WorldWideScience

Sample records for technologies user manual

  1. Technology Benefit Estimator (T/BEST): User's manual

    Science.gov (United States)

    Generazio, Edward R.; Chamis, Christos C.; Abumeri, Galib

    1994-12-01

    The Technology Benefit Estimator (T/BEST) system is a formal method to assess advanced technologies and quantify the benefit contributions for prioritization. T/BEST may be used to provide guidelines to identify and prioritize high payoff research areas, help manage research and limited resources, show the link between advanced concepts and the bottom line, i.e., accrued benefit and value, and to communicate credibly the benefits of research. The T/BEST software computer program is specifically designed to estimating benefits, and benefit sensitivities, of introducing new technologies into existing propulsion systems. Key engine cycle, structural, fluid, mission and cost analysis modules are used to provide a framework for interfacing with advanced technologies. An open-ended, modular approach is used to allow for modification and addition of both key and advanced technology modules. T/BEST has a hierarchical framework that yields varying levels of benefit estimation accuracy that are dependent on the degree of input detail available. This hierarchical feature permits rapid estimation of technology benefits even when the technology is at the conceptual stage. As knowledge of the technology details increases the accuracy of the benefit analysis increases. Included in T/BEST's framework are correlations developed from a statistical data base that is relied upon if there is insufficient information given in a particular area, e.g., fuel capacity or aircraft landing weight. Statistical predictions are not required if these data are specified in the mission requirements. The engine cycle, structural fluid, cost, noise, and emissions analyses interact with the default or user material and component libraries to yield estimates of specific global benefits: range, speed, thrust, capacity, component life, noise, emissions, specific fuel consumption, component and engine weights, pre-certification test, mission performance engine cost, direct operating cost, life cycle cost

  2. CSTEM User Manual

    Science.gov (United States)

    Hartle, M.; McKnight, R. L.

    2000-01-01

    This manual is a combination of a user manual, theory manual, and programmer manual. The reader is assumed to have some previous exposure to the finite element method. This manual is written with the idea that the CSTEM (Coupled Structural Thermal Electromagnetic-Computer Code) user needs to have a basic understanding of what the code is actually doing in order to properly use the code. For that reason, the underlying theory and methods used in the code are described to a basic level of detail. The manual gives an overview of the CSTEM code: how the code came into existence, a basic description of what the code does, and the order in which it happens (a flowchart). Appendices provide a listing and very brief description of every file used by the CSTEM code, including the type of file it is, what routine regularly accesses the file, and what routine opens the file, as well as special features included in CSTEM.

  3. Electronic Commerce user manual

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-10

    This User Manual supports the Electronic Commerce Standard System. The Electronic Commerce Standard System is being developed for the Department of Defense of the Technology Information Systems Program at the Lawrence Livermore National Laboratory, operated by the University of California for the Department of Energy. The Electronic Commerce Standard System, or EC as it is known, provides the capability for organizations to conduct business electronically instead of through paper transactions. Electronic Commerce and Computer Aided Acquisition and Logistics Support, are two major projects under the DoD`s Corporate Information Management program, whose objective is to make DoD business transactions faster and less costly by using computer networks instead of paper forms and postage. EC runs on computers that use the UNIX operating system and provides a standard set of applications and tools that are bound together by a common command and menu system. These applications and tools may vary according to the requirements of the customer or location and may be customized to meet the specific needs of an organization. Local applications can be integrated into the menu system under the Special Databases & Applications option on the EC main menu. These local applications will be documented in the appendices of this manual. This integration capability provides users with a common environment of standard and customized applications.

  4. Electronic Commerce user manual

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-10

    This User Manual supports the Electronic Commerce Standard System. The Electronic Commerce Standard System is being developed for the Department of Defense of the Technology Information Systems Program at the Lawrence Livermore National Laboratory, operated by the University of California for the Department of Energy. The Electronic Commerce Standard System, or EC as it is known, provides the capability for organizations to conduct business electronically instead of through paper transactions. Electronic Commerce and Computer Aided Acquisition and Logistics Support, are two major projects under the DoD's Corporate Information Management program, whose objective is to make DoD business transactions faster and less costly by using computer networks instead of paper forms and postage. EC runs on computers that use the UNIX operating system and provides a standard set of applications and tools that are bound together by a common command and menu system. These applications and tools may vary according to the requirements of the customer or location and may be customized to meet the specific needs of an organization. Local applications can be integrated into the menu system under the Special Databases Applications option on the EC main menu. These local applications will be documented in the appendices of this manual. This integration capability provides users with a common environment of standard and customized applications.

  5. SEVERO code - user's manual

    International Nuclear Information System (INIS)

    Sacramento, A.M. do.

    1989-01-01

    This user's manual contains all the necessary information concerning the use of SEVERO code. This computer code is related to the statistics of extremes = extreme winds, extreme precipitation and flooding hazard risk analysis. (A.C.A.S.)

  6. SHARP User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay S. [Argonne National Lab. (ANL), Argonne, IL (United States); Rahaman, Ronald O. [Argonne National Lab. (ANL), Argonne, IL (United States); Solberg, Jerome [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-31

    SHARP is an advanced modeling and simulation toolkit for the analysis of nuclear reactors. It is comprised of several components including physical modeling tools, tools to integrate the physics codes for multi-physics analyses, and a set of tools to couple the codes within the MOAB framework. Physics modules currently include the neutronics code PROTEUS, the thermal-hydraulics code Nek5000, and the structural mechanics code Diablo. This manual focuses on performing multi-physics calculations with the SHARP ToolKit. Manuals for the three individual physics modules are available with the SHARP distribution to help the user to either carry out the primary multi-physics calculation with basic knowledge or perform further advanced development with in-depth knowledge of these codes. This manual provides step-by-step instructions on employing SHARP, including how to download and install the code, how to build the drivers for a test case, how to perform a calculation and how to visualize the results. Since SHARP has some specific library and environment dependencies, it is highly recommended that the user read this manual prior to installing SHARP. Verification tests cases are included to check proper installation of each module. It is suggested that the new user should first follow the step-by-step instructions provided for a test problem in this manual to understand the basic procedure of using SHARP before using SHARP for his/her own analysis. Both reference output and scripts are provided along with the test cases in order to verify correct installation and execution of the SHARP package. At the end of this manual, detailed instructions are provided on how to create a new test case so that user can perform novel multi-physics calculations with SHARP. Frequently asked questions are listed at the end of this manual to help the user to troubleshoot issues.

  7. AELIB user's manual

    International Nuclear Information System (INIS)

    Evans, L.E.; Klawitter, G.L.

    1981-05-01

    This report is an updatable manual for users of AELIB, the AECL Library of FORTRAN-callable routines for the CRNL CDC 6600/CYBER 170 system. It provides general advice on the use of this library and detailed information on the selection and usage of particular library routines

  8. Neem: A User's Manual

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 5. Neem: A User's Manual The 'Free Tree' – Its Healing Power and Other Uses. M D Subash Chandran. Book Review Volume 2 Issue 5 May 1997 pp 84-86. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. CDPOP Users Manual

    Science.gov (United States)

    E. L. Landguth; B. K. Hand; J. M. Glassy; S. A. Cushman; M. Jacobi; T. J. Julian

    2011-01-01

    The goal of this user manual is to explain the technical aspects of the current release of the CDPOP program. CDPOP v1.0 is a major extension of the CDPOP program (Landguth and Cushman 2010). CDPOP is an individual-based program that simulates the influences of landscape structure on emergence of spatial patterns in population genetic data as functions of individual-...

  10. Justine user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.R.

    1995-10-01

    Justine is the graphical user interface to the Los Alamos Radiation Modeling Interactive Environment (LARAMIE). It provides LARAMIE customers with a powerful, robust, easy-to-use, WYSIWYG interface that facilitates geometry construction and problem specification. It is assumed that the reader is familiar with LARAMIE, and the transport codes available, i.e., MCNPTM and DANTSYSTM. No attempt is made in this manual to describe these codes in detail. Information about LARAMIE, DANTSYS, and MCNP are available elsewhere. It i also assumed that the reader is familiar with the Unix operating system and with Motif widgets and their look and feel. However, a brief description of Motif and how one interacts with it can be found in Appendix A.

  11. New Technologies to Reclaim Arid Lands User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    W. K. Ostler

    2002-10-01

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Under conventional technologies to mitigate these impacts, it is estimated that up to 35 percent of revegetation projects in arid areas will fail due to unpredictable natural environmental conditions, such as drought, and reclamation techniques that were inadequate to restore vegetative cover in a timely and cost-effective manner. New reclamation and restoration techniques are needed in desert ranges to help mitigate the adverse effects of military training and other activities to arid-land environments. In 1999, a cooperative effort between the U.S. Department of Energy (DOE), the US. Department of Defense (DoD), and selected university scientists was undertaken to focus on mitigating military impacts in arid lands. As arid lands are impacted due to DoD and DOE activities, biological and soil resources are gradually lost and the habitat is altered. A conceptual model of that change in habitat quality is described for varying levels of disturbance in the Mojave Desert. As the habitat quality degrades and more biological and physical resources are lost from training areas, greater costs are required to return the land to sustainable levels. The purpose of this manual is to assist land managers in recognizing thresholds associated with habitat degradation and provide reclamation planning and techniques that can reduce the costs of mitigation for these impacted lands to ensure sustainable use of these lands. The importance of reclamation planning is described in this manual with suggestions about

  12. GRSAC Users Manual

    International Nuclear Information System (INIS)

    Ball, S.J.; Nypaver, D.J.

    1999-01-01

    An interactive workstation-based simulation code (GRSAC) for studying postulated severe accidents in gas-cooled reactors has been developed to accommodate user-generated input with ''smart front-end'' checking. Code features includes on- and off-line plotting, on-line help and documentation, and an automated sensitivity study option. The code and its predecessors have been validated using comparisons with a variety of experimental data and similar codes. GRSAC model features include a three-dimensional representation of the core thermal hydraulics, and optional ATWS (anticipated transients without scram) capabilities. The user manual includes a detailed description of the code features, and includes four case studies which guide the user through four different examples of the major uses of GRSAC: an accident case; an initial conditions setup and run; a sensitivity study; and the setup of a new reactor model

  13. GRSAC Users Manual

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J.; Nypaver, D.J.

    1999-02-01

    An interactive workstation-based simulation code (GRSAC) for studying postulated severe accidents in gas-cooled reactors has been developed to accommodate user-generated input with ''smart front-end'' checking. Code features includes on- and off-line plotting, on-line help and documentation, and an automated sensitivity study option. The code and its predecessors have been validated using comparisons with a variety of experimental data and similar codes. GRSAC model features include a three-dimensional representation of the core thermal hydraulics, and optional ATWS (anticipated transients without scram) capabilities. The user manual includes a detailed description of the code features, and includes four case studies which guide the user through four different examples of the major uses of GRSAC: an accident case; an initial conditions setup and run; a sensitivity study; and the setup of a new reactor model.

  14. ASSERT-4 user's manual

    International Nuclear Information System (INIS)

    Judd, R.A.; Tahir, A.; Carver, M.B.; Stewart, D.G.; Thibeault, P.R.; Rowe, D.S.

    1984-09-01

    ASSERT-4 is an advanced subchannel code being developed primarily to model single- and two-phase flow and heat transfer in horizontal rod bundles. This manual is intended to facilitate the application of this code to the analysis of flow in reactor fuel channels. It contains a brief description of the thermalhydraulic model and ASSERT-4 solution scheme, and other information required by users. This other information includes a detailed discussion of input data requirements, a sample problem and solution, and information describing how to access and run ASSERT-4 on the Chalk River computers

  15. Percept User Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kennon, Stephen Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This document is the main user guide for the Sierra/Percept capabilities including the mesh_adapt and mesh_transfer tools. Basic capabilities for uniform mesh refinement (UMR) and mesh transfers are discussed. Examples are used to provide illustration. Future versions of this manual will include more advanced features such as geometry and mesh smoothing. Additionally, all the options for the mesh_adapt code will be described in detail. Capabilities for local adaptivity in the context of offline adaptivity will also be included. This page intentionally left blank.

  16. Rivet user manual

    Science.gov (United States)

    Buckley, Andy; Butterworth, Jonathan; Grellscheid, David; Hoeth, Hendrik; Lönnblad, Leif; Monk, James; Schulz, Holger; Siegert, Frank

    2013-12-01

    This is the manual and user guide for the Rivet system for the validation and tuning of Monte Carlo event generators. As well as the core Rivet library, this manual describes the usage of the rivet program and the AGILe generator interface library. The depth and level of description is chosen for users of the system, starting with the basics of using validation code written by others, and then covering sufficient details to write new Rivet analyses and calculational components. Catalogue identifier: AEPS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPS_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 571126 No. of bytes in distributed program, including test data, etc.: 4717522 Distribution format: tar.gz Programming language: C++, Python. Computer: PC running Linux, Mac. Operating system: Linux, Mac OS. RAM: 20 MB Classification: 11.9, 11.2. External routines: HepMC (https://savannah.cern.ch/projects/hepmc/), GSL (http://www.gnu.org/software/gsl/manual/gsl-ref.html), FastJet (http://fastjet.fr/), Python (http://www.python.org/), Swig (http://www.swig.org/), Boost (http://www.boostsoftware.com/), YAML (http://www.yaml.org/spec/1.2/spec.html) Nature of problem: Experimental measurements from high-energy particle colliders should be defined and stored in a general framework such that it is simple to compare theory predictions to them. Rivet is such a framework, and contains at the same time a large collection of existing measurements. Solution method: Rivet is based on HepMC events, a standardised output format provided by many theory simulation tools. Events are processed by Rivet to generate histograms for the requested list of analyses, incorporating all experimental phase space cuts and histogram definitions. Restrictions: Cannot calculate

  17. LCS Users Manual

    International Nuclear Information System (INIS)

    Redd, A.J.; Ignat, D.W.

    1998-01-01

    The Lower Hybrid Simulation Code (LSC) is a computational model of lower hybrid current drive in the presence of an electric field. Details of geometry, plasma profiles, and circuit equations are treated. Two-dimensional velocity space effects are approximated in a one-dimensional Fokker-Planck treatment. The LSC was originally written to be a module for lower hybrid current drive called by the Tokamak Simulation Code (TSC), which is a numerical model of an axisymmetric tokamak plasma and the associated control systems. The TSC simulates the time evolution of a free boundary plasma by solving the MHD equations on a rectangular computational grid. The MHD equations are coupled to the external circuits (representing poloidal field coils) through the boundary conditions. The code includes provisions for modeling the control system, external heating, and fusion heating. The LSC module can also be called by the TRANSP code. TRANSP represents the plasma with an axisymmetric, fixed-boundary model and focuses on calculation of plasma transport to determine transport coefficients from data on power inputs and parameters reached. This manual covers the basic material needed to use the LSC. If run in conjunction with TSC, the ''TSC Users Manual'' should be consulted. If run in conjunction with TRANSP, on-line documentation will be helpful. A theoretical background of the governing equations and numerical methods is given. Information on obtaining, compiling, and running the code is also provided

  18. LCS Users Manual

    Energy Technology Data Exchange (ETDEWEB)

    A.J. Redd; D.W. Ignat

    1998-02-01

    The Lower Hybrid Simulation Code (LSC) is a computational model of lower hybrid current drive in the presence of an electric field. Details of geometry, plasma profiles, and circuit equations are treated. Two-dimensional velocity space effects are approximated in a one-dimensional Fokker-Planck treatment. The LSC was originally written to be a module for lower hybrid current drive called by the Tokamak Simulation Code (TSC), which is a numerical model of an axisymmetric tokamak plasma and the associated control systems. The TSC simulates the time evolution of a free boundary plasma by solving the MHD equations on a rectangular computational grid. The MHD equations are coupled to the external circuits (representing poloidal field coils) through the boundary conditions. The code includes provisions for modeling the control system, external heating, and fusion heating. The LSC module can also be called by the TRANSP code. TRANSP represents the plasma with an axisymmetric, fixed-boundary model and focuses on calculation of plasma transport to determine transport coefficients from data on power inputs and parameters reached. This manual covers the basic material needed to use the LSC. If run in conjunction with TSC, the "TSC Users Manual" should be consulted. If run in conjunction with TRANSP, on-line documentation will be helpful. A theoretical background of the governing equations and numerical methods is given. Information on obtaining, compiling, and running the code is also provided.

  19. TRUBA User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Tereshchenko, M. A.; Castejon, F.; Cappa, A.

    2008-04-25

    The TRUBA (pipeline in Russian) code is a computational tool for studying the propagation of Gaussian-shaped microwave beams in a prescribed equilibrium plasma. This manual covers the basic material handed to use the implementation of TRUBA (version 3,4) interfaced with the numerical library of the TJ-II stellarator. The manual provides a concise theoretical background of the problem, specifications for setting up the input files and interpreting the output of the code, and some information useful in modifying TRUBA. (Author) 13 refs.

  20. DFLOW USER'S MANUAL

    Science.gov (United States)

    DFLOW is a computer program for estimating design stream flows for use in water quality studies. The manual describes the use of the program on both the EPA's IBM mainframe system and on a personal computer (PC). The mainframe version of DFLOW can extract a river's daily flow rec...

  1. Modular Manufacturing Simulator: Users Manual

    Science.gov (United States)

    1997-01-01

    The Modular Manufacturing Simulator (MMS) has been developed for the beginning user of computer simulations. Consequently, the MMS cannot model complex systems that require branching and convergence logic. Once a user becomes more proficient in computer simulation and wants to add more complexity, the user is encouraged to use one of the many available commercial simulation systems. The (MMS) is based on the SSE5 that was developed in the early 1990's by the University of Alabama in Huntsville (UAH). A recent survey by MSFC indicated that the simulator has been a major contributor to the economic impact of the MSFC technology transfer program. Many manufacturers have requested additional features for the SSE5. Consequently, the following features have been added to the MMS that are not available in the SSE5: runs under Windows, print option for both input parameters and output statistics, operator can be fixed at a station or assigned to a group of stations, operator movement based on time limit, part limit, or work-in-process (WIP) limit at next station. The movement options for a moveable operators are: go to station with largest WIP, rabbit chase where operator moves in circular sequence between stations, and push/pull where operator moves back and forth between stations. This user's manual contains the necessary information for installing the MMS on a PC, a description of the various MMS commands, and the solutions to a number of sample problems using the MMS. Also included in the beginning of this report is a brief discussion of technology transfer.

  2. MAP user's manual copyright

    International Nuclear Information System (INIS)

    Pillsbury, R.D. Jr.

    1991-12-01

    The program MITMAP represents a set of general purpose, two- dimensional, finite element programs for the calculation of magnetic fields. It consists of the program MAP and MAP2DJ. The two programs are used to solve different electromagnetic problems, but they have a common set of subrountines for pre- and postprocessing. Originally separate programs, they have been combined to make modification easier. The manuals, however, will remain separate. The program MAP is described in this manual. MAP is applicable to the class of problems with two-dimensional-planar or axisymmetric - geometries, in which the current density and the magnetic vector potential have only a single nonvanishing component. The single component is associated with the direction that is perpendicular to the plane of the problem and is invariant with respect to that direction. Maxwell's equations can be reduced to a solver diffusion equation in terms of the single, nonvanishing component of the magnetic vector potential for planar problems and to a single component of a vector potential for planar problems and to a single component of a vector diffusion equation for axisymmetric problems. The magnetic permeability appears in the governing equation. The permeability may be a function of the magnetic flux density. In addition, any electrically conducting material present will have eddy currents induced by a time varying magnetic field. These eddy currents must be included in the solution process. This manual provides a description of the structure of the input data and output for the program. There are several example problems presented that illustrate the major program features. Appendices are included that contain a derivation of the governing equations and the application of the finite element method to the solution of the equations

  3. EDDYNET: A user's manual

    International Nuclear Information System (INIS)

    Turner, L.R.; Gibbard, S.

    1988-09-01

    This user's guide provides a description of the EDDYNET code, which is used to model transient eddy currents in conducting shells. Subroutines and functions are described, and the input variables and file format are explained. Examples are given of input and output files from the program. A description is given of special features of the program, including temperature diffusion, field and flux from circular rings, and current-angular deflection coupling. 13 refs., 6 figs

  4. Competence Observatory User Manual

    NARCIS (Netherlands)

    Synergetics

    2007-01-01

    The work on this publication has been sponsored by the TENCompetence Integrated Project that is funded by the European Commission's 6th Framework Programme, priority IST/Technology Enhanced Learning. Contract 027087 [http://www.tencompetence.org

  5. XMGR5 users manual

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.R.; Fisher, J.E.

    1997-03-01

    ACE/gr is XY plotting tool for workstations or X-terminals using X. A few of its features are: User defined scaling, tick marks, labels, symbols, line styles, colors. Batch mode for unattended plotting. Read and write parameters used during a session. Polynomial regression, splines, running averages, DFT/FFT, cross/auto-correlation. Hardcopy support for PostScript, HP-GL, and FrameMaker.mif format. While ACE/gr has a convenient point-and-click interface, most parameter settings and operations are available through a command line interface (found in Files/Commands).

  6. Slycat™ User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Crossno, Patricia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gittinger, Jaxon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hunt, Warren L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Letter, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Shawn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sielicki, Milosz Aleksander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    Slycat™ is a web-based system for performing data analysis and visualization of potentially large quantities of remote, high-dimensional data. Slycat™ specializes in working with ensemble data. An ensemble is a group of related data sets, which typically consists of a set of simulation runs exploring the same problem space. An ensemble can be thought of as a set of samples within a multi-variate domain, where each sample is a vector whose value defines a point in high-dimensional space. To understand and describe the underlying problem being modeled in the simulations, ensemble analysis looks for shared behaviors and common features across the group of runs. Additionally, ensemble analysis tries to quantify differences found in any members that deviate from the rest of the group. The Slycat™ system integrates data management, scalable analysis, and visualization. Results are viewed remotely on a user’s desktop via commodity web clients using a multi-tiered hierarchy of computation and data storage, as shown in Figure 1. Our goal is to operate on data as close to the source as possible, thereby reducing time and storage costs associated with data movement. Consequently, we are working to develop parallel analysis capabilities that operate on High Performance Computing (HPC) platforms, to explore approaches for reducing data size, and to implement strategies for staging computation across the Slycat™ hierarchy. Within Slycat™, data and visual analysis are organized around projects, which are shared by a project team. Project members are explicitly added, each with a designated set of permissions. Although users sign-in to access Slycat™, individual accounts are not maintained. Instead, authentication is used to determine project access. Within projects, Slycat™ models capture analysis results and enable data exploration through various visual representations. Although for scientists each simulation run is a model of real-world phenomena given certain

  7. Echo™ User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Dustin Yewell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    Echo™ is a MATLAB-based software package designed for robust and scalable analysis of complex data workflows. An alternative to tedious, error-prone conventional processes, Echo is based on three transformative principles for data analysis: self-describing data, name-based indexing, and dynamic resource allocation. The software takes an object-oriented approach to data analysis, intimately connecting measurement data with associated metadata. Echo operations in an analysis workflow automatically track and merge metadata and computation parameters to provide a complete history of the process used to generate final results, while automated figure and report generation tools eliminate the potential to mislabel those results. History reporting and visualization methods provide straightforward auditability of analysis processes. Furthermore, name-based indexing on metadata greatly improves code readability for analyst collaboration and reduces opportunities for errors to occur. Echo efficiently manages large data sets using a framework that seamlessly allocates resources such that only the necessary computations to produce a given result are executed. Echo provides a versatile and extensible framework, allowing advanced users to add their own tools and data classes tailored to their own specific needs. Applying these transformative principles and powerful features, Echo greatly improves analyst efficiency and quality of results in many application areas.

  8. COSIS User's Manual

    International Nuclear Information System (INIS)

    Cho, J. Y.; Lee, K. B.; Koo, B. S.; Lee, W. K.; Lee, C. C.; Zee, S. Q.

    2006-02-01

    COSIS (COre State Indication System) which implemented in the SMART research reactor plays a role to supply the core state parameters or graphs for the operator to recognize the core state effectively. The followings are the main functions of COSIS. Validity Check for the Process Signals and Determination of the COSIS Inputs (SIGVAL), Coolant Flow Rate Calculation (FLOW), Core Thermal Power Calculation (COREPOW), In-core 3-Dimensional Power Distribution Calculation and Peaking Parameters Generation (POWER3D), Azimuthal Tilt Calculation (AZITILT). This report describes the structures of the I/O files that are essential for the users to run COSIS. COSIS handles the following 4 input files. DATABASE: The base input file, COSIS.INP: The signal input file, CCS.DAT: File required for the in-core detector signal processing and the 3-D power distribution calculation, TPFH2O: Steam table for the water properties The DATABASE file contains the base information for a nuclear power plant and is read at the first COSIS calculation. The COSIS.INP file contains the process input and detector signals, and is read by COSIS at every second. CCS.DAT file, that is produced by the COSISMAS code, contains the information for the in-core detector signal processing and the 3-D power distribution calculation. TPFH2O file is a steam table and is written in binary format. COSIS produces the following 4 output files. DATABASE.OUT: The output file for the DATABASE input file, COSIS.OUT: The normal output file produced after the COSIS calculation, COSIS.SUM: File for the operator to recognize the core state effectively, MAS S IG: File to run the COSISMAS code The DATABASE.OUT file is produced right after finishing DATABASE processing. The COSIS.OUT file is produced after finishing the input signal processing and the main COSIS calculation. The COSIS.SUM file is the summary file of the COSIS results for the operator to recognize the core state effectively. The MAS S IG file is the COSISMAS input

  9. Users Manual for the FEHMN application

    International Nuclear Information System (INIS)

    Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.

    1996-01-01

    The user's manual documents the use of the Yucca Mountain Site Characterization Projects Finite element heat and mass transfer code (FEHMN) application. The manual covers: Program considerations, data files, input data, output, system interface, and examples

  10. THREETRAN (hex, z) users' manual

    International Nuclear Information System (INIS)

    Walters, W.F.; O'Dell, R.D.; Brinkley, F.W. Jr.

    1979-10-01

    THREETRAN (hex,z) is a three-dimensional, multigroup, discrete-ordinates neutral-particle transport code for use in solving problems in hexagonal, z geometries. An efficient and flexible data management strategy is incorporated and uses three hierarchies of storage: fast core (or small core memory), extended core (or large core memory), and random access disk. Both isotropic (P 0 ) and linearly anisotropic (P 1 ) scattering can be treated. This manual is intended to be a guide for the users of THREETRAN (hex,z) in setting up problem input and in interpreting the output. It is not intended to provide a description of code theory or architecture. 5 figures, 4 tables

  11. TRAPMELT/PULSE users' manual

    International Nuclear Information System (INIS)

    Hagrman, D.L.

    1990-02-01

    This report is the users's manual for the TRAPMELT/PULSE computer code. The code is designed to calculate fission product transport and disposition when slug flow is a more appropriate approximation than a collection of well-mixed volumes connected by junctions. The name of the code was selected to acknowledge that the original version was based upon models used in the TRAPMELT 2.0 code. However, the coding was been completely redesigned for slug flow and for improved efficiency. Like TRAPMELT, the calculations assume five states. These states are vapor, aerosol, particles, condensed on surfaces, chemisorbed on surfaces, and aerosol particles deposited on surfaces. Mass transport of up to ten chemical species between the various states as an effluent slug proceeds down system piping is calculated. 29 refs

  12. INTRA/Mod3.2. Manual and code description. Volume 2 - User`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jenny; Edlund, O.; Hermann, J.; Johansson, Lise-Lotte

    1999-01-01

    The INTRA Manual consists of two volumes. Volume I of the manual is a thorough description of the code INTRA, the physical modelling of INTRA and the ruling numerics, and volume II, the User`s Manual is an input description. This document, the User`s Manual, Volume II, contains a detailed description of how to use INTRA, how to set up an input file, how to run INTRA and also post-processing

  13. AFM-CMM integrated instrument user manual

    DEFF Research Database (Denmark)

    Marinello, Francesco; Bariani, Paolo

    This manual gives general important guidelines for a proper use of the integrated AFM-CMM instrument. More information can be collected reading: • N. Kofod Ph.D thesis [1]; • P. Bariani Ph.D thesis [2]; • Dualscope DME 95-200 operation manuals [3]; • SPIP help [4] • Stitching software user manual...

  14. A user's manual to the PMBOK guide

    CERN Document Server

    Stackpole Snyder, Cynthia

    2013-01-01

    The must-have manual to understand and use the latest edition of the Fifth Edition The professional standard in the field of project management, A Guide to the Project Management Body of Knowledge (PMBOK® Guide-Fifth Edition) published by the Project Management Institute (PMI) serves as the ultimate resource for professionals and as a valuable studying and training device for students taking the PMP® Exam. A User''s Manual to the PMBOK® Guide takes the next logical step to act as a true user''s manual. With an accessible format and easy-to-understand language, it helps to not only distill es

  15. PROTEUS-SN User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Changho [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    is a part of the SHARP multi-physics suite for coupled multi-physics analysis of nuclear reactors. This user manual describes how to set up a neutron transport simulation with the PROTEUS-SN code. A companion methodology manual describes the theory and algorithms within PROTEUS-SN.

  16. T-3 cask users' manual. Revision 1

    International Nuclear Information System (INIS)

    1986-06-01

    This user's manual for the T-C spent fuel cask provides information on: operating procedures; inspection and maintenance procedures; criticality evaluation; shielding evaluation; thermal evaluation; structural evaluation; and limitations

  17. Los Alamos waste drum shufflers users manual

    Energy Technology Data Exchange (ETDEWEB)

    Rinard, P.M.; Adams, E.L.; Painter, J.

    1993-08-24

    This user manual describes the Los Alamos waste drum shufflers. The primary purpose of the instruments is to assay the mass of {sup 235}U (or other fissile materials) in drums of assorted waste. It can perform passive assays for isotopes that spontaneously emit neutrons or active assays using the shuffler technique as described on this manual.

  18. Los Alamos waste drum shufflers users manual

    International Nuclear Information System (INIS)

    Rinard, P.M.; Adams, E.L.; Painter, J.

    1993-01-01

    This user manual describes the Los Alamos waste drum shufflers. The primary purpose of the instruments is to assay the mass of 235 U (or other fissile materials) in drums of assorted waste. It can perform passive assays for isotopes that spontaneously emit neutrons or active assays using the shuffler technique as described on this manual

  19. SES2D user's manual

    International Nuclear Information System (INIS)

    Johnson, J.D.; Lyon, S.P.

    1982-04-01

    SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run

  20. Sesame IO Library User Manual Version 8

    Energy Technology Data Exchange (ETDEWEB)

    Abhold, Hilary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Young, Ginger Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-15

    This document is a user manual for SES_IO, a low-level library for reading and writing sesame files. The purpose of the SES_IO library is to provide a simple user interface for accessing and creating sesame files that does not change across sesame format type (such as binary, ascii, and xml).

  1. Smart roadside initiative : user manual.

    Science.gov (United States)

    2015-09-01

    This document provides the user instructions for the Smart Roadside Initiative (SRI) applications including : mobile and web-based SRI applications. These applications include smartphone-enabled information : exchange and notification, and software c...

  2. User's manual of Tokamak Simulation Code

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Nishino, Tooru; Tsunematsu, Toshihide; Sugihara, Masayoshi.

    1992-12-01

    User's manual for use of Tokamak Simulation Code (TSC), which simulates the time-evolutional process of deformable motion of axisymmetric toroidal plasma, is summarized. For the use at JAERI computer system, the TSC is linked with the data management system GAEA. This manual is forcused on the procedure for the input and output by using the GAEA system. Model equations to give axisymmetric motion, outline of code system, optimal method to get the well converged solution are also described. (author)

  3. Hanford inventory program user's manual

    International Nuclear Information System (INIS)

    Hinkelman, K.C.

    1994-01-01

    Provides users with instructions and information about accessing and operating the Hanford Inventory Program (HIP) system. The Hanford Inventory Program is an integrated control system that provides a single source for the management and control of equipment, parts, and material warehoused by Westinghouse Hanford Company in various site-wide locations. The inventory is comprised of spare parts and equipment, shop stock, special tools, essential materials, and convenience storage items. The HIP replaced the following systems; ACA, ASP, PICS, FSP, WSR, STP, and RBO. In addition, HIP manages the catalog maintenance function for the General Supplies inventory stocked in the 1164 building and managed by WIMS

  4. Modular Manufacturing Simulator Users Manual

    Science.gov (United States)

    1997-01-01

    Since the agency was established in 1958, a key part of the National Aeronautics and Space Administration's mission has been to make technologies available to American industry so it can be more widely used by the citizens who paid for it. While many people might think that 'rocket science' has no application to earthly problems, rocket science in fact employs earthly materials, processes, and designs adapted for space, and which can be adapted for other purposes on Earth. Marshall Space Flight Center's Technology Transfer Office has outreach programs designed to connect American business, industries, educational institutions, and individuals who have needs, with NASA people and laboratories who may have the solutions. MSFC's national goal is to enhance America's competitiveness in the world marketplace and ensure that the technological breakthroughs by American laboratories benefit taxpayers and the many industries making up our Nation's industrial base. Activities may range from simple exchanges of technical data to Space Act Agreements which lead to NASA and industry working closely together to solve a problem. The goal is to ensure that America gains and maintains its proper place of leadership among the world's technologically developed nations. Some of the many technologies transferred from NASA to commercial customers include those associated with: Welding and fabrication; Medical and pharmaceutical uses; Fuels and coatings; Structural composites and Robotics. These activities are aimed to achieve the same goal: slowing, halting, and gradually reversing the erosion of American technological leadership. Legislation such as the National Technology Initiative starts at the top and works down through the national corporate structure, while MSFC's activities start at the grassroots level and work up through the small and medium-sized business which form the bulk of our industrial community.

  5. Elemental ABAREX -- a user's manual

    International Nuclear Information System (INIS)

    Smith, A.B.

    1999-01-01

    ELEMENTAL ABAREX is an extended version of the spherical optical-statistical model code ABAREX, designed for the interpretation of neutron interactions with elemental targets consisting of up to ten isotopes. The contributions from each of the isotopes of the element are explicitly dealt with, and combined for comparison with the elemental observables. Calculations and statistical fitting of experimental data are considered. The code is written in FORTRAN-77 and arranged for use on the IBM-compatible personal computer (PC), but it should operate effectively on a number of other systems, particularly VAX/VMS and IBM work stations. Effort is taken to make the code user friendly. With this document a reasonably skilled individual should become fluent with the use of the code in a brief period of time

  6. C-TIC Console Operator's User Manual

    Science.gov (United States)

    1996-07-01

    The C-TIC Console Operator's User Manual is designed to assist the operator at : the Corridor Transportation Information Center with the navigation and use of : the application programs in the C-TIC. This document will concentrate solely on : the ext...

  7. National Radiobiology Archives Distributed Access user's manual

    International Nuclear Information System (INIS)

    Watson, C.; Smith, S.; Prather, J.

    1991-11-01

    This User's Manual describes installation and use of the National Radiobiology Archives (NRA) Distributed Access package. The package consists of a distributed subset of information representative of the NRA databases and database access software which provide an introduction to the scope and style of the NRA Information Systems

  8. Rooftop Unit Comparison Calculator User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-30

    This document serves as a user manual for the Packaged rooftop air conditioners and heat pump units comparison calculator (RTUCC) and is an aggregation of the calculator’s website documentation. Content ranges from new-user guide material like the “Quick Start” to the more technical/algorithmic descriptions of the “Methods Pages.” There is also a section listing all the context-help topics that support the features on the “Controls” page. The appendix has a discussion of the EnergyPlus runs that supported the development of the building-response models.

  9. ETPRE User`s Manual Version 3.00

    Energy Technology Data Exchange (ETDEWEB)

    Roginski, R.J.

    1994-05-01

    ETPRE is a preprocessor for the Event Progression Analysis Code EVNTRE. It reads an input file of event definitions and writes the lengthy EVNTRE code input files. ETPRE`s advantage is that it eliminates the error-prone task of manually creating or revising these files since their formats are quite elaborate. The user-friendly format of ETPRE differs from the EVNTRE code format in that questions, branch references, and other event tree components are defined symbolically instead of numerically. When ETPRE is executed, these symbols are converted to their numeric equivalents and written to the output files using formats defined in the EVNTRE Reference Manual. Revisions to event tree models are simplified by allowing the user to edit the symbolic format and rerun the preprocessor, since questions, branch references, and other symbols are automatically resequenced to their new values with each execution. ETPRE and EVNTRE have both been incorporated into the SETAC event tree analysis package.

  10. Advanced composites structural concepts and materials technologies for primary aircraft structures. Structural response and failure analysis: ISPAN modules users manual

    Science.gov (United States)

    Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.

  11. HTGR Application Economic Model Users' Manual

    International Nuclear Information System (INIS)

    Gandrik, A.M.

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  12. HTGR Cost Model Users' Manual

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  13. Explosives Classifications Tracking System User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Genoni, R.P.

    1993-10-01

    The Explosives Classification Tracking System (ECTS) presents information and data for U.S. Department of Energy (DOE) explosives classifications of interest to EM-561, Transportation Management Division, other DOE facilities, and contractors. It is intended to be useful to the scientist, engineer, and transportation professional, who needs to classify or transport explosives. This release of the ECTS reflects upgrading of the software which provides the user with an environment that makes comprehensive retrieval of explosives related information quick and easy. Quarterly updates will be provided to the ECTS throughout its development in FY 1993 and thereafter. The ECTS is a stand alone, single user system that contains unclassified, publicly available information, and administrative information (contractor names, product descriptions, transmittal dates, EX-Numbers, etc.) information from many sources for non-decisional engineering and shipping activities. The data is the most up-to-date and accurate available to the knowledge of the system developer. The system is designed to permit easy revision and updating as new information and data become available. These, additions and corrections are welcomed by the developer. This user manual is intended to help the user install, understand, and operate the system so that the desired information may be readily obtained, reviewed, and reported.

  14. Clean Lead Facility Inventory System user's manual

    International Nuclear Information System (INIS)

    Garcia, J.F.

    1994-12-01

    The purpose of this user's manual is to provide instruction and guidance needed to enter and maintain inventory information for the Clean Lead Facility (CLF), PER-612. Individuals responsible for maintaining and using the system should study and understand the information provided. The user's manual describes how to properly use and maintain the CLF Inventory System. Annual, quarterly, monthly, and current inventory reports may be printed from the Inventory System for reporting purposes. Profile reports of each shipment of lead may also be printed for verification and documentation of lead transactions. The CLF Inventory System was designed on Microsoft Access version 2.0. Similar inventory systems are in use at the Idaho National Engineering Laboratory (INEL) to facilitate site-wide compilations of mixed waste data. The CLF Inventory System was designed for inventorying the clean or non-radioactive contaminated lead stored at the CLF. This data, along with the mixed waste data, will be compiled into the Idaho Mixed Waste Information (IMWI) system for reporting to the Department of Energy Idaho Office, Department of Energy Headquarters, and/or the State of Idaho

  15. UCB-NE-107 user's manual

    International Nuclear Information System (INIS)

    Lee, W.W.L.

    1989-03-01

    The purpose of this manual is to provide users of UCB-NE-107 with the information necessary to use UCB-NE-107 effectively. UCB-NE-107 is a computer code for calculating the fractional rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. However, for readily soluble species such as 135 Cs, 137 Cs, and 129 I, it has been observed that their dissolution rates are rapid. UCB-NE-107 is a code for calculating the release rate at the waste/rock interface, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 5 refs., 2 figs

  16. LAURA Users Manual: 5.4-54166

    Science.gov (United States)

    Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2011-01-01

    This users manual provides in-depth information concerning installation and execution of Laura, version 5. Laura is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 Laura code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, Laura now shares gas-physics modules, MPI modules, and other low-level modules with the Fun3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.

  17. LAURA Users Manual: 5.5-64987

    Science.gov (United States)

    Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, William L.

    2013-01-01

    This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintain ability by eliminating the requirement for problem dependent recompilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the Fun3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.

  18. LAURA Users Manual: 5.3-48528

    Science.gov (United States)

    Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Chirstopher O.; Kleb, Bil

    2010-01-01

    This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem-dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the FUN3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.

  19. LAURA Users Manual: 5.2-43231

    Science.gov (United States)

    Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2009-01-01

    This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem-dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multiphysics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the FUN3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.

  20. Laura Users Manual: 5.1-41601

    Science.gov (United States)

    Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2009-01-01

    This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem-dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multiphysics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the FUN3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.

  1. User's manual for the TMAD code

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    1995-01-01

    This document serves as the User's Manual for the TMAD code system, which includes the TMAD code and the LIBMAKR code. The TMAD code was commissioned to make it easier to interpret moisture probe measurements in the Hanford Site waste tanks. In principle, the code is an interpolation routine that acts over a library of benchmark data based on two independent variables, typically anomaly size and moisture content. Two additional variables, anomaly type and detector type, also can be considered independent variables, but no interpolation is done over them. The dependent variable is detector response. The intent is to provide the code with measured detector responses from two or more detectors. The code then will interrogate (and interpolate upon) the benchmark data library and find the anomaly-type/anomaly-size/moisture-content combination that provides the closest match to the measured data

  2. REXCO-EUR code - User's manual

    International Nuclear Information System (INIS)

    Benuzzi, A.; Fasoli Stella, P.

    1978-01-01

    This report is the user's manual of a version (produced by the JRC and called REXCO-EUR) of the hydrodynamic-elastoplastic code REXCO-H release 2 developed by the ANL III.H USA. The REXCO-H code was designed for containment analysis of LMFBR during a high-energy excursion. The equations of mass, momentum and energy conservation in lagrangian coordinates for compressible fluid flow and the equations of state describing fluid materials are associated to the thin shell equations to calculate the dynamic respose of a LMFBR to a core disruptive accident. The REXCO-EUR capabilities are described with the basic numerical techniques of the original code REXCO-H.

  3. AIMSsim Version 2.2.1, User Manual

    National Research Council Canada - National Science Library

    Schoenborn, Oliver

    2007-01-01

    This user manual provides an overview of how to use the software developed to support the empirical investigation of a simulated user interface for an Advanced Integrated Multi sensor Surveillance (AIMS) system...

  4. The development of nuclear material accountability system - software user's manual

    International Nuclear Information System (INIS)

    Byeon, Kee Hoh; Kim, Ho Dong; Song, Dae Yong; Ko, Won Il; Hong, Jong Sook; Lee, Byung Doo

    1999-07-01

    We have developed the near-real time nuclear material accountability system, named by DMAS, for DUPIC Test Facility in the basis of the survey of DUPIC process and activities for the accountability of the system, and the review of the rules and regulations related to the nuclear material accounting. Our system adopts the structure and technologies used in COREMAS which was developed by LANL. This technical report illustrates the system structure and program usage as a user manual for DMAS. (author). 56 tabs., 1 fig

  5. PC/FRAM, Version 3.2 User Manual

    International Nuclear Information System (INIS)

    Kelley, T.A.; Sampson, T.E.

    1999-01-01

    This manual describes the use of version 3.2 of the PC/FRAM plutonium isotopic analysis software developed in the Safeguards Science and Technology Group, NE-5, Nonproliferation and International Security Division Los Alamos National Laboratory. The software analyzes the gamma ray spectrum from plutonium-bearing items and determines the isotopic distribution of the plutonium 241Am content and concentration of other isotopes in the item. The software can also determine the isotopic distribution of uranium isotopes in items containing only uranium. The body of this manual descenies the generic version of the code. Special facility-specific enhancements, if they apply, will be described in the appendices. The information in this manual applies equally well to version 3.3, which has been licensed to ORTEC. The software can analyze data that is stored in a file on disk. It understands several storage formats including Canberra's S1OO format, ORTEC'S 'chn' and 'SPC' formats, and several ASCII text formats. The software can also control data acquisition using an MCA and then store the results in a file on disk for later analysis or analyze the spectrum directly after the acquisition. The software currently only supports the control of ORTEC MCB'S. Support for Canbema's Genie-2000 Spectroscopy Systems will be added in the future. Support for reading and writing CAM files will also be forthcoming. A versatile parameter fde database structure governs all facets of the data analysis. User editing of the parameter sets allows great flexibility in handling data with different isotopic distributions, interfering isotopes, and different acquisition parameters such as energy calibration, and detector type. This manual is intended for the system supervisor or the local user who is to be the resident expert. Excerpts from this manual may also be appropriate for the system operator who will routinely use the instrument

  6. 5AH10 Nickel-Cadmium (NiCad) Battery Maintenance Tester: User`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Justice, L.B.; Wakefield-Reyes, C.

    1992-08-01

    This manual is a user`s guide to the SE3253 and SE3254 versions of the 5AH10 Battery Maintenance Tester, a charger/discharger and test system for the 24-Cell 5-Ah Nickel-Cadmium Battery Pack. The manual provides information on rack equipment, power, communications, theory of operations, user interface, and operating procedures. Copies of users manuals for all equipment comprising the Battery Maintenance Tester are included as appendices.

  7. SPi User Manual V0.1

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.; Yarema, R.; /Fermilab; Newcomer, M.; Dressnandt, N.; /Pennsylvania U.; Villani, G.; Weber, M.; Holt, R.; /Rutherford

    2011-05-01

    This document describes the Serial Powering Interface (SPi) ASIC. SPi is a general purpose ASIC prototype designed for use in serial powering of silicon detector instrumentation. This description is written as a user manual to aid application, not as a design description. SPi is a generic custom ASIC, manufactured in 0.25 {mu}m CMOS by TSMC, to interface between a constant current source and silicon detector read-out chips. There is no SEU (single event upset) protection, but most (not all) components are radiation tolerant design. An operating voltage of 1.2 to 2.5 volts and other design features make the IC suitable for a variety of serial powering architectures and ROICs. It should be noted that the device is likely to be a prototype for demonstration rather than a product for inclusion in a detector. The next design(s), SPin, are likely to be designed for a specific application (eg SLHC). The component includes: (1) Seven bi-directional LVDS-like buffers for high data rate links to/from the read-out chips. These are AC coupled (series capacitor) off-chip for DC level conversion; (2) A programmable internal programmable shunt regulator to provide a defined voltage to readout chips when linked in a serial powering chain; (3) A programmable internal shunt regulator control circuit for external transistor control; (4) Shunt current measurement (for internal shunt regulator); (5) A programmable internal shunt regulator current alarm; and (6) Two programmable linear regulators.

