WorldWideScience

Sample records for technologies nondestructive evaluation

  1. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  2. Nondestructive quality evaluation technology of agricultural products

    International Nuclear Information System (INIS)

    Noh, Sang Ha

    1997-01-01

    Quality evaluation of agricultural products has been interested to many researchers for many years and as the result, several nondestructive techniques and so many papers have been reported for quality evaluation of agricultural products. These nondestructive techniques are based on the detection of mechanical, optical, electrical, electro-magnetical, dielectric and vibrational properties of agricultural products that are well correlated with certain quality factors of the products such as color, shape, firmness, sugar content, external or internal defects, moisture content, etc. The sophistication of nondestructive methods has evolved rapidly with modem technologies. In this paper an emphasis was put on reviewing some of those papers and techniques which could be led to on-line measurement for practical use.

  3. Technology Evaluation Report: Non-destructive ...

    Science.gov (United States)

    Technology Evaluation Report HSRP is working to develop tools and information that will help detect the intentional introduction of chemical or biological contaminants in buildings or water systems, the containment of these contaminants, the decontamination of buildings and/or water systems, and the management of wastes generated from decontamination and cleanup operations. Evaluation of the performance of CBI Polymers’ DeconGelTM 1108, Environmental Alternatives, Inc.’s (EAI’s) Rad-Release II (RRII), Environmental Alternatives, Inc.’s SuperGel, and Intek Technologies’ LH-21. The objective of evaluating these technologies was to test their ability to remove radioactive cesium (Cs)-137 from the mixed building material coupons of brick with mortar, tile with grout, granite with mortar, all mortar and all grout coupons.

  4. Artificial intelligence to maximise contributions of nondestructive evaluation to materials science and technology

    International Nuclear Information System (INIS)

    Baldev Raj; Rajagopalan, C.

    1996-01-01

    The paper reviews the current status of Nondestructive Testing and Evaluation (NDT and E), in relation to materials science and technology. It suggests a path of growth for Nondestructive Testing and Evaluation, taking into account the increase in data and knowledge. We recommend Artificial Intelligence (AI) concepts for maximising the contributions of and benefits from, Nondestructive Testing and Evaluation. (author)

  5. Technologies for Nondestructive Evaluation of Surfaces and Thin Coatings

    Science.gov (United States)

    1999-01-01

    The effort included in this project included several related activities encompassing basic understanding, technological development, customer identification and commercial transfer of several methodologies for nondestructive evaluation of surfaces and thin surface coatings. Consistent with the academic environment, students were involved in the effort working with established investigators to further their training, provide a nucleus of experienced practitioners in the new technologies during their industrial introduction, and utilize their talents for project goals. As will be seen in various portions of the report, some of the effort has led to commercialization. This process has spawned other efforts related to this project which are supported from outside sources. These activities are occupying the efforts of some of the people who were previously supported within this grant and its predecessors. The most advanced of the supported technologies is thermography, for which the previous joint efforts of the investigators and NASA researchers have developed several techniques for extending the utility of straight thermographic inspection by producing methods of interpretation and analysis accessible to automatic image processing with computer data analysis. The effort reported for this technology has been to introduce the techniques to new user communities, who are then be able to add to the effective uses of existing products with only slight development work. In a related development, analysis of a thermal measurement situation in past efforts led to a new insight into the behavior of simple temperature probes. This insight, previously reported to the narrow community in which the particular measurement was made, was reported to the community of generic temperature measurement experts this year. In addition to the propagation of mature thermographic techniques, the development of a thermoelastic imaging system has been an important related development. Part of the

  6. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  7. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pitman, Stan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Good, Morris S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Cody M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-16

    The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components. This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.

  8. Role of research in non-destructive evaluation for nuclear technology

    International Nuclear Information System (INIS)

    Jayakumar, T.; Rao, B.P.C.; Raj, Baldev

    2010-01-01

    This paper presents the role of research in non-destructive evaluation (NDE) of microstructures and mechanical properties in materials, assessment of manufacturing quality and early detection of in-service damage in nuclear components and structures. A few applications and case studies are discussed based on the results of systematic research and developmental activities pursued in different NDE techniques at the authors' laboratory for three different types of Indian nuclear reactors. (author)

  9. Handbook of nondestructive evaluation

    National Research Council Canada - National Science Library

    Hellier, Charles

    2013-01-01

    "Fully revised to cover the latest nondestructive testing (NDT) procedures, this practical resource reviews established and emerging methods for examining materials without destroying them or altering their structure...

  10. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Encouraged by Phase I accomplishments, the proposed Phase II program will significantly mature and align the development of a Space Qualified Non-Destructive...

  11. Low-Cost Quality Control and Nondestructive Evaluation Technologies for General Aviation Structures

    Science.gov (United States)

    Cramer, K. Elliott; Gavinsky, Bob; Semanskee, Grant

    1998-01-01

    NASA's Advanced General Aviation Transport Experiments (AGATE) Program has as a goal to reduce the overall cost of producing private aviation aircraft while maintaining the safety of these aircraft. In order to successfully meet this goal, it is necessary to develop nondestructive inspection techniques which will facilitate the production of the materials used in these aircraft and assure the quality necessary to maintain airworthiness. This paper will discuss a particular class of general aviation materials and several nondestructive inspection techniques that have proven effective for making these inspections. Additionally, this paper will discuss the investigation and application of other commercially available quality control techniques applicable to these structures.

  12. Use of nondestructive evaluation to detect moisture in flexible pavements.

    Science.gov (United States)

    2006-01-01

    The purpose of this study was to identify the currently available nondestructive evaluation technology that holds the greatest potential to detect moisture in flexible pavements and then apply the technology in multiple locations throughout Virginia....

  13. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    Science.gov (United States)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  14. Frontiers in Science and technology of Non-Destructive Evaluation Applications to Industry, Health and Culture

    International Nuclear Information System (INIS)

    Raj, Baldev; Venkatraman, B.

    2009-01-01

    The Indira Gandhi Center for Atomic Research (IGCAR) located at Kalpakkam, Tamil Nadu, India is the second largest research center of the Department of Atomic Energy (DAE). It has been established with the mandate to develop fast reactor technology and associated fuel cycle technologies. As part of this strategy, a 40 MW (th) test reactor, the Fast Breeder Test Reactor (Fbtr), was constructed. This reactor is completing 24 years of successful operation since its first criticality in October 1985. At IGCAR, a small NDE group was established in early 1980s. Combining a dedicated group of multi disciplinary professionals from metallurgy, physics, engineering and instrumentation and through development and application of cutting edge technologies, this group has achieved international recognition. Today, the NDE Center at IGCAR is unique in India, combining conventional and advanced NDE under a single roof with excellent expertise in the areas of modelling, research, NDE hardware and software design, development and applications. It is a Center for Excellence and well recognised internationally. This is reflected in over 600 publications in peer reviewed journals, successful organization of national and international conferences, including more than 15 patents, about 20 books and the international linkages and collaborations. The robust NDE technologies and methodologies developed by this group based on sound basic science principles and engineering validation has been utilised by the strategic and core sectors in India and internationally to solve many challenging problems. This paper highlights NDE solutions to challenging problems encountered during manufacture of important components of 500 MWE PFBR. The paper also highlights the application oriented Research and Development that has been undertaken to enhance the limit and reliability of detection. Many of these technologies and procedures have significant Societal applications. The paper also outlines some

  15. Analytical nondestructive evaluation for materials characterization

    International Nuclear Information System (INIS)

    Raj, Baldev

    1993-01-01

    Science and technology of nondestructive testing and evaluation has contributed immensely to the safety and productivity of industrial plants. In recent years, nondestructive evaluation (NDE) has emerged as a frontline research area of equal if not greater technological relevance, for materials characterization as well. A comprehensive range of techniques from qualitative nondestructive testing for quality control of engineering products and materials to quantitative NDE for materials characterization is being used by the engineering industry and materials researchers, for better understanding of the manufacturing practices and materials behaviour. Quantitative NDE is considered essential for ensuring fitness for purpose at the start of the life in case the component has been designed using fracture mechanics parameters. Quantitative NDE is also vital for assessing degradation of material during service. Moreover, quantitative NDE enables characterization of dynamics of certain phenomenon (not achievable by destructive test methodologies) leading to better understanding of the performance of materials in relation to unavoidable defects in the materials. As the next logical step, the need for an analytical approach to NDE is felt. The need and motivation for such an approach is addressed and the means to achieve this objective are identified. It is argued that analytical NDE is essential to meet the challenges of characterization, intelligent processing of materials and life prediction of components and plants. These requirements are of significant importance in the context of recent developments in materials engineering, and for enhancing the competitive advantage of Indian engineering industry in the international market. (author). 9 refs., 3 figs

  16. Improvement and evaluation of vegerable seed quality by the use of non-destructive technologies

    DEFF Research Database (Denmark)

    Olesen, Merete Halkjær

    and HC=CH structures which represent some of the functional groups in lipids.The same differences in absorbance bands were observed between seeds with different germination capacities. Correct classification of seed germination ranged from 89.5 % to 98.3 %, using extended canonical variance analysis...... are all supposed to influence germination of the seed. To increase the number of non-germinating seeds, seed samples were exposed to accelerated ageing (41 °C for 72 h). This also provides an opportunity to evaluate the difference between NIR spectra of aged and non-aged seeds. Lipids play a major role...... in both ageing and germination. During accelerated ageing lipid peroxidation leads to deterioration of cell membranes and this leads to reduced germination capacity of the seeds. Assignment of difference between scatter corrected absorbance spectra of aged and non-aged seeds leads to 12 the CH2, CH3...

  17. Proceedings CORENDE: Regional congress on nondestructive and structural evaluation

    International Nuclear Information System (INIS)

    1997-01-01

    Works are presented at the CORENDE: Regional Congress on Nondestructive and Structural Evaluation organized by the National Atomic Energy Commission and the National Technological University (Mendoza). This congress wants to be the forum where people from research, industry and marketing might meet and discuss ideas towards the fostering of these new cultural habits. Papers covering all disciplines contributing to the evaluation of components, systems and structures are welcome: nondestructive evaluation methods and techniques (ultrasound, eddy currents and other electromagnetic methods, acoustic emission, radiography, thermography, leak testing, dye-penetrants, visual inspection, etc.), personnel certification, welding inspection, nondestructive metallography, optics and lasers, fluid-structure interaction, vibrations, extensometry, modelling of structures [es

  18. Active spectral imaging nondestructive evaluation (SINDE) camera

    Energy Technology Data Exchange (ETDEWEB)

    Simova, E.; Rochefort, P.A., E-mail: eli.simova@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    A proof-of-concept video camera for active spectral imaging nondestructive evaluation has been demonstrated. An active multispectral imaging technique has been implemented in the visible and near infrared by using light emitting diodes with wavelengths spanning from 400 to 970 nm. This shows how the camera can be used in nondestructive evaluation to inspect surfaces and spectrally identify materials and corrosion. (author)

  19. Review of progress in quantitative nondestructive evaluation

    International Nuclear Information System (INIS)

    Thompson, D.O.; Chimenti, D.E.

    1983-01-01

    A comprehensive review of the current state of quantitative nondestructive evaluation (NDE), this volume brings together papers by researchers working in government, private industry, and university laboratories. Their papers cover a wide range of interests and concerns for researchers involved in theoretical and applied aspects of quantitative NDE. Specific topics examined include reliability probability of detection--ultrasonics and eddy currents weldments closure effects in fatigue cracks technology transfer ultrasonic scattering theory acoustic emission ultrasonic scattering, reliability and penetrating radiation metal matrix composites ultrasonic scattering from near-surface flaws ultrasonic multiple scattering

  20. Nondestructive Evaluation Program: Progress in 1986

    International Nuclear Information System (INIS)

    1987-07-01

    The increasing cost of equipment for power generating plants and the potential increases in productivity and safety available through rapidly developing Nondestructive Evaluation (NDE) technology led EPRI to initiate a Nondestructive Evaluation Program in 1974. To date, the major focus has been on light water reactor inspection problems; however, increased application to other systems is now under way. This report presents a comprehensive review of the EPRI effort in the NDE area. Most of the report consists of contractor-supplied progress reports on each current project. An organizational plan of the program is presented in overview. In addition, organization from several viewpoints is presented, e.g., in-service inspection operators, R and D personnel, and utility representatives. The report summarizes significant progress made since the previous EPRI Special Report NP-4315-SR was issued in May 1986. Section 1 contains information about the program organization, and the sections that follow contain contractor-supplied progress reports of each current project. The progress reports are grouped by plant components - pipe, pressure vessel, steam generator and boiler tubes, and turbine. In addition, Part 6 is devoted to discussions of technology transfer

  1. Nondestructive evaluation of oriented strand board exposed to decay fungi.

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang; Robert J. Ross; William J. Nelson

    2002-01-01

    Stress wave nondestructive evaluation (NDE) technologies are being used in our laboratory to evaluate the performance properties of engineered wood. These techniques have proven useful in the inspection of timber structures to locate internal voids and decayed or deteriorated areas in large timbers. But no information exists concerning NDE and important properties of...

  2. Nondestructive evaluation of incipient decay in hardwood logs

    Science.gov (United States)

    Xiping Wang; Jan Wiedenbeck; Robert J. Ross; John W. Forsman; John R. Erickson; Crystal Pilon; Brian K. Brashaw

    2005-01-01

    Decay can cause significant damage to high-value hardwood timber. New nondestructive evaluation (NDE) technologies are urgently needed to effectively detect incipient decay in hardwood timber at the earliest possible stage. Currently, the primary means of inspecting timber relies on visual assessment criteria. When visual inspections are used exclusively, they provide...

  3. Nondestructive chemical imaging of wood at the micro-scale: advanced technology to complement macro-scale evaluations

    Science.gov (United States)

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Carol Hirschmugl

    2013-01-01

    Chemical images help understanding of wood properties, durability, and cell wall deconstruction for conversion of lignocellulose to biofuels, nanocellulose and other value added chemicals in forest biorefineries. We describe here a new method for nondestructive chemical imaging of wood and wood-based materials at the micro-scale to complement macro-scale methods based...

  4. New technologies in electromagnetic non-destructive testing

    CERN Document Server

    Huang, Songling

    2016-01-01

    This book introduces novel developments in the field of electromagnetic non-destructive testing and evaluation (NDT/E). The topics include electromagnetic ultrasonic guided wave testing, pulsed eddy current testing, remote field eddy current testing, low frequency eddy current testing, metal magnetic memory testing, and magnetic flux leakage testing. Considering the increasing concern about the safety maintenance of critical structures in various industries and everyday life, these topics presented here will be of particular interest to the readers in the NDT/E field. This book covers both theoretical researches and the engineering applications of the electromagnetic NDT technology. It could serve as a valuable reference for college students and relevant NDT technicians. It is also a useful material for qualification training and higher learning for nondestructive testing professionals.

  5. Advanced uses of radiation in non-destructive evaluation

    International Nuclear Information System (INIS)

    Baldev Raj; Viswanathan, B.; Venkataraman, B.

    1998-01-01

    The increasing demand for newer materials and stringency of specifications, have expanded the scope of advanced uses of radiation in non-destructive evaluation of materials and industrial components. This paper highlights the application of some of the advanced techniques of radiography and residual stress measurements, using x-ray diffraction, for materials characterisation and testing, based on the results obtained at the author's laboratory. The application of positron annihilation techniques based on the use of radioisotopes and high resolution gamma ray spectroscopy, is introduced as non-destructive tools for materials characterisation. Selective examples of significant results obtained using this technique, on the radiation damage and early stages of fatigue damage in technologically important steels are reviewed from recent works at the author's laboratory and elsewhere. The scope of application of charge particle based thin layer activation method is briefly outlined. (author)

  6. Nondestructive evaluation ultrasonic methods for construction materials

    International Nuclear Information System (INIS)

    Chilibon, I.; Zisu, T.; Raetchi, V.

    2002-01-01

    The paper presents some ultrasonic methods for evaluation of physical-mechanical properties of construction materials (bricks, concrete, BCA), such as: pulse method, examination methods, and direct measurement of the propagation velocity and impact-echo method. Utilizing these nondestructive evaluation ultrasonic methods it can be determined the main material parameters and material characteristics (elasticity coefficients, density, propagation velocity, ultrasound attenuation, etc.) of construction materials. These method are suitable for construction materials because the defectoscopy methods for metallic materials cannot be utilized, due to its rugged and non-homogeneous structures and grate attenuation coefficients of ultrasound propagation through materials. Also, the impact-echo method is a technique for flaw detection in concrete based on stress wave propagation. Studies have shown that the impact-echo method is effective for locating voids, honeycombing, delaminating, depth of surface opening cracks, and measuring member thickness

  7. Nondestructive evaluation of nuclear-grade graphite

    Science.gov (United States)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  8. Review of progress in quantitative nondestructive evaluation

    CERN Document Server

    Chimenti, Dale

    1999-01-01

    This series provides a comprehensive review of the latest research results in quantitative nondestructive evaluation (NDE). Leading investigators working in government agencies, major industries, and universities present a broad spectrum of work extending from basic research to early engineering applications. An international assembly of noted authorities in NDE thoroughly cover such topics as: elastic waves, guided waves, and eddy-current detection, inversion, and modeling; radiography and computed tomography, thermal techniques, and acoustic emission; laser ultrasonics, optical methods, and microwaves; signal processing and image analysis and reconstruction, with an emphasis on interpretation for defect detection; and NDE sensors and fields, both ultrasonic and electromagnetic; engineered materials and composites, bonded joints, pipes, tubing, and biomedical materials; linear and nonlinear properties, ultrasonic backscatter and microstructure, coatings and layers, residual stress and texture, and constructi...

  9. Technical plan for nondestructive examination technology development

    International Nuclear Information System (INIS)

    Anderson, B.C.

    1982-12-01

    This report provides a description of the development of the nondestructive examination (NDE) equipment to be used in the Stored Waste Examination Pilot Plant (SWEPP) for certifying transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). NDE equipment is being developed for waste identification and container integrity. Real-time x-ray radiography is the basic method being used for waste identification. Acoustic (ultrasonic) testing is being used to obtain measurements to verify container integrity. This report describes the decisions made to date, the decisions to be made, and the activities planned for FY 1983 through FY 1985

  10. Elements of nondestructive assay (NDA) technology

    International Nuclear Information System (INIS)

    Hatcher, C.R.; Smith, H.

    1984-01-01

    A thorough introduction to nondestructive assay methods and instruments as they are applied to nuclear safeguards is presented. The general principles and major applications of NDA are discussed and situations in which NDA is particularly useful for nuclear safeguards purposes are described. Various passive and active γ-ray and neutron methods are examined and assay situations particularly suited to γ-ray techniques, or to neutron techniques are identified. The role of calorimetry in the NDA of plutonium-bearing materials is also discussed. The advantages and disadvantages of various NDA methods for different types of nuclear materials are mentioned

  11. Elements of nondestructive assay (NDA) technology

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This session provides an introduction to nondestructive assay methods and instruments as they are applied to nuclear safeguards. The purpose of the sessions is to enable participants to: (1) discuss the general principles and major applications of NDA; (2) describe situations in which NDA is particularly useful for nuclear safeguards purposes; (3) distinguish between various passive and active gamma-ray and neutron NDA methods; (4) describe several NDA instruments that measure gamma rays, and identify assay situations particularly suited to gamma-ray techniques; (5) describe several NDA instruments that measure neutrons, and identify assay situations particularly suited to neutron techniques; (6) discuss the role of calorimetry in the NDA of plutonium-bearing materials; and (7) compare the advantages and disadvantages of various NDA methods for different types of nuclear materials

  12. Expert system technology for nondestructive waste assay

    International Nuclear Information System (INIS)

    Becker, G.K.; Determan, J.C.

    1998-01-01

    Nondestructive assay waste characterization data generated for use in the National TRU Program must be of known and demonstrable quality. Each measurement is required to receive an independent technical review by a qualified expert. An expert system prototype has been developed to automate waste NDA data review of a passive/active neutron drum counter system. The expert system is designed to yield a confidence rating regarding measurement validity. Expert system rules are derived from data in a process involving data clustering, fuzzy logic, and genetic algorithms. Expert system performance is assessed against confidence assignments elicited from waste NDA domain experts. Performance levels varied for the active, passive shielded, and passive system assay modes of the drum counter system, ranging from 78% to 94% correct classifications

  13. Nondestructive assay technology and automated ''real-time'' materials control

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1977-01-01

    Significant advances in nondestructive assay techniques and instrumentation now enable rapid, accurate and direct in-plant measurement of nuclear material on a continuous or ''real-time'' basis as it progresses through a nuclear facility. A variety of passive and active assay instruments are required for the broad range of materials measurement problems encountered by safeguards inspectors and facility operators in various types of nuclear plants. Representative NDA techniques and instruments are presented and reviewed with special attention to their assay capabilities and areas of applicability in the nuclear fuel cycle. An advanced system of materials control - called ''DYMAC'', for Dynamic Materials Control - is presently under development by the U.S. Energy Research and Development Administration; the DYMAC program integrates new nondestructive assay instrumentation and modern data-processing methods, with the overall objective of demonstrating a workable, cost-effective system of stringent safeguards and materials control in various generic types of facilities found in the nuclear fuel cycle. Throughout the program, emphasis will be placed on devloping practical solutions to generic measurement problems so that resulting techniques and instrumentation will have widespread utility. Projected levels of safeguards assurance, together with other vital - and cost-sensitive - plant operational factors such as process and quality control, criticality safety and waste management are examined in an evaluation of the impact of future advanced materials control systems on overall plant operations, efficiency and productivity. The task of implementing effective and stringent safeguards includes the transfer of new safeguards technology to the nuclear industry. Clearly the training of inspectors (both IAEA and national), plant people, etc., in the effective use of new NDA equipment is of paramount importance; thus in the United States, the Energy Research and Development

  14. Evaluation of Nondestructive Assay/Nondestructive Examination Capabilities for Department of Energy Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Luptak, A.J.; Bulmahn, K.D.

    1998-01-01

    This report summarizes an evaluation of the potential use of nondestructive assay (NDA) and nondestructive examination (NDE) technologies on DOE spent nuclear fuel (SNF). It presents the NDA/NDE information necessary for the National Spent Nuclear Fuel Program (NSNFP) and the SNF storage sites to use when defining that role, if any, of NDA/NDE in characterization and certification processes. Note that the potential role for NDA/NDE includes confirmatory testing on a sampling basis and is not restricted to use as a primary, item-specific, data collection method. The evaluation does not attempt to serve as a basis for selecting systems for development or deployment. Information was collected on 27 systems being developed at eight DOE locations. The systems considered are developed to some degree, but are not ready for deployment on the full range of DOE SNF and still require additional development. The system development may only involve demonstrating performance on additional SNF, packaging the system for deployment, and developing calibration standards, or it may be as extensive as performing additional basic research. Development time is considered to range from one to four years. We conclude that NDA/NDE systems are capable of playing a key role in the characterization and certification of DOE SNF, either as the primary data source or as a confirmatory test. NDA/NDE systems will be able to measure seven of the nine key SNF properties and to derive data for the two key properties not measured directly. The anticipated performance goals of these key properties are considered achievable except for enrichment measurements on fuels near 20% enrichment. NDA/NDE systems can likely be developed to measure the standard canisters now being considered for co-disposal of DOE SNF. This ability would allow the preparation of DOE SNF for storage now and the characterization and certification to be finalize later

  15. Operation of the EPRI Nondestructive Evaluation Center

    International Nuclear Information System (INIS)

    Stone, R.M.; Ammirato, F.V.; Becker, F.L.

    1989-11-01

    This report describes the Electric Power Research Institute (EPRI) funded nondestructive evaluation (NDE) and life assessment project activities carried out at the EPRI NDE Center in 1988. The primary support for this program is provided through contract RP 1570-2 with the EPRI Nuclear Division. Supplementary funding is provided by other contracts with the EPRI Nuclear, Coal Combustion, and Electrical Systems Divisions. The major objective of this program is to provide improved and field-qualified NDE equipment, procedures, and personnel training to the electric utility industry. A second program objective involves the validation, provision, and maintenance of life assessment codes for selected plant components. Significant assistance has been provided to the utility industry under this project in the form of improved, field-ready equipment and procedures; critically needed assessments of inspection method capability; demonstrations of effectiveness of examination methods; rapid response for critical, short-term problems; assistance with selected life assessment computer codes; and training for specific utility industry needs. These efforts have specifically involved heat exchanger, piping, steam turbine, generator, and heavy section problems. Certain components of both nuclear and fossil plants have been addressed. 56 refs., 48 figs., 13 tabs

  16. Superconducting Quantum Interferometers for Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    M. I. Faley

    2017-12-01

    Full Text Available We review stationary and mobile systems that are used for the nondestructive evaluation of room temperature objects and are based on superconducting quantum interference devices (SQUIDs. The systems are optimized for samples whose dimensions are between 10 micrometers and several meters. Stray magnetic fields from small samples (10 µm–10 cm are studied using a SQUID microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen cryostat and a hole in the SQUID’s pick-up loop and returned sidewards from the SQUID back to the sample. The SQUID microscope does not disturb the magnetization of the sample during image recording due to the decoupling of the magnetic flux antenna from the modulation and feedback coil. For larger samples, we use a hand-held mobile liquid nitrogen minicryostat with a first order planar gradiometric SQUID sensor. Low-Tc DC SQUID systems that are designed for NDE measurements of bio-objects are able to operate with sufficient resolution in a magnetically unshielded environment. High-Tc DC SQUID magnetometers that are operated in a magnetic shield demonstrate a magnetic field resolution of ~4 fT/√Hz at 77 K. This sensitivity is improved to ~2 fT/√Hz at 77 K by using a soft magnetic flux antenna.

  17. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barker, Alan M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santos-Villalobos, Hector J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Albright, Austin P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  18. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Luong, M.P. [Ecole Polytechnique, LMS, CNRS, 91 - Palaiseau (France)

    2001-07-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading.

  19. Nondestructive evaluation of dissipative behavior of reinforced concrete structure

    International Nuclear Information System (INIS)

    Luong, M.P.

    2001-01-01

    Current technological developments tend toward increased exploitation of materials strengths and toward tackling extreme loads and environmental actions such as offshore structures subject to wind and wave loading, or buildings in seismic area. Concrete is widely used as a construction material because of its high strength-cost ratio in many applications. Experience of earthquakes and laboratory tests has shown that well designed and detailed reinforced concrete is suitable for earthquake resistant structures. The most severe likely earthquake can be survived if the members are sufficiently ductile to absorb and dissipate seismic energy by inelastic deformation. This requires a designer to assess realistically the acceptable levels of strength and to ensure adequate dissipation. This paper proposes the use of infrared thermography as a nondestructive, noncontact and real-time technique to examine diverse mechanisms of dissipation and to illustrate the onset of damage process, stress concentration and heat dissipation localization in loaded zone. In addition, this technique can be used as a nondestructive method for evaluating the fatigue limit of concrete structure subject to repeated loading

  20. 15. Internal symposium on recent progress of nondestructive inspection and monitoring technologies for nuclear power plants

    International Nuclear Information System (INIS)

    1994-01-01

    At the symposium, lectures were given on the recent development of the nondestructive inspection technology for nuclear power plants, the trend regarding the nondestructive inspection in foreign countries (Japan-Germany atomic energy seminar), the present state and subjects of the monitoring technology in BWR plants, the present state and subjects of the monitoring technology in PWR plants, and the present state and the subjects for hereafter of the defect evaluation method in the equipment of light water reactors. The data on the ultrasonic flaw detection in aluminum alloy welded joints were obtained. The German inspection technology is similar to that in Japan and other countries. The research on the plant synthetic monitoring and diagnosis system is reported. The monitoring systems for abnormal state in operation, troubles and the secular change of equipment are reported. The evaluation of the flaws in nuclear piping is reported. The summaries of the lectures are collected in this book. (K.I.)

  1. Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Vannier, M.W.; Ackerman, J.L.; Sawicka, B.D.; Gronemeyer, S.; Kriz, R.J.

    1987-01-01

    Advanced nondestructive evaluation methods are being developed to characterize ceramic materials and allow improvement of process technology. If one can spatially determine porosity, map organic binder/plasticizer distributions, measure average through-volume and in-plane density, as well as detect inclusions, process and machining operations may be modified to enhance the reliability of ceramics. Two modes of X-ray tomographic imaging -- advanced film (analog) tomography and computed tomography -- are being developed to provide flaw detection and density profile mapping capability. Nuclear magnetic resonance imaging is being developed to determine porosity and map the distribution of organic binder/plasticizer. Ultrasonic backscatter and through-transmission are being developed to measure average through-thickness densities and detect surface inclusions

  2. Nerva fuel nondestructive evaluation and characterization equipment and facilities

    International Nuclear Information System (INIS)

    Caputo, A.J.

    1993-01-01

    Nuclear Thermal Propulsion (NTP) is one of the technologies that the Space Exploration Initiative (SEI) has identified as essential for a manned mission to Mars. A base or prior work is available upon which to build in the development of nuclear rockets. From 1955 to 1973, the U.S Atomic Energy Commission (AEC) sponsored development and testing of a nuclear rocket engine under Project Rover. The rocket engine, called the Nuclear Engine for Rocket Vehicle Application (NERVA), used a graphite fuel element incorporating coated particle fuel. Much of the NERVA development and manufacturing work was performed at the Oak Ridge Y-12 Plant. This paper gives a general review of that work in the area of nondestructive evaluation and characterization. Emphasis is placed on two key characteristics: uranium content and distribution and thickness profile of metal carbide coatings deposited in the gas passage holes

  3. Ionizing radiations for non-destructive evaluation

    International Nuclear Information System (INIS)

    Raj, Baldev; Venkataraman, B.

    1989-01-01

    A state of the art of major non-destructive testing (NDT) techniques based on ionising radiations is presented. These techniques are broadly classified into three categories, namely, radiography, radiation gaging and analytical applications. The basic principles behind each method are explained and salient features of each technique which make it suitable for a particular task are described. Several illustrative applications drawn from the nuclear industry are given. The monograph is intended to serve as an introductory guide to scientist and engineers engaged in NDT activities. (M.G.B.). 32 refs., 13 figs., 5 tabs

  4. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructive testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined

  5. Stress wave nondestructive evaluation of Douglas-fir peeler cores

    Science.gov (United States)

    Robert J. Ross; John I. Zerbe; Xiping Wang; David W. Green; Roy F. Pellerin

    2005-01-01

    With the need for evaluating the utilization of veneer peeler log cores in higher value products and the increasing importance of utilizing round timbers in poles, posts, stakes, and building construction components, we conducted a cooperative project to verify the suitability of stress wave nondestructive evaluation techniques for assessing peeler cores and some...

  6. Non-destructive testing and evaluation for structural integrity

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Rao, B.P.C.

    1995-01-01

    In this paper, a brief description of the physical concepts of non-destructive evaluation (NDE) methods and the physical/derived parameters that are used for assessing defects, stresses and microstructures are given. A few case studies highlighting the importance of non-destructive testing and evaluation for structural integrity assessment are also discussed based on the investigations carried out. Emerging concepts like intelligent processing of materials, expert systems, neural networks, use of multisensors with fusion of data and exploitation of signal analysis and imaging approaches are also addressed in this paper. (author). 92 refs., 1 tab

  7. Pattern recognition approach to nondestructive evaluation of materials

    International Nuclear Information System (INIS)

    Chen, C.H.

    1987-01-01

    In this paper, a pattern recognition approach to the ultrasonic nondestructive evaluation of materials is examined. Emphasis is placed on identifying effective features from time and frequency domains, correlation functions and impulse responses to classify aluminum plate specimens into three major defect geometry categories: flat, angular cut and circular hole defects. A multi-stage classification procedure is developed which can further determine the angles and sizes for defect characterization and classification. The research clearly demonstrates that the pattern recognition approach can significantly improve the nondestructive material evaluation capability of the ultrasonic methods without resorting to the solution of highly complex mathematical inverse problems

  8. Nondestructive evaluation of creep-fatigue damage: an interim report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described

  9. Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties

    International Nuclear Information System (INIS)

    Kim, Chung Seok; Park, Ik Keun

    2012-01-01

    The present paper reviews the micro and nano nondestructive evaluation(NDE) technique that is possible to investigate the surface and measure the acoustic properties. The technical theory, features and applications of the ultrasonic atomic force microscopy(UAFM) and scanning acoustic microscopy(SAM) are illustrated. Especially, these technologies are possible to evaluate the mechanical properties in micro/nano structure and surface through the measurement of acoustic properties in addition to the observation of surface and subsurface. Consequently, it is thought that technique developments and applications of these micro/nano NDE in advanced industrial parts together with present nondestructive industry are widely possible hereafter.

  10. Ultrasonic nondestructive evaluation systems industrial application issues

    CERN Document Server

    Callegari, Sergio; Montisci, Augusto; Ricci, Marco; Versaci, Mario

    2015-01-01

    This book covers the practical implementation of ultrasonic NDT techniques in an industrial environment, discussing several issues that may emerge and proposing strategies for addressing them successfully.  It aims to bridge advanced academic research results and their application to industrial procedures. The topics covered in the text range from the basic operation of an ultrasonic NDT system to the simulation of the measurement operations; from the choice and generation of the signals energizing the system to the different ways of exploiting the probes and their output signals; and from quality assessment evaluation to the use of soft computing techniques for classification. Throughout the text, an effort is made to embrace a system view where the physical and technological aspects of sensing are addressed together with higher abstraction levels, such as signal and information processing. Consequently, the book aims at guiding the reader through the various tasks requested for developing a complete ultras...

  11. Mathematical modelling of ultrasonic non-destructive evaluation

    Directory of Open Access Journals (Sweden)

    Larissa Ju Fradkin

    2001-01-01

    Full Text Available High-frequency asymptotics have been used at our Centre to develop codes for modelling pulse propagation and scattering in the near-field of the ultrasonic transducers used in NDE (Non-Destructive Evaluation, particularly of walls of nuclear reactors. The codes are hundreds of times faster than the direct numerical codes but no less accurate.

  12. Online Preventative Non-Destructive Evaluation in Automated Fibre Placement

    NARCIS (Netherlands)

    Tonnaer, R.; Shroff, S.; Groves, R.M.

    2016-01-01

    The strict quality requirements for aerospace composite struc- tures give rise to costly quality control procedures. In automated bre placement (AFP) these procedures rely heavily on manual work and inspection. This research aims at performing preventative non-destructive evaluation of composite

  13. Application of liquid crystals in thermal nondestructive evaluation

    International Nuclear Information System (INIS)

    Panakal, J.P.; Mukherjee, S.; Ghosh, J.K.

    1983-01-01

    In recent years, thermal nondestructive evaluation using Cholestric liquid crystals have found wide applications in industry. Thermography using Cholesteric liquid crystals can be used for detection of nonbonds in metallic composites, hot spots in electronic circuits and preliminary examination of welded pressure vessels. This paper presents the results of experiments on thermography of components using encapsulated liquid crystals. (author)

  14. Computational electromagnetics and model-based inversion a modern paradigm for eddy-current nondestructive evaluation

    CERN Document Server

    Sabbagh, Harold A; Sabbagh, Elias H; Aldrin, John C; Knopp, Jeremy S

    2013-01-01

    Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy Current Nondestructive Evaluation describes the natural marriage of the computer to eddy-current NDE. Three distinct topics are emphasized in the book: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. By showing how mathematics and the computer can solve problems more effectively than current analog practices, this book defines the modern technology of eddy-current NDE. This book will be useful to advanced students and practitioners in the fields of computational electromagnetics, electromagnetic inverse-scattering theory, nondestructive evaluation, materials evaluation and biomedical imaging. Users of eddy-current NDE technology in industries as varied as nuclear power, aerospace,...

  15. Aging management of major LWR components with nondestructive evaluation

    International Nuclear Information System (INIS)

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-01-01

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments

  16. Proceedings: 19th International Nondestructive Testing and Evaluation of Wood Symposium

    Science.gov (United States)

    Robert J. Ross; Raquel Gonçalves; Xiping Wang

    2015-01-01

    The 19th International Nondestructive Testing and Evaluation of Wood Symposium was hosted by the University of Campinas, College of Agricultural Engineering (FEAGRI/UNICAMP), and the Brazilian Association of Nondestructive Testing and Evaluation (ABENDI) in Rio de Janeiro, Brazil, on September 22–25, 2015. This Symposium was a forum for those involved in nondestructive...

  17. Nondestructive evaluation of metallic structures using a SQUID magnetometer

    International Nuclear Information System (INIS)

    Weinstock, H.; Nisenoff, M.

    1985-01-01

    We present one of the first reports of the use of SQUID instrumentation for nondestructive evaluation of electrically conducting and ferromagnetic specimens. We report preliminary experiments on the use of SQUIDs for the detection of defects (such as cracks, holes, weld seams, variations in wall thickness, effects of corrosion, etc.) in the walls of a hollow pipe, and for monitoring the magnetic state of a ferromagnetic sample under stress-strain loading conditions. (orig./BUD)

  18. Nondestructive Evaluation of Ceramic Candle Filters Using Vibration Response

    International Nuclear Information System (INIS)

    Chen, Roger H.L.; Kiriakidis, Alejandro C.; Peng, Steve W.

    1997-01-01

    This study aims at the development of an effective nondestructive evaluation technique to predict the remaining useful life of a ceramic candle filter during a power plant's annual maintenance shutdown. The objective of the present on-going study is to establish the vibration signatures of ceramic candle filters at varying degradation levels due to different operating hours, and to study the various factors involving the establishment of the signatures

  19. Development of non-destructive testing (NDT) technology in Pakistan

    International Nuclear Information System (INIS)

    Khan, A.A.

