activity to volume ratio, countries (even those with access to operational repositories) find it difficult to manage and dispose this waste. This has led to the use of boreholes as disposal units for these spent sources by some members of the Russian Federation and in South Africa. However, the relatively shallow boreholes used by these countries are not suitable for the disposal of isotopes with long half-lifes, such as 226 Ra and 241 Am. With this in mind the Atomic Energy Corporation of South Africa initiated the development of the BOSS disposal concept - an acronym for Borehole disposal Of Spent Sources - as part of an International Atomic Energy Agency (IAEA) AFRA I-14 Technical Corporation (TC) project. In this paper, the principles of this disposal concept, which is still under development, will be discussed. (author)

  13. Borehole geophysical investigations of Lavia deep testhole, Finland

    International Nuclear Information System (INIS)

    Saksa, Pauli

    1985-02-01

    According to the Goverment's decision in principle in 1983 Industrial Power Company Ltd (TVO) is making preparations for all the steps of final disposal of the spent fuel produced by its power plants. Before the actual site investigation phase, TVO drilled a deep borehole in Lavia, Western Finland. The borehole is used during 1984-85 for testing investigation techniques and methods used for bedrock characterization. Borehole geophysical loggings performed in Lavia consisted of galvanic electrical, transient electromagnetic, radiometric, temperature, seismic and magnetic msurements. This composite survey provided both lithological and structural information of rock mass. The neutron-neutron, density, natural gamma radiation and susceptibility methods characterized rock type. Fracturing and its type could be interpreted most effectively with resistivity, acoustic P-wave velocity and density logs. Temperature and tube-wave measurements revealed several fractured zones related to possible water flow in rock. Lavia investigations indicated that a high quality of instrumentation and careful calibration are necessary for site investigations. The large amount of log data also requires efficient data collection and processing systems both in the field and laboratory. (author)

  14. Core-logs of the vertical borehole V2

    International Nuclear Information System (INIS)

    Carlsson, L.; Egerth, T.; Westlund, B.; Olsson, T.

    1982-08-01

    In the hydrogeological programme of the Stripa Project, borehole V2 was prolonged to a final depth of 822 m. The previous core from 0-471.4 m was relogged. The drill core was logged with regard to rock characteristics, fracture frequency, dipping and filling. The results are presented as core-logs and fracture diagrams. Borehole V2 shows similar characteristics as found in other drillings in the Stripa Mine. It penetrates Stripa granite to its full depth. recorded fractures shows a clear predominance of medium-steep fractures, while flat-lying fractures are more sparsly occuring, a fact which is even more pronounced below 400 m depth. Due to the vertical direction of the borehole, steeply dipping fractures are underestimated in the core. The mean fracture frequency, related to the total length of the core, is 2.1 fractures/m. Chlorite, calcite and epidote are the dominating coating minerals in the fractures, each making up about 25-30 percent of all coated fractures. (Authors)

  15. Electrical resistance tomography using steel cased boreholes as long electrodes

    International Nuclear Information System (INIS)

    Daily, W; Newmark, R L; Ramirez, A

    1999-01-01

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. Several possibilities can be considered. The first case we investigated uses an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. The second case uses an array of traditional point borehole electrodes combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes but the merits depend strongly on details of each application. Field tests using these configurations are currently being conducted

  16. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  17. Large diameter interseam boreholes: their usage to improve underground environments

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, A.J. (Nottingham University, Nottingham (United Kingdom). Dept. of Mineral Resources Engineering)

    1993-07-01

    Development of drilling techniques for larger diameter holes over the last fifteen years has indicated their considerable potential to assist with quickly improving environmental facilities and services to high output coal faces. In Nottinghamshire, as well as in several other regions, mines have utilised interseam boreholes, fully lined, to improve inbye air flows with subsequent reduction of face temperatures, dust and firedamp levels. Some further holes have additionally been adapted quickly to increase firedamp drainage capacities and also to improve service facilities such as compressed air, electrical power and water, and access. A wide range of borehole sizes are employed, ranging from 0.35 m, with integral steel lining, up to a maximum of 2.5 m in diameter, fully concrete lined. The Nottinghamshire Group Sinking and Tunnelling Engineer provides a full range of drilling facilities. The most popular large diameter holes with a potential of 1.8 m in diameter, over 200 m in vertical depth, employs a Robins, type 23R, raise borer which has been in use up and down the country since 1977. A Fosroc CGR10 type, techgrout is applied after boring is completed to provide the essential smooth lining. The application of this lining utilises a special rubber former developed locally, essentially knitting strata cracks, beddings and any local overbreak of the holes. The former or 'sausage' is used in a similar manner to correct and repair boreholes which have been in use for some time. 4 refs., 6 figs., 1 tab.