  8. ROMUSE 2.0 User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Khuwaileh, Bassam [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turinsky, Paul [North Carolina State Univ., Raleigh, NC (United States); Williams, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-04

    ROMUSE (Reduced Order Modeling Based Uncertainty/Sensitivity Estimator) is an effort within the Consortium for Advanced Simulation of Light water reactors (CASL) to provide an analysis tool to be used in conjunction with reactor core simulators, especially the Virtual Environment for Reactor Applications (VERA). ROMUSE is written in C++ and is currently capable of performing various types of parameters perturbations, uncertainty quantification, surrogate models construction and subspace analysis. Version 2.0 has the capability to interface with DAKOTA which gives ROMUSE access to the various algorithms implemented within DAKOTA. ROMUSE is mainly designed to interface with VERA and the Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design (SCALE) [1,2,3], however, ROMUSE can interface with any general model (e.g. python and matlab) with Input/Output (I/O) format that follows the Hierarchical Data Format 5 (HDF5). In this brief user manual, the use of ROMUSE will be overviewed and example problems will be presented and briefly discussed. The algorithms provided here range from algorithms inspired by those discussed in Ref.[4] to nuclear-specific algorithms discussed in Ref. [3].

  9. Database on wind characteristics. Users manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, K.S.

    2001-11-01

    The main objective of IEA R and D Wind Annex XVII - Database on Wind Characteristics - is to provide wind energy planners and designers, as well as the international wind engineering community in general, with easy access to quality controlled measured wind field time series observed in a wide range of environments. The project partners are Sweden, Norway, U.S.A., The Netherlands, Japan and Denmark, with Denmark as the Operating Agent. The reporting of IEA R and D Annex XVII falls in three separate parts. Part one deals with the overall structure and philosophy behind the database (including the applied data quality control procedures), part two accounts in details for the available data in the established database bank and part three is the Users Manual describing the various ways to access and analyse the data. The present report constitutes part three of the Annex XVII reporting and contains a trough description of the available online facilities for identifying, selecting, downloading and handling measured wind field time series and resource data from 'Database on Wind Characteristics'. (au)

  10. Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Sam Alessi; Dennis Keiser

    2012-10-01

    This document is a user manual for the Dairy Analytics and Nutrient Analysis (DANA) model. DANA provides an analysis of dairy anaerobic digestion technology and allows users to calculate biogas production, co-product valuation, capital costs, expenses, revenue and financial metrics, for user customizable scenarios, dairy and digester types. The model provides results for three anaerobic digester types; Covered Lagoons, Modified Plug Flow, and Complete Mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include different dairy types, bedding types, backend treatment type as well as numerous production, and economic parameters. DANA’s goal is to extend the National Market Value of Anaerobic Digester Products analysis (informa economics, 2012; Innovation Center, 2011) to include a greater and more flexible set of regional digester scenarios and to provide a modular framework for creation of a tool to support farmer and investor needs. Users can set up scenarios from combinations of existing parameters or add new parameters, run the model and view a variety of reports, charts and tables that are automatically produced and delivered over the web interface. DANA is based in the INL’s analysis architecture entitled Generalized Environment for Modeling Systems (GEMS) , which offers extensive collaboration, analysis, and integration opportunities and greatly speeds the ability construct highly scalable web delivered user-oriented decision tools. DANA’s approach uses server-based data processing and web-based user interfaces, rather a client-based spreadsheet approach. This offers a number of benefits over the client-based approach. Server processing and storage can scale up to handle a very large number of scenarios, so that analysis of county, even field level, across the whole U.S., can be performed. Server based databases allow dairy and digester

  11. ARIES segmented gamma-ray scanner user manual

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, R.S.; Sheppard, G.A.; Schneider, C.M.

    1998-04-16

    The segmented gamma-ray scatter (SGS) designated as Win{_}SGS at the Los Alamos Plutonium Facility has been installed and is intended for use in quantifying the radioisotope content of DOE-STD-3013-96 equivalent containers. The SGS features new software written in C and a new user interface that runs under Microsoft Windows{trademark}. The operation of the ARIES Segmented Gamma-ray Scanner is documented in this manual. It covers user instructions as well as hardware and software details. Additional information is found in the documentation for the commercially available components and modules that compose the SGS. The objective of the ARIES project is to demonstrate technology to dismantle plutonium pits from excess nuclear weapons, convert the plutonium to a metal ingot or an oxide powder, package the metal or oxide, and verify the contents of the package by nondestructive assay.

  12. ARIES segmented gamma-ray scanner user manual

    International Nuclear Information System (INIS)

    Biddle, R.S.; Sheppard, G.A.; Schneider, C.M.

    1998-01-01

    The segmented gamma-ray scatter (SGS) designated as Win SGS at the Los Alamos Plutonium Facility has been installed and is intended for use in quantifying the radioisotope content of DOE-STD-3013-96 equivalent containers. The SGS features new software written in C and a new user interface that runs under Microsoft Windows trademark. The operation of the ARIES Segmented Gamma-ray Scanner is documented in this manual. It covers user instructions as well as hardware and software details. Additional information is found in the documentation for the commercially available components and modules that compose the SGS. The objective of the ARIES project is to demonstrate technology to dismantle plutonium pits from excess nuclear weapons, convert the plutonium to a metal ingot or an oxide powder, package the metal or oxide, and verify the contents of the package by nondestructive assay

  13. User Manual for the PROTEUS Mesh Tools

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-19

    PROTEUS is built around a finite element representation of the geometry for visualization. In addition, the PROTEUS-SN solver was built to solve the even-parity transport equation on a finite element mesh provided as input. Similarly, PROTEUS-MOC and PROTEUS-NEMO were built to apply the method of characteristics on unstructured finite element meshes. Given the complexity of real world problems, experience has shown that using commercial mesh generator to create rather simple input geometries is overly complex and slow. As a consequence, significant effort has been put into place to create multiple codes that help assist in the mesh generation and manipulation. There are three input means to create a mesh in PROTEUS: UFMESH, GRID, and NEMESH. At present, the UFMESH is a simple way to generate two-dimensional Cartesian and hexagonal fuel assembly geometries. The UFmesh input allows for simple assembly mesh generation while the GRID input allows the generation of Cartesian, hexagonal, and regular triangular structured grid geometry options. The NEMESH is a way for the user to create their own mesh or convert another mesh file format into a PROTEUS input format. Given that one has an input mesh format acceptable for PROTEUS, we have constructed several tools which allow further mesh and geometry construction (i.e. mesh extrusion and merging). This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial

  14. PETSc Users Manual Revision 3.4

    Energy Technology Data Exchange (ETDEWEB)

    Balay, S. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Brown, J. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Buschelman, K. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Eijkhout, V. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Gropp, W. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Kaushik, D. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Knepley, M. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; McInnes, L. Curfman [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Smith, B. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Zhang, H. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division

    2014-06-29

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms needed within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself; For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because

  15. PETSc Users Manual Revision 3.3

    Energy Technology Data Exchange (ETDEWEB)

    Balay, S. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Brown, J. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Buschelman, K. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Eijkhout, V. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Gropp, W. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Kaushik, D. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Knepley, M. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; McInnes, L. Curfman [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Smith, B. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Zhang, H. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division

    2013-05-11

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms needed within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself; For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because

  16. PETSc Users Manual Revision 3.5

    Energy Technology Data Exchange (ETDEWEB)

    Balay, S. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Abhyankar, S. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Adams, M. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Brown, J. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Brune, P. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Buschelman, K. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Eijkhout, V. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Gropp, W. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Kaushik, D. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Knepley, M. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; McInnes, L. Curfman [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Rupp, K. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Smith, B. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division; Zhang, H. [Argonne National Lab. (ANL), Argonne, IL (United States). Mathematics and Computer Science Division

    2014-09-08

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms needed within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself. ;For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because

  17. Equipment Qualification Data Base user manual

    International Nuclear Information System (INIS)

    Decker, Q.R.; Fackrell, L.J.; Fitch, L.R.; Meeky, O.B.

    1985-09-01

    This manual details the Equipment Qualification Data Base (EQDB), its usage, and contents. The EQDB consists of two files; the Plant Qualification File (PQF) and the Equipment Qualification File (EQF). The PQF contains plant specific environmental data and the EQF contains summaries of various test results. Two data management systems are used to manipulate the data and are discussed in this manual. SAS Institute System 2000 (S2K) is the management system for the PQF and Query Update (QU) is the operating system for the EQF. Each management system contains report writers. These writers and how to use them are discussed in detail in this manual

  18. SSC-K code user's manual

    International Nuclear Information System (INIS)

    Kwon, Y. M.; Lee, Y. B.; Chang, W. P.; Hahn, D.

    2000-07-01

    , constitutive laws and correlations required to execute the SSC-K are described. It is noted that the user's manual will be revised later with the further development of SSC-K

  19. Prototype road weather performance management tool : installation instructions & user manual.

    Science.gov (United States)

    2016-07-20

    This document is the Installation Instructions and User Manual for the Road Weather Performance Management (RW-PM) Tool developed for the project on Development and Demonstration of a Prototype Road Weather Performance Management Application that Use...

  20. PAVECHECK : training material updated user's manual including GPS.

    Science.gov (United States)

    2009-01-01

    PAVECHECK is a software package used to integrate nondestructive test data from various testing systems to provide the pavement engineer with a comprehensive evaluation of both surface and subsurface conditions. This User's Manual is intended to demo...

  1. Users Manual for TMY3 Data Sets (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S.; Marion, W.

    2008-05-01

    This users manual describes how to obtain and interpret the data in the Typical Meteorological Year version 3 (TMY3) data sets. These data sets are an update to the TMY2 data released by NREL in 1994.

  2. User's manual for rocket combustor interactive design (ROCCID) and analysis computer program. Volume 1: User's manual

    Science.gov (United States)

    Muss, J. A.; Nguyen, T. V.; Johnson, C. W.

    1991-01-01

    The user's manual for the rocket combustor interactive design (ROCCID) computer program is presented. The program, written in Fortran 77, provides a standardized methodology using state of the art codes and procedures for the analysis of a liquid rocket engine combustor's steady state combustion performance and combustion stability. The ROCCID is currently capable of analyzing mixed element injector patterns containing impinging like doublet or unlike triplet, showerhead, shear coaxial, and swirl coaxial elements as long as only one element type exists in each injector core, baffle, or barrier zone. Real propellant properties of oxygen, hydrogen, methane, propane, and RP-1 are included in ROCCID. The properties of other propellants can easily be added. The analysis model in ROCCID can account for the influence of acoustic cavities, helmholtz resonators, and radial thrust chamber baffles on combustion stability. ROCCID also contains the logic to interactively create a combustor design which meets input performance and stability goals. A preliminary design results from the application of historical correlations to the input design requirements. The steady state performance and combustion stability of this design is evaluated using the analysis models, and ROCCID guides the user as to the design changes required to satisfy the user's performance and stability goals, including the design of stability aids. Output from ROCCID includes a formatted input file for the standardized JANNAF engine performance prediction procedure.

  3. Manual of Cupule Replication Technology

    Directory of Open Access Journals (Sweden)

    Giriraj Kumar

    2015-09-01

    Full Text Available Throughout the world, iconic rock art is preceded by non-iconic rock art. Cupules (manmade, roughly semi-hemispherical depressions on rocks form the major bulk of the early non-iconic rock art globally. The antiquity of cupules extends back to the Lower Paleolithic in Asia and Africa, hundreds of thousand years ago. When one observes these cupules, the inquisitive mind poses so many questions with regard to understanding their technology, reasons for selecting the site, which rocks were used to make the hammer stones used, the skill and cognitive abilities employed to create the different types of cupules, the objective of their creation, their age, and so on. Replication of the cupules can provide satisfactory answers to some of these questions. Comparison of the hammer stones and cupules produced by the replication process with those obtained from excavation can provide support to observations. This paper presents a manual of cupule replication technology based on our experience of cupule replication on hard quartzite rock near Daraki-Chattan in the Chambal Basin, India.

  4. Rad Chem data acquisition chassis users manual

    International Nuclear Information System (INIS)

    Jones, B.A.

    1980-01-01

    The Shiva Laser at LLL requires many forms of diagnostics to measure and analyze fusion experiments. This manual describes the operation of a Micro-Processor controlled data acquisition system designed at LLL to measure Neutron Activation during fusion experiments on the Shiva Laser

  5. Pedestrian and bicycling survey (PABS) : user's manual.

    Science.gov (United States)

    2010-12-01

    Are you interested in finding out how much walking and cycling is happening in your : neighborhood or city? This manual presents a survey designed to find out who is doing how : much walking and cycling in your area: the PABS (Pedestrian and Bicyclin...

  6. SIMone user's manual. V. 2.1

    International Nuclear Information System (INIS)

    Silk, M.

    1990-03-01

    Simone is a computer application program which provides an environment in which to run the nuclear reactor thermal hydraulic simulation code RELAP5. It enables users to run a RELAP5 calculation on-line on a SUN4 workstation, and provides an interactive means of executing operator-like actions. In addition, a version of the graphical post-processing tool ISOVU is incorporated, allowing a real-time display of the RELAP5 calculation to be presented in the form of a system mimic diagram. This report comprises a description of the facilities available within the Simone application, and a user guide describing the user interface. (author)

  7. Infrastructure Management Information System User Manual

    Science.gov (United States)

    1998-10-01

    This publication describes and explains the user interface for the Infrastructure Management Information System (IMIS). The IMIS is designed to answer questions regarding public water supply, wastewater treatment, and census information. This publica...

  8. User's manual for the master equipment list. Phase 1

    International Nuclear Information System (INIS)

    Sandoval, J.D.

    1997-01-01

    This manual is intended to provide a user with enough detailed instruction to guide them through the Master Equipment List Phase 1 (MEL Phase 1) application system operations. The MEL Phase 1 application is a database system that stores Equipment Identification Number (EIN) information to support equipment tracking in the 200E and 200W Tank Farms for the Tank Waste Remediation System Division. The MEL Phase 1 application supports both the user application and administrative control functions. The user application functions include: viewing by Folder, reporting, performing queries, and editing specific data. The administrative control functions include: maintaining valid user identifications, passwords, privileges, defining drop-down lists, and review of the change log relating to EIN data entries, additions, deletions, and editing. The scope of this User's Manual is to discuss these functions and is intended to guide users and answer questions regarding the MEL Phase 1 application

  9. PETSc Users Manual Revision 3.7

    Energy Technology Data Exchange (ETDEWEB)

    Balay, S.; Brune, P.; Buschelman, K.; Gropp, W.; Karpeyev, D.; Kaushik, D.; Knepley, M.; McInnes, L. Curfman; Rupp, K.; Smith, B.; Zhang, H.; Abhyankar, S.; Adams, M.; Dalcin, L.; Zampini, S.; Zhang, H.

    2016-04-01

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication.

  10. PETSc Users Manual Revision 3.8

    Energy Technology Data Exchange (ETDEWEB)

    Balay, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Abhyankar, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Adams, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Brune, P. [Argonne National Lab. (ANL), Argonne, IL (United States); Buschelman, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Dalcin, L. D. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Eijkhout, V. [Univ. of Texas, Austin, TX (United States); Gropp, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Kaushik, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Knepley, M. [Argonne National Lab. (ANL), Argonne, IL (United States); May, D. [ETH Zurich (Switzerland); McInnes, L. Curfman [Argonne National Lab. (ANL), Argonne, IL (United States); Munson, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Rupp, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Sanan, P. [Univ. of Italian Switzerland, Lugano (Switzerland); Smith, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Zampini, S. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Zhang, H. [Illinois Inst. of Technology, Chicago, IL (United States); Zhang, H. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication.

  11. Guidance manual for conducting technology demonstration activities

    International Nuclear Information System (INIS)

    Jolley, R.L.; Morris, M.I.; Singh, S.P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety

  12. Guidance manual for conducting technology demonstration activities

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Robert L.; Morris, Michael I.; Singh, Suman P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  13. Design Optimization Toolkit: Users' Manual

    Energy Technology Data Exchange (ETDEWEB)

    Aguilo Valentin, Miguel Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Solid Mechanics and Structural Dynamics

    2014-07-01

    The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended to solve complex design optimization problems. DOTk software package provides a range of solution methods that are suited for gradient/nongradient-based optimization, large scale constrained optimization, and topology optimization. DOTk was design to have a flexible user interface to allow easy access to DOTk solution methods from external engineering software packages. This inherent flexibility makes DOTk barely intrusive to other engineering software packages. As part of this inherent flexibility, DOTk software package provides an easy-to-use MATLAB interface that enables users to call DOTk solution methods directly from the MATLAB command window.

  14. TALENT user's manual.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion John

    2012-01-01

    The Ground-Based Monitoring R and E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. The software tool used to capture and analyze the data collected from testing is called TALENT: Test and Analysis Evaluation Tool. This document is the manual for using TALENT. Other reports document the testing procedures that are in place (Kromer, 2007) and the algorithms employed in the test analysis (Merchant, 2011).

  15. UQTk version 2.0 user manual

    Energy Technology Data Exchange (ETDEWEB)

    Debusschere, Bert J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sargsyan, Khachik [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Safta, Cosmin [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-10-01

    The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 2.0 ffers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

  16. Estimating fire behavior with FIRECAST: user's manual

    Science.gov (United States)

    Jack D. Cohen

    1986-01-01

    FIRECAST is a computer program that estimates fire behavior in terms of six fire parameters. Required inputs vary depending on the outputs desired by the fire manager. Fuel model options available to users are these: Northern Forest Fire Laboratory (NFFL), National Fire Danger Rating System (NFDRS), and southern California brushland (SCAL). The program has been...

  17. CTF Preprocessor User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Avramova, Maria [Pennsylvania State Univ., University Park, PA (United States); Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-26

    This document describes how a user should go about using the CTF pre- processor tool to create an input deck for modeling rod-bundle geometry in CTF. The tool was designed to generate input decks in a quick and less error-prone manner for CTF. The pre-processor is a completely independent utility, written in Fortran, that takes a reduced amount of input from the user. The information that the user must supply is basic information on bundle geometry, such as rod pitch, clad thickness, and axial location of spacer grids--the pre-processor takes this basic information and determines channel placement and connection information to be written to the input deck, which is the most time-consuming and error-prone segment of creating a deck. Creation of the model is also more intuitive, as the user can specify assembly and water-tube placement using visual maps instead of having to place them by determining channel/channel and rod/channel connections. As an example of the benefit of the pre-processor, a quarter-core model that contains 500,000 scalar-mesh cells was read into CTF from an input deck containing 200,000 lines of data. This 200,000 line input deck was produced automatically from a set of pre-processor decks that contained only 300 lines of data.

  18. National Radiobiology Archives Distributed Access User`s Manual, Version 1.1. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.K.; Prather, J.C.; Ligotke, E.K.; Watson, C.R.

    1992-06-01

    This supplement to the NRA Distributed Access User`s manual (PNL-7877), November 1991, describes installation and use of Version 1.1 of the software package; this is not a replacement of the previous manual. Version 1.1 of the NRA Distributed Access Package is a maintenance release. It eliminates several bugs, and includes a few new features which are described in this manual. Although the appearance of some menu screens has changed, we are confident that the Version 1.0 User`s Manual will provide an adequate introduction to the system. Users who are unfamiliar with Version 1.0 may wish to experiment with that version before moving on to Version 1.1.

  19. Database on wind characteristics. Users manual

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, K.S.

    2001-01-01

    quality control procedures), part two accounts in details for the available data in the established database bank and part three is the Users Manualdescribing the various ways to access and analyse the data. The present report constitutes part three of the Annex XVII reporting and contains a trough...... description of the available online facilities for identifying, selecting, downloading and handlingmeasured wind field time series and resource data from "Database on Wind Characteristics"....

  20. User's manual for a measurement simulation code

    International Nuclear Information System (INIS)

    Kern, E.A.

    1982-07-01

    The MEASIM code has been developed primarily for modeling process measurements in materials processing facilities associated with the nuclear fuel cycle. In addition, the code computes materials balances and the summation of materials balances along with associated variances. The code has been used primarily in performance assessment of materials' accounting systems. This report provides the necessary information for a potential user to employ the code in these applications. A number of examples that demonstrate most of the capabilities of the code are provided

  1. SPARK Version 1.1 user manual

    International Nuclear Information System (INIS)

    Weissenburger, D.W.

    1988-01-01

    This manual describes the input required to use Version 1.1 of the SPARK computer code. SPARK 1.1 is a library of FORTRAN main programs and subprograms designed to calculate eddy currents on conducting surfaces where current flow is assumed zero in the direction normal to the surface. Surfaces are modeled with triangular and/or quadrilateral elements. Lorentz forces produced by the interaction of eddy currents with background magnetic fields can be output at element nodes in a form compatible with most structural analysis codes. In addition, magnetic fields due to eddy currents can be determined at points off the surface. Version 1.1 features eddy current streamline plotting with optional hidden-surface-removal graphics and topological enhancements that allow essentially any orientable surface to be modeled. SPARK also has extensive symmetry specification options. In order to make the manual as self-contained as possible, six appendices are included that present summaries of the symmetry options, topological options, coil options and code algorithms, with input and output examples. An edition of SPARK 1.1 is available on the Cray computers at the National Magnetic Fusion Energy Computer Center at Livermore, California. Another more generic edition is operational on the VAX computers at the Princeton Plasma Physics Laboratory and is available on magnetic tape by request. The generic edition requires either the GKS or PLOT10 graphics package and the IMSL or NAG mathematical package. Requests from outside the United States will be subject to applicable federal regulations regarding dissemination of computer programs. 22 refs

  2. Hydrogen Mixing Studies (HMS), user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Lam, K.L.; Wilson, T.L.; Travis, J.R.

    1994-12-01

    Hydrogen Mixing Studies (HMS) is a best-estimate analysis tool for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It can model geometrically complex facilities having multiple compartments and internal structures. The code can simulate the effects of steam condensation, heat transfer to walls and internal structures, chemical kinetics, and fluid turbulence. The gas mixture may consist of components included in a built-in library of 20 species. HMS is a finite-volume computer code that solves the time-dependent, three-dimensional (3D) compressible Navier Stokes equations. Both Cartesian and cylindrical coordinate systems are available. Transport equations for the fluid internal energy and for gas species densities are also solved. HMS was originally developed to run on Cray-type supercomputers with vector-processing units that greatly improve the computational speed, especially for large, complex problems. Recently the code has been converted to run on Sun workstations. Both the Cray and Sun versions have the same built-in graphics capabilities that allow 1D, 2D, 3D, and time-history plots of all solution variables. Other code features include a restart capability and flexible definitions of initial and time-dependent boundary conditions. This manual describes how to use the code. It explains how to set up the model geometry, define walls and obstacles, and specify gas species and material properties. Definitions of initial and boundary conditions are also described. The manual also describes various physical model and numerical procedure options, as well as how to turn them on. The reader also learns how to specify different outputs, especially graphical display of solution variables. Finally sample problems are included to illustrate some applications of the code. An input deck that illustrates the minimum required data to run HMS is given at the end of this manual.

  3. Desalination Economic Evaluation Program (DEEP). User's manual

    International Nuclear Information System (INIS)

    2000-01-01

    DEEP (formerly named ''Co-generation and Desalination Economic Evaluation'' Spreadsheet, CDEE) has been developed originally by General Atomics under contract, and has been used in the IAEA's feasibility studies. For further confidence in the software, it was validated in March 1998. After that, a user friendly version has been issued under the name of DEEP at the end of 1998. DEEP output includes the levelised cost of water and power, a breakdown of cost components, energy consumption and net saleable power for each selected option. Specific power plants can be modelled by adjustment of input data including design power, power cycle parameters and costs

  4. User Interface Technology for Formal Specification Development

    Science.gov (United States)

    Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Formal specification development and modification are an essential component of the knowledge-based software life cycle. User interface technology is needed to empower end-users to create their own formal specifications. This paper describes the advanced user interface for AMPHION1 a knowledge-based software engineering system that targets scientific subroutine libraries. AMPHION is a generic, domain-independent architecture that is specialized to an application domain through a declarative domain theory. Formal specification development and reuse is made accessible to end-users through an intuitive graphical interface that provides semantic guidance in creating diagrams denoting formal specifications in an application domain. The diagrams also serve to document the specifications. Automatic deductive program synthesis ensures that end-user specifications are correctly implemented. The tables that drive AMPHION's user interface are automatically compiled from a domain theory; portions of the interface can be customized by the end-user. The user interface facilitates formal specification development by hiding syntactic details, such as logical notation. It also turns some of the barriers for end-user specification development associated with strongly typed formal languages into active sources of guidance, without restricting advanced users. The interface is especially suited for specification modification. AMPHION has been applied to the domain of solar system kinematics through the development of a declarative domain theory. Testing over six months with planetary scientists indicates that AMPHION's interactive specification acquisition paradigm enables users to develop, modify, and reuse specifications at least an order of magnitude more rapidly than manual program development.

  5. The users manual and concepts of nuclear materials accounting system

    International Nuclear Information System (INIS)

    Lee, Byung Du; Jeon, In

    1996-03-01

    This report is to describe the concepts, operation status and user's manuals of nuclear materials accounting system which was developed to not only make out, report and manage the IAEA accounting reports but also maintain the accounting information. Therefore, facility operator could effectively make use of the accounting system without a special training by using this report. 3 tabs., 15 figs., (Author) .new

  6. ARES: automated response function code. Users manual. [HPGAM and LSQVM

    Energy Technology Data Exchange (ETDEWEB)

    Maung, T.; Reynolds, G.M.

    1981-06-01

    This ARES user's manual provides detailed instructions for a general understanding of the Automated Response Function Code and gives step by step instructions for using the complete code package on a HP-1000 system. This code is designed to calculate response functions of NaI gamma-ray detectors, with cylindrical or rectangular geometries.

  7. National Radiobiology Archives Distributed Access user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Watson, C.; Smith, S. (Pacific Northwest Lab., Richland, WA (United States)); Prather, J. (Linfield Coll., McMinnville, OR (United States))

    1991-11-01

    This User's Manual describes installation and use of the National Radiobiology Archives (NRA) Distributed Access package. The package consists of a distributed subset of information representative of the NRA databases and database access software which provide an introduction to the scope and style of the NRA Information Systems.

  8. Element Load Data Processor (ELDAP) Users Manual

    Science.gov (United States)

    Ramsey, John K., Jr.; Ramsey, John K., Sr.

    2015-01-01

    Often, the shear and tensile forces and moments are extracted from finite element analyses to be used in off-line calculations for evaluating the integrity of structural connections involving bolts, rivets, and welds. Usually the maximum forces and moments are desired for use in the calculations. In situations where there are numerous structural connections of interest for numerous load cases, the effort in finding the true maximum force and/or moment combinations among all fasteners and welds and load cases becomes difficult. The Element Load Data Processor (ELDAP) software described herein makes this effort manageable. This software eliminates the possibility of overlooking the worst-case forces and moments that could result in erroneous positive margins of safety and/or selecting inconsistent combinations of forces and moments resulting in false negative margins of safety. In addition to forces and moments, any scalar quantity output in a PATRAN report file may be evaluated with this software. This software was originally written to fill an urgent need during the structural analysis of the Ares I-X Interstage segment. As such, this software was coded in a straightforward manner with no effort made to optimize or minimize code or to develop a graphical user interface.

  9. The MIKM Consistency Application (User Manual)

    Science.gov (United States)

    2010-07-01

    de sept mois, pour appuyer le projet de recherches appliquées 11HL des technologies assurant la fiabilité de la connaissance de la ...National Defence, 2010 c© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2010 Original...connectés aux applications créées par le groupe de Gestion de l’information et du savoir maritimes (GISM) de RDDC

  10. DEPOT database: Reference manual and user's guide

    International Nuclear Information System (INIS)

    Clancey, P.; Logg, C.

    1991-03-01

    DEPOT has been developed to provide tracking for the Stanford Linear Collider (SLC) control system equipment. For each piece of equipment entered into the database, complete location, service, maintenance, modification, certification, and radiation exposure histories can be maintained. To facilitate data entry accuracy, efficiency, and consistency, barcoding technology has been used extensively. DEPOT has been an important tool in improving the reliability of the microsystems controlling SLC. This document describes the components of the DEPOT database, the elements in the database records, and the use of the supporting programs for entering data, searching the database, and producing reports from the information

  11. Facility Interface Capability Assessment (FICA) user manual

    International Nuclear Information System (INIS)

    Pope, R.B.; MacDonald, R.R.; Massaglia, J.L.; Williamson, D.A.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is describe the FICA computer software and to provide the FICA user with a guide on how to use the FICA system. The FICA computer software consists of two executable programs: the FICA Reactor Report program and the FICA Summary Report program (written in the Ca-Clipper version 5.2 development system). The complete FICA software system is contained on either a 3.5 in. (double density) or a 5.25 in. (high density) diskette and consists of the two FICA programs and all the database files (generated using dBASE III). The FICA programs are provided as ''stand alone'' systems and neither the Ca-Clipper compiler nor dBASE III is required to run the FICA programs. The steps for installing the FICA software system and executing the FICA programs are described in this report. Instructions are given on how to install the FICA software system onto the hard drive of the PC and how to execute the FICA programs from the FICA subdirectory on the hard drive. Both FICA programs are menu driven with the up-arrow and down-arrow keys used to move the cursor to the desired selection

  12. COSIS User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. Y.; Lee, K. B.; Koo, B. S.; Lee, W. K.; Lee, C. C.; Zee, S. Q

    2006-02-15

    COSIS (COre State Indication System) which implemented in the SMART research reactor plays a role to supply the core state parameters or graphs for the operator to recognize the core state effectively. The followings are the main functions of COSIS. Validity Check for the Process Signals and Determination of the COSIS Inputs (SIGVAL), Coolant Flow Rate Calculation (FLOW), Core Thermal Power Calculation (COREPOW), In-core 3-Dimensional Power Distribution Calculation and Peaking Parameters Generation (POWER3D), Azimuthal Tilt Calculation (AZITILT). This report describes the structures of the I/O files that are essential for the users to run COSIS. COSIS handles the following 4 input files. DATABASE: The base input file, COSIS.INP: The signal input file, CCS.DAT: File required for the in-core detector signal processing and the 3-D power distribution calculation, TPFH2O: Steam table for the water properties The DATABASE file contains the base information for a nuclear power plant and is read at the first COSIS calculation. The COSIS.INP file contains the process input and detector signals, and is read by COSIS at every second. CCS.DAT file, that is produced by the COSISMAS code, contains the information for the in-core detector signal processing and the 3-D power distribution calculation. TPFH2O file is a steam table and is written in binary format. COSIS produces the following 4 output files. DATABASE.OUT: The output file for the DATABASE input file, COSIS.OUT: The normal output file produced after the COSIS calculation, COSIS.SUM: File for the operator to recognize the core state effectively, MAS{sub S}IG: File to run the COSISMAS code The DATABASE.OUT file is produced right after finishing DATABASE processing. The COSIS.OUT file is produced after finishing the input signal processing and the main COSIS calculation. The COSIS.SUM file is the summary file of the COSIS results for the operator to recognize the core state effectively. The MAS{sub S}IG file is the

  13. Miro V3.0: user guide and reference manual

    International Nuclear Information System (INIS)

    Donnat, Ph.; Treimany, C.; Morice, O.; Ribeyre, X.

    1998-06-01

    This paper contains the user's guide and reference manual of Miro software. This software is used for simulating propagation and amplification of laser beams in laser devices as Megajoules or NIF. The physical effects taken into account ar essentially: saturated amplification, absorption, Kerr effect, birefringence and aberrations. The models of propagation are either geometrical optics of parallel beams, or Fresnel diffraction. A graphic user interface as been included to allow interactive management of optical devices and results. A Unix environment with X-Window and Motif is required to run Miro. The user's guide gives a short insight of the software. The reference manual details the physical models and the way they are implanted in Miro. (author)

  14. European correlation counter (ECC) VER. 1.0 users manual

    International Nuclear Information System (INIS)

    Vocino, V.

    1989-01-01

    The users manual is conceived for the utilization of personal computers linked to a shift register for the assay of Pu containing fuel. It is based on an MS DOS system and permits the users to store calibration curves, constants, measurement and assay data on floppy disks for ulterior utilisation. The interpretation models use the latest theories of neutron multiplication and dead time effects. The inspector is guided by the screen display step by step from the instrument test via calibration to the assay and data storage. All test, calibration and assay data can be printed out on paper tape and serve to the inspector to prepare the respective inspection report. The users are invited to make suggestions to the authors, such that the manual's use can be adapted to further requirements

  15. Minerva User Manual Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    J.J. Cogliati; M. L. Milvich; D. E. Wessol; C. A. Wemple

    2007-03-01

    MINERVA (Modality-Inclusive Environment for Radiotherapeutic Variable Analysis) is a Java-based patient-centric radiation treatment planning system (RTPS) for computational dosimetry and treatment planning in emerging areas of radiotherapy for cancer and other diseases. MINERVA was primarily developed at the Idaho National Laboratory (INL) and Montana State University (MSU). MINERVA allows the radiotherapist to make side-by-side comparison of plans for multiple treatment modalities with a common anatomical basis for the computational geometry, calculate doses for combinations of different radiotherapy modalities, and perform dose analysis and reporting functions. This provides the therapist with a consistent basis for selecting the modality or combination of modalities to use for treatment of the patient. MINERVA employs an integrated, lightweight plug-in architecture to accommodate multi-modal treatment planning using standard interface components. The MINERVA design facilitates integration of improved or emerging treatment planning technologies. MINERVA consists of the basic radiation treatment planning software modules managed by a consistent patient interface for developing multi-modal radiotherapy patient treatment plans. One of MINERVA's main functions is to provide a graphical environment for constructing and displaying uniform volume-element-based solid models derived from medical images. These solid models form the geometric basis of the target areas for the radiation transport model.

  16. CHEETAH 1.0 user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Fried, L.E.

    1994-06-24

    CHEETAH is an effort to bring the TIGER thermochemical code into the 1990s. A wide variety of improvements have been made in Version 1.0, and a host of others will be implemented in the future. In CHEETAH 1.0 I have improved the robustness and ease of use of TIGER. All of TIGER`s solvers have been replaced by new algorithms. I find that CHEETAH solves a wider variety of problems with no user intervention (e.g. no guesses for the C-J state) than TIGER did. CHEETAH has been made simpler to use than TIGER; typical use of the code occurs with the new standard run command. I hope that CHEETAH makes the use of thermochemical codes more attractive to practical explosive formulators. In the future I plan to improve the underlying science in CHEETAH. More accurate equations of state will be used in the gas and the condensed phase. A kinetics capability will be added to the code that will predict reaction zone thickness. CHEETAH is currently a numerical implementation of C-J theory. It will,become an implementation of ZND theory. Further ease of use features will eventually be added; an automatic formulator that adjusts concentrations to match desired properties is planned.

  17. Automated Transportation Management System (ATMS) user's manual. Revision 1

    International Nuclear Information System (INIS)

    Smith, P.D.

    1994-01-01

    The Automated Transportation Management System (ATMS) Software User Guide (SUG) constitutes the user procedures for the ATMS System. Information in this document will be used by the user to operate the automated system. It is intended to be used as a reference manual to guide and direct the user(s) through the ATMS software product and its environment. The objectives of ATMS are as follows: to better support the Procurement function with freight rate information; to free Transportation Logistics personnel from routine activities such as the auditing and input of freight billing information; to comply with Headquarters Department of Energy-Inspector General (DOE-IG) audit findings to automate transportation management functions; to reduce the keying of data into the Shipment Mobility Accountability Collection (SMAC) database; and to provide automation for the preparing of Bill of Lading, Declaration of Dangerous Goods, Emergency Response Guide and shipping Labels using HM181 Retrieval of hazardous material table text information

  18. The Radiological Safety Analysis Computer Program (RSAC-5) user's manual

    International Nuclear Information System (INIS)

    Wenzel, D.R.

    1994-02-01

    The Radiological Safety Analysis Computer Program (RSAC-5) calculates the consequences of the release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory from either reactor operating history or nuclear criticalities. RSAC-5 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated through the inhalation, immersion, ground surface, and ingestion pathways. RSAC+, a menu-driven companion program to RSAC-5, assists users in creating and running RSAC-5 input files. This user's manual contains the mathematical models and operating instructions for RSAC-5 and RSAC+. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-5 and RSAC+. These programs are designed for users who are familiar with radiological dose assessment methods

  19. Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool

    Science.gov (United States)

    Maul, William A.; Fulton, Christopher E.

    2011-01-01

    This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual

  20. Heating 7.2 user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  1. Manual of water jet technology

    International Nuclear Information System (INIS)

    Momber, A.

    1993-01-01

    The manual is the first of its kind, presenting a systematic review of water jet applications for cutting or otherwise treating concrete. The basic principles of water jet techniques are explained in chapters entitled: Systematic survey of water jets/Generation and characteristics of water jets/Concrete behaviour under water jet treatment/Optimization potentials/Fundamentals of abrasive water jet techniques/Pulsed water jets/Addition of additives/Equipment and tools/Applications (cleaning, roughening, abrasion, cutting, drilling)/Submerged water jet applications/Safety aspects/Evaluation principles and standard tender documents/Costs/Legal provisions and technical codes. (orig.) [de

  2. How 2 HAWC2, the user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Juul Larsen, T.; Melchior Hansen, A.

    2007-12-15

    The report contains the user's manual for the aeroelastic code HAWC2. The code is intended for calculating wind turbine response in time domain and has a structural formulation based on multi-body dynamics. The aerodynamic part of the code is based on the blade element momentum theory, but extended from the classic approach to handle dynamic inflow, dynamic stall, skew inflow, shear effects on the induction and effects from large deflections. It has been developed within the years 2003-2006 at the aeroelastic design research programme at Risoe National Laboratory, Denmark. This manual is updated for HAWC2 version 6.4. (au)

  3. Climate change scenarios for Canada's national parks : a users manual

    International Nuclear Information System (INIS)

    Jones, B.; Wun, N.; Scott, D.; Barrow, E.

    2003-01-01

    A screening level impact assessment has shown that the implications of climate change for Canada's national parks are considerable. Climate change scenarios will be an important component in examining the potential climate change impacts and the implications of adaptation strategies. Most climate change scenarios are based on vulnerability, impact and adaptation research. This user's manual describes the development of 3 types of climate change scenarios including scenarios from global climate models (GCMs), bioclimate scenarios and daily scenarios for use by Parks Canada. The manual offers advice to first-time climate change scenario users in choosing and interpreting climate change, bioclimate and daily scenarios. It also addresses the theoretical and practical foundations of each climate scenario and shows how to access data regarding the various scenarios. Hands-on exercises are included as an interpretive aid. 20 refs., 4 tabs., 19 figs

  4. C%2B%2B tensor toolbox user manual.

    Energy Technology Data Exchange (ETDEWEB)

    Plantenga, Todd D.; Kolda, Tamara Gibson

    2012-04-01

    The C++ Tensor Toolbox is a software package for computing tensor decompositions. It is based on the Matlab Tensor Toolbox, and is particularly optimized for sparse data sets. This user manual briefly overviews tensor decomposition mathematics, software capabilities, and installation of the package. Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors in C++. The Toolbox compiles into libraries and is intended for use with custom applications written by users.

  5. GADRAS-DRF user's manual.

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, Lisa Anne; Mitchell, Dean J; Thoreson, Gregory G.; Harding, Lee T.; Horne, Steven M; Bradley, Jon David; Eldridge, Bryce Duncan; Amai, Wendy A.

    2013-09-01

    The Gamma Detector Response and Analysis Software-Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, and analyzing spectra to identify isotopes or to estimate flux profiles. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving researchers and other users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

  6. Real-Time Multiprocessor Programming Language (RTMPL) user's manual

    Science.gov (United States)

    Arpasi, D. J.

    1985-01-01

    A real-time multiprocessor programming language (RTMPL) has been developed to provide for high-order programming of real-time simulations on systems of distributed computers. RTMPL is a structured, engineering-oriented language. The RTMPL utility supports a variety of multiprocessor configurations and types by generating assembly language programs according to user-specified targeting information. Many programming functions are assumed by the utility (e.g., data transfer and scaling) to reduce the programming chore. This manual describes RTMPL from a user's viewpoint. Source generation, applications, utility operation, and utility output are detailed. An example simulation is generated to illustrate many RTMPL features.

  7. Activity Management System user reference manual. Revision 1

    International Nuclear Information System (INIS)

    Gates, T.A.; Burdick, M.B.

    1994-01-01

    The Activity Management System (AMS) was developed in response to the need for a simple-to-use, low-cost, user interface system for collecting and logging Hanford Waste Vitrification Plant Project (HWVP) activities. This system needed to run on user workstations and provide common user access to a database stored on a local network file server. Most important, users wanted a system that provided a management tool that supported their individual process for completing activities. Existing system treated the performer as a tool of the system. All AMS data is maintained in encrypted format. Users can feel confident that any activities they have entered into the database are private and that, as the originator, they retain sole control over who can see them. Once entered into the AMS database, the activities cannot be accessed by anyone other than the originator, the designated agent, or by authorized viewers who have been explicitly granted the right to look at specific activities by the originator. This user guide is intended to assist new AMS users in learning how to use the application and, after the initial learning process, will serve as an ongoing reference for experienced users in performing infrequently used functions. Online help screens provide reference to some of the key information in this manual. Additional help screens, encompassing all the applicable material in this manual, will be incorporated into future AMS revisions. A third, and most important, source of help is the AMS administrator(s). This guide describes the initial production version of AMS, which has been designated Revision 1.0

  8. Innovative and Alternative Technology Assessment Manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    This four chapter, six appendix manual presents the procedures and methodology as well as the baseline costs and energy information necessary for the analysis and evaluation of innovative and alternative technology applications submitted for federal grant assistance under the innovative and alternative technology provisions of the Clean Water Act of 1977. The manual clarifies and interprets the intent of Congress and the Environmental Protection Agency in carrying out the mandates of the innovative and alternative provisions of the Clean Water Act of 1977. [DJE 2005

  9. The Montana Rivers Information System: Edit/entry program user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases. The purpose of this User`s Manual is to: (1) describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and (2) provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  10. User research & technology, pt.2

    CERN Document Server

    Greifeneder, Elke

    2011-01-01

    This e-book is Part 2 on the theme "User Research and Technology". The research covers the testing of online digital library resources using various methods. Library and information science as a field is changing and the requirements for top quality research are growing more stringent. This is typical of the experience of other professional fields as they have moved from practitioners advising practitioners to researchers building on past results. This e-book contains 12 papers on this theme.

  11. DECADES Tools. User's manual for version 1.0

    International Nuclear Information System (INIS)

    2000-01-01

    Comprehensive comparative assessment studies of electricity options and strategies rely upon methodological approaches integrating technical, economic and human health, environmental and social aspects, and on comprehensive, reliable and up-to-date information covering all relevant characteristics of the energy chains for electricity generation. Often, however, the information available for national or regional studies cannot be directly compared or adapted to new conditions because it has been collected in different formats or is based on different assumptions. Some countries, particularly developing countries, lack sufficient resources to explore the benefits of applying new technologies and to carry out comprehensive comparative assessments of different energy sources. The inter-agency joint project on databases and methodologies for comparative assessment of different energy sources for electricity generation, in short DECADES, was established at the beginning of 1993, when nine international organizations (EC, ESCAP, IAEA, IIASA, IBRD, OECD/NEA, OPEC, UNIDO and WMO) agreed to join their efforts towards a common objective of enhancing the capabilities for comparative assessment of different energy sources in the process of planning and decision making for the electricity sector. One of the major achievements of the project is that an integrated software package for use on personal computers (PCs), called DECADES Tools, was developed to provide senior analysts and energy planners with an easy to use tool for carrying out decision support studies for the power sector. These tools consist of: several databases providing a comprehensive, harmonized set of technical, economic and environmental data for energy chains that use fossil fuels, nuclear power and, renewable energy sources for electricity generation; a data management system which provides user friendly access to the DECADES databases; an analytical software designed to access the information stored in the

  12. The Radiological Safety Analysis Computer Program (RSAC-5) user`s manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, D.R.

    1994-02-01

    The Radiological Safety Analysis Computer Program (RSAC-5) calculates the consequences of the release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory from either reactor operating history or nuclear criticalities. RSAC-5 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated through the inhalation, immersion, ground surface, and ingestion pathways. RSAC+, a menu-driven companion program to RSAC-5, assists users in creating and running RSAC-5 input files. This user`s manual contains the mathematical models and operating instructions for RSAC-5 and RSAC+. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-5 and RSAC+. These programs are designed for users who are familiar with radiological dose assessment methods.

  13. HTGR Application Economic Model Users' Manual

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  14. KAFEPA-II program users' manual and description

    International Nuclear Information System (INIS)

    Suk, H. C.; Hwang, W.; Kim, B. G.; Sim, K. S.; Heo, Y. H.; Byun, T. S.; Park, G. S.

    1992-04-01

    KAFEPA-II is a computer program for simulating the behaviour of UO 2 fuel elements under normal operating conditions of a CANDU reactor. It computes the one-dimensional temperature distribution and thermal expansion of the fuel pellets. The amount of gas released during irradiation of the fuel is also computed. Thermal expansion and gas pressure inside the fuel element are then used to compute the strains and stresses in the sheath. This document is intended as a user's manual and description for KAFEPA-II. (Author)

  15. Vegetation Change Analysis User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen; W. K. Ostler

    2002-10-01

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Diagnostic techniques are needed to identify thresholds of sustainable military use. A cooperative effort among U.S. Department of Energy, U.S. Department of Defense, and selected university scientists was undertaken to focus on developing new techniques for monitoring and mitigating military impacts in arid lands. This manual focuses on the development of new monitoring techniques that have been implemented at Fort Irwin, California. New mitigation techniques are described in a separate companion manual. This User's Manual is designed to address diagnostic capabilities needed to distinguish between various degrees of sustainable and nonsustainable impacts due to military training and testing and habitat-disturbing activities in desert ecosystems. Techniques described here focus on the use of high-resolution imagery and the application of image-processing techniques developed primarily for medical research. A discussion is provided about the measurement of plant biomass and shrub canopy cover in arid. lands using conventional methods. Both semiquantitative methods and quantitative methods are discussed and reference to current literature is provided. A background about the use of digital imagery to measure vegetation is presented.