    2005-01-01

    Non-Destructive Testing (NDT) techniques are being extensively used to improve and maintain the quality of manufactured goods as well as for proper maintenance of industrial plants and equipment. Typical industries that benefit most include Aerospace, Chemical, Heavy Mechanical Fabrication, Conventional and Nuclear Power Generation, Automobiles, Oil and Gas, Shipbuilding, Foundries, and Armaments, etc. As the name implies, with these techniques an industrial product is inspected mostly for defects in its structure without destroying it. Among the most widely used NDT techniques for the detection of internal defects are Radiographic and Ultrasonic Testing. For surface and just below the surface defects Magnetic Particle Testing, Penetrant Testing and Eddy Current Testing are commonly used. In addition to these, there are some NDT methods which have specific applications. These include Acoustic Emission, Thermal and Infrared Testing, Microwave Testing, Computer Tomography, Strain Gauging, Leak Testing and Holography, etc. This paper describes various phases through which the development of NDT technology passed and its present state of the art. It started with the undertaking of a nuclear technology programme and has matured along with it. As it stands we are fully competent to undertake various essential activities related to this technology, namely, (I) raining and certification of NDT personnel at various levels. (II) revision of NDT services to various industrial sectors including nuclear power during manufacture, fabrication, pre-service inspection (PSI) and in-service inspection (ISI). (author)

  20. Nondestructive Evaluation of the VSC-17 Cask

    International Nuclear Information System (INIS)

    Sheryl Morton; Al Carlson; Cecilia Hoffman; James Rivera; Phil Winston; Koji Shirai; Shin Takahashi; Masaharo Tanaka

    2006-01-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC 17) spent nuclear fuel storage cask, originally located at the INL Test Area North, as a candidate to study cask performance because it had been used to store fuel as part of a dry cask storage demonstration project for over 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. The INL team met with the CRIEPI representatives in December of 2004 to discuss the next steps. As a result of that meeting, CRIEPI requested that in the summer 2005 INL perform additional surveys on the VSC 17 cask with participation of CRIEPI scientists. This document summarizes the evaluation methods used on the VSC 17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution

  1. Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Konstantinos G. Dassios

    2013-01-01

    Full Text Available Infrared thermography (IRT and acoustic emission (AE are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material’s performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.

  2. Nondestructive methods for quality evaluation of livestock products.

    Science.gov (United States)

    Narsaiah, K; Jha, Shyam N

    2012-06-01

    The muscles derived from livestock are highly perishable. Rapid and nondestructive methods are essential for quality assurance of such products. Potential nondestructive methods, which can supplement or replace many of traditional time consuming destructive methods, include colour and computer image analysis, NIR spectroscopy, NMRI, electronic nose, ultrasound, X-ray imaging and biosensors. These methods are briefly described and the research work involving them for products derived from livestock is reviewed. These methods will be helpful in rapid screening of large number of samples, monitoring distribution networks, quick product recall and enhance traceability in the value chain of livestock products. With new developments in the areas of basic science related to these methods, colour, image processing, NIR spectroscopy, biosensors and ultrasonic analysis are expected to be widespread and cost effective for large scale meat quality evaluation in near future.

  3. Nondestructive testing technology for measurement coatings thickness on material

    International Nuclear Information System (INIS)

    Yang Mingtai; Wu Lunqiang; Zhang Lianping

    2008-01-01

    The principle, applicability range, advantage and disadvantage of electromagnetic, eddy current method, β backscatter method and XRF methods for nondestructive testing coating thickness of material have been reviewed. The relevant apparatus and manufacturers have been summarized. And the application and developmental direction of manufacturers for nondestructive testing coatings thickness has been foreshowed. (authors)

  4. A versatile nondestructive evaluation imaging workstation

    Science.gov (United States)

    Chern, E. James; Butler, David W.

    1994-01-01

    Ultrasonic C-scan and eddy current imaging systems are of the pointwise type evaluation systems that rely on a mechanical scanner to physically maneuver a probe relative to the specimen point by point in order to acquire data and generate images. Since the ultrasonic C-scan and eddy current imaging systems are based on the same mechanical scanning mechanisms, the two systems can be combined using the same PC platform with a common mechanical manipulation subsystem and integrated data acquisition software. Based on this concept, we have developed an IBM PC-based combined ultrasonic C-scan and eddy current imaging system. The system is modularized and provides capacity for future hardware and software expansions. Advantages associated with the combined system are: (1) eliminated duplication of the computer and mechanical hardware, (2) unified data acquisition, processing and storage software, (3) reduced setup time for repetitious ultrasonic and eddy current scans, and (4) improved system efficiency. The concept can be adapted to many engineering systems by integrating related PC-based instruments into one multipurpose workstation such as dispensing, machining, packaging, sorting, and other industrial applications.

  5. Advanced nondestructive evaluation for creep damage

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    As a result of operation at elevated temperatures, power plant components experience creep. Changes in metallurgical structure and microscopic cracking occur after periods of operation and lead to component failure. In order to detect the presence of creep and avoid creep-related failures, EPRI has just initiated a five year program entitled Advanced NDE for Creep Damage (RP 1856-7). The objective of this program is to develop NDE methods for detection and characterization of microscopic creep damage. Several NDE methods will be initially evaluated to determine their potential for detecting and characterizing such damage. These NDE methods include ultrasonics, eddy current, Barkhausen, positron annihilation, and thermal-wave imaging. A prototype system will be developed and tested for commercial applications in a follow-on project, utilizing characteristics of the best NDE method for creep detection. A brief description of the project and results of a theoretical investigation, to determine feasibility of ultrasonic NDE method, for detection of creep damage are presented

  6. Application of expert system technology to nondestructive waste assay - initial prototype model

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G.K.; Determan, J.C. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1997-11-01

    Expert system technology has been identified as a technique useful for filling certain types of technology/capability gaps in existing waste nondestructive assay (NDA) applications. In particular, expert system techniques are being investigated with the intent of providing on-line evaluation of acquired data and/or directed acquisition of data in a manner that mimics the logic and decision making process a waste NDA expert would employ. The space from which information and data sources utilized in this process is much expanded with respect to the algorithmic approach typically utilized in waste NDA. Expert system technology provides a mechanism to manage and reason with this expanded information/data set. The material presented in this paper concerns initial studies and a resultant prototype expert system that incorporates pertinent information, and evaluation logic and decision processes, for the purpose of validating acquired waste NDA measurement assays. 6 refs., 6 figs.

  7. Application of expert system technology to nondestructive waste assay - initial prototype model

    International Nuclear Information System (INIS)

    Becker, G.K.; Determan, J.C.

    1997-01-01

    Expert system technology has been identified as a technique useful for filling certain types of technology/capability gaps in existing waste nondestructive assay (NDA) applications. In particular, expert system techniques are being investigated with the intent of providing on-line evaluation of acquired data and/or directed acquisition of data in a manner that mimics the logic and decision making process a waste NDA expert would employ. The space from which information and data sources utilized in this process is much expanded with respect to the algorithmic approach typically utilized in waste NDA. Expert system technology provides a mechanism to manage and reason with this expanded information/data set. The material presented in this paper concerns initial studies and a resultant prototype expert system that incorporates pertinent information, and evaluation logic and decision processes, for the purpose of validating acquired waste NDA measurement assays. 6 refs., 6 figs

  8. Non-destructive evaluation studies for cultural heritage

    International Nuclear Information System (INIS)

    Jayakumar, T.; Babu Rao, C.; Kumar, Anish; Rajkumar, K.V.; Sharma, G.K.; Raj, Baldev

    2009-01-01

    The results of the nondestructive evaluation studies carried out on the Delhi iron pillar and the musical pillars of the Vithala temple at Hampi, Karnataka are discussed. While studies on Delhi iron pillar were carried out with a primary aim to understand the methodology of fabrication of this pillar, the studies on the musical pillars were carried out to finger print/petroligically characterize the stones used in the construction of the musical pillars and to understand the origin of various sounds generated on tapping of the musical pillars by carrying out various acoustic studies. (author)

  9. Nondestructive evaluation of reinforced plastics by a radiometric measurement technique

    International Nuclear Information System (INIS)

    Entine, Gerald; Afshari, Sia; Verlinden, Matt

    1990-01-01

    The demand for new high-performance plastics has greatly increased with advances in the performance characteristics of sophisticated reinforced engineering resins. However, conventional methods for the evaluation of the glass and filler contents of reinforced plastics are destructive, labor intensive, and time consuming. We have developed a new instrument, to address this problem, which provides for the rapid, accurate, and nondestructive measurement of glass or filler content in reinforced plastics. This instrument utilizes radiation transmission and scattering techniques for analytical measurement of glass, graphite and other fillers used in reinforced plastics. (author)

  10. The Nuclear Renaissance — Implications on Quantitative Nondestructive Evaluations

    Science.gov (United States)

    Matzie, Regis A.

    2007-03-01

    The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches.

  11. The Nuclear Renaissance - Implications on Quantitative Nondestructive Evaluations

    International Nuclear Information System (INIS)

    Matzie, Regis A.

    2007-01-01

    The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches

  12. Nondestructive evaluation using dipole model analysis with a scan type magnetic camera

    Science.gov (United States)

    Lee, Jinyi; Hwang, Jiseong

    2005-12-01

    Large structures such as nuclear power, thermal power, chemical and petroleum refining plants are drawing interest with regard to the economic aspect of extending component life in respect to the poor environment created by high pressure, high temperature, and fatigue, securing safety from corrosion and exceeding their designated life span. Therefore, technology that accurately calculates and predicts degradation and defects of aging materials is extremely important. Among different methods available, nondestructive testing using magnetic methods is effective in predicting and evaluating defects on the surface of or surrounding ferromagnetic structures. It is important to estimate the distribution of magnetic field intensity for applicable magnetic methods relating to industrial nondestructive evaluation. A magnetic camera provides distribution of a quantitative magnetic field with a homogeneous lift-off and spatial resolution. It is possible to interpret the distribution of magnetic field when the dipole model was introduced. This study proposed an algorithm for nondestructive evaluation using dipole model analysis with a scan type magnetic camera. The numerical and experimental considerations of the quantitative evaluation of several sizes and shapes of cracks using magnetic field images of the magnetic camera were examined.

  13. Reports from the Yayoi symposium on quantitative non-destructive evaluation, (1)

    International Nuclear Information System (INIS)

    1990-02-01

    The report consists of four parts. The first part deals with nondestructive evaluation in the nuclear power industry, focusing on in-service inspection in nuclear power plant, eddy current crack detection test of steam generator heat-exchanger tube, and nondestructive test of thin-wall components. The second part discusses inverse problems and quantification for nondestructive evaluation, centering on the identification of defect by boundary element method, quantification by using supersonic wave, defect shape recognition by the electrical potential method, and a neural network applied to crack type recognition. The third part deals with the application of electromagnetic phenomena to nondestructive evaluation, focusing on a superconducting quantum interference device, electromagnetic measurement in the iron industry, and nondestructive measurement of residual stress by magnetic process. The fourth part discusses visualization techniques for nondestructive evaluation, focusing on image processing, neutron radiography, X-ray CT, defect diagnosis by infrared rays, and visualization of magnetic field. (N.K.)

  14. Non-destructive control: technologies, applications and markets

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    A description of NDC - nondestructive controls - (acoustic emission, Eddy currents, infrared and thermal, liquid penetrants, magnetic particles, radiographic, ultrasonic, visual and optical techniques) is given with various industrial applications and market trends. Some research projects, contacts and a list of NDC systems main manufacturers are given. (A.B.). 37 figs. and tabs

  15. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Anderson, M.T.; Kunerth, D.C.; Davidson, J.R.

    1995-08-01

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites

  16. Numerical modeling for the electromagnetic non-destructive evaluation: application to the non-destructive evaluation of concrete

    International Nuclear Information System (INIS)

    Travassos, L.

    2007-06-01

    Concrete is the most common building material and accounts for a large part of the systems that are necessary for a country to operate smoothly including buildings, roads, and bridges. Nondestructive testing is one of the techniques that can be used to assess the structural condition. It provides non perceptible information that conventional techniques of evaluation unable to do. The main objective of this work is the numerical simulation of a particular technique of nondestructive testing: the radar. The numerical modeling of the radar assessment of concrete structures make it possible to envisage the behavior of the system and its capacity to detect defects in various configurations. To achieve this objective, it was implemented electromagnetic wave propagation models in concrete structures, by using various numerical techniques to examine different aspects of the radar inspection. First of all, we implemented the finite-difference time-domain method in 3D which allows to take into account concrete characteristics such as porosity, salt content and the degree of saturation of the mixture by using Debye models. In addition, a procedure to improve the radiation pattern of bow-tie antennas is presented. This approach involves the Moment Method in conjunction with the Multi objective Genetic Algorithm. Finally, we implemented imaging algorithms which can perform fast and precise characterization of buried targets in inhomogeneous medium by using three different methods. The performance of the proposed algorithms is confirmed by numerical simulations. (author)

  17. Development of nondestructive evaluation methods for ceramic coatings

    International Nuclear Information System (INIS)

    Ellingson, W. A.; Deemer, C.; Sun, J. G.; Erdman, S.; Muliere, D.; Wheeler, B.

    2002-01-01

    Various nondestructive evaluation (NDE) technologies are being developed to study the use of ceramic coatings on components in the hot-gas path of advanced low-emission gas-fired turbines. The types of ceramic coatings include thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). TBCs are under development for vanes, blades, and combustor liners to allow hotter gas-path temperatures, and EBCs are under development to reduce environmental damage to high-temperature components made of ceramic matrix composites. The NDE methods will be used to (a) provide data to assess the reliability of new coating application processes, (b) identify defective components that could cause unscheduled outages, (c) track growth rates of defects during component use in engines, and (d) allow rational judgment for replace/repair/re-use decisions regarding components. Advances in TBC application, both electron beam-physical vapor deposition (EB-PVD) and air plasma spraying (APS), are allowing higher temperatures in the hot-gas path. However, as TBCs become ''prime reliant,'' their condition at scheduled or unscheduled outages must be known. NDE methods are under development to assess the condition of the TBC for pre-spall conditions. EB-PVD test samples with up to 70 thermal cycles have been studied by a newly developed method involving polarized laser back-scatter NDE. Results suggest a correlation between the NDE laser data and the TBC/bond-coat topography. This finding is important because several theories directed toward understanding the pre-spall condition suggest that the topography in the thermally grown oxide layer changes significantly as a function of the number of thermal cycles. Tests have also been conducted with this NDE method on APS TBCs. Results suggest that the pre-spall condition is detected for these coatings. One-sided, high-speed thermal imaging also has shown promise for NDE of APS coatings. Testing of SiC/SiC composites for combustor liners

  18. Non-destructive evaluation of water ingress in photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Mihail; Kotovsky, Jack

    2017-03-07

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.

  19. Operation of the EPRI nondestructive evaluation center: 1985 annual report

    International Nuclear Information System (INIS)

    Nemzek, T.A.; Stone, R.M.; Ammirato, F.V.; Becker, F.L.; Krzywosz, K.; Pherigo, G.L.; Wilson, G.H. III.

    1986-08-01

    This report describes the Electric Power Research Institute (EPRI) Nuclear Division funded nondestructive evaluation (NDE) project activities carried out at the EPRI NDE Center in 1985. The continuing objective of the Center is transfer of research and development results funded by EPRI and other related projects to useful field application. This is being accomplished by qualification and refinement of equipment and techniques, training under realistic conditions, and encouragement of greater involvement of the academic community in NDE education. Significant assistance has been provided to the nuclear utility industry under this project in the form of improved, field-ready equipment and procedures; critically needed assessments of inspection method capability; demonstrations of effectiveness of examination methods; rapid response for critical, short-term problems; and training for specific utility industry needs. This effort has specifically addressed steam generator, piping, steam turbine, and heavy section inspection problems

  20. Efficiency evaluation test of waste non-destructive analysis device

    International Nuclear Information System (INIS)

    Maeda, Kouichi; Ogasawara, Kensuke; Nisizawa, Ichio

    2000-03-01

    A device for non-destructive analysis of plutonium in alpha solid waste has been installed in NUCEF; Nuclear Fuel Cycle Safety Engineering Research Facility. The device has been designed to determine the amount of radioisotopes in carton-boxes, 45 l steel cans and 200 l steel cans containing relatively low density waste. Considering the waste density and the heterogeneity of radio-sources, the proper distance between the detector and the waste, and the open degree of the collimator have been settled, because real waste may contain several kinds of material and the heterogeneity of radioactivity. It has been confirmed from the evaluation of the detect limit that plutonium of about 8 MBq can be determined with the accuracy of 10% and the device may be proper for the practical application. (author)

  1. Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment

    Science.gov (United States)

    Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.

    1979-01-01

    The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.

  2. Nondestructive testing 89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings contain 24 contributions, out of which 14 have been inputted in INIS. These deal with materials for nondestructive testing and various nondestructive testing systems, with the evaluation of radiograms and with the application of radiographic, ultrasonic and eddy current methods to the detection of defects in materials, to the inspection of nuclear reactor components and in other fields of technology. (B.S.)

  3. Non-destructive evaluation on mechanical properties of nuclear graphite with porous structure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Hanawa, Satoshi; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro; Iyoku, Tatsuo

    2005-01-01

    As a research subjects of 'Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' we started the study of development of non-destructive evaluation methods for mechanical properties of graphite components. The micro-indentation and ultrasonic wave methods are focused to evaluate the degradation of graphite components in VHTR core. For the micro-indentation method, the test apparatus was designed for the indentation test on graphite specimens with some stress levels. It is expected the stress condition is evaluated by the indentation load-depth characteristics and hardness. For the ultrasonic wave method, ultrasonic wave testing machine and probes were prepared for experiments. It is expected that the stress and inner porous conditions are evaluated by the wave propagation characteristics with wave-pore interaction model. R and D plan to develop the non-destructive evaluation method for graphite is presented in this paper. (This study is the result of contract research in the fiscal year of 2004, Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' which is entrusted to the Japan Atomic Energy Research Institute from the Ministry of Education, Culture, Sports, Science and Technology of Japan.) (author)

  4. Use of nondestructive evaluation methods to improve power plant availability

    International Nuclear Information System (INIS)

    Weber, R.M.

    1985-01-01

    On an ever-increasing basis, utilities are relying on nondestructive evaluation (NDE) as a management and planning tool. In addition to the conventional ASME Code and Technical Specification-required examinations, progressive utilities are utilizing NDE sampling programs to monitor existing conditions and search for potential situations affecting plant safety and reliability. Improved NDE detection and sizing procedures give management personnel the accurate information needed to make the ''go/no go'' decisions on repair programs which can significantly affect plant availability. As the burden of regulatory-imposed inspection requirements increases, plant personnel are increasingly cognizant that NDE is a significant factor in their plant's outage schedule. Whether an outage is scheduled or forced, NDE becomes part of each plant's program to assure the safety and reliability of its critical components. Knowledge and planning of NDE application is important because of the time expended in examination performance and subsequent data evaluation. Managers who are knowledgeable in NDE application can effectively improve plant availability by scheduling NDE as an integral part of their maintenance programs. Examination results can then be used in making decisions directly affecting availability

  5. Optical coherence tomography for nondestructive evaluation of fuel rod degradation

    International Nuclear Information System (INIS)

    Renshaw, Jeremy B.; Jenkins, Thomas P.; Buckner, Benjamin D.; Friend, Brian

    2015-01-01

    Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal

  6. Optical coherence tomography for nondestructive evaluation of fuel rod degradation

    Energy Technology Data Exchange (ETDEWEB)

    Renshaw, Jeremy B., E-mail: jrenshaw@epri.com [Electric Power Research Institute, 1300 West WT Harris Blvd., Charlotte, NC 28262 (United States); Jenkins, Thomas P., E-mail: tjenkins@metrolaserinc.com; Buckner, Benjamin D., E-mail: tjenkins@metrolaserinc.com [MetroLaser, Inc., 22941 Mill Creek Drive, Laguna Hills, CA 92653 (United States); Friend, Brian [AREVA, Inc., 3315 Old Forest Road, Lynchburg, VA 24501 (United States)

    2015-03-31

    Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.

  7. Enhancement of Spatial Resolution Using a Metamaterial Sensor in Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-11-01

    Full Text Available The current stage of non-destructive evaluation techniques imposes the development of new electromagnetic methods that are based on high spatial resolution and increased sensitivity. Printed circuit boards, integrated circuit boards, composite materials with polymeric matrix containing conductive fibers, as well as some types of biosensors are devices of interest in using such evaluation methods. In order to achieve high performance, the work frequencies must be either radiofrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. Detection of these waves, containing required information, can be done using sensors with metamaterial lenses. We propose in this paper the enhancement of the spatial resolution using electromagnetic methods, which can be accomplished in this case using evanescent waves that appear in the current study in slits of materials such as the spaces between carbon fibers in Carbon Fibers Reinforced Plastics or in materials of interest in the nondestructive evaluation field with industrial applications, where microscopic cracks are present. We propose herein a unique design of the metamaterials for use in nondestructive evaluation based on Conical Swiss Rolls configurations, which assure the robust concentration/focusing of the incident electromagnetic waves (practically impossible to be focused using classical materials, as well as the robust manipulation of evanescent waves. Applying this testing method, spatial resolution of approximately λ/2000 can be achieved. This testing method can be successfully applied in a variety of applications of paramount importance such as defect/damage detection in materials used in a variety of industrial applications, such as automotive and aviation technologies.

  8. Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct

    Science.gov (United States)

    Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.

    2012-01-01

    The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.

  9. A Review of Microwave Thermography Nondestructive Testing and Evaluation

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2017-05-01

    Full Text Available Microwave thermography (MWT has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control.

  10. A Review of Microwave Thermography Nondestructive Testing and Evaluation.

    Science.gov (United States)

    Zhang, Hong; Yang, Ruizhen; He, Yunze; Foudazi, Ali; Cheng, Liang; Tian, Guiyun

    2017-05-15

    Microwave thermography (MWT) has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT) and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control.

  11. Transmission mode acoustic time-reversal imaging for nondestructive evaluation

    Science.gov (United States)

    Lehman, Sean K.; Devaney, Anthony J.

    2002-11-01

    In previous ASA meetings and JASA papers, the extended and formalized theory of transmission mode time reversal in which the transceivers are noncoincident was presented. When combined with the subspace concepts of a generalized MUltiple SIgnal Classification (MUSIC) algorithm, this theory is used to form super-resolution images of scatterers buried in a medium. These techniques are now applied to ultrasonic nondestructive evaluation (NDE) of parts, and shallow subsurface seismic imaging. Results are presented of NDE experiments on metal and epoxy blocks using data collected from an adaptive ultrasonic array, that is, a ''time-reversal machine,'' at Lawrence Livermore National Laboratory. Also presented are the results of seismo-acoustic subsurface probing of buried hazardous waste pits at the Idaho National Engineering and Environmental Laboratory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.] [Work supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the NSF (award number EEC-9986821) as well as from Air Force Contracts No. F41624-99-D6002 and No. F49620-99-C0013.

  12. Annular array technology for nondestructive turbine inspection. Final report

    International Nuclear Information System (INIS)

    Light, G.M.

    1986-05-01

    The Electric Power Research Institute (EPRI) funded Southwest Research Institute (SwRI) to fabricate and functionally test phased array transducers and an electronic control system with the intent of evaluating the phased array technology for use in the inspection of turbine disks. During this program a 13-element annular array and associated phased array electronics were fabricated and tested and the results of the tests compared to those predicted by theory. The prototype system performed well within the expected limits, and EPRI funded further work to fabricate and test a production unit. The production system consisted of a 25-element annular array and a 25-channel electronics system that had both pulser and receiver delay circuitry. In addition, during the program it was determined that miniaturized hybrid pulser/preamps would be needed to allow the phased array to work over distances exceeding 9.1 meters (30 feet) from the electronics. A circuit developed by SwRI was utilized and found to produce good pulsing capability that did not suffer from impedance mismatch. EPRI also funded (under a separate contract) the fabrication of a small scale static turbine test bed and a full scale dynamic test bed that contained full scale turbine geometries. These test beds were fabricated to enable the production phased array system to be evaluated on turbine disk surfaces. 26 figs

  13. Finding Infrastructure with Non-Destructive Imaging Technologies (FINDIT)

    Science.gov (United States)

    Tuckwell, G.; Usher, C.; Stringfellow, M.; Chapman, D.; Metje, N.; Roberts, D.

    2017-12-01

    Novel uses for existing technologies and new post-processing techniques have been developed to generate a level and detail of information that will make a step-change to standard practice in mapping and assessing the condition of buried infrastructure. The most appropriate sensing technologies for buried telecommunications ducts have been identified as Ground Penetrating Radar and Acoustic reflectometry. Dielectric permittivity changes in the near-surface can manifest themselves in different ways within GPR data. Numerical modelling work has been undertaken by applying a Kuepper signal and an exploding source, and using various different frequencies to determine minute changes (e.g. cracks in pipes) in an object or feature within the near surface. This modelling demonstrated that there is a clear difference between an empty duct, a duct partially filled with cables and a damaged duct. This was confirmed in a laboratory test on dry sand to determine the detectability of a hole in a plastic pipe. This has formed the foundation new data processing algorithms to detect the presence of such defects in real and synthetic data sets. Future work will focus on the development of a test site and field trials to assess the detectability of defects under realistic field conditions. This ongoing programme of work will be validated and iteratively improved by field trials under controlled and live commercial conditions. Finally the cost/benefit of the new workflows develop evaluated through the development of business models for the application of such techniques in telecoms, water and energy supply sectors. In the UK, the majority of the communication network is buried in ducts which are often several decades old. They have often collapsed or become blocked so that spare capacity cannot be used. There is currently no surface detection technology which can accurately locate the position of these defects (or even accurately locate the ducts in all circumstances), so time

  14. Non-destructive measurement technologies for nuclear safeguards

    International Nuclear Information System (INIS)

    Gavron, A.

    1998-04-01

    There are three aspects that need to be in place in order to maintain a valid safeguards system: (1) Physical protection; guarding the access to nuclear materials using physical protection and surveillance. (2) Accounting systems; computer based accounting systems that provide the current location of nuclear materials, quantities, and the uncertainty in the assayed values. (3) Measurement systems; detectors, data acquisition systems and data analysis methods that provide accurate assays of nuclear material quantities for the accounting system. The authors expand on this third aspect, measurement systems, by discussing nondestructive assay (NDA) techniques. NDA is defined as the quantitative or qualitative determination of the kind and/or amount of nuclear material in an item without alteration or invasion of the item. This is contrasted with destructive analysis which is the process of taking small samples from the item in question, analyzing those samples by chemical analysis, destroying the original nature of the samples in the process (hence the term destructive), and applying the results to the entire item. Over the past 30 years, numerous techniques, using the atomic and nuclear properties of the actinides, have been developed for reliable, rapid, accurate, and tamper-proof NDA of nuclear materials. The authors distinguish between two types of measurements: the first involving the detection of spontaneously emitted radiation, produced by the natural radioactive decay processes; the second involving the detection of induced radiation, produced by irradiating the sample with an external radiation source

  15. Non-destructive system to evaluate critical properties of asphalt compaction : [research brief].

    Science.gov (United States)

    2013-12-01

    The Wisconsin Highway Research Program sponsored a two-stage investigation to develop a non-destructive system to evaluate critical compaction properties and characteristics of asphalt pavements during the densification process. Stage One activities ...

  16. Magnetic sensor for nondestructive evaluation of deteriorated prestressing strand : phase II.

    Science.gov (United States)

    2011-08-01

    This report gives an account of the execution and achievements in Phase II of the project completed through August 2011. The main objective of this project is to advance the practical development of a nondestructive testing and evaluation method usin...

  17. National seminar on non-destructive evaluation techniques: proceedings cum souvenir

    International Nuclear Information System (INIS)

    Dutta, N.G.; Kulkarni, P.G.; Purushotham, D.S.C.

    1994-01-01

    This volume contains selected papers presented at the National Seminar on Non-Destructive Evaluation Techniques held at Bhabha Atomic Research Centre, Mumbai during December 8-9, 1994. The papers covered a wide spectrum of non-destructive evaluation activities including that for quality assurance of various nuclear components and structures with the focal theme being computerization and robotics. The papers relevant to INIS are indexed separately

  18. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    Science.gov (United States)

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  19. NonDestructive Evaluation for Industrial & Development Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  20. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations.

    Science.gov (United States)

    Hassoun, Abdo; Karoui, Romdhane

    2017-06-13

    Although being one of the most vulnerable and perishable products, fish and other seafoods provide a wide range of health-promoting compounds. Recently, the growing interest of consumers in food quality and safety issues has contributed to the increasing demand for sensitive and rapid analytical technologies. Several traditional physicochemical, textural, sensory, and electrical methods have been used to evaluate freshness and authentication of fish and other seafood products. Despite the importance of these standard methods, they are expensive and time-consuming, and often susceptible to large sources of variation. Recently, spectroscopic methods and other emerging techniques have shown great potential due to speed of analysis, minimal sample preparation, high repeatability, low cost, and, most of all, the fact that these techniques are noninvasive and nondestructive and, therefore, could be applied to any online monitoring system. This review describes firstly and briefly the basic principles of multivariate data analysis, followed by the most commonly traditional methods used for the determination of the freshness and authenticity of fish and other seafood products. A special focus is put on the use of rapid and nondestructive techniques (spectroscopic techniques and instrumental sensors) to address several issues related to the quality of these products. Moreover, the advantages and limitations of each technique are reviewed and some perspectives are also given.

  1. Digital radiographic technology; non-destructive testing of tubine blades

    NARCIS (Netherlands)

    Penumadu, P.S.

    2014-01-01

    Inspection of turbine blades has always been a big challenge. Any irregularities in the blade have a huge impact on the gas turbine, so these blades have to be manufactured and inspected in the most sophisticated way possible. The evolution of digital radiographic technology took a leap forward to

  2. Current nondestructive evaluation research and development trends in the United States

    International Nuclear Information System (INIS)

    Jackson, Jerry

    1992-01-01

    An underlying theme present in much of the nondestructive evaluation (NDE) research and development occurring in the United States as well as worldwide is the application of physics and engineering principles toward understanding and optimizing NDE processes. Expanding this trend of using mathematical models for NDE processes is critical to the entire spectrum of NDE technology. In NDE research, modeling anchors the investigation in scientific, proven principles and establishes a firm technical basis to guide the design and development of inspection equipment and approaches. It also provides for understanding the capabilities and the limitations of whatever designs are selected and ultimately applied in the field. This paper reviews the status of these efforts, presents several examples where mathematical modeling is being profitably used for practical inspection work, and shows the path being taken in ongoing research.

  3. Application of new technologies for the nondestructive testing equipment Novovoronezh NPP-2 and Leningrad 2

    International Nuclear Information System (INIS)

    Nichev, V.; Cvitanović, M.; Nadinic, B.

    2016-01-01

    This presentation demonstrates the latest technology and means of nondestructive testing of equipment of reactor VVER-1200, realized at the Novovoronezh NPP-2 and Leningrad NPP-2. The developments are based on a contract between ATOMKOMPLEKT with HRID, Croatia as a designer and contractor and and Rosatom. The activities of the presented company and IQC are associated with the qualification of methodologies control of components important to safety as required by the European methodology and requirements of Russian legislation

  4. Advanced Instrumentation, Information, and Control System Technologies: Nondestructive Examination Technologies - FY11 Report

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.

    2011-08-30

    Licensees of commercial nuclear power plants in the US are expected to submit license renewal applications for the period of operation of 60 to 80 years which has also been referred to as long term operation (LTO). The greatest challenges to LTO are associated with degradation of passive components as active components are routinely maintained and repaired or placed through maintenance programs. Some passive component degradation concerns include stress corrosion cracking (SCC) of metal components, radiation induced embrittlement of the reactor pressure vessel (RPV), degradation of buried piping, degradation of concrete containment structures, and degradation of cables. Proactive management of passive component aging employs three important elements including online monitoring of degradation, early detection of degradation at precursor stages, and application of prognostics for the prediction of remaining useful life (RUL). This document assesses several nondestructive examination (NDE) measurement technologies for integration into proactive aging management programs. The assessment is performed by discussing the three elements of proactive aging management identified above, considering the current state of the industry with respect to adopting these key elements, and analyzing measurement technologies for monitoring large cracks in metal components, monitoring early degradation at precursor stages, monitoring the degradation of concrete containment structures, and monitoring the degradation of cables. Specific and general needs have been identified through this assessment. General needs identified include the need for environmentally rugged sensors are needed that can operate reliably in an operating reactor environment, the need to identify parameters from precursor monitoring technologies that are unambiguously correlated with the level of pre-macro defect damage, and a methodology for identifying regions where precursor damage is most likely to initiate.

  5. Advanced Instrumentation, Information, and Control System Technologies: Nondestructive Examination Technologies - FY11 Report

    International Nuclear Information System (INIS)

    Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.

    2011-01-01

    Licensees of commercial nuclear power plants in the US are expected to submit license renewal applications for the period of operation of 60 to 80 years which has also been referred to as long term operation (LTO). The greatest challenges to LTO are associated with degradation of passive components as active components are routinely maintained and repaired or placed through maintenance programs. Some passive component degradation concerns include stress corrosion cracking (SCC) of metal components, radiation induced embrittlement of the reactor pressure vessel (RPV), degradation of buried piping, degradation of concrete containment structures, and degradation of cables. Proactive management of passive component aging employs three important elements including online monitoring of degradation, early detection of degradation at precursor stages, and application of prognostics for the prediction of remaining useful life (RUL). This document assesses several nondestructive examination (NDE) measurement technologies for integration into proactive aging management programs. The assessment is performed by discussing the three elements of proactive aging management identified above, considering the current state of the industry with respect to adopting these key elements, and analyzing measurement technologies for monitoring large cracks in metal components, monitoring early degradation at precursor stages, monitoring the degradation of concrete containment structures, and monitoring the degradation of cables. Specific and general needs have been identified through this assessment. General needs identified include the need for environmentally rugged sensors are needed that can operate reliably in an operating reactor environment, the need to identify parameters from precursor monitoring technologies that are unambiguously correlated with the level of pre-macro defect damage, and a methodology for identifying regions where precursor damage is most likely to initiate.

  6. Proceedings CORENDE: Regional congress on nondestructive and structural evaluation; Actas CORENDE: Congreso regional de ensayos no destructivos y estructurales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Works are presented at the CORENDE: Regional Congress on Nondestructive and Structural Evaluation organized by the National Atomic Energy Commission and the National Technological University (Mendoza). This congress wants to be the forum where people from research, industry and marketing might meet and discuss ideas towards the fostering of these new cultural habits. Papers covering all disciplines contributing to the evaluation of components, systems and structures are welcome: nondestructive evaluation methods and techniques (ultrasound, eddy currents and other electromagnetic methods, acoustic emission, radiography, thermography, leak testing, dye-penetrants, visual inspection, etc.), personnel certification, welding inspection, nondestructive metallography, optics and lasers, fluid-structure interaction, vibrations, extensometry, modelling of structures refs., ills. [Espanol] Se presentan trabajos de CORENDE: Congreso Regional de Ensayos no Destructivos y Estructurales organizado por la Comision Nacional de Energia Atomica y la Universidad Tecnologica Nacional (Mendoza). Este congreso se propone como un foro de discusion, donde, desde la investigacion hasta la produccion y comercializacion, se intercambien y discutan ideas que sirvan de guia para fomentar ese necesario cambio cultural. Los topicos de discusion incluyen a todas las disciplinas presentes en la evaluacion de componentes, sistemas y estructuras: tecnicas no destructivas (ultrasonido, corrientes inducidas, radiografia industrial, emision acustica, particulas magnetizables, termografia, liquidos penetrantes, ensayos de perdidas, inspeccion visual, etc.), certificacion de personal, inspeccion en soldaduras, replicas metalograficas, tecnicas opticas y laser, interaccion fluido-estructura, vibraciones, extensometria, modelado de estructuras

  7. Finite-element model of ultrasonic NDE [nondestructive evaluation

    International Nuclear Information System (INIS)

    Lord, W.

    1989-07-01

    An understanding of the way in which ultrasound interacts with defects in materials is essential to the development of improved nondestructive testing procedures for the inspection of critical power plant components. Traditionally, the modeling of such phenomena has been approached from an analytical standpoint in which appropriate assumptions are made concerning material properties, geometrical constraints and defect boundaries in order to arrive at closed form solutions. Such assumptions, by their very nature, tend to inhibit the development of complete input/output NDT system models suitable for predicting realistic piezoelectric transducer signals from the interaction of pulsed, finite-aperture ultrasound with arbitrarily shaped defects in the kinds of materials of interest to the utilities. The major thrust of EPRI Project RP 2687-2 is to determine the feasibility of applying finite element analysis techniques to overcome these problems. 85 refs., 64 figs., 3 tabs

  8. Nondestructive materials evaluation and imaging by higher harmonics

    International Nuclear Information System (INIS)

    Kawashima, Koichiro

    2012-01-01

    Nondestructive detection of material anormalities, degradation and tight cracks, in which the acoustic impedance mismatch is low, is rather difficult by conventional ultrasonic testing. A novel nonlinear ultrasonic technique, in particular, higher harmonic technique, utilizes the waveform distortion, which results from the interaction between anormalities and large amplitude tone-burst waves. This technique is not affected by acoustic impedance mismatch, therefore, it has possibility to detect such anormalities, degradation and tight cracks. A novel higher harmonic imaging technique is proposed and applied to detect and visualize local plastic deformation of SUS 304 plates, plastic zone in front of crack tip, weld bond contour of carbon steel, small inclusions in ODS steel fuel tubes, pitting damage of SUS 316 plates in mercury, shallow fatigue cracks of SUS 316 plates introduced by thermal fatigue, and inter-granular stress corrosion cracking, IGSCC, in welded plates simulated safe-ends for bonding dissimilar metals. (author)

  9. Nondestructive evaluation of potential quality of creosote-treated piles removed from service

    Science.gov (United States)

    Xiping. Wang; Robert J. Ross; John R. Erickson; John W. Forsman; Gary D. McGinnis; Rodney C. De Groot

    2001-01-01

    Stress-wave-based nondestructive evaluation methods were used to evaluate the potential quality and modulus of elasticity (MOE) of wood from creosote-treated Douglas-fir and southern pine piles removed from service. Stress-wave measurements were conducted on each pile section. Stress-wave propagation speeds were obtained to estimate the MOE of the wood. Tests were then...