  18. Analysis of groundwater from deep boreholes in Gideaa

    International Nuclear Information System (INIS)

    Laurent, S.

    1983-03-01

    Groundwaters from two boreholes in granitic rock at an ivestigation site in Gideaa has been sampled and analysed. This is part of a larger program of geological, geophysical and hydrogeological investigations aimed at finding a suitable site for a high level radioactive waste respository. Five water-bearing levels in each borehole down to the deepest at about 500 m in the first and about 600 m in the second borehole were selected. Prior to sampling, the waterbearing level is isolated between packer sleeves. The water is then pumped to the surface where sensitive parameters such as redox potential, pH, sulphide and oxygen content are measured electrochemically on the flowing water in a system isolated from the air. Water, filter and gas samples are sent to several laboratories for further analysis. The present report is a presentation of the groundwater analysis. The reliability of the results is discussed but there is no evaluation relation to geology and hydrogeology. This report presents the basic results from the groundwater analyses to be further evaluated by experts in different fields. (Forf)

  19. Geophysical borehole logging, dummy-sonding and optical imaging of the borehole OL-KR24 at Olkiluoto 2005

    International Nuclear Information System (INIS)

    Majapuro, J.

    2006-03-01

    Suomen Malmi Oy conducted geophysical borehole logging, dummy-sonding and optical imaging surveys of the borehole OL-KR24 at the Olkiluoto site in Eurajoki during 1.10.2005 - 4.10.2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are caliper survey and optical imaging. The assignment included the field work of surveys, interpretation and processing of the data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  20. Long-term pumping test in borehole KR24 flow measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rouhiainen, P.; Poellaenen, J. [PRG-Tec Oy, Espoo (Finland)

    2005-09-15

    The Difference Flow method can be used for the relatively fast determination of transmissivity and hydraulic head in fractures or fractured zones in cored boreholes. In this study, the Difference Flow method was used for hydraulic crosshole interference tests. The tests were performed in boreholes KR24 (pumped borehole) KR4, KR7, KR8, KRlO, KR14, KR22, KR22B, KR26, KR27, KR27B, KR28 and KR28B at Olkiluoto during the first and second quarters of 2004. The distance between the boreholes varies from approximately tens of meters to hundreds of meters. All the measurements were carried out in open boreholes, i.e. no packers were used. For interpretation, a normal single hole test was first performed in each borehole. Flow rates and drawdown were first measured both without pumping and with pumping the borehole under test. For practical reasons, the data set is neither complete nor similar in all tested boreholes. Connected flow to borehole KR24 was detected in all these boreholes. These flow responses were concentrated on a few zones. (orig.)

  1. Multi-year monitoring of radon in boreholes at the Modra geophysical observatory, Slovakia

    International Nuclear Information System (INIS)

    Smetanova, I.; Steinitz, G.; Holy, K.

    2017-01-01

    Long-term radon monitoring was performed in two boreholes, at a depth of 13 m in the 40 m deep V-2 borehole (August 2003 September 2005), and at 3 m depth in the 10 m deep V-3 borehole (August 2003 April 2008). Diurnal, multi-day and annual variations in radon time-series were observed. Daily average of radon activity in V-2 borehole was significantly higher and ranged from 6.5 to 383.7 kBq/m 3 , while in V-3 borehole only between 1.2 and 139.4 kBq/m 3 . The seasonal pattern was more pronounced in V-3 time series, with the maximum occurring from October to March. Multi-day variations (2-10 days) were registered in V-2 and V-3 mostly simultaneously, with higher discrepancy in spring and summer periods, when radon activity in V-3 borehole was low. Diurnal radon variations with two maxima and two minima per day were registered in both boreholes. The influence of meteorological parameters on radon concentrations was investigated. The overall impression is that seasonal variation in radon in V-3 borehole seems to be connected with the temperature variation. Multi-day variations of radon in both boreholes coincided with the atmospheric pressure changes. An increase in radon activity was observed in V-3 borehole after the rainfall in spring and summer seasons. (authors)