  16. Model for Analysis of Energy Demand (MAED-2). User's manual

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  17. Model for Analysis of Energy Demand (MAED-2). User's manual

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA has been supporting its Member States in the area of energy planning for sustainable development. Development and dissemination of appropriate methodologies and their computer codes are important parts of this support. This manual has been produced to facilitate the use of the MAED model: Model for Analysis of Energy Demand. The methodology of the MAED model was originally developed by. B. Chateau and B. Lapillonne of the Institute Economique et Juridique de l'Energie (IEJE) of the University of Grenoble, France, and was presented as the MEDEE model. Since then the MEDEE model has been developed and adopted to be appropriate for modelling of various energy demand system. The IAEA adopted MEDEE-2 model and incorporated important modifications to make it more suitable for application in the developing countries, and it was named as the MAED model. The first version of the MAED model was designed for the DOS based system, which was later on converted for the Windows system. This manual presents the latest version of the MAED model. The most prominent feature of this version is its flexibility for representing structure of energy consumption. The model now allows country-specific representations of energy consumption patterns using the MAED methodology. The user can now disaggregate energy consumption according to the needs and/or data availability in her/his country. As such, MAED has now become a powerful tool for modelling widely diverse energy consumption patterns. This manual presents the model in details and provides guidelines for its application

  18. Stimulation model for lenticular sands: Volume 2, Users manual

    Energy Technology Data Exchange (ETDEWEB)

    Rybicki, E.F.; Luiskutty, C.T.; Sutrick, J.S.; Palmer, I.D.; Shah, G.H.; Tomutsa, L.

    1987-07-01

    This User's Manual contains information for four fracture/proppant models. TUPROP1 contains a Geertsma and de Klerk type fracture model. The section of the program utilizing the proppant fracture geometry data from the pseudo three-dimensional highly elongated fracture model is called TUPROPC. The analogous proppant section of the program that was modified to accept fracture shape data from SA3DFRAC is called TUPROPS. TUPROPS also includes fracture closure. Finally there is the penny fracture and its proppant model, PENNPROP. In the first three chapters, the proppant sections are based on the same theory for determining the proppant distribution but have modifications to support variable height fractures and modifications to accept fracture geometry from three different fracture models. Thus, information about each proppant model in the User's Manual builds on information supplied in the previous chapter. The exception to the development of combined treatment models is the penny fracture and its proppant model. In this case, a completely new proppant model was developed. A description of how to use the combined treatment model for the penny fracture is contained in Chapter 4. 2 refs.

  19. User manual for SPLASH (Single Panel Lamp and Shroud Helper).

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Marvin Elwood

    2006-02-01

    The radiant heat test facility develops test sets providing well-characterized thermal environments, often representing fires. Many of the components and procedures have become standardized to such an extent that the development of a specialized design tool to determine optimal configurations for radiant heat experiments was appropriate. SPLASH (Single Panel Lamp and Shroud Helper) is that tool. SPLASH is implemented as a user-friendly, Windows-based program that allows a designer to describe a test setup in terms of parameters such as number of lamps, power, position, and separation distance. This document is a user manual for that software. Any incidental descriptions of theory are only for the purpose of defining the model inputs. The theory for the underlying model is described in SAND2005-2947 (Ref. [1]). SPLASH provides a graphical user interface to define lamp panel and shroud designs parametrically, solves the resulting radiation enclosure problem for up to 2500 surfaces, and provides post-processing to facilitate understanding and documentation of analyzed designs.

  20. User Manual for the Allpix$^2$ Simulation Framework

    CERN Document Server

    AUTHOR|(SzGeCERN)818092; Spannagel, Simon; Hynds, Daniel

    2017-01-01

    Several simulation tools exist for the detailed study of position sensitive silicon detectors, covering aspects ranging from the electrical properties of sensors to the behaviour of charged particles traversing a given detector setup. Each of these toolkits performs a very specialised task, and for the complete description of a silicon detector several such software packages must typically be used. Allpix$^2$ builds upon this work by providing a complete and easy-to-use C++ software package for simulating detector performance, from the interaction of particles to the digitisation of propagated carriers by the front-end electronics. A modular framework is used to flexibly add or remove modules from the simulation chain, each performing specific tasks such as interfacing to Geant4 to deposit energy in the detector and provide an accurate description of material effects, or the propagation of deposited charges through the sensor bulk. This document presents the user manual of the software as of release version 1...

  1. The NASTRAN User's Manual Level 16.0 and Supplement

    Science.gov (United States)

    1976-01-01

    The user's manual is restricted to those items related to the use of NASTRAN that are independent of the computing system being used. The features of NASTRAN described include: (1) procedures for defining and loading a structural model and a functional reference for every card that is used for structural modeling; (2) the NASTRAN data deck, including the details for each of the data cards; (3) the NASTRAN control cards that are associated with the use of the program; (4) rigid format procedures, along with specific instructions for the use of each rigid format: (5) procedures for using instructions for the use of each rigid format; (5) procedures for using the NASTRAN plotting capability; (6) procedures governing the creation of DMAP programs; and (7) the NASTRAN diagnostic messages. The NASTRAN dictionary of mnemonics, acronyms, phrases, and other commonly used NASTRAN terms is included along with a limited number of sample problems.

  2. User's manual of JT-60 experimental data analysis system

    International Nuclear Information System (INIS)

    Hirayama, Takashi; Morishima, Soichi; Yoshioka, Yuji

    2010-02-01

    In the Japan Atomic Energy Agency Naka Fusion Institute, a lot of experiments have been conducted by using the large tokamak device JT-60 aiming to realize fusion power plant. In order to optimize the JT-60 experiment and to investigate complex characteristics of plasma, JT-60 experimental data analysis system was developed and used for collecting, referring and analyzing the JT-60 experimental data. Main components of the system are a data analysis server and a database server for the analyses and accumulation of the experimental data respectively. Other peripheral devices of the system are magnetic disk units, NAS (Network Attached Storage) device, and a backup tape drive. This is a user's manual of the JT-60 experimental data analysis system. (author)

  3. LLCEDATA and LLCECALC for Windows version 1.0, Volume 1: User`s manual

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, J.G.

    1998-09-04

    LLCEDATA and LLCECALC for Windows are user-friendly computer software programs that work together to determine the proper waste designation, handling, and disposition requirements for Long Length Contaminated Equipment (LLCE). LLCEDATA reads from a variety of data bases to produce an equipment data file (EDF) that represents a snapshot of both the LLCE and the tank it originates from. LLCECALC reads the EDF and a gamma assay (AV2) file that is produced by the Flexible Receiver Gamma Energy Analysis System. LLCECALC performs corrections to the AV2 file as it is being read and characterizes the LLCE. Both programs produce a variety of reports, including a characterization report and a status report. The status report documents each action taken by the user, LLCEDATA, and LLCECALC. Documentation for LLCEDATA and LLCECALC for Windows is available in three volumes. Volume 1 is a user`s manual, which is intended as a quick reference for both LLCEDATA and LLCECALC. Volume 2 is a technical manual, and Volume 3 is a software verification and validation document.

  4. User's manual for the NEFTRAN II computer code

    International Nuclear Information System (INIS)

    Olague, N.E.; Campbell, J.E.; Leigh, C.D.; Longsine, D.E.

    1991-02-01

    This document describes the NEFTRAN II (NEtwork Flow and TRANsport in Time-Dependent Velocity Fields) computer code and is intended to provide the reader with sufficient information to use the code. NEFTRAN II was developed as part of a performance assessment methodology for storage of high-level nuclear waste in unsaturated, welded tuff. NEFTRAN II is a successor to the NEFTRAN and NWFT/DVM computer codes and contains several new capabilities. These capabilities include: (1) the ability to input pore velocities directly to the transport model and bypass the network fluid flow model, (2) the ability to transport radionuclides in time-dependent velocity fields, (3) the ability to account for the effect of time-dependent saturation changes on the retardation factor, and (4) the ability to account for time-dependent flow rates through the source regime. In addition to these changes, the input to NEFTRAN II has been modified to be more convenient for the user. This document is divided into four main sections consisting of (1) a description of all the models contained in the code, (2) a description of the program and subprograms in the code, (3) a data input guide and (4) verification and sample problems. Although NEFTRAN II is the fourth generation code, this document is a complete description of the code and reference to past user's manuals should not be necessary. 19 refs., 33 figs., 25 tabs

  5. Multi-Sector Sustainability Browser (MSSB) User Manual: A ...

    Science.gov (United States)

    EPA’s Sustainable and Healthy Communities (SHC) Research Program is developing methodologies, resources, and tools to assist community members and local decision makers in implementing policy choices that facilitate sustainable approaches in managing their resources affecting the built environment, natural environment, and human health. In order to assist communities and decision makers in implementing sustainable practices, EPA is developing computer-based systems including models, databases, web tools, and web browsers to help communities decide upon approaches that support their desired outcomes. Communities need access to resources that will allow them to achieve their sustainability objectives through intelligent decisions in four key sustainability areas: • Land Use • Buildings and Infrastructure • Transportation • Materials Management (i.e., Municipal Solid Waste [MSW] processing and disposal) The Multi-Sector Sustainability Browser (MSSB) is designed to support sustainable decision-making for communities, local and regional planners, and policy and decision makers. Document is an EPA Technical Report, which is the user manual for the Multi-Sector Sustainability Browser (MSSB) tool. The purpose of the document is to provide basic guidance on use of the tool for users

  6. AFTC Code for Automatic Fault Tree Construction: Users Manual

    International Nuclear Information System (INIS)

    Gopika Vinod; Saraf, R.K.; Babar, A.K.

    1999-04-01

    Fault Trees perform a predominant role in reliability and safety analysis of system. Manual construction of fault tree is a very time consuming task and moreover, it won't give a formalized result, since it relies highly on analysts experience and heuristics. This necessitates a computerised fault tree construction, which is still attracting interest of reliability analysts. AFTC software is a user friendly software model for constructing fault trees based on decision tables. Software is equipped with libraries of decision tables for components commonly used in various Nuclear Power Plant (NPP) systems. User is expected to make a nodal diagram of the system, for which fault tree is to be constructed, from the flow sheets available. The text nodal diagram goes as the sole input defining the system flow chart. AFTC software is a rule based expert system which draws the fault tree from the system flow chart and component decision tables. AFTC software gives fault tree in both text and graphic format. Help is provided as how to enter system flow chart and component decision tables. The software is developed in 'C' language. Software is verified with simplified version of the fire water system of an Indian PHWR. Code conversion will be undertaken to create a window based version. (author)

  7. SSC-K code users manual (rev.1)

    International Nuclear Information System (INIS)

    Kwon, Y. M.; Lee, Y. B.; Chang, W. P.; Hahn, D.

    2002-01-01

    The Supper System Code of KAERI (SSC-K) is a best-estimate system code for analyzing a variety of off-normal or accidents in the heat transport system of a pool type LMR design. It is being developed at Korea Atomic Energy Research Institution (KAERI) on the basis of SSC-L, originally developed at BNL to analyze loop-type LMR transients. SSC-K can handle both designs of loop and pool type LMRs. SSC-K contains detailed mechanistic models of transient thermal, hydraulic, neutronic, and mechanical phenomena to describe the response of the reactor core, coolant, fuel elements, and structures to accident conditions. This report provides a revised User's Manual (rev.1) of the SSC-K computer code, focusing on phenomenological model descriptions for new thermal, hydraulic, neutronic, and mechanical modules. A comprehensive description of the models for pool-type reactor is given in Chapters 2 and 3; the steady-state plant characterization, prior to the initiation of transient is described in Chapter 2 and their transient counterparts are discussed in Chapter 3. Discussions on the intermediate heat exchanger (IHX) and the electromagnetic (EM) pump are described in Chapter 4 and 5, respectively. A model of passive safety decay heat removal system (PSDRS) is discussed in Chapter 6, and models for various reactivity feedback effects are discussed in Chapter 7. In Chapter 8, constitutive laws and correlations required to execute the SSC-K are described. New models developed for SSC-K rev.1 are two dimensional hot pool model in Chapter 9, and long term cooling model in Chapter 10. Finally, a brief description of MINET code adopted to simulate BOP is presented in Chapter 11. Based on test runs for typical LMFBR accident analyses, it was found that the present version of SSC-K would be used for the safety analysis of KALIMER. However, the further validation of SSC-K is required for real applications. It is noted that the user's manual of SSC-K will be revised later with the

  8. Desalination Economic Evaluation Program (DEEP-3.0). User's manual

    International Nuclear Information System (INIS)

    2006-01-01

    DEEP is a Desalination Economic Evaluation Program developed by the International Atomic Energy Agency (IAEA) and made freely available for download, under a license agreement (www.iaea.org/nucleardesalination). The program is based on linked Microsoft Excel spreadsheets and can be useful for evaluating desalination strategies by calculating estimates of technical performance and costs for various alternative energy and desalination technology configurations. Desalination technology options modelled, include multi-stage flashing (MSF), multi-effect distillation (MED), reverse osmosis (RO) and hybrid options (RO-MSF, RO-MED) while energy source options include nuclear, fossil, renewables and grid electricity (stand-alone RO). Version 3 of DEEP (DEEP 3.0) features important changes from previous versions, including upgrades in thermal and membrane performance and costing models, the coupling configuration matrix and the user interface. Changes in the thermal performance model include a revision of the gain output ratio (GOR) calculation and its generalization to include thermal vapour compression effects. Since energy costs continue to represent an important fraction of seawater desalination costs, the lost shaft work model has been generalized to properly account for both backpressure and extraction systems. For RO systems, changes include improved modelling of system recovery, feed pressure and permeate salinity, taking into account temperature, feed salinity and fouling correction factors. The upgrade to the coupling technology configuration matrix includes a re-categorization of the energy sources to follow turbine design (steam vs. gas) and cogeneration features (dual-purpose vs. heat-only). In addition, cost data has also been updated to reflect current practice and the user interface has been refurbished and made user-friendlier

  9. The International Nuclear Event Scale (INES) user's manual. 2001 edition

    International Nuclear Information System (INIS)

    2001-12-01

    The International Nuclear Event Scale (INES) was introduced in March 1990 jointly by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). Its primary purpose is to facilitate communication and understanding between the nuclear community, the media and the public on the safety significance of events occurring at nuclear installations. The scale was refined in 1992 in the light of experience gained and extended to be applicable to any event associated with radioactive material and/or radiation, including the transport of radioactive materials.This edition of the INES User's Manual incorporates experience gained from applying the 1992 version of the scale and the document entitled 'Clarification of Issues Raised'. As such, it replaces those earlier publications. It does not amend the technical basis of the INES rating procedure but is expected to facilitate the task of those who are required to rate the safety significance of events using the INES scale. The INES communication network currently receives and disseminates event information to the INES National Officers of 60 Member States on special Event Rating Forms which represent official information on the events, including the rating. The INES communication process has led each participating country to set up an internal network which ensures that all events are promptly communicated and rated whenever they have to be reported outside or inside the country. The IAEA provides training services on the use of INES on request

  10. The International Nuclear Event Scale (INES) user's manual. 2001 edition

    International Nuclear Information System (INIS)

    2001-02-01

    The International Nuclear Event Scale (INES) was introduced in March 1990 jointly by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). Its primary purpose is to facilitate communication and understanding between the nuclear community, the media and the public on the safety significance of events occurring at nuclear installations. The scale was refined in 1992 in the light of experience gained and extended to be applicable to any event associated with radioactive material and/or radiation, including the transport of radioactive materials.This edition of the INES User's Manual incorporates experience gained from applying the 1992 version of the scale and the document entitled ''Clarification of Issues Raised''. As such, it replaces those earlier publications. It does not amend the technical basis of the INES rating procedure but is expected to facilitate the task of those who are required to rate the safety significance of events using the INES scale. The INES communication network currently receives and disseminates event information to the INES National Officers of 60 Member States on special Event Rating Forms which represent official information on the events, including the rating. The INES communication process has led each participating country to set up an internal network which ensures that all events are promptly communicated and rated whenever they have to be reported outside or inside the country. The IAEA provides training services on the use of INES on request

  11. INES - The International Nuclear Event Scale. User's manual

    International Nuclear Information System (INIS)

    2005-01-01

    The International Nuclear Event Scale (INES) was introduced in March 1990 jointly by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). Its primary purpose is to facilitate communication and understanding between the nuclear community, the media and the public on the safety significance of events occurring at nuclear installations. The scale was refined in 1992 in the light of experience gained and extended to be applicable to any event associated with radioactive material and/or radiation, including the transport of radioactive materials. This edition of the INES User's Manual incorporates experience gained from applying the 1992 version of the scale and the document entitled 'Clarification of Issues Raised'. As such, it replaces those earlier publications. It does not amend the technical basis of the INES rating procedure but is expected to facilitate the task of those who are required to rate the safety significance of events using the INES scale. The INES communication network currently receives and disseminates event information to the INES National Officers of 60 Member States on special Event Rating Forms which represent official information on the events, including the rating. The INES communication process has led each participating country to set up an internal network which ensures that all events are promptly communicated and rated whenever they have to be reported outside or inside the country. The IAEA provides training services on the use of INES on request

  12. Flight dynamics analysis and simulation of heavy lift airships. Volume 3: User's manual

    Science.gov (United States)

    Emmen, R. D.; Tischler, M. B.

    1982-01-01

    The User's Manual provides the basic information necessary to run the programs. This includes descriptions of the various data files necessary for the program, the various outputs from the program and the options available to the user when executing the program. Additional data file information is contained in the three appendices to the manual. These appendices list all input variables and their permissible values, an example listing of these variables, and all output variables available to the user.

  13. M3 User's Manual. Version 3.0

    International Nuclear Information System (INIS)

    Laaksoharju, Marcus; Skaarman, Erik; Gomez, Javier B.

    2009-11-01

    This report describes the Multivariate Mixing and Mass balance calculations (M3). This new method and computer code is developed to trace the mixing and reaction processes in the groundwater. The aim of the M3 concept is to decode the often hidden and complex information gathered in the groundwater analytical data. The manual presents shortly the theory and practice behind the M3 method. The M3 computer code is also presented and emphasis is put on the reference manual. This includes detailed reference to the M3 program's abilities and limitations, installation procedures and all functions and operations that the program can perform. It also describes sample cases of how the program is used to analyse a test data set. This guide is part of the Help Files distributed together with M3. Two accompanying reports cover other aspects: - Concepts, Methods, and Mathematical Formulation, gives a complete description of the mathematical framework of M3 and introduces concepts and methods useful for the end user. - M3 version 3.0: Verification and Validation, gathers a collection of validation and verification exercises, designed to test each part of M3 code and to build confidence in its methodology. The M3 method has been tested and modified over several years. The development work has been supported by the Swedish Nuclear Fuel and Waste Management Company (SKB). The main test site for the model was the underground Aespoe Hard Rock Laboratory (HRL). The examples used in this manual are from a Aespoe international groundwater modelling co-operation project where one of the tools used was M3. The M3 concept has been applied on the data from SKB's site investigation programme and in data from Canada, Japan, Jordan, Gabon and Finland. The groundwater composition is a result of mixing processes and water-rock interaction. Standard groundwater models based on thermodynamic laws may not be applicable in a normal temperature groundwater system where equilibrium with many of the

  14. ELIST v.8.1 : User's Manual.; TOPICAL

    International Nuclear Information System (INIS)

    Van Groningen, Blachowicz D.; Duffy Braun, M.; Clemmons, M. A.; Simunich, K. L.; Timmerman, D.; VanderZee, H.; Widing, M. A.

    2002-01-01

    This user's manual documents the capabilities and functions of the Enhanced Logistics Intratheater Support Tool (ELIST) software application. Steps for using the Expanded Time Phase Force Deployment Data (ETPFDD) Editor (ETEdit), which is included in ELIST but is also a stand-alone software application, are contained in a separate document. ELIST is a discrete event simulation tool developed for use by military planners in both the continental United States (CONUS) and outside the continental United States (OCONUS). It simulates the reception, staging, onward movement, and integration (RSOI) of military personnel and equipment from all services within, between, or among countries. ELIST not only runs a simulation, but it also provides the capability to edit asset sets, networks, and scenarios. These capabilities show how various changes can affect the outcome of a simulation. Further, ELIST incorporates topographic maps on which the network is displayed. The system also allows planners to simulate scenarios at the vehicle level. Prior to the implementation of ELIST, planners were able to simulate military deployment from the point of departure (origin) to the point of arrival in the theater (the port of debarkation). Since the development and implementation of ELIST, however, planners can simulate military deployment from the point of departure (airport or seaport), through the staging area, through the theater-staging base, to the final destination. A typical scenario might be set up to transport personnel and cargo to a location by aircraft or ship. Upon arrival at the airport or seaport, the cargo would be sent to a staging area where it would be set up and transferred to a vehicle, or in the case of petroleum, oil, and lubricants (POL), a pipeline. The vehicle then would transport the cargo to the theater-staging base where it would ''marry up'' with the main body of personnel. From this point, the cargo and the main body would be transported to the final

  15. User innovation in sustainable home energy technologies

    International Nuclear Information System (INIS)

    Hyysalo, Sampsa; Juntunen, Jouni K.; Freeman, Stephanie

    2013-01-01

    The new millennium has marked an increasing interest in citizens as energy end-users. While much hope has been placed on more active energy users, it has remained less clear what citizens can and are willing to do. We charted user inventions in heat pump and wood pellet burning systems in Finland in years 2005–2012. In total we found 192 inventions or modifications that improved either the efficiency, suitability, usability, maintenance or price of the heat pump or pellet systems, as evaluated by domain experts. Our analysis clarifies that users are able to successfully modify, improve and redesign next to all subsystems in these technologies. It appears that supplier models do not cater sufficiently for the variation in users' homes, which leaves unexplored design space for users to focus on. The inventive users can speed up the development and proliferation of distributed renewable energy technologies both through their alternative designs as well as through the advanced peer support they provide in popular user run Internet forums related to the purchase, use and maintenance of these technologies. There are several implications for how such users can be of benefit to energy and climate policy as well as how to support them. - Highlights: ► We clarify how citizen users are able to invent in home heating systems. ► We researched inventions that users did to heat pump and wood pellet burning systems. ► During the years 2005–2012 there were 192 inventions by users in Finland alone. ► Users were able to invent in practically all subsystems of these technologies. ► Users’ ability merits policy attention and can lead to new types of policy action

  16. NetMOD Version 2.0 User?s Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydracoustic, and infrasonic networks. Specifically, NetMOD simulates the detection capabilities of monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform detection simulations. In addition, NetMOD is distributed with simulation datasets for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic, hydroacoustic, and infrasonic networks for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation. ACKNOWLEDGEMENTS We would like to thank the reviewers of this document for their contributions.

  17. Tree Seed Technology Training Course - Instructor's Manual

    Science.gov (United States)

    F.T. Bonner; John A. Vozzo; W.W. Elam; S.B. Land

    1994-01-01

    This manual is intended primarily to train seed collectors, seed-plant managers, seed analysts, and nursery managers, but it can serve as a resource for any training course in forest regeneration. It includes both temperate and tropical tree species of all intended uses. The manual covers the following topics: seed biology, seed collection, seed handling, seed-quality...

  18. SSC-K code user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Y.M.; Lee, Y.B.; Chang, W.P.; Hahn, D

    2000-07-01

    , constitutive laws and correlations required to execute the SSC-K are described. It is noted that the user's manual will be revised later with the further development of SSC-K.

  19. BRS Mini-Manual: A Brief Guide to User Commands.

    Science.gov (United States)

    King, Kathryn L.

    This abridged adaptation from the BRS System Reference Manual identifies and briefly explains the meanings and functions of the logical operators used to retrieve information from the BRS system. (FM)

  20. Sandia National Laboratories environmental fluid dynamics code. Marine Hydrokinetic Module User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    James, Scott Carlton; Roberts, Jesse D

    2014-03-01

    This document describes the marine hydrokinetic (MHK) input file and subroutines for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC), which is a combined hydrodynamic, sediment transport, and water quality model based on the Environmental Fluid Dynamics Code (EFDC) developed by John Hamrick [1], formerly sponsored by the U.S. Environmental Protection Agency, and now maintained by Tetra Tech, Inc. SNL-EFDC has been previously enhanced with the incorporation of the SEDZLJ sediment dynamics model developed by Ziegler, Lick, and Jones [2-4]. SNL-EFDC has also been upgraded to more accurately simulate algae growth with specific application to optimizing biomass in an open-channel raceway for biofuels production [5]. A detailed description of the input file containing data describing the MHK device/array is provided, along with a description of the MHK FORTRAN routine. Both a theoretical description of the MHK dynamics as incorporated into SNL-EFDC and an explanation of the source code are provided. This user manual is meant to be used in conjunction with the original EFDC [6] and sediment dynamics SNL-EFDC manuals [7]. Through this document, the authors provide information for users who wish to model the effects of an MHK device (or array of devices) on a flow system with EFDC and who also seek a clear understanding of the source code, which is available from staff in the Water Power Technologies Department at Sandia National Laboratories, Albuquerque, New Mexico.

  1. Risk Analysis and Decision-Making Software Package (1997 Version) User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Chung, F.T.H.

    1999-02-11

    This manual provides instructions for using the U.S. Department of Energy's (DOE) risk analysis and decision making software (1997 version) developed at BDM Petroleum Technologies by BDM-Oklahoma, Inc. for DOE, under contract No. DE-AC22-94PC91OO8. This software provides petroleum producers with a simple, handy tool for exploration and production risk analysis and decision-making. It collects useful risk analysis tools in one package so that users do not have to use several programs separately. The software is simple to use, but still provides many functions. The 1997 version of the software package includes the following tools: (1) Investment risk (Gambler's ruin) analysis; (2) Monte Carlo simulation; (3) Best fit for distribution functions; (4) Sample and rank correlation; (5) Enhanced oil recovery method screening; and (6) artificial neural network. This software package is subject to change. Suggestions and comments from users are welcome and will be considered for future modifications and enhancements of the software. Please check the opening screen of the software for the current contact information. In the future, more tools will be added to this software package. This manual includes instructions on how to use the software but does not attempt to fully explain the theory and algorithms used to create it.

  2. Prototype road weather performance management (RWPM) tool installation instructions & user manual.

    Science.gov (United States)

    2016-07-20

    This document is the Installation Instructions and User Manual for the Road Weather Performance Management (RW-PM) Tool developed for the project on Development and Demonstration of a Prototype Road Weather Performance Management Application that Use...

  3. National Solar Radiation Database 1991-2010 Update: User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S. M.

    2012-08-01

    This user's manual provides information on the updated 1991-2010 National Solar Radiation Database. Included are data format descriptions, data sources, production processes, and information about data uncertainty.

  4. Computer-based guidelines for concrete pavements : HIPERPAV III : user manual

    Science.gov (United States)

    2009-10-01

    This user manual provides guidance on how to use the new High PERformance PAVing (HIPERPAV) III software program for the analysis of early-age Portland cement concrete pavement (PCCP) behavior. HIPERPAV III includes several improvements over prev...

  5. User driven innovation in mobile technologies?

    DEFF Research Database (Denmark)

    Larsen, Casper Schultz; Koch, Christian

    2007-01-01

    Developing dedicated mobile technology systems for AEC demands the introduction of user driven innovation. A Danish research project collected international examples and user-experiences of mobile and handheld ICT in the building industry i.a. by reading off the functionality of the mobile...... technology systems relying on the concept of affordance. This paper examines how innovation processes mediate between user orientations and technology offers. There is a great potential for mobile handheld ICT-systems to support numerous work processes in the AEC-industry and this can be substantiated...... by systems already in function. Stories of prior business successes can be an important tool to ensure further innovative investments since lack of enterprise strategies is often an obstacle for innovation, especially user driven. Both small and large software houses develops dedicated software for coupling...

  6. System cost model user's manual, version 1.2

    International Nuclear Information System (INIS)

    Shropshire, D.

    1995-06-01

    The System Cost Model (SCM) was developed by Lockheed Martin Idaho Technologies in Idaho Falls, Idaho and MK-Environmental Services in San Francisco, California to support the Baseline Environmental Management Report sensitivity analysis for the U.S. Department of Energy (DOE). The SCM serves the needs of the entire DOE complex for treatment, storage, and disposal (TSD) of mixed low-level, low-level, and transuranic waste. The model can be used to evaluate total complex costs based on various configuration options or to evaluate site-specific options. The site-specific cost estimates are based on generic assumptions such as waste loads and densities, treatment processing schemes, existing facilities capacities and functions, storage and disposal requirements, schedules, and cost factors. The SCM allows customization of the data for detailed site-specific estimates. There are approximately forty TSD module designs that have been further customized to account for design differences for nonalpha, alpha, remote-handled, and transuranic wastes. The SCM generates cost profiles based on the model default parameters or customized user-defined input and also generates costs for transporting waste from generators to TSD sites

  7. Data acquisition for X ray microprobe. User's manual

    International Nuclear Information System (INIS)

    2002-01-01

    A modified data acquisition software for X ray microprobe was developed by the Physics Group, Instrumentation Unit, IAEA Laboratories at Seibersdorf, with assistance from M. Bogovac, Croatia. The software consists of data acquisition (scanning and calibration), automatic positioning and micro-movement of sample, data reduction and evaluation. The acquisition software was designed in order to support different measurement set-ups which are applied in low-energy nuclear physics. The modification was done in 1999-2000 under the projects Nuclear Spectrometry and Utilization of Particle Accelerators. The manual supersedes the first version entitled Microanalysis Data Acquisition and Control Program published under Computer Manual Series, No. 9 in 1996. The software described in this manual is freely available from the IAEA upon request

  8. Understanding active and passive users: the effects of an active user using normal, hard and unreliable technologies on user assessment of trust in technology and co-user.

    Science.gov (United States)

    Montague, Enid; Xu, Jie

    2012-07-01

    The aim of this study was to understand how passive users perceive the trustworthiness of active users and technologies under varying technological conditions. An experimental study was designed to vary the functioning of technologies that active users interacted with, while passive users observed these interactions. Active and passive user ratings of technology and partner were collected. Exploratory data analysis suggests that passive users developed perceptions of technologies based on the functioning of the technology and how the active user interacted with the technology. Findings from this research have implications for the design of technologies in environments where active and passive users interact with technologies in different ways. Future work in this area should explore interventions that lead to enhanced affective engagement and trust calibration. Published by Elsevier Ltd.

  9. Understanding Active and Passive Users: The Effects of an Active User Using Normal, Hard and Unreliable Technologies on User Assessment of Trust in Technology and Co-User

    Science.gov (United States)

    Montague, Enid; JieXu

    2011-01-01

    The aim of this study was to understand how passive users perceive the trustworthiness of active users and technologies under varying technological conditions. An experimental study was designed to vary the functioning of technologies that active users interacted with, while passive users observed these interactions. Active and passive user ratings of technology and partner were collected. Exploratory data analysis suggests that passive users developed perceptions of technologies based on the functioning of the technology and how the active user interacted with the technologies. Findings from this research have implications for the design of technologies in environments where active and passive users interact with technologies in different ways. Future work in this area should explore interventions that lead to enhanced affective engagement and trust calibration. PMID:22192788

  10. ASTROS Enhancements. Volume I- ASTRO User’s Manual

    Science.gov (United States)

    1993-03-01

    34coded" in the MAPOL language just as a NASTRAN rigid format is coded in the DMAP ’language." As with the NASTRAN Rigid Formats, the majority of users...allow the user of NASTRAN to perform certain predefined analyses, a set of "rigid formats" or DMAP algorithms were written, alleviating the user of... NASTRAN BULK DATA ....... 152 4.7. BULK DATA DESCRIPTIONS ......................... 153 5. ASTROS OUTPUT FEATURES .................... 355 5.1

  11. DAKOTA JAGUAR 2.1 user's Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Brian M.; Lefantzi, Sophia; Chan, Ethan; Ruthruff, Joseph R.

    2011-06-01

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary for a user to use JAGUAR.

  12. HORECA. Hoger onderwijs reactor elementary core analysis system. User's manual

    International Nuclear Information System (INIS)

    Battum, E. van; Serov, I.V.

    1993-07-01

    HORECA is developed at IRI Delft for quick analysis of power distribution, burnup and safety for the HOR. It can be used for the manual search of a better loading of the reactor. HORECA is based on the Penn State Fuel Management Package and uses the MCRAC code included in this package as a calculation engine. (orig./HP)

  13. The microcomputer scientific software series 6: ECOPHYS user's manual.

    Science.gov (United States)

    George E. Host; H. Michael Rauscher; J. G. Isebrands; Donald I. Dickmann; Richard E. Dickson; Thomas R. Crow; D.A. Michael

    1990-01-01

    ECOPHYS is an ecophysiological whole-tree growth process model designed to simulate the growth of poplar in the establishment year. This microcomputer-based model may be used to test the influence of genetically determined physiological or morphological attributes on plant growth. This manual describes the installation, file structures, and operational procedures for...

  14. User manual of FRAPCON-I computer code

    International Nuclear Information System (INIS)

    Chia, C.T.

    1985-11-01

    The manual for using the FRAPCON-I code implanted by Reactor Department of Brazilian-CNEN to convert IBM FORTRAN in FORTRAN 77 of Honeywell Bull computer is presented. The FRAPCON-I code describes the behaviour of fuel rods of PWR type reactors at stationary state during long periods of burnup. (M.C.K.)

  15. Railroad Classification Yard Technology Manual: Volume II : Yard Computer Systems

    Science.gov (United States)

    1981-08-01

    This volume (Volume II) of the Railroad Classification Yard Technology Manual documents the railroad classification yard computer systems methodology. The subjects covered are: functional description of process control and inventory computer systems,...

  16. National Radiobiology Archives Distributed Access User's Manual, Version 1. 1

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.K.; Prather, J.C.; Ligotke, E.K.; Watson, C.R.

    1992-06-01

    This supplement to the NRA Distributed Access User's manual (PNL-7877), November 1991, describes installation and use of Version 1.1 of the software package; this is not a replacement of the previous manual. Version 1.1 of the NRA Distributed Access Package is a maintenance release. It eliminates several bugs, and includes a few new features which are described in this manual. Although the appearance of some menu screens has changed, we are confident that the Version 1.0 User's Manual will provide an adequate introduction to the system. Users who are unfamiliar with Version 1.0 may wish to experiment with that version before moving on to Version 1.1.

  17. Central Data Processing System (CDPS) users manual: solar heating and cooling program

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The Central Data Processing System (CDPS) provides the software and data base management system required to assess the performance of solar heating and cooling systems installed at multiple remote sites. The instrumentation data associated with these systems is collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. The CDPS consists of three major elements: communication interface computer, central data processing computer, and performance evaluation data base. The CDPS Users Manual identifies users of the performance data base, procedures for operation, and guidelines for software maintenance. The manual also defines the output capabilities of the CDPS in support of external users of the system.

  18. A User's Manual for the NRN Shield Design Method

    International Nuclear Information System (INIS)

    Hjaerne, Leif; Aalto, E.; Fraeki, R.; Leimdoerfer, M.; Lindblom, K.; Linde, S.; Malen, K.; Nyman, K.

    1964-06-01

    This report describes a code system for bulk shield design written for a Ferranti Mercury computer and is intended as a manual for those using the programme. The idea of an 'almost direct' flux, as in the removal theory serves as a basis for further development of the theory. An important aspiration has been to minimize the manual work of administering the codes. The codes concerned are: NECO, computing necessary group constants from primary data, REFUSE and REBOX (infinite plane or cylindrical, and box geometry, respectively), computing removal flux, NEDI a one-dimensional (plane, spherical, cylindrical) diffusion multigroup code, and SALOME a Monte Carlo code computing the gamma flux. Output tapes are constructed for direct use as input tapes, when required, for a following code

  19. High-level neutron coincidence counter (HLNCC): users' manual

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1979-06-01

    This manual describes the portable High-Level Neutron Coincidence Counter (HLNCC) developed at the Los Alamos Scientific Laboratory (LASL) for the assay of plutonium, particularly by inspectors of the International Atomic Energy Agency (IAEA). The counter is designed for the measurement of the effective 240 Pu mass in plutonium samples which may have a high plutonium content. The following topics are discussed: principle of operation, description of the system, operating procedures, and applications

  20. 3D-CDTI User Manual v2.1

    Science.gov (United States)

    Johnson, Walter; Battiste, Vernol

    2016-01-01

    The 3D-Cockpit Display of Traffic Information (3D-CDTI) is a flight deck tool that presents aircrew with: proximal traffic aircraft location, their current status and flight plan data; strategic conflict detection and alerting; automated conflict resolution strategies; the facility to graphically plan manual route changes; time-based, in-trail spacing on approach. The CDTI is manipulated via a touchpad on the flight deck, and by mouse when presented as part of a desktop flight simulator.

  1. Vault Safety and Inventory System users manual, PRIME 2350. Revision 1

    International Nuclear Information System (INIS)

    Downey, N.J.

    1994-01-01

    This revision is issued to request review of the attached document: VSIS User Manual, PRIME 2350, which provides user information for the operation of the VSIS (Vault Safety and Inventory System). It describes operational aspects of Prime 2350 minicomputer and vault data acquisition equipment. It also describes the User's Main Menu and menu functions, including REPORTS. Also, system procedures for the Prime 2350 minicomputer are covered

  2. Transportation Routing Analysis Geographic Information System (TRAGIS) User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, PE

    2003-09-18

    The Transportation Routing Analysis Geographic Information System (TRAGIS) model is used to calculate highway, rail, or waterway routes within the United States. TRAGIS is a client-server application with the user interface and map data files residing on the user's personal computer and the routing engine and network data files on a network server. The user's manual provides documentation on installation and the use of the many features of the model.

  3. INES: The International Nuclear Event Scale user's manual

    International Nuclear Information System (INIS)

    1992-09-01

    The revised and extended addition of the International Nuclear Event Scale is presented. The manual is comprised of four parts. Part 1 contains a summary of the basis of the scale and of the procedure to be used for rating events. Part 2 contains the detailed guidance required to rate events in terms of off-site and on-site impact. These two parts are applicable to all nuclear facilities. Parts 3 and 4 contain the detailed guidance required to rate events in terms of defence in depth for reactors and other facilities, respectively. 5 figs, 2 tabs

  4. A user's manual for managing database system of tensile property

    International Nuclear Information System (INIS)

    Ryu, Woo Seok; Park, S. J.; Kim, D. H.; Jun, I.

    2003-06-01

    This manual is written for the management and maintenance of the tensile database system for managing the tensile property test data. The data base constructed the data produced from tensile property test can increase the application of test results. Also, we can get easily the basic data from database when we prepare the new experiment and can produce better result by compare the previous data. To develop the database we must analyze and design carefully application and after that, we can offer the best quality to customers various requirements. The tensile database system was developed by internet method using Java, PL/SQL, JSP(Java Server Pages) tool

  5. UQTk Version 3.0.3 User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, Khachik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chowdhary, Kamaljit Singh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Castorena, Sarah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); De Bord, Sarah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Debusschere, Bert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.0.3 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sen- sitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

  6. VERA version 1.3 user manual and documentation

    Energy Technology Data Exchange (ETDEWEB)

    Quist, Daniel Allen [Los Alamos National Laboratory

    2011-01-06

    VERA is a visualization tool for analyzing compiled executables. It is built on an OpenGL framework with the wxWidgets package. The current version is only for use with the Windows XP and higher operating system. This manual will detail the steps that are needed to run and analyze a sample of malware. VERA is meant to be used in conjunction with the Ether hypervisor framework. Ether is a set of patches made to the Xen hypervisor that allows for covert analysis of running processes. It makes an ideal environment to monitor and trace running programs. More information is available from the Ether website.

  7. Water Security Toolkit User Manual Version 1.2.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A.; Siirola, John Daniel; Hart, David; Hart, William Eugene; Phillips, Cynthia Ann; Haxton, Terranna; Murray, Regan; Janke, Robert; Taxon, Thomas; Laird, Carl; Seth, Arpan; Hackebeil, Gabriel; McGee, Shawn; Mann, Angelica

    2014-08-01

    The Water Security Toolkit (WST) is a suite of open source software tools that can be used by water utilities to create response strategies to reduce the impact of contamination in a water distribution network . WST includes hydraulic and water quality modeling software , optimizati on methodologies , and visualization tools to identify: (1) sensor locations to detect contamination, (2) locations in the network in which the contamination was introduced, (3) hydrants to remove contaminated water from the distribution system, (4) locations in the network to inject decontamination agents to inactivate, remove, or destroy contaminants, (5) locations in the network to take grab sample s to help identify the source of contamination and (6) valves to close in order to isolate contaminate d areas of the network. This user manual describes the different components of WST , along w ith examples and case studies. License Notice The Water Security Toolkit (WST) v.1.2 Copyright c 2012 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of this work by or on behalf of the U.S. government. This software is distributed under the Revised BSD License (see below). In addition, WST leverages a variety of third-party software packages, which have separate licensing policies: Acro Revised BSD License argparse Python Software Foundation License Boost Boost Software License Coopr Revised BSD License Coverage BSD License Distribute Python Software Foundation License / Zope Public License EPANET Public Domain EPANET-ERD Revised BSD License EPANET-MSX GNU Lesser General Public License (LGPL) v.3 gcovr Revised BSD License GRASP AT&T Commercial License for noncommercial use; includes randomsample and sideconstraints executable files LZMA SDK Public Domain nose GNU Lesser General Public License (LGPL) v.2.1 ordereddict MIT License pip MIT License PLY BSD License PyEPANET Revised BSD License Pyro MIT License PyUtilib Revised BSD License Py

  8. User Manuals for a Primary Care Electronic Medical Record System: A Mixed Methods Study of User- and Vendor-Generated Documents

    Science.gov (United States)

    Dow, Rustam; Barnsley, Jan; Tu, Karen; Domb, Sharon; Jadad, Alejandro R.; Lemieux-Charles, Louise

    2015-01-01

    Research problem Tutorials and user manuals are important forms of impersonal support for using software applications including electronic medical records (EMRs). Differences between user- and vendor documentation may indicate support needs, which are not sufficiently addressed by the official documentation, and reveal new elements that may inform the design of tutorials and user manuals. Research question What are the differences between user-generated tutorials and manuals for an EMR and the official user manual from the software vendor? Literature review Effective design of tutorials and user manuals requires careful packaging of information, balance between declarative and procedural texts, an action and task-oriented approach, support for error recognition and recovery, and effective use of visual elements. No previous research compared these elements between formal and informal documents. Methodology We conducted an mixed methods study. Seven tutorials and two manuals for an EMR were collected from three family health teams and compared with the official user manual from the software vendor. Documents were qualitatively analyzed using a framework analysis approach in relation to the principles of technical documentation described above. Subsets of the data were quantitatively analyzed using cross-tabulation to compare the types of error information and visual cues in screen captures between user- and vendor-generated manuals. Results and discussion The user-developed tutorials and manuals differed from the vendor-developed manual in that they contained mostly procedural and not declarative information; were customized to the specific workflow, user roles, and patient characteristics; contained more error information related to work processes than to software usage; and used explicit visual cues on screen captures to help users identify window elements. These findings imply that to support EMR implementation, tutorials and manuals need to be customized and

  9. User Manuals for a Primary Care Electronic Medical Record System: A Mixed Methods Study of User- and Vendor-Generated Documents.

    Science.gov (United States)

    Shachak, Aviv; Dow, Rustam; Barnsley, Jan; Tu, Karen; Domb, Sharon; Jadad, Alejandro R; Lemieux-Charles, Louise

    2013-06-04

    Tutorials and user manuals are important forms of impersonal support for using software applications including electronic medical records (EMRs). Differences between user- and vendor documentation may indicate support needs, which are not sufficiently addressed by the official documentation, and reveal new elements that may inform the design of tutorials and user manuals. What are the differences between user-generated tutorials and manuals for an EMR and the official user manual from the software vendor? Effective design of tutorials and user manuals requires careful packaging of information, balance between declarative and procedural texts, an action and task-oriented approach, support for error recognition and recovery, and effective use of visual elements. No previous research compared these elements between formal and informal documents. We conducted an mixed methods study. Seven tutorials and two manuals for an EMR were collected from three family health teams and compared with the official user manual from the software vendor. Documents were qualitatively analyzed using a framework analysis approach in relation to the principles of technical documentation described above. Subsets of the data were quantitatively analyzed using cross-tabulation to compare the types of error information and visual cues in screen captures between user- and vendor-generated manuals. The user-developed tutorials and manuals differed from the vendor-developed manual in that they contained mostly procedural and not declarative information; were customized to the specific workflow, user roles, and patient characteristics; contained more error information related to work processes than to software usage; and used explicit visual cues on screen captures to help users identify window elements. These findings imply that to support EMR implementation, tutorials and manuals need to be customized and adapted to specific organizational contexts and workflows. The main limitation of the study

  10. DAKOTA JAGUAR 3.0 user's manual.

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Brian M.; Bauman, Lara E; Chan, Ethan; Lefantzi, Sophia; Ruthruff, Joseph.

    2013-05-01

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary to use JAGUAR.

  11. USERS MANUAL: LANDFILL GAS EMISSIONS MODEL - VERSION 2.0

    Science.gov (United States)

    The document is a user's guide for a computer model, Version 2.0 of the Landfill Gas Emissions Model (LandGEM), for estimating air pollution emissions from municipal solid waste (MSW) landfills. The model can be used to estimate emission rates for methane, carbon dioxide, nonmet...

  12. User's manual for the FLORA equilibrium and stability code

    International Nuclear Information System (INIS)

    Freis, R.P.; Cohen, B.I.

    1985-01-01

    This document provides a user's guide to the content and use of the two-dimensional axisymmetric equilibrium and stability code FLORA. FLORA addresses the low-frequency MHD stability of long-thin axisymmetric tandem mirror systems with finite pressure and finite-larmor-radius effects. FLORA solves an initial-value problem for interchange, rotational, and ballooning stability

  13. Battery Technology Life Verification Test Manual Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen

    2012-12-01

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  14. CD-ROM Technology: A Manual for Librarians and Educators.

    Science.gov (United States)

    Mambretti, Catherine

    The maturity of CD-ROM technology now shows a dramatic change in the way librarians and teachers do their jobs. Among their biggest challenges are deciding on equipment requirements and managing the disk collection. This manual is a step-by-step guide to making the most of CD-ROM technology in schools and libraries--from the acquisition of…

  15. Load research manual. Volume 3. Load research for advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  16. INTERLINE, a railroad routing model: program description and user's manual

    International Nuclear Information System (INIS)

    Peterson, B.E.

    1985-11-01

    INTERLINE is an interactive computer program that finds likely routes for shipments over the US railroad system. It is based on a shortest path algorithm modified both to reflect the nature of railroad company operations and to accommodate computer resource limitations in dealing with a large transportation network. The first section of the report discusses the nature of railroad operations and routing practices in the United States, including the tendency to concentrate traffic on a limited number of mainlines, the competition for traffic by different companies operating in the same corridors, and the tendency of originating carriers to retain traffic on their systems before transferring it to terminating carriers. The theoretical foundation and operation of shortest path algorithms are described, as well as the techniques used to simulate actual operating practices within this framework. The second section is a user's guide that describes the program operation and data structures, program features, and user access. 11 refs., 11 figs

  17. CUBIT mesh generation environment. Volume 1: Users manual

    Energy Technology Data Exchange (ETDEWEB)

    Blacker, T.D.; Bohnhoff, W.J.; Edwards, T.L. [and others

    1994-05-01

    The CUBIT mesh generation environment is a two- and three-dimensional finite element mesh generation tool which is being developed to pursue the goal of robust and unattended mesh generation--effectively automating the generation of quadrilateral and hexahedral elements. It is a solid-modeler based preprocessor that meshes volume and surface solid models for finite element analysis. A combination of techniques including paving, mapping, sweeping, and various other algorithms being developed are available for discretizing the geometry into a finite element mesh. CUBIT also features boundary layer meshing specifically designed for fluid flow problems. Boundary conditions can be applied to the mesh through the geometry and appropriate files for analysis generated. CUBIT is specifically designed to reduce the time required to create all-quadrilateral and all-hexahedral meshes. This manual is designed to serve as a reference and guide to creating finite element models in the CUBIT environment.