  10. Nondestructive methods of evaluating quality of wood in preservative-treated piles

    Science.gov (United States)

    Xiping. Wang; Robert J. Ross; John R. Erickson; John W. Forsman; Gary D. McGinnis; Rodney C. De Groot

    2000-01-01

    Stress-wave-based nondestructive evaluation methods were used to evaluate the potential quality and modulus of elasticity (MOE) of wood in used preservative-treated Douglas-fir and southern pine piles. Stress wave measurements were conducted on each pile section. Stress wave propagation speeds in the piles were then obtained to estimate their MOE. This was followed by...

  11. Forensic Examination Using a Nondestructive Evaluation Method for Surface Metrology

    Science.gov (United States)

    Eisenmann, David J.; Chumbley, L. Scott

    2009-03-01

    The objective of this paper is to describe the use of a new technique of optical profilometry in a nondestructive, non-contact fashion for the comparison of two metallic surfaces, one hard and one soft. When brought in contact with one another, the harder material (i.e. the tool) will impress its surface roughness onto the softer. It is understood that the resulting set of impressions left from a tool tip act in a manner similar to a photographic negative, in that it leaves a reverse, or negative impression on the surface of a plate. If properly inverted and reversed, measurements from the softer material should be identical to the harder indenting object with regard to surface texture and roughness. This assumption is inherent in the area of forensics, where bullets, cartridge cases, and toolmarked surfaces from crime scenes are compared to similar marks made under controlled conditions in the forensic laboratory. This paper will examine the methodology used to compare two surfaces for similarities and dissimilarities, and comment on the applicability of this technique to other studies.

  12. Non-destructive evaluation of concrete using ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Lawson, I.

    2008-06-01

    Ultrasonic pulse velocity is one of the most popular non-destructive techniques used in the assessment of concrete properties. This thesis investigates the relationship between using ultrasonic pulse velocity (UPV) and the conventional compressive strength tests to determine concrete uniformity. The specimens used in the studies were made of concrete with a paste content of 18% and the constituents of the specimens varied in different water-cement ratios (w/c). The UPV measurement and compressive strength tests were carried out at the concrete age of 2, 7, 15 and 28 days. The UPV and the compressive strength of concrete increase with age, but the growth rate varies with mixture proportion. A relationship curve is drawn between UPV and compressive strength for concrete having different w/c from 0.35 to 0.7. Tests were also performed using Ultrasonic Pulse Velocity Method (UPVM) in detecting discontinuity and determining its depth during the early age of concrete. The test results indicate that the UPVM can be used to assess the in-situ properties of concrete or for quality control on site. The accuracy of the UPVM in detecting discontinuities ranges from 55.75 to 98.70% for ages 3 to 28 (full strength) respectively. (au)

  13. Development of a Nondestructive Evaluation Technique for Degraded Thermal Barrier Coatings Using Microwave

    Science.gov (United States)

    Sayar, M.; Ogawa, K.; Shoji, T.

    2008-02-01

    Thermal barrier coatings have been widely used in gas turbine engines in order to protect substrate metal alloy against high temperature and to enhance turbine efficiency. Currently, there are no reliable nondestructive techniques available to monitor TBC integrity over lifetime of the coating. Hence, to detect top coating (TC) and TGO thicknesses, a microwave nondestructive technique that utilizes a rectangular waveguide was developed. The phase of the reflection coefficient at the interface of TC and waveguide varies for different TGO and TC thicknesses. Therefore, measuring the phase of the reflection coefficient enables us to accurately calculate these thicknesses. Finally, a theoretical analysis was used to evaluate the reliability of the experimental results.

  14. Nondestructive detection of total viable count changes of chilled pork in high oxygen storage condition based on hyperspectral technology

    Science.gov (United States)

    Zheng, Xiaochun; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei

    2017-05-01

    The plate count method is commonly used to detect the total viable count (TVC) of bacteria in pork, which is timeconsuming and destructive. It has also been used to study the changes of the TVC in pork under different storage conditions. In recent years, many scholars have explored the non-destructive methods on detecting TVC by using visible near infrared (VIS/NIR) technology and hyperspectral technology. The TVC in chilled pork was monitored under high oxygen condition in this study by using hyperspectral technology in order to evaluate the changes of total bacterial count during storage, and then evaluate advantages and disadvantages of the storage condition. The VIS/NIR hyperspectral images of samples stored in high oxygen condition was acquired by a hyperspectral system in range of 400 1100nm. The actual reference value of total bacteria was measured by standard plate count method, and the results were obtained in 48 hours. The reflection spectra of the samples are extracted and used for the establishment of prediction model for TVC. The spectral preprocessing methods of standard normal variate transformation (SNV), multiple scatter correction (MSC) and derivation was conducted to the original reflectance spectra of samples. Partial least squares regression (PLSR) of TVC was performed and optimized to be the prediction model. The results show that the near infrared hyperspectral technology based on 400-1100nm combined with PLSR model can describe the growth pattern of the total bacteria count of the chilled pork under the condition of high oxygen very vividly and rapidly. The results obtained in this study demonstrate that the nondestructive method of TVC based on NIR hyperspectral has great potential in monitoring of edible safety in processing and storage of meat.

  15. Nondestructive assay technology and in-plant dynamic materials control: ''DYMAC''

    International Nuclear Information System (INIS)

    Keppin, G.R.; Maraman, W.J.

    1975-01-01

    An advanced system of in-plant materials control known as DYMAC, Dynamic Materials Control, is being developed. This major safeguards R and D effort merges state-of-the-art nondestructive assay instrumentation and computer technology, with the clear objective of demonstrating a workable, cost-effective system of stringent, real time control of nuclear materials in a modern plutonium processing facility. Emphasis is placed on developing practical solutions to generic problems of materials measurement and control, so that resulting safeguards techniques and instrumentation will have widespread applicability throughout the nuclear community. (auth)

  16. Timber bridge evaluation : a global nondestructive approach using impact generated FRFs

    Science.gov (United States)

    Angus Morison; C.D. Van Karsen; H.A. Evensen; J.B. Ligon; J.R. Erickson; R.J. Ross; J.W. Forsman

    2002-01-01

    Bridges require periodic inspections to ensure the safety of those using the structure. A visual inspection has historically been the most common form of investigation for timber bridges. This poses many problems when inspecting bridge timbers since often the damage is internal, leaving no visible signs of decay on the surface. Localized nondestructive evaluation (NDE...

  17. Nondestructive evaluation of green wood using stress wave and transverse vibration techniques

    Science.gov (United States)

    Udaya B. Halabe; Gangadhar M. Bidigalu; Hota V.S. GangaRao; Robert J. Ross

    1997-01-01

    Longitudinal stress wave and transverse vibration nondestructive testing (NDT) techniques have proven to be accurate means of evaluating the quality of wood based products. Researchers have found strong relationships between stress wave and transverse vibration parameters (e.g., wave velocity and modulus of elasticity predicted using NDT measurements) with the actual...

  18. Nondestructive methods for the structural evaluation of wood floor systems in historic buildings : preliminary results : [abstract

    Science.gov (United States)

    Zhiyong Cai; Michael O. Hunt; Robert J. Ross; Lawrence A. Soltis

    1999-01-01

    To date, there is no standard method for evaluating the structural integrity of wood floor systems using nondestructive techniques. Current methods of examination and assessment are often subjective and therefore tend to yield imprecise or variable results. For this reason, estimates of allowable wood floor loads are often conservative. The assignment of conservatively...

  19. Non-destructive Assessment of Relief Marking Parameters of Heat Shrinkable Installation Parts for Aviation Technology

    Directory of Open Access Journals (Sweden)

    Kondratov Aleksandr P.

    2017-01-01

    Full Text Available The article explains a new method of relief marking of heat-shrinkable tubing and sleeves made of polymer materials with “shape memory effect.” Method of instrument evaluation of relief marking stereometry of installation parts for aviation equipment, made of polyvinyl chloride, polyethyleneterephthalate and polystyrene was developed and the results were explained. Parameters of pin-point relief marking and compliance of point forms to the Braille font standard were determined with the use of the non-destructive method based on the color of interference pattern with precision of 0.02 mm.

  20. Non-destructive evaluation of welding part of stainless steels by phased array system

    International Nuclear Information System (INIS)

    Tatematsu, Nobuhiro; Matsumoto, Eiji

    2009-01-01

    Recently, more accurate and convenient Non-Destructive Evaluation techniques are required for flaw inspection of structural materials. Phased array ultrasonic transducers are expected as such as NDE technique but there are many subjects to be solved. Furthermore, commercial phased array systems with conventional scanning and imaging techniques have not fulfilled their maximum potential. The purpose of this paper is to improve the phased array system to be applicable to the inhomogeneity evaluation of welding part of stainless steels. (author)

  1. Development of non-destructive evaluation system using an HTS-SQUID gradiometer for magnetized materials

    Science.gov (United States)

    Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.

    We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.

  2. Nondestructive testing and evaluation of wood : a worldwide research update

    Science.gov (United States)

    Brian K. Brashaw; Voichita Bucur; Ferenc Divos; Raquel Goncalves; Jianxiong Lu; Roger Meder; Roy F. Pellerin; Simon Potter; Robert J Ross; Xiping Wang; Yafang. Yin

    2009-01-01

    The international forest products research community is responding to these driving forces by conducting NDT/NDE research to provide the technologies needed to address these challenges. This article presents a sample of the on-going NDT/NDE research efforts being conducted in several areas of the world.

  3. Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

    International Nuclear Information System (INIS)

    Ho, Duc Duy; Hong, Dong Soo; Kim, Jeong Tae

    2010-01-01

    This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified

  4. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructve testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined. A comprehensive bibliography of current NDT methods for cask evaluation in the USA, Great Britain, Japan and West Germany was compiled for this study

  5. Transuranic and Low-Level Boxed Waste Form Nondestructive Assay Technology Overview and Assessment

    International Nuclear Information System (INIS)

    Becker, G.; Connolly, M.; McIlwain, M.

    1999-01-01

    The Mixed Waste Focus Area (MWFA) identified the need to perform an assessment of the functionality and performance of existing nondestructive assay (NDA) techniques relative to the low-level and transuranic waste inventory packaged in large-volume box-type containers. The primary objectives of this assessment were to: (1) determine the capability of existing boxed waste form NDA technology to comply with applicable waste radiological characterization requirements, (2) determine deficiencies associated with existing boxed waste assay technology implementation strategies, and (3) recommend a path forward for future technology development activities, if required. Based on this assessment, it is recommended that a boxed waste NDA development and demonstration project that expands the existing boxed waste NDA capability to accommodate the indicated deficiency set be implemented. To ensure that technology will be commercially available in a timely fashion, it is recommended this development and demonstration project be directed to the private sector. It is further recommended that the box NDA technology be of an innovative design incorporating sufficient NDA modalities, e.g., passive neutron, gamma, etc., to address the majority of the boxed waste inventory. The overall design should be modular such that subsets of the overall NDA system can be combined in optimal configurations tailored to differing waste types

  6. Visualization of Tooth for Non-Destructive Evaluation from CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Chae, Ok Sam [Kyung Hee University, Seoul (Korea, Republic of)

    2009-06-15

    This paper reports an effort to develop 3D tooth visualization system from CT sequence images as a part of the non-destructive evaluation suitable for the simulation of endodontics, orthodontics and other dental treatments. We focus on the segmentation and visualization for the individual tooth. In dental CT images teeth are touching the adjacent teeth or surrounded by the alveolar bones with similar intensity. We propose an improved level set method with shape prior to separate a tooth from other teeth as well as the alveolar bones. Reconstructed 3D model of individual tooth based on the segmentation results indicates that our technique is a very conducive tool for tooth visualization, evaluation and diagnosis. Some comparative visualization results validate the non-destructive function of our method.

  7. Addition of magnetic markers for non-destructive evaluation of polymer composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Pereira Fulco

    2011-12-01

    Full Text Available Polymer composite pipes are an appealing option as a substitute for conventional steel pipes, particularly due to their inherent corrosion resistance. However, the composite pipes currently used do not allow non-destructive evaluation (NDE using instrumented devices which operate with magnetic sensors. The present work aims at the development of polymer composites with the addition magnetic markers to allow the application non-destructive evaluation techniques which use magnetic sensors. Glass-polyester composite flat, circular plates were fabricated with the addition of ferrite particles (barium ferrite and strontium ferrite and four types of notches were introduced on the plates' surfaces. The influence of these notches on the measured magnetic properties of each material was measured. X-ray diffraction (XRD, X-ray fluorescence (XRF and Brunauer, Emmett, and Teller (BET nitrogen adsorption were used for the characterization of the ferrite particles. Particle dispersion in the polymer matrix was analyzed by scanning electron microscopy (SEM. According to the results, a particular variation in magnetic field was detected over the region surrounding each type of notch. The results suggest that the proposed technique has great potential for damage detection in polymer composites using magnetic sensors and thus constitute a valuable contribution which may ultimately lead to the development of non-destructive evaluation techniques for assessing the structural integrity polymer composite pipes.

  8. Non-destructive Reliability Evaluation of Electronic Device by ESPI

    International Nuclear Information System (INIS)

    Yoon, Sung Un; Kim, Koung Suk; Kang, Ki Soo; Jo, Seon Hyung

    2001-01-01

    This paper propose electronic speckle pattern interferometry(ESPI) for reliability evaluation of electronic device. Especially, vibration problem in a fan of air conditioner, motor of washing machine and etc. is important factor to design the devices. But, it is difficult to apply previous method, accelerometer to the devices with complex geometry. ESPI, non-contact measurement technique applies a commercial fan of air conditioner to vibration analysis. Vibration mode shapes, natural frequency and the range of the frequency are decided and compared with that of FEM analysis. In mechanical deign of new product, ESPI adds weak point of previous method to supply effective design information

  9. Millimeter-wave nondestructive evaluation of pavement conditions

    Science.gov (United States)

    Vines-Cavanau, David; Busuioc, Dan; Birken, Ralf; Wang, Ming

    2012-04-01

    The United States is suffering from an aging civil infrastructure crisis. Key to recovery are rapid inspection technologies like that being investigated by the VOTERS project (Versatile Onboard Traffic Embedded Roaming Sensors), which aims to outfit ordinary road vehicles with compact low-cost hardware that enables them to rapidly assess and report the condition of roadways and bridge decks free of driver interaction. A key piece of hardware, and the focus of this paper, is a 24 GHz millimeter-wave radar system that measures the reflectivity of pavement surfaces. To account for the variability of real-world driving, such as changes in height, angle, speed, and temperature, a sensor fusion approach is used that corrects MWR measurements based on data from four additional sensors. The corrected MWR measurements are expected to be useful for various characterization applications, including: material type; deterioration such as cracks and potholes; and surface coverage conditions such as dry, wet, oil, water, and ice. Success at each of these applications is an important step towards achieving the VOTERS objective, however, this paper focuses on surface coverage, as whatever covers the driving surface will be most apparent to the MWR sensor and if not accounted for could significantly limit the accuracy of other applications. Contributions of the paper include findings from static lab tests, which validate the approach and show the effects of height and angle. Further contributions come from lab and in-field dynamic tests, which show the effects of speed and demonstrate that the MWR approach is accurate under city driving conditions.

  10. Nondestructive damage detection and evaluation technique for seismically damaged structures

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki; Kondoh, Masuo; Ohsumi, Michio

    1999-02-01

    The development of quantitative damage detection and evaluation technique, and damage detection technique for invisible damages of structures are required according to the lessons from the 1995 Hyogo-ken Nanbu earthquake. In this study, two quantitative damage sensing techniques for highway bridge structures are proposed. One method is to measure the change of vibration characteristics of the bridge structure. According to the damage detection test for damaged bridge column by shaking table test, this method can successfully detect the vibration characteristic change caused by damage progress due to increment excitations. The other method is to use self-diagnosis intelligent materials. According to the reinforced concrete beam specimen test, the second method can detect the damage by rupture of intelligent sensors, such as optical fiber or carbon fiber reinforced plastic rod.

  11. Investigation and development of a non-destructive system to evaluate critical properties of asphalt pavements during the compaction process.

    Science.gov (United States)

    2013-10-01

    The purpose of this report is to present findings from a two-stage investigation to develop a non-destructive system to : evaluate critical properties and characteristics of asphalt pavements during the compaction process. The first stage aligned : c...

  12. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    Science.gov (United States)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-05-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ɛ carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes.

  13. Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    Directory of Open Access Journals (Sweden)

    M.S. Rodrigues

    Full Text Available The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF or by rice husk ash (RHA, and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement and Portland cement replacement (10% by mass with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones.

  14. An accurately controllable imitative stress corrosion cracking for electromagnetic nondestructive testing and evaluations

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Uchimoto, Tetsuya; Takagi, Toshiyuki; Hashizume, Hidetoshi

    2012-01-01

    Highlights: ► We propose a method to simulate stress corrosion cracking. ► The method offers nondestructive signals similar to those of actual cracking. ► Visual and eddy current examinations validate the method. - Abstract: This study proposes a simple and cost-effective approach to fabricate an artificial flaw that is identical to stress corrosion cracking especially from the viewpoint of electromagnetic nondestructive evaluations. The key idea of the approach is to embed a partially-bonded region inside a material by bonding together surfaces that have grooves. The region is regarded as an area of uniform non-zero conductivity from an electromagnetic nondestructive point of view, and thus simulates the characteristics of stress corrosion cracking. Since the grooves are introduced using electro-discharge machining, one can control the profile of the imitative stress corrosion cracking accurately. After numerical simulation to evaluate the spatial resolution of conventional eddy current testing, six specimens made of type 316L austenitic stainless steel were fabricated on the basis of the results of the simulations. Visual and eddy current examinations were carried out to demonstrate that the artificial flaws well simulated the characteristics of actual stress corrosion cracking. Subsequent destructive test confirmed that the bonding did not change the depth profiles of the artificial flaw.

  15. Evaluation of corrosion of prestressing steel in concrete using non-destructive techniques

    International Nuclear Information System (INIS)

    Ali, M.G.; Maddocks, A.R.

    2003-01-01

    Use of high strength steel in pre-stressed concrete structures has been in use in Australia for many decades. Highway bridges, among other structures, have extensively used pre-stress-ing and post-tensioning techniques. Although prestressing offers many competitive edges to it's traditional rival reinforced concrete, the consequence of damage to prestressing tendons could be catastrophic. Periodic visual inspections of prestressed concrete bridges throughout the world have demonstrated the growing problem of deterioration of prestressing steel as a result of corrosion. Early detection of damage to prestressing steel therefore is of paramount importance. Unfortunately no reliable and practical non-destructive evaluation technique has been available for assessing the condition of prestressing steel within concrete although a number of techniques appear promising. The following inspection methods have been highlighted in recent literature for their use as non-destructive inspection methods for prestressed concrete structures. In addition to the techniques discussed, a number of destructive, or invasive techniques also exist for determination of the corrosion status of prestressing tendons in prestressed structures. The following non-destructive techniques are discussed in some detail: Radiography; Computed Tomography; Surface Penetrating Radar; Impact Echo; Acoustic Emission Monitoring; Magnetic Field Disturbance Technique; Remnant Magnetism Method; Linear Polarisation Method; Electrical Resistance and Surface Potential Survey. The portability, limitations and use in Australia of these techniques are summarised in a table

  16. Three new nondestructive evaluation tools based on high flux neutron sources

    International Nuclear Information System (INIS)

    Hubbard, C.R.; Raine, D.; Peascoe, R.; Wright, M.

    1997-01-01

    Nondestructive evaluation methods and systems based on specific attributes of neutron interactions with materials are being developed. The special attributes of neutrons are low attenuation in most engineering materials, strong interaction with low Z elements, and epithermal neutron absorption resonances. The three methods under development at ORNL include neutron based tomography and radiography; through thickness, nondestructive texture mapping; and internal, noninvasive temperature measurement. All three techniques require high flux sources such as the High Flux Isotope Reactor, a steady state source, or the Oak Ridge Electron Linear Accelerator, a pulsed neutron source. Neutrons are quite penetrating in most engineering materials and thus can be useful to detect internal flaws and features. Hydrogen atoms, such as in a hydrocarbon fuel, lubricant, or a metal hydride, are relatively opaque to neutron transmission and thus neutron based tomography/radiography is ideal to image their presence. Texture, the nonrandom orientation of crystalline grains within materials, can be mapped nondestructively using neutron diffraction methods. Epithermal neutron resonance absorption is being studied as a noncontacting temperature sensor. This paper highlights the underlying physics of the methods, progress in development, and the potential benefits for science and industry of the three facilities

  17. Virtual reality presentation for nondestructive evaluation of rebar corrosion in concrete based on IBEM

    International Nuclear Information System (INIS)

    Kyung, Je Woon; Leelarkiet, V.; Ohtsu, Masayasu; Yokata, Masaru

    2004-01-01

    In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed.

  18. Fabrication of imitative stress corrosion cracking specimens suitable for electromagnetic nondestructive evaluations using solid state bonding

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Uchimoto, Tetsuya; Takagi, Toshiyuki

    2011-01-01

    This study proposes a method to fabricate an artificial defect that is almost identical to stress corrosion cracking from the viewpoint of electromagnetic nondestructive evaluations. The key idea is to realize a region having electrical resistance embedded inside a conductive materials using solid state bonding. A rough region is introduced into the surface of the materials to be bonded so that the region is partially bonded to realize electrical resistance. Experimental demonstrations are carried out using type 316L austenitic stainless steels. Eddy current tests and subsequent numerical evaluations are conducted to discuss the validity of the proposed method. (author)

  19. Yucca Mountain project container fabrication, closure and non-destructive evaluation development activities

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.

    1989-06-01

    In this presentation, container fabrication, closure, and non-destructive evaluation (NDE) process development activities are described. All of these activities are interrelated, and will contribute to the metal barrier selection activity. The plan is to use a corrosion-resistant material in the form of a cylinder with a wall thickness of ∼1cm (2cm for pure copper.) The materials under consideration include the three austenitic alloys: stainless steel-304L, stainless steel-316L and alloy 825, as well as the three copper alloys: CDA 102, CDA 613, and CDA 715. This document reviews the recommended procedures and processes for fabricating, closing and evaluating each of the candidate materials

  20. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-6, Radiography Inspection.

    Science.gov (United States)

    Pelton, Rick; Espy, John

    This sixth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains radiographic inspection as a means of nondestructively examining components, assemblies, structures, and fabricated piping. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  1. Soil washing technology evaluation

    International Nuclear Information System (INIS)

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis

  2. A review of nondestructive examination technology for polyethylene pipe in nuclear power plant

    Science.gov (United States)

    Zheng, Jinyang; Zhang, Yue; Hou, Dongsheng; Qin, Yinkang; Guo, Weican; Zhang, Chuck; Shi, Jianfeng

    2018-05-01

    Polyethylene (PE) pipe, particularly high-density polyethylene (HDPE) pipe, has been successfully utilized to transport cooling water for both non-safety- and safety-related applications in nuclear power plant (NPP). Though ASME Code Case N755, which is the first code case related to NPP HDPE pipe, requires a thorough nondestructive examination (NDE) of HDPE joints. However, no executable regulations presently exist because of the lack of a feasible NDE technique for HDPE pipe in NPP. This work presents a review of current developments in NDE technology for both HDPE pipe in NPP with a diameter of less than 400 mm and that of a larger size. For the former category, phased array ultrasonic technique is proven effective for inspecting typical defects in HDPE pipe, and is thus used in Chinese national standards GB/T 29460 and GB/T 29461. A defect-recognition technique is developed based on pattern recognition, and a safety assessment principle is summarized from the database of destructive testing. On the other hand, recent research and practical studies reveal that in current ultrasonic-inspection technology, the absence of effective ultrasonic inspection for large size was lack of consideration of the viscoelasticity effect of PE on acoustic wave propagation in current ultrasonic inspection technology. Furthermore, main technical problems were analyzed in the paper to achieve an effective ultrasonic test method in accordance to the safety and efficiency requirements of related regulations and standards. Finally, the development trend and challenges of NDE test technology for HDPE in NPP are discussed.

  3. Microstructure analysis for quantification of Barkhausen noise method and nondestructive evaluation of fracture characteristics

    International Nuclear Information System (INIS)

    Kim, Dong Won; Kwon, Dong Il

    1999-01-01

    Barkhausen noise method as a magnetic nondestructive test has the advantages for evaluating the properties of magnetic material more precisely and high-sensitively compared to other magnetic NDT methods. For a long time Barkhausen noise method was applied to measure the bulk magnetic properties of magnetic materials and recently to evaluate microstructure, stress analysis, fatigue, creep, and fracture characteristics as a NDT method. But so far Barkhausen noise method has been used as evaluating orientation of material properties rather qualitatively. For this reason, many NDT testing methods have seldom been applied to industrial plants and laboratories. In this study we make experiments on the variation of Barkhausen noise as microstructure, and quantify Barkhausen noise(rms voltage) via formula of velocity of magnetic domain walls using coercive force as retarding force of domain wall movement. As a result, we could evaluate the microstructure of magnetic materials and trends of fracture toughness quantitatively by measuring Barkhausen noise, therefore directly evaluate microstructure and fracture toughness by Barkhausen noise method as accurate in-situ nondestructive testing method.

  4. Prospects on the application of HTS SQUID magnetometry to nondestructive evaluation (NDE)

    Science.gov (United States)

    Weinstock, H.

    1993-04-01

    In light of recent advances in the fabrication of low-noise HTS SQUIDs, a review is presented on the use of LTS SQUID magnetometry for nondestructive evaluation (NDE). Examples are given on applications relating to defects in steel, subsurface cracks in aircraft frames, and voids in non-metallic structures. HTS SQUIDs may make a significant difference in the acceptance of these applications because sensing coils will be closer to a sample under test, there will be greater instrument portability and the problem of bringing liquid helium to remote locations will be eliminated.

  5. Enhancing the capabilities of eddy current techniques for non-destructive evaluation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Rao, B.P.C.; Thirunavukkarasu, S.; Sasi, B.; Jayakumar, T.; Baldev Raj

    2010-01-01

    Eddy current non-destructive evaluation (NDE) techniques find many applications during fabrication and in-service inspection of components made of stainless steel. In recent years, concurrent developments in electromagnetic field detection sensors such as giant magneto-resistive (GMR), giant-magneto impedance (GMI) and SQUIDs sensors, computers, microelectronics, and incorporating advanced signal and image processing techniques, have paved the way for enhancing the capabilities of existing eddy current (EC) techniques for examination of austenitic stainless steel (SS) plates, tubes and other geometries and several innovative methodologies have been developed. This paper highlights a few such applications in EC testing to austenitic stainless steel components used in fast reactors. (author)

  6. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    Science.gov (United States)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  7. Coupling photon Monte Carlo simulation and CAD software. Application to X-ray nondestructive evaluation

    International Nuclear Information System (INIS)

    Tabary, J.; Gliere, A.

    2001-01-01

    A Monte Carlo radiation transport simulation program, EGS Nova, and a computer aided design software, BRL-CAD, have been coupled within the framework of Sindbad, a nondestructive evaluation (NDE) simulation system. In its current status, the program is very valuable in a NDE laboratory context, as it helps simulate the images due to the uncollided and scattered photon fluxes in a single NDE software environment, without having to switch to a Monte Carlo code parameters set. Numerical validations show a good agreement with EGS4 computed and published data. As the program's major drawback is the execution time, computational efficiency improvements are foreseen. (orig.)

  8. Fabrication of imitative stress corrosion cracking specimens suitable for electromagnetic nondestructive evaluations using solid state bonding

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Uchimoto, Tetsuya; Takagi, Toshiyuki

    2010-01-01

    This study proposes a method to fabricate artificial defects that is almost identical to stress corrosion cracking from the viewpoint of electromagnetic nondestructive evaluations. The key idea is to realize a region having electrical resistance embedded inside a conductive materials using solid state bonding. A rough region is introduced into the surface of the materials so that the region is partially bonded to realize electrical resistance. The validity of the method is demonstrated using type 316L austenitic stainless steels. Eddy current tests and subsequent destructive tests confirm that signals due to the fabricated specimens are very similar to those due to stress corrosion cracks. (author)

  9. Using the World-Wide Web to Facilitate Communications of Non-Destructive Evaluation

    Science.gov (United States)

    McBurney, Sean

    1995-01-01

    The high reliability required for Aeronautical components is a major reason for extensive Nondestructive Testing and Evaluation. Here at Langley Research Center (LaRC), there are highly trained and certified personal to conduct such testing to prevent hazards from occurring in the workplace and on the research projects for the National Aeronautics and Space Administration (NASA). The purpose of my studies was to develop a communication source to educate others of the services and equipment offered here. This was accomplished by creating documents that are accessible to all in the industry via the World Wide Web.

  10. A DATA FUSION SYSTEM FOR THE NONDESTRUCTIVE EVALUATION OF NON-PIGGABLE PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Shreekanth Mandayam; Robi Polikar; John C. Chen

    2004-04-01

    The objectives of this research project are: (1) To design sensor data fusion algorithms that can synergistically combine defect related information from heterogeneous sensors used in gas pipeline inspection for reliably and accurately predicting the condition of the pipe-wall. (2) To develop efficient data management techniques for signals obtained during multisensor interrogation of a gas pipeline. During this reporting period, Rowan University designed, developed and exercised multisensor data fusion algorithms for identifying defect related information present in magnetic flux leakage, ultrasonic testing and thermal imaging nondestructive evaluation signatures of a test-specimen suite representative of benign and anomalous indications in gas transmission pipelines.

  11. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    Science.gov (United States)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  12. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage

    Science.gov (United States)

    Mansour, Joseph M.; Lee, Zhenghong; Welter, Jean F.

    2016-01-01

    In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue. PMID:26817458

  13. Feasibility on fiber orientation detection on unidirectional CFRP composite laminates using nondestructive evaluation techniques

    Science.gov (United States)

    Yang, In-Young; Kim, Ji-Hoon; Cha, Cheon-Seok; Lee, Kil-Sung; Hsu, David K.; Im, Kwang-Hee

    2007-07-01

    In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. CFRP composites were manufactured from uni-direction prepreg sheet in this paper. It is important to assess fiber orientation, material properties and part defect in order to ensure product quality and structural integrity of CFRP because strength and stiffness of composites depend on fiber orientation. It is desirable to perform nondestructive evaluation which is very beneficial. An new method for nondestructively determining the fiber orientation in a composite laminate is presented. A one-sided pitch-catch setup was used in the detection and evaluation of flaws and material anomalies in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch-catch mode on the surface of the composites. The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, ultrasonic waves were extensively characterized in the CFRP composite laminates both normal to fiber and along to fiber with using a one-sided direction of Rayleigh wave transducers. Also, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and a conventional scanner was used in an immersion tank for extracting fiber orientation information from the ultrasonic reflection in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.

  14. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  15. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    International Nuclear Information System (INIS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-01-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ε carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes. - Highlights: • D2 steel parts were tempered at 200-650 °C to produce various microstructures. • Precipitation of ε and Fe 3 C carbides and spheroidization of carbides were detected. • Retained austenite decomposition and secondary hardening effect were determined. • Variations of electrical resistivity (ρ) and magnetic saturation (Bs) were studied. • Combined effects of ρ and Bs on the EC outputs were evaluated

  16. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Kahrobaee, Saeed, E-mail: saeed.kahrobaee@yahoo.com; Kashefi, Mehrdad, E-mail: m-kashefi@um.ac.ir

    2015-05-15

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ε carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes. - Highlights: • D2 steel parts were tempered at 200-650 °C to produce various microstructures. • Precipitation of ε and Fe{sub 3}C carbides and spheroidization of carbides were detected. • Retained austenite decomposition and secondary hardening effect were determined. • Variations of electrical resistivity (ρ) and magnetic saturation (Bs) were studied. • Combined effects of ρ and Bs on the EC outputs were evaluated.

  17. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Wang, Ning; Chen, Xuemin; Song, Gangbing

    2018-03-04

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation.

  18. Non-destructive evaluation of thermal aging embrittlement of duplex stainless steels

    International Nuclear Information System (INIS)

    Yi, Y.S.; Tomobe, T.; Watanabe, Y.; Shoji, T.

    1993-01-01

    The non-destructive evaluation procedure for detecting thermal aging embrittlement of cast duplex stainless steels has been investigated. As a novel measurement technique for the thermal aging embrittlement, an electrochemical method was used and anodic polarization behaviors were measured on new, service exposed, and laboratory aged materials and then were compared with the results of the mechanical tests and microstructural changes. During the polarization experiments performed in potassium hydroxide solution (KOH), M 23 C 6 carbides on phase boundary were preferentially dissolved, which was comfirmed by the SEM after polarization measurements. The preferential dissolution of M 23 C 6 carbides were obtained. Also, the non-destructive measurement and evaluation method of spinodal decomposition, which has been known as the primary mechanism of embrittlement inferrite phase, was reviewed. When the materials, where spinodal decomposition occurred, were polarized in an acetic acid solution (CH 3 COOH), larger critical anodic current densities were observed than those observed on new materials, and these results were consistent with the result of the microhardness measurement. Concerning these polarization results, a critical electric charge, which was required for stable passive films in passive metals, was defined and the relationship between the microstructural changes and this charge amount was reviewed under various polarization conditions in order to verify the polarization mechanism of the spinodally decomposed ferrite phase

  19. Application of optical interferometric techniques for non-destructive evaluation of novel "green" composite materials

    Science.gov (United States)

    Pagliarulo, Vito; Russo, Pietro; Bianco, Vittorio; Ferraro, Pietro; Simeoli, Giorgio; Cimino, Francesca; Ruggiero, Berardo

    2018-04-01

    Nowadays the use of advanced composite materials in aeronautics, both civil and military, in automotive and in sport applications, citing some, is well established. The characteristics of composite materials in terms of weight, fatigue resistance and corrosion resistance make them competitive with respect to conventional ones. On the other side, the fabrication process of the most employed composites reinforced by carbon fibers or glass fibers, needs of complex steps that not always are environmental complaisant. Moreover, such fibers are not themselves "green". For these reasons, in the last decades, the use of natural reinforcing fibers has gained an increasing attention allowing the development of new materials with the same advantages of composite systems but respecting the environment. Furthermore, such materials for their structural complexity are not always compatible with the use of standard non-destructive evaluation as the ultrasounds methods. In this work the efficiency of the employment of optical interferometric techniques as nondestructive evaluation methods in full field modality is proved on novel "green" composite materials. In particular, Electronic Speckle Pattern Interferometry has been tested on different kinds of specimens after flexural tests.

  20. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    Science.gov (United States)

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  1. Non-destructive evaluation of material degradation in RPV steel by magnetic methods

    International Nuclear Information System (INIS)

    Takahashi, S.; Kikuchi, H.; Kamada, Y.; Ara, K.; Zhang, L.; Liu, T.

    2004-01-01

    The minor hysteresis loops are measured with increasing magnetic field amplitude, H a , step by step and analyzed in connection with the lattice defects such as dislocations in deformed and neutron irradiated A533B steels. We have defined several new magnetic parameters in the minor loops: they are a pseudo coercive force H c *, a pseudo remanence B R *, a magnetic susceptibility at pseudo coercive force χ H *, pseudo hysteresis loss W f *, pseudo remanence work W r *. H c * is the magnetic field where the magnetization becomes zero in the minor loop. Six coefficients sensitive to lattice defects are obtained by the pseudo magnetic properties and they are independent of H a as well as the magnetic field. These coefficients are effective parameters for nondestructive evaluation of degradation before the initiation of cracking. The minor loops have several advantages for the nondestructive evaluation compared with the major loop. The coefficients have much information about lattice defects and the high accuracy. The measurement is available for low magnetic field of 20 Oe and the H a step is not necessarily fine for the detailed information because of the similarity. (orig.)

  2. Nondestructive analysis and development

    Science.gov (United States)

    Moslehy, Faissal A.

    1993-01-01

    This final report summarizes the achievements of project #4 of the NASA/UCF Cooperative Agreement from January 1990 to December 1992. The objectives of this project are to review NASA's NDE program at Kennedy Space Center (KSC) and recommend means for enhancing the present testing capabilities through the use of improved or new technologies. During the period of the project, extensive development of a reliable nondestructive, non-contact vibration technique to determine and quantify the bond condition of the thermal protection system (TPS) tiles of the Space Shuttle Orbiter was undertaken. Experimental modal analysis (EMA) is used as a non-destructive technique for the evaluation of Space Shuttle thermal protection system (TPS) tile bond integrity. Finite element (FE) models for tile systems were developed and were used to generate their vibration characteristics (i.e. natural frequencies and mode shapes). Various TPS tile assembly configurations as well as different bond conditions were analyzed. Results of finite element analyses demonstrated a drop in natural frequencies and a change in mode shapes which correlate with both size and location of disbond. Results of experimental testing of tile panels correlated with FE results and demonstrated the feasibility of EMA as a viable technique for tile bond verification. Finally, testing performed on the Space Shuttle Columbia using a laser doppler velocimeter demonstrated the application of EMA, when combined with FE modeling, as a non-contact, non-destructive bond evaluation technique.