  2. Borehole Tool for the Comprehensive Characterization of Hydrate-bearing Sediments

    KAUST Repository

    Dai, Sheng; Santamarina, Carlos

    2018-01-01

    Reservoir characterization and simulation require reliable parameters to anticipate hydrate deposits responses and production rates. The acquisition of the required fundamental properties currently relies on wireline logging, pressure core testing, and/or laboratory ob-servations of synthesized specimens, which are challenged by testing capabilities and in-nate sampling disturbances. The project reviews hydrate-bearing sediments, properties, and inherent sampling effects, albeit lessen with the developments in pressure core technology, in order to develop robust correlations with index parameters. The resulting information is incorporated into a tool for optimal field characterization and parameter selection with un-certainty analyses. Ultimately, the project develops a borehole tool for the comprehensive characterization of hydrate-bearing sediments at in situ, with the design recognizing past developments and characterization experience and benefited from the inspiration of nature and sensor miniaturization.

  3. Borehole Tool for the Comprehensive Characterization of Hydrate-bearing Sediments

    KAUST Repository

    Dai, Sheng

    2018-02-01

    Reservoir characterization and simulation require reliable parameters to anticipate hydrate deposits responses and production rates. The acquisition of the required fundamental properties currently relies on wireline logging, pressure core testing, and/or laboratory ob-servations of synthesized specimens, which are challenged by testing capabilities and in-nate sampling disturbances. The project reviews hydrate-bearing sediments, properties, and inherent sampling effects, albeit lessen with the developments in pressure core technology, in order to develop robust correlations with index parameters. The resulting information is incorporated into a tool for optimal field characterization and parameter selection with un-certainty analyses. Ultimately, the project develops a borehole tool for the comprehensive characterization of hydrate-bearing sediments at in situ, with the design recognizing past developments and characterization experience and benefited from the inspiration of nature and sensor miniaturization.

  4. Borehole Tool for the Comprehensive Characterization of Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [Georgia Inst. of Technology, Atlanta, GA (United States); Santamarina, J. Carlos [Georgia Inst. of Technology, Atlanta, GA (United States); King Abdullah Univ. of Science and Technology (KAUST), Thuwal (Saudi Arabia)

    2017-12-30

    Reservoir characterization and simulation require reliable parameters to anticipate hydrate deposits responses and production rates. The acquisition of the required fundamental properties currently relies on wireline logging, pressure core testing, and/or laboratory observations of synthesized specimens, which are challenged by testing capabilities and innate sampling disturbances. The project reviews hydrate-bearing sediments, properties, and inherent sampling effects, albeit lessen with the developments in pressure core technology, in order to develop robust correlations with index parameters. The resulting information is incorporated into a tool for optimal field characterization and parameter selection with uncertainty analyses. Ultimately, the project develops a borehole tool for the comprehensive characterization of hydrate-bearing sediments at in situ, with the design recognizing past developments and characterization experience and benefited from the inspiration of nature and sensor miniaturization.

  5. Establishment of borehole observation system and high resolution seismic studies in the western part of the main Marmara Fault in the frame of MARSite Project

    Science.gov (United States)

    Ozel, A.; Yalcinkaya, E.; Guralp, C. M.; Tunc, S.; Meral Ozel, N.

    2013-12-01

    The main objective of this study is to install a multi-parameter borehole system and surface array as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change which may occur before earthquakes by making use of the data from the arrays already running in the eastern part of the Marmara Sea. The multi-parameter borehole system will be composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate 3-D strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. The borehole seismic station will use the latest update technologies and design ideas to record 'Earth tides' signals to the smallest magnitude -3 events. Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is obvious from the studies on the nucleation process of the 1999 earthquake that tens of minutes before the major rupture initiate noteworthy microearthquake activity happened. The starting point of the 1999 rupture was a site of swarm activity noticed a few decades prior the main shock

  6. The multi-parameter borehole system and high resolution seismic studies in the western part of the main Marmara Fault in the frame of MARSITE Project.