  18. HANSF 1.3 user's manual

    Energy Technology Data Exchange (ETDEWEB)

    PLYS, M.G.

    1999-05-21

    The HANSF analysis tool is an integrated model considering phenomena inside a multi-canister overpack (MCO) spent nuclear fuel container such as fuel oxidation, convective and radiative heat transfer, and the potential for fission product release. It may be used for all phases of spent fuel disposition including cold vacuum drying, transportation, and storage. This manual reflects HANSF version 1.3, a revised version of version 1.2a. HANSF 1.3 was written to add new models for axial nodalization, add new features for ease of usage, and correct errors. HANSF 1.3 is intended for use on personal computers such as IBM-compatible machines with Intel processors running under a DOS-type operating system. HANSF 1.3 is known to compile under Lahey TI and Digital Visual FORTRAN, Version 6.0, but this does not preclude operation in other environments.

  19. FASTBUS Diagnostic Language users manual. Version 3(74)

    Energy Technology Data Exchange (ETDEWEB)

    Lesny, D.

    1983-07-01

    FASTBUS Diagnostic Language (FDL) is an interactive interpretive language designed to aid the engineer or physicist/user in the testing and debugging of FASTBUS modules and systems. Since FASTBUS systems involve a variety of devices and data paths, it is frequently more efficient to utilize a high-level language system such as FDL for diagnostics, rather than to develop device-specific programs. FDL can also be used to a limited extent for both device control and data acquisition.

  20. e+e- event generator EPOCS user's manual

    International Nuclear Information System (INIS)

    Kato, Kiyoshi; Munehisa, Tomo.

    1987-07-01

    EPOCS(Electron POsitron Collision Simulator) is a Monte-Carlo event generator for high energy e + e - annihilation. This program generates events based on the standard model, i.e., quantum chromodynamics (QCD) and electro-weak theory. It works at the center-of-mass energy below W + W - production, i.e., in the energy region of TRISTAN, SLC and LEP. For these high energy machines one of the important subjects is the exploration for the top quark. The production and hadronization of the top quark is included in EPOCS. Besides the top quark, we expect 'new' physics in this high energy region. EPOCS has enough flexibility for users to cope with a new idea. Users can register a new particle, modify the built-in particle data, define new primary interactions and so on. The event generator has a number of parameters, both physical parameters and control parameters. Users can control most of these parameters in EPOCS at will. (author)

  1. 5AH10 Nickel-Cadmium (NiCad) Battery Maintenance Tester: User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Justice, L.B.; Wakefield-Reyes, C.

    1992-08-01

    This manual is a user's guide to the SE3253 and SE3254 versions of the 5AH10 Battery Maintenance Tester, a charger/discharger and test system for the 24-Cell 5-Ah Nickel-Cadmium Battery Pack. The manual provides information on rack equipment, power, communications, theory of operations, user interface, and operating procedures. Copies of users manuals for all equipment comprising the Battery Maintenance Tester are included as appendices.

  2. Pain, fatigue, function and participation among long-term manual wheelchair users partnered with a mobility service dog.

    Science.gov (United States)

    Vincent, Claude; Gagnon, Dany H; Dumont, Frédéric

    2017-11-20

    To assess the effects of a mobility service dog (MSD) on pain, fatigue, wheelchair-related functional tasks, participation and satisfaction among manual wheelchair users over a nine-month period. A longitudinal study with repeated assessment times before and three, six and nine months after intervention was achieved. Intervention consisted in partnering each participant with a MSD. The setting is a well-established provincial service dog training school and participants homes. A convenience sample of 24 long-term manual wheelchair users with a spinal cord injury was involved. Outcome measures were: Wheelchair User's Shoulder Pain Index (WUSPI), Rate of Perceived Exertion (RPE), vitality scale from the SF-36, grip strength, Wheelchair Skills Test (WST), Canadian Occupational Performance Measure (COPM), Reintegration to Normal Living Index (RNLI), Life Space Assessment, Psychosocial Impact of Assistive Devices Scale (PIADS) and Quebec User Evaluation of Satisfaction with assistive Technology (QUEST 2.0). Shoulder and wrist pain as well as fatigue decreased significantly over time with the use of a MSD as evidenced by scores from WUSPI, RPE and SF-36 (feeling less worn out). Manual wheelchair propulsion skills (steep slopes, soft surfaces and thresholds) improved significantly over time as confirmed by the WST. Participation increased significantly over time as revealed by the COPM (for five occupations) and the RNLI (for five items). Satisfaction with the MSD was high over time (QUEST: nine items) and with a high positive psychosocial impact (PIADS: 10 items). MSD represents a valuable mobility assistive technology option for manual wheelchair users. IMPLICATIONS FOR REHABILITATION   For manual wheelchair users partenered with mobility service dog  • Shoulder pain and fatigue significantly decreased and continued to decrease between the third and sixth month and the ninth month.   • Performance with propelling the wheelchair up steep slopes

  3. Non-RF Chain of Custody Item Monitor (CoCIM) User Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Brotz, Jay Kristoffer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wade, James Rokwel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schwartz, Steven Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    This User Manual contains a description of the wired and infrared (IR) variants of the Chain of Custody Item Monitor (CoCIM), the Coordinator for reading stored messages, and the inspector Message Viewer user interface (UI) software, as well as instructions for use. This manual does not include descriptions or use instructions for the radio frequency (RF) variant of the CoCIM. The intended audience is planners and participants in treaty verification exercises where chain of custody (CoC) elements are required.

  4. Simulation Time History and Access Time History Programs (Users Manual)

    Science.gov (United States)

    1993-02-01

    or expansion of these programa will depend not only on theoretical and technological improvements, but will rely heavily on the requirements of the...COIO4NTS INTEGER RUNNO, ABC !! CHARACTER’ SO AS *---------------------------------------------------------------------------------------------- * Open

  5. MOVIE.LASL version 1.0 user's manual

    International Nuclear Information System (INIS)

    Brown, B.E.

    1976-09-01

    MOVIE.LASL is an interactive Fortran program for display and animation both of finite-element models and of the results of their analysis. The program runs on the Los Alamos Scientific Laboratory's LTSS system. The user may manipulate the model (rotate, translate, zoom in, etc.), specify colors for the background and the different element groups, and select various display devices. Both line drawings and continuous-tone color images can be produced. Single frames or animated movie sequences are also available and can be displayed on any of the output devices

  6. Flexible Receiver Radiation Detection System (FRRDS) Users Manual

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1996-01-01

    The Flexible Receiver Radiation Detection System (FRRDS) comprises a control computer, a remote data acquisition subsystem, and three hyperpure germanium gamma radiation detectors. The scope of this document is the description of various steps for the orderly start-up, use, and shutdown of the FRRDS. Only those items necessary for these oprations are included. This document is a companion to WHC-SD-W151-UM-002, 'Operating Instructions for the 42 Inch Flexible Receiver,' WHC-SD-W151-UM-003, 'Operating Instructions for the 4-6 Inch Flexible Receiver,' and the vendor supplied system users guide (Ref. 6)

  7. User's manual for the Composite HTGR Analysis Program (CHAP-1)

    International Nuclear Information System (INIS)

    Gilbert, J.S.; Secker, P.A. Jr.; Vigil, J.C.; Wecksung, M.J.; Willcutt, G.J.E. Jr.

    1977-03-01

    CHAP-1 is the first release version of an HTGR overall plant simulation program with both steady-state and transient solution capabilities. It consists of a model-independent systems analysis program and a collection of linked modules, each representing one or more components of the HTGR plant. Detailed instructions on the operation of the code and detailed descriptions of the HTGR model are provided. Information is also provided to allow the user to easily incorporate additional component modules, to modify or replace existing modules, or to incorporate a completely new simulation model into the CHAP systems analysis framework

  8. The Weatherization Assistant User's Manual (Version 8.9)

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, Michael B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Malhotra, Mini [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ternes, Mark P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The Weatherization Assistant is a Windows-based energy audit software tool that was developed by Oak Ridge National Laboratory (ORNL) to help states and their local weatherization agencies implement the U.S. Department of Energy (DOE) Weatherization Assistance Program. The Weatherization Assistant is an umbrella program for two individual energy audits or measure selection programs: the National Energy Audit Tool (NEAT) for site-built single-family homes and the Manufactured Home Energy Audit (MHEA) for mobile homes. The Weatherization Assistant User's Manual documents the operation of the user interface for Version 8.9 of the software. This includes how to install and setup the software, navigate through the program, and initiate an energy audit. All of the user interface forms associated with the software and the data fields on these forms are described in detail. The manual is intended to be a training manual for new users of the Weatherization Assistant and as a reference manual for experienced users.

  9. CONPAS 1.0 (CONtainment Performance Analysis System). User's manual

    International Nuclear Information System (INIS)

    Ahn, Kwang Il; Jin, Young Ho

    1996-04-01

    CONPAS (CONtainment Performance Analysis System) is a verified computer code package to integrate the numerical, graphical, and results-operation aspects of Level 2 probabilistic safety assessments (PSA) for nuclear power plants automatically under a PC window environment. Compared with the existing DOS-based computer codes for Level 2 PSA, the most important merit of the window-based computer code is that user can easily describe and quantify the accident progression models, and manipulate the resultant outputs in a variety of ways. As a main logic for accident progression analysis, CONPAS employs a concept of the small containment phenomenological event tree (CPET) helpful to trace out visually individual accident progressions and of the large supporting event tree (LSET) for its detailed quantification. For the integrated analysis of Level 2 PSA, the code utilizes four distinct, but closely related modules; (1) ET Editor for construction of several event tree models describing the accident progressions, (2) Computer for quantification of the constructed event trees and graphical display of the resultant outputs, (3) Text Editor for preparation of input decks for quanification and utilization of calculational results, and (4) Mechanistic Code Plotter for utilization of results obtained from severe accident analysis codes. Compared with other existing computer codes for Level 2 PSA, the CONPAS code provides several advanced features: computational aspects including systematic uncertainty analysis, importance analysis, sensitivity analysis and data interpretation, reporting aspects including tabling and graphic as well as user-friend interface. 10 refs. (Author) .new

  10. DeCART v1.2 User's Manual

    International Nuclear Information System (INIS)

    Cho, J. Y.; Kim, K. S.; Kim, H. Y.; Lee, C. C.; Zee, S. Q; Joo, H. G.

    2007-07-01

    DeCART (Deterministic Core Analysis based on Ray Tracing) is a whole core neutron transport code capable of direct subpin level flux calculation at power generating conditions. It does not require a priori homogenization nor group condensation needed in conventional reactor physics calculations. The depletion and transient calculation capabilities are also available. This manual serves as a self-sufficient guide to use the code. First of all, the various features of the code are explained which encompass various modeling options as well as the basic calculation functionalities. The instructions for running the code are also given with a description of the output files generated. Next, the underlying concepts and principles of preparing a DeCART model for a problem under consideration are presented. Each part of the input needed to specify the geometry, material composition, thermal operating condition, program execution control parameters are explained with examples. The descriptions of all the input cards are then followed. Finally, various sample model inputs ranging from a simple 2D pin cell to a realistic 3D core problem, steady-state to transient problems, and from rectangular to hexagonal core problems are presented

  11. User manual of nuclide dispersion in phreatic aquifers model

    International Nuclear Information System (INIS)

    Rives, D.E.

    1999-01-01

    The Nuclide Dispersion in Phreatic Aquifers (DRAF) model was developed in the 'Division Estudios Ambientales' of the 'Gerencia de Seguridad Radiologica y Nuclear, Comision Nacional de Energia Atomica' (1991), for the Safety Assessment of Near Surface Radioactive Waste Disposal Facilities. Afterwards, it was modified in several opportunities, adapting it to a number of application conditions. The 'Manual del usuario del codigo DRAF' here presented is a reference document for the use of the last three versions of the code developed for the 'Autoridad Regulatoria Nuclear' between 1995 and 1996. The DRAF model solves the three dimension's solute transport equation for porous media by the finite differences method. It takes into account the advection, dispersion, radioactive decay, and retention in the solid matrix processes, and has multiple possibilities for the source term. There are three versions of the model, two of them for the saturated zone and one for the unsaturated zone. All the versions have been verified in different conditions, and have been applied in exercises of the International Atomic Energy Agency and also in real cases. (author)

  12. EOSPAC user's manual: version 6.2

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, David A [Los Alamos National Laboratory

    2011-01-05

    The EOSPAC utility package is a collection of interface routines, which can be used to access the SESAME data library and perform various data adjustments and interpolations on the SESAME data. The SESAME data library contains both thermodynamic (e.g., equation of state) and transport coefficients (e.g., opacity and conductivity), and it is described in reference 1. Note, for simplicity, the term EOS (equation of state) used herein includes both thermodynamic variables and transport coefficients. The EOSPAC utility package is designed to be used by physics codes (henceforth 'host codes') written in multiple languages and on multiple platforms. The remainder of this manual is organized into several sections. Section 2 provides a general overview of basic theory and models implemented within EOSPAC. Section 3 provides a general overview of how to use the EOSPAC interface library. Section 4 discusses conventions such as data organization and routine names. Sections 5 through 7 describe the public interfaces of EOSPAC in detail. Section 8 provides details related to some selected numerical features of EOSPAC. Section 9 gives examples for using the interface routines described in sections 5 through 7. Section 10 provides technical support contact information. Section 11 contains a brief set of acknowledgments. Finally, section 12 contains a list of referenced documents. Appendices list the Table Type Definitions, the Option Flag Definitions, the Information Flag Definitions, and the Error Code Definitions.

  13. CORCON-MOD3: An integrated computer model for analysis of molten core-concrete interactions. User`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.R.; Gardner, D.R.; Brockmann, J.E.; Griffith, R.O. [Sandia National Labs., Albuquerque, NM (United States)

    1993-10-01

    The CORCON-Mod3 computer code was developed to mechanistically model the important core-concrete interaction phenomena, including those phenomena relevant to the assessment of containment failure and radionuclide release. The code can be applied to a wide range of severe accident scenarios and reactor plants. The code represents the current state of the art for simulating core debris interactions with concrete. This document comprises the user`s manual and gives a brief description of the models and the assumptions and limitations in the code. Also discussed are the input parameters and the code output. Two sample problems are also given.

  14. Feedback from Users of Electronic Chart Technology

    Science.gov (United States)

    Edmonds, David

    This paper was presented at the Third Electronic Chart Technology Conference, SASMEX International, Brighton, 22-23 April 1998.Electronic Chart Systems have been used by mariners across the entire user spectrum without official standards or specifications for 10 years. In the last three years, the debate has centred on chart data and the merits of differing cartographic technologies. There is little new that can be said for or against raster or vector technologies except what actual users might say to support the requirements of their day-to-day operations. Today, we approach a new stage as ENCs start to become available but only for limited areas. This in turn means that ENCs are capable of supporting the only approved electronic chart system, ECDIS, in a limited way. There is an urgent need for alternatives to ECDIS to cover those areas where ENCs will continue to be unavailable for the foreseeable future. This paper therefore summarizes a feedback from users of RCDS and ECDIS-type systems to demonstrate the benefits which can be secured from official recognition of RCDS systems as the legal equivalent of paper chart navigation.

  15. Radioactive Materials Packaging (RAMPAC) Radioactive Materials Incident Report (RMIR). RAMTEMP users manual

    International Nuclear Information System (INIS)

    Tyron-Hopko, A.K.; Driscoll, K.L.

    1985-10-01

    The purpose of this document is to familiarize the potential user with RadioActive Materials PACkaging (RAMPAC), Radioactive Materials Incident Report (RMIR), and RAMTEMP databases. RAMTEMP is a minor image of RAMPAC. This reference document will enable the user to access and obtain reports from databases while in an interactive mode. This manual will be revised as necessary to reflect enhancements made to the system

  16. Elemental ABAREX -- a user's manual.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.

    1999-05-26

    ELEMENTAL ABAREX is an extended version of the spherical optical-statistical model code ABAREX, designed for the interpretation of neutron interactions with elemental targets consisting of up to ten isotopes. The contributions from each of the isotopes of the element are explicitly dealt with, and combined for comparison with the elemental observables. Calculations and statistical fitting of experimental data are considered. The code is written in FORTRAN-77 and arranged for use on the IBM-compatible personal computer (PC), but it should operate effectively on a number of other systems, particularly VAX/VMS and IBM work stations. Effort is taken to make the code user friendly. With this document a reasonably skilled individual should become fluent with the use of the code in a brief period of time.

  17. The TESS [Tandem Experiment Simulation Studies] computer code user's manual

    International Nuclear Information System (INIS)

    Procassini, R.J.

    1990-01-01

    TESS (Tandem Experiment Simulation Studies) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the confinement and transport of plasma in a magnetic mirror device, including tandem mirror configurations. Mirror plasmas may be modeled in a system which includes an applied magnetic field and/or a self-consistent or applied electrostatic potential. The PIC code TESS is similar to the PIC code DIPSI (Direct Implicit Plasma Surface Interactions) which is designed to study plasma transport to and interaction with a solid surface. The codes TESS and DIPSI are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 10 refs., 2 tabs

  18. User manual for PACTOLUS: a code for computing power costs

    International Nuclear Information System (INIS)

    Huber, H.D.; Bloomster, C.H.

    1979-02-01

    PACTOLUS is a computer code for calculating the cost of generating electricity. Through appropriate definition of the input data, PACTOLUS can calculate the cost of generating electricity from a wide variety of power plants, including nuclear, fossil, geothermal, solar, and other types of advanced energy systems. The purpose of PACTOLUS is to develop cash flows and calculate the unit busbar power cost (mills/kWh) over the entire life of a power plant. The cash flow information is calculated by two principal models: the Fuel Model and the Discounted Cash Flow Model. The Fuel Model is an engineering cost model which calculates the cash flow for the fuel cycle costs over the project lifetime based on input data defining the fuel material requirements, the unit costs of fuel materials and processes, the process lead and lag times, and the schedule of the capacity factor for the plant. For nuclear plants, the Fuel Model calculates the cash flow for the entire nuclear fuel cycle. For fossil plants, the Fuel Model calculates the cash flow for the fossil fuel purchases. The Discounted Cash Flow Model combines the fuel costs generated by the Fuel Model with input data on the capital costs, capital structure, licensing time, construction time, rates of return on capital, tax rates, operating costs, and depreciation method of the plant to calculate the cash flow for the entire lifetime of the project. The financial and tax structure for both investor-owned utilities and municipal utilities can be simulated through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. The Discounted Cash Flow Model uses the principal that the present worth of the revenues will be equal to the present worth of the expenses including the return on investment over the economic life of the project. This manual explains how to prepare the input data, execute cases, and interpret the output results with the updated version of PACTOLUS. 11 figures, 2 tables

  19. User manual for PACTOLUS: a code for computing power costs.

    Energy Technology Data Exchange (ETDEWEB)

    Huber, H.D.; Bloomster, C.H.

    1979-02-01

    PACTOLUS is a computer code for calculating the cost of generating electricity. Through appropriate definition of the input data, PACTOLUS can calculate the cost of generating electricity from a wide variety of power plants, including nuclear, fossil, geothermal, solar, and other types of advanced energy systems. The purpose of PACTOLUS is to develop cash flows and calculate the unit busbar power cost (mills/kWh) over the entire life of a power plant. The cash flow information is calculated by two principal models: the Fuel Model and the Discounted Cash Flow Model. The Fuel Model is an engineering cost model which calculates the cash flow for the fuel cycle costs over the project lifetime based on input data defining the fuel material requirements, the unit costs of fuel materials and processes, the process lead and lag times, and the schedule of the capacity factor for the plant. For nuclear plants, the Fuel Model calculates the cash flow for the entire nuclear fuel cycle. For fossil plants, the Fuel Model calculates the cash flow for the fossil fuel purchases. The Discounted Cash Flow Model combines the fuel costs generated by the Fuel Model with input data on the capital costs, capital structure, licensing time, construction time, rates of return on capital, tax rates, operating costs, and depreciation method of the plant to calculate the cash flow for the entire lifetime of the project. The financial and tax structure for both investor-owned utilities and municipal utilities can be simulated through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. The Discounted Cash Flow Model uses the principal that the present worth of the revenues will be equal to the present worth of the expenses including the return on investment over the economic life of the project. This manual explains how to prepare the input data, execute cases, and interpret the output results. (RWR)

  20. TileCal ROD Motherboard Software Library User's Manual

    CERN Document Server

    Salvachúa, B; Castillo, C; Cuenca, C; Ferrer, A; Fullana, E; Higón, E; Iglesias, C; Munar, A; Poveda, J; Ruiz-Martinez, A; Solans, C; Valls, J

    2005-01-01

    This note describes the software library and an associated standalone application program to handle the TileCal ROD VME motherboard. The library uses the CMT packages vme_rcc and rcc_error, from the ATLAS Online Data Flow to handle the standard crate controller, VP-110 from Concurrent Technologies, and the custom bit3_rcc CMT package to handle an alternative crate controller, the BIT-3 from SBSTM Technologies. The ROD library defines several C++ classes which can be used in either standalone applications to control and debug the RODs or with the TDAQ online software integration of the back-end hardware for the TileCal detector. The library also includes special auxiliary classes to handle additional back-end boards related to the ROD operation like the TBM or the ROD injectors.

  1. Erosion Risk Management Tool (ERMiT) user manual (version 2006.01.18)

    Science.gov (United States)

    Peter R. Robichaud; William J. Elliot; Fredrick B. Pierson; David E. Hall; Corey A. Moffet; Louise E. Ashmun

    2007-01-01

    The decision of where, when, and how to apply the most effective post-fire erosion mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. To aid in this assessment, the Erosion Risk Management Tool (ERMiT) was developed. This user manual describes the input parameters, input interface, model...

  2. NJOY nuclear data processing system: user's manual. [For CDC 7600

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, R.E.; Barrett, R.J.; Muir, D.W.; Boicourt, R.M.

    1978-12-01

    The NJOY nuclear data processing system is a comprehensive computer code package for producing cross sections for neutron and photon transport calculations from ENDF/B-IV and -V evaluated nuclear data. This user's manual provides a concise description of the code, input instructions, sample problems, and installation instructions. 1 figure, 3 tables.

  3. Greater-than-Class-C Low-Level Waste Data Base user's manual

    International Nuclear Information System (INIS)

    1992-07-01

    The Greater-than-Class-C Low-level Waste (GTCC LLW) Data Base characterizes GTCC LLW using low, base, and high cases for three different scenarios: unpackaged, packaged, and concentration averages. The GTCC LLW Data Base can be used to project future volumes and radionuclide activities. This manual provides instructions for users of the GTCC LLW Data Base

  4. STATE ACID RAIN RESEARCH AND SCREENING SYSTEM - VERSION 1.0 USER'S MANUAL

    Science.gov (United States)

    The report is a user's manual that describes Version 1.0 of EPA's STate Acid Rain Research and Screening System (STARRSS), developed to assist utility regulatory commissions in reviewing utility acid rain compliance plans. It is a screening tool that is based on scenario analysis...

  5. RisoeScan 1.0 - User manual and toolset for retrospective validation

    International Nuclear Information System (INIS)

    Helt-Hansen, J.

    2004-12-01

    The RisoeScan software is used for dose measurements with radiochromic films that color visibly. This report consists of two documents for use with the RisoeScan software. The User Manual tells how to use the program and the Toolset for Retrospective Validation describes how to perform a retrospective validation of the software. (au)

  6. User's manual for the computer-aided plant transient data compilation

    International Nuclear Information System (INIS)

    Langenbuch, S.; Gill, R.; Lerchl, G.; Schwaiger, R.; Voggenberger, T.

    1984-01-01

    The objective of this project is the compilation of data for nuclear power plants needed for transient analyses. The concept has been already described. This user's manual gives a detailed description of all functions of the dialogue system that supports data acquisition and retrieval. (orig.) [de

  7. The neutron transport code DTF-Traca users manual and input data

    International Nuclear Information System (INIS)

    Ahnert, C.

    1979-01-01

    This is a users manual of the neutron transport code DTF-TRACA, which is a version of the original DTF-IV with some modifications made at JEN. A detailed input data descriptions is given. The new options developed at JEN are included too. (Author) 18 refs

  8. The neutron transport code DTF-Traca users manual and input data

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.

    1979-07-01

    This is a users manual of the neutron transport code DTF-TRACA, which is a version of the original DTF-IV with some modifications made at JEN. A detailed input data descriptions is given. The new options developed at JEN are included too. (Author) 18 refs.

  9. BASINs 4.0 Climate Assessment Tool (CAT): Supporting Documentation and User's Manual (Final Report)

    Science.gov (United States)

    EPA announced the availability of the report, BASINS 4.0 Climate Assessment Tool (CAT): Supporting Documentation and User's Manual. This report was prepared by the EPA's Global Change Research Program (GCRP), an assessment-oriented program, that sits within the Office of R...

  10. The computer code Eurdyn - 1 M. (Release 1) Part 2: User's Manual

    International Nuclear Information System (INIS)

    Donea, J.; Giuliani, S.

    1979-01-01

    This report is the user's manual for the computer code Eurdyn-1 M developed at the J.R.C. Ispra for use in containment and fuel subassembly analyses for fast reactor safety studies. The input data are defined and a test problem is presented to illustrate both the input and the output of results

  11. AIDA Asia. Artificial Insemination Database Application. User manual. 1

    International Nuclear Information System (INIS)

    Garcia Podesta, Mario

    2002-01-01

    Artificial Insemination Database Application (AIDA-Asia) is a computer application to store and analyze information from AI Services (farms, females, inseminated, semen, estrus characteristics, inseminator and pregnancy diagnosis data). The need for such an application arose during a consultancy undertaken by the author for the International Atomic Energy Agency (IAEA, Vienna) under the framework of its Regional Co-operative Agreement for Asia and the Pacific (RCA) which is implementing a project on 'Improving Animal Productivity and Reproductive Efficiency' (RAS/5/035). The detailed specifications for the application were determined through a Task Force Meeting of National Consultants from five RCA Member States, organized by the IAEA and held in Sri Lanka in April 2001. The application has been developed in MS Access 2000 and Visual Basic for Applications (VBA) 6.0. However, it can run as a stand-alone application through its own executable files. It is based on screen forms for data entry or editing of information and command buttons. The structure of the data, the design of the application and VBA codes cannot be seen and cannot be modified by users. However, the designated administrator of AIDA-Asia in each country can customize it

  12. User's manual for the Oak Ridge Tokamak Transport Code

    International Nuclear Information System (INIS)

    Munro, J.K.; Hogan, J.T.; Howe, H.C.; Arnurius, D.E.

    1977-02-01

    A one-dimensional tokamak transport code is described which simulates a plasma discharge using a fluid model which includes power balances for electrons and ions, conservation of mass, and Maxwell's equations. The modular structure of the code allows a user to add models of various physical processes which can modify the discharge behavior. Such physical processes treated in the version of the code described here include effects of plasma transport, neutral gas transport, impurity diffusion, and neutral beam injection. Each process can be modeled by a parameterized analytic formula or at least one detailed numerical calculation. The program logic of each module is presented, followed by detailed descriptions of each subroutine used by the module. The physics underlying the models is only briefly summarized. The transport code was written in IBM FORTRAN-IV and implemented on IBM 360/370 series computers at the Oak Ridge National Laboratory and on the CDC 7600 computers of the Magnetic Fusion Energy (MFE) Computing Center of the Lawrence Livermore Laboratory. A listing of the current reference version is provided on accompanying microfiche

  13. Code manual for MACCS2: Volume 1, user's guide

    International Nuclear Information System (INIS)

    Chanin, D.I.; Young, M.L.

    1997-03-01

    This report describes the use of the MACCS2 code. The document is primarily a user's guide, though some model description information is included. MACCS2 represents a major enhancement of its predecessor MACCS, the MELCOR Accident Consequence Code System. MACCS, distributed by government code centers since 1990, was developed to evaluate the impacts of severe accidents at nuclear power plants on the surrounding public. The principal phenomena considered are atmospheric transport and deposition under time-variant meteorology, short- and long-term mitigative actions and exposure pathways, deterministic and stochastic health effects, and economic costs. No other U.S. code that is publicly available at present offers all these capabilities. MACCS2 was developed as a general-purpose tool applicable to diverse reactor and nonreactor facilities licensed by the Nuclear Regulatory Commission or operated by the Department of Energy or the Department of Defense. The MACCS2 package includes three primary enhancements: (1) a more flexible emergency-response model, (2) an expanded library of radionuclides, and (3) a semidynamic food-chain model. Other improvements are in the areas of phenomenological modeling and new output options. Initial installation of the code, written in FORTRAN 77, requires a 486 or higher IBM-compatible PC with 8 MB of RAM

  14. DEPOT database: Reference manual and user's guide

    Energy Technology Data Exchange (ETDEWEB)

    Clancey, P.; Logg, C.

    1991-03-01

    DEPOT has been developed to provide tracking for the Stanford Linear Collider (SLC) control system equipment. For each piece of equipment entered into the database, complete location, service, maintenance, modification, certification, and radiation exposure histories can be maintained. To facilitate data entry accuracy, efficiency, and consistency, barcoding technology has been used extensively. DEPOT has been an important tool in improving the reliability of the microsystems controlling SLC. This document describes the components of the DEPOT database, the elements in the database records, and the use of the supporting programs for entering data, searching the database, and producing reports from the information.

  15. Heating 7. 2 user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  16. SCDAP/RELAP5/MOD 3.1 code manual: User`s guide and input manual. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Coryell, E.W.; Johnsen, E.C. [eds.; Allison, C.M. [and others

    1995-06-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume provides guidelines to code users based upon lessons learned during the developmental assessment process. A description of problem control and the installation process is included. Appendix a contains the description of the input requirements.

  17. User's manual for MMLE3, a general FORTRAN program for maximum likelihood parameter estimation

    Science.gov (United States)

    Maine, R. E.; Iliff, K. W.

    1980-01-01

    A user's manual for the FORTRAN IV computer program MMLE3 is described. It is a maximum likelihood parameter estimation program capable of handling general bilinear dynamic equations of arbitrary order with measurement noise and/or state noise (process noise). The theory and use of the program is described. The basic MMLE3 program is quite general and, therefore, applicable to a wide variety of problems. The basic program can interact with a set of user written problem specific routines to simplify the use of the program on specific systems. A set of user routines for the aircraft stability and control derivative estimation problem is provided with the program.

  18. Small Scale Beekeeping. Appropriate Technologies for Development. Manual M-17.

    Science.gov (United States)

    Gentry, Curtis

    This manual is designed to assist Peace Corps volunteers in the development and implementation of small-scale beekeeping programs as a tool for development. Addressed in the individual chapters are bees and humans; project planning; the types and habits of bees; the essence of beekeeping; bee space and beehives; intermediate technology beekeeping;…

  19. User-centered Technologies For Blind Children

    Directory of Open Access Journals (Sweden)

    Jaime Sánchez

    2008-01-01

    Full Text Available The purpose of this paper is to review, summarize, and illustrate research work involving four audio-based games created within a user-centered design methodology through successive usability tasks and evaluations. These games were designed by considering the mental model of blind children and their styles of interaction to perceive and process data and information. The goal of these games was to enhance the cognitive development of spatial structures, memory, haptic perception, mathematical skills, navigation and orientation, and problem solving of blind children. Findings indicate significant improvements in learning and cognition from using audio-based tools specially tailored for the blind. That is, technologies for blind children, carefully tailored through user-centered design approaches, can make a significant contribution to cognitive development of these children. This paper contributes new insight into the design and implementation of audio-based virtual environments to facilitate learning and cognition in blind children.

  20. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  1. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    International Nuclear Information System (INIS)

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS

  2. User's manual for three-dimensional analysis of propeller flow fields

    Science.gov (United States)

    Chaussee, D. S.; Kutler, P.

    1983-01-01

    A detailed operating manual is presented for the prop-fan computer code (in addition to supporting programs) recently developed by Kutler, Chaussee, Sorenson, and Pulliam while at the NASA'S Ames Research Center. This code solves the inviscid Euler equations using an implicit numerical procedure developed by Beam and Warming of Ames. A description of the underlying theory, numerical techniques, and boundary conditions with equations, formulas, and methods for the mesh generation program (MGP), three dimensional prop-fan flow field program (3DPFP), and data reduction program (DRP) is provided, together with complete operating instructions. In addition, a programmer's manual is also provided to assist the user interested in modifying the codes. Included in the programmer's manual for each program is a description of the input and output variables, flow charts, program listings, sample input and output data, and operating hints.

  3. Simion 3D Version 6.0 User`s Manual

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, D.A.

    1995-11-01

    The original SIMION was an electrostatic lens analysis and design program developed by D.C. McGilvery at Latrobe University, Bundoora Victoria, Australia, 1977. SIMION for the PC, developed at the Idaho National Engineering Laboratory, shares little more than its name with the original McGilvery version. INEL`s fifth major SIMION release, version 6.0, represents a quantum improvement over previous versions. This C based program can model complex problems using an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 10,000,000 points. SIMION 3D`s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs have been greatly extended in versatility and power. A new geometry file option supports the definition of highly complex array geometry. Extensive algorithm modifications have dramatically improved this version`s computational speed and accuracy.

  4. Montana Rivers Information System : Edit/Entry Program User's Manual.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Montana Department of Fish, Wildlife and Parks

    1992-07-01

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural, and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases and comprises of the Montana Interagency Stream Fisheries Database; the MDFWP Recreation Database; and the MDFWP Wildlife Geographic Information System. The purpose of this User`s Manual is to describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and to provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  5. Users manual for CAFE-3D : a computational fluid dynamics fire code.

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma (Alion Science and Technology, Albuquerque, NM)

    2005-03-01

    The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included.

  6. Users manual for CAFE-3D : a computational fluid dynamics fire code

    International Nuclear Information System (INIS)

    Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma

    2005-01-01

    The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included

  7. A nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics - User`s Manual

    Energy Technology Data Exchange (ETDEWEB)

    Maker, B.N.

    1995-04-14

    This report provides a user`s manual for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Over twenty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a factorization method, for which case bandwidth minimization is optional. Data may be stored either in or out of core memory to allow for large analyses.

  8. User's manual for EVITS: a steady state fluids code for complex two-dimensional geometries

    International Nuclear Information System (INIS)

    Domanus, H.M.

    1976-07-01

    A 2-D computer code, EVITS, has been developed for estimating steady state, incompressible, isothermal flow fields in complex geometries. A vorticity-stream function formulation is used along with a model to resolve viscous effects at solid boundaries. Sufficient geometry and boundary type options are included within the code so that a large number of flow situations can be specified without modifying the program. All instructions to the code are via an input dataset. Detailed instructions for preparing the user oriented input, along with examples, are included in this users' manual

  9. PRIS-STATISTICS: Power Reactor Information System Statistical Reports. User's Manual

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA developed the Power Reactor Information System (PRIS)-Statistics application to assist PRIS end users with generating statistical reports from PRIS data. Statistical reports provide an overview of the status, specification and performance results of every nuclear power reactor in the world. This user's manual was prepared to facilitate the use of the PRIS-Statistics application and to provide guidelines and detailed information for each report in the application. Statistical reports support analyses of nuclear power development and strategies, and the evaluation of nuclear power plant performance. The PRIS database can be used for comprehensive trend analyses and benchmarking against best performers and industrial standards.

  10. GADRAS-DRF 18.6 User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Steve M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Threat Science; Thoreson, Greg G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Threat Science; Theisen, Lisa A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Threat Science; Mitchell, Dean J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Threat Science; Harding, Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Threat Science; Amai, Wendy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Robotic Security Systems

    2016-05-01

    The Gamma Detector Response and Analysis Software–Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

  11. GADRAS-DRF 18.5 User's Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Steven M.; Thoreson, Gregory G; Theisen, Lisa A.; Mitchell, Dean J.; Harding, Lee; Amai, Wendy A.

    2014-12-01

    The Gamma Detector Response and Analysis Software - Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).

  12. Hybrid2: The hybrid system simulation model, Version 1.0, user manual

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.

    1996-06-01

    In light of the large scale desire for energy in remote communities, especially in the developing world, the need for a detailed long term performance prediction model for hybrid power systems was seen. To meet these ends, engineers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) have spent the last three years developing the Hybrid2 software. The Hybrid2 code provides a means to conduct long term, detailed simulations of the performance of a large array of hybrid power systems. This work acts as an introduction and users manual to the Hybrid2 software. The manual describes the Hybrid2 code, what is included with the software and instructs the user on the structure of the code. The manual also describes some of the major features of the Hybrid2 code as well as how to create projects and run hybrid system simulations. The Hybrid2 code test program is also discussed. Although every attempt has been made to make the Hybrid2 code easy to understand and use, this manual will allow many organizations to consider the long term advantages of using hybrid power systems instead of conventional petroleum based systems for remote power generation.

  13. Slave finite element for non-linear analysis of engine structures. Volume 2: Programmer's manual and user's manual

    Science.gov (United States)

    Witkop, D. L.; Dale, B. J.; Gellin, S.

    1991-01-01

    The programming aspects of SFENES are described in the User's Manual. The information presented is provided for the installation programmer. It is sufficient to fully describe the general program logic and required peripheral storage. All element generated data is stored externally to reduce required memory allocation. A separate section is devoted to the description of these files thereby permitting the optimization of Input/Output (I/O) time through efficient buffer descriptions. Individual subroutine descriptions are presented along with the complete Fortran source listings. A short description of the major control, computation, and I/O phases is included to aid in obtaining an overall familiarity with the program's components. Finally, a discussion of the suggested overlay structure which allows the program to execute with a reasonable amount of memory allocation is presented.

  14. ELESTRES.M11K program users'manual and description

    International Nuclear Information System (INIS)

    Suk, H. C.; Hwang, W.; Kim, B. G.; Sim, K. S.; Heo, Y. H.; Byun, T. S.; Park, G. S.

    1992-12-01

    ELESTRES.M11K is a computer program for simulating the behaviour of UO 2 fuel elements under normal operating conditions of a CANDU reactor. It computers the one-dimensional temperature distribution and thermal expansion of the fuel pellets, and computes two-dimensional pellet deformation using FEM. The amount of fission gas released and sheath strain/stress are also computed. This document is intended as a users' manual and description for ELESTRES.M11K program. (Author)

  15. A Decision Support System for the Management of Acute Abdominal Pain (User’s Manual)

    Science.gov (United States)

    1987-11-10

    which exist for each diagnostic category. Each treatment protocol contains a discussion of the disease , a differential diagnosis , ABDX User’s Manual... disease of the left colon will precede the acute episode. The pre-existence of diverticular disease does not preclude development of acute...Keep in mind that there are many causes for melena and one should not assume the diagnosis of peptic ulcer disease unless the symptom complex

  16. DEFINIT - A New Element Definition Capability for NASTRAN: User’s Manual

    Science.gov (United States)

    1973-12-01

    DMAP alter statements in the NASTRAN Level 12.0 or Level 15.0 Executive Control deck: ALTER 128, 130 CHKPNT OPPI, OQPl, OUPV1, OES1, OEFl$ OFP OPPl, OQPl...OEF2 $ ENDALTER These DMAP changes will cause NASTRAN to print results (stresses and forces) in SORTI format, but will make the changes required to... NASTRAN : USER’S MANUAL u] z Michael E. Golden and Myles M. Hurwitz 0 E-) SAFCCOMPUTATION AND MATHEMATICS DEPARTMENT Z RESEARCH AND DEVELOPMENT REPORT

  17. BPACK -- A computer model package for boiler reburning/co-firing performance evaluations. User`s manual, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.T.; Li, B.; Payne, R.

    1992-06-01

    This manual presents and describes a package of computer models uniquely developed for boiler thermal performance and emissions evaluations by the Energy and Environmental Research Corporation. The model package permits boiler heat transfer, fuels combustion, and pollutant emissions predictions related to a number of practical boiler operations such as fuel-switching, fuels co-firing, and reburning NO{sub x} reductions. The models are adaptable to most boiler/combustor designs and can handle burner fuels in solid, liquid, gaseous, and slurried forms. The models are also capable of performing predictions for combustion applications involving gaseous-fuel reburning, and co-firing of solid/gas, liquid/gas, gas/gas, slurry/gas fuels. The model package is conveniently named as BPACK (Boiler Package) and consists of six computer codes, of which three of them are main computational codes and the other three are input codes. The three main codes are: (a) a two-dimensional furnace heat-transfer and combustion code: (b) a detailed chemical-kinetics code; and (c) a boiler convective passage code. This user`s manual presents the computer model package in two volumes. Volume 1 describes in detail a number of topics which are of general users` interest, including the physical and chemical basis of the models, a complete description of the model applicability, options, input/output, and the default inputs. Volume 2 contains a detailed record of the worked examples to assist users in applying the models, and to illustrate the versatility of the codes.

  18. How users matter : The co-construction of users and technologies

    NARCIS (Netherlands)

    Oudshoorn, Nelly E.J.; Pinch, Trevor

    2003-01-01

    Users have become an integral part of technology studies. The essays in this volume look at the creative capacity of users to shape technology in all phases, from design to implementation. Using a variety of theoretical approaches, including a feminist focus on users and use (in place of the

  19. Detailed description and user`s manual of high burnup fuel analysis code EXBURN-I

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki

    1997-11-01

    EXBURN-I has been developed for the analysis of LWR high burnup fuel behavior in normal operation and power transient conditions. In the high burnup region, phenomena occur which are different in quality from those expected for the extension of behaviors in the mid-burnup region. To analyze these phenomena, EXBURN-I has been formed by the incorporation of such new models as pellet thermal conductivity change, burnup-dependent FP gas release rate, and cladding oxide layer growth to the basic structure of low- and mid-burnup fuel analysis code FEMAXI-IV. The present report describes in detail the whole structure of the code, models, and materials properties. Also, it includes a detailed input manual and sample output, etc. (author). 55 refs.

  20. User Requirements Analyzer (URA) User’s Manual H6180/Multics/Version 3.3.

    Science.gov (United States)

    1978-07-01

    is installation dependent ani consequently la qiver. it; Appendix r. Part IV User Fegu it.»tnent s Analy/wt command Descriptions ilhA Us^r...OFF •TITLE OFF •HEADING OFF •TOP-LINFS 0 *POTTO«!-lINES C •SOURCE-KAHGIN 1 •HEADING-PASGIN 1 • HEATING -SKIP Q The last occurrence of eich

  1. MELCOR computer code manuals: Primer and user`s guides, Version 1.8.3 September 1994. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the US Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users` Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  2. Upper limb joint motion of two different user groups during manual wheelchair propulsion

    Science.gov (United States)

    Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Lee, Jinbok; Kim, Youngho

    2013-02-01

    Manual wheelchair users have a high risk of injury to the upper extremities. Recent studies have focused on kinematic and kinetic analyses of manual wheelchair propulsion in order to understand the physical demands on wheelchair users. The purpose of this study was to investigate upper limb joint motion by using a motion capture system and a dynamometer with two different groups of wheelchair users propelling their wheelchairs at different speeds under different load conditions. The variations in the contact time, release time, and linear velocity of the experienced group were all larger than they were in the novice group. The propulsion angles of the experienced users were larger than those of the novices under all conditions. The variances in the propulsion force (both radial and tangential) of the experienced users were larger than those of the novices. The shoulder joint moment had the largest variance with the conditions, followed by the wrist joint moment and the elbow joint moment. The variance of the maximum shoulder joint moment was over four times the variance of the maximum wrist joint moment and eight times the maximum elbow joint moment. The maximum joint moments increased significantly as the speed and load increased in both groups. Quick and significant manipulation ability based on environmental changes is considered an important factor in efficient propulsion. This efficiency was confirmed from the propulsion power results. Sophisticated strategies for efficient manual wheelchair propulsion could be understood by observation of the physical responses of each upper limb joint to changes in load and speed. We expect that the findings of this study will be utilized for designing a rehabilitation program to reduce injuries.

  3. User`s guide and documentation manual for ``PC-Gel`` simulator

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ming-Ming; Gao, Hong W.

    1993-10-01

    PC-GEL is a three-dimensional, three-phase (oil, water, and gas) permeability modification simulator developed by incorporating an in-situ gelation model into a black oil simulator (BOAST) for personal computer application. The features included in the simulator are: transport of each chemical species of the polymer/crosslinker system in porous media, gelation reaction kinetics of the polymer with crosslinking agents, rheology of the polymer and gel, inaccessible pore volume to macromolecules, adsorption of chemical species on rock surfaces, retention of gel on the rock matrix, and permeability reduction caused by the adsorption of polymer and gel. The in-situ gelation model and simulator were validated against data reported in the literature. The simulator PC-GEL is useful for simulating and optimizing any combination of primary production, waterflooding, polymer flooding, and permeability modification treatments. A general background of permeability modification using crosslinked polymer gels is given in Section I and the governing equations, mechanisms, and numerical solutions of PC-GEL are given in Section II. Steps for preparing an input data file with reservoir and gel-chemical transport data, and recurrent data are described in Sections III and IV, respectively. Example data inputs are enclosed after explanations of each input line to help the user prepare data files. Major items of the output files are reviewed in Section V. Finally, three sample problems for running PC-GEL are described in Section VI, and input files and part of the output files of these problems are listed in the appendices. For the user`s reference a copy of the source code of PC-GEL computer program is attached in Appendix A.

  4. User`s manual for the radioactive decay and accumulation code RADAC

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, R.; Loghry, S.L.; Ashline, R.C.