  3. Nondestructive evaluation of wall thinning occurred under reinforced plate by MFL method

    International Nuclear Information System (INIS)

    Kikuchi, Hiroaki; Sato, Kaito; Shimizu, Isamu

    2013-01-01

    Basic study on applying magnetic flux leakage (MFL) method using ac excitation to a nondestructive evaluation of wall thinning occurred under reinforcing plates in nuclear power plants were performed. Frequently, MFL method by means of dc field for exciting specimens is adopted, and only intensity of magnetic flux density is evaluated. On the other hand, MFL with alternating current enable us to utilize not only amplitude of magnetic flux density but also phase difference, which contributes to evaluation with higher accuracy. Here, specimens with slit and pipe with imitated wall thinning are prepared and magnetized using magnetic yoke with ac field, and then the leakage magnetic flux density and the phase difference on the specimen surface are investigated. Additionally, specimens imitated wall thinning occurred under reinforcing plates were investigated by MFL with ac excitation. (author)

  4. Nondestructive evaluation of ceramic and metal matrix composites for NASA's HITEMP and enabling propulsion materials programs

    Science.gov (United States)

    Generazio, Edward R.

    1992-01-01

    In a preliminary study, ultrasonic, x-ray opaque, and fluorescent dye penetrants techniques were used to evaluate and characterize ceramic and metal matrix composites. Techniques are highlighted for identifying porosity, fiber alignment, fiber uniformity, matrix cracks, fiber fractures, unbonds or disbonds between laminae, and fiber-to-matrix bond variations. The nondestructive evaluations (NDE) were performed during processing and after thermomechanical testing. Specific examples are given for Si3N4/SiC (SCS-6 fiber), FeCrAlY/Al2O3 fibers, Ti-15-3/SiC (SCS-6 fiber) materials, and Si3N4/SiC (SCS-6 fiber) actively cooled panel components. Results of this study indicate that the choice of the NDE tools to be used can be optimized to yield a faithful and accurate evaluation of advanced composites.

  5. Nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung, E-mail: leejink@deu.ac.kr [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Bae, Dong Su [Department of Advanced Materials Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Sang Pill; Hwang, Sung Guk [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-11-01

    Highlights: • We have studied on the nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel. An ultrasonic test (UT) is an useful method to evaluate the mechanical properties of material. By measuring the velocity and the attenuation of ultrasonic wave propagating the hydrogen charged stainless steel, the relation of ultrasonic wave and mechanical properties of hydrogen charged 316L stainless steel was discussed. However, in order to evaluate the dynamic behavior of materials, an acoustic emission (AE) technique was applied to investigate the corrosion characteristics of hydrogen charged specimen. Acoustic emission is one of elastic waves caused by dislocation, cracks initiation and propagation within material from loading outside. The waveform of the acoustic emission is different depending on the damage mechanism of material. Lots of AE parameters such as energy, duration time, event and amplitude were used to analyze the dynamic behavior of the hydrogen charged specimen. • A conventional 316L stainless steel was used in this study, and electrochemical treat system for hydrogen charging of the specimen. ASTM (G142) type tensile specimens (diameter 6.0 mm, gage length 28.6 mm) were prepared, and sulfuric acid(H{sub 2}SO{sub 4}) and arsenic trioxide(As{sub 2}O{sub 3}) were used as the electrolyte, and potentiostat(HA 151) supplied the current to platinum wire and specimen. • Tensile strength and attenuation coefficient has a relation to some extent. Therefore, we could estimate the tensile strength and the hydrogen charging time by measuring the attenuation coefficient using ultrasonic wave nondestructively. • Acoustic emission technique was useful to evaluate the dynamic damage because AE parameters of AE event, average energy and average frequency showed various change by external loading at the specimens with and without hydrogen. - Abstract: Caused corrosion by hydrogen on stainless steel using

  6. Post-harvest Quality Evaluation of Grapes using Non-destructive Electronic Nose

    Directory of Open Access Journals (Sweden)

    RAJIN S. M. Ataul Karim

    2015-10-01

    Full Text Available Over the past decades, electronic nose has opened a variety of possibilities and is becoming one of the most important non-destructive odour inspection technologies in the food industry. The objective of this study is to determine the quality degradation of the fruit by monitoring the change in the volatile compound while kept in storage using a lab manufactured electronic nose. Here, grapes are chosen as the fruit sample for experiment. Principal component analysis (PCA is used to determine the ability of the electronic nose to distinguish the different quality of the fruit stored over an interval of time. The result shows that using PCA analysis, the electronic nose is able to identify a clear distinction between the aromas of grapes stored for different time intervals.

  7. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  8. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-07-01

    Full Text Available This paper proposes the study and implementation of a sensor with a metamaterial (MM lens in electromagnetic nondestructive evaluation (eNDE. Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

  9. An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials.

    Science.gov (United States)

    Savin, Adriana; Steigmann, Rozina; Bruma, Alina; Šturm, Roman

    2015-07-03

    This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

  10. Yucca mountain container fabrication, closure and non-destructive evaluation development activities

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.

    1990-01-01

    Container fabrication, closure, and non-destructive evaluation process development activities are described. The design parameters for a tuff environment are: no significant hydrostatic or lithostatic loading of the container; very small water flux; benign water, an oxidizing, dilute sodium bicarbonate solution of neutral pH; temperatures reaching 250 C over the first 50 to 100 years, then falling to about 97 C over the remainder of the 300-year container period. The materials under consideration are three austenitic alloys: AISI 304L, AISI 316L, and alloy 825; as well as three copper alloys: CDA 102, CDA 613, and CDA 715. Targets are controlled, uniform microstructures for the base metal, the weld and the heat affected zones of the weld; controlled microchemistry; low residual stresses; small welds and heat-affected zones; and reliable methods of flaw detection by surface and volumetric activities. The recommended procedures and processes for fabricating, closing and evaluating each of the candidate materials are reviewed

  11. Nondestructive/in-situ evaluation of the tensile properties in industrial facilities using indentation system

    International Nuclear Information System (INIS)

    Jang, Jae Il; Choi, Yeol; Son, Dong Il; Kwon, Dong Il

    2001-01-01

    Exact reliability evaluation and lifetime prediction through the in-field diagnosis of materials properties is needed for safe usage of degraded industrial structures. But, conventional standard testing methods having destructive procedures are not applicable to in-field assessment of mechanical property. Therefore, an advanced indentation technique was proposed for simple and non-destructive testing of in-field structures and for selected testing of local range such as heat affected zone and weldment. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. First of all, flow properties such as yield strength, tensile strength and work hardening index can be evaluated through the analysis of the deformation behavior beneath the spherical indenter. Additionally, case studies of advanced indentation techniques are introduced.

  12. Review of the status of nondestructive measurement techniques to quantify material property degradation due to aging and planning for further evaluation

    International Nuclear Information System (INIS)

    Doctor, S.R.; Boyd, D.M.; Bruemmer, S.M.; Green, E.R.; Schuster, G.J.; Simonen, E.P.

    1989-01-01

    The materials used in nuclear reactors are inspected periodically during the service life of the power plant to detect degradation that might occur. These inspections follow the rules specified in Section XI of the ASME Boiler and Pressure Vessel Code. These inspections are designed to detect service-induced failure mechanisms. This program is designed not to look at the detection of defects but the making of nondestructive measurements to quantify the material properties that a defect may reside in or the incipient condition(s) that may initiate a defect. This program is intended to provide an assessment of the technologies that are available to quantify with nondestructive measurements material properties or material property changes related to degradation due to aging of structural components in light water reactors. In addition, a program plan will be developed that describes the work necessary to create adequate engineering data bases for demonstrating and validating prototypic systems for making these measurements. The main thrust this year has been an extensive review of literature and an assessment of the technology. The second major activity was the planning of a workshop to bring together 30 leading experts in materials and nondestructive evaluation to discuss the state-of-the-art and to address where future work should go

  13. Evaluating New Technology.

    Science.gov (United States)

    Carniol, Paul J; Heffelfinger, Ryan N; Grunebaum, Lisa D

    2018-05-01

    There are multiple complex issues to consider when evaluating any new technology. First evaluate the efficacy of the device. Then considering your patient population decide whether this technology brings an added benefit to your patients. If it meets these 2 criteria, then proceed to the financial analysis of acquiring this technology. The complete financial analysis has several important components that include but are not limited to cost, value, alternatives, return on investment, and associated marketing expense. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS

    International Nuclear Information System (INIS)

    Yeheskel, O.

    2008-01-01

    The elastic moduli of γ-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a tool for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals

  15. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  16. Robotic 3D SQUID imaging system for practical nondestructive evaluation applications

    International Nuclear Information System (INIS)

    Isawa, K.; Nakayama, S.; Ikeda, M.; Takagi, S.; Tosaka, S.; Kasai, N.

    2005-01-01

    A robotic three-dimensional (3D) scanning superconducting quantum interference device (SQUID) imaging system was developed for practical nondestructive evaluation (NDE) applications. The major feature of this SQUID-NDE system is that the SQUID sensor itself scans in 3D by traveling over the surface of an object during testing without the need for magnetic shielding. This imaging system consists of (i) DC-SQUID gradiometer for effective movement of the sensor, (ii) SQUID sensor manipulator utilizing an articulated-type robot used in industry, (iii) laser charge-coupled-device (CCD) displacement sensor to measure the 3D coordinates of points on the surface of the object, and (iv) computer-aided numerical interpolation scheme for 3D surface reconstruction of the object. The applicability of this system for NDE was demonstrated by successfully detecting artificial damage of cylindrical-shaped steel tubes

  17. Evaluation of High-Speed Railway Bridges Based on a Nondestructive Monitoring System

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2016-01-01

    Full Text Available Recently, trains’ velocities in Korea increased more than the speed used in the design of some bridges. Accordingly, this paper demonstrates the evaluation of a railway bridge due to high-speed trains’ movement. A nondestructive monitoring system is used to assess the bridge performance under train speeds of 290, 360, 400 and 406 km/h. This system is comprised of a wireless short-term acceleration system and strain monitoring sensors attached to the bridge girder. The results of the analytical methods in time and frequency domains are presented. The following conclusions are obtained: the cross-correlation models for accelerations and strain measurements are effective to predict the performance of the bridge; the static behavior is increased with train speed developments; and the vibration, torsion, fatigue and frequency contents analyses of the bridge show that the bridge is safe under applied trains’ speeds.

  18. Experimental program for development and evaluation of nondestructive assay techniques for plutonium holdup

    International Nuclear Information System (INIS)

    Brumbach, S.B.

    1977-05-01

    An outline is presented for an experimental program to develop and evaluate nondestructive assay techniques applicable to holdup measurement in plutonium-containing fuel fabrication facilities. The current state-of-the-art in holdup measurements is reviewed. Various aspects of the fuel fabrication process and the fabrication facility are considered for their potential impact on holdup measurements. The measurement techniques considered are those using gamma-ray counting, neutron counting, and temperature measurement. The advantages and disadvantages of each technique are discussed. Potential difficulties in applying the techniques to holdup measurement are identified. Experiments are proposed to determine the effects of such problems as variation in sample thickness, in sample distribution, and in background radiation. These experiments are also directed toward identification of techniques most appropriate to various applications. Also proposed are experiments to quantify the uncertainties expected for each measurement

  19. An Assessment of Nondestructive Evaluation Capability for Complex Additive Manufacturing Aerospace Components

    Science.gov (United States)

    Walker, James; Beshears, Ron; Lambert, Dennis; Tilson, William

    2016-01-01

    The primary focus of this work is to investigate some of the fundamental relationships between processing, mechanical testing, materials characterization, and NDE for additively manufactured (AM) components using the powder bed fusion direct melt laser sintered process. The goal is to understand the criticality of defects unique to the AM process and then how conventional nondestructive evaluation methods as well as some of the more non-traditional methods such as computed tomography, are effected by the AM material. Specific defects including cracking, porosity and partially/unfused powder will be addressed. Besides line-of-site NDE, as appropriate these inspection capabilities will be put into the context of complex AM geometries where hidden features obscure, or inhibit traditional NDE methods.

  20. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-06-01

    Full Text Available Terahertz (THz time-domain spectroscopy (TDS imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  1. Nondestructive Evaluation of the Friction Weld Process on 2195/2219 Grade Aluminum

    Science.gov (United States)

    Suits, Michael W.; Clark, Linda S.; Cox, Dwight E.

    1999-01-01

    In 1996, NASA's Marshall Space Flight Center began an ambitious program designed to find alternative methods of repairing conventional TIG (Tungsten Inert Gas) welds and VPPA (Variable Polarity Plasma Arc) welds on the Space Shuttle External Tank without producing additional heat-related anomalies or conditions. Therefore, a relatively new method, invented by The Welding Institute (TWI) in Cambridge, England, called Friction Stir Welding (FSW), was investigated for use in this application, as well as being used potentially as an initial weld process. As with the conventional repair welding processes, nondestructive evaluation (NDE) plays a crucial role in the verification of these repairs. Since it was feared that conventional NDE might have trouble with this type of weld structure (due to shape of nugget, grain structure, etc.) it was imperative that a complete study be performed to address the adequacy of the NDE process. This paper summarizes that process.

  2. The Evolution of Nondestructive Evaluation Methods for the Space Shuttle External Tank Thermal Protection System

    Science.gov (United States)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Three nondestructive evaluation methods are being developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Shearography is being developed to identify shallow delaminations, shallow voids and crush damage in the foam while terahertz imaging and backscatter radiography are being developed to identify voids and cracks in thick foam regions. The basic theory of operation along with factors affecting the results of these methods will be described. Also, the evolution of these methods from lab tools to implementation on the ET will be discussed. Results from both test panels and flight tank inspections will be provided to show the range in defect sizes and types that can be readily detected.

  3. Review of progress in quantitative nondestructive evaluation. Volume 8A and Volume 8B

    International Nuclear Information System (INIS)

    Thompson, D.O.; Chimenti, D.E.

    1989-01-01

    Volume 8 contains the edited papers presented at the 1988 Review of Progress in Quantitative Nondestructive Evaluation meeting. The 288 papers discuss such topics as fundamental techniques as acoustic testing, eddy current testing, and x-ray radiography; advanced techniques using x-ray computed tomography and laser ultrasonics; interpretive signal and image processing using expert systems and adaptive analysis; NDE probes and sensors and NDE systems and instrumentation; materials process control and inspection reliability including human factors. Materials discussed range from electronic circuit materials, coatings, adhesive bonds, smart structures, composite materials, welded joints, ferrous materials, and steels and alloys. Stress, texture, structural and fracture properties of materials are characterized using various NDE techniques. Applications to reactor, aircraft, and space vehicle components are investigated

  4. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for ultrasonic test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice facilitates the interoperability of ultrasonic imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E 2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E 2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, transfer and archival storage. The goal of Practice E 2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E 2339 provides a data dictionary and set of information modules that are applicable to all NDE modalities. This practice supplements Practice E 2339 by providing information object definitions, information ...

  5. Standard practice for digital imaging and communication nondestructive evaluation (DICONDE) for computed radiography (CR) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of computed radiography (CR) imaging and data acquisition equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This practice is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information objec...

  6. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    Science.gov (United States)

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  7. Nondestructive evaluation of free acid content in apples using near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Sohn, M.R.; Cho, R.K.

    1998-01-01

    In non-destructive evaluation of free acid content in apples by near- infrared spectroscopy(NIRS), browning and heat treatment of squeezed apple juice affected to the accuracy but titratable alkali concentration did not. The free acid content in apples after harvest was able to determine using different apples in harvest time for calibration making. The result of MLR, multiple correlation coefficient(R) was 0.77 and standard error of prediction(SEP) was 0.03%. The free acid content in apples during storage was able to determine using calibration equation established with stored apples, R was 0.90 and SEP was ca. 0.04%. The prediction accuracy by NIR was not sufficient for use of quantitative analysis of free acid content in apple, but classification of low and high level in acid content was supposed to be applicable

  8. Nondestructive evaluation of the preservation state of stone columns in the Hospital Real of Granada

    Science.gov (United States)

    Moreno de Jong van Coevorden, C.; Cobos Sánchez, C.; Rubio Bretones, A.; Fernández Pantoja, M.; García, Salvador G.; Gómez Martín, R.

    2012-12-01

    This paper describes the results of the employment of two nondestructive evaluation methods for the diagnostic of the preservation state of stone elements. The first method is based on ultrasonic (US) pulses while the second method uses short electromagnetic pulses. Specifically, these methods were applied to some columns, some of them previously restored. These columns are part of the architectonic heritage of the University of Granada, in particular they are located at the patio de la capilla del Hospital Real of Granada. The objective of this work was the application of systems based on US pulses (in transmission mode) and the ground-penetrating radar systems (electromagnetic tomography) in the diagnosis and detection of possible faults in the interior of columns.

  9. Thermographic Non-Destructive Evaluation for Natural Fiber-Reinforced Composite Laminates

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2018-02-01

    Full Text Available Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was given.

  10. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-5, Fundamentals of Radiography.

    Science.gov (United States)

    Groseclose, Richard

    This fifth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains the radiographic process, from radiation source selection to equipment and specimen selection and arrangement, and film processing. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  11. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-3, Hydrostatic Tests.

    Science.gov (United States)

    Pelton, Rick; Espy, John

    This third in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the principles and practices associated with hydrostatic testing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student,…

  12. Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Jin-Wook

    2015-01-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used as a non-destructive inspection method for detecting voids in integrated circuit (IC) packages. Transmission and reflection modes, with an angle of incidence of 30°, were used to detect voids in IC packages. The locations of the detected voids in the IC packages could be calculated by analyzing THz waveforms. Finally, voids that are positioned at the different interfaces in the IC package samples could be successfully detected and imaged. Therefore, this THz-TDS imaging technique is expected to be a promising technique for non-destructive evaluation of IC packages. (paper)

  13. Research on Non-Destructive Testing Technology in Conservation Repair Project of Ancestral Temple in Mukden Palace

    Science.gov (United States)

    Yang, J.; Fu, M.

    2017-08-01

    Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  14. RESEARCH ON NON-DESTRUCTIVE TESTING TECHNOLOGY IN CONSERVATION REPAIR PROJECT OF ANCESTRAL TEMPLE IN MUKDEN PALACE

    Directory of Open Access Journals (Sweden)

    J. Yang

    2017-08-01

    Full Text Available Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  15. Nondestructive Testing

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Harold [Argonne National Laboratory

    1969-01-01

    A nondestructive test is an examination of an object in any manner which will not impair the future usefulness of the object. This booklet discusses a few basic methods of nondestructive testing, and some of their characteristics. In addition, it discusses possible future methods for nondestructive testing by taking a quick look at some of the methods now under study.

  16. Improving the Repair Planning System for Mining Equipment on the Basis of Non-destructive Evaluation Data

    Science.gov (United States)

    Drygin, Michael; Kuryshkin, Nicholas

    2017-11-01

    The article tells about forming a new concept of scheduled preventive repair system of the equipment at coal mining enterprises, based on the use of modem non-destructive evaluation methods. The approach to the solution for this task is based on the system-oriented analysis of the regulatory documentation, non-destructive evaluation methods and means, experimental studies with compilation of statistics and subsequent grapho-analytical analysis. The main result of the work is a feasible explanation of using non-destructive evaluation methods within the current scheduled preventive repair system, their high efficiency and the potential of gradual transition to condition-based maintenance. In practice wide use of nondestructive evaluation means w;ill allow to reduce significantly the number of equipment failures and to repair only the nodes in pre-accident condition. Considering the import phase-out policy, the solution for this task will allow to adapt the SPR system to Russian market economy conditions and give the opportunity of commercial move by reducing the expenses for maintenance of Russian-made and imported equipment.

  17. Nondestructive Evaluation of Advanced Materials with X-ray Phase Mapping

    Science.gov (United States)

    Hu, Zhengwei

    2005-01-01

    X-ray radiation has been widely used for imaging applications since Rontgen first discovered X-rays over a century ago. Its large penetration depth makes it ideal for the nondestructive visualization of the internal structure and/or defects of materials unobtainable otherwise. Currently used nondestructive evaluation (NDE) tools, X-ray radiography and tomography, are absorption-based, and work well in heavy-element materials where density or composition variations due to internal structure or defects are high enough to produce appreciable absorption contrast. However, in many cases where materials are light-weight and/or composites that have similar mass absorption coefficients, the conventional absorption-based X-ray methods for NDE become less useful. Indeed, the light-weight and ultra-high-strength requirements for the most advanced materials used or developed for current flight mission and future space exploration pose a great challenge to the standard NDE tools in that the absorption contrast arising from the internal structure of these materials is often too weak to be resolved. In this presentation, a solution to the problem, the use of phase information of X-rays for phase contrast X-ray imaging, will be discussed, along with a comparison between the absorption-based and phase-contrast imaging methods. Latest results on phase contrast X-ray imaging of lightweight Space Shuttle foam in 2D and 3D will be presented, demonstrating new opportunities to solve the challenging issues encountered in advanced materials development and processing.

  18. Infrared thermography non-destructive evaluation of lithium-ion battery

    Science.gov (United States)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  19. A Training Technology Evaluation Tool

    National Research Council Canada - National Science Library

    Livingston, Stephen C; Dyer, Jean L; Swinson, Diadra

    2005-01-01

    A Training Technology Evaluation Tool was developed to help procurers and developers of training technologies to make informed decisions and to improve the overall effectiveness of training technologies...

  20. Performance and non-destructive evaluation methods of airborne radome and stealth structures

    Science.gov (United States)

    Panwar, Ravi; Ryul Lee, Jung

    2018-06-01

    In the past few years, great effort has been devoted to the fabrication of highly efficient, broadband radome and stealth (R&S) structures for distinct control, guidance, surveillance and communication applications for airborne platforms. The evaluation of non-planar aircraft R&S structures in terms of their electromagnetic performance and structural damage is still a very challenging task. In this article, distinct measurement techniques are discussed for the electromagnetic performance and non-destructive evaluation (NDE) of R&S structures. This paper deals with an overview of the transmission line method and free space measurement based microwave measurement techniques for the electromagnetic performance evaluation of R&S structures. In addition, various conventional as well as advanced methods, such as millimetre and terahertz wave based imaging techniques with great potential for NDE of load bearing R&S structures, are also discussed in detail. A glimpse of in situ NDE techniques with corresponding experimental setup for R&S structures is also presented. The basic concepts, measurement ranges and their instrumentation, measurement method of different R&S structures and some miscellaneous topics are discussed in detail. Some of the challenges and issues pertaining to the measurement of curved R&S structures are also presented. This study also lists various mathematical models and analytical techniques for the electromagnetic performance evaluation and NDE of R&S structures. The research directions described in this study may be of interest to the scientific community in the aerospace sectors.

  1. Contributions to ultrasounds applications in non-destructive tests on materials used in nuclear technologies

    International Nuclear Information System (INIS)

    Stanica, V.

    1979-01-01

    The problems expounded in the paper, besides servjng the practical purpose generated by the need to perform quality tests on fuel element compounds by means of the ultrasounds method, are also interesting to ultrasounds non-destructive tests applied in all industry branches as they assert the necessity of passing from manual to automation tests carried out by installations which should record the signals caused by failures, both to increase the productivjty and especially to transform it into an objective, effective test. (author)

  2. Ultrasonic C-scan Technique for Nondestructive Evaluation of Spot Weld Quality

    International Nuclear Information System (INIS)

    Park, Ik Gun

    1994-01-01

    This paper discusses the feasibility of ultrasonic C-scan technique for nondestructive evaluation of spot weld quality. Ultrasonic evaluation for spot weld quality was performed by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget, preliminary infinitesimal gap experiment by newton ring is tried in order to set up the optimum ultrasonic test condition. Ultrasonic image data obtained were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be measured with the accuracy of 1.0mm, and voids included in nugget can be detected to 10μm extent with simplicity and accuracy. Finally, it was found that it is necessary to make a profound study of definite discrimination of corona bond from nugget and the approach of quantitative evaluation of nugget diameter by utilizing the various image processing techniques

  3. Non-destructive evaluation of containment walls in nuclear power plants

    Science.gov (United States)

    Garnier, V.; Payan, C.; Lott, M.; Ranaivomanana, N.; Balayssac, J. P.; Verdier, J.; Larose, E.; Zhang, Y.; Saliba, J.; Boniface, A.; Sbartai, Z. M.; Piwakowski, B.; Ciccarone, C.; Hafid, H.; Henault, J. M.; Buffet, F. Ouvrier

    2017-02-01

    Two functions are regularly tested on containment walls in order to anticipate a possible accident. The first is mechanical to resist a possible internal over-pressure and the second is to prevent leakage. The AAPR reference accident is the rupture of a pipe in the primary circuit of a nuclear plant. In this case, the pressure and temperature can reach 5 bar and 180°C in 20 seconds. The national project `Non-destructive testing of the containment structures of nuclear plants' aims at studying the non-destructive techniques capable to evaluate the concrete properties and its damaging and cracks. This 4-year-project is segmented into two parts. The first consists in developing and selecting the most relevant NDEs in the laboratory to reach these goals. These evaluations are developed in conditions representing the real conditions of the stresses generated during ten-yearly visits of the plants or those related to an accident. The second part consists in applying the selected techniques to two containment structures under pressure. The first structure is proposed by ONERA and the second is a mockup of a containment wall on a 1/3 scale made by EDF within the VeRCoRs project. Communication is focused on the part of the project that concerns the damage and crack process characterization by means of NDT. The tests are done in 3 or 4 points bending in order to study the cracks' generation, their propagation, as well as their opening and closing. The main ultrasonic techniques developed concern linear or non-linear acoustic: acoustic emission [1], Locadiff [2], energy diffusion, surface wave's velocity and attenuation, DAET [3]. The recorded data contribute to providing the mapping of the investigated parameters, either in volume, in surface or globally. Digital image correlation is an important additional asset to validate the coherence of the data. The spatial normalization of the data in the specimen space allows proposing algorithms on the combination of the

  4. Evaluation of physical dimension changes as nondestructive measurements for monitoring rigor mortis development in broiler muscles.

    Science.gov (United States)

    Cavitt, L C; Sams, A R

    2003-07-01

    Studies were conducted to develop a non-destructive method for monitoring the rate of rigor mortis development in poultry and to evaluate the effectiveness of electrical stimulation (ES). In the first study, 36 male broilers in each of two trials were processed at 7 wk of age. After being bled, half of the birds received electrical stimulation (400 to 450 V, 400 to 450 mA, for seven pulses of 2 s on and 1 s off), and the other half were designated as controls. At 0.25 and 1.5 h postmortem (PM), carcasses were evaluated for the angles of the shoulder, elbow, and wing tip and the distance between the elbows. Breast fillets were harvested at 1.5 h PM (after chilling) from all carcasses. Fillet samples were excised and frozen for later measurement of pH and R-value, and the remainder of each fillet was held on ice until 24 h postmortem. Shear value and pH means were significantly lower, but R-value means were higher (P rigor mortis by ES. The physical dimensions of the shoulder and elbow changed (P rigor mortis development and with ES. These results indicate that physical measurements of the wings maybe useful as a nondestructive indicator of rigor development and for monitoring the effectiveness of ES. In the second study, 60 male broilers in each of two trials were processed at 7 wk of age. At 0.25, 1.5, 3.0, and 6.0 h PM, carcasses were evaluated for the distance between the elbows. At each time point, breast fillets were harvested from each carcass. Fillet samples were excised and frozen for later measurement of pH and sacromere length, whereas the remainder of each fillet was held on ice until 24 h PM. Shear value and pH means (P rigor mortis development. Elbow distance decreased (P rigor development and was correlated (P rigor mortis development in broiler carcasses.

  5. Development of PZT-excited stroboscopic shearography for full-field nondestructive evaluation.

    Science.gov (United States)

    Asemani, Hamidreza; Park, Jinwoo; Lee, Jung-Ryul; Soltani, Nasser

    2017-05-01

    Nondestructive evaluation using shearography requires a way to stress the inspection target. This technique is able to directly measure the displacement gradient distribution on the object surface. Shearography visualizes the internal structural damages as the anomalous pattern in the shearograpic fringe pattern. A piezoelectric (PZT) excitation system is able to generate loadings in the vibrational, acoustic, and ultrasonic regimes. In this paper, we propose a PZT-excited stroboscopic shearography. The PZT excitation could generate vibrational loading, a stationary wavefield, and a nonstationary propagation wave to fulfill the external loading requirement of shearography. The sweeping of the PZT excitation frequency, the formation of a standing wave, and a small shearing to suppress the incident wave were powerful controllable tools to detect the defects. The sweeping of the PZT excitation frequency enabled us to determine one of the defect-sensitive frequencies almost in real time. In addition, because the defect sensitive frequencies always existed in wide and plural ranges, the risk of the defect being overlooked by the inspector could be alleviated. The results of evaluation using stroboscopic shearography showed that an artificial 20 mm-diameter defect could be visualized at the excitation frequencies of 5-8 kHz range and 12.5-15.5 kHz range. This technique provided full field reliable and repeatable inspection results. Additionally, the proposed method overcame the important drawback of the time-averaged shearography, being required to identify the resonance vibration frequency sensitive to the defect.

  6. Research Developments in Nondestructive Evaluation and Structural Health Monitoring for the Sustainment of Composite Aerospace Structures at NASA

    Science.gov (United States)

    Cramer, K. Elliott

    2016-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.

  7. A study on the nondestructive evaluation of carbon/carbon disk using ultrasonics

    International Nuclear Information System (INIS)

    Im, Kwang Hee; Yang, In Young; Jeong, Hyun Jo

    1998-01-01

    It is useful to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity for carbon/carbon (C/C) composites because the manufacturing of C/C brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to attributable to the manufacturing process. In a carbon/carbon brake disk manufactured by a combination of pitch impregnation and CVI(Vapor infiltration method), the spatial variation of ultrasonic velocity was measured and found to be consistent with the nonuniform densification behavior in the manufacturing process. Low frequency(5 MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. These results were compared with those obtained by dry-coupling ultrasonics. A good correlation was found between ultrasonic velocity and material density on a set of small blocks cut out of the disk. Pulse-echo C-scans at higher frequency (25 MHz) were used to image near-sulfate material property anomalies associated with certain steps in the manufacturing process, such as the placement of spacers between disks during the final CVI.

  8. Nondestructive Evaluation of Concrete Bridge Decks with Automated Acoustic Scanning System and Ground Penetrating Radar.

    Science.gov (United States)

    Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying

    2018-06-16

    Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.

  9. Nondestructive evaluation of braided carbon fiber composites with artificial defect using HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Shinyama, Y.; Yamaji, T.; Hatsukade, Y.; Takai, Y.; Aly-Hassan, M.S.; Nakai, A.; Hamada, H.; Tanaka, S.

    2011-01-01

    We applied a current-injection-based NDE method using a HTS-SQUID gradiometer to a braided CFRP with artificial cracks. Current distributions in the braided CFRP were estimated from measured field gradient distributions. A small crack, in which a few carbon-fiber bundles were cut, was well detected from the current distributions. A cross-section of the CFRP showed that a density of the bundles at edges is higher than the other part. The experimental results demonstrated the capability of the method to detect sub-mm cracks. Braided carbon fiber reinforced plastics (CFRPs) are one of multifunctional materials with superior properties such as mechanical strength to normal CFRPs since the braided CFRPs have continuous fiber bundles. In this paper, we applied the current-injection-based nondestructive evaluation (NDE) method using a HTS-SQUID gradiometer to the braided CFRP for the detection of the breakage of the bundles. We prepared planar braided CFRP samples with and without artificial cracks of 1 and 2 mm lengths, and measured the current density distribution above the samples using the NDE method. In the measurement results, not only a few completely-cut bundles but also the additional partially-cut bundles were detected from decrease in the measured current density along the cut bundle around the cracks. From these results, we showed that it is possible to inspect a few partially-cut bundles in the braided CFRPs by the NDE method.

  10. Nondestructive evaluation of adhesive joints by C-scan ultrasonic testing

    International Nuclear Information System (INIS)

    Zeighami, Mehdi; Honarvar, Farhang

    2009-01-01

    Evaluation of the quality of adhesive bonding is an important issue in many industries who incorporate adhesive joints in their products. Over the past few decades, numerous acoustical techniques have been developed for nondestructive testing (NDT) of adhesively bonded joints. Among these techniques, the ultrasonic pulse-echo method is the most promising means for inspection of adhesive bonds. In practice, due to low impedance matching between adhesive and metal, the discrimination of a good bond from a bad bond is difficult. The low impedance matching also results in low contrast between perfect and disbanded zone in a C-scan image. In this paper, the quality of the interface between aluminum and epoxy is investigated by using an in-house built ultrasonic C-scan system. Two adhesion indices are proposed for producing C-scan images. To verify the capability of these indices, an adhesively bonded sample was fabricated using aluminum plates and epoxy. An artificial defect was implanted in the first interface of the specimens. The C-scan measurement prepared based on the proposed indices was able to reveal the defect much better than the C-scan image prepared by conventional approach. (author)

  11. Analytical model of tilted driver–pickup coils for eddy current nondestructive evaluation

    Science.gov (United States)

    Cao, Bing-Hua; Li, Chao; Fan, Meng-Bao; Ye, Bo; Tian, Gui-Yun

    2018-03-01

    A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil. It is frequently observed in an eddy current (EC) array probe. In this work, a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for eddy current nondestructive evaluation. Basically, the core of the formulation is to obtain the projection of magnetic vector potential (MVP) from the driver coil onto the vector along the tilted pickup coil, which is divided into two key steps. The first step is to make a projection of MVP along the pickup coil onto a horizontal plane, and the second one is to build the relationship between the projected MVP and the MVP along the driver coil. Afterwards, an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields. The calculated values from the resulting model indicate good agreement with those from the finite element model (FEM) and experiments, which validates the developed analytical model. Project supported by the National Natural Science Foundation of China (Grant Nos. 61701500, 51677187, and 51465024).

  12. Fractal dimension analysis for robust ultrasonic non-destructive evaluation (NDE) of coarse grained materials

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2018-04-01

    Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.

  13. Non-Destructive Evaluation Method Based On Dynamic Invariant Stress Resultants

    Directory of Open Access Journals (Sweden)

    Zhang Junchi

    2015-01-01

    Full Text Available Most of the vibration based damage detection methods are based on changes in frequencies, mode shapes, mode shape curvature, and flexibilities. These methods are limited and typically can only detect the presence and location of damage. Current methods seldom can identify the exact severity of damage to structures. This paper will present research in the development of a new non-destructive evaluation method to identify the existence, location, and severity of damage for structural systems. The method utilizes the concept of invariant stress resultants (ISR. The basic concept of ISR is that at any given cross section the resultant internal force distribution in a structural member is not affected by the inflicted damage. The method utilizes dynamic analysis of the structure to simulate direct measurements of acceleration, velocity and displacement simultaneously. The proposed dynamic ISR method is developed and utilized to detect the damage of corresponding changes in mass, damping and stiffness. The objectives of this research are to develop the basic theory of the dynamic ISR method, apply it to the specific types of structures, and verify the accuracy of the developed theory. Numerical results that demonstrate the application of the method will reflect the advanced sensitivity and accuracy in characterizing multiple damage locations.

  14. Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation

    Science.gov (United States)

    Fahr, A.; Rogé, B.; Thornton, J.

    2006-03-01

    The thermal-barrier coatings (TBC) sprayed on hot-section components of aircraft turbine engines commonly consist of a partially stabilized zirconia top-coat and an intermediate bond-coat applied on the metallic substrate. The bond-coat is made of an aluminide alloy that at high engine temperatures forms thermally grown oxides (TGO). Although formation of a thin layer of aluminum oxide at the interface between the ceramic top-coat and the bond-coat has the beneficial effect of protecting the metallic substrate from hot gases, oxide formation at splat boundaries or pores within the bond-coat is a source of weakness. In this study, plasma-sprayed TBC specimens are manufactured from two types of bond-coat powders and exposed to elevated temperatures to form oxides at the ceramic-bond-coat boundary and within the bond-coat. The specimens are then tested using nondestructive evaluation (NDE) and destructive metallography and compared with the as-manufactured samples. The objective is to determine if NDE can identify the oxidation within the bond-coat and give indication of its severity. While ultrasonic testing can provide some indication of the degree of bond-coat oxidation, the eddy current (EC) technique clearly identifies severe oxide formation within the bond-coat. Imaging of the EC signals as the function of probe location provides information on the spatial variations in the degree of oxidation, and thereby identifies which components or areas are prone to premature damage.

  15. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    International Nuclear Information System (INIS)

    Li, T.; Dewhurst, R. J.

    2010-01-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  16. Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables

    Science.gov (United States)

    Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.

    2018-04-01

    Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to

  17. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  18. Dynamic laser speckle for non-destructive quality evaluation of bread

    Science.gov (United States)

    Stoykova, E.; Ivanov, B.; Shopova, M.; Lyubenova, T.; Panchev, I.; Sainov, V.

    2010-10-01

    Coherent illumination of a diffuse object yields a randomly varying interference pattern, which changes over time at any modification of the object. This phenomenon can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of laser speckle dynamics. The present report aims at non-destructive full-field evaluation of bread by spatial-temporal characterization of laser speckle. The main purpose of the conducted experiments was to prove the ability of the dynamic speckle method to indicate activity within the studied bread samples. In the set-up for acquisition and storage of dynamic speckle patterns an expanded beam from a DPSS laser (532 nm and 100mW) illuminated the sample through a ground glass diffuser. A CCD camera, adjusted to focus the sample, recorded regularly a sequence of images (8 bits and 780 x 582 squared pixels, sized 8.1 × 8.1 μm) at sampling frequency 0.25 Hz. A temporal structure function was calculated to evaluate activity of the bread samples in time using the full images in the sequence. In total, 7 samples of two types of bread were monitored during a chemical and physical process of bread's staling. Segmentation of images into matrixes of isometric fragments was also utilized. The results proved the potential of dynamic speckle as effective means for monitoring the process of bread staling and ability of this approach to differentiate between different types of bread.