    Science.gov (United States)

    Ozel, Oguz; Guralp, Cansun; Tunc, Suleyman; Yalcinkaya, Esref

    2016-04-01

    The main objective of this study is to install a multi-parameter borehole system and surface array as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change, which may occur before earthquakes by making use of the data from the arrays already running in the eastern part of the Marmara Sea. The multi-parameter borehole system is composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. The borehole seismic station uses the latest update technologies and design ideas to record "Earth tides" signals to the smallest magnitude -3 events. Additionally, a surface microearthquake observation array, consisting of 8-10 seismometers around the borehole is established to obtain continuous high resolution locations of micro-seismicity and to better understand the existing seismically active structures and their roles in local tectonic settings.Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is

  7. Combined Borehole Seismic and Electromagnetic Inversion For High-Resolution Petrophysical Assessment Of Hydocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Torres-Verdin; G. Michael Hoversten; Ki Ha Lee; Gregory Newman; Kurt Nihei

    2008-12-31

    This report summarizes the work performed between January 2005 and December 2007, under DOE research contract DE-FC26-04NT15507. The project is was performed by the Center for Petroleum and Geosystems Engineering of The University of Texas at Austin and Lawrence Berkeley National Laboratory under the auspices of the National Energy Technology Office (NETL) and the Strategic Center for Natural Gas and Oil (SCNGO). During the three-year project, we developed new methods to combine borehole sonic and electromagnetic (EM) measurements for the improved assessment of elastic and petrophysical properties of rock formations penetrated by a well. Sonic measurements consisted of full waveform acoustic amplitudes acquired with monopole and dipole sources, whereas EM measurements consisted of frequency-domain voltages acquired with multi-coil induction systems. The combination of sonic and EM measurements permitted the joint estimation of elastic and petrophysical properties in the presence of mud-filtrate invasion. It was conclusively shown that the combined interpretation of sonic and EM measurements reduced non-uniqueness in the estimation of elastic and petrophysical properties and improved the spatial resolution of the estimations compared to estimations yielded separately from the two types of measurements. Moreover, this approach enabled the assessment of dynamic petrophysical properties such as permeability, as it incorporated the physics of mud-filtrate invasion in the interpretation of the measurements. The first part of the project considered the development of fast and reliable numerical algorithms to simulate borehole sonic waveforms in 2D, 3D, and radial 1D media. Such algorithms were subsequently used in the quantitative estimation of elastic properties jointly from borehole sonic and EM measurements. In the second part of the project we developed a new algorithm to estimate water saturation, porosity, and dry-rock elastic moduli jointly from borehole sonic and

  8. Creation of technological bases of struggle with generation of natural gas hydrates

    International Nuclear Information System (INIS)

    Asadov, M.M.; Alieva, S.A.

    2005-01-01

    Chemical technological access, permitting directed of intensify processes prevention of gas hydrates during motion of the gas-liquid current of natural gas in the borehole cavity of natural gas-borehole cavity have been engineered. Determined technological regimes of gas current conditioning, permitting create nonequilibrium state providing condition for reversible process

  9. Rock Melt Borehole Sealing System, Final Technical Report for SBIR Phase I Grant No. DE-SC0011888

    Energy Technology Data Exchange (ETDEWEB)

    Osnes, John D. [RE/SPEC Inc., Argonne, IL (United States); Vining, Cody A. [RE/SPEC Inc., Argonne, IL (United States); Nopola, Jay R. [RE/SPEC Inc., Argonne, IL (United States); Roggenthen, William M. [South Dakota School of Mines & Technology, Rapid City, SD (United States)

    2015-03-19

    Purpose of Research Deep borehole disposal is one option that has received attention in recent years as a possible strategy for long-term disposal of the tens of thousands of tons of spent nuclear fuel. The feasibility of the deep borehole option relies upon designing and constructing an effective seal within the borehole to ensure that the waste package does not communicate with the shallow subsurface biosphere through the borehole itself. Some of the uncertainty associated with the long-term suitability of the deep borehole option is related to (1) the degradation of traditional sealing materials over time and (2) the inability of traditional sealing methods to adequately seal a Disturbed Rock Zone surrounding the borehole. One possible system to address these concerns consists of encapsulating the waste in a melt generated from either the waste itself or a plug above the waste. This current project expanded on previous work to further advance the deep borehole disposal concept. Research Objectives & Findings The overarching objective of the study was to evaluate the feasibility of constructing a downhole heater that is capable of meeting the technical and logistical requirements to melt rock. This ultimate objective was accomplished by two primary approaches. The first approach was to define the heater requirements and conceptually design a system that is capable of melting rock. The second approach was to determine the feasibility of conducting an in situ, field-scale melting experiment to validate the suitability of the rock melt seal concept. The evaluation and conceptual design of the heater system resulted in the following primary findings: • Borehole wall temperatures capable of producing a partial melt are achievable under most expected thermal conductivities with a 12-kilowatt heater. • Commercially available components have been identified that meet the requirements of the heater system, including resistive elements that are capable of providing the