    1995-11-01

    The RADAC computer code calculates radioactive decay and accumulation of decayed products using an algorithm based on the direct use of the Bateman equations and referred to here as the yield factor method. This report explains the yield factor method, gives an overview of the various modules in the RADAC code system, and describes the decay and accumulation code in detail. The RADAC code has capacity for two waste types and can accommodate up to 60 years of annual waste inputs. Decay times as high as 1 million years can be calculated. The user supplies the undecayed composition and radioactivity of the waste placed in storage each year. The code calculates the decayed composition, radioactivity, and thermal power of the accumulated waste at the end of each year and gives the results in terms of grams and curies of individual radionuclides. Calculations can be made for up to 19 waste storage sites in a single run. For each site and each waste type, calculations can be made by 1-year steps up to 60 years, by 10-year steps to 160 years, and by 6 discrete steps to 1 million years. Detailed outputs can be printed for each waste site and each time step by individual radionuclides. Summarized outputs are also available. Excluding data-preparation time, RADAC requires about 2 min to run 19 waste sites with two types of transuranic waste at each site, using a 486 DX computer with a clock speed of 33 MHz. Because RADAC uses a preselected set of decay times and does not make in-reactor calculations, it should not be viewed as a substitute for ORIGEN2. RADAC is intended for use in applications in which accumulations at the decay times provided by the code are sufficient for the user`s purposes.

  5. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description. 2; Users Manual and Program Description

    Science.gov (United States)

    McBride, Bonnie J.; Gordon, Sanford

    1996-01-01

    This users manual is the second part of a two-part report describing the NASA Lewis CEA (Chemical Equilibrium with Applications) program. The program obtains chemical equilibrium compositions of complex mixtures with applications to several types of problems. The topics presented in this manual are: (1) details for preparing input data sets; (2) a description of output tables for various types of problems; (3) the overall modular organization of the program with information on how to make modifications; (4) a description of the function of each subroutine; (5) error messages and their significance; and (6) a number of examples that illustrate various types of problems handled by CEA and that cover many of the options available in both input and output. Seven appendixes give information on the thermodynamic and thermal transport data used in CEA; some information on common variables used in or generated by the equilibrium module; and output tables for 14 example problems. The CEA program was written in ANSI standard FORTRAN 77. CEA should work on any system with sufficient storage. There are about 6300 lines in the source code, which uses about 225 kilobytes of memory. The compiled program takes about 975 kilobytes.

  6. PRIM System: AN/UYK-20 User Guide and User Reference Manual

    Science.gov (United States)

    1977-10-01

    National Software Works) and the USC-ISIC 11 NCX system, which is a server system on the ARPANET. The user of PRIM is assumed to have access to one...register 1 should have been compared and found to be less than 80 (register 1). Consequently , the subroutine should now search the interval between...location of the trace. #Hre.ik (at) 0l23i:Q23i5o*<’ ( altar doing) Xecuta «"r f^/ode /nstructlon ^r mT’ypa fi>PC()IMcr if if 11 &PC <> 0I2M**C

  7. ABAREX -- A neutron spherical optical-statistical-model code -- A user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B. [ed.; Lawson, R.D.

    1998-06-01

    The contemporary version of the neutron spherical optical-statistical-model code ABAREX is summarized with the objective of providing detailed operational guidance for the user. The physical concepts involved are very briefly outlined. The code is described in some detail and a number of explicit examples are given. With this document one should very quickly become fluent with the use of ABAREX. While the code has operated on a number of computing systems, this version is specifically tailored for the VAX/VMS work station and/or the IBM-compatible personal computer.

  8. Code manual for MACCS2: Volume 1, user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I.; Young, M.L.

    1997-03-01

    This report describes the use of the MACCS2 code. The document is primarily a user`s guide, though some model description information is included. MACCS2 represents a major enhancement of its predecessor MACCS, the MELCOR Accident Consequence Code System. MACCS, distributed by government code centers since 1990, was developed to evaluate the impacts of severe accidents at nuclear power plants on the surrounding public. The principal phenomena considered are atmospheric transport and deposition under time-variant meteorology, short- and long-term mitigative actions and exposure pathways, deterministic and stochastic health effects, and economic costs. No other U.S. code that is publicly available at present offers all these capabilities. MACCS2 was developed as a general-purpose tool applicable to diverse reactor and nonreactor facilities licensed by the Nuclear Regulatory Commission or operated by the Department of Energy or the Department of Defense. The MACCS2 package includes three primary enhancements: (1) a more flexible emergency-response model, (2) an expanded library of radionuclides, and (3) a semidynamic food-chain model. Other improvements are in the areas of phenomenological modeling and new output options. Initial installation of the code, written in FORTRAN 77, requires a 486 or higher IBM-compatible PC with 8 MB of RAM.

  9. CONPAS 1.0 (CONtainment Performance Analysis System). User`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Jin, Young Ho [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-04-01

    CONPAS (CONtainment Performance Analysis System) is a verified computer code package to integrate the numerical, graphical, and results-operation aspects of Level 2 probabilistic safety assessments (PSA) for nuclear power plants automatically under a PC window environment. Compared with the existing DOS-based computer codes for Level 2 PSA, the most important merit of the window-based computer code is that user can easily describe and quantify the accident progression models, and manipulate the resultant outputs in a variety of ways. As a main logic for accident progression analysis, CONPAS employs a concept of the small containment phenomenological event tree (CPET) helpful to trace out visually individual accident progressions and of the large supporting event tree (LSET) for its detailed quantification. For the integrated analysis of Level 2 PSA, the code utilizes four distinct, but closely related modules; (1) ET Editor for construction of several event tree models describing the accident progressions, (2) Computer for quantification of the constructed event trees and graphical display of the resultant outputs, (3) Text Editor for preparation of input decks for quanification and utilization of calculational results, and (4) Mechanistic Code Plotter for utilization of results obtained from severe accident analysis codes. Compared with other existing computer codes for Level 2 PSA, the CONPAS code provides several advanced features: computational aspects including systematic uncertainty analysis, importance analysis, sensitivity analysis and data interpretation, reporting aspects including tabling and graphic as well as user-friend interface. 10 refs. (Author) .new.

  10. Scapular Stabilization and Muscle Strength in Manual Wheelchair Users with Spinal Cord Injury and Subacromial Impingement

    Science.gov (United States)

    Bickel, C. Scott

    2016-01-01

    Background: Manual wheelchair users with spinal cord injury (SCI) are frequently diagnosed with subacromial impingement. Objective: To determine whether the pattern of muscle imbalance and impaired scapular stabilization in able-bodied (AB) adults with impingement is different from that in manual wheelchair users with SCI and impingement. Methods: The following measurements were collected from 22 adults with subacromial impingement (11 SCI, 11 AB): ratio of normalized muscle electrical activity of upper and lower trapezius (UT:LT) during arm abduction; force during abduction, adduction, internal rotation, external rotation, and push and pull; ratios of force for abduction to adduction (AB:ADD), internal to external rotation (IR:ER), and push to pull (PUSH:PULL). Results: Shoulders with impingement had significantly higher UT:LT activation (1.46 ± 0.52) than shoulders without impingement (0.93 ± 0.45) (P = .006), regardless of wheelchair user status. Significant differences between AB participants and those with SCI were observed for ABD:ADD (P = .005), PUSH:PULL (P = .012), and pull strength (P = .043). Participants with SCI had a significantly greater ABD:ADD (1.37 ± 0.36) than AB participants (1.04 ± 0.22) (P = .002) and a significantly greater PUSH:PULL (1.53 ± 0.36) than AB participants (1.26 ± 0.18) (P = .005) because of decreased strength in adduction (P = .021) and pull (P = .013). Conclusions: Strategies targeting the posterior shoulder girdle for AB adults are appropriate for manual wheelchair users with SCI and impingement and should focus on scapular retractors and arm adductors with emphasis on scapular depression and posterior tilting. PMID:29398894

  11. SERA: Simulation Environment for Radiotherapy Applications - Users Manual Version 1CO

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert; Wessol, Daniel Edward; Wemple, Charles Alan; Wheeler, Floyd J; Harkin, G. J.; Frandsen, M. W.; Albright, C. L.; Cohen, M.T.; Rossmeier, M.; Cogliati, J.J.

    2002-06-01

    This document is the user manual for the Simulation Environment for Radiotherapy Applications (SERA) software program developed for boron-neutron capture therapy (BNCT) patient treatment planning by researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) and students and faculty at Montana State University (MSU) Computer Science Department. This manual corresponds to the final release of the program, Version 1C0, developed to run under the RedHat Linux Operating System (version 7.2 or newer) or the Solaris™ Operating System (version 2.6 or newer). SERA is a suite of command line or interactively launched software modules, including graphical, geometric reconstruction, and execution interface modules for developing BNCT treatment plans. The program allows the user to develop geometric models of the patient as derived from Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images, perform dose computation for these geometric models, and display the computed doses on overlays of the original images as three dimensional representations. This manual provides a guide to the practical use of SERA, but is not an exhaustive treatment of each feature of the code.

  12. ICAN/DAMP-integrated composite analyzer with damping analysis capabilities: User's manual

    Science.gov (United States)

    Saravanos, Dimitrious A.; Sanfeliz, Jose G.

    1992-01-01

    This manual describes the use of the computer code ICAN/DAMP (Integrated Composite Analyzer with Damping Analysis Capabilities) for the prediction of damping in polymer-matrix composites. The code is written in FORTRAN 77 and is a version of the ICAN (Integrated Composite ANalyzer) computer program. The code incorporates a new module for synthesizing the material damping from micromechanics to laminate level. Explicit micromechanics equations based on hysteretic damping are programmed relating the on-axis damping capacities to the fiber and matrix properties and fiber volume ratio. The damping capacities of unidirectional composites subjected to off-axis loading are synthesized from on-axis damping values. The hygrothermal effect on the damping performance of unidirectional composites caused by temperature and moisture variation is modeled along with the damping contributions from interfacial friction between broken fibers and matrix. The temperature rise is continuously vibrating composite plies and composite laminates is also estimated. The ICAN/DAMP user's manual provides descriptions of the damping analysis module's functions, structure, input requirements, output interpretation, and execution requirements. It only addresses the changes required to conduct the damping analysis and is used in conjunction with the 'Second Generation Integrated Composite Analyzer (ICAN) Computer Code' user's manual (NASA TP-3290).

  13. SERA: Simulation Environment for Radiotherapy Applications - Users Manual Version 1CO

    International Nuclear Information System (INIS)

    Venhuizen, James Robert; Wessol, Daniel Edward; Wemple, Charles Alan; Wheeler, Floyd J; Harkin, G. J.; Frandsen, M. W.; Albright, C. L.; Cohen, M.T.; Rossmeier, M.; Cogliati, J.J.

    2002-01-01

    This document is the user manual for the Simulation Environment for Radiotherapy Applications (SERA) software program developed for boron-neutron capture therapy (BNCT) patient treatment planning by researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) and students and faculty at Montana State University (MSU) Computer Science Department. This manual corresponds to the final release of the program, Version 1C0, developed to run under the RedHat Linux Operating System (version 7.2 or newer) or the Solaris Operating System (version 2.6 or newer). SERA is a suite of command line or interactively launched software modules, including graphical, geometric reconstruction, and execution interface modules for developing BNCT treatment plans. The program allows the user to develop geometric models of the patient as derived from Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images, perform dose computation for these geometric models, and display the computed doses on overlays of the original images as three dimensional representations. This manual provides a guide to the practical use of SERA, but is not an exhaustive treatment of each feature of the code

  14. Light water reactor fuel analysis code FEMAXI-IV(Ver.2). Detailed structure and user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki

    1997-11-01

    A light water reactor fuel behavior analysis code FEMAXI-IV(Ver.2) was developed as an improved version of FEMAXI-IV. Development of FEMAXI-IV has been already finished in 1992, though a detailed structure and input manual of the code have not been open to users yet. Here, the basic theories and structure, the models and numerical solutions applied to FEMAXI-IV(Ver.2), and the material properties adopted in the code are described in detail. In FEMAXI-IV(Ver.2), programming bugs in previous FEMAXI-IV were eliminated, renewal of the pellet thermal conductivity was performed, and a model of thermal-stress restraint on FP gas release was incorporated. For facilitation of effective and wide-ranging application of the code, methods of input/output of the code are also described in detail, and sample output is included. (author)

  15. LLCEDATA and LLCECALC for Windows version 1.0, Volume 1: User's manual

    International Nuclear Information System (INIS)

    McFadden, J.G.

    1998-01-01

    LLCEDATA and LLCECALC for Windows are user-friendly computer software programs that work together to determine the proper waste designation, handling, and disposition requirements for Long Length Contaminated Equipment (LLCE). LLCEDATA reads from a variety of data bases to produce an equipment data file (EDF) that represents a snapshot of both the LLCE and the tank it originates from. LLCECALC reads the EDF and a gamma assay (AV2) file that is produced by the Flexible Receiver Gamma Energy Analysis System. LLCECALC performs corrections to the AV2 file as it is being read and characterizes the LLCE. Both programs produce a variety of reports, including a characterization report and a status report. The status report documents each action taken by the user, LLCEDATA, and LLCECALC. Documentation for LLCEDATA and LLCECALC for Windows is available in three volumes. Volume 1 is a user's manual, which is intended as a quick reference for both LLCEDATA and LLCECALC. Volume 2 is a technical manual, and Volume 3 is a software verification and validation document

  16. Training manual on food irradiation technology and techniques. 2. ed.

    International Nuclear Information System (INIS)

    1982-01-01

    The objective of the revised Training Manual is to help scientists to acquire the necessary knowledge needed for performing proper research and development work in the field of food irradiation. The Manual presents an up-to-date picture of the current state of food irradiation and reflects the important advances made in the technology of food irradiation, in the radiation chemistry of foods, in the microbiology of irradiated foods, in wholesomeness and standardization. It contains the following chapters: (1) Radionuclides and radiation; (2) Radiation detection and measurement; (3) Radiation protection; (4) Radiation chemistry; (5) Effects of radiation on living organisms; (6) Preservation of foods; (7) Radiation preservation of foods; (8) Packaging; (9) Combination processes; (10) Limitations of food irradiation; (11) Wholesomeness of irradiated foods; (12) Government regulation of irradiated foods; (13) Food irradiation facilities; (14) Commercial aspects of food irradiation; (15) Literature sources. The practical part of the Manual contains a revised and expanded series of detailed laboratory exercises in the use of ionizing radiation for food processing

  17. RSAC 6.2 with WinRP 2.0 User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Schrader

    2005-09-01

    The Radiological Safety Analysis Computer Program (RSAC-6.2) calculates the consequences of a release of radionuclides to the atmosphere. Using a personal computer, a user can generate a fission product inventory from either reactor operating history or a nuclear criticality accident. RSAC-6.2 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for resuspension, inhalation, immersion, ground surface, and ingestion pathways. WinRP 2.0, a windows based overlay to RSAC-6.2, assists users in creating and running RSAC-6.2 input files. This users manual contains the mathematical models and operating instructions for RSAC-6.2 and WinRP 2.0. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-6.2 and WinRP 2.0. These programs are designed for users who are familiar with radiological dose assessment methods.

  18. Effect of service dogs on manual wheelchair users with spinal cord injury: a pilot study.

    Science.gov (United States)

    Hubert, Geoffroy; Tousignant, Michel; Routhier, François; Corriveau, Hélène; Champagne, Noël

    2013-01-01

    Service dogs help people with mobility impairments. They are trained to perform a variety of tasks, such as opening doors, retrieving the telephone, picking up objects, and pulling manual wheelchairs (MWCs). More specifically, using the traction provided by the service dog has physical benefits because MWC users can operate their MWCs with less effort. The objective of this study was to document the effect of a service dog on MWC mobility and user shoulder pain, social participation, and quality of life. Eleven MWC users with spinal cord injury were assessed before and after training with a service dog and 7 mo later. Based on a standardized protocol, all study participants learned how to use the service dog safely and how to move around efficiently in different environments and under different conditions. Results showed that using a service dog increased the distance covered by the MWC users and also significantly decreased shoulder pain and intensity of effort. Using the service dog also produced slight but significant improvements in MWC user skills and social participation and may indicate a trend for improvement in quality of life. More extensive research is needed to precisely identify the effect of service dogs on the long-term management of MWC use.

  19. TOPAZ2D heat transfer code users manual and thermal property data base

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  20. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Afshin M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilcox, Stephen M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  1. Evidence-Based Strategies for Preserving Mobility for Elderly and Aging Manual Wheelchair Users

    Science.gov (United States)

    Requejo, Philip S.; Furumasu, Jan; Mulroy, Sara J.

    2015-01-01

    Elderly and aging manual wheelchair (MWC) users have increased risk for accelerated loss of function and mobility that greatly limits independence and affects quality of life. This review paper addresses important issues for preserving function and mobility for elderly and aging individuals who use a MWC by presenting the current available evidence and recommendations. These include recommendations for maximizing function, by decreasing pain, improving the ability to self-propel, and prolonging mobility and endurance through ergonomics, individualized wheelchair selection and configuration, and adaptations for increasing the capacity to handle the daily mobility demands through training, strengthening, and exercise. Each recommendation is supported by current research in each relevant area. PMID:26366040

  2. FURNACE; a toroidal geometry neutronic program system method description and users manual

    International Nuclear Information System (INIS)

    Verschuur, K.A.

    1984-12-01

    The FURNACE program system performs neutronic and photonic calculations in 3D toroidal geometry for application to fusion reactors. The geometry description is quite general, allowing any torus cross section and any neutron source density distribution for the plasma, as well as simple parametric representations of circular, elliptic and D-shaped tori and plasmas. The numerical method is based on an approximate transport model that produces results with sufficient accuracy for reactor-design purposes, at acceptable calculational costs. A short description is given of the numerical method, and a user manual for the programs of the system: FURNACE, ANISN-PT, LIBRA, TAPEMA and DRAWER is presented

  3. User Manual for the AZ-101 Data Acquisition System (AS-101 DAS)

    International Nuclear Information System (INIS)

    BRAYTON, D.D.

    2000-01-01

    User manual for the TK AZ-101 Waste Retrieval System Data Acquisition System. The purpose of this document is to describe use of the AZ-101 Data Acquisition System (AZ-101 DAS). The AZ-101 DAS is provided to fulfill the requirements for data collection and monitoring as defined in Letters of Instruction (LOI) from Numatec Hanford Corporation (NHC) to Fluor Federal Services (FFS). For a complete description of the system, including design, please refer to the AZ-101 DAS System Description document, RPP-5572

  4. In-vessel source term analysis code TRACER version 2.3. User's manual

    International Nuclear Information System (INIS)

    Toyohara, Daisuke; Ohno, Shuji; Hamada, Hirotsugu; Miyahara, Shinya

    2005-01-01

    A computer code TRACER (Transport Phenomena of Radionuclides for Accident Consequence Evaluation of Reactor) version 2.3 has been developed to evaluate species and quantities of fission products (FPs) released into cover gas during a fuel pin failure accident in an LMFBR. The TRACER version 2.3 includes new or modified models shown below. a) Both model: a new model for FPs release from fuel. b) Modified model for FPs transfer from fuel to bubbles or sodium coolant. c) Modified model for bubbles dynamics in coolant. Computational models, input data and output data of the TRACER version 2.3 are described in this user's manual. (author)

  5. User's manual for biosphere and dose simulation program (Biodose)

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, J.J.; Bogar, G.P.

    1980-01-04

    This user's manual describes the BIOsphere Transport and DOSE program (BIODOSE) prepared for, and delivered to, Lawrence Livermore Laboratory (LLL) by the Analytic Sciences Corporation (TASC). BIODOSE simulates the transport of radionuclides in surface water systems and the resulting concentration of nuclides in the food chain. It includes the prediction of human dosage risks for individuals and for populations resulting from release of radionuclides into surface water or well water. The BIODOSE program was designed for easy use, including standard defaults and a flexible input scheme.

  6. User's Manual for Data for Validating Models for PV Module Performance

    Energy Technology Data Exchange (ETDEWEB)

    Marion, W.; Anderberg, A.; Deline, C.; Glick, S.; Muller, M.; Perrin, G.; Rodriguez, J.; Rummel, S.; Terwilliger, K.; Silverman, T. J.

    2014-04-01

    This user's manual describes performance data measured for flat-plate photovoltaic (PV) modules installed in Cocoa, Florida, Eugene, Oregon, and Golden, Colorado. The data include PV module current-voltage curves and associated meteorological data for approximately one-year periods. These publicly available data are intended to facilitate the validation of existing models for predicting the performance of PV modules, and for the development of new and improved models. For comparing different modeling approaches, using these public data will provide transparency and more meaningful comparisons of the relative benefits.

  7. Hydrogen Financial Analysis Scenario Tool (H2FAST). Web Tool User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Bush, B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zuboy, J. [Independent Consultant, Golden, CO (United States)

    2015-05-11

    The Hydrogen Financial Analysis Scenario Tool (H2FAST) provides a quick and convenient indepth financial analysis for hydrogen fueling stations. This manual describes how to use the H2FAST web tool, which is one of three H2FAST formats developed by the National Renewable Energy Laboratory (NREL). Although all of the formats are based on the same financial computations and conform to generally accepted accounting principles (FASAB 2014, Investopedia 2014), each format provides a different level of complexity and user interactivity.

  8. New Technologies to Reclaim Arid Lands User’s Manual

    Science.gov (United States)

    2002-10-01

    1987). Straw is primarily composed of the stems of cereal grains such as wheat (Triticum aestivum), barley (Hordeum vulgare), or oats ( Avena sativa...et al., 1977). 3.4.3. 7 Seed Pretreatment Pretreatment of seed may include washing, chemical treatments to break seed dormancy , or mechanical...treatments to remove seed appendages or weaken the seed coat. Dormancy of seeds is a major concern for a revegetation project. Dormancy has evolved over

  9. International Reactor Physics Handbook Database and Analysis Tool (IDAT) - IDAT user manual

    International Nuclear Information System (INIS)

    2013-01-01

    The IRPhEP Database and Analysis Tool (IDAT) was first released in 2013 and is included on the DVD. This database and corresponding user interface allows easy access to handbook information. Selected information from each configuration was entered into IDAT, such as the measurements performed, benchmark values, calculated values and materials specifications of the benchmark. In many cases this is supplemented with calculated data such as neutron balance data, spectra data, k-eff nuclear data sensitivities, and spatial reaction rate plots. IDAT accomplishes two main objectives: 1. Allow users to search the handbook for experimental configurations that satisfy their input criteria. 2. Allow users to trend results and identify suitable benchmarks experiments for their application. IDAT provides the user with access to several categories of calculated data, including: - 1-group neutron balance data for each configuration with individual isotope contributions in the reactor system. - Flux and other reaction rates spectra in a 299-group energy scheme. Plotting capabilities were implemented into IDAT allowing the user to compare the spectra of selected configurations in the original fine energy structure or on any user-defined broader energy structure. - Sensitivity coefficients (percent changes of k-effective due to elementary change of basic nuclear data) for the major nuclides and nuclear processes in a 238-group energy structure. IDAT is actively being developed. Those approved to access the online version of the handbook will also have access to an online version of IDAT. As May 2013 marks the first release, IDAT may contain data entry errors and omissions. The handbook remains the primary source of reactor physics benchmark data. A copy of IDAT user's manual is attached to this document. A copy of the IRPhE Handbook can be obtained on request at http://www.oecd-nea.org/science/wprs/irphe/irphe-handbook/form.html

  10. Users Adaptation to Information and Communication Technology ...

    African Journals Online (AJOL)

    Users should endeavour to acquire skills in the use of electronic devices for effective utilization of ICT resources in FUTO library. There is the need for the improvement of ICT resources in FUTO Library to meet the needs and satisfaction of users. There is the need for the library to redefine its methods of strategic information ...

  11. INES: The International Nuclear and Radiological Event Scale User's Manual. 2008 Edition (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-11-01

    INES, the International Nuclear and Radiological Event Scale, was developed in 1990 by experts convened by the IAEA and the OECD Nuclear Energy Agency with the aim of communicating the safety significance of events. This edition of the INES User?s Manual is designed to facilitate the task of those who are required to rate the safety significance of events using the scale. It includes additional guidance and clarifications, and provides examples and comments on the continued use of INES. With this new edition, it is anticipated that INES will be widely used by Member States and become the worldwide scale for putting into proper perspective the safety significance of any event associated with the transport, storage and use of radioactive material and radiation sources, whether or not the event occurs at a facility.

  12. INES: The International Nuclear and Radiological Event Scale User's Manual. 2008 Edition (French Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    INES, the International Nuclear and Radiological Event Scale, was developed in 1990 by experts convened by the IAEA and the OECD Nuclear Energy Agency with the aim of communicating the safety significance of events. This edition of the INES User?s Manual is designed to facilitate the task of those who are required to rate the safety significance of events using the scale. It includes additional guidance and clarifications, and provides examples and comments on the continued use of INES. With this new edition, it is anticipated that INES will be widely used by Member States and become the worldwide scale for putting into proper perspective the safety significance of any event associated with the transport, storage and use of radioactive material and radiation sources, whether or not the event occurs at a facility.

  13. User's manual for SPLPLOT-2: a computer code for data plotting and editing in conversational mode

    International Nuclear Information System (INIS)

    Muramatsu, Ken; Matsumoto, Kiyoshi; Kohsaka, Atsuo; Maniwa, Masaki.

    1985-07-01

    The computer code SPLPLOT-2 for plotting and data editing has been developed as a part of the code package: SPLPACK-1. The SPLPLOT-2 code has capabilities of both conversational and batch processings. This report describes the user's manual for SPLPLOT-2. The following improvements have been made in the SPLPLOT-2. (1) It has capabilities of both conversational and batch processings, (2) function of conversion of files from the input SPL (Standard PLotter) files to internal work files have been implemented to reduce number of time consuming access to the input SPL files, (3) user supplied subroutines can be assigned for data editing from the SPL files, (4) in addition to the two-dimensional graphs, streamline graphs, contour line graphs and bird's-eye view graphs can be drawn. (author)

  14. ABAQUS-EPGEN: a general-purpose finite-element code. Volume 1. User's manual

    International Nuclear Information System (INIS)

    Hibbitt, H.D.; Karlsson, B.I.; Sorensen, E.P.

    1982-10-01

    This document is the User's Manual for ABAQUS/EPGEN, a general purpose finite element computer program, designed specifically to serve advanced structural analysis needs. The program contains very general libraries of elements, materials and analysis procedures, and is highly modular, so that complex combinations of features can be put together to model physical problems. The program is aimed at production analysis needs, and for this purpose aspects such as ease-of-use, reliability, flexibility and efficiency have received maximum attention. The input language is designed to make it straightforward to describe complicated models; the analysis procedures are highly automated with the program choosing time or load increments based on user supplied tolerances and controls; and the program offers a wide range of post-processing options for display of the analysis results

  15. Technological tools for library user education: one library's experience.

    Science.gov (United States)

    Kerns, Stephanie C

    2007-01-01

    In today's world, library users are confronted with almost too many options for using information because of the ubiquitousness of technology. Yet, libraries can harness the power of the same technologies to help users find the information they need at the time it is needed. The tools described in this article represent a starting point for librarians looking for technologies that are easy to use, inexpensive, and have a reasonable learning curve. Technologies addressed include classroom technologies such as audience response systems and Web-based technologies, including Web tutorials and screencasting. These technologies enhance and offer flexibility and variety in many educational settings.

  16. Involving users in the development of embedded technology in construction

    DEFF Research Database (Denmark)

    Storgaard, Kresten; Buch-Hansen, Thomas Cornelius; Ærenlund, Lærke

    2011-01-01

    Based on a project about user driven innovation and embedded technology in construction (BIIB), the paper discusses methodological issues on user involvement. In the paper especially focus is on the experiences on involving users in collaborative development of scenarios, in the validation....... The second discussion on collaborative involvement, discuss experiences with methods for communication across cultural and professional competences with reference to boundary objects, tangible systems and visualization. In the project four segments of situations for use of embedded technology in construction...

  17. 75 FR 54627 - ICLUS v1.3 User's Manual: ArcGIS Tools and Datasets for Modeling U.S. Housing Density Growth

    Science.gov (United States)

    2010-09-08

    ... AGENCY ICLUS v1.3 User's Manual: ArcGIS Tools and Datasets for Modeling U.S. Housing Density Growth... (GIS) tool and final user's guide titled, ``ICLUS v1.3 User's Manual: ArcGIS Tools and Datasets for.... ADDRESSES: ``ICLUS v1.3 User's Manual: ArcGIS Tools and Datasets for Modeling U.S. Housing Density Growth...

  18. User's Manual for RESRAD-OFFSITE Version 2.

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.; Gnanapragasam, E.; Biwer, B. M.; Kamboj, S.; Cheng, J. -J.; Klett, T.; LePoire, D.; Zielen, A. J.; Chen, S. Y.; Williams, W. A.; Wallo, A.; Domotor, S.; Mo, T.; Schwartzman, A.; Environmental Science Division; DOE; NRC

    2007-09-05

    The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code, which has been widely used for calculating doses and risks from exposure to radioactively contaminated soils. The development of RESRAD-OFFSITE started more than 10 years ago, but new models and methodologies have been developed, tested, and incorporated since then. Some of the new models have been benchmarked against other independently developed (international) models. The databases used have also expanded to include all the radionuclides (more than 830) contained in the International Commission on Radiological Protection (ICRP) 38 database. This manual provides detailed information on the design and application of the RESRAD-OFFSITE code. It describes in detail the new models used in the code, such as the three-dimensional dispersion groundwater flow and radionuclide transport model, the Gaussian plume model for atmospheric dispersion, and the deposition model used to estimate the accumulation of radionuclides in offsite locations and in foods. Potential exposure pathways and exposure scenarios that can be modeled by the RESRAD-OFFSITE code are also discussed. A user's guide is included in Appendix A of this manual. The default parameter values and parameter distributions are presented in Appendix B, along with a discussion on the statistical distributions for probabilistic analysis. A detailed discussion on how to reduce run time, especially when conducting probabilistic (uncertainty) analysis, is presented in Appendix C of this manual.

  19. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    International Nuclear Information System (INIS)

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the open-quotes constructionclose quotes of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of the physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc

  20. Detailed Shoulder MRI Findings in Manual Wheelchair Users with Shoulder Pain

    Directory of Open Access Journals (Sweden)

    Melissa M. B. Morrow

    2014-01-01

    Full Text Available Shoulder pain and pathology are common in manual wheelchair (MWC users with paraplegia, and the biomechanical mechanism of injury is largely unknown. Establishing patterns of MRI characteristics in MWC users would help advance understanding of the mechanical etiology of rotator cuff disease, thus improving the logic for prescribed interventions. The purpose of this study was to report detailed shoulder MRI findings in a sample of 10 MWC users with anterolateral shoulder pain. The imaging assessments were performed using our standardized MRI Assessment of the Shoulder (MAS guide. The tendon most commonly torn was the supraspinatus at the insertion site in the anterior portion in either the intrasubstance or articular region. Additionally, widespread tendinopathy, CA ligament thickening, subacromial bursitis, labral tears, and AC joint degenerative arthrosis and edema were common. Further reporting of detailed shoulder imaging findings is needed to confirm patterns of tears in MWC users regarding probable tendon tear zone, region, and portion. This investigation was a small sample observational study and did not yield data that can define patterns of pathology. However, synthesis of detailed findings from multiple studies could define patterns of pathological MRI findings allowing for associations of imaging findings to risk factors including specific activities.

  1. Detailed Shoulder MRI Findings in Manual Wheelchair Users with Shoulder Pain

    Science.gov (United States)

    Morrow, Melissa M. B.; Van Straaten, Meegan G.; Murthy, Naveen S.; Braman, Jonathan P.; Zanella, Elia; Zhao, Kristin D.

    2014-01-01

    Shoulder pain and pathology are common in manual wheelchair (MWC) users with paraplegia, and the biomechanical mechanism of injury is largely unknown. Establishing patterns of MRI characteristics in MWC users would help advance understanding of the mechanical etiology of rotator cuff disease, thus improving the logic for prescribed interventions. The purpose of this study was to report detailed shoulder MRI findings in a sample of 10 MWC users with anterolateral shoulder pain. The imaging assessments were performed using our standardized MRI Assessment of the Shoulder (MAS) guide. The tendon most commonly torn was the supraspinatus at the insertion site in the anterior portion in either the intrasubstance or articular region. Additionally, widespread tendinopathy, CA ligament thickening, subacromial bursitis, labral tears, and AC joint degenerative arthrosis and edema were common. Further reporting of detailed shoulder imaging findings is needed to confirm patterns of tears in MWC users regarding probable tendon tear zone, region, and portion. This investigation was a small sample observational study and did not yield data that can define patterns of pathology. However, synthesis of detailed findings from multiple studies could define patterns of pathological MRI findings allowing for associations of imaging findings to risk factors including specific activities. PMID:25180192

  2. Model for Analysis of the Energy Demand (MAED) users' manual for version MAED-1

    International Nuclear Information System (INIS)

    1986-09-01

    This manual is organized in two major parts. The first part includes eight main sections describing how to use the MAED-1 computer program and the second one consists of five appendices giving some additional information about the program. Concerning the main sections of the manual, Section 1 gives a summary description and some background information about the MAED-1 model. Section 2 extends the description of the MAED-1 model in more detail. Section 3 introduces some concepts, mainly related to the computer requirements imposed by the program, that are used throughout this document. Sections 4 to 7 describe how to execute each of the various programs (or modules) of the MAED-1 package. The description for each module shows the user how to prepare the control and data cards needed to execute the module and how to interpret the printed output produced. Section 8 recapitulates about the use of MAED-1 for carrying out energy and electricity planning studies, describes the several phases normally involved in this type of study and provides the user with practical hints about the most important aspects that need to be verified at each phase while executing the various MAED modules

  3. Solar reliability and materials library. Volume 2. User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H.; Wolosewicz, R.M.; Singh, I.

    1980-09-01

    This user's manual is the second of two volumes documenting the solar reliability and materials program (SRMP) library at Argonne National Laboratory (ANL). The first volume presents an overview of the solar reliability and materials library. This volume describes the data card formats, identification codes, and dictionaries used in recording data and compiling reliability statistics on solar energy systems. The library is structured around the solar heating and cooling system demonstration sites sponsored by the Department of Energy (DOE). Sufficient flexibility has been built into the coding plan to expand the library to include other solar energy systems. As with any reliability library, the structure will change with time and the needs of the solar energy community. As changes in structure occur, updated editions of the user's manual will be issued to incorporate them. Some of the programs that have been developed using the Statistical Analysis System (SAS) processor are presented to indicate the steps to be followed in linking the various SAS procedures into a production algorithm. Because SAS is a versatile system, other programs and outputs can be generated.

  4. PLEXFIN a computer model for the economic assessment of nuclear power plant life extension. User's manual

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA developed PLEXFIN, a computer model analysis tool aimed to assist decision makers in the assessment of the economic viability of a nuclear power plant life/licence extension. This user's manual was produced to facilitate the application of the PLEXFIN computer model. It is widely accepted in the industry that the operational life of a nuclear power plant is not limited to a pre-determined number of years, sometimes established on non-technical grounds, but by the capability of the plant to comply with the nuclear safety and technical requirements in a cost effective manner. The decision to extend the license/life of a nuclear power plant involves a number of political, technical and economic issues. The economic viability is a cornerstone of the decision-making process. In a liberalized electricity market, the economics to justify a nuclear power plant life/license extension decision requires a more complex evaluation. This user's manual was elaborated in the framework of the IAEA's programmes on Continuous process improvement of NPP operating performance, and on Models for analysis and capacity building for sustainable energy development, with the support of four consultants meetings

  5. SCAPULOTHORACIC AND GLENOHUMERAL KINEMATICS DURING DAILY TASKS IN USERS OF MANUAL WHEELCHAIRS

    Directory of Open Access Journals (Sweden)

    Kristin D Zhao

    2015-11-01

    Full Text Available Background Rates of shoulder pain in individuals who use manual wheelchairs as their primary means of mobility have been reported to be as high as 70% during activities of daily living. Current prevailing thought is that mechanical impingement of the soft tissues that reside within the subacromial space between the humeral head and coracoacromial arch is a major contributor to the shoulder pain in users of manual wheelchairs. The subacromial space size is directly related to the kinematics at the shoulder joint. Yet to be answered are questions about which common daily tasks are characterized by the most potentially detrimental kinematics. ObjectiveThe purpose of this analysis was to quantify and compare potentially detrimental kinematics in three common tasks performed by individuals with SCI and shoulder pain. These data will add to the body of knowledge, and test common assumptions about relative risk of tasks. DesignA cross-sectional study of 15 manual wheelchair users with shoulder pain.MethodsElectromagnetic surface sensor measures of mean and peak scapulothoracic internal and downward rotation, anterior tilt, and glenohumeral internal rotation were compared across propulsion, weight relief, and scapular plane abduction tasks using one-way repeated measures ANOVA. ResultsStatistical differences were observed between the tasks for all rotations. Mean scapulothoracic anterior tilt was greater in weight relief and propulsion than during scapular plane abduction (24, 23, and 13 degrees of anterior tilt, respectively. Mean GH axial rotation during weight relief was more internally rotated than during propulsion and scapular plane abduction (9, 26, and 51 degrees of external rotation, respectively. LimitationsSurface-based measures of kinematics are subject to skin motion artifact, especially in translation which was not addressed in this study. Conclusions Each task presented with specific variables that might contribute to risk of developing

  6. The Neural Basis of Speech Perception through Lipreading and Manual Cues: Evidence from Deaf Native Users of Cued Speech

    Science.gov (United States)

    Aparicio, Mario; Peigneux, Philippe; Charlier, Brigitte; Balériaux, Danielle; Kavec, Martin; Leybaert, Jacqueline

    2017-01-01

    We present here the first neuroimaging data for perception of Cued Speech (CS) by deaf adults who are native users of CS. CS is a visual mode of communicating a spoken language through a set of manual cues which accompany lipreading and disambiguate it. With CS, sublexical units of the oral language are conveyed clearly and completely through the visual modality without requiring hearing. The comparison of neural processing of CS in deaf individuals with processing of audiovisual (AV) speech in normally hearing individuals represents a unique opportunity to explore the similarities and differences in neural processing of an oral language delivered in a visuo-manual vs. an AV modality. The study included deaf adult participants who were early CS users and native hearing users of French who process speech audiovisually. Words were presented in an event-related fMRI design. Three conditions were presented to each group of participants. The deaf participants saw CS words (manual + lipread), words presented as manual cues alone, and words presented to be lipread without manual cues. The hearing group saw AV spoken words, audio-alone and lipread-alone. Three findings are highlighted. First, the middle and superior temporal gyrus (excluding Heschl’s gyrus) and left inferior frontal gyrus pars triangularis constituted a common, amodal neural basis for AV and CS perception. Second, integration was inferred in posterior parts of superior temporal sulcus for audio and lipread information in AV speech, but in the occipito-temporal junction, including MT/V5, for the manual cues and lipreading in CS. Third, the perception of manual cues showed a much greater overlap with the regions activated by CS (manual + lipreading) than lipreading alone did. This supports the notion that manual cues play a larger role than lipreading for CS processing. The present study contributes to a better understanding of the role of manual cues as support of visual speech perception in the framework

  7. A user`s manual for MASH 1.0: A Monte Carlo Adjoint Shielding Code System

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O. [ed.

    1992-03-01

    The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the ``dose importance`` of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user`s manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.

  8. User's Manual for the New England Water-Use Data System (NEWUDS)

    Science.gov (United States)

    Horn, Marilee A.

    2003-01-01

    Water is used in a variety of ways that need to be understood for effective management of water resources. Water-use activities need to be categorized and included in a database management system to understand current water uses and to provide information to water-resource management policy decisionmakers. The New England Water-Use Data System (NEWUDS) is a complex database developed to store water-use information that allows water to be tracked from a point of water-use activity (called a 'Site'), such as withdrawal from a resource (reservoir or aquifer), to a second Site, such as distribution to a user (business or irrigator). NEWUDS conceptual model consists of 10 core entities: system, owner, address, location, site, data source, resource, conveyance, transaction/rate, and alias, with tables available to store user-defined details. Three components--site (with both a From Site and a To Site), a conveyance that connects them, and a transaction/rate associated with the movement of water over a specific time interval form the core of the basic NEWUDS network model. The most important step in correctly translating real-world water-use activities into a storable format in NEWUDS depends on choosing the appropriate sites and linking them correctly in a network to model the flow of water from the initial From Site to the final To Site. Ten water-use networks representing real-world activities are described--three withdrawal networks, three return networks, two user networks, two complex community-system networks. Ten case studies of water use, one for each network, also are included in this manual to illustrate how to compile, store, and retrieve the appropriate data. The sequence of data entry into tables is critical because there are many foreign keys. The recommended core entity sequence is (1) system, (2) owner, (3) address, (4) location, (5) site, (6) data source, (7) resource, (8) conveyance, (9) transaction, and (10) rate; with (11) alias and (12) user

  9. The Visual Web User Interface Design in Augmented Reality Technology

    OpenAIRE

    Chouyin Hsu; Haui-Chih Shiau

    2013-01-01

    Upon the popularity of 3C devices, the visual creatures are all around us, such the online game, touch pad, video and animation. Therefore, the text-based web page will no longer satisfy users. With the popularity of webcam, digital camera, stereoscopic glasses, or head-mounted display, the user interface becomes more visual and multi-dimensional. For the consideration of 3D and visual display in the research of web user interface design, Augmented Reality technology providing the convenient ...

  10. Towards a new Role of Agent Technology in User Modelling

    OpenAIRE

    Lorenz, A.

    2003-01-01

    This paper discusses resent attempts to employ multi-agent technologies for user modelling purposes. Based on the analysis of recent implemented systems, this contribution provides a general agent definition representing a flexible implementation to employ highly specialized entities for user modelling tasks, and illustrates communication and cooperation approaches. In the overall solution, agent teams cooperate to fulfill the requirements of user modelling in a more appropriate way.

  11. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    International Nuclear Information System (INIS)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code is a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant

  12. INES: The International Nuclear and Radiological Event Scale User's Manual. 2008 Edition (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    INES, the International Nuclear and Radiological Event Scale, was developed in 1990 by experts convened by the IAEA and the OECD Nuclear Energy Agency with the aim of communicating the safety significance of events. This edition of the INES User's Manual is designed to facilitate the task of those who are required to rate the safety significance of events using the scale. It includes additional guidance and clarifications, and provides examples and comments on the continued use of INES. With this new edition, it is anticipated that INES will be widely used by Member States and become the worldwide scale for putting into proper perspective the safety significance of any event associated with the transport, storage and use of radioactive material and radiation sources, whether or not the event occurs at a facility.

  13. Light water reactor fuel analysis code FEMAXI-IV(Ver.2). Detailed structure and user's manual

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Saitou, Hiroaki.

    1997-11-01

    A light water reactor fuel behavior analysis code FEMAXI-IV(Ver.2) was developed as an improved version of FEMAXI-IV. Development of FEMAXI-IV has been already finished in 1992, though a detailed structure and input manual of the code have not been open to users yet. Here, the basic theories and structure, the models and numerical solutions applied to FEMAXI-IV(Ver.2), and the material properties adopted in the code are described in detail. In FEMAXI-IV(Ver.2), programming bugs in previous FEMAXI-IV were eliminated, renewal of the pellet thermal conductivity was performed, and a model of thermal-stress restraint on FP gas release was incorporated. For facilitation of effective and wide-ranging application of the code, methods of input/output of the code are also described in detail, and sample output is included. (author)

  14. Providing structural modules with self-integrity monitoring software user's manual

    Science.gov (United States)

    1990-01-01

    National Aeronautics and Space Administration (NASA) Contract NAS7-961 (A Small Business Innovation and Research (SBIR) contract from NASA) involved research dealing with remote structural damage detection using the concept of substructures. Several approaches were developed. The main two were: (1) the module (substructure) transfer function matrix (MTFM) approach; and (2) modal strain energy distribution method (MSEDM). Either method can be used with a global structure; however, the focus was on substructures. As part of the research contract, computer software was to be developed which would implement the developed methods. This was done and it was used to process all the finite element generated numerical data for the research. The software was written for the IBM AT personal computer. Copies of it were placed on floppy disks. This report serves as a user's manual for the two sets of damage detection software. Sections 2.0 and 3.0 discuss the use of the MTFM and MSEDM software, respectively.

  15. Providing structural modules with self-integrity monitoring software user's manual

    Science.gov (United States)

    1990-04-01

    National Aeronautics and Space Administration (NASA) Contract NAS7-961 (A Small Business Innovation and Research (SBIR) contract from NASA) involved research dealing with remote structural damage detection using the concept of substructures. Several approaches were developed. The main two were: (1) the module (substructure) transfer function matrix (MTFM) approach; and (2) modal strain energy distribution method (MSEDM). Either method can be used with a global structure; however, the focus was on substructures. As part of the research contract, computer software was to be developed which would implement the developed methods. This was done and it was used to process all the finite element generated numerical data for the research. The software was written for the IBM AT personal computer. Copies of it were placed on floppy disks. This report serves as a user's manual for the two sets of damage detection software. Sections 2.0 and 3.0 discuss the use of the MTFM and MSEDM software, respectively.

  16. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    Science.gov (United States)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  17. Army National Guard (ARNG) Objective Supply Capability Adaptive Redesign (OSCAR) end-user manual

    Energy Technology Data Exchange (ETDEWEB)

    Pelath, R.P. [National Guard Bureau, Arlington, VA (United States); Rasch, K.A. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The Objective Supply Capability Adaptive Redesign (OSCAR) project is designed to identify and develop programs which automate requirements not included in standard army systems. This includes providing automated interfaces between standard army systems at the National Guard Bureau (NGB) level and at the state/territory level. As part of the OSCAR project, custom software has been installed at NGB to streamline management of major end items. This software allows item managers to provide automated disposition on excess equipment to states operating the Standard Army Retail Supply System Objective (SARSS-O). It also accelerates movement of excess assets to improve the readiness of the Army National Guard (ARNG)--while reducing excess on hand. The purpose of the End-User Manual is to provide direction and guidance to the customer for implementing the ARNG Excess Management Program.

  18. Verification and transfer of thermal pollution model. Volume 6: User's manual for 1-dimensional numerical model

    Science.gov (United States)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1982-01-01

    The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter.

  19. User-centered Technologies For Blind Children

    OpenAIRE

    Jaime Sánchez

    2008-01-01

    The purpose of this paper is to review, summarize, and illustrate research work involving four audio-based games created within a user-centered design methodology through successive usability tasks and evaluations. These games were designed by considering the mental model of blind children and their styles of interaction to perceive and process data and information. The goal of these games was to enhance the cognitive development of spatial structures, memory, haptic perception, mathe...

  20. NetMOD version 1.0 user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-01

    NetMOD (Network Monitoring for Optimal Detection) is a Java-based software package for conducting simulation of seismic networks. Specifically, NetMOD simulates the detection capabilities of seismic monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform seismic detection simulations. In addition, NetMOD is distributed with a simulation dataset for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic network for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation.