  19. Quality evaluation of soil-cement-plant residue bricks by the combination of destructive and non-destructive tests

    Directory of Open Access Journals (Sweden)

    Regis de C. Ferreira

    Full Text Available ABSTRACT Residues from agricultural activity can be used to improve the quality of soil-based bricks, constituting an interesting alternative for their destination. The technical quality of soil-cement-plant residue bricks was evaluated by the combination of non-destructive and destructive methods. A predominant clayey soil, Portland cement and residues of husks of both rice and Brachiaria brizantha cv. Marandu (0, 10, 20, 30 and 40%, in mass, in substitution to the 10% cement content were used. The bricks were submitted to destructive (water absorption and compressive strength and nondestructive (ultrasound tests for their physical and mechanical characterization. Results from both destructive and non-destructive tests were combined to determine the quantitative parameter named “anisotropic resistance” in order to evaluate the quality of the bricks. The addition that promoted best technical quality was 10% residue content, regardless of the residue type. The anisotropic resistance proved to be adequate for the technical quality evaluation of the bricks.

  20. [Application of THz technology to nondestructive detection of agricultural product quality].

    Science.gov (United States)

    Jiang, Yu-ying; Ge, Hong-yi; Lian, Fei-yu; Zhang, Yuan; Xia, Shan-hong

    2014-08-01

    With recent development of THz sources and detector, applications of THz radiation to nondestructive testing and quality control have expanded in many fields, such as agriculture, safety inspection and quality control, medicine, biochemistry, communication etc. Compared with other detection technique, being a new kind of technique, THz radiation has low energy, good perspectivity, and high signal-to-noise ratio, and thus can obtain physical, chemical and biological information. This paper first introduces the basic concept of THz radiation and the major properties, then gives an extensive review of recent research progress in detection of the quality of agricultural products via THz technique, analyzes the existing shortcomings of THz detection and discusses the outlook of potential application, finally proposes the new application of THz technique to detection of quality of stored grain.

  1. MINERGY CORPORATION GLASS FURNACE TECHNOLOGY EVALUATION: INNOVATION TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report presents performance and economic data for a U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program demonstration of the Minergy Corporation (Minergy) Glass Furnace Technology (GFT). The demonstration evaluated the techno...

  2. Numerical modeling for the electromagnetic non-destructive evaluation: application to the non-destructive evaluation of concrete; Modelisation numerique pour l'evaluation non destructive electromagnetique: application au controle non destructif des structures en beton

    Energy Technology Data Exchange (ETDEWEB)

    Travassos, L

    2007-06-15

    Concrete is the most common building material and accounts for a large part of the systems that are necessary for a country to operate smoothly including buildings, roads, and bridges. Nondestructive testing is one of the techniques that can be used to assess the structural condition. It provides non perceptible information that conventional techniques of evaluation unable to do. The main objective of this work is the numerical simulation of a particular technique of nondestructive testing: the radar. The numerical modeling of the radar assessment of concrete structures make it possible to envisage the behavior of the system and its capacity to detect defects in various configurations. To achieve this objective, it was implemented electromagnetic wave propagation models in concrete structures, by using various numerical techniques to examine different aspects of the radar inspection. First of all, we implemented the finite-difference time-domain method in 3D which allows to take into account concrete characteristics such as porosity, salt content and the degree of saturation of the mixture by using Debye models. In addition, a procedure to improve the radiation pattern of bow-tie antennas is presented. This approach involves the Moment Method in conjunction with the Multi objective Genetic Algorithm. Finally, we implemented imaging algorithms which can perform fast and precise characterization of buried targets in inhomogeneous medium by using three different methods. The performance of the proposed algorithms is confirmed by numerical simulations. (author)

  3. Basic Principles and Utilization Possibilities’ of Ultrasonic Phased Array in Material Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Dagmar Faktorova

    2004-01-01

    Full Text Available The paper deals with the basic principles of operation and with the utilization possibilities of phased array (PA in materials nondestructive testing (NDT. The first part deals with description of PA arrangement modes, which enable to generate, focus and steer the ultrasonic beem. The second part deals with the description of electromagnetic acoustic transducer PA operation. The last part deals with the description of the utilization of PA in nondestructive testing of conductive materials and the advantages of PA utilization in inhomogeneous materials NDT.

  4. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Hong, Jun Hee

    2015-01-01

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  5. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Kyung Mun [Korea Hydro and Nuclear Power Company Ltd., Central Research Institute, Daejeon (Korea, Republic of); Hong, Jun Hee [Dept. of mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-02-15

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  6. Fabrication of imitative stress corrosion cracking using diffusion bonding for the development of nondestructive testing and evaluations

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi

    2011-01-01

    This study reports a method to fabricate imitative stress corrosion cracking suitable for the development of nondestructive testing and evaluation methods. The method is to embed a partially-bonded region, which simulates the characteristics of stress corrosion cracking, inside a material by bonding together surfaces having artificial grooves. Since the sizes of the grooves are smaller than the spatial resolution of nondestructive testing method applied, the material property realized can be regarded as uniform as the actual stress corrosion cracking. The grooves are introduced using mechanical machining, which enables one to control the characteristics of the simulated flaw. Four specimens made of type 316L austenitic stainless steel are fabricated. The method is demonstrated by visual and eddy current examinations. (author)

  7. APNEA/WIT system nondestructive assay capability evaluation plan for select accessibly stored INEL RWMC waste forms

    International Nuclear Information System (INIS)

    Becker, G.K.

    1997-01-01

    Bio-Imaging Research Inc. (BIR) and Lockheed Martin Speciality Components (LMSC) are engaged in a Program Research and Development Agreement and a Rapid Commercialization Initiative with the Department of Energy, EM-50. The agreement required BIR and LMSC to develop a data interpretation method that merges nondestructive assay and nondestructive examination (NDA/NDE) data and information sufficient to establish compliance with applicable National TRU Program (Program) waste characterization requirements and associated quality assurance performance criteria. This effort required an objective demonstration of the BIR and LMSC waste characterization systems in their standalone and integrated configurations. The goal of the test plan is to provide a mechanism from which evidence can be derived to substantiate nondestructive assay capability and utility statement for the BIT and LMSC systems. The plan must provide for the acquisition, compilation, and reporting of performance data thereby allowing external independent agencies a basis for an objective evaluation of the standalone BIR and LMSC measurement systems, WIT and APNEA respectively, as well as an expected performance resulting from appropriate integration of the two systems. The evaluation is to be structured such that a statement regarding select INEL RWMC waste forms can be made in terms of compliance with applicable Program requirements and criteria

  8. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    Science.gov (United States)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  9. Evaluation of the MIT-Scan-T2 for non-destructive PCC pavement thickness determination.

    Science.gov (United States)

    2008-07-01

    The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both : HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive : measurement for the Iowa DOT and contractors. Th...

  10. Evaluating Technology Transfer and Diffusion.

    Science.gov (United States)

    Bozeman, Barry; And Others

    1988-01-01

    Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…

  11. Application of advanced non-destructive testing to evaluate the foundation depth of the existing structures

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc; Phan Chanh Vu; Bui Xuan Huy; Tran Thanh Luan; Nguyen Kien Chinh; Le Danh Chuan

    2004-01-01

    The applications of Parallel Seismic Test to evaluate deep foundations of the existing structures are still new in Vietnam. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the parallel seismic test method (PSM) was evaluated at Center for Nuclear Techniques, Hochiminh City. Background information on principle and general description of the method as it is typically applied in the evaluation of deep foundations are also summarized. A suitable test site was selected, where the foundation depths can be controlled for the parallel seismic tests were conducted by impacting the driven piles, and the travel times down the pile, through the soil, to a receiver located in an adjacent water-filled borehole were measured. The primary objective of the test program is to evaluated the accuracy of method in determining the pile length, to evaluate the capabilities of the method and the equipped system SPL-97, to define the type of material which comprises a deep foundation, the distance of the compression wave can travel through the adjacent soil before the signal attenuates beyond recognition and the ware velocities in the various soil strata encountered. The parallel seismic testing program is described and results are presented. Parallel seismic tests, as conventionally practiced, i.e. with short distance between a structure and an access hole, can be used to define the bottom of the piles, as well as to identify the material type from the computed velocity in the structural material. The conventional approach of using changes of slop of the plot versus first arrival to identify the bottom of a deep foundation works best when the piles are in a soil with uniform stiffness and the accuracy of the evaluated depths can be obtained about ± 0.5 m. Supplementing this approach of interpretation by the examining the amplitudes of the first arrival on a plot with the same scale for all records allows one to better interpret signals in more common

  12. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    Science.gov (United States)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation

  13. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    Science.gov (United States)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic

  14. Digital image analysis applied to industrial nondestructive evaluation and automated parts assembly

    International Nuclear Information System (INIS)

    Janney, D.H.; Kruger, R.P.

    1979-01-01

    Many ideas of image enhancement and analysis are relevant to the needs of the nondestructive testing engineer. These ideas not only aid the engineer in the performance of his current responsibilities, they also open to him new areas of industrial development and automation which are logical extensions of classical testing problems. The paper begins with a tutorial on the fundamentals of computerized image enhancement as applied to nondestructive testing, then progresses through pattern recognition and automated inspection to automated, or robotic, assembly procedures. It is believed that such procedures are cost-effective in many instances, and are but the logical extension of those techniques now commonly used, but often limited to analysis of data from quality-assurance images. Many references are given in order to help the reader who wishes to pursue a given idea further

  15. Application of novel hall sensor technique to evaluate internal defect nondestructively in squirrel cage rotor

    International Nuclear Information System (INIS)

    Park, Myung Ju; Lee, Joon Hyun

    1998-01-01

    Development of Nondestructive Tester for industrial application to detect flaws in aluminum die-casted squirrel case rotor is reported in this paper. Electronic currents are supplied to the end-ring and Hall effect sensors are used to detect the variation of currents which flow in the bar of the rotor. Some signal processing techniques are introduced to classify the signals due to the defects in the bars

  16. Evaluation and improvement of nondestructive evaluation reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Bates, D.J.; Deffenbaugh, J.D.; Good, M.S.; Heasler, P.G.; Mart, G.A.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Van Fleet, L.G.

    1987-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection (ISI) of Light Water Reactors (NDE Reliability) Program at Pacific Northwest Laboratory (PNL) was established to determine the reliability of current ISI techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this NRC program are to: determine the reliability of ultrasonic ISI performed on commercial light-water reactor (LWR) primary systems, using probabilistic fracture mechanics analysis, determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to ensure a suitably low failure probability, evaluate the degree of reliability improvement that could be achieved using improved and advanced NDE techniques, based on material properties, service conditions, and NDE uncertainties, recommend revisions to ASME Code, Section XI, and Regulatory Requirements that will ensure suitably low failure probabilities. The scope of this program is limited to ISI of primary systems; the results and recommendations may also be applicable to Class II piping systems

  17. Progress in evaluation and improvement in nondestructive examination reliability for inservice inspection of Light Water Reactors (LWRs) and characterize fabrication flaws in reactor pressure vessels

    International Nuclear Information System (INIS)

    Doctor, S.R.; Bowey, R.E.; Good, M.S.; Friley, J.R.; Kurtz, R.J.; Simonen, F.A.; Taylor, T.T.; Heasler, P.G.; Andersen, E.S.; Diaz, A.A.; Greenwood, M.S.; Hockey, R.L.; Schuster, G.J.; Spanner, J.C.; Vo, T.V.

    1991-10-01

    This paper is a review of the work conducted under two programs. One (NDE Reliability Program) is a multi-year program addressing the reliability of nondestructive evaluation (NDE) for the inservice inspection (ISI) of light water reactor components. This program examines the reliability of current NDE, the effectiveness of evolving technologies, and provides assessments and recommendations to ensure that the NDE is applied at the right time, in the right place with sufficient effectiveness that defects of importance to structural integrity will be reliably detected and accurately characterized. The second program (Characterizing Fabrication Flaws in Reactor Pressure Vessels) is assembling a data base to quantify the distribution of fabrication flaws that exist in US nuclear reactor pressure vessels with respect to density, size, type, and location. These programs will be discussed as two separate sections in this report. 4 refs., 7 figs

  18. Nondestructive Evaluation of Functionally Graded Subsurface Damage on Cylinders in Nuclear Installations Based on Circumferential SH Waves

    Directory of Open Access Journals (Sweden)

    Zhen Qu

    2016-01-01

    Full Text Available Subsurface damage could affect the service life of structures. In nuclear engineering, nondestructive evaluation and detection of the evaluation of the subsurface damage region are of great importance to ensure the safety of nuclear installations. In this paper, we propose the use of circumferential horizontal shear (SH waves to detect mechanical properties of subsurface regions of damage on cylindrical structures. The regions of surface damage are considered to be functionally graded material (FGM and the cylinder is considered to be a layered structure. The Bessel functions and the power series technique are employed to solve the governing equations. By analyzing the SH waves in the 12Cr-ODS ferritic steel cylinder, which is frequently applied in the nuclear installations, we discuss the relationship between the phase velocities of SH waves in the cylinder with subsurface layers of damage and the mechanical properties of the subsurface damaged regions. The results show that the subsurface damage could lead to decrease of the SH waves’ phase velocity. The gradient parameters, which represent the degree of subsurface damage, can be evaluated by the variation of the SH waves’ phase velocity. Research results of this study can provide theoretical guidance in nondestructive evaluation for use in the analysis of the reliability and durability of nuclear installations.

  19. Combined Non-destructive Testing (NDT) methods for evaluating concrete quality

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of combining Non-destructive measurements on concrete. Local crushed granite and hematite were used as coarse aggregates; mining sand and river sand were used as fine aggregates to produce various density and strength of concrete. Concrete samples (150 mm cubes and interlocked blocks) were prepared by changing mix ratio, water to cement ratio (w/c) and types of aggregates. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  20. Some aspects of industrial non-destructive evaluation by X- and γ-ray computed tomography

    International Nuclear Information System (INIS)

    Reimers, P.; Goebbels, J.; Weise, H.P.; Wilding, K.

    1984-01-01

    The development of an industrial CAT-Scanner at the Bundesanstalt fuer Materialpruefung (BAM) is described and some practical results on typical nondestructive testing problems are presented. General criteria for the image quality, especially spatial and density resolution, are discussed on the basis of the appropriate mathematical relationships. The limiting parameter in industrial CAT will be the final specific photon emissivity of available radiation sources. Therefore the relative density resolution obtainable with the three most common types of radiation sources is calculated by variation of material thickness and scanning time. (orig.)

  1. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    International Nuclear Information System (INIS)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D

    2009-01-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  2. Correlation of mechanical properties with nondestructive evaluation of babbitt metal/bronze composite interface

    Science.gov (United States)

    Ijiri, Y.; Liaw, P. K.; Taszarek, B. J.; Frohlich, S.; Gungor, M. N.

    1988-09-01

    Interfaces of the babbitt metal-bronze composite were examined ultrasonically and were fractured using the Chalmers test method. It was found that the ultrasonic results correlated with the bond strength, the ductility, and the degree of bonding at the tested interface. Specifically, high ultrasonic reflection percentages were associated with low bond strength, low ductility, and low percentages of bonded regions. The fracture mechanism in the bonded area of the babbitt-bronze interface is related to the presence of the intermetallic compound, Cu6Sn5, at the interface. It is suggested that the non-destructive ultrasonic technique can detect the bond integrity of babbitted metals.

  3. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth, Devon (United Kingdom) and Paignton Zoological Park, Paignton, Devon (United Kingdom); Thermal Wave Imaging, Inc., 845 Livernoise St, Ferndale, MI (United States); Buckfast Butterfly and Otter Sanctuary, Buckfast, Devon (United Kingdom)

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  4. Photothermal Analysis Applied To Non-Destructive Evaluation Of Paint On Polymer Substrates

    Science.gov (United States)

    Vergne, D.; Busse, G.

    1988-10-01

    The decoration and protection quality of coatings on polymers is of considerable interest for industrial applications. However, at present there is no non-destructive (NDE) method to monitor the quality of these coatings during the manufacturing process or while they are in use. As an approach for such a method we use photothermal analysis where the propagation and reflection of optically generated thermal waves is investigated. We found that one can monitor the drying process, the effect of surface temperature treatment, and coating thickness (accuracy + 2 μm in 50 μm thickness). The information obtained with this remote NDE method is adequate for most industrial applications, eg car manufacturing.

  5. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy

    Science.gov (United States)

    Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.

  6. Evaluative conditioning of food technologies

    DEFF Research Database (Denmark)

    Loebnitz, Natascha; Grunert, Klaus G

    2015-01-01

    Consumer attitudes play an important role in the acceptance of new technologies. The success of food innovations depends on understanding how consumers form and change attitudes toward food technologies. Earlier post hoc explanations suggest that evaluative conditioning can change consumer...... attitudes toward food technologies. The present study tests how evaluative conditioning can affect consumer acceptance of new food technologies. Furthermore, authors investigate whether evaluative conditioning is resistant to extinction after a two-month period and whether the evaluative conditioning effect...... prevails in a product-related context. Within an evaluative conditioning paradigm including between-subjects control groups in addition to standard within-subjects control conditions, participants were presented with three food technologies (conventional, enzyme, and genetic technology) paired...

  7. A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation

    Science.gov (United States)

    Schiefelbein, Bryan Edward

    Vibrothermography nondestructive evaluation (NDE) is in the early stages of research and development, and there exists uncertainty in the fundamental mechanisms and processes by which heat generation occurs. Holland et al. have developed a set of tools which simulate and predict the outcome of a vibrothermography inspection by breaking the inspection into three distinct processes: vibrational excitation, heat generation, and thermal imaging. The stage of vibrothermography which is not well understood is the process by which vibrations are converted to heat at the crack surface. It has been shown that crack closure and closure state impact the resulting heat generation. Despite this, research into the link between partial crack closure and vibrothermography is limited. This work seeks to rectify this gap in knowledge by modeling the behavior of a partially closed crack in response to static external loading and a dynamic vibration. The residual strains left by the plastic wake during fatigue crack growth manifest themselves as contact stresses acting at the crack surface interface. In response to an applied load below the crack opening stress, the crack closure state will evolve, but the crack will remain partially closed. The crack closure model developed in this work is based in linear elastic fracture mechanics (LEFM) and describes the behavior of a partially closed crack in response to a tensile external load and non-uniform closure stress distribution. The model builds on work by Fleck to describe the effective length, crack opening displacement, and crack tip stress field for a partially closed crack. These quantities are solved for by first establishing an equilibrium condition which governs the effective or apparent length of the partially closed crack. The equilibrium condition states that, under any external or crack surface loading, the effective crack tip will be located where the effective stress intensity factor is zero. In LEFM, this is equivalent to

  8. Development and optimization of thermographic techniques for Non-Destructive Evaluation of multilayered structures

    Science.gov (United States)

    Gavrilov, Dmitry J.

    Quality control of modern materials is of the utmost importance in science and industry. Methods for nondestructive evaluation of material properties and the presence of defects are numerous. They differ in terms of their sensitivity and applicability in various conditions, and they provide different kinds of data such as the speed of sound in the material, its hardness, radiation absorption, etc. Based on measured characteristics an analyst makes a decision on the material studied. This work addresses a class of methods known as active thermographic analysis. Thermography analyzes the temperature of the surface of the sample under different external conditions. By keeping track of temperature changes at the surface caused by a deposition of heat on the sample one can determine its material properties such as theand processing the data captured it is possible to make decisions on parameters of this sample. Among the data which can be acquired are such important information as the location of internal defects (e.g., detachments, hollows, inclusions), thickness of the material layers, thermal parameters of the material and the location of internal defects (e.g., detachments, hollows, inclusions). The first part of this research investigates a method for analysis of layered composite materials using the approach based on interference of so called temperature waves. As demonstrated using the expressions derived, one can determine the thermal properties of the layers of the sample by applying a harmonically modulated heat flux to the surfaces and measuring the phase of the periodically changing surface temperature. This approach can be of use in the field of designing and analysis of composite thermal insulation coatings. In the second part of this work a method of analyzing objects of fine art was investigated, particularly - detection of subsurface defects. In the process of preserving art it is of primary importance to determine whether restoration is necessary

  9. Non-destructive evaluation utilizing imaging plates for field radiography applications

    International Nuclear Information System (INIS)

    White, Brian S.

    2016-01-01

    The oil and gas industry has utilized film radiography for the evaluation of pipeline welds for many years. The world has evolved, and today people are easily sharing digital images as part of the information revolution. Computed radiography is ready to replace film radiography for portable outdoor use applications. Computed radiography technology adoption has been contingent upon achieving acceptable image quality and getting enough imaging plate use cycles to be profitable. Image quality is dependent upon shot conditions, imaging plate type, reader settings, and scatter control. Likewise, the number of achievable use cycles is dependent upon the imaging plate design for durability and the user's operating environment. This presentation reviews the basic principles of storage phosphor imaging plates. Usage criteria and guidelines for optimum image quality and maximized overall use cycles will be discussed for various imaging plate types. A comparison of film and computed radiography imaging plate technology will be presented.

  10. Inverse Kinematic Analysis and Evaluation of a Robot for Nondestructive Testing Application

    Directory of Open Access Journals (Sweden)

    Zongxing Lu

    2015-01-01

    Full Text Available The robot system has been utilized in the nondestructive testing field in recent years. However, only a few studies have focused on the application of ultrasonic testing for complex work pieces with the robot system. The inverse kinematics problem of the 6-DOF robot should be resolved before the ultrasonic testing task. A new effective solution for curved-surface scanning with a 6-DOF robot system is proposed in this study. A new arm-wrist separateness method is adopted to solve the inverse problem of the robot system. Eight solutions of the joint angles can be acquired with the proposed inverse kinematics method. The shortest distance rule is adopted to optimize the inverse kinematics solutions. The best joint-angle solution is identified. Furthermore, a 3D-application software is developed to simulate ultrasonic trajectory planning for complex-shape work pieces with a 6-DOF robot. Finally, the validity of the scanning method is verified based on the C-scan results of a work piece with a curved surface. The developed robot ultrasonic testing system is validated. The proposed method provides an effective solution to this problem and would greatly benefit the development of industrial nondestructive testing.

  11. Non-destructive evaluation of timber structures in a historical building of Tiradentes , MG

    Directory of Open Access Journals (Sweden)

    Luciana Barbosa de Abreu

    2013-09-01

    Full Text Available Problems related to the durability of wood are commonly found in historical buildings structures. Preservation and conservation resolutions must be adopted, in order to avoid losses and substitutions, which mischaracterize buildings. Non-destructive methods for detecting deterioration should be used in order to substantiate decisions and increase the longevity of historical heritage. This work was carried out in order to perform non-destructive essays to infer about the integrity of a beam and a pillar of the original construction of the Sobrado Ramalho, a historical building of the city of Tiradentes, MG. The equipments utilized were the Stress Wave Timer and resistograph. Samples of the elements were taken for analysis of density. The results showed that, in both structures, to calculate the dynamic modulus of elasticity, there was no significant difference for the application of stress wave timer on the alignments studied. There was no significant difference between the directions of application of the resistograph on the pillar, due to its apparent entirety and regular sessions, practically square, and to not being loaded eccentrically. In the case of the beam, there was significant difference, presumably because it has cracks in its traction line. The equipments, unknown by professionals of heritage conservation allow promising methodologies for inspection of timber structures in service.

  12. Nondestructive evaluation of the oxidation and strength of the Fort Saint Vrain HTGR support block

    International Nuclear Information System (INIS)

    Tingey, G.L.; Posakony, G.J.; Morgan, W.C.; Prince, J.M.; Hill, R.W.; Lessor, D.L.

    1982-04-01

    Non-destructive detection of changes in the strength of graphite support structures in a HTGR appears to be feasible using sonic velocity measurements where access for through transmission is possible. Therefore, future HTGR designs should consider providing such access. Where access is not available, strength changes can be correlated with oxidation profiles in the support member. These oxidation profiles can be determined non-destructively by a combination of eddy current measurements to detect near surface oxidation and sonic backscattering measurements designed to determine oxidation in depth. The Fort Saint Vrain reactor provides an operating reactor to test the applicability of the eddy current and sonic backscattering techniques for determination of oxidation in a support block. Furthermore, such tests in Fort Saint Vrain will supply base line data which will be useful in assuring an adequate strength of the support structure for the lifetime of the reactor. Equipment is, therefore, being developed for tests to be conducted during the next major refueling of the reactor

  13. Potential of multispectral imaging technology for rapid and non-destructive determination of the microbiological quality of beef filets during aerobic storage

    DEFF Research Database (Denmark)

    Panagou, Efstathios Z.; Papadopoulou, Olga; Carstensen, Jens Michael

    2014-01-01

    counts, namely Class 1 (TVC7.0log10CFU/g). Furthermore, PLS regression models were developed to provide quantitative estimations of microbial counts during meat storage. In both cases model validation was implemented with independent experiments at intermediate storage temperatures (2 and 10°C) using....... thermosphacta, and TVC, respectively. The results indicated that multispectral vision technology has significant potential as a rapid and non-destructive technique in assessing the microbiological quality of beef fillets....

  14. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactor (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987

  15. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987. (author)

  16. Nondestructive Neutron And Gamma-Ray Technologies Applied To GNEP And Safeguards

    International Nuclear Information System (INIS)

    Dougan, A D; Snyderman, N; Ham, Y; Nakae, L; Dietrich, D; Kerr, P; Wang, T; Stoeffl, W; Choi, J S

    2007-01-01

    In recent years, LLNL has developed methods for diagnosing significant quantities of special nuclear material (SNM). Homeland security problems have recently focused our attention on detection of shielded highly enriched uranium (HEU), which is a weak signal problem. Current and advanced safeguards applications will require working in the opposite extreme of strong but buried signals. We will review some of the technologies that have been developed at LLNL for homeland security applications and discuss how they might be used in support of international safeguards

  17. Enhancement of nondestructive evaluation techniques for magnetic and nonmagnetic structural components (Final report for doctoral fellowship)

    International Nuclear Information System (INIS)

    Chen, Zhenmao

    2000-03-01

    In this report, research works performed in the Structural Safety Engineering Group of OEC/JNC are summarized as the final report of the doctoral fellowship. The main objective of this study is for the enhancement of the nondestructive evaluation techniques for structural components of both magnetic and nonmagnetic material. Studies in three topics have been carried out aiming at the quantitative evaluation of crack with the eddy current testing and the validation of a natural magnetic field based NDE method for detecting mechanical damages in a paramagnetic material. In the first part of the study, an approach to the reconstruction of the natural crack was proposed and implemented with an idealized crack model for its validation. In the second part, the correlation of the natural magnetization and the mechanical damages in the SUS304 stainless steel was investigated by using an experimental approach. In part 3, an inverse method of the measured magnetic fields is proposed for the reconstruction of magnetic charges in the inspected material by using an optimization method and wavelet. As the first work, an approach to the reconstruction of an idealized natural crack of non-vanishing conductivity is proposed with use of signals of eddy current testing. Two numerical models are introduced at first for modeling the natural crack in order to represented it with a set of crack parameters. A method for the rapid prediction of the eddy current testing signals coming from these idealized cracks is given then by extending a knowledge based fast forward solver to the case of a non-vanishing conductivity. Based on this fast forward solver, the inverse algorithm of conjugate gradient method is updated to identify the crack parameters. Several examples are presented finally as a validation of the proposed strategy. The results show that both the two numerical models can give reasonable reconstruction results for signal of low noise. The model concerning the touch of crack

  18. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor.

    Science.gov (United States)

    Lu, Junjun; Miao, Yuxin; Shi, Wei; Li, Jingxin; Yuan, Fei

    2017-10-26

    RapidSCAN is a new portable active crop canopy sensor with three wavebands in red, red-edge, and near infrared spectral regions. The objective of this study was to determine the potential and practical approaches of using this sensor for non-destructive diagnosis of rice nitrogen (N) status. Sixteen plot experiments and ten on-farm experiments were conducted from 2014 to 2016 in Jiansanjiang Experiment Station of the China Agricultural University and Qixing Farm in Northeast China. Two mechanistic and three semi-empirical approaches using the sensor's default vegetation indices, normalized difference vegetation index and normalized difference red edge, were evaluated in comparison with the top performing vegetation indices selected from 51 tested indices. The results indicated that the most practical and stable method of using the RapidSCAN sensor for rice N status diagnosis is to calculate N sufficiency index with the default vegetation indices and then to estimate N nutrition index non-destructively (R 2  = 0.50-0.59). This semi-empirical approach achieved a diagnosis accuracy rate of 59-76%. The findings of this study will facilitate the application of the RapidSCAN active sensor for rice N status diagnosis across growth stages, cultivars and site-years, and thus contributing to precision N management for sustainable intensification of agriculture.

  19. NDE Conference on Civil Engineering : a joint conference of the 7th Structural Materials Technology Conference (SMT) and the 6th International Symposium on Nondestructive Testing in Civil Engineering (NDT-CE)

    Science.gov (United States)

    2007-01-01

    The 2006 NDE conference on Civil Engineering was held in St. Louis, MO on August 14 18, 2006. The conference combined the 7th Structural Materials Technology Conference (SMT) along with the 6th International Symposium on Nondestructive Testing in...

  20. Sensor technologies and non-destructive monitoring for dampness diagnosis in cultural heritage

    Science.gov (United States)

    Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María

    2016-04-01

    This work presents a case study based on results of monitoring campaigns developed in San Juan Bautista church in Talamanca de Jarama (Madrid, Spain). This Church was built in the twelfth-thirteenth centuries (Romanesque style) with dolostone ashlars. It was reconstructed in the sixteenth century (Renaissance style) with rubble stone and mortar, brick and an earth fill. Different sections on walls and floors (north and south oriented) have been selected based on a preliminary study of moisture distribution on stone and masonry wall. The behavior of different materials has been studied according to the influence of indoor (microclimatic conditions) and outdoor conditions (weather conditions) and taking into account constructive facts. Several sensing technologies as dataloggers and wireless sensor networks (WSN) together to other non invasive techniques as thermal imaging, portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) have been conducted. By means of this study it has been possible to establish an analysis methodology to determine the dampness origin in each case. Conclusions related to the each technique according to its effectiveness in the detection of decay problems have been established. Research funded by Geomateriales 2(S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged.

  1. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  2. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  3. Non-destructive electrochemical techniques applied to the corrosion evaluation of the liner structures in nuclear power plants

    International Nuclear Information System (INIS)

    Martinez, I.; Castillo, A.; Andrade, C.

    2008-01-01

    The liner structure in nuclear power plants provides containment for the operation and therefore the study of its durability and integrity during its service life is an important issue. There are several causes for the deterioration of the liner, which in general involve corrosion due to its metallic nature. The present paper is aimed at describing the assessment of corrosion problems of two liners from two different nuclear power plants, which were evaluated using non-destructive electrochemical techniques. In spite of the testing difficulties arisen, from the results extracted it can be concluded that the electrochemical techniques applied are adequate for the corrosion evaluation. They provide important information about the integrity of the structure and allow for its evolution with time to be assessed

  4. Magnetic non-destructive evaluation of ruptures of tensile armor in oil risers

    International Nuclear Information System (INIS)

    Pérez-Benitez, J A; Padovese, L R

    2012-01-01

    Risers are flexible multilayered pipes formed by an inner flexible metal structure surrounded by polymer layers and spiral wound steel ligaments, also known as armor wires. Since these risers are used to link subsea pipelines to floating oil and gas production installations, and their failure could produce catastrophic consequences, some methods have been proposed to monitor the armor integrity. However, until now there is no practical method that allows the automatic non-destructive detection of individual armor wire rupture. In this work we show a method using magnetic Barkhausen noise that has shown high efficiency in the detection of armor wire rupture. The results are examined under the cyclic and static load conditions of the riser. This work also analyzes the theory behind the singular dependence of the magnetic Barkhausen noise on the applied tension in riser armor wires. (paper)

  5. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing

    International Nuclear Information System (INIS)

    Macedo Silva, Edgard de; Costa de Albuquerque, Victor Hugo; Pereira Leite, Josinaldo; Gomes Varela, Antonio Carlos; Pinho de Moura, Elineudo; Tavares, Joao Manuel R.S.

    2009-01-01

    Duplex stainless steel presents special mechanical properties such as, for example, mechanical and corrosion strength, becoming competitive in relation to the other types of stainless steel. One of the great problems of duplex stainless steel microstructural changes study is related to embrittlement above 300 deg. C, with the precipitation of the α' phase occurring over the ferritic microstructure. Aiming to characterise embrittlement of duplex stainless steel, hardening kinetics, from 425 to 475 deg. C, was analysed through the speed of sound, Charpy impact energy, X-ray diffraction, hardness and microscopy parameters. The presence of two hardening stages, detected through the speed of sound, was observed, one being of brittle characteristic and the other ductile. Moreover, the speed of sound showed a direct correlation with the material's hardness. Thus, it is concluded that the speed of sound is a promising nondestructive parameter to follow-up embrittlement in duplex stainless steel.

  6. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Macedo Silva, Edgard de, E-mail: edgard@cefetpb.edu.br [Centro federal de Educacao Tecnologica da Paraiba (CEFET PB), Area da Industria, Avenida 1o de Maio, 720 - 58015-430 - Joao Pessoa/PB (Brazil); Costa de Albuquerque, Victor Hugo, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pereira Leite, Josinaldo, E-mail: josinaldo@ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Gomes Varela, Antonio Carlos, E-mail: varela@cefetpb.edu.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pinho de Moura, Elineudo, E-mail: elineudo@pq.cnpq.br [Universidade Federal do Ceara (UFC), Departamento de Engenharia Metalurgica e de Materiais, Campus do Pici, Bloco 715, 60455-760 - Fortaleza/CE (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica e Gestao Industrial (DEMEGI)/Instituto de Engenharia Mecanica e Gestao Industrial - INEGI, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2009-08-15

    Duplex stainless steel presents special mechanical properties such as, for example, mechanical and corrosion strength, becoming competitive in relation to the other types of stainless steel. One of the great problems of duplex stainless steel microstructural changes study is related to embrittlement above 300 deg. C, with the precipitation of the {alpha}' phase occurring over the ferritic microstructure. Aiming to characterise embrittlement of duplex stainless steel, hardening kinetics, from 425 to 475 deg. C, was analysed through the speed of sound, Charpy impact energy, X-ray diffraction, hardness and microscopy parameters. The presence of two hardening stages, detected through the speed of sound, was observed, one being of brittle characteristic and the other ductile. Moreover, the speed of sound showed a direct correlation with the material's hardness. Thus, it is concluded that the speed of sound is a promising nondestructive parameter to follow-up embrittlement in duplex stainless steel.

  7. Non-destructive evaluation methods to improve quality control in low enrichment MTR fuel plate production

    International Nuclear Information System (INIS)

    Milne, J.M.; Lidington, B.; Hawker, B.M.

    1991-01-01

    This paper summarises some preliminary non-destructive measurements made recently at the Harwell Laboratory on a prototype low enrichment MTR fuel plate. The measurements were intended to indicate the potential of two different techniques for improving quality control in plate production. Pulse Video Thermography (PVT) is being considered as an alternative to ultrasound transmission measurements for the detection and sizing of lack of thermal bonding between the fuel and the clad layers, either to verify the indications from the established ultrasonic methods before destroying the plate or as a replacement method of inspection. High frequency pulse-echo ultrasonics is being considered for providing maps of clad layer thickness on each side of the plate. The measurements have indicated the potential for both methods, but more work is required, using a test plate containing controlled defects, to establish their capability. (orig.)

  8. Nondestructive evaluation of defects in carbon fiber reinforced polymer (CFRP) composites

    Science.gov (United States)

    Ngo, Andrew C. Y.; Goh, Henry K. H.; Lin, Karen K.; Liew, W. H.

    2017-04-01

    Carbon fiber reinforced polymer (CFRP) composites are increasingly used in aerospace applications due to its superior mechanical properties and reduced weight. Adhesive bonding is commonly used to join the composite parts since it is capable of joining incompatible or dissimilar components. However, insufficient adhesive or contamination in the adhesive bonds might occur and pose as threats to the integrity of the plane during service. It is thus important to look for suitable nondestructive testing (NDT) techniques to detect and characterize the sub-surface defects within the CFRP composites. Some of the common NDT techniques include ultrasonic techniques and thermography. In this work, we report the use of the abovementioned techniques for improved interpretation of the results.

  9. Educational ultrasound nondestructive testing laboratory.

    Science.gov (United States)

    Genis, Vladimir; Zagorski, Michael

    2008-09-01

    The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006).

  10. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management.

    Science.gov (United States)

    2015-06-01

    Remote sensing technologies allow for the condition evaluation of bridge decks at near highway speed. : Data collection at near highway speed for assessment of the top of the concrete deck and proof of : concept testing for the underside of the deck ...

  11. Multi-resolution analysis for region of interest extraction in thermographic nondestructive evaluation

    Science.gov (United States)

    Ortiz-Jaramillo, B.; Fandiño Toro, H. A.; Benitez-Restrepo, H. D.; Orjuela-Vargas, S. A.; Castellanos-Domínguez, G.; Philips, W.