  10. Analytical framework for borehole heat exchanger (BHE) simulation influenced by horizontal groundwater flow and complex top boundary conditions

    Science.gov (United States)

    Rivera, Jaime; Blum, Philipp; Bayer, Peter

    2015-04-01

    Borehole heat exchangers (BHE) are the most widely used technologies for tapping low-enthalpy energy resources in the shallow subsurface. Analysis of these systems requires a proper simulation of the relevant processes controlling the transfer of heat between the BHE and the ground. Among the available simulation approaches, analytical methods are broadly accepted, especially when low computational costs and comprehensive analyses are demanded. Moreover, these methods constitute the benchmark solutions to evaluate the performance of more complex numerical models. Within the spectrum of existing (semi-)analytical models, those based on the superposition of problem-specific Green's functions are particularly appealing. Green's functions can be derived, for instance, for nodal or line sources with constant or transient strengths. In the same manner, functional forms can be obtained for scenarios with complex top boundary conditions whose temperature may vary in space and time. Other relevant processes, such as advective heat transport, mechanical dispersion and heat transfer through the unsaturated zone could be incorporated as well. A keystone of the methodology is that individual solutions can be added up invoking the superposition principle. This leads to a flexible and robust framework for studying the interaction of multiple processes on thermal plumes of BHEs. In this contribution, we present a new analytical framework and its verification via comparison with a numerical model. It simulates a BHE as a line source, and it integrates both horizontal groundwater flow and the effect of top boundary effects due to variable land use. All these effects may be implemented as spatially and temporally variable. For validation, the analytical framework is successfully applied to study cases where highly resolved temperature data is available.

  11. Task Order 22 – Engineering and Technical Support, Deep Borehole Field Test. AREVA Summary Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Mark A. [AREVA Federal Services, Charlotte, NC (United States)

    2016-01-19

    Under Task Order 22 of the industry Advisory and Assistance Services (A&AS) Contract to the Department of Energy (DOE) DE-NE0000291, AREVA has been tasked with providing assistance with engineering, analysis, cost estimating, and design support of a system for disposal of radioactive wastes in deep boreholes (without the use of radioactive waste). As part of this task order, AREVA was requested, through a letter of technical direction, to evaluate Sandia National Laboratory’s (SNL’s) waste package borehole emplacement system concept recommendation using input from DOE and SNL. This summary review report (SRR) documents this evaluation, with its focus on the primary input document titled: “Deep Borehole Field Test Specifications/M2FT-15SN0817091” Rev. 1 [1], hereafter referred to as the “M2 report.” The M2 report focuses on the conceptual design development for the Deep Borehole Field Test (DBFT), mainly the test waste packages (WPs) and the system for demonstrating emplacement and retrieval of those packages in the Field Test Borehole (FTB). This SRR follows the same outline as the M2 report, which allows for easy correlation between AREVA’s review comments, discussion, potential proposed alternatives, and path forward with information established in the M2 report. AREVA’s assessment focused on three primary elements of the M2 report: the conceptual design of the WPs proposed for deep borehole disposal (DBD), the mode of emplacement of the WP into DBD, and the conceptual design of the DBFT. AREVA concurs with the M2 report’s selection of the wireline emplacement mode specifically over the drill-string emplacement mode and generically over alternative emplacement modes. Table 5-1 of this SRR compares the pros and cons of each emplacement mode considered viable for DBD. The primary positive characteristics of the wireline emplacement mode include: (1) considered a mature technology; (2) operations are relatively simple; (3) probability of a

  12. 2011 Mississippi Curriculum Framework: Postsecondary Agricultural Technician Technology. (Program CIP: 01.0201 - Agricultural Mechanics and Equipment/Machine Technology)

    Science.gov (United States)

    Massey, Jeremy; Louwerens, Shane; Galey, Joe

    2011-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  13. Proceedings of the 17th international conference on structural mechanics in reactor technology

    International Nuclear Information System (INIS)