  1. SHEAT for PC. A computer code for probabilistic seismic hazard analysis for personal computer, user's manual

    International Nuclear Information System (INIS)

    Yamada, Hiroyuki; Tsutsumi, Hideaki; Ebisawa, Katsumi; Suzuki, Masahide

    2002-03-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. At first, SHEAT was developed as the large sized computer version. In addition, a personal computer version was provided to improve operation efficiency and generality of this code in 2001. It is possible to perform the earthquake hazard analysis, display and the print functions with the Graphical User Interface. With the SHEAT for PC code, seismic hazard which is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site is calculated by the following two steps as is done with the large sized computer. One is the modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquake) is modeled based on the historical earthquake records, active fault data and expert judgment. Another is the calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT for PC code. It includes: (1) Outline of the code, which include overall concept, logical process, code structure, data file used and special characteristics of code, (2) Functions of subprogram and analytical models in them, (3) Guidance of input and output data, (4) Sample run result, and (5) Operational manual. (author)

  2. INTERMEDIARIES, USERS AND SOCIAL LEARNING IN TECHNOLOGICAL INNOVATION

    OpenAIRE

    JAMES STEWART; SAMPSA HYYSALO

    2008-01-01

    This paper explores the role of intermediaries in the development and appropriation of new technologies. We focus on intermediaries that facilitate user innovation, and the linking of user innovation into supply side activities. We review findings on intermediaries in some of our studies and other available literature to build a framework to explore of how intermediaries work in making innovation happen. We make sense of these processes by taking a long-term view of the dynamics of technology...

  3. Hanford ground-water data base management guide and user's manual

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs

  4. A user's manual for the three-dimensional Monte Carlo transport code SPARTAN

    International Nuclear Information System (INIS)

    Bending, R.C.; Heffer, P.J.H.

    1975-09-01

    SPARTAN is a general-purpose Monte Carlo particle transport code intended for neutron or gamma transport problems in reactor physics, health physics, shielding, and safety studies. The code used a very general geometry system enabling a complex layout to be described and allows the user to obtain physics data from a number of different types of source library. Special tracking and scoring techniques are used to improve the quality of the results obtained. To enable users to run SPARTAN, brief descriptions of the facilities available in the code are given and full details of data input and job control language, as well as examples of complete calculations, are included. It is anticipated that changes may be made to SPARTAN from time to time, particularly in those parts of the code which deal with physics data processing. The load module is identified by a version number and implementation date, and updates of sections of this manual will be issued when significant changes are made to the code. (author)

  5. User involvement in service delivery predicts outcomes of assistive technology use: A cross-sectional study in Bangladesh

    Directory of Open Access Journals (Sweden)

    Borg Johan

    2012-09-01

    Full Text Available Abstract Background Knowledge about the relation between user involvement in the provision of assistive technology and outcomes of assistive technology use is a prerequisite for the development of efficient service delivery strategies. However, current knowledge is limited, particularly from low-income countries where affordability is an issue. The objective was therefore to explore the relation between outcomes of assistive technology use and user involvement in the service delivery process in Bangladesh. Methods Using structured interviews, data from 136 users of hearing aids and 149 users of manual wheelchairs were collected. Outcomes were measured using the International Outcome Inventory for Hearing Aids (IOI-HA, which was adapted for wheelchair users. Predictors of user involvement included preference, measurement and training. Results Users reported outcomes comparable to those found in other high- and low-income countries. User involvement increased the likelihood for reporting better outcomes except for measurement among hearing aid users. Conclusions The findings support the provision of assistive technology as a strategy to improve the participation of people with disabilities in society. They also support current policies and guidelines for user-involvement in the service delivery process. Simplified strategies for provision of hearing aids may be explored.

  6. PQLX: A seismic data quality control system description, applications, and users manual

    Science.gov (United States)

    McNamara, Daniel E.; Boaz, Richard I.

    2011-01-01

    We present a detailed description and users manual for a new tool to evaluate seismic station performance and characteristics by providing quick and easy transitions between visualizations of the frequency and time domains. The software is based on the probability density functions (PDF) of power spectral densities (PSD) (McNamara and Buland, 2004) and builds on the original development of the PDF stand-alone software system (McNamara and Boaz, 2005) and the seismological data viewer application PQL (IRIS-PASSCAL Quick Look) and PQLII (available through the IRIS PASSCAL program: http://www.passcal.nmt.edu/content/pql-ii-program-viewing-data). With PQLX (PQL eXtended), computed PSDs are stored in a MySQL database, allowing a user to access specific time periods of PSDs (PDF subsets) and time series segments through a GUI-driven interface. The power of the method and software lies in the fact that there is no need to screen the data for system transients, earthquakes, or general data artifacts, because they map into a background probability level. In fact, examination of artifacts related to station operation and episodic cultural noise allow us to estimate both the overall station quality and a baseline level of Earth noise at each site. The output of this analysis tool is useful for both operational and scientific applications. Operationally, it is useful for characterizing the current and past performance of existing broadband stations, for conducting tests on potential new seismic station locations, for evaluating station baseline noise levels (McNamara and others, 2009), for detecting problems with the recording system or sensors, and for evaluating the overall quality of data and metadata. Scientifically, the tool allows for mining of PSDs for investigations on the evolution of seismic noise (for example, Aster and others, 2008; and Aster and others, 2010) and other phenomena. Currently, PQLX is operational at several organizations including the USGS National

  7. User-Centered Design and Interactive Health Technologies for Patients

    Science.gov (United States)

    De Vito Dabbs, Annette; Myers, Brad A.; Mc Curry, Kenneth R.; Dunbar-Jacob, Jacqueline; Hawkins, Robert P.; Begey, Alex; Dew, Mary Amanda

    2010-01-01

    Despite recommendations that patients be involved in the design and testing of health technologies, few reports describe how to involve patients in systematic and meaningful ways to ensure that applications are customized to meet their needs. User-centered design (UCD) is an approach that involves end-users throughout the development process so that technology support tasks, are easy to operate, and are of value to users. In this paper we provide an overview of UCD and use the development of Pocket Personal Assistant for Tracking Health (Pocket PATH), to illustrate how these principles and techniques were applied to involve patients in the development of this interactive health technology. Involving patient-users in the design and testing ensured functionality and usability, therefore increasing the likelihood of promoting the intended health outcomes. PMID:19411947

  8. PETSc 2.0 Users Manual: Revision 2.0.16

    Energy Technology Data Exchange (ETDEWEB)

    Balay, S.; Gropp, W.; McInnes, L.C.; Smith, B.

    1997-02-01

    This manual describes the use of PETSc 2.0 for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc 2.0 uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear and nonlinear equation solvers that may be used in application codes written in Fortran, C, and C++. PETSc provides many of the mechanisms needed thin parallel application codes, such as simple parallel matrix and vector assembly routines that allow the overlap of communication and computation. In addition, PETSc includes growing support for distributed arrays. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background or experience programming in C, Pascal, or C++, it may require a large amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates make the efficient implementation of many application codes much simpler than rolling them yourself. For many simple tasks a package such as Matlab is often the best tool; PETSc is not intended for the classes of problems for which effective Matlab code can be written. Since PETSc is still under development, small changes in usage and calling sequences of PETSc routines will continue to occur.

  9. Design Effects and Generalized Variance Functions for the 1990-91 Schools and Staffing Survey (SASS). Volume I. User's Manual.

    Science.gov (United States)

    Salvucci, Sameena; And Others

    This user's manual summarizes the results and use of design effects and generalized variance functions (GVF) to approximate standard errors for the 1990-91 Schools and Staffing Survey (SASS). It is Volume I of a two-volume publication that is part of the Technical Report series of the National Center for Education Statistics (NCES). The SASS is a…

  10. Evaluation of the discrete vortex wake cross flow model using vector computers. Part 2: User's manual for DIVORCE

    Science.gov (United States)

    Deffenbaugh, F. D.; Vitz, J. F.

    1979-01-01

    The users manual for the Discrete Vortex Cross flow Evaluator (DIVORCE) computer program is presented. DIVORCE was developed in FORTRAN 4 for the DCD 6600 and CDC 7600 machines. Optimal calls to a NASA vector subroutine package are provided for use with the CDC 7600.

  11. The bidimensional neutron transport code TWOTRAN-GG. Users manual and input data TWOTRAN-TRACA version

    International Nuclear Information System (INIS)

    Ahnert, C.; Aragones, J. M.

    1981-01-01

    This Is a users manual of the neutron transport code TWOTRAN-TRACA, which is a version of the original TWOTRAN-GG from the Los Alamos Laboratory, with some modifications made at JEN. A detailed input data description is given as well as the new modifications developed at JEN. (Author) 8 refs

  12. User-centric technology design for nonprofit and civic engagements

    CERN Document Server

    Saeed, Saqib

    2014-01-01

    Due to the increased global political importance of the nonprofit sector, its technological support and organizational characteristics have become important fields of research. In order to conduct effective work, nonprofits need to communicate and coordinate effectively. However, such settings are generally characterized by a lack of resources, an absence of formal hierarchical structures and differences in languages and culture among the activists. Modern technologies could help nonprofit networks in improving their working. In order to design appropriate technological support for such settings, it is important to understand their work practices, which widely differ from traditional business organizations. This book aims to strengthen the body of knowledge by providing user studies and concepts related to user centered technology design process for nonprofit settings. The examination of ethnographic studies and user centered evaluation of IT artifacts in practice will further the understanding of design requ...

  13. Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual

    Science.gov (United States)

    Chang, Chau-Lyan

    2004-01-01

    LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.

  14. User manual of the multicompenent variably - saturated flow and transport model HP1

    International Nuclear Information System (INIS)

    Jacques, D.; Simunek, J.

    2005-06-01

    (iii) calculations obtained from an independent geochemical transport model (CRUNCH) for several relatively complex problems. Nine verification examples of increasing complexity are described in this report. This report serves as both a user manual and reference document. Detailed instructions for input data preparation and interpretation of output data are given in the manuals of the original HYDRUS-1D and PHREEQC codes. The graphical user interfaces of both HYDRUS-1D and PHREEQC can be used for easy input data preparation and output display in the MS Windows environment. (author)

  15. User Characteristics、User Involvement and Technology Acceptance in Library Automation System Usage

    Directory of Open Access Journals (Sweden)

    Piching Chu

    2002-12-01

    Full Text Available This paper looks into the relationship of user characteristics, user involvement and technology acceptance, also try to find the relationship of the above three variables and library automation system usage. By interview and questionnaire study, the results are described, according to the analysis of the relative literature and the main conclusions, the researcher offers some suggestions for improving the system usage.[Article content in Chinese

  16. Computer technology: its potential for industrial energy conservation. A technology applications manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Today, computer technology is within the reach of practically any industrial corporation regardless of product size. This manual highlights a few of the many applications of computers in the process industry and provides the technical reader with a basic understanding of computer technology, terminology, and the interactions among the various elements of a process computer system. The manual has been organized to separate process applications and economics from computer technology. Chapter 1 introduces the present status of process computer technology and describes the four major applications - monitoring, analysis, control, and optimization. The basic components of a process computer system also are defined. Energy-saving applications in the four major categories defined in Chapter 1 are discussed in Chapter 2. The economics of process computer systems is the topic of Chapter 3, where the historical trend of process computer system costs is presented. Evaluating a process for the possible implementation of a computer system requires a basic understanding of computer technology as well as familiarity with the potential applications; Chapter 4 provides enough technical information for an evaluation. Computer and associated peripheral costs and the logical sequence of steps in the development of a microprocessor-based process control system are covered in Chapter 5.

  17. Mobile Phones as Technological Companions : Users' Perspectives and Experiences

    OpenAIRE

    Allemo, Erik

    2009-01-01

    The applicability of the term technological companion on mobile phones has been investigated with focus group sessions with mobile phone users in Uppsala, Sweden. A definition of a companion with features like, friendliness, long time proximity, information handling was conceived. With the help of this definition the applicability was then tried with the help of data gathered during the focus group sessions. The study shows that users rarely turn off their phones and that the phones accompany...

  18. User's Manual and Final Report for Hot-SMAC GUI Development

    Science.gov (United States)

    Yarrington, Phil

    2001-01-01

    A new software package called Higher Order Theory-Structural/Micro Analysis Code (HOT-SMAC) has been developed as an effective alternative to the finite element approach for Functionally Graded Material (FGM) modeling. HOT-SMAC is a self-contained package including pre- and post-processing through an intuitive graphical user interface, along with the well-established Higher Order Theory for Functionally Graded Materials (HOTFGM) thermomechanical analysis engine. This document represents a Getting Started/User's Manual for HOT-SMAC and a final report for its development. First, the features of the software are presented in a simple step-by-step example where a HOT-SMAC model representing a functionally graded material is created, mechanical and thermal boundary conditions are applied, the model is analyzed and results are reviewed. In a second step-by-step example, a HOT-SMAC model of an actively cooled metallic channel with ceramic thermal barrier coating is built and analyzed. HOT-SMAC results from this model are compared to recently published results (NASA/TM-2001-210702) for two grid densities. Finally, a prototype integration of HOTSMAC with the commercially available HyperSizer(R) structural analysis and sizing software is presented. In this integration, local strain results from HyperSizer's structural analysis are fed to a detailed HOT-SMAC model of the flange-to-facesheet bond region of a stiffened panel. HOT-SMAC is then used to determine the peak shear and peel (normal) stresses between the facesheet and bonded flange of the panel and determine the "free edge" effects.

  19. Scapulothoracic and Glenohumeral Kinematics During Daily Tasks in Users of Manual Wheelchairs.

    Science.gov (United States)

    Zhao, Kristin D; Van Straaten, Meegan G; Cloud, Beth A; Morrow, Melissa M; An, Kai-Nan; Ludewig, Paula M

    2015-01-01

    Rates of shoulder pain in individuals who use manual wheelchairs (MWCs) as their primary means of mobility have been reported to be as high as 70% during activities of daily living. Current prevailing thought is that mechanical impingement of the soft tissues that reside within the subacromial space between the humeral head and coracoacromial arch is a major contributor to the shoulder pain in users of MWCs. The subacromial space size is directly related to the kinematics at the shoulder joint. Yet to be answered are questions about which common daily tasks are characterized by the most potentially detrimental kinematics. The purpose of this analysis was to quantify and compare potentially detrimental kinematics in three common tasks performed by individuals with spinal cord injury and shoulder pain. These data will add to the body of knowledge and test common assumptions about relative risk of tasks. A cross-sectional study of 15 MWC users with shoulder pain. Electromagnetic surface sensor measures of mean and peak scapulothoracic (ST) internal and downward rotation, anterior tilt, and glenohumeral (GH) internal rotation were compared across propulsion, weight relief, and scapular plane abduction tasks using one-way repeated-measure ANOVA. Statistical differences were observed between the tasks for all rotations. Mean ST anterior tilt was greater in weight relief and propulsion than during scapular plane abduction (24°, 23°, and 13° of anterior tilt, respectively). Mean GH axial rotation during weight relief was more internally rotated than during propulsion and scapular plane abduction (9°, 26°, and 51° of external rotation, respectively). Surface-based measures of kinematics are subject to skin motion artifact, especially in translation which was not addressed in this study. Each task presented with specific variables that might contribute to risk of developing shoulder "impingement" and pain. These data may assist therapists in their assessment of

  20. SHEAT: a computer code for probabilistic seismic hazard analysis, user's manual

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Kondo, Masaaki; Abe, Kiyoharu; Tanaka, Toshiaki; Takani, Michio.

    1994-08-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. Seismic hazard is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site. With the SHEAT code, seismic hazard is calculated by the following two steps: (1) Modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquakes) is modelled based on the historical earthquake records, active fault data and expert judgement. (2) Calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT code. It includes: (1) Outlines of the code, which include overall concept, logical process, code structure, data file used and special characteristics of the code, (2) Functions of subprograms and analytical models in them, (3) Guidance of input and output data, and (4) Sample run results. The code has widely been used at JAERI to analyze seismic hazard at various nuclear power plant sites in japan. (author)

  1. Regional demand forecasting and simulation model: user's manual. Task 4, final report

    Energy Technology Data Exchange (ETDEWEB)

    Parhizgari, A M

    1978-09-25

    The Department of Energy's Regional Demand Forecasting Model (RDFOR) is an econometric and simulation system designed to estimate annual fuel-sector-region specific consumption of energy for the US. Its purposes are to (1) provide the demand side of the Project Independence Evaluation System (PIES), (2) enhance our empirical insights into the structure of US energy demand, and (3) assist policymakers in their decisions on and formulations of various energy policies and/or scenarios. This report provides a self-contained user's manual for interpreting, utilizing, and implementing RDFOR simulation software packages. Chapters I and II present the theoretical structure and the simulation of RDFOR, respectively. Chapter III describes several potential scenarios which are (or have been) utilized in the RDFOR simulations. Chapter IV presents an overview of the complete software package utilized in simulation. Chapter V provides the detailed explanation and documentation of this package. The last chapter describes step-by-step implementation of the simulation package using the two scenarios detailed in Chapter III. The RDFOR model contains 14 fuels: gasoline, electricity, natural gas, distillate and residual fuels, liquid gases, jet fuel, coal, oil, petroleum products, asphalt, petroleum coke, metallurgical coal, and total fuels, spread over residential, commercial, industrial, and transportation sectors.

  2. Users Manual for the Geospatial Stream Flow Model (GeoSFM)

    Science.gov (United States)

    Artan, Guleid A.; Asante, Kwabena; Smith, Jodie; Pervez, Md Shahriar; Entenmann, Debbie; Verdin, James P.; Rowland, James

    2008-01-01

    The monitoring of wide-area hydrologic events requires the manipulation of large amounts of geospatial and time series data into concise information products that characterize the location and magnitude of the event. To perform these manipulations, scientists at the U.S. Geological Survey Center for Earth Resources Observation and Science (EROS), with the cooperation of the U.S. Agency for International Development, Office of Foreign Disaster Assistance (USAID/OFDA), have implemented a hydrologic modeling system. The system includes a data assimilation component to generate data for a Geospatial Stream Flow Model (GeoSFM) that can be run operationally to identify and map wide-area streamflow anomalies. GeoSFM integrates a geographical information system (GIS) for geospatial preprocessing and postprocessing tasks and hydrologic modeling routines implemented as dynamically linked libraries (DLLs) for time series manipulations. Model results include maps that depicting the status of streamflow and soil water conditions. This Users Manual provides step-by-step instructions for running the model and for downloading and processing the input data required for initial model parameterization and daily operation.

  3. Coupled Fluid, Energy, and Solute Transport (CFEST) model: Formulation and user's manual

    International Nuclear Information System (INIS)

    Gupta, S.K.; Cole, C.R.; Kincaid, C.T.; Monti, A.M.

    1987-10-01

    The CFEST (Coupled Fluid, Energy, and Solute Transport) code has been developed to analyze coupled hydrologic, thermal, and solute transport processes. It treats single-pahse Darcy ground-water flow in a horizontal or vertical plane, or in fully three-dimensional space under nonisothermal conditions. The code has the capability to model discontinuous and continuous layering, time-dependent and constant sources/sinks, and transient as well as steady-stae ground-water flow. The code offers a wide choice of boundary conditions such as precsribed heads, nodal injection or withdrawal, constant or spatially varying infiltration rates, and welemental source/sink. Initial conditions for the flow analysis can be prescribed pressure or hydraulic head. The heterogeneity in aquifer permeability and porosity can be described by geologic unit or explicity for given elements. Three-dimensional elelments are generated from user-defined well logs at each surface node. To facilitate interaction between disciplines, support programs are provided to plot the finite element grid, well logs, contour maps of input and output parameters, and vertical cross sections. Ground-water travel paths and times and volumetric rates from a specified point can be determined from support programs. This report includes governing partial differential equations, finite element formulation, a use's manual, verification test examples, sample problems, and source listings. 36 refs., 121 figs., 36 tabs

  4. User's manual for the convective cloud module version 1. 0. [RADM; RSM

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.C.

    1987-04-01

    This manual describes a convective cloud model and provide guidance for users. The convective cloud model is assumed to provide a time-averaged distribution of data from a population of precipitating, convective clouds in different stages of development. This model was designed to characterize a scavenging environment using meteorological conditions provided by a regional-scale meteorological code. This meteorological code explicitly simulates processes related to cloud microphysics. The cloud model predicts the vertical profiles of condensed water that correspond to specified surface precipitation rates and cloud top and freezing level heights. The cloud model also predicts profiles of various microphysical constituents, such as fall velocity and accretion rates that exist in conjunction with the condensed water profiles. Descriptions of routines written to solve mass conservation equations for air, cloud, and precipitation water are presented. The solutions are appropriate for precipitating convective clouds with a horizontal spacing on the order of 10 km. Routines are also provided for generating tables of profiles for many discrete input conditions. Once tables are generated, additional routines may be used to interpolate between the tables and to rapidly determine values at levels other than the discrete input levels.

  5. User's manual for seismic analysis code 'SONATINA-2V'

    Energy Technology Data Exchange (ETDEWEB)

    Hanawa, Satoshi; Iyoku, Tatsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-08-01

    The seismic analysis code, SONATINA-2V, has been developed to analyze the behavior of the HTTR core graphite components under seismic excitation. The SONATINA-2V code is a two-dimensional computer program capable of analyzing the vertical arrangement of the HTTR graphite components, such as fuel blocks, replaceable reflector blocks, permanent reflector blocks, as well as their restraint structures. In the analytical model, each block is treated as rigid body and is restrained by dowel pins which restrict relative horizontal movement but allow vertical and rocking motions between upper and lower blocks. Moreover, the SONATINA-2V code is capable of analyzing the core vibration behavior under both simultaneous excitations of vertical and horizontal directions. The SONATINA-2V code is composed of the main program, pri-processor for making the input data to SONATINA-2V and post-processor for data processing and making the graphics from analytical results. Though the SONATINA-2V code was developed in order to work in the MSP computer system of Japan Atomic Energy Research Institute (JAERI), the computer system was abolished with the technical progress of computer. Therefore, improvement of this analysis code was carried out in order to operate the code under the UNIX machine, SR8000 computer system, of the JAERI. The users manual for seismic analysis code, SONATINA-2V, including pri- and post-processor is given in the present report. (author)

  6. User's manual for the ARMLID (Argonne metallic lithium/isotopic dilution) tritium assay system

    International Nuclear Information System (INIS)

    Porges, K.G.; Bretscher, M.M.; Bennett, E.F.; DiIorio, G.; Mattas, R.F.; Lewandowski, E.F.

    1992-08-01

    The Argonne Metallic Lithium - Isotopic Dilution (ARMLID) system described in this report, originally developed at ANL for other purposes, was recently redeployed to measure the tritium production rate (TPR) in a series of US/Japanese collaborative fusion blanket integral experiments, involving large assemblies of fusion breeder blanket materials that were irradiated with a fusion neutron source at FNS/JAERI, Japan. Whereas previous uses of the ARMUD scheme involved just a few samples, its application infusion blanket TPR mapping called for large sample numbers per experiment, implying a commensurate scale of sample fabrication and encapsulation, on one hand, and tritium extraction and counting on the other hand. To shorten the time required for these various tasks, yet still yield reliable and accurate results, both the sample fabrication - encapsulation facility and the tritium extraction system had to be extensively revised from original versions that were designed for accuracy, but not necessarily for speed. The present report describes overall revisions in sufficient detail to serve as a User's Manual for this facility, and/or suggest how a new system might be put together. Either possibility may develop in the near future, in support of ITER design studies. Preliminary and partial descriptions of various aspects and features of the system were presented orally, in the course of annual ANL/JAERI/UCLA ''workshops'', over the last 34 years, as well as elsewhere

  7. Users manual on database of the Piping Reliability Proving Tests at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1996-09-01

    Japan Atomic Energy Research Institute(JAERI) conducted Piping Reliability Proving Tests from 1975 to 1992 based upon the contracts between JAERI and Science and Technology Agency of Japan under the auspices of the special account law for electric power development promotion. The purposes of those tests are to prove the structural reliability of the primary cooling piping constituting a part of the pressure boundary in the water reactor power plants. The tests with large experimental facilities had ended already in 1990. After that piping reliability analysis by the probabilistic method followed until 1992. This report describes the users manual on databases about the test results using the large experimental facilities. Objectives of the piping reliability proving tests are to prove that the primary piping of the water reactor (1) be reliable throughout the service period, (2) have no possibility of rupture, (3) bring no detrimental influence on the surrounding instrumentations or equipments near the break location. The research activities using large scale piping test facilities are described. The present report does the database about the test results pairing the former report. With these two reports, all the feature of Piping Reliability Proving Tests is made clear. Briefings of the tests are described also written in Japanese or English. (author)

  8. Nuclear Energy Infrastructure Database Description and User's Manual

    International Nuclear Information System (INIS)

    Heidrich, Brenden

    2015-01-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE's infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from a variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.

  9. The CCTC Quick-Reacting General War Gaming System (QUICK), User’s Manual. Volume IV. Sortie Generation Subsystem. Change 2.

    Science.gov (United States)

    1980-04-30

    computerized Quick-Reacting General War Gaming System (QUICK) will accept input data, automatically generate global stragetic nuclear war plans...6000 computer system. The QUICK Users Manual consists of four volumes: Volume I, Data Manage - ment Subsystem; Volume II, Weapon/Target Identification...system for senior management personnel. viii CH-2 SECTION 1. GENERAL 3.1 Purpose This volume of the QUICK Users Manual is intended to inform the user

  10. Space Station Freedom technology payload user operations facility concept

    Science.gov (United States)

    Henning, Gary N.; Avery, Don E.

    1992-01-01

    This report presents a concept for a User Operations Facility (UOF) for payloads sponsored by the NASA Office of Aeronautics and Space Technology (OAST). The UOF can be located at any OAST sponsored center; however, for planning purposes, it is assumed that the center will be located at Langley Research Center (LaRC).

  11. Cultural Differences and User Instructions: Effects of a Culturally Adapted Manual Structure on Western and Chinese Users

    NARCIS (Netherlands)

    Li, Qian; de Jong, Menno D.T.; Karreman, Joyce

    2015-01-01

    Purpose: Research shows that Western and Chinese technical communicators structure their documents in different ways. The research reported in this article is a first attempt to systematically explore the effects cultural adaptations of user instructions have on users. Specifically, we investigate

  12. Tripoli-3: monte Carlo transport code for neutral particles - version 3.5 - users manual

    International Nuclear Information System (INIS)

    Vergnaud, Th.; Nimal, J.C.; Chiron, M.

    2001-01-01

    The TRIPOLI-3 code applies the Monte Carlo method to neutron, gamma-ray and coupled neutron and gamma-ray transport calculations in three-dimensional geometries, either in steady-state conditions or having a time dependence. It can be used to study problems where there is a high flux attenuation between the source zone and the result zone (studies of shielding configurations or source driven sub-critical systems, with fission being taken into account), as well as problems where there is a low flux attenuation (neutronic calculations -- in a fuel lattice cell, for example -- where fission is taken into account, usually with the calculation on the effective multiplication factor, fine structure studies, numerical experiments to investigate methods approximations, etc). TRIPOLI-3 has been operational since 1995 and is the version of the TRIPOLI code that follows on from TRIPOLI-2; it can be used on SUN, RISC600 and HP workstations and on PC using the Linux or Windows/NT operating systems. The code uses nuclear data libraries generated using the THEMIS/NJOY system. The current libraries were derived from ENDF/B6 and JEF2. There is also a response function library based on a number of evaluations, notably the dosimetry libraries IRDF/85, IRDF/90 and also evaluations from JEF2. The treatment of particle transport is the same in version 3.5 as in version 3.4 of the TRIPOLI code; but the version 3.5 is more convenient for preparing the input data and for reading the output. The french version of the user's manual exists. (authors)

  13. Influence of accelerometer type and placement on physical activity energy expenditure prediction in manual wheelchair users.

    Science.gov (United States)

    Nightingale, Tom Edward; Walhin, Jean-Philippe; Thompson, Dylan; Bilzon, James Lee John

    2015-01-01

    To assess the validity of two accelerometer devices, at two different anatomical locations, for the prediction of physical activity energy expenditure (PAEE) in manual wheelchair users (MWUs). Seventeen MWUs (36 ± 10 yrs, 72 ± 11 kg) completed ten activities; resting, folding clothes, propulsion on a 1% gradient (3,4,5,6 and 7 km·hr-1) and propulsion at 4km·hr-1 (with an additional 8% body mass, 2% and 3% gradient) on a motorised wheelchair treadmill. GT3X+ and GENEActiv accelerometers were worn on the right wrist (W) and upper arm (UA). Linear regression analysis was conducted between outputs from each accelerometer and criterion PAEE, measured using indirect calorimetry. Subsequent error statistics were calculated for the derived regression equations for all four device/location combinations, using a leave-one-out cross-validation analysis. Accelerometer outputs at each anatomical location were significantly (p < .01) associated with PAEE (GT3X+-UA; r = 0.68 and GT3X+-W; r = 0.82. GENEActiv-UA; r = 0.87 and GENEActiv-W; r = 0.88). Mean ± SD PAEE estimation errors for all activities combined were 15 ± 45%, 14 ± 50%, 3 ± 25% and 4 ± 26% for GT3X+-UA, GT3X+-W, GENEActiv-UA and GENEActiv-W, respectively. Absolute PAEE estimation errors for devices varied, 19 to 66% for GT3X+-UA, 17 to 122% for GT3X+-W, 15 to 26% for GENEActiv-UA and from 17.0 to 32% for the GENEActiv-W. The results indicate that the GENEActiv device worn on either the upper arm or wrist provides the most valid prediction of PAEE in MWUs. Variation in error statistics between the two devices is a result of inherent differences in internal components, on-board filtering processes and outputs of each device.

  14. Evaluation of custom energy expenditure models for SenseWear armband in manual wheelchair users.

    Science.gov (United States)

    Tsang, KaLai; Hiremath, Shivayogi V; Cooper, Rory A; Ding, Dan

    2015-01-01

    Physical activity monitors are increasingly used to help the general population lead a healthy lifestyle by keeping track of their daily physical activity (PA) and energy expenditure (EE). However, none of the commercially available activity monitors can accurately estimate PA and EE in people who use wheelchairs as their primary means of mobility. Researchers have recently developed custom EE prediction models for manual wheelchair users (MWUs) with spinal cord injuries (SCIs) based on a commercial activity monitor--the SenseWear armband. This study evaluated the performance of two custom EE prediction models, including a general model and a set of activity-specific models among 45 MWUs with SCI. The estimated EE was obtained by using the two custom models and the default manufacturer's model, and it was compared with the gold standard measured by the K4b2 portable metabolic cart. The general, activity-specific, and default models had a mean signed percent error (mean +/- standard deviation) of -2.8 +/- 26.1%, -4.8 +/- 25.4%, and -39.6 +/- 37.8%, respectively. The intraclass correlation coefficient was 0.86 (95% confidence interval [CI] = 0.82 to 0.89) for the general model, 0.83 (95% CI = 0.79 to 0.87) for the activity-specific model, and 0.62 (95% CI = 0.16 to 0.81) for the default model. The custom models for the SenseWear armband significantly improved the EE estimation accuracy for MWUs with SCI.

  15. HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual

    Energy Technology Data Exchange (ETDEWEB)

    McCann, R.A.; Lowery, P.S.; Lessor, D.L.

    1987-09-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations for conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.

  16. HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual

    International Nuclear Information System (INIS)

    McCann, R.A.; Lowery, P.S.; Lessor, D.L.

    1987-09-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations for conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs

  17. Mort User's Manual: For use with the Management Oversight and Risk Tree analytical logic diagram

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.W.; Eicher, R.W.

    1992-02-01

    This report contains the User's Manual for MORT (Management Oversight and Risk Tree), a logic diagram in the form of a work sheet'' that illustrates a long series of interrelated questions. MORT is a comprehensive analytical procedure that provides a disciplined method for determining the causes and contributing factors of major accidents. Alternatively, it serves as a tool to evaluate the quality of an existing system. While similar in many respects to fault tree analysis, MORT is more generalized and presents over 1500 specific elements of an ideal universal'' management program for optimizing environment, safety and health, and other programs. This User's Manual is intended to be used with the MORT diagram dated February 1992.

  18. Hydra-TH User's Manual, Version: LA-CC-11120, Dated: December 1, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Christon, Mark A. [Los Alamos National Laboratory; Bakosi, Jozsef [Los Alamos National Laboratory; Lowrie, Robert B. [Los Alamos National Laboratory

    2012-07-19

    Hydra-TH is a hybrid finite-element/finite-volume code built using the Hydra toolkit specifically to attack a broad class of incompressible, viscous fluid dynamics problems prevalent in the thermalhydraulics community. The purpose for this manual is provide sufficient information for an experience analyst to use Hydra-TH in an effective way. The Hydra-TH User's Manual present a brief overview of capabilities and visualization interfaces. The execution and restart models are described before turning to the detailed description of keyword input. Finally, a series of example problems are presented with sufficient data to permit the user to verify the local installation of Hydra-TH, and to permit a convenient starting point for more detailed and complex analyses.

  19. Imagining value, imagining users: academic technology transfer for health innovation.

    Science.gov (United States)

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  20. User's manual for BGS GISGroundwater: a numerical model to simulate groundwater levels for ArcGIS 10.0

    OpenAIRE

    Wang, L.; Pachocka, M.; Jackson, C.R.

    2014-01-01

    This is a user manual of BGS GISGroundwater that produces the depth to groundwater beneath the land surface. BGS GISGroundwater uses standard GIS datasets as inputs and implements data preparation, numerical modelling, post-processing and the visualisation of the modelled results all within the GIS environment. It allows non-modellers, such as scientists and students, to easily and efficiently build up groundwater flow models in ArcMap using GIS layers. For example, only few hours are needed ...

  1. Determinant of SPAN’s User Performance: Technology Performance Chain

    Directory of Open Access Journals (Sweden)

    Ratna Asih Wulandari

    2017-08-01

    Full Text Available Integrated Financial Management Information System (IFMIS is designed to improve accountability, transparency, and efficiency of the government financial management. The core of IFMIS in Indonesia is SPAN (Sistem Perbendaharaan dan Anggaran Negara. SPAN plays main role in organization process. SPAN supports job completion as well. This research links information system (SPAN and individual performance. This study investigates the relationship among technology characteristics, task characteristics, computer self efficacy (CSE, task technology fit (TTF and utilization toward SPAN’s user performance. This is a causal explanatory research. Questionnaires were distributed to SPAN’s users in Lombok Island and analyzed by partial least square (Smart PLS. Analytical results show that technology characteristics and task characteristics have positive influences to TTF and TTF has positive influence of utilization.

  2. End-User Evaluations of Semantic Web Technologies

    Energy Technology Data Exchange (ETDEWEB)

    McCool, Rob; Cowell, Andrew J.; Thurman, David A.

    2005-11-07

    Stanford University's Knowledge Systems Laboratory (KSL) is working in partnership with Battelle Memorial Institute and IBM Watson Research Center to develop a suite of technologies for information extraction, knowledge representation & reasoning, and human-information interaction, in unison entitled 'Knowledge Associates for Novel Intelligence' (KANI). We have developed an integrated analytic environment composed of a collection of analyst associates, software components that aid the user at different stages of the information analysis process. An important part of our participatory design process has been to ensure our technologies and designs are tightly integrate with the needs and requirements of our end users, To this end, we perform a sequence of evaluations towards the end of the development process that ensure the technologies are both functional and usable. This paper reports on that process.

  3. Variability of peak shoulder force during wheelchair propulsion in manual wheelchair users with and without shoulder pain.

    Science.gov (United States)

    Moon, Y; Jayaraman, C; Hsu, I M K; Rice, I M; Hsiao-Wecksler, E T; Sosnoff, J J

    2013-01-01

    Manual wheelchair users report a high prevalence of shoulder pain. Growing evidence shows that variability in forces applied to biological tissue is related to musculoskeletal pain. The purpose of this study was to examine the variability of forces acting on the shoulder during wheelchair propulsion as a function of shoulder pain. Twenty-four manual wheelchair users (13 with pain, 11 without pain) participated in the investigation. Kinetic and kinematic data of wheelchair propulsion were recorded for 3 min maintaining a constant speed at three distinct propulsion speeds (fast speed of 1.1 m/s, a self-selected speed, and a slow speed of 0.7 m/s). Peak resultant shoulder forces in the push phase were calculated using inverse dynamics. Within individual variability was quantified as the coefficient of variation of cycle to cycle peak resultant forces. There was no difference in mean peak shoulder resultant force between groups. The pain group had significantly smaller variability of peak resultant force than the no pain group (Ppain in manual wheelchair users. © 2013.

  4. The performance of an automatic acoustic-based program classifier compared to hearing aid users' manual selection of listening programs.

    Science.gov (United States)

    Searchfield, Grant D; Linford, Tania; Kobayashi, Kei; Crowhen, David; Latzel, Matthias

    2018-03-01

    To compare preference for and performance of manually selected programmes to an automatic sound classifier, the Phonak AutoSense OS. A single blind repeated measures study. Participants were fit with Phonak Virto V90 ITE aids; preferences for different listening programmes were compared across four different sound scenarios (speech in: quiet, noise, loud noise and a car). Following a 4-week trial preferences were reassessed and the users preferred programme was compared to the automatic classifier for sound quality and hearing in noise (HINT test) using a 12 loudspeaker array. Twenty-five participants with symmetrical moderate-severe sensorineural hearing loss. Participant preferences of manual programme for scenarios varied considerably between and within sessions. A HINT Speech Reception Threshold (SRT) advantage was observed for the automatic classifier over participant's manual selection for speech in quiet, loud noise and car noise. Sound quality ratings were similar for both manual and automatic selections. The use of a sound classifier is a viable alternative to manual programme selection.

  5. A User Centered Approach to Developing Emergent Technology Products

    DEFF Research Database (Denmark)

    Restrepo-Giraldo, John Dairo; McAloone, Timothy Charles; Schlegel, Tanja

    2008-01-01

    Current participatory design methods do not allow designers to gain the insight required to develop products with emerging technologies, that is, products that do not have any precedents in the users’ knowledge base and experience. This poses challenges to the designers, as input from users cannot...... was to identify the main form factor drivers for the design of such a phone. Five possible usage scenarios were identified and five form factors were derived from testing these scenarios, which were subsequently evaluated by potential users, through highly focused feedback sessions. The paper also discusses some...

  6. Development of Beam Utilization Technologies and Support for Users

    International Nuclear Information System (INIS)

    Kim, Kyeryung; Jung, Myunghwan; Noh, Yongoh; Lee, Sooyeon; Kim, Hyukwook; Kil, Jaekeun; Lee, Nayoung; Ra, Sekin; Lee, Miejeen; Kim, Sora

    2013-02-01

    The Final goals are to achieve the 2nd goals of the Proton Engineering Frontier Project, development of proton beam utilization technologies, to incubate the potential users, and to develop fundamental technologies. Based on these achievements, we are going to enhance the accelerator utilization and maximize contribution to the local society after accelerator construction completion. For the these goals, we were operating user program reflecting the results of 3rd step planning. We support 38 small projects during 2 years. As results of activation of beam utilization, we acquired 768 users at the end of 2012. We survey proton beam technology proposals, individuals and institutions participation letter of intent through the research of 'Planning of a support program for both basic research by using accelerator and manpower cultivation'. And inaugurated KOPUA (Korea Proton Accelerator User Association) on March 28, 2012 with 152 members. We secured experimental conditions at TR23 and TR103 and reflected in the target room design and operation scenarios via investigate the requirements. Through these requirements, we make a remote sample transfer system, beam regulating system, hot cell and sample transport container. Moreover, we develop proton beam technologies such as in-vivo proton beam irradiation system, comparison of the biological effects for pulse beam and continuous beam, basic experiments for the metal nanopaticle synthesis, research for radioactivatied samples and devices, conceptual design and calculation for neutron source target and calculation of the isotope production yield. Proton accelerator can be utilized in a variety of field, including NT, BT, IT, ST, ET, Nuclear, medical, and some of the user facilities required were constructed through this project, Experience for the construction and operation of these facilities can be reflected to the construction of the rest 8 target room of proton accelerator center

  7. Users' attitude towards science and technology database system : INIS user needs survey

    International Nuclear Information System (INIS)

    Fukazawa, Takeyasu; Takahashi, Satoko; Yonezawa, Minoru; Kajiro, Tadashi; Mineo, Yukinobu; Habara, Takako; Komatsubara, Yasutoshi; Hiramatsu, Nobuaki; Habara, Tadashi.

    1995-01-01

    The International Nuclear Information System (INIS) is the world's leading information system on the peaceful use of nuclear energy which is being operated by the International Atomic Energy Agency (IAEA) in collaboration with its member-states and other international organizations. After more than 20 years of the operation of INIS, a user needs survey was conducted with the aim of assisting the INIS Secretariat to decide which way INIS should go. This report describes users' attitude towards that system on the basis of the conclusions drawn from the questionnaires sent out to the users by the Japan Atomic Energy Research Institute, the INIS national center in Japan, in close collaboration with the Japan Information Center of Science and Technology. (author)

  8. SCDAP/RELAP5/MOD 3.1 code manual: User's guide and input manual. Volume 3

    International Nuclear Information System (INIS)

    Coryell, E.W.; Johnsen, E.C.; Allison, C.M.

    1995-06-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume provides guidelines to code users based upon lessons learned during the developmental assessment process. A description of problem control and the installation process is included. Appendix a contains the description of the input requirements

  9. Guidelines for the verification and validation of expert system software and conventional software: User's manual. Volume 7

    International Nuclear Information System (INIS)

    Mirsky, S.M.; Hayes, J.E.; Miller, L.A.

    1995-03-01

    This report provides a step-by-step guide, or user manual, for personnel responsible for the planning and execution of the verification and validation (V ampersand V), and developmental testing, of expert systems, conventional software systems, and various other types of artificial intelligence systems. While the guide was developed primarily for applications in the utility industry, it applies well to all industries. The user manual has three sections. In Section 1 the user assesses the stringency of V ampersand V needed for the system under consideration, identifies the development stage the system is in, and identifies the component(s) of the system to be tested next. These three pieces of information determine which Guideline Package of V ampersand V methods is most appropriate for those conditions. The V ampersand V Guideline Packages are provided in Section 2. Each package consists of an ordered set of V ampersand V techniques to be applied to the system, guides on choosing the review/evaluation team, measurement criteria, and references to a book or report which describes the application of the method. Section 3 presents details of 11 of the most important (or least well-explained in the literature) methods to assist the user in applying these techniques accurately

  10. Influence of accelerometer type and placement on physical activity energy expenditure prediction in manual wheelchair users.

    Directory of Open Access Journals (Sweden)

    Tom Edward Nightingale

    Full Text Available To assess the validity of two accelerometer devices, at two different anatomical locations, for the prediction of physical activity energy expenditure (PAEE in manual wheelchair users (MWUs.Seventeen MWUs (36 ± 10 yrs, 72 ± 11 kg completed ten activities; resting, folding clothes, propulsion on a 1% gradient (3,4,5,6 and 7 km·hr-1 and propulsion at 4km·hr-1 (with an additional 8% body mass, 2% and 3% gradient on a motorised wheelchair treadmill. GT3X+ and GENEActiv accelerometers were worn on the right wrist (W and upper arm (UA. Linear regression analysis was conducted between outputs from each accelerometer and criterion PAEE, measured using indirect calorimetry. Subsequent error statistics were calculated for the derived regression equations for all four device/location combinations, using a leave-one-out cross-validation analysis.Accelerometer outputs at each anatomical location were significantly (p < .01 associated with PAEE (GT3X+-UA; r = 0.68 and GT3X+-W; r = 0.82. GENEActiv-UA; r = 0.87 and GENEActiv-W; r = 0.88. Mean ± SD PAEE estimation errors for all activities combined were 15 ± 45%, 14 ± 50%, 3 ± 25% and 4 ± 26% for GT3X+-UA, GT3X+-W, GENEActiv-UA and GENEActiv-W, respectively. Absolute PAEE estimation errors for devices varied, 19 to 66% for GT3X+-UA, 17 to 122% for GT3X+-W, 15 to 26% for GENEActiv-UA and from 17.0 to 32% for the GENEActiv-W.The results indicate that the GENEActiv device worn on either the upper arm or wrist provides the most valid prediction of PAEE in MWUs. Variation in error statistics between the two devices is a result of inherent differences in internal components, on-board filtering processes and outputs of each device.

  11. Engineering Design Information System (EDIS), Information Management Services (IMS), Index Function, User`s manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.K. [ed.; Walker, C.T.; Cline, B.E.; Lucas, C.L.

    1995-02-01

    The Engineering Design Information System (EDIS) Information Management Services (IMS) Index Function is an interactive system developed for IMS personnel to perform indexing, maintenance, and retrieval of information about engineering documents. This manual gives an overview of the system structure, data, and functionality, as well as the hardware and security environment within which the system operates. It gives a detailed description of the interactive menus, screens, and prompts that provide access to the system functions and the requirements for data entry. Appendixes are included to display data definitions, modification rules, help screen formats, explanation of system help and informational messages, code translations, and a report format.

  12. User manual of Visual Balan V. 1.0 Interactive code for water balances and refueling estimation

    International Nuclear Information System (INIS)

    Samper, J.; Huguet, L.; Ares, J.; Garcia, M. A.

    1999-01-01

    This document contains the Users Manual of Visual Balan V1.0, an updated version of Visual Balan V0.0 (Samper et al., 1997). Visual Balan V1.0 performs daily water balances in the soil, the unsaturated zone and the aquifer in a user-friendly environment which facilitates both the input data process and the postprocessing of results. The main inputs of the balance are rainfall and irrigation while the outputs are surface runoff, evapotranspiration, interception, inter flow and groundwater flow. The code evaluates all these components in a sequential manner by starting with rainfall and irrigation, which must be provided by the user, and continuing with interception, surface runoff, evapotranspiration, and potential recharge (water flux crossing the bottom of the soil). This potential recharge is the input to the unsaturated zone where water can flow horizontally as subsurface flow (inter flow) or vertically as percolation into the aquifer. (Author)

  13. Banning artwork program user's manual. [for computerized design of gates (circuits)

    Science.gov (United States)

    Taylor, J. F.

    1976-01-01

    A manual containing computer programs for designing circuits is presented. A description of the pattern library, the plotter used to draw the circuit patterns, and program control cards is given. Sample printouts and cards are shown.

  14. National Solar Radiation Database 1991-2005 Update: User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S.

    2007-04-01

    This manual describes how to obtain and interpret the data products from the updated 1991-2005 National Solar Radiation Database (NSRDB). This is an update of the original 1961-1990 NSRDB released in 1992.