    2012-03-01

    Infrared Non-Destructive Testing (INDT) is known as an effective and rapid method for nondestructive inspection. It can detect a broad range of near-surface structuring flaws in metallic and composite components. Those flaws are modeled as a smooth contour centered at peaks of stored thermal energy, termed Regions of Interest (ROI). Dedicated methodologies must detect the presence of those ROIs. In this paper, we present a methodology for ROI extraction in INDT tasks. The methodology deals with the difficulties due to the non-uniform heating. The non-uniform heating affects low spatial/frequencies and hinders the detection of relevant points in the image. In this paper, a methodology for ROI extraction in INDT using multi-resolution analysis is proposed, which is robust to ROI low contrast and non-uniform heating. The former methodology includes local correlation, Gaussian scale analysis and local edge detection. In this methodology local correlation between image and Gaussian window provides interest points related to ROIs. We use a Gaussian window because thermal behavior is well modeled by Gaussian smooth contours. Also, the Gaussian scale is used to analyze details in the image using multi-resolution analysis avoiding low contrast, non-uniform heating and selection of the Gaussian window size. Finally, local edge detection is used to provide a good estimation of the boundaries in the ROI. Thus, we provide a methodology for ROI extraction based on multi-resolution analysis that is better or equal compared with the other dedicate algorithms proposed in the state of art.

  12. The research on x-ray nondestructive testing and image processing technology of explosive components

    International Nuclear Information System (INIS)

    Shi, C.; Zhai, X.; Liu, Z.; Lin, H.

    2004-01-01

    The explosive components will inevitably produce defects such as impurity, crack and degumming during production and storage, therefore the inside substance of the explosive components must be examined and the findings concerned must be identified and estimated in order to ensure the quality and service life of the explosive components. Firstly, some analyses are conducted on the usual X-ray NDT system theory, and the simulation explosive component is made with some pre-built defects such as debonding, cracks, blow holes, impurities, and non-uniform density. The image testing system most fit for the explosive components is established. Secondly, the ways of X-ray digital image processing are discussed; the obtained images are enhanced and restored through the self-accommodating build-up arithmetic and proper restoring methods. By means of the results of the overall comparison and analysis of the digital image processing technology, it is clearly indicated that it is feasible to use X-ray digital-imaging ways to carry out the NDT of explosive components and identify the inside defects. (author)

  13. Identification of cave minerals by Raman spectroscopy: new technology for non-destructive analysis

    Directory of Open Access Journals (Sweden)

    White William B.

    2006-07-01

    Full Text Available The usual tools are X-ray powder diffraction, the optical microscope, and the scanning electron microscope. X-ray diffraction gives a definitive fingerprint by which the mineral can be identified by comparison with a catalog of reference patterns. However, samples must be ground to powder and unstable hydrated minerals may decompose before analysis is complete. Raman spectroscopy also provides a fingerprint useful for mineral identification but with the additional advantage that some a-priori interpretation of the spectra is possible (distinguishing carbonates from sulfates, for example. Because excitation of the spectra is by means of a laser beam, it is possible to measure the spectra of samples in sealed glass containers, thus preserving unstable samples. Because laser beams can be focused, spectra can be obtained from individual grains. New technology has reduced the size of the instrument and also the sensitivity of the optical system to vibration and transport so that a portable instrument has become possible. The sampling probe is linked to the spectrometer by optical fibers so that large specimens can be examined without damage. Comparative spectra of common cave minerals demonstrate the value of Raman spectra as an identification technique.

  14. NATO Advanced Study Institute on Nondestructive Evaluation of Semiconductor Materials and Devices

    CERN Document Server

    1979-01-01

    From September 19-29, a NATO Advanced Study Institute on Non­ destructive Evaluation of Semiconductor Materials and Devices was held at the Villa Tuscolano in Frascati, Italy. A total of 80 attendees and lecturers participated in the program which covered many of the important topics in this field. The subject matter was divided to emphasize the following different types of problems: electrical measurements; acoustic measurements; scanning techniques; optical methods; backscatter methods; x-ray observations; accele­ rated life tests. It would be difficult to give a full discussion of such an Institute without going through the major points of each speaker. Clearly this is the proper task of the eventual readers of these Proceedings. Instead, it would be preferable to stress some general issues. What came through very clearly is that the measurements of the basic scientists in materials and device phenomena are of sub­ stantial immediate concern to the device technologies and end users.

  15. Nondestructive testing: Neutron radiography and neutron activation. (Latest citations from the INSPEC: Information services for the physics and engineering communities database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning the technology of neutron radiography and neutron activation for nondestructive testing of materials. The development and evaluation of neutron activation analysis and neutron diffraction examination of liquids and solids are presented. Citations also discuss nondestructive assay, verification, evaluation, and multielement analysis of biomedical, environmental, industrial, and geological materials. Nondestructive identification of chemical agents, explosives, weapons, and drugs in sealed containers are explored. (Contains a minimum of 83 citations and includes a subject term index and title list.)

  16. Evaluating technology service options.

    Science.gov (United States)

    Blumberg, D F

    1997-05-01

    Four service and support options are available to healthcare organizations for maintaining their growth arsenals of medical and information technology. These options include maintaining and servicing all equipment using a facility-based biomedical engineering and MIS service department; using a combination of facility-based service and subcontracted service; expanding facility-based biomedical and MIS service departments to provide service to other healthcare organizations to achieve economies of scale; and outsourcing all maintenance, repair, and technical support services. Independent service companies and original equipment manufacturers (OEMs) are offering healthcare organizations a wider array of service and support capabilities than ever before. However, some health systems have successfully developed their own independent service organizations to take care of their own--and other healthcare organizations'--service and support needs.

  17. Standoff Detection Technology Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Standoff Detection Technology Evaluation facility is the only one of its kind in the country and allows researchers to release a known amount of material while...

  18. Nondestructive evaluation algorithm of fatigue cracks and far-side corrosion around a rivet fastener in multi-layered structures

    Energy Technology Data Exchange (ETDEWEB)

    Le, Min Hhuy; Kim, Jung Min [Research Center for IT-based Real Time NDT for Nano-Damage Tolerance, Chosun University, Gwangju (Korea, Republic of); Kim, Sejin; Wang, Dabin [Dept. of Control and Instrumentation Engineering, Graduate School, Chosun University, Gwangju (Korea, Republic of); Hwang, Young Ha [Avionics System Technology Center, KITECH, Youngcheon (Korea, Republic of)

    2016-09-15

    This research proposes a nondestructive inspection system for inspecting and localizing corrosion and fatigue cracks around rivets in air-intake structures. The system uses 64 InSb Hall sensor elements arrayed at a high spatial interval of 0.52 mm. Rivet detection and damage detection algorithms will be proposed. Analysis of the receiver operating characteristic curve and Probability of detection (POD) will be carried out to evaluate the performance of the system and detection algorithms. Artificial corrosion around a rivet with a minimum volume of 11.02 mm{sup 3} could be detected with 90/95% POD and artificial fatigue crack with minimum length of 2.95 mm from rivet body.

  19. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P. [Riso National Lab. (Denmark)

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  20. SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation

    Science.gov (United States)

    Nanekar, Paritosh; Kumar, Anish; Jayakumar, T.

    2015-04-01

    Focusing of sound has always been a subject of interest in ultrasonic non-destructive evaluation. An integrated approach to sound beam focusing using phased array and synthetic aperture focusing technique (PA-SAFT) has been developed in the authors' laboratory. The approach involves SAFT processing on ultrasonic B-scan image collected by a linear array transducer using a divergent sound beam. The objective is to achieve sound beam focusing using fewer elements than the ones required using conventional phased array. The effectiveness of the approach is demonstrated on aluminium blocks with artificial flaws and steel plate samples with embedded volumetric weld flaws, such as slag and clustered porosities. The results obtained by the PA-SAFT approach are found to be comparable to those obtained by conventional phased array and full matrix capture - total focusing method approaches.

  1. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Science.gov (United States)

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  2. The study on nondestructive evaluation for a tubular structure by the lamb-type guided wave wedge

    International Nuclear Information System (INIS)

    Cho, Yun Ho; Park, Jung Chul

    1998-01-01

    The study on the cylindrical guided wave was carried out to investigate its feasibility for nondestructive evaluation of tubular structures such as heat exchanger tubings of power industries and various pipings of chemical plants. The concept of wedge design and incident angle selection to optimize guided wave generation is presented based on the dispersion theory and the snell's law for the cylindrical guided wave. The brass tubes with artificial defects in the circumferential or axial direction were used for detect defection experiments. It was found that guided wave sensitivity for detecting an axial defect can be remarkably improved by using non-axisymmetrically launched guided waves. Through this study, it is expected that the guided wave can be successfully applied to tubular structure inspections as an more advanced and efficient NDE technique than a conventional point-by-point technique.

  3. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    International Nuclear Information System (INIS)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-01-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today

  4. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki

    2015-08-01

    Full Text Available Corrosion of reinforced concrete (RC structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  5. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for X-ray computed tomography (CT) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of X-ray computed tomography (CT) imaging equipment by specifying image data transfer and archival storage methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE test results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitio...

  6. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for digital radiographic (DR) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of digital X-ray imaging equipment by specifying image data transfer and archival methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitions, information modules and a ...

  7. Research process of nondestructive testing pitting corrosion in metal material

    Directory of Open Access Journals (Sweden)

    Bo ZHANG

    2017-12-01

    Full Text Available Pitting corrosion directly affects the usability and service life of metal material, so the effective nondestructive testing and evaluation on pitting corrosion is of great significance for fatigue life prediction because of data supporting. The features of pitting corrosion are elaborated, and the relation between the pitting corrosion parameters and fatigue performance is pointed out. Through introducing the fundamental principles of pitting corrosion including mainly magnetic flux leakage inspection, pulsed eddy current and guided waves, the research status of nondestructive testing technology for pitting corrosion is summarized, and the key steps of nondestructive testing technologies are compared and analyzed from the theoretical model, signal processing to industrial applications. Based on the analysis of the signal processing specificity of different nondestructive testing technologies in detecting pitting corrosion, the visualization combined with image processing and signal analysis are indicated as the critical problems of accurate extraction of pitting defect information and quantitative characterization for pitting corrosion. The study on non-contact nondestructive testing technologies is important for improving the detection precision and its application in industries.

  8. Evaluation of Kalman filters and genetic algorithms for delayed-neutron nondestructive assay data analyses

    International Nuclear Information System (INIS)

    Aumeier, S.E.; Forsmann, J.H.

    1998-01-01

    The ability to nondestructively determine the presence and quantity of fissile/fertile nuclei in various matrices is important in several areas of nuclear applications, including international and domestic safeguards, radioactive waste characterization, and nuclear facility operations. An analysis was performed to determine the feasibility of identifying the masses of individual fissionable isotopes from a cumulative delayed-neutron signal resulting form the neutron irradiation of several uranium and plutonium isotopes. The feasibility of two separate data-processing techniques was studied: Kalman filtering and genetic algorithms. The basis of each technique is reviewed, and the structure of the algorithms as applied to the delayed-neutron analysis problem is presented. The results of parametric studies performed using several variants of the algorithms are presented. The effect of including additional constraining information such as additional measurements and known relative isotopic concentration is discussed. The parametric studies were conducted using simulated delayed-neutron data representative of the cumulative delayed-neutron response following irradiation of a sample containing 238 U, 235 U, 239 Pu, and 240 Pu. The results show that by processing delayed-neutron data representative of two significantly different fissile/fertile fission ratios, both Kalman filters and genetic algorithms are capable of yielding reasonably accurate estimates of the mass of individual isotopes contained in a given assay sample

  9. Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Sik [Safetech Co. Ltd., Kimhae (Korea, Republic of); Oh, Yong Jun [Hanbat National Univ., Daejon (Korea, Republic of); Nam, Soo Woo [KISTI ReSEAT Program, Seoul (Korea, Republic of)

    2011-12-15

    It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creepfatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

  10. Linear Array Ultrasonic Testing Of A Thick Concrete Specimens For Non-Destructive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States); Zammerachi, Mattia [Univ. of Minnesota, Minneapolis, MN (United States); Ezell, N. Dianne Bull [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The University of Minnesota and Oak Ridge National Laboratory are collaborating on the design and construction of a concrete specimen with sufficient reinforcement density and cross-sectional size to represent a light water reactor (LWR) containment wall with various defects. The preliminary analysis of the collected data using extended synthetic aperture focussin technique (SAFT) reconstruction indicated a great potential of the ultrasound array technology for locating relatively shallow distresses. However, the resolution and reliability of the analysis is inversely proportional to the defect depth and the amount of reinforcement between the measurement point and the defect location. The objective of this round of testing is to evaluate repeatability of the obtained reconstructions from measurements with different frequencies as well as to examine the effect of the duration of the sending ultrasound signal on the resulting reconstructions. Two series of testing are performed in this study. The objective of the first series is to evaluate repeatability of the measurements and resulting reconstructed images. The measurements use three center frequencies. Five measurements are performed at each location with and without lifting the device. The analysis of the collected data suggested that a linear array ultrasound system can produce reliably repeatable reconstructions using 50 kHz signals for relatively shallow depths (less than 0.5 m). However, for reconstructions at the greater depths the use of lower frequency and/or signal filtering to reduce the effect of signal noise may be required. The objective of the second series of testing is to obtain measurements with various impulse signal durations. The entire grid on the smooth surface is tested with four different various impulse signal durations. An analysis of the resulting extended SAFT reconstructions suggested that Kirchhoff-based migration leads to easier interpreting reconstructions when shorter duration

  11. Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs.

    NARCIS (Netherlands)

    Blum, J.S.; Temenoff, J.S.; Park, H.; Jansen, J.A.; Mikos, A.G.; Barry, M.A.

    2004-01-01

    This study investigates the utility of genetically modified cells developed for the qualitative and quantitative non-destructive evaluation of cells on biomaterials. The Fisher rat fibroblastic cell line has been genetically modified to stably express the reporter genes enhanced green fluorescence

  12. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools : a guide for use and interpretation

    Science.gov (United States)

    Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin

    2004-01-01

    This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...

  13. Nuclear Technology. Course 32: Nondestructive Examination (NDE) II. Module 32-3, Fundamentals of Magnetic Particle Testing.

    Science.gov (United States)

    Groseclose, Richard

    This third in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II explains the principles of magnets and magnetic fields and how they are applied in magnetic particle testing, describes the theory and methods of magnetizing test specimens, describes the test equipment used, discusses the principles and…

  14. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-4, Operation of Magnetic Particle Test Equipment.

    Science.gov (United States)

    Groseclose, Richard

    This fourth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II describes the specific technique variables and options which are available to the test technician, provides instructions for selecting and operating the appropriate test equipment, describes physical criteria for detectable discontinuities,…

  15. Corrosion evaluation technology

    International Nuclear Information System (INIS)

    Kim, Uh Chul; Han, Jeong Ho; Nho, Kye Ho; Lee, Eun Hee; Kim, Hong Pyo; Hwang, Seong Sik; Lee, Deok Hyun; Hur, Do Haeng; Kim, Kyung Mo.

    1997-09-01

    A multifrequency ACPD system was assembled which can measure very small crack. Stress corrosion cracking test system with SSRT operating high temperature was installed. Stress corrosion cracking test of newly developed alloy 600 and existing alloy 600 was carried out in steam atmosphere of 400 deg C. No crack was observed in both materials within a test period of 2,000 hrs. Corrosion fatigue test system operating at high temperature was installed in which fatigue crack was measured by CDPD. Lead enhanced the SCC of the Alloy 600 in high temperature water, had a tendency to modify a cracking morphology from intergranular to transgranular. Pit initiation preferentially occurred at Ti-rich carbide. Resistance to pit initiation decreased with increasing temperature up to 300 deg C. Test loop for erosion corrosion was designed and fabricated. Thin layer activation technique was very effective in measuring erosion corrosion. Erosion corrosion of a part of secondary side pipe was evaluated by the Check Family Codes of EPRI. Calculated values of pipe thickness by Check Family Codes coincided with the pipe thickness measured by UT with an error of ± 20%. Literature review on turbine failure showed that failure usually occurred in low pressure turbine rotor disc and causes of failure are stress corrosion cracking and corrosion fatigue. (author). 12 refs., 20 tabs., 77 figs

  16. Nondestructive testing: welding industry

    International Nuclear Information System (INIS)

    Raj, Baldev; Subramanian, C.V.

    1992-01-01

    This chapter highlights various conventional and advanced nondestructive testing (NDT) techniques that have been used for weld evaluation. Welding Codes and Standards of International and National organisations that have been followed in India for various weld evaluation purposes are also included. The chapter also emphasises the importance of NDT by way of a few case studies that have been carried out on important critical welded components. (author). 12 refs., 17 figs., 1 appendix

  17. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  18. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    Energy Technology Data Exchange (ETDEWEB)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos, E-mail: filipelbck@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: josineide.santos@ufpe.br, E-mail: nilson.medeiros@ufpe.br, E-mail: otavio.santos@vitoria.ifpe.edu.br [Universidade Federal de Pernambuco (RAE/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Grupo de Radioecologia; Vieira, José Wilson, E-mail: jose.wilson59@uol.com.br [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Valois, Rhaiana Caminha, E-mail: rhaianavalois@hotmail.com [Colégio Militar do Recife, PE (Brazil)

    2017-07-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  19. Ultrasonic imaging algorithms with limited transmission cycles for rapid nondestructive evaluation.

    Science.gov (United States)

    Moreau, Ludovic; Drinkwater, Bruce W; Wilcox, Paul D

    2009-09-01

    Imaging algorithms recently developed in ultrasonic nondestructive testing (NDT) have shown good potential for defect characterization. Many of them are based on the concept of collecting the full matrix of data, obtained by firing each element of an ultrasonic phased array independently, while collecting the data with all elements. Because of the finite sound velocity in the test structure, 2 consecutive firings must be separated by a minimum time interval. Depending on the number of elements in a given array, this may become problematic if data must be collected within a short time, as it is often the case, for example, in an industrial context. An obvious way to decrease the duration of data capture is to use a sparse transmit aperture, in which only a restricted number of elements are used to transmit ultrasonic waves. This paper compares 2 approaches aimed at producing an image on the basis of restricted data: the common source method and the effective aperture technique. The effective aperture technique is based on the far-field approximation, and no similar approach exists for the near-field. This paper investigates the performance of this technique in near-field conditions, where most NDT applications are made. First, these methods are described and their point spread functions are compared with that of the Total Focusing Method (TFM), which consists of focusing the array at every point in the image. Then, a map of efficiency is given for the different algorithms in the near-field. The map can be used to select the most appropriate algorithm. Finally, this map is validated by testing the different algorithms on experimental data.

  20. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    International Nuclear Information System (INIS)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos; Valois, Rhaiana Caminha

    2017-01-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  1. Nondestructive testing method

    International Nuclear Information System (INIS)

    Porter, J.F.

    1996-01-01

    Nondestructive testing (NDT) is the use of physical and chemical methods for evaluating material integrity without impairing its intended usefulness or continuing service. Nondestructive tests are used by manufaturer's for the following reasons: 1) to ensure product reliability; 2) to prevent accidents and save human lives; 3) to aid in better product design; 4) to control manufacturing processes; and 5) to maintain a uniform quality level. Nondestructive testing is used extensively on power plants, oil and chemical refineries, offshore oil rigs and pipeline (NDT can even be conducted underwater), welds on tanks, boilers, pressure vessels and heat exchengers. NDT is now being used for testing concrete and composite materials. Because of the criticality of its application, NDT should be performed and the results evaluated by qualified personnel. There are five basic nondestructive examination methods: 1) liquid penetrant testing - method used for detecting surface flaws in materials. This method can be used for metallic and nonmetallic materials, portable and relatively inexpensive. 2) magnetic particle testing - method used to detect surface and subsurface flaws in ferromagnetic materials; 3) radiographic testing - method used to detect internal flaws and significant variation in material composition and thickness; 4) ultrasonic testing - method used to detect internal and external flaws in materials. This method uses ultrasonics to measure thickness of a material or to examine the internal structure for discontinuities. 5) eddy current testing - method used to detect surface and subsurface flaws in conductive materials. Not one nondestructive examination method can find all discontinuities in all of the materials capable of being tested. The most important consideration is for the specifier of the test to be familiar with the test method and its applicability to the type and geometry of the material and the flaws to be detected

  2. Evaluation of non-destructive density determination for QA/QC acceptance testing : research project capsule.

    Science.gov (United States)

    2017-08-01

    LTRCs Geotechnical and Asphalt groups will be conducting two separate field and laboratory evaluations. The Geotechnical group will evaluate field densities of soil layers and the asphalt group will evaluate field densities on asphalt pavement lay...

  3. The evaluation of the status of nondestructive testing (NDT) companies in the Philippines

    International Nuclear Information System (INIS)

    Mateo, Alejandro J.

    2002-10-01

    This research study assessed the present status of the NDT companies practicing the five techniques and methods in nondestructive testing and found answers to the following questions: what is the profile of the NDT companies and NDT personnel in terms of type, category of the company, number of years in operation, capitalization, nature of NDT services offered, number of certified NDT personnel their age, sex, marital status, educational attainment, monthly salary, NDT training and work experience of NDT personnel; what is the level of adequacy of the NDT companies based on the following organization-related factors: financial support human resources, availability of NDT/office equipment/vehicles, available facilities and quality systems; what is the status of the NDT companies in terms of level of performance, in-house activities, level of competitiveness and conformity with PNS-146:1998; are there significant differences in the perceptions of the respondent's on the status of the NDT companies when grouped according to age, sex, salary, work experience; and what personal and organizational-related factors affect the status of the NDT companies. The research study provided for the researcher an opportunity to identify and analyse the problems and concern of the local NDT sector to be able to recommend solutions for the NDT to attain the status of a profession and/or career and with all NDT companies and NDT personnel act as professionals in the performance of NDT services and other NDT-related activities. The study will achieve the following objectives: to the accredited NDT companies, the accreditation will provide the recognition of the companies as to the quality of personnel, equipment, and services they provide to the client; to the client, the accredited NDT companies will provide the assurance of the quality of personnel, equipment and service provided; to the other NDT companies, the accreditation of the NDT company will provide the impetus that they

  4. Evaluation of X-ray System for Nondestructive Testing on Radioactive Waste Drums

    International Nuclear Information System (INIS)

    Park, Jong Kil; Maeng, Seong Jun; Lee, Yeon Ee; Hwang, Tae Won

    2008-01-01

    The physical and chemical properties of radioactive waste drums, which have been temporarily stored on site, should be characterized before their shipment to a disposal facility in order to prove that the properties meet the acceptance guideline. The investigation of NDT(Nondestructive Test) method was figured out that the contents in drum, the quantitative analysis of free standing water and void fraction can be examined with X-ray NDT techniques. This paper describes the characteristics of X-ray NDT such as its principles, the considerations for selection of X-ray system, etc. And then, the waste drum characteristics such as drum type and dimension, contents in drum, etc. were examined, which are necessary to estimate the optimal X-ray energy for NDT of a drum. The estimation results were that: the proper X-ray energy is under 3 MeV to test the drums of 320 β and less; both X-ray systems of 450 keV and/or 3 MeV might be needed considering the economical efficiency and the realization. The number of drums that can be tested with 450 keV and 3 MeV X-ray system was figured out as 42,327 and 18,105 drums (based on storage of 2006. 12), respectively. Four testing scenarios were derived considering equipment procurement method, outsourcing or not, etc. The economical and feasibility assessment for the scenarios was resulted in that an optimal scenario is dependent on the acceptance guide line, the waste generator's policy on the waste treatment and the delivery to a disposal facility, etc. For example, it might be desirable that a waste generator purchases two 450 keV mobile system to examine the drums containing low density waste, and that outsourcing examination for the high density drums, if all NDT items such as quantitative analysis for 'free standing water' and 'void fraction', and confirmation of contents in drum have to be characterized. However, one 450 keV mobile system seems to be required to test only the contents in 13,000 drums per year.

  5. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  6. Evaluating prestressing strands and post-tensioning cables in concrete structures using nondestructive methods.

    Science.gov (United States)

    2015-11-01

    The objectives were to evaluate the ability of different NDE methods to detect and quantify : defects associated with corrosion of steel reinforcement and grout defects in post-tensioning : applications; and to evaluate the effectiveness of selected ...

  7. Pilot study to examine use of transverse vibration nondestructive evaluation for assessing floor systems

    Science.gov (United States)

    Zhiyong. Cai; Robert J. Ross; Michael O. Hunt; Lawrence A. Soltis

    2002-01-01

    Evaluation of existing timber structures requires procedures to evaluate in situ structural members and components. This report evaluates the transverse vibration response of laboratory-built floor systems with new and salvaged joists. The objectives were to 1) compare floor system response to individual member response; 2) examine response sensitivity to location of...

  8. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young Hwan; Shin, Hyun Jae [Sungkwunkwan Univ., Seoul (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Chung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul National University of Technology, Seoul (Korea, Republic of)

    2001-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of nuclear power plant. In order to Improve reliabilities of ultrasonic testing and eddy current testing, the following five subjects were carried out in this study: development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field and evaluation of statistical reliability of PD-RR test of ultrasonic testing. As results, BEM analysis of eddy current signal, intelligent analysis of eddy current signal using neural network, and FEM analysis of remote field eddy current testing have been developed for the inspection of SG tubes. FEM analysis of ultrasonic waves in 2-dimensional media and evaluation of statistical reliability of ultrasonic testing with PD-RR test also have been carried out for the inspection of weldments. Those results can be used to Improve reliability of nondestructive testing.

  9. Development of life evaluation technology for nuclear power plant components

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young Hwan; Shin, Hyun Jae; Lee, Hyang Beom; Shin, Young Kil; Chung, Hyun Jo; Park, Ik Keun; Park, Eun Soo

    2001-03-01

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of nuclear power plant. In order to Improve reliabilities of ultrasonic testing and eddy current testing, the following five subjects were carried out in this study: development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field and evaluation of statistical reliability of PD-RR test of ultrasonic testing. As results, BEM analysis of eddy current signal, intelligent analysis of eddy current signal using neural network, and FEM analysis of remote field eddy current testing have been developed for the inspection of SG tubes. FEM analysis of ultrasonic waves in 2-dimensional media and evaluation of statistical reliability of ultrasonic testing with PD-RR test also have been carried out for the inspection of weldments. Those results can be used to Improve reliability of nondestructive testing

  10. Improvement of the reliability on nondestructive inspection

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young H.; Lee, Hyang Beom; Shin, Young Kil; Jung, Hyun Jo; Park, Ik Keun; Park, Eun Soo

    2002-03-01

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time

  11. Improvement of the reliability on nondestructive inspection

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Kim, Young H. [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lee, Hyang Beom [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan National Univ., Gunsan (Korea, Republic of); Jung, Hyun Jo [Wonkwang Univ., Iksan (Korea, Republic of); Park, Ik Keun; Park, Eun Soo [Seoul Nationl Univ., Seoul (Korea, Republic of)

    2002-03-15

    Retaining reliabilities of nondestructive testing is essential for the life-time maintenance of Nuclear Power Plant. The nondestructive testing methods which are frequently used in the Nuclear Power Plant are eddy current testing for the inspection of steam generator tubes and ultrasonic testing for the inspection of weldments. In order to improve reliabilities of ultrasonic testing and eddy current testing, the subjects carried out in this study are as follows : development of BEM analysis technique for ECT of SG tube, development of neural network technique for the intelligent analysis of ECT flaw signals of SG tubes, development of RFECT technology for the inspection of SG tube, FEM analysis of ultrasonic scattering field, evaluation of statistical reliability of PD-RR test of ultrasonic testing and development of multi-Gaussian beam modeling technique to predict accurate signal of signal beam ultrasonic testing with the efficiency in calculation time.

  12. Nondestructive evaluation of hardwood logs:CT scanning, machine vision and data utilization

    Science.gov (United States)

    Daniel L. Schmoldt; Luis G. Occena; A. Lynn Abbott; Nand K. Gupta

    1999-01-01

    Sawing of hardwood logs still relies on relatively simple technologies that, in spite of their lack of sophistication, have been successful for many years due to wood?s traditional low cost and ready availability. These characteristics of the hardwood resource have changed dramatically over the past 20 years, however, forcing wood processors to become more efficient in...

  13. A Study on Nondestructive Technique Using Laser Technique for Evaluation of Carbon fiber Reinforced Plastic

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun; Seo, Kyeong Cheol; Byun, Joon Hyung

    2005-01-01

    Fiber reinforced plastic material should be inspected in fabrication process in order to enhance quality by prevent defects such as delamination and void. Generally, ultrasonic technique is widely used to evaluate FRP. In conventional ultrasonic techniques, transducer should be contacted on FRP. However, conventional contacting method could not be applied in fabrication process and novel non-contact evaluating technique was required. Laser-based ultrasonic technique was tried to evaluate CFRP plate. Laser-based ultrasonic waves propagated on CFRP were received with various transducers such as accelerometer and AE sensor in order to evaluate the properties of waves due to the variation of frequency. Velocities of laser-based ultrasonic waves were evaluated for various fiber orientation. In addition, laser interferometry was used to receive ultrasonic wave in CFRP and frequency was analysed

  14. Role of research in non-destructive evaluation for life management of Indian fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rao, B.P.C.; Jayakumar, T.; Kumar, A.; Raj, B. [Non Destructive Evaluation Div., Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2007-07-01

    The successful design, construction and operation of fast breeder test reactor at Indira Gandhi Center for Atomic Research, demonstrating the technological viability of fast breeder reactors (FBRs) has paved the way for stepping into the commercial phase of the second stage of the Indian nuclear power programme. The important role of NDE is ensuring quality assurance of components during manufacture and in-service inspection (ISI) of installed components. In the area of NDE, several new technologies have been developed for inspection of in-core and out-of-core components and implemented in field. These include quality assurance of steam generator tubes and tube-to-tube sheet welds; ISI of welds in main vessel and safety vessel; ISI of inspection of steam generators; ISI of core support structure; inspection of concrete; detection of intergrannular corrosion; and under-sodium viewing. This paper demonstrates how these developments enable effective plant management of Indian FBRs. (orig.)

  15. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    International Nuclear Information System (INIS)

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-01

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm −1 to 68 cm −1 to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100° C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  16. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  17. Nondestructive pavement evaluation using finite element analysis based soft computing models.

    Science.gov (United States)

    2009-09-15

    Evaluating structural condition of existing, in-service pavements constitutes annually a major part of the : maintenance and rehabilitation activities undertaken by State Highway Agencies (SHAs). Accurate : estimation of pavement geometry and layer m...

  18. GENERAL ENVIRONMENTAL CORPORATION; CURE ELECTROCOAGULATION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The CURE electrocoagulation technology was demonstrated under the Superfund Innovative Technology Evaluation (SITE) program at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS), where water from the solar evaporation ponds (SEPs) was contaminat...

  19. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    Science.gov (United States)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  20. Development of nondestructive evaluation of creep-fatigue damage in SUS316 stainless steel

    International Nuclear Information System (INIS)

    Shoji, Tetsuo; Kawahara, Tetsuji; Awano, Masakazu; Sato, Yasumoto

    1999-01-01

    Creep-fatigue is a fatal failure mode of high temperature structural materials. It is recognized that the law of linear damage, according to which creep-fatigue damage is expressed by the sum of the creep damage and the fatigue damage, is inadequate to evaluate creep-fatigue damage. This is due to the fact that the law of linear damage does not include the effect of interaction between the creep damage and the fatigue damage. Consequently, development of direct measurement of damage accumulation on the sample of interest is required for plant life evaluation. In this study, the induced current focusing potential drop (ICFPD) technique was used to evaluate the depth of small surface cracks in SUS316FR stainless steel which was subjected to creep-fatigue damage. It is shown that the potential drop increased during the micro-crack initiation and propagation. Correspondingly, the ICFPD technique applied to estimate micro-crack depth changes was used to accurately evaluate the residual life of creep-fatigue damaged structural materials. (author)

  1. Nondestructive Evaluation of a Be/Cu Diffusion Bond using a Shear Horizontal Wave

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun Kyu; Cheong, Yong Moo; Lee, Dong Won; Hong, Bong Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The International Thermo-nuclear Experimental Reactor (ITER) blanket first wall includes Beryllium(Be) amour tiles joined to a CuCrZr heat sink with stainless steel cooling tubes. This first wall's panels are one of the critical components in the ITER which is exposed with a surface heat flux of 0.5 MW/m2. As a qualification program, ultrasonic test (UT) of a Be/CuCrZr diffusion bond has to be applied according to the proper procedure. Ultrasonic test can detect the presence of unbonded regions and is based on an amplitude change and a phase inversion in a signal reflected from a bond interface. The purpose of this study is to investigate the feasibility of EMAT (Electro-Magnetic Acoustic Transducer) technology for an in-situ inspection of a Be/Copper alloy joining interface under a high temperature and high radiation environment.

  2. Nondestructive Evaluation of a Be/Cu Diffusion Bond using a Shear Horizontal Wave

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Cheong, Yong Moo; Lee, Dong Won; Hong, Bong Keun

    2009-01-01

    The International Thermo-nuclear Experimental Reactor (ITER) blanket first wall includes Beryllium(Be) amour tiles joined to a CuCrZr heat sink with stainless steel cooling tubes. This first wall's panels are one of the critical components in the ITER which is exposed with a surface heat flux of 0.5 MW/m2. As a qualification program, ultrasonic test (UT) of a Be/CuCrZr diffusion bond has to be applied according to the proper procedure. Ultrasonic test can detect the presence of unbonded regions and is based on an amplitude change and a phase inversion in a signal reflected from a bond interface. The purpose of this study is to investigate the feasibility of EMAT (Electro-Magnetic Acoustic Transducer) technology for an in-situ inspection of a Be/Copper alloy joining interface under a high temperature and high radiation environment

  3. Development of nondestructive evaluation techniques for DAM inspection. Progress report, January 1995 through August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A. E.; Thomas, G.H.

    1997-09-04

    The Lawrence Livermore National Laboratory has concluded a two and a half year study on the development of an ultrasonic inspection system to inspect post stressed steel tendons on dams and flood gates. The inspection systems were part of a program for the California Department of Water Resources. The effort included the identification of the location and amount of corrosion damage to the tendons, identification of the cause of corrosion, and the technology for inhibiting corrosion. Several NDE methods for inspecting and quantifying damage to steel reinforced concrete water pipes were investigated and presented to the DWR for their consideration. The additional methods included Ground Penetrating RADAR, Electro- Potential Measurements, Infrared Technology, Pipe Inspection Crawlers (designed to travel inside pipelines and simultaneously report on the pipe condition as viewed by ultrasonic methods and video cameras from within the pipeline.) Reference to consultants hired by LLNL for similar on-site corrosion inspections were given to the DWR. The LLNL research into industries that have products to prevent corrosion resulted in the identification of an Innsbruck, Austria, company. This company claims to have products to permanently protect post- or pre-stressed tendons. The caveat is that the tendon protection system must be installed when the tendons are installed because no retrofit is available. Corrosion mitigation on the steel reinforcements surrounding the concrete was addressed through active and passive cathodic protection schemes. The combination of corrosion and erosion were addressed during consideration for the inspection of water-pump impeller-blades that are used in the three stage, million horsepower, pumping stations at Edmunston.

  4. Non-destructive testing at Chalk River

    International Nuclear Information System (INIS)

    Hilborn, J.W.

    1976-01-01

    In 1969 CRNL recognized the need for a strong group skilled in non-destructive test procedures. Within two years a new branch called Quality Control Branch was staffed and working. This branch engages in all aspects of non-destructive testing including development of new techniques, new applications of known technology, and special problems in support of operating reactors. (author)

  5. Technology Review of Nondestructive Methods for Examination of Water Intrusion Areas on Hanford’s Double-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Michael L.; Pardini, Allan F.

    2008-05-09

    Under a contract with CH2M Hill Hanford Group, Inc., PNNL has performed a review of the NDE technology and methods for examination of the concrete dome structure of Hanford’s double-shell tanks. The objective was to provide a matrix of methodologies that could be evaluated based on applicability, ease of deployment, and results that could provide information that could be used in the ongoing structural analysis of the tank dome. PNNL performed a technology evaluation with the objective of providing a critical literature review for all applicable technologies based on constraints provided by CH2M HILL. These constraints were not mandatory, but were desired. These constraints included performing the evaluation without removing any soil from the top of the tank, or if necessary, requesting that the hole diameter needed to gain access to evaluate the top of the tank structure to be no greater than approximately 12-in. in diameter. PNNL did not address the details of statistical sampling requirements as they depend on an unspecified risk tolerance. PNNL considered these during the technology evaluation and have reported the results in the remainder of this document. Many of the basic approaches to concrete inspection that were reviewed in previous efforts are still in use. These include electromagnetic, acoustic, radiographic, etc. The primary improvements in these tools have focused on providing quantitative image reconstruction, thus providing inspectors and analysts with three-dimensional data sets that allow for operator visualization of relevant abnormalities and analytical integration into structural performance models. Available instruments, such as radar used for bridge deck inspections, rely on post-processing algorithms and do not provide real-time visualization. Commercially available equipment only provides qualitative indications of relative concrete damage. It cannot be used as direct input for structural analysis to assess fitness for use and if

  6. Non-destructive inspection technology using a magnetic transmission sensor; Jiki toka sensor wo mochiita hihakai kensa gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Obama, H.

    1996-06-01

    A newly developed magnetic sensor for non-destructive inspection has acquired the U.S. patent. The starting point of the invention was an inspection of aluminum broth bags in cup-noodle containers with aluminum leaf cover, which was asked from a food maker. A method was developed, in which the microwave is transmitted through containers below their covers and the reflected wave is detected. Then, development of an inspection apparatus for spot welding parts used for automobiles was requested. Since welding is carried out using large current for the spot welding, magnetic characteristics change greatly, which is a remarkable phenomenon appearing especially for magnetic substances. This was found out to be the same phenomenon as the hardening of swords consisting of high temperature heating, pressurizing, and quenching. This substance with two changes can be considered as another material different from the base metal. Coils fitted to impressions were made, and their test pieces were measured. The correlation coefficient over 0.9 was obtained between measured values and results of tensile strength tests. This apparatus can be applied to the non-destructive inspection of internal defects of castings. 2 figs.