    2003-01-01

    The conference was divided into the following divisions and subdivisions: DIVISION A: Plenary lectures and panel; DIVISION B: Computational mechanics (Structural and thermal analysis; High-non linear analysis, material behaviour; Vibration and fluid dynamics analysis); DIVISION C: Fuel and core structures (Fuel vibration and fretting; Fuel design and constitutive modelling; Fuel failure under operation and accident conditions; Fuel failure under operation and accident conditions; Components and material behaviour under irradiation; Integrity of fuel systems under transient conditions); DIVISION D: Aging, Life Extension and Licence Renewal (International Regulatory and Economic Perspectives; Utility perspectives, WWER technology; Fatigue, corrosion and crack issues; Component integrity; Aging assessment and monitoring; Containment and other structures); DIVISION F: Design methods and rules for components (International codes and standards; Tube, piping codes and standards; Analyses; Fatigue and life assessment; Creep; Bolted connections and gaskets); DIVISION G: Fracture mechanics (Reactor pressure vessel integrity; Dynamic loading; Fracture considerations for various applications; Failure assessment of Zr alloy; Pipe integrity; Integrity of welds; Failure of non-metallic materials; Leak before break (LBB); Corrosion aspects); DIVISION H: Concrete Containment and Other Structures (Concrete materials and performance; Tests of scale prestressed concrete containment vessel; Shear wall test and analysis; Structural analysis and containment design; Structural integrity and analysis); DIVISION J: Analysis and design for dynamic and extreme load (Vibration of shells and plates; Impact analysis; Piping vibration; Structural dynamics; Experimental and other topics); DIVISION K: Seismic analysis, design and qualification (General seismic issues; Ground motion and sitting; Soil-structure interaction; Seismic response of structures; Seismic re-evaluation; Seismic response and

  14. Investigating Degradation Mechanisms in 130 nm and 90 nm Commercial CMOS Technologies Under Extreme Radiation Conditions

    Science.gov (United States)

    Ratti, Lodovico; Gaioni, Luigi; Manghisoni, Massimo; Traversi, Gianluca; Pantano, Devis

    2008-08-01

    The purpose of this paper is to study the mechanisms underlying performance degradation in 130 nm and 90 nm commercial CMOS technologies exposed to high doses of ionizing radiation. The investigation has been mainly focused on their noise properties in view of applications to the design of low-noise, low-power analog circuits to be operated in harsh environment. Experimental data support the hypothesis that charge trapping in shallow trench isolation (STI), besides degrading the static characteristics of interdigitated NMOS transistors, also affects their noise performances in a substantial fashion. The model discussed in this paper, presented in a previous work focused on CMOS devices irradiated with a 10 Mrad(SiO2) gamma -ray dose, has been applied here also to transistors exposed to much higher (up to 100 Mrad(SiO2 )) doses of X-rays. Such a model is able to account for the extent of the observed noise degradation as a function of the device polarity, dimensions and operating point.

  15. [Screening of anti-aging active ingredients and mechanism analysis based on molecular docking technology].

    Science.gov (United States)

    Du, Ran-Feng; Zhang, Xiao-Hua; Ye, Xiao-Tong; Yu, Wen-Kang; Wang, Yun

    2016-07-01

    Dampness evil is the source of all diseases, which is easy to cause disease and promote aging, while aging could also promote the occurence and development of diseases. In this paper, the relationship between the dampness evil and aging would be discussed, to find the anti-aging active ingredients in traditional Chinese medicine (TCM), and analyze the anti-aging mechanism of dampness eliminating drug. Molecular docking technology was used, with aging-related mammalian target of rapamycin as the docking receptors, and chemical components of Fuling, Sangzhi, Mugua, Yiyiren and Houpo as the docking molecules, to preliminarily screen the anti-aging active ingredients in dampness eliminating drug. Through the comparison with active drugs already on the market (temsirolimus and everolimus), 12 kinds of potential anti-aging active ingredients were found, but their drug gability still needs further study. The docking results showed that various components in the dampness eliminating drug can play anti-aging activities by acting on mammalian target of rapamycin. This result provides a new thought and direction for the method of delaying aging by eliminating dampness. Copyright© by the Chinese Pharmaceutical Association.