  15. Computer program user's manual for FIREFINDER digital topographic data verification library dubbing system

    Science.gov (United States)

    Ceres, M.; Heselton, L. R., III

    1981-11-01

    This manual describes the computer programs for the FIREFINDER Digital Topographic Data Verification-Library-Dubbing System (FFDTDVLDS), and will assist in the maintenance of these programs. The manual contains detailed flow diagrams and associated descriptions for each computer program routine and subroutine. Complete computer program listings are also included. This information should be used when changes are made in the computer programs. The operating system has been designed to minimize operator intervention.

  16. M3 User's Manual. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus (Geopoint AB, Sollentuna (Sweden)); Skaarman, Erik (Abscondo Utveckling, Bromma (Sweden)); Gomez, Javier B. (Univ. of Zaragoza (Spain). Geochemical modelling Group); Gurban, Ioana (3D Terra (Canada))

    2006-07-15

    This report describes the Multivariate Mixing and Mass balance calculations (M3). This new method and computer code is developed to trace the mixing and reaction processes in the groundwater. The aim of the M3 concept is to decode the often hidden and complex information gathered in the groundwater analytical data. The manual presents shortly the theory and practice behind the M3 method. The M3 computer code is also presented and emphasis is put on the reference manual. This includes detailed reference to the M3 program's abilities and limitations, installation procedures and all functions and operations that the program can perform. It also describes sample cases of how the program is used to analyse a test data set. This guide is part of the Help Files distributed together with M3. Two accompanying reports cover other aspects: - Concepts, Methods, and Mathematical Formulation, gives a complete description of the mathematical framework of M3 and introduces concepts and methods useful for the end user. - M3 version 3.0: Verification and Validation, gathers a collection of validation and verification exercises, designed to test each part of M3 code and to build confidence in its methodology. The M3 method has been tested and modified over several years. The development work has been supported by the Swedish Nuclear Fuel and Waste Management Company (SKB). The main test site for the model was the underground Aespoe Hard Rock Laboratory (HRL). The examples used in this manual are from a Aespoe international groundwater modelling co-operation project where one of the tools used was M3. The M3 concept has been applied on the data from SKB's site investigation programme and in data from Canada, Japan, Jordan, Gabon and Finland. The groundwater composition is a result of mixing processes and water-rock interaction. Standard groundwater models based on thermodynamic laws may not be applicable in a normal temperature groundwater system where equilibrium with many

  17. Manual of acid in situ leach uranium mining technology

    International Nuclear Information System (INIS)

    2001-08-01

    In situ leaching (ISL) technology recovers uranium using two alternative chemical leaching systems - acid and alkaline. This report brings together information from several technical disciplines that are an essential part of ISL technology. They include uranium geology, geohydrology, chemistry as well as reservoir engineering and process engineering. This report provides an extensive description of acid ISL uranium mining technology

  18. A computer code to estimate accidental fire and radioactive airborne releases in nuclear fuel cycle facilities: User's manual for FIRIN

    International Nuclear Information System (INIS)

    Chan, M.K.; Ballinger, M.Y.; Owczarski, P.C.

    1989-02-01

    This manual describes the technical bases and use of the computer code FIRIN. This code was developed to estimate the source term release of smoke and radioactive particles from potential fires in nuclear fuel cycle facilities. FIRIN is a product of a broader study, Fuel Cycle Accident Analysis, which Pacific Northwest Laboratory conducted for the US Nuclear Regulatory Commission. The technical bases of FIRIN consist of a nonradioactive fire source term model, compartment effects modeling, and radioactive source term models. These three elements interact with each other in the code affecting the course of the fire. This report also serves as a complete FIRIN user's manual. Included are the FIRIN code description with methods/algorithms of calculation and subroutines, code operating instructions with input requirements, and output descriptions. 40 refs., 5 figs., 31 tabs

  19. ELCOS: the PSI code system for LWR core analysis. Part II: user's manual for the fuel assembly code BOXER

    International Nuclear Information System (INIS)

    Paratte, J.M.; Grimm, P.; Hollard, J.M.

    1996-02-01

    ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user's manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs

  20. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs.

  1. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    International Nuclear Information System (INIS)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs

  2. Wheeled-mobility correlates of life-space and social participation in adult manual wheelchair users aged 50 and older.

    Science.gov (United States)

    Sakakibara, Brodie M; Routhier, François; Miller, William C

    2017-08-01

    To characterize the life-space mobility and social participation of manual wheelchair users using objective measures of wheeled mobility. Individuals (n = 49) were included in this cross-sectional study if they were aged 50 or older, community-dwelling and used their wheelchair on a daily basis for the past 6 months. Life-space mobility and social participation were measured using the life-space assessment and late-life disability instrument. The wheeled mobility variables (distance travelled, occupancy time, number of bouts) were captured using a custom-built data logger. After controlling for age and sex, multivariate regression analyses revealed that the wheeled mobility variables accounted for 24% of the life-space variance. The number of bouts variable, however, did not account for any appreciable variance above and beyond the occupancy time and distance travelled. Occupancy time and number of bouts were significant predictors of social participation and accounted for 23% of the variance after controlling for age and sex. Occupancy time and distance travelled are statistically significant predictors of life-space mobility. Lower occupancy time may be an indicative of travel to more distant life-spaces, whereas the distance travelled is likely a better reflection of mobility within each life-space. Occupancy time and number of bouts are significant predictors of participation frequency. Implications for rehabilitation Component measures of wheelchair mobility, such as distance travelled, occupancy time and number of bouts, are important predictors of life-space mobility and social participation in adult manual wheelchair users. Lower occupancy time is an indication of travel to more distant life-spaces, whereas distance travelled is likely a better reflection of mobility within each life-space. That lower occupancy time and greater number of bouts are associated with more frequent participation raises accessibility and safety issues for manual wheelchair

  3. Technology for the Next-Generation-Mobile User Experience

    Science.gov (United States)

    Delagi, Greg

    The current mobile-handset market is a vital and growing one, being driven by technology advances, including increased bandwidth and processing performance, as well as reduced power consumption and improved screen technologies. The 3G/4G handsets of today are multimedia internet devices with increased screen size, HD video and gaming, interactive touch screens, HD camera and camcorders, as well as incredible social, entertainment, and productivity applications. While mobile-technology advancements to date have made us more social in many ways, new advancements over the next decade will bring us to the next level, allowing mobile users to experience new types of "virtual" social interactions with all the senses. The mobile handsets of the future will be smart autonomous-lifestyle devices with a multitude of incorporated sensors, applications and display options, all designed to make your life easier and more productive! With future display media, including 3D imaging, virtual interaction and conferencing will be possible, making every call feel like you are in the same room, providing an experience far beyond today's video conferencing technology. 3D touch-screen with integrated image-projection technologies will work in conjunction with gesturing to bring a new era of intuitive mobile device applications, interaction, and information sharing. Looking to the future, there are many challenges to be faced in delivering a smart mobile companion device that will meet the user demands. One demand will be for the availability of new and compelling services, and features on the "mobile companion". These mobile companions will be more than just Internet devices, and will function as on-the-go workstations, allowing users to function as if they were sitting in front of their computer in the office or at home. The massive amounts of data that will be transmitted through, to and from these mobile companions will require immense improvements in system performance, including

  4. The dark side of technologies: technostress among users of information and communication technologies.

    Science.gov (United States)

    Salanova, Marisa; Llorens, Susana; Cifre, Eva

    2013-01-01

    This paper tests the structure and the predictors of two psychological experiences of technostress associated with the use of information and communication technologies (ICT), i.e., technostrain (users report feelings of anxiety, fatigue, scepticism and inefficacy beliefs related to the use of technologies) and technoaddiction (users feel bad due to an excessive and compulsive use of these technologies). The study included a sample of 1072 ICT users (N = 675 nonintensive ICT users and N = 397 intensive ICT users). Results from multigroup confirmatory factor analyses among non-intensive and intensive ICT users showed, as expected, the four-factor structure of technostrain in both samples. Secondly, and also as expected, confirmatory factorial analyses revealed that technostress experiences are characterized not only by technostrain but also by an excessive and compulsive use of ICT. Moreover, multiple analyses of variance showed significant differences between non-intensive and intensive ICT users (1) in the dimensions of technostress and (2) in specific job demands and job/personal resources. Finally, linear multiple regression analyses revealed that technostrain is positively predicted by work overload, role ambiguity, emotional overload, mobbing and obstacles hindering ICT use, as well as by lack of autonomy, transformational leadership, social support, ICT use facilitators and mental competences. Work overload, role ambiguity and mobbing, as well as the lack of emotional competences, positively predict technoaddiction. Theoretical and practical implications, in addition to future research, are discussed.

  5. Probe code: a set of programs for processing and analysis of the left ventricular function - User's manual

    International Nuclear Information System (INIS)

    Piva, R.M.V.

    1987-01-01

    The User's Manual of the Probe Code is an addendum to the M.Sc. thesis entitled A Microcomputer System of Nuclear Probe to Check the Left Ventricular Function. The Probe Code is a software which was developed for processing and off-line analysis curves from the Left Ventricular Function, that were obtained in vivo. These curves are produced by means of an external scintigraph probe, which was collimated and put on the left ventricule, after a venous inoculation of Tc-99 m. (author)

  6. EconBiz — Meeting User Needs with New Technology

    Directory of Open Access Journals (Sweden)

    Tamara Pianos

    2010-08-01

    Full Text Available Virtual libraries try to combine traditional library services with new document types and services. The first generation of virtual libraries mostly tried to offer services based on a library-centric view of information retrieval systems. New virtual libraries try to concentrate on user's needs, but this is often easier said than done. Restrictions like copyright laws, technical limitations and the like often make it difficult to meet user requirements. A number of studies documented these needs: easy-to-use, comprehensive yet focussed search, and easy access to print and online documents, subject specific, yet not too restricted to specific areas. The new EconBiz-portal, relaunched in August 2010, has a disciplinary focus on business and economics and related subjects. It includes about 6 million records from different databases. Based on search-engine technology Lucene/Solr, combined with a metadata framework developed by the ZBW, it allows fast, convenient and complex searches. The integration of the Standard-Thesaurus-for Economics supports researchers by suggesting key words and related terms. Information on the availability of the documents is also included. Documents can either be accessed online or ways are shown to material that is available in print only. Journals Online & Print, a service developed by the German Electronic Journals Library (EZB and the German Union Catalogue of Serials (ZDB is included to provide easy access to all forms of journals. In addition, services like an event calendar, a tutorial on how to find information and an online-reference desk help to cater to the user's complex needs. The new EconBiz-portal was developed by the ZBW in close cooperation with the USB Cologne. Major parts of the search engine framework were developed by a company specialized in information technology. This paper elaborates on the extraction of users' requirements from different studies, the deduction of functional requirements, and

  7. Texas trip generation manual : 1st edition-volume 1 : user's guide.

    Science.gov (United States)

    2014-08-01

    The purpose of this Manual is to provide a summary of Texas trip generation data for various : Land Use Codes (LUCs) and time periods, for data obtained from workplace and special : generator (WSG) surveys performed as part of the Texas Travel Survey...

  8. A valiant little terminal: A VLT user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, A.

    1990-12-01

    This report is a manual for the valiant little terminal. Information covered in this report is as follow: an introduction to VLT; installation; starting up; text screen menus; graphics screen menus; introduction to VLT's scripting facility; quick reference section; and troubleshooting.

  9. MANTLE: A finite element program for the thermal-mechanical analysis of mantle convection. A user's manual with examples

    Science.gov (United States)

    Thompson, E.

    1979-01-01

    A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.

  10. Protective Action Evaluator for Chemical Emergencies: A user's manual (MS-DOS reg sign Version 1. 0)

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, G.O.; Sharp, R.D.

    1990-10-01

    The protective action evaluator for chemical emergencies (PAECE) is a package of computer programs developed to simulate an emergency response to airborne release of chemical agents. This user's manual documents the use of PAECE in the evaluation of chemical agent emergencies in areas potentially affected by the Chemical Stockpile Emergency Planning Program (CSEPP). This research documents the development and use of a method for the evaluation of protective action alternatives in conjunction with potential chemical agent emergencies. The user's manual highlights the development of the PAECE model, the selection of appropriate parameters to represent various scenarios, generate results and interpret them in the analysis of protective action alternatives during the planning and preparedness phases of the CSEPP. The PAECE model is designed to evaluate protective actions in the context of potential accidents, the emergency management systems required to implement protective actions, and the anticipated consequences for human receptors. The implications and uncertainties of the model are discussed to provide potential users with insight into the use, limitations, and uncertainties associated with evaluating the effectiveness of protective action alternatives. While PAECE represents a unique and powerful tool to evaluate protective actions, the user must exercise caution when interpreting the results to avoid misrepresentation. The expected value interpretation of the PAECE results biases the results toward extreme values. Hence, the PAECE results have to be interpreted in the context exposures similar to those represented by the unprotected exposure and the protection capacity that tend to be associated with people completing the implementation of the required actions later than and earlier than average, respectively. 16 refs., 24 figs., 1 tab. (JF)

  11. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.

  12. Solar sorptive cooling. Technologies, user requirements, practical experience, future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Treffinger, P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Hardthausen (Germany); Hertlein, H.P. [eds.] [Forschungsverbund Sonnenenergie, Koeln (Germany)

    1998-09-01

    Sorptive cooling techniques permit the use of low-temperature solar heat, i.e. a renewable energy of low cost and world-wide availability. The Forschungsverbund Sonnenenergie intends to develop solar sorptive cooling technologies to the prototype stage and, in cooperation with the solar industry and its end users, to promote practical application in air conditioning of buildings and cold storage of food. The workshop presents an outline of the state of development of solar sorptive cooling from the view of users and developers. Exemplary solar cooling systems are described, and the potential of open and closed sorptive processes is assessed. Future central activities will be defined in an intensive discussion between planners, producers, users and developers. [German] Der Einsatz von Sorptionstechniken zur Kaelteerzeugung erlaubt es, als treibende Solarenergie Niedertemperatur-Solarwaerme einzusetzen, also eine regenerative Energie mit sehr geringen Kosten und weltweiter Verfuegbarkeit. Der Forschungsverbund Sonnenenergie hat sich als Aufgabe gestellt, die Techniken der solaren Sorptionskuehlung bis zum Prototyp zu entwickeln und mit Industrie und Nutzern die praktische Anwendung voranzubringen. Die Anwendungsfelder sind die Klimatisierung von Gebaeuden und die Kaltlagerung von Lebensmitteln. Der Workshop gibt einen Ueberblick zum Entwicklungsstand der solaren Sorptionskuehlung aus der Sicht der Anwender und Entwickler. Bereits ausgefuehrte Beispiele zur solaren Kuehlung werden vorgestellt und das Potential geschlossener und offener Sorptionsverfahren angegeben. In intensiver Diskussion zwischen Planern, Herstellern, Nutzern und Entwicklern sollen kuenftige Arbeitsschwerpunkte herausgearbeitet werden. (orig.)

  13. Noise Data Acquisition and Display System (NDADS) Version 2.0 User's Manual

    National Research Council Canada - National Science Library

    Page, Juliet

    1996-01-01

    NDADS, Noise Data Acquisition and Display System, is an interactive, IBM-compatible, PC-based computer program for the user-enhanced automation and creation of flight tracks and profiles for noise analysis...

  14. Sandia National Laboratories environmental fluid dynamics code : pH effects user manual.

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanam, Vijay (University of New Mexico, Albuquerque, NM); James, Scott Carlton

    2012-02-01

    This document describes the implementation level changes in the source code and input files of Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC) that are necessary for including pH effects into algae-growth dynamics. The document also gives a brief introduction to how pH effects are modeled into the algae-growth model. The document assumes that the reader is aware of the existing algae-growth model in SNL-EFDC. The existing model is described by James, Jarardhanam and more theoretical considerations behind modeling pH effects are presented therein. This document should be used in conjunction with the original EFDC manual and the original water-quality manual.

  15. User's manual of self learning gas puffing system for plasma density control

    International Nuclear Information System (INIS)

    Tanahashi, S.

    1989-04-01

    Pre-programmed gas puffing is often used to get adequet plasma density wave forms in the pulse operating devices for fusion experiments. This method has a defect that preset values have to be adjusted manually in accordance with changes of out gassing rate in successive shots. In order to remove this defect, a self learning system has been developed so as to keep the plasma density close to a given reference waveform. After a few succesive shots, it accomplishes self learning and is ready to keep up with a gradual change of the wall condition. This manual gives the usage of the system and the program list written in BASIC and ASSEMBLER languages. (author)

  16. Quantitative X ray analysis system. User's manual and guide to X ray fluorescence technique

    International Nuclear Information System (INIS)

    2009-01-01

    This guide covers trimmed and re-arranged version 3.6 of the Quantitative X ray Analysis System (QXAS) software package that includes the most frequently used methods of quantitative analysis. QXAS is a comprehensive quantitative analysis package that has been developed by the IAEA through research and technical contracts. Additional development has also been carried out in the IAEA Laboratories in Seibersdorf where QXAS was extensively tested. New in this version of the manual are the descriptions of the Voigt-profile peak fitting, the backscatter fundamental parameters' and emission-transmission methods of chemical composition analysis, an expanded chapter on the X ray fluorescence physics, and completely revised and increased number of practical examples of utilization of the QXAS software package. The analytical data accompanying this manual were collected in the IAEA Seibersdorf Laboratories in the years 2006/2007

  17. ORNL Direct Purchase Information System (DPIS) user's manual. [For PDP-10

    Energy Technology Data Exchange (ETDEWEB)

    Grubb, J.W.; Lovin, J.K.; Smith, M.B.; Haese, R.L.; Needham, D.B.; Wilson, J.K.

    1980-08-01

    The ORNL Management Information System (MIS) Direct Purchase Information System (DPIS) is an on-line interactive system of computer programs. The system can provide a manager with commitment and delivery schedule information on current direct purchase requisitions. The commitment data accounts for the orders that have been placed and those requisitions yet to be placed with a vendor. Information can be summarized at many different levels, and individuals can quickly determine the status of their requisitions. DPIS contains data only on active outside direct purchases, but has the capability to access historical data. It provides sufficient flexibility to be used to answer many questions pertinent to the status of these direct purchases and their obligating costs. Even an inexperienced computer user should have little difficulty in learning to use DPIS. The User Module prompts the user on what type of response it is expecting. If the user has doubts as to the response, or if the meaning of the response is not clear, the module will give a detailed list of the options available at that level. The user has control of what data are to be considered, how they are to be grouped, and what format the output will take. As the user selects the options available at a given level, the module proceeds to the next lower level until sufficient input has been supplied to provide the requested information. A major benefit of this interactive, user-oriented system is that the manager can specify the information requirements and does not have to spend time going through a great deal of other data to locate what is needed. Because it is interactive, a search can begin at a summary level and then resort to a more detailed level if needed. DPIS allows the user direct control for selecting the type of commitment data, output, funds, and direct purchase.

  18. User's manual for the Simulated Life Analysis of Vehicle Elements (SLAVE) model

    Science.gov (United States)

    Paul, D. D., Jr.

    1972-01-01

    The simulated life analysis of vehicle elements model was designed to perform statistical simulation studies for any constant loss rate. The outputs of the model consist of the total number of stages required, stages successfully completing their lifetime, and average stage flight life. This report contains a complete description of the model. Users' instructions and interpretation of input and output data are presented such that a user with little or no prior programming knowledge can successfully implement the program.

  19. Symbolic and Sub-Symbolic Robotic Intelligence Control System (SS-RICS) Users Manual

    Science.gov (United States)

    2017-10-01

    single screen and acts as a portal to the rest of the system . This window includes the ability to operate the robot and its onboard camera, visual... System . The manual explains the overall use and operation of the robotics architecture, the different setups and connections, the simulator and real...possible to produce a system that is capable of autonomous operation and high-level interaction with human operators . This system merges high-level

  20. Geographic Resources Analysis Support System (GRASS) Version 4.0 User’s Reference Manual

    Science.gov (United States)

    1992-06-01

    Default: elevation vh =viewing-height -ight (in meters) of the location from which scenes will be viewed. Default: 30000 sv--;inkvalue Sink factor...initci IV+’U wag -W;IZir \\IIF wink I WiVimkel 1 11 wintri Wiiikel ’Iiipel-F ,IR..SS 4. W()ii~ni ’ I ) U.S. Ann’ (TIRI, 463 m.geo GRASS Reference Manual

  1. SIDA - System for importation distribution and acquisition of radioisotope - User manual

    International Nuclear Information System (INIS)

    1991-01-01

    The SIDA manual (system for importation, distribution and acquisition of radioisotopes) is presented. The SIDA is a system of consult and update to control importation and distribution of radioisotopes in the country. It allows to accompany processes from importation requirement to distribution of radioisotopes, executing the accountancy of I-125, which is distributed for several interprises. The system was developed in CLIPPER87 using DBASE III PLUS data base management. (M.C.K.)

  2. High-level neutron coincidence counter (HLNCC): users' manual

    Energy Technology Data Exchange (ETDEWEB)

    Krick, M.S.; Menlove, H.O.

    1979-06-01

    This manual describes the portable High-Level Neutron Coincidence Counter (HLNCC) developed at the Los Alamos Scientific Laboratory (LASL) for the assay of plutonium, particularly by inspectors of the International Atomic Energy Agency (IAEA). The counter is designed for the measurement of the effective /sup 240/Pu mass in plutonium samples which may have a high plutonium content. The following topics are discussed: principle of operation, description of the system, operating procedures, and applications.

  3. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.

    Science.gov (United States)

    Gagnon, Dany H; Vermette, Martin; Duclos, Cyril; Aubertin-Leheudre, Mylène; Ahmed, Sara; Kairy, Dahlia

    2017-12-19

    The main objectives of this study were to quantify clients' satisfaction and perception upon completion of a locomotor training program with an overground robotic exoskeleton. A group of 14 wheelchair users with a spinal cord injury, who finished a 6-8-week locomotor training program with the robotic exoskeleton (18 training sessions), were invited to complete a web-based electronic questionnaire. This questionnaire encompassed 41 statements organized around seven key domains: overall satisfaction related to the training program, satisfaction related to the overground robotic exoskeleton, satisfaction related to the program attributes, perceived learnability, perceived health benefits and risks and perceived motivation to engage in physical activity. Each statement was rated using a visual analogue scale ranging from "0 = totally disagree" to "100 = completely agree". Overall, respondents unanimously considered themselves satisfied with the locomotor training program with the robotic exoskeleton (95.7 ± 0.7%) and provided positive feedback about the robotic exoskeleton itself (82.3 ± 6.9%), the attributes of the locomotor training program (84.5 ± 6.9%) and their ability to learn to perform sit-stand transfers and walk with the robotic exoskeleton (79.6 ± 17%). Respondents perceived some health benefits (67.9 ± 16.7%) and have reported no fear of developing secondary complications or of potential risk for themselves linked to the use of the robotic exoskeleton (16.7 ± 8.2%). At the end of the program, respondents felt motivated to engage in a regular physical activity program (91.3 ± 0.1%). This study provides new insights on satisfaction and perceptions of wheelchair users while also confirming the relevance to continue to improve such technologies, and informing the development of future clinical trials. Implications for Rehabilitation All long-term manual wheelchair users with a spinal cord injury who participated in the

  4. Utilizing Technology in Manual Material Handling and Safe Lifting.

    Science.gov (United States)

    Snyder, Mick

    2016-02-01

    There is great potential to decrease injuries with the use of these new technologies, especially musculoskeletal disorders and repetitive task-related injuries. Initial costs can be considerable for some of these units, but they are much cheaper than a back surgery. As with all technology, the first designs cost a small fortune, but as we are seeing even now, the pricing is decreasing and the quality is increasing for these devices. In 30 years, we might all have flying cars like "Back to the Future II" predicted we would in 2015 or be able to figure out a tricorder like on "Star Trek"! For more information on exoskeletons, exoskeletonreport.com is a great resource.

  5. The Design and Development of a Technology Based Orientation Manual for Clinical Research Coordinators

    Science.gov (United States)

    Copp, Susan L.

    2010-01-01

    The objective of this research was to use technology to develop an on-line orientation manual for clinical research coordinators. Many clinical research coordinators begin their careers as staff nurses and have little knowledge related to clinical research. As such, when they transition to a career in clinical research they lack the knowledge…

  6. Manual for SFR R and D and Technology Monitoring System Administrator

    International Nuclear Information System (INIS)

    Lee, Dong Uk; Lee, Yong Bum; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-05-01

    This report is a administrator manual on R and D and technology monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. First of all, enterprise project management solution is introduced and then enterprise resources and data creation method are described. Also it made a description of project web assess design, data management method etc

  7. Manual for SFR R and D and Technology Monitoring System Administrator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Lee, Yong Bum; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-05-15

    This report is a administrator manual on R and D and technology monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. First of all, enterprise project management solution is introduced and then enterprise resources and data creation method are described. Also it made a description of project web assess design, data management method etc.

  8. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    Science.gov (United States)

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  9. Solar Cooking Technology - How Far are Technology Promoters and Users from Each Other?

    DEFF Research Database (Denmark)

    Ahmad, Bashir

    1999-01-01

    In this article we take up the issue of use and disuse of box solar cookers by discussing some basic underlying assumptions of the technology as put forward (directly or indirectly) by technology promoter actors. We confront the assumptions with some practical realities that the users and disusers...... encounter when they practice solar cooking. In this way on the one hand some facts which have been instrumental for developing of technology on the side of technology developers are opened up. And on the other hand related practical aspects of use and disuse such as place and time for solar cooking...

  10. Users manual data base MATSURV. Reactor pressure vessel material surveillance data management system

    International Nuclear Information System (INIS)

    Kenworthy, L.D.; Tether, C.D.

    1980-02-01

    This Users Guide to the data management system MATSURV has been prepared to assist the user in all facets of the task of processing data related to reactor pressure vessel materials surveillance; preparation of raw data for input, input of data, modification of existing data, retrieval and display of data, and the creation of data reports. MATSURV is structured upon the System 2000 data base management system which is maintained on the IBM 370/168 computer at National Institutes of Health. An overview of System 2000 is provided

  11. User's manual for ODDBALL, ORMAK device data base analyzing Lukasiewicz language

    International Nuclear Information System (INIS)

    McGaffey, R.W.

    1977-01-01

    ODDBALL, ORMAK Device Data Base Analyzing Lukasiewicz Language was developed to manipulate vector data interactively. To accomplish this reverse Polish Notation was adopted, a generous variety of vector commands, and plotting capability have been included. Also, the user is able to write, execute, and store ODDBALL programs (command strings). ODDBALL is written in PDP-10 FORTRAN and uses the Tektronix plotting packages. It is easily adaptable to meet the specific needs of a given project such as the ORMAK (Oak Ridge Tokamak) data base at ORNL, and yet can be used on individual user data as well

  12. Development and design of a line imaging spectrometer sampler (LISS) - A user manual

    DEFF Research Database (Denmark)

    Jørgensen, R.N.; Rasmussen, P.

    2002-01-01

    The objective of this report is to develop and describe the software for a Line Imaging Spectrometer Sampler (LISS) to perform measurements of spectra combined with a digital RGB photo of a measurant. Secondly this report should enable users to performmeasurements with the system. The measuring...... exposure of the two CCD cameras ensuring optimal use of 16 bit range under unstable illuminationconditions. A routine, handling dark frame subtraction in a robust manner minimising the effect of hot pixels is also included. This report enables a novice user to perform measurements with LISS relatively easy...

  13. Geothermal loan guaranty cash flow model: description and users' manual

    Energy Technology Data Exchange (ETDEWEB)

    Keimig, M.A.; Rosenberg, J.I.; Entingh, D.J.

    1980-11-01

    This is the users guide for the Geothermal Loan Guaranty Cash Flow Model (GCFM). GCFM is a Fortran code which designs and costs geothermal fields and electric power plants. It contains a financial analysis module which performs life cycle costing analysis taking into account various types of taxes, costs and financial structures. The financial module includes a discounted cash flow feature which calculates a levelized breakeven price for each run. The user's guide contains descriptions of the data requirements and instructions for using the model.

  14. GRESS [Gradient Enhanced Software System] Version 0.0 user's manual

    International Nuclear Information System (INIS)

    Horwedel, J.E.; Worley, B.A.; Oblow, E.M.; Pin, F.G.; Wright, R.Q.

    1988-10-01

    The primary objective of this manual is to provide a description of the Gradient Enhanced Software System (GRESS) and to explain how to use GRESS to enhance FORTRAN 77 models for gradient calculation. The use of the Extended Arithmetic Processor (EXAP) as the precompiler for GRESS is presented. A complete description of how to enhance a source code for forward propagation of derivatives using the calculus chain rule is provided. On option, EXAP can be used to generate derivatives and store them on a direct access device for subsequent solution of the numerical adjoint equations. Programming information is also provided to aid in the installation and maintenance of the software

  15. A user's manual for the database management system of impact property

    International Nuclear Information System (INIS)

    Ryu, Woo Seok; Park, S. J.; Kong, W. S.; Jun, I.

    2003-06-01

    This manual is written for the management and maintenance of the impact database system for managing the impact property test data. The data base constructed the data produced from impact property test can increase the application of test results. Also, we can get easily the basic data from database when we prepare the new experiment and can produce better result by compare the previous data. To develop the database we must analyze and design carefully application and after that, we can offer the best quality to customers various requirements. The impact database system was developed by internet method using jsp(Java Server pages) tool

  16. STAR (structural test and analysis database for reliable design) Version 7.1. User's manual

    International Nuclear Information System (INIS)

    Hosogai, Hiromi; Kawasaki, Nobuchika; Kasahara, Naoto

    1998-12-01

    The STAR is characterized by having two supporting functions for developing strength evaluation methods in addition to usual data base management system, an automatic damage calculation function with external programs and an analysis system on accuracy of prediction. This report describes the structure and user information for execution of STAR code. (K. Itami)

  17. AITRAC: Augmented Interactive Transient Radiation Analysis by Computer. User's information manual

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    AITRAC is a program designed for on-line, interactive, DC, and transient analysis of electronic circuits. The program solves linear and nonlinear simultaneous equations which characterize the mathematical models used to predict circuit response. The program features 100 external node--200 branch capability; conversional, free-format input language; built-in junction, FET, MOS, and switch models; sparse matrix algorithm with extended-precision H matrix and T vector calculations, for fast and accurate execution; linear transconductances: beta, GM, MU, ZM; accurate and fast radiation effects analysis; special interface for user-defined equations; selective control of multiple outputs; graphical outputs in wide and narrow formats; and on-line parameter modification capability. The user describes the problem by entering the circuit topology and part parameters. The program then automatically generates and solves the circuit equations, providing the user with printed or plotted output. The circuit topology and/or part values may then be changed by the user, and a new analysis, requested. Circuit descriptions may be saved on disk files for storage and later use. The program contains built-in standard models for resistors, voltage and current sources, capacitors, inductors including mutual couplings, switches, junction diodes and transistors, FETS, and MOS devices. Nonstandard models may be constructed from standard models or by using the special equations interface. Time functions may be described by straight-line segments or by sine, damped sine, and exponential functions. 42 figures, 1 table. (RWR)

  18. Computerized Placement Management Software (CPMS): User Manual, Version 3.0.

    Science.gov (United States)

    College Entrance Examination Board, Princeton, NJ.

    This guide is designed to enable the beginner, as well as the advanced user, to understand and use the Computerized Placement Management Software (CPMS). The CPMS is a system for evaluating information about students and recommending their placement into courses best suited for them. It also tracks their progress and maintains their records. The…

  19. ALOG user's manual: A Guide to using the spreadsheet-based artificial log generator

    Science.gov (United States)

    Matthew F. Winn; Philip A. Araman; Randolph H. Wynne

    2012-01-01

    Computer programs that simulate log sawing can be valuable training tools for sawyers, as well as a means oftesting different sawing patterns. Most available simulation programs rely on diagrammed-log databases, which canbe very costly and time consuming to develop. Artificial Log Generator (ALOG) is a user-friendly Microsoft® Excel®...

  20. AITRAC: Augmented Interactive Transient Radiation Analysis by Computer. User's information manual

    International Nuclear Information System (INIS)

    1977-10-01

    AITRAC is a program designed for on-line, interactive, DC, and transient analysis of electronic circuits. The program solves linear and nonlinear simultaneous equations which characterize the mathematical models used to predict circuit response. The program features 100 external node--200 branch capability; conversional, free-format input language; built-in junction, FET, MOS, and switch models; sparse matrix algorithm with extended-precision H matrix and T vector calculations, for fast and accurate execution; linear transconductances: beta, GM, MU, ZM; accurate and fast radiation effects analysis; special interface for user-defined equations; selective control of multiple outputs; graphical outputs in wide and narrow formats; and on-line parameter modification capability. The user describes the problem by entering the circuit topology and part parameters. The program then automatically generates and solves the circuit equations, providing the user with printed or plotted output. The circuit topology and/or part values may then be changed by the user, and a new analysis, requested. Circuit descriptions may be saved on disk files for storage and later use. The program contains built-in standard models for resistors, voltage and current sources, capacitors, inductors including mutual couplings, switches, junction diodes and transistors, FETS, and MOS devices. Nonstandard models may be constructed from standard models or by using the special equations interface. Time functions may be described by straight-line segments or by sine, damped sine, and exponential functions. 42 figures, 1 table

  1. Phase 1 user instruction manual. A geological formation - drill string dynamic interaction finite element program (GEODYN)

    Energy Technology Data Exchange (ETDEWEB)

    Tinianow, M.A.; Rotelli, R.L. Jr.; Baird, J.A.

    1984-06-01

    User instructions for the GEODYN Interactive Finite Element Computer Program are presented. The program is capable of performing the analysis of the three-dimensional transient dynamic response of a Polycrystalline Diamond Compact Bit - Bit Sub arising from the intermittent contact of the bit with the downhole rock formations. The program accommodates non-linear, time dependent, loading and boundary conditions.

  2. Technologies for physical activity self-monitoring: a study of differences between users and non-users

    Directory of Open Access Journals (Sweden)

    Åkerberg A

    2017-02-01

    Full Text Available Anna Åkerberg,1,2 Anne Söderlund,2 Maria Lindén1 1School of Innovation, Design and Engineering, 2School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden Background: Different kinds of physical activity (PA self-monitoring technologies are used today to monitor and motivate PA behavior change. The user focus is essential in the development process of this technology, including potential future users such as representatives from the group of non-users. There is also a need to study whether there are differences between the groups of users and non-users. The aims of this study were to investigate possible differences between users and non-users regarding their opinions about PA self-monitoring technologies and to investigate differences in demographic variables between the groups. Materials and methods: Participants were randomly selected from seven municipalities in central Sweden. In total, 107 adults responded to the Physical Activity Products Questionnaire, which consisted of 22 questions. Results: Significant differences between the users and non-users were shown for six of the 20 measurement-related items: measures accurately (p=0.007, measures with high precision (p=0.024, measures distance (p=0.020, measures speed (p=0.003, shows minutes of activity (p=0.004, and shows geographical position (p=0.000. Significant differences between the users and non-users were also found for two of the 29 encouragement items: measures accurately (p=0.001 and has long-term memory (p=0.019. Significant differences between the groups were also shown for level of education (p=0.030 and level of physical exercise (p=0.037. Conclusion: With a few exceptions, the users and the non-users in this study had similar opinions about PA self-monitoring technologies. Because this study showed significant differences regarding level of education and level of physical exercise, these demographic variables seemed more relevant to investigate

  3. User's manual for rocket combustor interactive design (ROCCID) and analysis computer program. Volume 2: Appendixes A-K

    Science.gov (United States)

    Muss, J. A.; Nguyen, T. V.; Johnson, C. W.

    1991-01-01

    The appendices A-K to the user's manual for the rocket combustor interactive design (ROCCID) computer program are presented. This includes installation instructions, flow charts, subroutine model documentation, and sample output files. The ROCCID program, written in Fortran 77, provides a standardized methodology using state of the art codes and procedures for the analysis of a liquid rocket engine combustor's steady state combustion performance and combustion stability. The ROCCID is currently capable of analyzing mixed element injector patterns containing impinging like doublet or unlike triplet, showerhead, shear coaxial and swirl coaxial elements as long as only one element type exists in each injector core, baffle, or barrier zone. Real propellant properties of oxygen, hydrogen, methane, propane, and RP-1 are included in ROCCID. The properties of other propellants can be easily added. The analysis models in ROCCID can account for the influences of acoustic cavities, helmholtz resonators, and radial thrust chamber baffles on combustion stability. ROCCID also contains the logic to interactively create a combustor design which meets input performance and stability goals. A preliminary design results from the application of historical correlations to the input design requirements. The steady state performance and combustion stability of this design is evaluated using the analysis models, and ROCCID guides the user as to the design changes required to satisfy the user's performance and stability goals, including the design of stability aids. Output from ROCCID includes a formatted input file for the standardized JANNAF engine performance prediction procedure.

  4. Miro V3.0: user guide and reference manual; Miro V3.0: guide utilisateur et manuel de reference

    Energy Technology Data Exchange (ETDEWEB)

    Donnat, Ph.; Treimany, C.; Morice, O.; Ribeyre, X

    1998-06-01

    This paper contains the user`s guide and reference manual of Miro software. This software is used for simulating propagation and amplification of laser beams in laser devices as Megajoules or NIF. The physical effects taken into account ar essentially: saturated amplification, absorption, Kerr effect, birefringence and aberrations. The models of propagation are either geometrical optics of parallel beams, or Fresnel diffraction. A graphic user interface as been included to allow interactive management of optical devices and results. A Unix environment with X-Window and Motif is required to run Miro. The user`s guide gives a short insight of the software. The reference manual details the physical models and the way they are implanted in Miro. (author) 33 refs.

  5. ERWIN2: User's manual for a computer model to calculate the economic efficiency of wind energy systems

    International Nuclear Information System (INIS)

    Van Wees, F.G.H.

    1992-01-01

    During the last few years the Business Unit ESC-Energy Studies of the Netherlands Energy Research Foundation (ECN) developed calculation programs to determine the economic efficiency of energy technologies, which programs support several studies for the Dutch Ministry of Economic Affairs. All these programs form the so-called BRET programs. One of these programs is ERWIN (Economische Rentabiliteit WINdenergiesystemen or in English: Economic Efficiency of Wind Energy Systems) of which an updated manual (ERWIN2) is presented in this report. An outline is given of the possibilities and limitations to carry out calculations with the model

  6. Operating system for a real-time multiprocessor propulsion system simulator. User's manual

    Science.gov (United States)

    Cole, G. L.

    1985-01-01

    The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.

  7. INTERLINE, a railroad routing model: program description and user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B.E.

    1985-11-01

    INTERLINE is an interactive computer program that finds likely routes for shipments over the US railroad system. It is based on a shortest path algorithm modified both to reflect the nature of railroad company operations and to accommodate computer resource limitations in dealing with a large transportation network. The first section of the report discusses the nature of railroad operations and routing practices in the United States, including the tendency to concentrate traffic on a limited number of mainlines, the competition for traffic by different companies operating in the same corridors, and the tendency of originating carriers to retain traffic on their systems before transferring it to terminating carriers. The theoretical foundation and operation of shortest path algorithms are described, as well as the techniques used to simulate actual operating practices within this framework. The second section is a user's guide that describes the program operation and data structures, program features, and user access. 11 refs., 11 figs.

  8. User's manual for COAST 4: a code for costing and sizing tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sink, D. A.; Iwinski, E. M.

    1979-09-01

    The purpose of this report is to document the computer program COAST 4 for the user/analyst. COAST, COst And Size Tokamak reactors, provides complete and self-consistent size models for the engineering features of D-T burning tokamak reactors and associated facilities involving a continuum of performance including highly beam driven through ignited plasma devices. TNS (The Next Step) devices with no tritium breeding or electrical power production are handled as well as power producing and fissile producing fusion-fission hybrid reactors. The code has been normalized with a TFTR calculation which is consistent with cost, size, and performance data published in the conceptual design report for that device. Information on code development, computer implementation and detailed user instructions are included in the text.

  9. A manual-control approach to development of VTOL automatic landing technology.

    Science.gov (United States)

    Kelly, J. R.; Niessen, F. R.; Garren, J. F., Jr.

    1973-01-01

    The operation of VTOL aircraft in the city-center environment will require complex landing-approach trajectories that insure adequate clearance from other traffic and obstructions and provide the most direct routing for efficient operations. As part of a larger program to develop the necessary technology base, a flight investigation was undertaken to study the problems associated with manual and automatic control of steep, decelerating instrument approaches and landings. The study employed a three-cue flight director driven by control laws developed and refined during manual-control studies and subsequently applied to the automatic approach problem. The validity of this approach was demonstrated by performing the first automatic approach and landings to a predetermined spot ever accomplished with a helicopter. The manual-control studies resulted in the development of a constant-attitude deceleration profile and a low-noise navigation system.

  10. Transportation Routing Analysis Geographic Information System (WebTRAGIS) User's Manual

    International Nuclear Information System (INIS)

    Michelhaugh, R.D.

    2000-01-01

    In the early 1980s, Oak Ridge National Laboratory (ORNL) developed two transportation routing models: HIGHWAY, which predicts truck transportation routes, and INTERLINE, which predicts rail transportation routes. Both of these models have been used by the U.S. Department of Energy (DOE) community for a variety of routing needs over the years. One of the primary uses of the models has been to determine population-density information, which is used as input for risk assessment with the RADTRAN model, which is available on the TRANSNET computer system. During the recent years, advances in the development of geographic information systems (GISs) have resulted in increased demands from the user community for a GIS version of the ORNL routing models. In April 1994, the DOE Transportation Management Division (EM-261) held a Baseline Requirements Assessment Session with transportation routing experts and users of the HIGHWAY and INTERLINE models. As a result of the session, the development of a new GIS routing model, Transportation Routing Analysis GIS (TRAGIS), was initiated. TRAGIS is a user-friendly, GIS-based transportation and analysis computer model. The older HIGHWAY and INTERLINE models are useful to calculate routes, but they cannot display a graphic of the calculated route. Consequently, many users have experienced difficulty determining the proper node for facilities and have been confused by or have misinterpreted the text-based listing from the older routing models. Some of the primary reasons for the development of TRAGIS are (a) to improve the ease of selecting locations for routing, (b) to graphically display the calculated route, and (c) to provide for additional geographic analysis of the route

  11. Automated Structural Optimization System (ASTROS). Volume 2. User’s Manual

    Science.gov (United States)

    1988-04-07

    language has its conceptual roots in the Direct Matrix Abstraction Program ( DMAP ) capability developed for the NASTRAN structural analysis system...just as a NASTRAN rigid format is coded in the DMAP "language." The executive system within ASTROS compiles the MAPOL program and executes the...SEQUENCE As previously mentioned, the MAPOL language has its conceptual roots in the DMAP "language." To allow the user of NASTRAN to perform

  12. NFAP: the nonlinear finite element analysis program. Users manual; Version 1977

    International Nuclear Information System (INIS)

    Prachuktam, S.; Reich, M.; Gardner, D.; Chang, T.Y.

    1978-03-01

    A brief outline of the analysis capability together with the input instructions are given for a nonlinear finite element analysis program called NFAP, which is an extended version of the NONSAP Program. Extensions include additional element types, material models and several user's features as further described in the report. Similar to NONSAP, the NFAP program can be used for conducting linear or nonlinear analysis of various structures under static or dynamic loadings. Nonlinearities involve both nonlinear materials and large deformations

  13. NETL CO2 Storage prospeCtive Resource Estimation Excel aNalysis (CO2-SCREEN) User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Sanguinito, Sean M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Goodman, Angela [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Levine, Jonathan [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-04-03

    This user’s manual guides the use of the National Energy Technology Laboratory’s (NETL) CO2 Storage prospeCtive Resource Estimation Excel aNalysis (CO2-SCREEN) tool, which was developed to aid users screening saline formations for prospective CO2 storage resources. CO2- SCREEN applies U.S. Department of Energy (DOE) methods and equations for estimating prospective CO2 storage resources for saline formations. CO2-SCREEN was developed to be substantive and user-friendly. It also provides a consistent method for calculating prospective CO2 storage resources that allows for consistent comparison of results between different research efforts, such as the Regional Carbon Sequestration Partnerships (RCSP). CO2-SCREEN consists of an Excel spreadsheet containing geologic inputs and outputs, linked to a GoldSim Player model that calculates prospective CO2 storage resources via Monte Carlo simulation.

  14. Technology assessment of multileaf collimation: a North American users survey

    International Nuclear Information System (INIS)

    Klein, Eric E.; Tepper, Joel; Sontag, Mark; Franklin, Michael; Ling, Clifton; Kubo, Dale

    1999-01-01

    Purpose: The American Association of Physicists in Medicine (AAPM) initiated an Assessment of Technology Subcommittee (ATS) to help the radiotherapy community evaluate emerging technologies. The ATS decided to first address multileaf collimation (MLC) by means of a North American users survey. The survey attempted to address issues such as MLC utility, efficacy, cost-effectiveness, and customer satisfaction. Methods and Materials: The survey was designed with 38 questions, with cross-tabulation set up to decipher a particular clinic's perception of MLC. The surveys were coded according to MLC types, which were narrowed to four: Elekta, Siemens, Varian 52-leaf, and Varian 80-leaf. A 40% return rate was desired. Results: A 44% (108 of 250) return was achieved. On an MLC machine, 76.5% of photon patients are being treated with MLC. The main reasons for not using MLC were stair stepping, field size limitation, and physician objection. The most common sites in which MLC is being used are lung, pelvis, and prostate. The least used sites are head and neck and mantle fields. Of the facilities, 31% claimed an increase in number of patients being treated since MLC was installed, and 44% claimed an increase in the number of fields. Though the staffing for block cutting has decreased, therapist staffing has not. However, 91% of the facilities claimed a decreased workload for the therapists, despite the increase in daily treated patients and fields. Of the facilities that justified MLC purchase for more daily patients, 63% are actually treating more patients. Only 26% of the facilities that justified an MLC purchase for intensity-modulated radiotherapy (IMRT) are currently using it for that purpose. The satisfaction rating (1 = low to 5 = high) for department groups averaged 4.0. Therapists ranked MLC as 4.6. Conclusions: Our survey shows that most users have successfully introduced MLC into the clinic as a block replacement. Most have found MLC to be cost-effective and

  15. IGDS/TRAP Interface Program (ITIP). Software User Manual (SUM). [network flow diagrams for coal gasification studies

    Science.gov (United States)

    Jefferys, S.; Johnson, W.; Lewis, R.; Rich, R.