  7. Short time evaluation of metallic materials' fatigue potential combining destructive and non-destructive testing methods

    International Nuclear Information System (INIS)

    Starke, Peter; Wu, Haoran; Boller, Christian

    2015-01-01

    Fatigue of engineering structures is an issue from an engineering design point. The lifetime of materials being subject to repeated mechanical loads is limited. Different examples of failures and fateful air accidents have caused significant cost and claims to the operators as well as manufacturers in excess of fatalities. Criticality of failure increases with increasing age and the uncertainty of operational loads applied. In such a case a reassessment of a structural materials' condition is in big need should damage tolerance criteria still be met, being the essential ground rule for aeronautical structural design. It is therefore the challenging aim to use a metallic material's microstructure characterizing non-destructive testing (NDT) parameter or a combination of those as a parameter to be scanned over a defined surface of the component considered to more realistically characterize the damage condition and to use this information twofold: (a) to more precisely assess the structural component's residual life and (b) to feed the information recorded back into a specific database belonging to an approach named PHYBAL. The physically based fatigue life evaluation method (PHYBAL) is a short-time procedure for the evaluation of fatigue data based on a small number of fatigue tests performed on un-notched specimens only. This method significantly reduces the effort for experimentation in terms of time and cost by around 90 % and inhibits remarkable scientific as well as economic advantages. The paper highlights the high capability of PHYBAL as well as the suitability for assessing the residual life of aeronautical components also with respect to the application of this approach in the light of structural health monitoring issues.

  8. Fabrication of imitative cracks by 3D printing for electromagnetic nondestructive testing and evaluations

    Directory of Open Access Journals (Sweden)

    Noritaka Yusa

    2016-05-01

    Full Text Available This study demonstrates that 3D printing technology offers a simple, easy, and cost-effective method to fabricate artificial flaws simulating real cracks from the viewpoint of eddy current testing. The method does not attempt to produce a flaw whose morphology mirrors that of a real crack but instead produces a relatively simple artificial flaw. The parameters of this flaw that have dominant effects on eddy current signals can be quantitatively controlled. Three artificial flaws in type 316L austenitic stainless steel plates were fabricated using a powderbed-based laser metal additive manufacturing machine. The three artificial flaws were designed to have the same length, depth, and opening but different branching and electrical contacts between flaw surfaces. The flaws were measured by eddy current testing using an absolute type pancake probe. The signals due to the three flaws clearly differed from each other although the flaws had the same length and depth. These results were supported by subsequent destructive tests and finite element analyses.

  9. Nondestructive evaluation of loose assemblies using multi-frequency eddy currents and artificial neural networks

    International Nuclear Information System (INIS)

    Vourc’h, Eric; Le Gac, Guillaume; Larzabal, Pascal; Joubert, Pierre-Yves

    2013-01-01

    This paper considers the problem of the evaluation of metallic assemblies in an aeronautical context, by means of a non-invasive method. The problems lies in the estimation of the distance separating two aluminum plates representative of a loose assembly (up to 300 µm), the top plate being possibly of unknown thickness ranging from 1 to 8 mm. To do so, the eddy current (EC) method is chosen, because it allows non-contact evaluation of conducting media to be carried out, which is sensitive to electrical conductivity changes in the part under evaluation, and hence to the presence of an air gap between parts. The problem falls into the category of evaluation of a multilayered conductive structure starting from EC data, which is an ill-posed problem. In order to bypass these difficulties, as well as to deal with the uncertainties that may be introduced by the experimental set-up, a ‘non-model’ approach is implemented by means of an artificial neural network (ANN). The latter is elaborated in a statistical learning approach starting from the experimental EC data provided by a ferrite cored coil EC probe used to investigate an assembly mockup of adjustable configuration. Moreover, in order to build a learning database allowing a robust and accurate ANN to be elaborated, as well as to deal with assemblies of unknown thicknesses, we consider EC data obtained at different frequencies chosen in an adjusted frequency bandwidth, experimentally determined so as to optimize the sensitivity toward the presence of an air gap between parts. The implementation of the proposed approach for distances between parts ranging from 60 to 300 µm provided estimated root mean square errors ranging from 7 μm up to 50 µm for the estimation of the distance between parts, and ranging from 20 µm up to 1.4 mm for the estimation of the top plates, ranging from 1 to 8 mm, respectively. (paper)

  10. Non-destructive evaluation of impact damage on carbon fiber laminates: Comparison between ESPI and Shearography

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarulo, V., E-mail: v.pagliarulo@isasi.cnr.it; Ferraro, P. [CNR National Research Council, ISASI, Institute of Applied Sciences and Intelligent Systems, via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); Lopresto, V.; Langella, A. [Dpt. Of Chemicals, Materials and Production Engin., University of Naples “Federico II”, P.leTecchio 80, Naples (Italy); Antonucci, V.; Ricciardi, M. R. [CNR National Research Council, IPCB, Institute of Polymer Composites and Biomedical Materials, P.E. Fermi, Portici (Italy)

    2016-06-28

    The aim of this paper is to investigate the ability of two different interferometric NDT techniques to detect and evaluate barely visible impact damage on composite laminates. The interferometric techniques allow to investigate large and complex structures. Electronic Speckle Pattern Interferometry (ESPI) works through real-time surface illumination by visible laser (i.e. 532 nm) and the range and the accuracy are related to the wavelength. While the ESPI works with the “classic” holographic configuration, that is reference beam and object beam, the Shearography uses the object image itself as reference: two object images are overlapped creating a shear image. This makes the method much less sensitive to external vibrations and noise but with one difference, it measures the first derivative of the displacement. In this work, different specimens at different impact energies have been investigated by means of both methods. The delaminated areas have been estimated and compared.

  11. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Andersen, E.S.; Bowey, R.E.; Diaz, A.A.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1991-01-01

    This program is intended to establish the effectiveness, reliability and adequacy of inservice inspection of reactor pressure vessels and primary piping systems and the impact of ISI reliability on system integrity. The objectives of the program include: (a) determine the effectiveness and reliability of ultrasonic inservice inspection (ISI) performed on commercial, light water reactor pressure vessels and piping; (b) recommend Code changes to the inspection procedures to improve the reliability of ISI; (c) using fracture mechanics analysis, determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to assure a suitably low failure probability; (d) evaluate the degree of reliability improvement which could be achieved using improved NDE techniques; and (e) based on importance of component to safety, material properties, service conditions, and NDE uncertainties, formulate improved inservice inspection criteria (including sampling plan, frequency, and reliability of inspection) for revisions to ASME Section XI and regulatory requirements needed to assure suitably low failure probabilities

  12. Finite element modeling of stress corrosion cracking for electromagnetic nondestructive evaluations

    International Nuclear Information System (INIS)

    Wang, J.; Yusa, N.; Hashizume, H.

    2012-01-01

    This paper discusses appropriate numerical model for a stress corrosion crack (SCC) from the viewpoint of anisotropy of their conductivity. Two SCCs, which are introduced into a plate of type 316 stainless steel, are considered. Finite element simulations are carried out to evaluate the conductivity. In the simulations, the cracks are modeled as a region with a constant width on the basis of the destructive tests. The results show the conductivity on direction of width has large effect to the accuracy of numerical modeling of SCC, whereas the conductivities on direction of length and depth almost do not have remarkable effects. The results obtained by this study indicate that distribution of conductivity along the surface of a crack would be more important than the anisotropy in modeling SCCs in finite element simulations

  13. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Meenakshisundaram, V.

    1983-01-01

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to conrete. A 4.36 mCi 137 Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary conretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method. (orig.)

  14. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, V M; Bhatnagar, P K; Meenakshisundaram, V [Reactor Research Centre, Kalpakkam (India). Safety Research Lab.

    1983-02-15

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to concrete. A 4.36 mCi /sup 137/Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary concretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method.

  15. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chengguang [College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, PR China and Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom); Drinkwater, Bruce W. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom)

    2014-02-18

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  16. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    International Nuclear Information System (INIS)

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-01-01

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded

  17. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    Science.gov (United States)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  18. 76 FR 30696 - Technology Evaluation Process

    Science.gov (United States)

    2011-05-26

    ...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... (DOE) seeks comments and information related to a commercial buildings technology evaluation process... evaluation efforts. The goal of creating this standard process is to evaluate energy-saving technologies in a...

  19. Voluntary Consensus Organization Standards for Nondestructive Evaluation of Thin-Walled Metallic Liners and Composite Overwraps in Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA fracture control requirements outlined in NASA-STD-5009 and NASA-STD-5014 are predicated on the availability and use of sensitive nondestructive evaluation (NDE) methods that can detect and monitor defects, thereby providing data that can be used to predict failure or reduce the risk of failure in fracture critical components. However, in the case of composite materials and components, including composite overwrapped pressure vessels (COPVs), the effect of defects is poorly understood, the NDE methods used to evaluate locate and size defects are typically at lower technical readiness level than analogous NDE methods used for metals, and demonstration studies to verify the probability of detection (POD) are generally lacking or unavailable. These factors together make failure prediction of fracture critical composite materials and components based on size, quantity, or orientation of defects nearly impossible. Also, when inspecting metal liners in as-manufactured COPVs, sensitivity is lost and only the inner surface of the liner is accessible. Also, NDE of COPVs as applied during manufacturing varies significantly from manufacturer to manufacturer and has not yet been standardized. Although requirements exist to perform NDE immediately after manufacturing to establish initial integrity of the parts, procedural detail for NDE of composites is still nonexistent or under development. For example, in practice, only a visual inspection of COPVs is performed during manufacturing and service, leaving in question whether defects of concern, for example, bridging, overwrap winding anomalies, impact damage below visible threshold, out-of-family strain growth, and liner buckling have been adequately detected and monitored. To address these shortcomings, in 2005 the NASA Nondestructive Evaluation Working Group (NNWG) began funding work to develop and adopt standards for nondestructive evaluation of aerospace composites in collaboration with the American Society for Testing

  20. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  1. Quantitative Nondestructive Evaluation

    Science.gov (United States)

    1979-10-01

    about 0.9 times the shear wave velocity. Waves which propagate in materials having thicknesses comparable to the wave length are called Lamb waves... Lamb wave particle motion is very complex and many modes are possible, some symmetric and some unsymmetric with respect to the midplane of the plate...DRXMR-PL 1 -MT, Mr. Farrow 1 Watertown, Massachusetts 02172 Commander White Sands Missile Range ATTN: STEWS -AD-L 1 White Sands Missile

  2. Non-destructive Engineering

    International Nuclear Information System (INIS)

    Ko, Jin Hyeon; Ryu, Taek In; Ko, Jun Bin; Hwang, Yong Hwa

    2006-08-01

    This book gives descriptions of non-destructive engineering on outline of non-destructive test, weld defects, radiographic inspection radiography, ultrasonic inspection, magnetic particle testing, liquid penetrant testing, eddy current inspection method, strain measurement, acoustic emission inspection method, other non-destructive testing like leakage inspection method, and non-destructive mechanics for fault analysis such as Griffiths creaking theory, and stress analysis of creaking.

  3. 76 FR 37344 - Technology Evaluation Process

    Science.gov (United States)

    2011-06-27

    ...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... seeks comments and information related to a commercial buildings technology evaluation process. DOE is seeking to create a process for evaluating emerging and underutilized energy efficient technologies for...

  4. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.; Qian, S.; Littrell, K.; Parish, C.M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Plummer, L.K. [University of Oregon, Eugene, OR 97403 (United States)

    2015-05-15

    A nondestructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless-steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount (≈20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for determining absolute hydrogen concentrations.

  5. Review of the status of nondestructive measurement techniques to quantify material property degradation due to aging and planning for further evaluation

    International Nuclear Information System (INIS)

    Boyd, D.M.; Bruemmer, S.M.; Green, E.R.; Schuster, G.J.; Simonen, E.P.

    1989-01-01

    The materials used in nuclear reactors are inspected periodically during the service life of the power plant to detect degradation that might occur. These inspections follow the rules specified in Section XI of the ASME Boiler and Pressure Vessel Code. These inspections are designed to detect service-induced failure mechanisms. This program is designed not to look at the detection of defects but the marking of nondestructive measurements to quantify the material properties that a defect may reside in or the incipient condition(s) that may initiate a defect. This program is intended to provide an assessment of the technologies that are available to quantify with nondestructive measurements material properties or material property changes related to degradation due to aging of structural components in light water reactors. In addition, a program plan will be developed that describes the work necessary to create adequate engineering data bases for demonstrating and validating prototypic systems for making these measurements. The main thrust this year has been an extensive review of literature and an assessment of the technology. The second major activity was the planning of a workshop to bring together 30 leading experts in materials and NDE to discuss the state-of-the-art and to address where future work should go

  6. Nondestructive examination

    International Nuclear Information System (INIS)

    Mletzko, U.

    1980-01-01

    Visual examination is treated as a method for the control of size and shape of components, surface quality and weld performance. Dye penetrant, magnetic particle and eddy current examinations are treated as methods for the evaluation of surface defects and material properties. The limitations to certain materials, defect sizes and types are shown. (orig./RW)

  7. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.

    Science.gov (United States)

    Neumann, Alexander J; Quinn, Timothy; Bryant, Stephanie J

    2016-07-15

    Photopolymerizable and hydrolytically labile poly(ethylene glycol) (PEG) hydrogels formed from photo-clickable reactions were investigated as cell delivery platforms for cartilage tissue engineering (TE). PEG hydrogels were formed from thiol-norbornene PEG macromers whereby the crosslinks contained caprolactone segments with hydrolytically labile ester linkages. Juvenile bovine chondrocytes encapsulated in the hydrogels were cultured for up to four weeks and assessed biochemically and histologically, using standard destructive assays, and for mechanical and ultrasound properties, as nondestructive assays. Bulk degradation of acellular hydrogels was confirmed by a decrease in compressive modulus and an increase in mass swelling ratio over time. Chondrocytes deposited increasing amounts of sulfated glycosaminoglycans and collagens in the hydrogels with time. Spatially, collagen type II and aggrecan were present in the neotissue with formation of a territorial matrix beginning at day 21. Nondestructive measurements revealed an 8-fold increase in compressive modulus from days 7 to 28, which correlated with total collagen content. Ultrasound measurements revealed changes in the constructs over time, which differed from the mechanical properties, and appeared to correlate with ECM structure and organization shown by immunohistochemical analysis. Overall, non-destructive and destructive measurements show that this new hydrolytically degradable PEG hydrogel is promising for cartilage TE. Designing synthetic hydrogels whose degradation matches tissue growth is critical to maintaining mechanical integrity as the hydrogel degrades and new tissue forms, but is challenging due to the nature of the hydrogel crosslinks that inhibit diffusion of tissue matrix molecules. This study details a promising, new, photo-clickable and synthetic hydrogel whose degradation supports cartilaginous tissue matrix growth leading to the formation of a territorial matrix, concomitant with an

  8. Agreement on economic and technological cooperation between the Federal Republic of Germany and the GDR. Project part 3.2, ''NDT and QA''. Project task 2.11. Experiments with the full-size vessel in Stuttgart for selection of practice-relevant non-destructive testing methods for evaluation of the value and performance of recurrent inspections of reactor components. Final report

    International Nuclear Information System (INIS)

    Betzold, K.; Brinette, R.; Bonitz, F.

    1992-01-01

    The efficiency of NDT methods such as ALOK, SAFT, EMUS, LLT, phased array, and multi-frequency eddy current testing which are generally used for reactor components recurrent inspection has been verified with experiments using two test specimens. These are a section of a main coolant pipe and the full-size vessel installed at MPA-Stuttgart, furnished with PWR test bodies with artificial defects and artificially applied natural defects. The defects have been detected with commercial probes as well as with probes optimized for the NDT methods EMUS, LLT, phased array, and multi-frequency eddy current testing. Type, location, orientation and geometry of the defects have been measured, also recording the influence of type of defect on the efficiency of the NDT methods, in order to reveal problems linked with the various methods as well as their advantages. Further tests have been made for evaluation of a combination of ALOK and SAFT using novel, specifically developed test probes, and a combination of ALOK and phased array testing. (orig.) [de

  9. An Information Technology Framework for the Development of an Embedded Computer System for the Remote and Non-Destructive Study of Sensitive Archaeology Sites

    Directory of Open Access Journals (Sweden)

    Iliya Georgiev

    2017-04-01

    Full Text Available The paper proposes an information technology framework for the development of an embedded remote system for non-destructive observation and study of sensitive archaeological sites. The overall concept and motivation are described. The general hardware layout and software configuration are presented. The paper concentrates on the implementation of the following informational technology components: (a a geographically unique identification scheme supporting a global key space for a key-value store; (b a common method for octree modeling for spatial geometrical models of the archaeological artifacts, and abstract object representation in the global key space; (c a broadcast of the archaeological information as an Extensible Markup Language (XML stream over the Web for worldwide availability; and (d a set of testing methods increasing the fault tolerance of the system. This framework can serve as a foundation for the development of a complete system for remote archaeological exploration of enclosed archaeological sites like buried churches, tombs, and caves. An archaeological site is opened once upon discovery, the embedded computer system is installed inside upon a robotic platform, equipped with sensors, cameras, and actuators, and the intact site is sealed again. Archaeological research is conducted on a multimedia data stream which is sent remotely from the system and conforms to necessary standards for digital archaeology.

  10. Evaluation of stress-induced martensite phase in ferromagnetic shape memory alloy Fe-30.2at%Pd by non-destructive Barkhausen noise

    Science.gov (United States)

    Furuya, Yasubumi; Okazaki, Teiko; Ueno, Takasi; Spearing, Mark; Wutting, Manfred

    2005-05-01

    Barkhausen noise (BHN) method seems a useful tecnique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy, which is used as the filler of our proposing "Smart Composite Board". The concept of design for "Smart Composite Board" which can combine the non-destructive magnetic inspection and shape recovery function in the material itself was formerly proposed. In the present study, we survey the possibility of Barkhausen noise (BHN) method to detect the transformation of microscopic martensite phase caused by stress-loading in Fe-30.2at%Pd thin foil, which has a stable austenite phase (fcc structure) at room temperature. The BHN voltage was measured at loading stress up to 100 MPa in temperature range of 300K to 373K. Stress-induced martensite twin was observed by laser microscope above loading stress of 25 MPa. A phase transformation caused by loading stress were analyzed also by X-ray diffraction. The signals of BHN are analyzed by the time of magnetization and the noise frequency. BHN caused by grain boundaries appears in the lower frequency range (1kHz-3kHz) and BHN by martensite twin in the higher frequency range (8kHz-10kHz). The envelope of the BHN voltage as a function of time of magnetization shows a peak due to austenite phase at weak magnetic field. The BHN envelope due to martensite twins creates additional two peaks at intermediate magnetic field. BHN method turns out to be a powerful technique for non-destructive evaluation of the phase transformation of ferromagnetic shape memory alloy.

  11. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    International Nuclear Information System (INIS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-01-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains.Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered.A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms).There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented. (paper)

  12. Technology Games: Using Wittgenstein for Understanding and Evaluating Technology.

    Science.gov (United States)

    Coeckelbergh, Mark

    2017-08-15

    In the philosophy of technology after the empirical turn, little attention has been paid to language and its relation to technology. In this programmatic and explorative paper, it is proposed to use the later Wittgenstein, not only to pay more attention to language use in philosophy of technology, but also to rethink technology itself-at least technology in its aspect of tool, technology-in-use. This is done by outlining a working account of Wittgenstein's view of language (as articulated mainly in the Investigations) and by then applying that account to technology-turning around Wittgenstein's metaphor of the toolbox. Using Wittgenstein's concepts of language games and form of life and coining the term 'technology games', the paper proposes and argues for a use-oriented, holistic, transcendental, social, and historical approach to technology which is empirically but also normatively sensitive, and which takes into account implicit knowledge and know-how. It gives examples of interaction with social robots to support the relevance of this project for understanding and evaluating today's technologies, makes comparisons with authors in philosophy of technology such as Winner and Ihde, and sketches the contours of a phenomenology and hermeneutics of technology use that may help us to understand but also to gain a more critical relation to specific uses of concrete technologies in everyday contexts. Ultimately, given the holism argued for, it also promises a more critical relation to the games and forms of life technologies are embedded in-to the ways we do things.

  13. Non-destructive flavour evaluation of red onion (Allium cepa L.) ecotypes: an electronic-nose-based approach.

    Science.gov (United States)

    Russo, Mariateresa; di Sanzo, Rosa; Cefaly, Vittoria; Carabetta, Sonia; Serra, Demetrio; Fuda, Salvatore

    2013-11-15

    This work reports preliminary results on the potential of a metal oxide sensor (MOS)-based electronic nose, as a non-destructive method to discriminate three "Tropea Red Onion" PGI ecotypes (TrT, TrMC and TrA) from each other and the common red onion (RO), which is usually used to counterfeit. The signals from the sensor array were processed using a canonical discriminant function analysis (DFA) pattern recognition technique. The DFA on onion samples showed a clear separation among the four onion groups with an overall correct classification rate (CR) of 97.5%. Onion flavour is closely linked to pungency and thus to the pyruvic acid content. The e-nose analysis results are in good agreement with pyruvic acid analysis. This work demonstrated that artificial olfactory systems have potential for use as an innovative, rapid and specific non-destructive technique, and may provide a method to protect food products against counterfeiting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Evaluating Internal Technological Capabilities in Energy Companies

    Directory of Open Access Journals (Sweden)

    Mingook Lee

    2016-03-01

    Full Text Available As global competition increases, technological capability must be evaluated objectively as one of the most important factors for predominance in technological competition and to ensure sustainable business excellence. Most existing capability evaluation models utilize either quantitative methods, such as patent analysis, or qualitative methods, such as expert panels. Accordingly, they may be in danger of reflecting only fragmentary aspects of technological capabilities, and produce inconsistent results when different models are used. To solve these problems, this paper proposes a comprehensive framework for evaluating technological capabilities in energy companies by considering the complex properties of technological knowledge. For this purpose, we first explored various factors affecting technological capabilities and divided the factors into three categories: individual, organizational, and technology competitiveness. Second, we identified appropriate evaluation items for each category to measure the technological capability. Finally, by using a hybrid approach of qualitative and quantitative methods, we developed an evaluation method for each item and suggested a method to combine the results. The proposed framework was then verified with an energy generation and supply company to investigate its practicality. As one of the earliest attempts to evaluate multi-faceted technological capabilities, the suggested model can support technology and strategic planning.

  15. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    International Nuclear Information System (INIS)

    Hunt, Alan; Tobin, S. J.

    2015-01-01

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  16. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Alan [Idaho State Univ., Pocatello, ID (United States). Idaho Accelerator Center, Dept. of Physics; Reedy, E. T.E. [Idaho State Univ., Pocatello, ID (United States). Dept. of Phyics, Idaho Accelerator Center; Mozin, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, S. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Nonproliferation

    2015-02-12

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  17. Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.).

    Science.gov (United States)

    Ruiz, David; Reich, Maryse; Bureau, Sylvie; Renard, Catherine M G C; Audergon, Jean-Marc

    2008-07-09

    The importance of carotenoid content in apricot (Prunus armeniaca L.) is recognized not only because of the color that they impart but also because of their protective activity against human diseases. Current methods to assess carotenoid content are time-consuming, expensive, and destructive. In this work, the application of rapid and nondestructive methods such as colorimeter measurements and infrared spectroscopy has been evaluated for carotenoid determination in apricot. Forty apricot genotypes covering a wide range of peel and flesh colors have been analyzed. Color measurements on the skin and flesh ( L*, a*, b*, hue, chroma, and a*/ b* ratio) as well as Fourier transform near-infrared spectroscopy (FT-NIR) on intact fruits and Fourier transform mid-infrared spectroscopy (FT-MIR) on ground flesh were correlated with the carotenoid content measured by high-performance liquid chromatography. A high variability in color values and carotenoid content was observed. Partial least squares regression analyses between beta-carotene content and provitamin A activity and color measurements showed a high fit in peel, flesh, and edible apricot portion (R(2) ranged from 0.81 to 0.91) and low prediction error. Regression equations were developed for predicting carotenoid content by using color values, which appeared as a simple, rapid, reliable, and nondestructive method. However, FT-NIR and FT-MIR models showed very low R(2) values and very high prediction errors for carotenoid content.

  18. NDA technology for uranium resource evaluation. Progress report July 1-December 31, 1979

    International Nuclear Information System (INIS)

    Evans, M.L.

    1980-08-01

    This report describes work performed during the time period from July 1, 1979 to December 31, 1979, on the contract for Nondestructive Nuclear Analysis (NDA) Technology for Uranium Resource Evaluation in Group Q-1. Calculational effort was focused on improving the accuracy with which detector response function maps can be generated for subsequent enfolding with ONETRAN angular flux data. Experimental effort was highlighted by a field test of the prototype photoneutron logging probe at the Grand Junction DOE calibration facility. The probe demonstrated adequate durability in the field and sufficient sensitivity to uranium to function at competitive logging speeds

  19. Aging material evaluation and studies by non-destructive techniques (AMES-NDT) - a European network project

    International Nuclear Information System (INIS)

    Dobmann, Gerd; Debarberis, Luigi; Coste, Jean-Francois

    2001-01-01

    This paper presents results obtained in a round-robin action organized in a concerted action of ten partners in the EURATOM program of the European Community. The objective of the research was to document the state of the art of available non-destructive testing (NDT) techniques in order to characterize material aging phenomena based on a reduction of Charpy-V energy and a shift in the fracture appearance transition temperature. Therefore, samples from the Japanese nuclear reactor pressure vessel JRQ-steel (ASMT Standard A533-B Class 1) have been thermally treated at 700 deg. C for 18 h with a subsequent water quenching. Besides micromagnetic and electromagnetic NDT, the positron annihilation technique, ultrasonic reverberation by using Laser ultrasonics and the thermo-electrical power have been applied to characterize the aged material states

  20. Self-powered Multi-functional Wireless Sensor Network for Nondestructive Evaluation and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is looking for advanced sensor technologies, especially wireless embedded sensor systems, to support rocket propulsion development. The enabling technology...

  1. Technology evaluation for time sensitive data transport

    DEFF Research Database (Denmark)

    Wessing, Henrik; Breach, Tony; Colmenero, Alberto

    . The NREN communities must provide underlying network infrastructures and transport technologies to facilitate ser-vices with such requirements to the network. In this paper we investigate and evaluate circuit and packet based transport technologies from classic best effort IP over MPLS flavours, Provider...... Backbone Bridging (PBB), “Transparent Interconnect of Lots of Links” (TRILL) to Optical Transport Network (OTN) and SDH. The transport technologies are evaluated theoreti-cally, using simulations and/or experimentally. Each transport technology is evaluated based on its performances and capabilities...... overhead and restoration time. Thirdly, complexity and automation possibilities for establishment of paths for high demanding applica-tions, and finally how the technologies are backed by research communities and major vendors like Ciena, Alcatel-Lucent, Nokia-Siemens and Huawei. The technologies...

  2. Nondestructive testing of concrete structures

    International Nuclear Information System (INIS)

    Rufino, Randy R.; Relunia, Estrella

    1999-01-01

    Nondestructive testing of concrete is highly inhomogeneous which makes it cumbersome to setup experimental procedures and analyze experimental data. However, recent research and development activities have discovered the different methods of NDT, like the electromagnetic method, ultrasonic pulse velocity test, pulse echo/impact echo test, infrared thermography, radar or short pulse radar techniques, neutron and gamma radiometry, radiography, carbonation test and half-cell potential method available for NDT of concrete structures. NDT of concrete is emerging as a useful tool for quality control and assurance. This papers also describes the more common NDT methods discussed during the two-week course on 'Nondestructive Testing of Concrete Structures', held at the Malaysian Institute for Nuclear Technology Research (MINT) in Malaysia, which was jointly organized by MINT and the International Atomic Energy Agency (IAEA)

  3. Evaluation of the cleaner technology programme

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Jørgensen, Ulrik

    The report presents an independent evaluation of the Danish development programme for cleaner technology 1986-1989 and of the Action Plan for Cleaner Technology 1990-1992. The evaluation focuses on the results of technology development and implementation projects, on an examination...... of the dissemination of cleaner technology solutions achieved in six industrial branches, and on the overall programme and its effects, in particular environmental impacts, but also results in the form of employment, environmental export, strenghtening of Danish know-how etc....

  4. Clean Technology Evaluation & Workforce Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Glaza

    2012-12-01

    The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

  5. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  6. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  7. National Security Technology Incubator Evaluation Process

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-31

    This report describes the process by which the National Security Technology Incubator (NSTI) will be evaluated. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of the components, steps, and measures of the proposed evaluation process. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. An effective evaluation process of the NSTI is an important step as it can provide qualitative and quantitative information on incubator performance over a given period. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The mission of the NSTI is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. To achieve success for both incubator businesses and the NSTI program, an evaluation process is essential to effectively measure results and implement corrective processes in the incubation design if needed. The evaluation process design will collect and analyze qualitative and quantitative data through performance evaluation system.

  8. Application of non-destructive impedance-based monitoring technique for cyclic fatigue evaluation of endodontic nickel-titanium rotary instruments.

    Science.gov (United States)

    Chang, Yau-Zen; Liu, Mou-Chuan; Pai, Che-An; Lin, Chun-Li; Yen, Kuang-I

    2011-06-01

    This study investigates the application of non-destructive testing based on the impedance theory in the cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments. Fifty Ni-Ti ProTaper instruments were divided into five groups (n=10 in Groups A to E). Groups A to D were subjected to cyclic fatigue within an artificial canal (Group E was the control group). The mean value of the total life limit (TLL), defined as the instrument being rotated until fracture occurred was found to be 104 s in Group A. Each rotary instrument in Groups B, C and D were rotated until the tested instruments reached 80% (84 s), 60% (62 s) and 40% (42 s) of the TLL. After fatigue testing, each rotary instrument was mounted onto a custom-developed non-destructive testing device to give the tip of the instrument a progressive sideways bend in four mutually perpendicular directions to measure the corresponding impedance value (including the resistance and the reactance). The results indicated that the impedance value showed the same trend as the resistance, implying that the impedance was primarily affected by the resistance. The impedance value for the instruments in the 80% and 60% TLL groups increased by about 6 mΩ (about 7.5%) more than that of the instruments in the intact and 40% TLL groups. The SEM analysis result showed that crack striations were only found at the tip of the thread on the cracked surface of the instrument, consistent with the impedance measurements that found the impedance value of the cracked surface to be significantly different from those in other surfaces. These findings indicate that the impedance value may represent an effective parameter for evaluating the micro-structural status of Ni-Ti rotary instruments subjected to fatigue loading. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    Science.gov (United States)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in

  10. Feasibility study of the IE-SASW method for nondestructive evaluation of containment building structures in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.S. E-mail: dskim@kaist.ac.kr; Kim, H.W. E-mail: hwk@kaist.ac.kr; Seo, W.S.; Choi, K.C.; Woo, S.K

    2003-02-01

    The IE-SASW method, a combination of impact-echo (IE) acoustics with spectral analysis of surface waves (SASW), is proposed as a newly developed nondestructive testing method in concrete structures. This feasibility study examines the IE technique and uses elastic P-wave velocity data as measured from the SASW method on concrete members in nuclear power plant containment structures. It was shown that both the thickness of the concrete specimens used in this study and the depth of the introduced defects (i.e. voids) could be identified by the IE-SASW method. In contrast, the reinforced steel bar itself could not be identified by the IE-SASW method. Additionally, GPR (ground penetrating radar) techniques were used to examine the same specimens in order to establish some level of performance and reliability to compare with the performance of the IE-SASW method. The GPR method provides an objective and reliable image corresponding to the reinforced steel bars. The experimental studies show that it is more feasible to use the IE-SASW method rather than GPR to detect voids that were positioned beneath the steel reinforcing bars in the concrete specimens.

  11. Nondestructive testing of materials

    International Nuclear Information System (INIS)

    NUKEM has transferred know-how from reactor technology to materials testing. The high and to a large extent new quality standards in the nuclear industry necessitate reliable measuring and testing equipment of the highest precision. Many of the tasks presented to us could not be solved with the equipment available on the market, for which reason we have developed our own measuring, testing and control systems. We have therefore acquired considerable experience in dealing with specific measuring, testing and control tasks and can handle even out-of-the-way problems that are submitted to us from a wide variety of fields. Our mechanical systems for the checking of close-tolerance gaps, the automatic determination of pellet dimensions and the measurement of absolute lengths and absolute velocities are in use in many different industrial fields. We have succeeded in solving unusual testing and sorting problems with the aid of automated surface testing equipment working on optical principles. Our main activities in the field of non-destructive testing have been concentrated on ultrasonic and eddy current testing and, of late, acoustic emission analysis. NUKEM ultrasonic systems are notable for their high defect detection rate and testing accuracy, combined with high testing speed. The equipment we supply includes ultrasonic rotary systems for the production testing of quality tubes, ultrasonic immersion systems for the final testing of reactor cladding tubes, weld testing equipment, and test equipment for the bonds in multi-layer plates. (orig./RW) [de

  12. Technology evaluation: adalimumab, Abbott laboratories.

    Science.gov (United States)

    Lorenz, Hanns M

    2002-04-01

    Adalimumab (D2E7), a human monoclonal antibody that binds to and neutralizes TNFa, is being developed by Abbott (formerly Knoll), under license from Cambridge Antibody Technology (CAT), for the potential treatment of inflammatory disorders such as rheumatoid arthritis (RA) and Crohn's disease. It is also being investigated for the potential treatment of coronary heart disease. Phase II studies for Crohn's disease and phase III for RA were ongoing throughout 2001. Limited data are only available for RA. In January 2002, it was reported that phase III trials of adalimumab for RA had been completed, but details have not been published in the primary literature so far. At this time CAT and Abbott expected to file for US approval in the second quarter of 2002 with a launch date anticipated for 2003. Phase III data are expected to be presented at the European League Against Rheumatism meeting in June 2002. In November 2000, Lehman Brothers predicted a US launch in June 2002 with peak US sales of $600 million in 2007 and a launch in non-US markets in 2003 with peak sales in these markets of $300 million in 2008. In December 2000, Merrill Lynch predicted regulatory clearance in the second half of 2003. The probability of adalimumab reaching the market is estimated to be 70%. In December 2000, Merrill Lynch predicted a 2003 launch, with estimated sales of pounds sterling 3.65 million in that year rising to pounds sterling 30.14 million in 2010. In March 2001, ABN AMRO predicted sales of $73 million in 2003 rising to $392 million in 2007.

  13. Evaluative conditioning of food technologies in China

    DEFF Research Database (Denmark)

    Loebnitz, Natascha; Grunert, Klaus G

    2014-01-01

    This study provides an initial examination of the evaluative conditioning (EC) of consumers’ attitudes toward food technologies in China, including how EC can affect consumer acceptance of new technology when participants possess different levels of social trust. In a study using the EC paradigm...... and a combination of between-subjects control groups and within-subjects control conditions, participants considered three food technologies (conventional, enzyme, and genetic), paired with affectively positive, neutral, and negative images. Subsequent evaluative measurements revealed that EC can explain attitude...... formation toward food technologies in China when consumers see affective images, but the strength of the effects varies at different levels of social trust. Participants with a high level of trust in the institutions that promote and regulate the technologies can be conditioned both positively...

  14. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    Sustainability evaluation of water supply systems is important to include in the decision making process when planning new technologies or resources for water supply. In Denmark the motivations may be many and different for changing technology, but since water supply is based on groundwater...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle......-criteria decision analysis method was used to develop a decision support system and applied to the study. In this thesis a standard LCA of the drinking water supply technology of today (base case) and 4 alternative cases for water supply technologies is conducted. The standard LCA points at the case rain...

  15. Utilising digital technology for dialogue and evaluation

    DEFF Research Database (Denmark)

    Kjærgaard, Thomas

    2016-01-01

    This article investigates how digital technology can enhance evaluation and eflection through dialogue in a theory lesson in the context of university college teaching. The pedagogical designs in the article vary from synchronous classroom evaluation on smartphones, to online discussion fora...

  16. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  17. Utilising digital technology for dialogue and evaluation

    DEFF Research Database (Denmark)

    Kjærgaard, Thomas

    2016-01-01

    This article investigates how digital technology can enhance evaluation and reflection through dialogue in a theory lesson in the context of university college teaching. The pedagogical designs in the article vary from synchronous classroom evaluation on smartphones, to online discussion fora...

  18. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Matthew Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility study described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.

  19. Health technology assessment. Evaluation of biomedical innovative technologies.

    Science.gov (United States)

    Turchetti, Giuseppe; Spadoni, Enza; Geisler, Eliezer Elie

    2010-01-01

    This article describes health technology assessment (HTA) as an evaluation tool that applies systematic methods of inquiry to the generation and use of health technologies and new products. The focus of this article is on the contributions of HTA to the management of the new product development effort in the biomedical organization. Critical success factors (CSFs) are listed, and their role in assessing success is defined and explained. One of the conclusions of this article is that HTA is a powerful tool for managers in the biomedical sector, allowing them to better manage their innovation effort in their continuing struggle for competitiveness and survival.

  20. Performance Evaluation Methods for Assistive Robotic Technology

    Science.gov (United States)

    Tsui, Katherine M.; Feil-Seifer, David J.; Matarić, Maja J.; Yanco, Holly A.