  16. Aerosol in selected laboratories at Faculty of Mechanical Engineering, Opole University of Technology

    Science.gov (United States)

    Olszowski, Tomasz

    2017-10-01

    The paper contains the results of a study into mass concentration of the dispersed aerosol fraction with the aerodynamic diameter of up to 2.5 and 10 micrometers. The study was conducted during classes with students participating in them in two laboratories located at Faculty of Mechanical Engineering, Opole University of Technology as well as outdoor outside the building. It was demonstrated that the values of the mass concentration of PM2.5 and PM10 measured in the laboratories differ considerably from the levels measured in the ambient air in the outdoor areas surrounding the faculty building. It was concluded that the diversity of PM2.5/PM10 ratio was greater in the laboratories. Direct correlation was not established between the concentrations of the particular PM fractions in the two investigated environments. It was demonstrated that there is a statistically significant relation between the concentration of PM2.5 and PM10 and the number of people present in the laboratory. The conducted cluster analysis led to the detection of the existence of dominant structures determining air quality parameters. For the analyzed case, endogenic factors are responsible for the aerosanitary condition. The study demonstrated that the evaluation of air quality needs to be performed individually for the specific rooms.

  17. The State of the Art of the Borehole Disposal Concept for High Level Radioactive Waste

    International Nuclear Information System (INIS)

    Ji, Sung Hoon; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    As an alternative of the high-level radioactive waste disposal in the subsurface repository, a deep borehole disposal is reviewed by several nuclear advanced countries. In this study, the state of the art on the borehole disposal researches was reviewed, and the possibility of borehole disposal in Korean peninsula was discussed. In the deep borehole disposal concept radioactive waste is disposed at the section of 3 - 5 km depth in a deep borehole, and it has known that it has advantages in performance and cost due to the layered structure of deep groundwater and small surface disposal facility. The results show that it is necessary to acquisite data on deep geologic conditions of Korean peninsula, and to research the engineering barrier system, numerical modeling tools and disposal techniques for deep borehole disposal.

  18. Experimental research on coalbed gas drainage effect and economy of long directional borehole in roof

    Science.gov (United States)

    Yang, Huiming; Hu, Liangping

    2017-05-01

    In order to study the coalbed gas drainage effect and economy of long directional roof borehole, 2 boreholes were laid out in Xinji No. 2 mine to analyze its gas drainage and investment costs comparing with high position roof borehole and high position roof roadway. The result indicates that the long directional roof borehole save investment by 44.8% and shorten the construction period by 30%, comparing with high position roof roadway for controlling gas in the working face. Investment slightly less and shorten the construction period by 47.5%, comparing with the roof high position borehole. Therefore, the method of the long directional roof borehole to drain coalbed gas in working face is the most cost-effective.

  19. Full-scale borehole sealing test in salt under simulated downhole conditions. Volume 2

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Licastro, P.H.; Roy, D.M.

    1986-05-01

    Large-scale testing of the permeability by brine of a salt/grout sample designed to simulate a borehole plug was conducted. The results of these tests showed that a quantity of fluid equivalent to a permeability of 3 microdarcys was collected during the course of the test. This flow rate was used to estimate the smooth bore aperture. Details of this test ware presented in Volume 1 of this report. This report, Volume 2, covers post-test characterization including a detailed study of the salt/grout interface, as well as determination of the physical/mechanical properties of grout samples molded at Terra Tek, Inc. at the time of the large-scale test. Additional studies include heat of hydration, radial stress, and longitudinal volume changes for an equivalent grout mixture

  20. Isotropic events observed with a borehole array in the Chelungpu fault zone, Taiwan.

    Science.gov (United States)

    Ma, Kuo-Fong; Lin, Yen-Yu; Lee, Shiann-Jong; Mori, Jim; Brodsky, Emily E

    2012-07-27

    Shear failure is the dominant mode of earthquake-causing rock failure along faults. High fluid pressure can also potentially induce rock failure by opening cavities and cracks, but an active example of this process has not been directly observed in a fault zone. Using borehole array data collected along the low-stress Chelungpu fault zone, Taiwan, we observed several small seismic events (I-type events) in a fluid-rich permeable zone directly below the impermeable slip zone of the 1999 moment magnitude 7.6 Chi-Chi earthquake. Modeling of the events suggests an isotropic, nonshear source mechanism likely associated with natural hydraulic fractures. These seismic events may be associated with the formation of veins and other fluid features often observed in rocks surrounding fault zones and may be similar to artificially induced hydraulic fracturing.