    1981-01-01

    This specification establishes the requirements, concepts, and preliminary design for a set of software known as the IGDS/TRAP Interface Program (ITIP). This software provides the capability to develop at an Interactive Graphics Design System (IGDS) design station process flow diagrams for use by the NASA Coal Gasification Task Team. In addition, ITIP will use the Data Management and Retrieval System (DMRS) to maintain a data base from which a properly formatted input file to the Time-Line and Resources Analysis Program (TRAP) can be extracted. This set of software will reside on the PDP-11/70 and will become the primary interface between the Coal Gasification Task Team and IGDS, DMRS, and TRAP. The user manual for the computer program is presented.

  16. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code is a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant.

  17. Core2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    International Nuclear Information System (INIS)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L.

    2000-01-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  18. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L. [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  19. User's Manual for the Naval Interactive Data Analysis System-Climatologies (NIDAS-C), Version 2.0

    Science.gov (United States)

    Abbott, Clifton

    1996-01-01

    This technical note provides the user's manual for the NIDAS-C system developed for the naval oceanographic office. NIDAS-C operates using numerous oceanographic data categories stored in an installed version of the Naval Environmental Operational Nowcast System (NEONS), a relational database management system (rdbms) which employs the ORACLE proprietary rdbms engine. Data management, configuration, and control functions for the supporting rdbms are performed externally. NIDAS-C stores and retrieves data to/from the rdbms but exercises no direct internal control over the rdbms or its configuration. Data is also ingested into the rdbms, for use by NIDAS-C, by external data acquisition processes. The data categories employed by NIDAS-C are as follows: Bathymetry - ocean depth at

  20. Verification and transfer of thermal pollution model. Volume 2: User's manual for 3-dimensional free-surface model

    Science.gov (United States)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1982-01-01

    The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.

  1. Verification and transfer of thermal pollution model. Volume 4: User's manual for three-dimensional rigid-lid model

    Science.gov (United States)

    Lee, S. S.; Nwadike, E. V.; Sinha, S. E.

    1982-01-01

    The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time.

  2. Estimating pressurized water reactor decommissioning costs: A user's manual for the PWR Cost Estimating Computer Program (CECP) software

    International Nuclear Information System (INIS)

    Bierschbach, M.C.; Mencinsky, G.J.

    1993-10-01

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the US Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user's manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personnel computer, provides estimates for the cost of decommissioning PWR plant stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning

  3. ELCOS: the PSI code system for LWR core analysis. Part I: user's manual for the library preparation code ETOBOX

    International Nuclear Information System (INIS)

    Paratte, J.M.; Foskolos, K.; Grimm, P.; Hollard, J.M.

    1996-01-01

    ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four codes ETOBOX, BOXER, CORCOD and SILWER. The user's manual of the first one is presented here. From a basic neutronic data library in ENDF/B format, the code ETOBOX produces a condensed cross section library. Smooth cross sections are integrated into energy groups. In the ETOBOX 'resonance range' the resonance parameters are transformed into pointwise cross sections. Outside this range the resolved as well as the unresolved resonances are integrated into groups for 3 values of the temperature and 4 values of the dilution cross section. The transfer matrices are calculated in the epithermal as well as in the thermal energy range for a given order of anisotropy for the elastic and the inelastic scattering, as well as for the (n,xn) reactions. In the thermal energy range the transfer matrices are calculated for a maximum of 10 different temperatures. The pointwise resonance cross sections are Doppler broadened for the same temperatures. A working library can be defined as a reduced list of the nuclides calculated, where the coupling between each other is established for burnup calculations. This manual shows all input commands which can be used while running the different modules of ETOBOX. The last chapter describes the library produced. (author) figs., tabs., refs

  4. E-learning interventions are comparable to user's manual in a randomized trial of training strategies for the AGREE II

    Directory of Open Access Journals (Sweden)

    Durocher Lisa D

    2011-07-01

    Full Text Available Abstract Background Practice guidelines (PGs are systematically developed statements intended to assist in patient and practitioner decisions. The AGREE II is the revised tool for PG development, reporting, and evaluation, comprised of 23 items, two global rating scores, and a new User's Manual. In this study, we sought to develop, execute, and evaluate the impact of two internet interventions designed to accelerate the capacity of stakeholders to use the AGREE II. Methods Participants were randomized to one of three training conditions. 'Tutorial'--participants proceeded through the online tutorial with a virtual coach and reviewed a PDF copy of the AGREE II. 'Tutorial + Practice Exercise'--in addition to the Tutorial, participants also appraised a 'practice' PG. For the practice PG appraisal, participants received feedback on how their scores compared to expert norms and formative feedback if scores fell outside the predefined range. 'AGREE II User's Manual PDF (control condition'--participants reviewed a PDF copy of the AGREE II only. All participants evaluated a test PG using the AGREE II. Outcomes of interest were learners' performance, satisfaction, self-efficacy, mental effort, time-on-task, and perceptions of AGREE II. Results No differences emerged between training conditions on any of the outcome measures. Conclusions We believe these results can be explained by better than anticipated performance of the AGREE II PDF materials (control condition or the participants' level of health methodology and PG experience rather than the failure of the online training interventions. Some data suggest the online tools may be useful for trainees new to this field; however, this requires further study.

  5. The bidimensional neutron transport code TWOTRAN-GG. Users manual and input data TWOTRAN-TRACA version; El codigo de transporte bidimensional TWOTRAN-GG. Manual de usuario y datos de entrada version TWOTRAN-TRACA

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.; Aragones, J. M.

    1981-07-01

    This Is a users manual of the neutron transport code TWOTRAN-TRACA, which is a version of the original TWOTRAN-GG from the Los Alamos Laboratory, with some modifications made at JEN. A detailed input data description is given as well as the new modifications developed at JEN. (Author) 8 refs.

  6. User's manual for QUERY: a computer program for retrieval of environmental data

    Energy Technology Data Exchange (ETDEWEB)

    Nyholm, R.A.

    1979-03-06

    QUERY is a computer program used for the retrieval of environmental data. The code was developed in support of the Imperial Valley Environmental Project of the Environmental Sciences division at Lawrence Livermore Laboratory to handle a multitude of environmentally related information. The program can run in either an interactive mode or production mode to retrieve these data. In either case, the user specifies a set of search constraints and then proceeds to select an output format from a menu of output options or to specify the output format according to his immediate needs. Basic data statistics can be requested. Merging of disparate data bases and subfile extraction are elementary.

  7. Models for Ballistic Wind Measurement Error Analysis. Volume II. UsersManual.

    Science.gov (United States)

    1983-01-01

    TEST CHART NATIONAL li ’A il (If IANP) ARDl A -CR-83-0008-1 Reports Control Symbol OSO - 1366 MODELS FOR BALLISTIC WIND MEASUREMENTERROR ANALYSIS...AD-A129 360 MODELS FOR BALLSTIC WIND MEASUREMENT ERROR ANALYSIS VO UME 11USERS’ MAN..U) NEW REXICO STATE UNIV LAS U SS CRUCES PHYSICAL SCIENCE LAR...ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER SASL-CR-83-0008-1 4. TITLE (and Subtitle) 5 TYPE OF REPORT & PERIOD COVERED MODELS FOR BALLISTIC WIND

  8. Program Objectives Memorandum Data Base Management System (POM-DBMS). Users Manual

    Science.gov (United States)

    1981-05-01

    use methe POM DBMS is "menu-driven" system that requires the user merely to select options from menus in order to control the system. The system...Gui to t ’e- Meth - g odbg - Final Technical Report *PR8--26-158. McLean, Virqinia: Decisions and Designs, Inc., December 1980.(U) This companion...9000 4749.6 17 2 6)E1180 45 PISTOL UNF .010 .003 397 99999.0 26 3 1) MULE 14AS 70.000 20.408 73344 3593.9 15 3 2)XM36EI FZ SET MIN 3C.500 8.89.’ 905 101.8

  9. PitPro 1.1 User's Manual; Pit-tag to SURPH Data Translation Utility, Technical Manual 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Westhagen, Peter; Skalski, John

    2003-07-01

    This manual describes the use of Program PitPro to convert PIT-tag data files in PTAGIS (PIT Tag Information System, Pacific States Marine Fisheries Commission) to input files ready for survival analysis in Program SURPH 2.1. This utility converts the various PIT-tag detections at the multitude of detector coils within a juvenile bypass or at adult counting windows and ladders into capture histories. The capture histories indicate whether a tagged fish was detected, not detected, or detected and censored at the major hydroprojects in the Columbia Basin. A major update to this program is the inclusion of adult upstream detection histories. Adult detection histories include not only whether the fish was detected or not but also the year of detection for proper adult survival estimation. The SURPH program is a valuable tool for estimating survival and detection probabilities of fish migrating in the Snake and Columbia rivers. Using special input data files, SURPH computes reach-to-reach statistics for any release group passing a system of detection sites. However, PIT-tag data, as available from PTAGIS, comes in a form that is not ready for use as SURPH input. SURPH requires a capture history for each fish. A capture history consists of a series of fields, one for each detection site, that has a code for whether the fish was detected and returned to the river, detected and removed, or not detected. The data, as received from PTAGIS, has one line for each detection with information such as fish identification (id), detection date and time, number of coil hits and detector coil ids, etc. Because an individual fish may be detected at several coils within a detection site as well as at several detection sites, each fish is often represented by multiple lines in the PTAGIS data file. For the PTAGIS data to be usable by SURPH, it must be preprocessed. The data must be condensed down to one line per fish with the relevant detection information from the PTAGIS file

  10. Users manual for Opt-MS : local methods for simplicial mesh smoothing and untangling.

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, L.

    1999-07-20

    Creating meshes containing good-quality elements is a challenging, yet critical, problem facing computational scientists today. Several researchers have shown that the size of the mesh, the shape of the elements within that mesh, and their relationship to the physical application of interest can profoundly affect the efficiency and accuracy of many numerical approximation techniques. If the application contains anisotropic physics, the mesh can be improved by considering both local characteristics of the approximate application solution and the geometry of the computational domain. If the application is isotropic, regularly shaped elements in the mesh reduce the discretization error, and the mesh can be improved a priori by considering geometric criteria only. The Opt-MS package provides several local node point smoothing techniques that improve elements in the mesh by adjusting grid point location using geometric, criteria. The package is easy to use; only three subroutine calls are required for the user to begin using the software. The package is also flexible; the user may change the technique, function, or dimension of the problem at any time during the mesh smoothing process. Opt-MS is designed to interface with C and C++ codes, ad examples for both two-and three-dimensional meshes are provided.

  11. File-Based One-Way BISON Coupling Through VERA: User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Stimpson, Shane G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-28

    Activities to incorporate fuel performance capabilities into the Virtual Environment for Reactor Applications (VERA) are receiving increasing attention [1–6]. The multiphysics emphasis is expanding as the neutronics (MPACT) and thermal-hydraulics (CTF) packages are becoming more mature. Capturing the finer details of fuel phenomena (swelling, densification, relocation, gap closure, etc.) is the natural next step in the VERA development process since these phenomena are currently not directly taken into account. While several codes could be used to accomplish this, the BISON fuel performance code [8,9] being developed by the Idaho National Laboratory (INL) is the focus of ongoing work in the Consortium for Advanced Simulation of Light Water Reactors (CASL). Built on INL’s MOOSE framework [10], BISON uses the finite element method for geometric representation and a Jacobian-free Newton-Krylov (JFNK) scheme to solve systems of partial differential equations for various fuel characteristic relationships. There are several modes of operation in BISON, but, this work uses a 2D azimuthally symmetric (R-Z) smeared-pellet model. This manual is intended to cover (1) the procedure pertaining to the standalone BISON one-way coupling from VERA and (2) the procedure to generate BISON fuel temperature tables that VERA can use.

  12. User's manual for the FERDO and FERD unfolding codes

    Energy Technology Data Exchange (ETDEWEB)

    Rust, B.W.; Ingersoll, D.T.; Burrus, W.R.

    1983-09-01

    FERDO and FERD are unfolding codes which can be used to correct observed pulse-height distributions for the nonideal response of a pulse-height spectrometer or to solve poorly conditioned linear equations. It is assumed that the response of the spectrometer is given by Ax = b, where A is the spectrometer response function matrix, x is the unknown spectrum, and b is the pulse-height distribution. FERDO does not solve directly for x, but instead solves for p = Wx, where W is a window function matrix. Typically, W is the resolution function of an ideal spectrometer which has a single Gaussian response. The effective resolution of the unfolding solution may be varied by choice of W. Confidence intervals (p/sup 10/, p/sup up/) are found for each element of the solution p. FERDO and FERD are written in IBM 360/370 Fortran (Level H). This manual describes and derives the mathematical procedures used by the codes, tells how to write input data for them, and gives solutions to some sample problems to illustrate the output.

  13. DeCART v1.1 user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. Y.; Kim, K. S.; Kim, H. Y.; Lee, C. C.; Zee, S. Q.; Joo, H. G

    2005-03-15

    DeCART (Deterministic Core Analysis based on Ray Tracing) is a whole core neutron transport code capable of direct subpin level flux calculation at power generating conditions. It does not require a priori homogenization nor group condensation needed in conventional reactor physics calculations. The depletion and transient calculation capabilities are also available. This manual serves as a self-sufficient guide to use the code. First of all, the various features of the code are explained which encompass various modeling options as well as the basic calculation functionalities. The instructions for running the code are also given with a description of the output files generated. Next, the underlying concepts and principles of preparing a DeCART model for a problem under consideration are presented. Each part of the input needed to specify the geometry, material composition, thermal operating condition, program execution control parameters are explained with examples. The descriptions of all the input cards are then followed. Finally, various sample model inputs ranging from a simple 2D pin cell to a realistic 3D core problem, steady-state to transient problems, are presented.

  14. DeCART v1.2 User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. Y.; Kim, K. S.; Kim, H. Y.; Lee, C. C.; Zee, S. Q; Joo, H. G

    2007-07-15

    DeCART (Deterministic Core Analysis based on Ray Tracing) is a whole core neutron transport code capable of direct subpin level flux calculation at power generating conditions. It does not require a priori homogenization nor group condensation needed in conventional reactor physics calculations. The depletion and transient calculation capabilities are also available. This manual serves as a self-sufficient guide to use the code. First of all, the various features of the code are explained which encompass various modeling options as well as the basic calculation functionalities. The instructions for running the code are also given with a description of the output files generated. Next, the underlying concepts and principles of preparing a DeCART model for a problem under consideration are presented. Each part of the input needed to specify the geometry, material composition, thermal operating condition, program execution control parameters are explained with examples. The descriptions of all the input cards are then followed. Finally, various sample model inputs ranging from a simple 2D pin cell to a realistic 3D core problem, steady-state to transient problems, and from rectangular to hexagonal core problems are presented.

  15. User and reference manual for the KfK code INS

    International Nuclear Information System (INIS)

    Daum, E.

    1993-09-01

    The INS code (Intense Neutron Source) serves to calculate uncollided neutron flux contours, neutron flux volumes and spatial-dependent neutron flux spectra in the test cell of an intense neutron source, of the t-H 2 O or d-Li concept. With the information of the neutron flux spectra the neutron irradiation damage like displacements per atom (DPA), H- and He-production rates and the generation of foreign elements by transmutations can be calculated for any element at any position in the test cell. This manual gives an introduction into the theory of neutron flux calculation of thick targets and neutron irradiation damage calculations. It is explained how the code is working and the handling of the input and output parameters. For each application of the several code modules an example is given. The results like contours, spectra, flux volumes and damage rates are summarized in tabular form and graphically. Damage and element transmutation data have been calculated for 23 isotopes and compared with the DEMO 1st wall values. (orig./HP) [de

  16. Review of ride quality technology needs of industry and user groups

    Science.gov (United States)

    Mckenzie, J. R.; Brumaghim, S. H.

    1975-01-01

    A broad survey of ride quality technology state-of-the-art and a review of user evaluation of this technology were conducted. During the study 17 users of ride quality technology in 10 organizations representing land, marine and air passenger transportation modes were interviewed. Interim results and conclusions of this effort are reported.

  17. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user's manual

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document is the User's Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code's capabilities and limitations; Chapter 2 describes the code's structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs

  18. JASMINE-pro: A computer code for the analysis of propagation process in steam explosions. User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanhua; Nilsuwankosit, Sunchai; Moriyama, Kiyofumi; Maruyama, Yu; Nakamura, Hideo; Hashimoto, Kazuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-12-01

    A steam explosion is a phenomenon where a high temperature liquid gives its internal energy very rapidly to another low temperature volatile liquid, causing very strong pressure build up due to rapid vaporization of the latter. In the field of light water reactor safety research, steam explosions caused by the contact of molten core and coolant has been recognized as a potential threat which could cause failure of the pressure vessel or the containment vessel during a severe accident. A numerical simulation code JASMINE was developed at Japan Atomic Energy Research Institute (JAERI) to evaluate the impact of steam explosions on the integrity of reactor boundaries. JASMINE code consists of two parts, JASMINE-pre and -pro, which handle the premixing and propagation phases in steam explosions, respectively. JASMINE-pro code simulates the thermo-hydrodynamics in the propagation phase of a steam explosion on the basis of the multi-fluid model for multiphase flow. This report, 'User's Manual', gives the usage of JASMINE-pro code as well as the information on the code structures which should be useful for users to understand how the code works. (author)

  19. JASMINE-pro: A computer code for the analysis of propagation process in steam explosions. User's manual

    International Nuclear Information System (INIS)

    Yang, Yanhua; Nilsuwankosit, Sunchai; Moriyama, Kiyofumi; Maruyama, Yu; Nakamura, Hideo; Hashimoto, Kazuichiro

    2000-12-01

    A steam explosion is a phenomenon where a high temperature liquid gives its internal energy very rapidly to another low temperature volatile liquid, causing very strong pressure build up due to rapid vaporization of the latter. In the field of light water reactor safety research, steam explosions caused by the contact of molten core and coolant has been recognized as a potential threat which could cause failure of the pressure vessel or the containment vessel during a severe accident. A numerical simulation code JASMINE was developed at Japan Atomic Energy Research Institute (JAERI) to evaluate the impact of steam explosions on the integrity of reactor boundaries. JASMINE code consists of two parts, JASMINE-pre and -pro, which handle the premixing and propagation phases in steam explosions, respectively. JASMINE-pro code simulates the thermo-hydrodynamics in the propagation phase of a steam explosion on the basis of the multi-fluid model for multiphase flow. This report, 'User's Manual', gives the usage of JASMINE-pro code as well as the information on the code structures which should be useful for users to understand how the code works. (author)

  20. Crafts Development and Marketing Manual. Appropriate Technologies for Development. Peace Corps Information Collection & Exchange Manual Series No. M-24.

    Science.gov (United States)

    Ramsay, Caroline C.; And Others

    This manual was developed to help Peace Corps volunteers assist local craftspeople in developing nations in initiating and operating small businesses to produce and market their products. The manual is organized in eight chapters that cover the following topics: the crafts environment, common problems and solutions for a crafts business,…

  1. WateriD User Manual (WERF Report INFR9SG09a)

    Science.gov (United States)

    The Water Infrastructure Database (WATERiD; http://waterid.org ) is designed to be a knowledge base where water and wastewater utilities can upload and gather information about asset management technology and practice experiences. The main emphasis is on pipe location, condition...

  2. MOST PROBABLE NUMBER (MPN) CALCULATOR Version 2.0 User and System Installation and Administration Manual

    Science.gov (United States)

    The new MPN Calculator is an easy-to-use stand alone Windows application built by Avineon, Inc. for the EPA. The calculator was built using Microsoft .NET (dot NET) version 3.5 SP1 (C#) and Windows Presentation Foundation technologies. The new calculator not only combines the mai...

  3. PC-1D installation manual and user's guide

    Energy Technology Data Exchange (ETDEWEB)

    Basore, P.A.

    1991-05-01

    PC-1D is a software package for personal computers that uses finite-element analysis to solve the fully-coupled two-carrier semiconductor transport equations in one dimension. This program is particularly useful for analyzing the performance of optoelectronic devices such as solar cells, but can be applied to any bipolar device whose carrier flows are primarily one-dimensional. This User's Guide provides the information necessary to install PC-1D, define a problem for solution, solve the problem, and examine the results. Example problems are presented which illustrate these steps. The physical models and numerical methods utilized are presented in detail. This document supports version 3.1 of PC-1D, which incorporates faster numerical algorithms with better convergence properties than previous versions of the program. 51 refs., 17 figs., 5 tabs.

  4. HIGHWAY, a transportation routing model: program description and revised users' manual

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.

    1983-10-01

    A computerized transportation routing model has been developed at the Oak Ridge National Laboratory to be used for predicting likely routes for shipping radioactive materials. The HIGHWAY data base is a computerized road atlas containing descriptions of the entire Interstate System, the federal highway system, and most of the principal state roads. In addition to its prediction of the most likely commercial route, options incorporated in the HIGHWAY model can allow for maximum use of Interstate highways or routes that will bypass urbanized areas containing populations greater than 100,000 persons. The user may also interactively modify the data base to predict routes that bypass any particular state, city, town, or specific highway segment

  5. User's manual for the G.T.M.-1 computer code

    International Nuclear Information System (INIS)

    Prado-Herrero, P.

    1992-01-01

    This document describes the GTM-1 ( Geosphere Transport Model, release-1) computer code and is intended to provide the reader with enough detailed information in order to use the code. GTM-1 was developed for the assessment of radionuclide migration by the ground water through geologic deposits whose properties can change along the pathway.GTM-1 solves the transport equation by the finite differences method ( Crank-Nicolson scheme ). It was developped for specific use within Probabilistic System Assessment (PSA) Monte Carlo Method codes; in this context the first application of GTM-1 was within the LISA (Long Term Isolation System Assessment) code. GTM-1 is also available as an independent model, which includes various submodels simulating a multi-barrier disposal system. The code has been tested with the PSACOIN ( Probabilistic System Assessment Codes intercomparison) benchmarks exercises from PSAC User Group (OECD/NEA). 10 refs., 6 Annex., 2 tabs

  6. Introductory user's manual for the US Nuclear Regulatory Commission Reactor Safety Research Data Bank

    International Nuclear Information System (INIS)

    Scofield, N.R.; Hardy, H.A.; Laats, E.T.

    1983-02-01

    The United States Nuclear Regulatory Commission (NRC) has established the NRC/Division of Accident Evaluation (DAE) Data Bank Program to collect, store, and make available data from the many domestic and foreign water safety research programs. Local direction of the program is provided by E G and G Idaho, Inc., prime contractor for the Department of Energy (DOE) at the Idaho National Engineering Laboratory (INEL). The NRC/DAE Data Bank Program provides a central computer storage mechanism and access software for data that is to be used by code development and assessment groups in meeting the code and correlation needs of the nuclear industry. The administrative portion of the program provides data entry, documentation, training, and advisory services to users and the NRC. The NRC/DAE Data Bank and the capabilities of the data access software are described

  7. User's manual for Ecolego Toolbox and the Discretization Block

    Energy Technology Data Exchange (ETDEWEB)

    Broed, Robert (Facilia consulting AB (Sweden)); Shulan Xu (Swedish Radiation Protection Authority, Stockholm (Sweden))

    2008-03-15

    The CLIMB modelling team (Catchment LInked Models of radiological effects in the Biosphere) was instituted in 2004 to provide SSI with an independent modelling capability when reviewing SKB's assessment of long-term safety for a geological repository. Modelling in CLIMB covers all aspects of performance assessment (PA) from near-field releases to radiological consequences in the surface environment. Software used to implement assessment models has been developed within the project. The software comprises a toolbox based on the commercial packages Matlab and Simulink used to solve compartment based differential equation systems, but with an added user friendly graphical interface. This report documents the new simulation toolbox and a newly developed Discretisation Block, which is a powerful tool for solving problems involving a network of compartments in two dimensions

  8. THRESH—Software for tracking rainfall thresholds for landslide and debris-flow occurrence, user manual

    Science.gov (United States)

    Baum, Rex L.; Fischer, Sarah J.; Vigil, Jacob C.

    2018-02-28

    Precipitation thresholds are used in many areas to provide early warning of precipitation-induced landslides and debris flows, and the software distribution THRESH is designed for automated tracking of precipitation, including precipitation forecasts, relative to thresholds for landslide occurrence. This software is also useful for analyzing multiyear precipitation records to compare timing of threshold exceedance with dates and times of historical landslides. This distribution includes the main program THRESH for comparing precipitation to several kinds of thresholds, two utility programs, and a small collection of Python and shell scripts to aid the automated collection and formatting of input data and the graphing and further analysis of output results. The software programs can be deployed on computing platforms that support Fortran 95, Python 2, and certain Unix commands. The software handles rainfall intensity-duration thresholds, cumulative recent-antecedent precipitation thresholds, and peak intensity thresholds as well as various measures of antecedent precipitation. Users should have predefined rainfall thresholds before running THRESH.

  9. Thermal Insulation System Analysis Tool (TISTool) User's Manual. Version 1.0.0

    Science.gov (United States)

    Johnson, Wesley; Fesmire, James; Leucht, Kurt; Demko, Jonathan

    2010-01-01

    The Thermal Insulation System Analysis Tool (TISTool) was developed starting in 2004 by Jonathan Demko and James Fesmire. The first edition was written in Excel and Visual BasIc as macros. It included the basic shapes such as a flat plate, cylinder, dished head, and sphere. The data was from several KSC tests that were already in the public literature realm as well as data from NIST and other highly respectable sources. More recently, the tool has been updated with more test data from the Cryogenics Test Laboratory and the tank shape was added. Additionally, the tool was converted to FORTRAN 95 to allow for easier distribution of the material and tool. This document reviews the user instructions for the operation of this system.

  10. GENLPLOT: An interactive program for display and analysis of data: User's manual

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Grisar, C.C.

    1987-08-01

    GENLPLOT is an interactive program written in FORTRAN and running under VAX/VMS that enables technicians, scientists, engineers, and other users to quickly and accurately examine and analyze data. The current version utilizes the GRAPAC4 plot package, reads a standard input file or permits direct data entry, and is optimized for use with data stored in MDS databases. This program has been the principal interactive data analysis tool used on the Tara Tandem Mirror Experiment and on the Constance II Mirror Experiment. The program is menu driven with options selected on command lines distinguished by various prompts. Subsequent changes and additions to the program will be indicated by a version number greater than that appearing in the welcome message and will be documented in the appropriate menu(s)

  11. User's manual for the BNW-I optimization code for dry-cooled power plants. Volume III. [PLCIRI

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.J.; Daniel, D.J.; De Mier, W.V.; Faletti, D.W.; Wiles, L.E.

    1977-01-01

    This appendix to User's Manual for the BNW-1 Optimization Code for Dry-Cooled Power Plants provides a listing of the BNW-I optimization code for determining, for a particular size power plant, the optimum dry cooling tower design using a plastic tube cooling surface and circular tower arrangement of the tube bundles. (LCL)

  12. Fatigue crack growth model RANDOM2 user manual. Appendix 1: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    Science.gov (United States)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN program RANDOM2 is presented in the form of a user's manual. RANDOM2 is based on fracture mechanics using a probabilistic fatigue crack growth model. It predicts the random lifetime of an engine component to reach a given crack size. Details of the theoretical background, input data instructions, and a sample problem illustrating the use of the program are included.

  13. Fatigue strength reduction model: RANDOM3 and RANDOM4 user manual. Appendix 2: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    Science.gov (United States)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN programs RANDOM3 and RANDOM4 are documented in the form of a user's manual. Both programs are based on fatigue strength reduction, using a probabilistic constitutive model. The programs predict the random lifetime of an engine component to reach a given fatigue strength. The theoretical backgrounds, input data instructions, and sample problems illustrating the use of the programs are included.

  14. [Translation and validation of the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0) into Portuguese].

    Science.gov (United States)

    de Carvalho, Karla Emanuelle Cotias; Gois Júnior, Miburge Bolívar; Sá, Katia Nunes

    2014-01-01

    To translate and validate the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0) into Brazilian Portuguese. Certified translators translated and back-translated Quest. Content validity (CVI) was determined by 5 experts and, after the final version of B-Quest, a pre-test was applied to users of manual wheelchairs, walkers and crutches. The psychometric properties were tested to assure the validity of items and the reliability and stability of the scale. Data were obtained from 121 users of the above-mentioned devices. Our study showed a CVI of 91.66% and a satisfactory factor analysis referent to the two-dimensional structure of the instrument that ensured the representativeness of the items. The Cron-bach's alpha of the items device, service and total score of B-Quest were 0.862, 0.717 and 0.826, respectively. Test-retest stability conducted after a time interval of 2 months was analyzed using Spearman's correlation test, which showed high correlation (ρ >0.6) for most items. The study suggests that the B-Quest is a reliable, representative, and valid instrument to measure the satisfaction of users of assistive technology in Brazil. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  15. Space Trajectory Error Analysis Program (STEAP) for halo orbit missions. Volume 1: Analytic and user's manual

    Science.gov (United States)

    Byrnes, D. V.; Carney, P. C.; Underwood, J. W.; Vogt, E. D.

    1974-01-01

    Development, test, conversion, and documentation of computer software for the mission analysis of missions to halo orbits about libration points in the earth-sun system is reported. The software consisting of two programs called NOMNAL and ERRAN is part of the Space Trajectories Error Analysis Programs (STEAP). The program NOMNAL targets a transfer trajectory from Earth on a given launch date to a specified halo orbit on a required arrival date. Either impulsive or finite thrust insertion maneuvers into halo orbit are permitted by the program. The transfer trajectory is consistent with a realistic launch profile input by the user. The second program ERRAN conducts error analyses of the targeted transfer trajectory. Measurements including range, doppler, star-planet angles, and apparent planet diameter are processed in a Kalman-Schmidt filter to determine the trajectory knowledge uncertainty. Execution errors at injection, midcourse correction and orbit insertion maneuvers are analyzed along with the navigation uncertainty to determine trajectory control uncertainties and fuel-sizing requirements. The program is also capable of generalized covariance analyses.

  16. A Generic Safety assessment code for geologic disposal of Radioactive Waste: GSRW computer code user's manual

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1992-11-01

    The computer code system GSRW (Generic Safety assessment code for geologic disposal of Radioactive Waste) was developed as in interim version of safety assessment methodology for geologic disposal of high-level radioactive waste. Scenarios used here are based on normal evolution scenarios which assume that the performance of a disposal system is not affected by probabilistic events. The code consists of three parts. The first part evaluates a source term from a disposal facility which consists mainly of a vitrified waste, a metallic container and a buffer zone. Two kinds of source term models are provided: Model 1 which simulate the dissolution of silicate component of glass and the diffusive transport of radionuclides in the buffere zone, and Model 2 which assumes that the concentration of a radionuclide is limited by the solubility of its specific chemical form at the interface between the buffer and a vitrified wastes. The second part analyses the transport of radionuclides in the geosphere, which is based on analytical solutions or numerical solutions of a mass transport equation involving the advection, dispersion, linear sorption and decay chain. The third part assesses the transport of radionuclides in the biosphere and the resulting radiological consequences to the man, which is based on a dynamic compartment model for the biosphere and a dose factor method for dose calculations. This report describes mathematical models used, the structure of the code system, and user information and instructions for execution of the code. (author)

  17. INES: The International Nuclear and Radiological Event Scale User's Manual. 2008 Edition

    International Nuclear Information System (INIS)

    2009-05-01

    The International Nuclear and Radiological Event Scale is used for promptly and consistently communicating to the public the safety significance of events associated with sources of radiation. It covers a wide spectrum of practices, including industrial use such as radiography, use of radiation sources in hospitals, activities at nuclear facilities, and the transport of radioactive material. By putting events from all these practices into a proper perspective, use of INES can facilitate a common understanding between the technical community, the media and the public. The scale was developed in 1990 by international experts convened by the IAEA and the OECD Nuclear Energy Agency (OECD/NEA). It originally reflected the experience gained from the use of similar scales in France and Japan as well as consideration of possible scales in several countries. Since then, the IAEA has managed its development in cooperation with the OECD/NEA and with the support of more than 60 designated National Officers who officially represent the INES member States in the biennial technical meeting of INES. Initially the scale was applied to classify events at nuclear power plants, and then was extended and adapted to enable it to be applied to all installations associated with the civil nuclear industry. More recently, it has been extended and adapted further to meet the growing need for communication of the significance of all events associated with the transport, storage and use of radioactive material and radiation sources. This revised manual brings together the guidance for all uses into a single document. Events are classified on the scale at seven levels: Levels 4-7 are termed 'accidents' and Levels 1-3 'incidents'. Events without safety significance are classified as 'Below Scale/Level 0'. Events that have no safety relevance with respect to radiation or nuclear safety are not classified on the scale. For communication of events to the public, a distinct phrase has been

  18. Attuning speech-enabled interfaces to user and context for inclusive design: Technology, methodology and practice

    NARCIS (Netherlands)

    Neerincx, M.A.; Cremers, A.H.M.; Kessens, J.M.; Leeuwen, D.A. van; Truong, K.P.

    2009-01-01

    This paper presents a methodology to apply speech technology for compensating sensory, motor, cognitive and affective usage difficulties. It distinguishes (1) an analysis of accessibility and technological issues for the identification of context-dependent user needs and corresponding opportunities

  19. Social values for ecosystem services (SolVES): Documentation and user manual, version 2.0

    Science.gov (United States)

    Sherrouse, Benson C.; Semmens, Darius J.

    2012-01-01

    In response to the need for incorporating quantified and spatially explicit measures of social values into ecosystem services assessments, the Rocky Mountain Geographic Science Center (RMGSC), in collaboration with Colorado State University, developed a geographic information system (GIS) application, Social Values for Ecosystem Services (SolVES). With version 2.0 (SolVES 2.0), RMGSC has improved and extended the functionality of SolVES, which was designed to assess, map, and quantify the perceived social values of ecosystem services. Social values such as aesthetics, biodiversity, and recreation can be evaluated for various stakeholder groups as distinguished by their attitudes and preferences regarding public uses, such as motorized recreation and logging. As with the previous version, SolVES 2.0 derives a quantitative, 10-point, social-values metric, the Value Index, from a combination of spatial and nonspatial responses to public attitude and preference surveys and calculates metrics characterizing the underlying environment, such as average distance to water and dominant landcover. Additionally, SolVES 2.0 integrates Maxent maximum entropy modeling software to generate more complete social value maps and to produce robust statistical models describing the relationship between the social values maps and explanatory environmental variables. The performance of these models can be evaluated for a primary study area, as well as for similar areas where primary survey data are not available but where social value mapping could potentially be completed using value-transfer methodology. SolVES 2.0 also introduces the flexibility for users to define their own social values and public uses, model any number and type of environmental variable, and modify the spatial resolution of analysis. With these enhancements, SolVES 2.0 provides an improved public domain tool for decisionmakers and researchers to evaluate the social values of ecosystem services and to facilitate

  20. CAL--ERDA users manual. [Building Design Language; LOADS, SYSTEMS, PLANT, ECONOMICS, REPORT, EXECUTIVE, CAL-ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Graven, R. M.; Hirsch, P. R.

    1977-10-30

    A new set of computer programs capable of rapid and detailed analysis of energy consumption in buildings is described. The Building Design Language (BDL) has been written to allow simplified manipulation of the many variables used to describe a building and its operation. Programs presented in this manual include: (1) a Building Design Language program to analyze the input instructions, execute computer system control commands, perform data assignments and data retrieval, and control the operation of the LOADS, SYSTEMS, PLANT, ECONOMICS, and REPORT programs; (2) a LOADS analysis program which calculates peak (design) loads and hourly space loads due to ambient weather conditions and the internal occupancy, lighting, and equipment within the building, as well as variations in the size, location, orientation, construction, walls, roofs, floors, fenestrations, attachments (awnings, balconies), and shape of a building; (3) a HEATING, Ventilating, and Air-Conditioning (HVAC) SYSTEMS program capable of modeling the operation of HVAC components, including fans, coils, economizers, and humidifiers; (4) a PLANT equipment program which models the operation of boilers, chillers, electrical-generation equipment (e.g., diesel engines or turbines), heat-storage apparatus (e.g., chilled or heated water) and solar heating and/or cooling systems; (5) an ECONOMICS analysis program which calculates life-cycle costs; (6) a REPORT program which produces tables of user-selected variables and arranges them according to user-selected formats; and (7) an EXECUTIVE processor to create computer-system control commands. Libraries of weather data, typical schedule data, and data on the properties of walls, roofs, and floors are available.

  1. User satisfaction as a political technology in school policy

    DEFF Research Database (Denmark)

    Rasmussen, Palle

    The paper discusses user satisfaction surveys as a policy instrument in education with a focus on local school policy, including the reasons for and the consequences of introducing user surveys in educational policy will be discussed. Empirical examples are drawn mainly from Danish municipalities....

  2. Servicom in the user services of federal univerisyt of technology ...

    African Journals Online (AJOL)

    ... using counting, tables and simple percentages. Finally, the conclusion and recommendations on how best to serve her users, for example by commending the automation and provision of Internet services and urging them to go on and automate all her services. Key words: SERVICOM, User, Services, Univeristy, Library ...

  3. Design manual for management of solid by-products from advanced coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  4. VASCOMP 2. The V/STOL aircraft sizing and performance computer program. Volume 6: User's manual, revision 3

    Science.gov (United States)

    Schoen, A. H.; Rosenstein, H.; Stanzione, K.; Wisniewski, J. S.

    1980-01-01

    This report describes the use of the V/STOL Aircraft Sizing and Performance Computer Program (VASCOMP II). The program is useful in performing aircraft parametric studies in a quick and cost efficient manner. Problem formulation and data development were performed by the Boeing Vertol Company and reflects the present preliminary design technology. The computer program, written in FORTRAN IV, has a broad range of input parameters, to enable investigation of a wide variety of aircraft. User oriented features of the program include minimized input requirements, diagnostic capabilities, and various options for program flexibility.

  5. Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual

    Energy Technology Data Exchange (ETDEWEB)

    J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute); R. Glickert (ESA Environmental Solutions)

    2007-12-31

    The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

  6. User's manual for the BNW-I optimization code for dry-cooled power plants. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.J.; Daniel, D.J.; De Mier, W.V.; Faletti, D.W.; Wiles, L.E.

    1977-01-01

    This User's Manual provides information on the use and operation of three versions of BNW-I, a computer code developed by Battelle, Pacific Northwest Laboratory (PNL) as a part of its activities under the ERDA Dry Cooling Tower Program. These three versions of BNW-I were used as reported elsewhere to obtain comparative incremental costs of electrical power production by two advanced concepts (one using plastic heat exchangers and one using ammonia as an intermediate heat transfer fluid) and a state-of-the-art system. The computer program offers a comprehensive method of evaluating the cost savings potential of dry-cooled heat rejection systems and components for power plants. This method goes beyond simple ''figure-of-merit'' optimization of the cooling tower and includes such items as the cost of replacement capacity needed on an annual basis and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence, the BNW-I code is a useful tool for determining potential cost savings of new heat transfer surfaces, new piping or other components as part of an optimized system for a dry-cooled power plant.

  7. Adoption of mobile learning among 3g-enabled handheld users using extended technology acceptance model

    Directory of Open Access Journals (Sweden)

    Fadare Oluwaseun Gbenga

    2013-12-01

    Full Text Available This paper examines various constructs of an extended TAM, Technology Acceptance Model, that are theoretically influencing the adoption and acceptability of mobile learning among 3G enabled mobile users. Mobile learning activity- based, used for this study were drawn from behaviourist and “learning and teaching support” educational paradigms. An online and manual survey instruments were used to gather data. The structural equation modelling techniques were then employed to explain the adoption processes of hypothesized research model. A theoretical model ETAM is developed based on TAM. Our result proved that psychometric constructs of TAM can be extended and that ETAM is well suited, and of good pedagogical tool in understanding mobile learning among 3G enabled handheld devices in southwest part of Nigeria. Cognitive constructs, attitude toward m-learning, self-efficacy play significant roles in influencing behavioural intention for mobile learning, of which self-efficacy is the most importance construct. Implications of results and directions for future research are discussed.

  8. CREST Cost of Renewable Energy Spreadsheet Tool: A Model for Developing Cost-Based Incentives in the United States; User Manual Version 4, August 2009 - March 2011 (Updated July 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. S.; Grace, R. C.

    2013-07-01

    The objective of this document is to help model users understand how to use the CREST model to support renewable energy incentives, FITs, and other renewable energy rate-setting processes. This user manual will walk the reader through the spreadsheet tool, including its layout and conventions, offering context on how and why it was created. This user manual will also provide instructions on how to populate the model with inputs that are appropriate for a specific jurisdiction's policymaking objectives and context. Finally, the user manual will describe the results and outline how these results may inform decisions about long-term renewable energy support programs.

  9. The Users' Views on Different Types of Instructional Materials Provided in Virtual Reality Technologies

    Science.gov (United States)

    Yildirim, Gürkan

    2017-01-01

    Today, it is seen that developing technologies are tried to be used continuously in the learning environments. These technologies have rapidly been diversifying and changing. Recently, virtual reality technology has become one of the technologies that experts have often been dwelling on. The present research tries to determine users' opinions and…

  10. 76 FR 58020 - Prescription Drug User Fee Act IV Information Technology Plan

    Science.gov (United States)

    2011-09-19

    ...] Prescription Drug User Fee Act IV Information Technology Plan AGENCY: Food and Drug Administration, HHS. ACTION... information technology (IT) plan entitled ``PDUFA IV Information Technology Plan'' (updated plan) to achieve... Information Technology Plan.'' This plan will meet one of the performance goals agreed to under the 2007...

  11. Open|SpeedShop Graphical User Interface Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to create a new graphical user interface (GUI) for an existing parallel application performance and profiling tool, Open|SpeedShop. The current GUI has...

  12. Open|SpeedShop Graphical User Interface Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to create a new graphical user interface (GUI) for an existing parallel application performance and profiling tool, Open|SpeedShop. The current GUI has...

  13. AXAIRQ User's Manual

    International Nuclear Information System (INIS)

    Simpkins, A.A.

    1995-10-01

    AXAIRQ is the primary dose assessment code used at the Savannah River Site to predict downwind doses following a hypothetical atmospheric release of relatively short duration. Purpose is to perform calculations for safety-related documentation, and AXAIRQ strictly adheres to the guidance in US NRC Regulatory Guide 1.145 (USNRC 1982) entitled Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants. Doses are determined for the plume shine, ground shine, and inhalation pathways. Ingestion is not considered

  14. CPLOAS_2 user manual

    Energy Technology Data Exchange (ETDEWEB)

    Sallaberry, Cedric Jean-Marie.; Helton, Jon Craig

    2012-10-01

    Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high-consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to deactivate the entire system before the SL system fails (i.e., degrades into a configuration that could allow an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). This report describes the Fortran 90 program CPLOAS_2 that implements the following representations for PLOAS for situations in which both link physical properties and link failure properties are time-dependent: (i) failure of all SLs before failure of any WL, (ii) failure of any SL before failure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS can be included in the calculations performed by CPLOAS_2.

  15. The GCLA user's manual

    OpenAIRE

    Aronsson, Martin

    1991-01-01

    GCLA is best regarded as a logic programming language, although it shares some features commonly found among functional languages. One of the main objective is to provide a powerful tool which supports the development of Knowledge Based Systems. For an introduction of how to program the GLCA system, the reader is recommended to consult "A survey of GLCA : A Definitional Approach to Logic Programming" [Aro91], "GLCAII, A Definitional Approach to Control " [Kre91], and "Programming methodology ...

  16. XSOR codes users manual

    International Nuclear Information System (INIS)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ''XSOR''. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms

  17. Stairwalker User Manual

    NARCIS (Netherlands)

    Muller, Dennis; Elsinga, Jochem; van Keulen, Maurice

    2015-01-01

    Geographical data are typically visualized using various information layers that are displayed over a map. Interactive exploration by zooming and panning actions needs real-time re-calculation. A common operation in calculating with multidimensional data is the computation of aggregates. For layers

  18. RAVEN User Manual

    International Nuclear Information System (INIS)

    Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua Joseph; Kinoshita, Robert Arthur; Alfonsi, Andrea; Sen, Ramazan Sonat

    2015-01-01

    RAVEN is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. The initial development was aimed to provide dynamic risk analysis capabilities to the Thermo-Hydraulic code RELAP-7, currently under development at the Idaho National Laboratory (INL). Although the initial goal has been fully accomplished, RAVEN is now a multi-purpose probabilistic and uncertainty quantification platform, capable to agnostically communicate with any system code. This agnosticism includes providing Application Programming Interfaces (APIs). These APIs are used to allow RAVEN to interact with any code as long as all the parameters that need to be perturbed are accessible by inputs files or via python interfaces. RAVEN is capable of investigating the system response, and investigating the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. The development of RAVEN has started in 2012, when, within the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, the need to provide a modern risk evaluation framework became stronger. RAVEN principal assignment is to provide the necessary software and algorithms in order to employ the concept developed by the Risk Informed Safety Margin Characterization (RISMC) program. RISMC is one of the pathways defined within the Light Water Reactor Sustainability (LWRS) program. In the RISMC approach, the goal is not just the individuation of the frequency of an event potentially leading to a system failure, but the closeness (or not) to key safety-related events. Hence, the approach is interested in identifying and increasing the safety margins related to those events. A safety margin is a numerical value quantifying the probability that a safety metric (e.g. for an important process such as peak pressure in a pipe) is exceeded under certain conditions. The initial development of RAVEN has been focused on providing dynamic risk assessment capability to RELAP-7, currently under development at the INL and, likely, future replacement of the RELAP5-3D code. Most the capabilities that have been implemented having RELAP-7 as principal focus are easily deployable for other system codes. For this reason, several side activaties are currently ongoing for coupling RAVEN with software such as RELAP5-3D, etc. The aim of this document is the explanation of the input requirements, focalizing on the input structure.

  19. TIPC user manual

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, T.A.; Roussel-Dupre, R.A.; Symbalisty, E.M.D.; Clodius, W.B.

    1993-11-01

    The TransIonospheric Propagation Code (TIPC) computer program executes tasks related to the detection of vhf and uhf signals following propagation through the ionosphere. These tasks include: transionospheric propagation, signal detection, signal processing, delta time of arrival study, delta time of arrival uncertainty study, and signal reconstruction. The parameters needed to accomplish each task are defined and the process of using TIPC in each of these tasks is explained step-by-step. TIPC is also capable of saving these parameter values defined for the specific task. In addition, subroutine descriptions are identified.

  20. CHIEF 2004 Users Manual

    National Research Council Canada - National Science Library

    Benthien, G. W; Barach, D; Hobbs, S. L

    2004-01-01

    .... The program was tested on machines running Windows 95/98 , Windows NT, and COMPACT UNIX. The CHIEF program was originally developed in the 1960s to compute the acoustic radiation from an arbitrary shaped radiating body...