    Robots have been developed for several assistive technology domains, including intervention for Autism Spectrum Disorders, eldercare, and post-stroke rehabilitation. Assistive robots have also been used to promote independent living through the use of devices such as intelligent wheelchairs, assistive robotic arms, and external limb prostheses. Work in the broad field of assistive robotic technology can be divided into two major research phases: technology development, in which new devices, software, and interfaces are created; and clinical, in which assistive technology is applied to a given end-user population. Moving from technology development towards clinical applications is a significant challenge. Developing performance metrics for assistive robots poses a related set of challenges. In this paper, we survey several areas of assistive robotic technology in order to derive and demonstrate domain-specific means for evaluating the performance of such systems. We also present two case studies of applied performance measures and a discussion regarding the ubiquity of functional performance measures across the sampled domains. Finally, we present guidelines for incorporating human performance metrics into end-user evaluations of assistive robotic technologies.

  1. Evaluation of new technology for detection of erosion-corrosion

    International Nuclear Information System (INIS)

    Walker, S.M.; Martinez, E.

    1994-01-01

    Faster and more accurate methods of wall thickness measurement have received considerable attention by utilities. Examination without removing insulation has been of particularly high interest because insulation removal is the largest component of the inspection cost. Several inspection systems have been developed which are touted as applicable to erosion corrosion detection through insulation. The Electric Power Research Institute (EPRI) Nondestructive Evaluation (NDE) Center has recently evaluated two of these systems. During the evaluation, accuracy and repeatability measurements were made on insulated pipe of known thickness

  2. Fundamental investigation of hybrid high-temperature superconductor-semiconductor sensors for magnetic signals in non-destructive evaluation. Final report; Grundlegende Untersuchungen hybrider Hochtemperatursupraleiter-Halbleiter-Magnetfelddetektoren auf Siliziumsubstraten fuer Anwendungen in der zerstoerungsfreien Pruefung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P.; Schmidl, F.; Linzen, S.; Schmidt, F.; Scherbel, J.

    2002-11-01

    A new magnetic sensor was realized using a Hall magnetometer coupled to an antenna out of high-temperature superconducting material. The resolution of the magnetometer was improved and a noise-limited field resolution of the system of 2.7 nT/{radical}(Hz) was obtained. The necessary thin film technology was developed and optimized. Further improvements will result in 0.5 nT/{radical}(Hz). The sensors were realized as single sensors as well as sensor arrays and successfully tested in a system for non-destructive evaluation. Within this system the cooling was established by a cryocooler which also cools down the electronics to about 80 K. (orig.) [German] Es wurde ein neuartiger Magnetfeldsensor realisiert, bei dem ein Hallmagnetometer mit einer Antenne aus Hochtemperatursupraleitenden Material gekoppelt wird. Die Magnetometerempfindlichkeit wird dadurch kiar verbessert und eine rauschbegrenzte Feldaufloesung des Systems von 2,7 nT{radical}(/Hz) erreicht. Die zur Herstellung noetige hybride Duennschichttechnologie wurde entwickelt und optimiert. Durch Layoutverbesserungen erscheinen Aufloesungen von 0,5 nT/{radical}(Hz) realisierbar. Die Sensoren wurden als Einzelsensor und Sensorarrays realisiert und in einer Anlage zur zerstoerungsfreien Pruefung erfolgreich getestet. Dabei erfolgte die Kuehlung mittels Kleinkuehler, der auch die Verarbeitungselektronik auf 80 K kuehlt. (orig.)

  3. Involving stakeholders in evaluating environmental restoration technologies

    International Nuclear Information System (INIS)

    McCabe, G.H.; Serie, P.J.

    1993-02-01

    Involving citizens, interest groups, and regulators in environmental restoration and waste management programs is a challenge for government agencies and the organizations that support them. To be effective, such involvement activities must identify all individuals and groups who have a stake in the cleanup. Their participation must be early, substantive, and meaningful. Stockholders must be able to see how their input was considered and used, and feel that a good- faith effort was made to reconcile conflicting objectives. The Integrated Demonstration for Cleanup of Volatile Organic Compounds at Arid Sites (VOC-Arid ID) is a Department of Energy Office of Technology Development project located at Hanford. Along with technical evaluation of innovative cleanup technologies, the program is conducting an institutional assessment of regulatory and public acceptance of new technologies. Through a series of interviews and workshops, and use of a computerized information management tool, stakeholders are having a voice in the evaluation. Public and regulatory reaction has been positive

  4. Evaluating Basic Technology Instruction in Nigerian Secondary ...

    African Journals Online (AJOL)

    It is an important technique which when appropriately adopted results into effective teaching and learning of practical subjects. This study focused on identification of evaluating techniques aimed at improving the teaching of Basic technology in Edo State. The area of study comprises of the eighteen Local Government Areas ...

  5. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    Science.gov (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  6. Probabilistic Risk Assessment: Impact of Human Factors on Nondestructive Evaluation and Sensor Degradation on Structural Health Monitoring (Preprint)

    National Research Council Canada - National Science Library

    Aldrin, John C; Medina, Enrique A; Allwine, Daniel A; Qadeer Ahmed, Mohammed; Fisher, Joseph; Knopp, Jeremy S; Lindgren, Eric A

    2006-01-01

    .... Quantitative studies are presented evaluating the effects of variations in probability of detection associated with human factors, plus in-situ sensor degradation on life cycle measures such as cost...

  7. America Makes: National Additive Manufacturing Innovation Institute (NAMII) Project 1: Nondestructive Evaluation (NDE) of Complex Metallic Additive Manufactured (AM) Structures

    Science.gov (United States)

    2014-06-01

    advanced algorithms is:  Two 6-core CPUs (Intel Xeon X5650, 2.67 GHz)  72 GB RAM  Two 448-core GPUs ( NVIDIA Tesla M2070, 6 GB RAM)  2...Produktionstechnik und Automatisierung, Nobelstraße 12, 70569 Stuttgart, Germany, pp 1-11 , 2013 [40] General Electric Company , “Jet Engine Bracket from...GPU Using Nvidia CUDA”, Damien Vintache, Bernard Humbert, David Brasse, TSINGHUA SCIENCE AND TECHNOLOGY, ISSNl l1007-0214l l02/20l lpp11-16,Volume

  8. Energy technology evaluation report: Energy security

    Science.gov (United States)

    Koopman, R.; Lamont, A.; Schock, R.

    1992-09-01

    Energy security was identified in the National Energy Strategy (NES) as a major issue for the Department of Energy (DOE). As part of a process designed by the DOE to identify technologies important to implementing the NES, an expert working group was convened to consider which technologies can best contribute to reducing the nation's economic vulnerability to future disruptions of world oil supplies, the working definition of energy security. Other working groups were established to deal with economic growth, environmental quality, and technical foundations. Energy Security working group members were chosen to represent as broad a spectrum of energy supply and end-use technologies as possible and were selected for their established reputations as experienced experts with an ability to be objective. The time available for this evaluation was very short. The group evaluated technologies using criteria taken from the NES which can be summarized for energy security as follows: diversifying sources of world oil supply so as to decrease the increasing monopoly status of the Persian Gulf region; reducing the importance of oil use in the US economy to diminish the impact of future disruptions in oil supply; and increasing the preparedness of the US to deal with oil supply disruptions by having alternatives available at a known price. The result of the first phase of the evaluation process was the identification of technology groups determined to be clearly important for reducing US vulnerability to oil supply disruptions. The important technologies were mostly within the high leverage areas of oil and gas supply and transportation demand but also included hydrogen utilization, biomass, diversion resistant nuclear power, and substitute industrial feedstocks.

  9. Technologies for evaluating fish passage through turbines

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-10-01

    This study evaluated the feasibility of two types of technologies to observe fish and near neutrally buoyant drogues as they move through hydropower turbines. Existing or reasonably modified light-emitting and ultrasonic technologies were used to observe flow patterns, the response of fish to flow, and interactions between fish and turbine structures with good spatial and temporal accuracy. This information can be used to assess the biological benefits of turbine design features such as reductions in gaps at the tips and hub of turbine runner blades, reshaping wicket gates and stay vanes, modifications to draft tube splitter piers, and design changes that enhance egress through the powerhouse and tailrace.

  10. Evaluation and improvement in nondestructive examination (NDE) reliability for in-service inspection of light water reactors

    International Nuclear Information System (INIS)

    Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The evaluation and improvement of NDE Reliability for In-service Inspection (ISI) of Light Water Reactors (NDE Reliability) Program at Pacific Northwest Laboratory (PNL) was established to determine the reliability of current ISI techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this NRC program are to: determine the reliability of ultrasonic ISI performed on commercial light-water reactor (LWR) primary systems; determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to ensure a suitably low failure probability using probabilistic fracture mechanics analysis; evaluate the degree of reliability improvement that could be achieved using improved and advanced NDE technique; and recommend revisions to ASME Code, Section XI, and Regulatory Requirements, based on material properties, service conditions, and NDE uncertainties, that will ensure suitably low failure probabilities. The program consists of three basic tasks: a Piping task, a Pressure Vessel task, and an Evaluation and Improvement in NDE Reliability task. The major efforts were concentrated in the Piping task and the Evaluation and Improvement in NDE Reliability task

  11. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging

    Science.gov (United States)

    In this study, we develop a viability evaluation method for pepper (Capsicum annuum L.) seed based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumin...

  12. 3D Nondestructive Visualization and Evaluation of TRISO Particles Distribution in HTGR Fuel Pebbles Using Cone-Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Gongyi Yu

    2017-01-01

    Full Text Available A nonuniform distribution of tristructural isotropic (TRISO particles within a high-temperature gas-cooled reactor (HTGR pebble may lead to excessive thermal gradients and nonuniform thermal expansion during operation. If the particles are closely clustered, local hotspots may form, leading to excessive stresses on particle layers and an increased probability of particle failure. Although X-ray digital radiography (DR is currently used to evaluate the TRISO distributions in pebbles, X-ray DR projection images are two-dimensional in nature, which would potentially miss some details for 3D evaluation. This paper proposes a method of 3D visualization and evaluation of the TRISO distribution in HTGR pebbles using cone-beam computed tomography (CBCT: first, a pebble is scanned on our high-resolution CBCT, and 2D cross-sectional images are reconstructed; secondly, all cross-sectional images are restructured to form the 3D model of the pebble; then, volume rendering is applied to segment and display the TRISO particles in 3D for visualization and distribution evaluation. For method validation, several pebbles were scanned and the 3D distributions of the TRISO particles within the pebbles were produced. Experiment results show that the proposed method provides more 3D than DR, which will facilitate pebble fabrication research and production quality control.

  13. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Rackham, Jamie; Weber, Anne-Laure; Chard, Patrick

    2012-01-01

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  14. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Rackham, Jamie [Babcock International Group, Sellafield, Seascale, Cumbria, (United Kingdom); Weber, Anne-Laure [Institut de Radioprotection et de Surete Nucleaire Fontenay-Aux-Roses (France); Chard, Patrick [Canberra, Forss Business and Technology park, Thurso, Caithness (United Kingdom)

    2012-12-15

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  15. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    Science.gov (United States)

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  16. Non-destructive evaluation of fiber-reinforced composites with a fast 2D fiber-optic laser-ultrasound scanner

    Science.gov (United States)

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; Shtokolov, Alex; O'Donnell, Matthew

    2015-03-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for high speed non-destructive testing and evaluation (NDT&E) of aircraft composites. The performance of the LU system is demonstrated on a composite sample typically used in the aircraft industry. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed diode-pumped laser delivering nanosecond laser pulses at a 1 kHz repetition rate with a pulse energy of 2 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals in a 1-10 MHz frequency range at the same point (an 8 μm focal spot) on the composite surface. A fast (up to 100 mm/s) 2D translation system is employed to move the sample during scanning and produce a complete B-scan consisting of one thousand A-scans in less than a second. The sensitivity of this system, in terms of the noise equivalent pressure, is found to be only 10 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a non-contact ultrasonic detector of this dimension.

  17. Performance evaluation soil samples utilizing encapsulation technology

    Science.gov (United States)

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  18. Non-destructive testing of electronic parts

    International Nuclear Information System (INIS)

    Widenhorn, G.

    1980-01-01

    The requirements on quality, safety, faultlessness and reliability of electric components increase because of the high complexity of the appliances in which they are used. By means of examples a survey is given on the common non-destructive testing methods, testing operation and evaluation of test results on electric components which must meet in their application high requirements on quality and reliability. Defective components, especially those with hidden failures are sorted out by non-destructive testing and the failure frequency of the appliances and plants in testing and operation is greatly reduced. (orig.) [de

  19. Nondestructive characterization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Jayakumar, T.; Kumar, Anish

    2010-01-01

    The paper presents an overview of the non-destructive methodologies developed at the authors' laboratory for characterization of various microstructural features, residual stresses and corrosion in austenitic stainless steels. Various non-destructive evaluation (NDE) parameters such as ultrasonic velocity, ultrasonic attenuation, spectral analysis of the ultrasonic signals, magnetic hysteresis parameters and eddy current amplitude have been used for characterization of grain size, precipitation behaviour, texture, recrystallization, thermomechanical processing, degree of sensitization, formation of martensite from metastable austenite, assessment of residual stresses, degree of sensitization and propensity for intergranular corrosion in different austenitic steels. (author)

  20. Concurrent use of magnetic bearings for rotor support and force sensing for the nondestructive evaluation of manufacturing processes

    Science.gov (United States)

    Kasarda, Mary; Imlach, Joseph; Balaji, P. A.; Marshall, Jeremy T.

    2000-06-01

    Active magnetic bearings are a proven technology in turbomachinery applications and they offer considerable promise for improving the performance of manufacturing processes. The Active Magnetic Bearing (AMB) is a feedback mechanism that supports a spinning shaft by levitating it in a magnetic field. AMBs have significantly higher surface speed capability than rolling element bearings and they eliminate the potential for product contamination by eliminating the requirement for bearing lubrication. In addition, one of the most promising capabilities for manufacturing applications is the ability of the AMB to act concurrently as both a support bearing and non-invasive force sensor. The feedback nature of the AMB allows for its use as a load cell to continuously measure shaft forces necessary for levitation based on information about the magnetic flux density in the air gaps. This measurement capability may be exploited to improve the process control of such products as textile fibers and photographic films where changes in shaft loads may indicate changes in product quality. This paper discusses the operation of AMBs and their potential benefits in manufacturing equipment along with results from research addressing accurate AMB force sensing performance in field applications. Specifically, results from the development of enhanced AMB measurement algorithms to better account for magnetic fringing and leakage effects to improve the accuracy of this technique are presented. Results from the development of a new on-line calibration procedure for robust in-situ calibration of AMBs in a field application such as a manufacturing plant scenario are also presented including results of Magnetic Finite Element Analysis (MFEA) verification of the procedure.

  1. Nondestructive indication of fatigue damage and residual lifetime in ferromagnetic construction materials

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Kovářík, O.; Vértesy, G.; Kadlecová, Jana

    2014-01-01

    Roč. 25, č. 6 (2014), "065601-1"-"065601-10" ISSN 0957-0233. [International Symposium on Measurement Technology and Intelligent Instruments /11./ (ISMTII). Aachen, 01.07.2013-03.07.2013] R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:68378271 Keywords : fatigue * residual lifetime * magnetic nondestructive evaluation * ferromagnetic construction materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.433, year: 2014

  2. Non-destructive analysis in a study of the religious art objects

    International Nuclear Information System (INIS)

    Vornicu, Nicoleta; Bibire, Cristina; Geba, Maria

    2009-01-01

    The icon Descending of the Saint Spirit from Bucium Church, dating in the year 1814 and was done in tempera on wood technology. The characterization of cultural heritage materials is essential for the comprehension of their degradation mechanisms. The present study aims at identifying the pigments in the various layers, establishing the possible existence of an organic binder and scientifically evaluating the state of preservation. To this end, were used non-destructive methods, as: microscopic (SEM), XRF and spectroscopic (FTIR).

  3. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    Science.gov (United States)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  4. The real defect and its nondestructive characterization

    International Nuclear Information System (INIS)

    Licht, H.

    1982-01-01

    Nondestructive test techniques to evaluate defect severity and component degradation are typically based on transmission of energy into the material to be inspected. The capabilities of such techniques are controlled by physical phenomena which generally do not coincide with inspection requirements. This paper reviews several recent developments (mainly in ultrasonic and eddy current testing) which highlight the state of the art

  5. Nondestructive examination development and demonstration plan

    International Nuclear Information System (INIS)

    Weber, J.R.

    1991-01-01

    Nondestructive examination (NDE) of waste matrices using penetrating radiation is by nature very subjective. Two candidate systems of examination have been identified for use in WRAP 1. This test plan describes a method for a comparative evaluation of different x-ray examination systems and techniques

  6. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L. Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Changyeun Mo

    2014-04-01

    Full Text Available In this study, we developed a viability evaluation method for pepper (Capsicum annuum L. seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB, which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  7. Nondestructive evaluation of crystallized-particle size in lactose-powder by terahertz time-domain spectroscopy

    Science.gov (United States)

    Yamauchi, Satoshi; Hatakeyama, Sakura; Imai, Yoh; Tonouchi, Masayoshi

    2014-03-01

    Transmission-type terahertz time-domain spectroscopy is applied to evaluate crystallized lactose particle of size below 30 μm, which is far too small compared to the wavelength of incident terahertz (THz)-wave. The THz-absorption spectrum of lactose is successfully deconvoluted by Lorentzian to two spectra with peaks at 17.1 cm-1 (0.53 THz) and 45.6 cm-1 (1.37 THz) derived from α-lactose monohydrate, and a spectrum at 39.7 cm-1 (1.19 THz) from anhydrous β-lactose after removal of the broad-band spectrum by polynomial cubic function. Lactose is mainly crystallized into α-lactose monohydrate from the supersaturated solution at room temperature with a small amount of anhydrous β-lactose below 4%. The absorption feature is dependent on the crystallized particle size and the integrated intensity ratio of the two absorptions due to α-lactose monohydrate is correlated in linear for the size.

  8. In situ mobile subaquatic archaeometry evaluated by non-destructive Raman microscopy of gemstones lying under impure waters

    Science.gov (United States)

    Smith, David C.

    2003-08-01

    A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible.

  9. Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging.

    Science.gov (United States)

    Lee, Hoonsoo; Kim, Moon S; Song, Yu-Rim; Oh, Chang-Sik; Lim, Hyoun-Sub; Lee, Wang-Hee; Kang, Jum-Soon; Cho, Byoung-Kwan

    2017-03-01

    There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Nondestructive testing of a weld repair on the I-65 Bridge over the Ohio River at Louisville.

    Science.gov (United States)

    2009-06-01

    Nondestructive evaluation methods were applied to verify the structural integrity of a fracture critical structural member on the I-65 John F. Kennedy Memorial Bridge over the Ohio River at Louisville. Several nondestructive evaluation methods includ...

  11. Ultrasonic Nondestructive Evaluation of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) During Large-Scale Load Testing and Rod Push-Out Testing

    Science.gov (United States)

    Johnston, Patrick H.; Juarez, Peter D.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. The HWB has long been a focus of NASA's environmentally responsible aviation (ERA) project, following a building block approach to structures development, culminating with the testing of a nearly full-scale multi-bay box (MBB), representing a segment of the pressurized, non-circular fuselage portion of the HWB. PRSEUS is an integral structural concept wherein skins, frames, stringers and tear straps made of variable number of layers of dry warp-knit carbon-fiber stacks are stitched together, then resin-infused and cured in an out-of-autoclave process. The PRSEUS concept has the potential for reducing the weight and cost and increasing the structural efficiency of transport aircraft structures. A key feature of PRSEUS is the damage-arresting nature of the stitches, which enables the use of fail-safe design principles. During the load testing of the MBB, ultrasonic nondestructive evaluation (NDE) was used to monitor several sites of intentional barely-visible impact damage (BVID) as well as to survey the areas surrounding the failure cracks after final loading to catastrophic failure. The damage-arresting ability of PRSEUS was confirmed by the results of NDE. In parallel with the large-scale structural testing of the MBB, mechanical tests were conducted of the PRSEUS rod-to-overwrap bonds, as measured by pushing the rod axially from a short length of stringer.

  12. Non-destructive controls

    International Nuclear Information System (INIS)

    Nouvet, A.

    1978-01-01

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary [fr

  13. Center for Nondestructive Evaluation - Center for Nondestructive Evaluation

    Science.gov (United States)

    Director's Webpage History Research NDE Education Become a Sponsor Major Participants Directory Contact Us roadways we drive on every day, to planes that carry both the public and defense personnel. CNDE has a long history of working with industry to provide cost-effective tools and solutions which address relevant

  14. An evaluation of supersonic STOVL technology

    Science.gov (United States)

    Kidwell, G. H., Jr.; Lampkin, B. A.

    1983-01-01

    The purpose of this paper is to document the status of supersonic STOVL aircraft technology. The major focus is the presentation of summaries of pertinent aspects of supersonic STOVL technology, such as justification for STOVL aircraft, current designs and their recognized areas of uncertainty, recent research programs, current activities, plans, etc. The remainder of the paper is an evaluation of the performance differential between a current supersonic STOVL design and three production (or near production) fighters, one of them the AV-8B. The results indicate that there is not a large range difference between a STOL aircraft and a STOVL aircraft, and that other aspects of performance, such as field performance or combat maneuverability, may more than make up for this decrement.

  15. Understanding Technology Literacy: A Framework for Evaluating Educational Technology Integration

    Science.gov (United States)

    Davies, Randall S.

    2011-01-01

    Federal legislation in the United States currently mandates that technology be integrated into school curricula because of the popular belief that learning is enhanced through the use of technology. The challenge for educators is to understand how best to teach with technology while developing the technological expertise of their students. This…

  16. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  17. A Study of KHNP Nuclear Power Plant Technology Level Evaluation

    International Nuclear Information System (INIS)

    Yang, Seung Han; Lee, Sung Jin; Kim, Yo Han

    2016-01-01

    KHNP's 2030 mid and long term plan goal in technology field is securing global No. 1 NPP technology level. Quantifying technology level for this purpose, technology level at present should be surveyed. Technology level of South Korea has been surveyed by KISTEP (Korea Institute of S and T Evaluation and Planning) every two year but the technology level of KHNP has not been surveyed by any organization including KHNP itself. Also the size of technology surveyed by KISTEP was too broad to quantifying technology level of KHNP. In this paper, technology level of KHNP and South Korea are presented. In this study, NPP related technologies were divided into Level I and Level II technologies and conducted a survey for each Level II technologies using Delphi questionnaire survey that is widely used in technology level evaluation. The results of technology level and gap will be used from strategic point of view and also as a reference data for technology improvement planning

  18. A Study of KHNP Nuclear Power Plant Technology Level Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Han; Lee, Sung Jin; Kim, Yo Han [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    KHNP's 2030 mid and long term plan goal in technology field is securing global No. 1 NPP technology level. Quantifying technology level for this purpose, technology level at present should be surveyed. Technology level of South Korea has been surveyed by KISTEP (Korea Institute of S and T Evaluation and Planning) every two year but the technology level of KHNP has not been surveyed by any organization including KHNP itself. Also the size of technology surveyed by KISTEP was too broad to quantifying technology level of KHNP. In this paper, technology level of KHNP and South Korea are presented. In this study, NPP related technologies were divided into Level I and Level II technologies and conducted a survey for each Level II technologies using Delphi questionnaire survey that is widely used in technology level evaluation. The results of technology level and gap will be used from strategic point of view and also as a reference data for technology improvement planning.

  19. Liquid Crystals for Nondestructive Evaluation

    Science.gov (United States)

    1978-09-01

    polarizers (e.g., where p is the distance of alignment or pitch, X is the Nicol, Rochon, and Wollaston prisms ) are based upon peak wavelength of scattered...RANGE OF so 45" 45 - EVENT SEVENT T(°C) TEMPERATUJRE TC)4"TEMPERATURE 40RANGE OF T(°) 0-RANGE OF 40LIQUID ’ ൫" CRYSTAL S 36 3S. 30 0 IS 90 180 - I...Temperatures TI > T2 > - > TS defects was possible using the liquid crystal. are the Average TemperatursI Thes Resptivegi. Kapfer , Burns, Salvo, and Doyle

  20. Technology Evaluation for Environmental Risk Mitigation Compendium

    Science.gov (United States)

    Meinhold, A.; Greene, B.; Dussich, J.; Sorkin, A.; Olsen, W.

    2017-01-01

    The Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center and its predecessor organization the Acquisition Pollution Prevention Program (AP2) supported the National Aeronautics and Space Administration (NASA) in identifying technology solutions to risks and costs to NASA programs driven by environmental regulations and requirements. TEERM researched the commercial and government marketplace to locate viable and available technologies that met NASAs needs. TEERM focused on addressing environmentally-driven risks of direct concern to NASA programs and facilities, including hazardous materials in NASA operations and materials that became obsolescent because of environmental regulations. TEERM projects aimed to reduce cost; ensure the health and safety of people, assets, and the environment; promote efficiency; and minimize duplication. Major TEERM and AP2 projects focused on waste minimization and hazardous waste treatment, recycling, corrosion prevention and control, solvent and ozone depleting substances substitution, and aqueous based cleaners. In 2017, NASA made the decision to terminate the TEERM Principal Center. This Compendium Report documents TEERM and AP2 project successes. The Compendium Report traces the evolution of TEERM based on evolving risks and requirements for NASA and its relationship to the Space Shuttle Program, the United States Department of Defense, the European Space Agency, and other public and private stakeholders. This Compendium Report also documents project details from Project Summaries and Joint Test Plans and describes project stakeholders and collaborative effort results.

  1. Evaluating technologies of oil spill surveillance

    International Nuclear Information System (INIS)

    Hover, G.L.

    1993-01-01

    Surveillance and monitoring of oil in the marine environment imposes a broad spectrum of remote sensing requirements. At the US Coast Guard Research ampersand Development Center, the environmental safety branch is sponsoring oil spill remote sensing research in four areas of technology: Synthetic aperture radar (SAR), Frequency-scanning microwave radiometry (FSR), Laser fluorosensing (LFS), and Forward-looking infrared (FLIR) imagers. SAR technology uses sophisticated signal processing to overcome prior limitations, providing images of higher and more uniform spatial acuity which may enable interpreters to more-readily distinguish petroleum slicks from others. The ability to determine the distribution of oil thickness within a slick is necessary when an estimate of oil volume is desired. Scientists at MIT have formulated a new approach to radiometric oil thickness measurement that takes advantage of recent advances in electronic component technology. The initial data collected with a prototype FSR instrument have validated the FSR concept and more work is ongoing. The Coast Guard is co-funding a program to demonstrate and evaluate the capabilities of an airborne laser fluorosensor to support oil spill response operations. During a controlled test, the instrument successfully demonstrated an ability to detect oil on water, ice, and various beach surfaces. Additional testing included different oil types and allowed for weathering. Data analysis is ongoing. Recent developments in infrared imager technology have produced a wide variety of off-the-shelf, portable cameras that could potentially provide a rapid-response spill assessment capability. The R ampersand D Center has been involved in the testing of many of these sensors

  2. DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface voters and porous waters by absorbing d...

  3. Physical quality control and nondestructive testing in industry

    International Nuclear Information System (INIS)

    Akay, K. S.; Avinc, A.

    2000-01-01

    The applications of Total Quality Management which now constitute the main factor of production and industrial life, are becoming widespread each day. This study evaluates the place, and the role of the physicist in the development and the application of measuring and central method, providing information on quality, environment and especially reliability, which is me of the most significant components of these concepts, acting as a guide and known, as Nondestructive Testing Methods in technology. Basic physical principles of the techniques, employed in practical applications as well as research and development stages of different fields requiring advanced technology, are presented and their advantages and disadvantages in usage are demonstrated in a comparative way. (authors)

  4. Evaluating Technology Resistance and Technology Satisfaction on Students' Performance

    Science.gov (United States)

    Norzaidi, Mohd Daud; Salwani, Mohamed Intan

    2009-01-01

    Purpose: Using the extended task-technology fit (TTF) model, this paper aims to examine technology resistance, technology satisfaction and internet usage on students' performance. Design/methodology/approach: The study was conducted at Universiti Teknologi MARA, Johor, Malaysia and questionnaires were distributed to 354 undergraduate students.…

  5. Developing Raman spectroscopy for the nondestructive testing of composite materials.

    Science.gov (United States)

    2009-08-01

    The proposed research will develop the application of Raman Spectroscopy as a nondestructive evaluation tool for the condition assessment of carbon fiber composites. Composite materials are increasingly being used in engineered structures and compone...

  6. Multimodality characterization of nuclear waste drums using emerging techniques for nondestructive examination and assay

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1993-01-01

    We are developing an x-ray imaging system that incorporates several inspection technologies for complete, nondestructive evaluation of containers of nuclear waste. In Phase I and Phase II SBIR programs for the DOE, we proved the feasibility of using x-ray computed tomography (CT) and digital radiography (DR)-imaging techniques using x-rays transmitted through the object-for container inspection. Now, with further funding from DOE and working with scientists at Lawrence Livermore National Lab., we are designing a mobile inspection system that will use CT and DR as well as two x-ray emission imaging techniques-single photon emission computed tomography and nondestructive assay. This system will provide much more information about the contents of containers than currently used inspection methods, and will provide archiving of digital data. In this paper, we describe inspection system and present recent results from the CT and DR evaluations

  7. Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques

    Directory of Open Access Journals (Sweden)

    Bashar S. Mohammed

    2018-06-01

    Full Text Available The major problems related to roller compacted concrete (RCC pavement are high rigidity, lower tensile strength which causes a tendency of cracking due to thermal or plastic shrinkage, flexural and fatigue loads. Furthermore, RCC pavement does not support the use of dowel bars or reinforcement due to the way it is placed and compacted, these also aided in cracking and consequently increased maintenance cost. To address these issues, high volume fly ash (HVFA RCC pavement was developed by partially replacing 50% cement by volume with fly ash. Crumb rubber was used as a partial replacement to fine aggregate in HVFA RCC pavement at 0%, 10%, 20%, and 30% replacement by volume. Nano silica was added at 0%, 1%, 2% and 3% by weight of cementitious materials to improve early strength development in HVFA RCC pavement and mitigate the loss of strength due to the incorporation of crumb rubber. The nondestructive technique using the rebound hammer test (RHT and ultrasonic pulse velocity (UPV were used to evaluate the effect of crumb rubber and nano silica on the performance of HVFA RCC pavement. The results showed that the use of HVFA as cement replacement decreases both the unit weight, compressive strength, rebound number (RN. Furthermore, the unit weight, compressive strength, RN, UPV and dynamic modulus of elasticity of HVFA RCC pavement all decreases with increase in crumb rubber content and increases with the addition of nano-silica. Combined UPV-RN (SonReb models for predicting the 28 days strength of HVFA RCC pavement based on combining UPV and RN were developed using multivariable regression (double power, bilinear, and double exponential models. The exponential combined SonReb model is the most suitable for predicting the compressive strength of HVFA RCC pavement using UPV and RN as the independent variable with better predicting ability, higher correlation compared to the single variable models. Keywords: Crumb rubber, High volume fly ash, Nano

  8. In-Situ Nondestructive Evaluation of Kevlar(Registered Trademark)and Carbon Fiber Reinforced Composite Micromechanics for Improved Composite Overwrapped Pressure Vessel Health Monitoring

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA has been faced with recertification and life extension issues for epoxy-impregnated Kevlar 49 (K/Ep) and carbon (C/Ep) composite overwrapped pressure vessels (COPVs) used in various systems on the Space Shuttle and International Space Station, respectively. Each COPV has varying criticality, damage and repair histories, time at pressure, and pressure cycles. COPVs are of particular concern due to the insidious and catastrophic burst-before-leak failure mode caused by stress rupture (SR) of the composite overwrap. SR life has been defined [1] as the minimum time during which the composite maintains structural integrity considering the combined effects of stress level(s), time at stress level(s), and associated environment. SR has none of the features of predictability associated with metal pressure vessels, such as crack geometry, growth rate and size, or other features that lend themselves to nondestructive evaluation (NDE). In essence, the variability or surprise factor associated with SR cannot be eliminated. C/Ep COPVs are also susceptible to impact damage that can lead to reduced burst pressure even when the amount of damage to the COPV is below the visual detection threshold [2], thus necessitating implementation of a mechanical damage control plan [1]. Last, COPVs can also fail prematurely due to material or design noncompliance. In each case (SR, impact or noncompliance), out-of-family behavior is expected leading to a higher probability of failure at a given stress, hence, greater uncertainty in performance. For these reasons, NASA has been actively engaged in research to develop NDE methods that can be used during post-manufacture qualification, in-service inspection, and in-situ structural health monitoring. Acoustic emission (AE) is one of the more promising NDE techniques for detecting and monitoring, in real-time, the strain energy release and corresponding stress-wave propagation produced by actively growing flaws and defects in composite

  9. Nondestructive Examination Guidance for Dry Storage Casks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suffield, Sarah R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lareau, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qiao, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    In this report, an assessment of NDE methods is performed for components of NUHOMS 80 and 102 dry storage system components in an effort to assist NRC staff with review of license renewal applications. The report considers concrete components associated with the horizontal storage modules (HSMs) as well as metal components in the HSMs. In addition, the report considers the dry shielded canister (DSC). Scope is limited to NDE methods that are considered most likely to be proposed by licensees. The document, ACI 349.3R, Evaluation of Existing Nuclear Safety-Related Concrete Structures, is used as the basis for the majority of the NDE methods summarized for inspecting HSM concrete components. Two other documents, ACI 228.2R, Nondestructive Test Methods for Evaluation of Concrete in Structures, and ORNL/TM-2007/191, Inspection of Nuclear Power Plant Structure--Overview of Methods and Related Application, supplement the list with additional technologies that are considered applicable. For the canister, the ASME B&PV Code is used as the basis for NDE methods considered, along with currently funded efforts through industry (Electric Power Research Institute [EPRI]) and the U.S. Department of Energy (DOE) to develop inspection technologies for canisters. The report provides a description of HSM and DSC components with a focus on those aspects of design considered relevant to inspection. This is followed by a brief description of other concrete structural components such as bridge decks, dams, and reactor containment structures in an effort to facilitate comparison between these structures and HSM concrete components and infer which NDE methods may work best for certain HSM concrete components based on experience with these other structures. Brief overviews of the NDE methods are provided with a focus on issues and influencing factors that may impact implementation or performance. An analysis is performed to determine which NDE methods are most applicable to specific

  10. A fracture mechanics and reliability based method to assess non-destructive testings for pressure vessels

    International Nuclear Information System (INIS)

    Kitagawa, Hideo; Hisada, Toshiaki

    1979-01-01

    Quantitative evaluation has not been made on the effects of carrying out preservice and in-service nondestructive tests for securing the soundness, safety and maintainability of pressure vessels, spending large expenses and labor. Especially the problems concerning the time and interval of in-service inspections lack the reasonable, quantitative evaluation method. In this paper, the problems of pressure vessels are treated by having developed the analysis method based on reliability technology and probability theory. The growth of surface cracks in pressure vessels was estimated, using the results of previous studies. The effects of nondestructive inspection on the defects in pressure vessels were evaluated, and the influences of many factors, such as plate thickness, stress, the accuracy of inspection and so on, on the effects of inspection, and the method of evaluating the inspections at unequal intervals were investigated. The analysis of reliability taking in-service inspection into consideration, the evaluation of in-service inspection and other affecting factors through the typical examples of analysis, and the review concerning the time of inspection are described. The method of analyzing the reliability of pressure vessels, considering the growth of defects and preservice and in-service nondestructive tests, was able to be systematized so as to be practically usable. (Kako, I.)

  11. Development of inspection safety evaluation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seok Chul; Yoon, Yeo Chang; Kim, Jong Soo; Lee, Tae Young; Kim, Chang Ryol; Lee, Hyung Sub; Kim, Jong Soo

    1995-12-01

    The purpose of this project is to protection nation inspector`s over exposure from radiation that can be occurred by inspection activity at nuclear facilities and its environment, and to ensure the safety of inspection activity at the nuclear facilities. To effectively carry out the domestic inspection task to be enforced from 1996, the evaluation for special radiation exposure rate of nuclear facilities, air and surface contamination level, and measurement and monitoring of water contamination level were made to determine whether these measured values exceeded permissible limitations, and to protect the inspector`s over exposure from radiation at domestic nuclear facilities. Management of inspector`s exposure was carried out under assistance of the Department of Health Physics. Performance tests of two gamma detectors, one neutron detector, alpha and beta detector, and gamma spectroscopy analyzer were carried out to control dose on extremity, the characteristic test for extremity dosimeter was carried out and the theoretical calculation of gamma dose conversion factors based on ANSI N13.32 standard was performed. Under the 93+2 program, IAEA began to recognize the necessity of environmental observation technology development of air-borne particulates travelled from long distance location. Associated with the necessity of this technology development, a proposal of international joint research for development of the special radiation measurement and analysis has been prepared. (author). 21 tabs., 24 figs., 20 refs.

  12. Signal processing for non-destructive testing of railway tracks

    Science.gov (United States)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  13. Technical regulation of nondestructive inspection

    International Nuclear Information System (INIS)

    1995-01-01

    It starts with the explanation of definition of nondestructive inspection and qualifications for a inspection. It lists the technical regulations of nondestructive inspections which are radiographic testing, ultrasonic flaw detecting test, liquid penetrant test, magnetic particle inspection, eddy current test visual inspection and leakage test.

  14. Technology evaluation: SAGE, Genzyme molecular oncology.

    Science.gov (United States)

    Bartlett, J

    2001-02-01

    Genzyme Molecular Oncology (GMO) is using its SAGE (Serial Analysis of Gene Expression) combinatorial chemistry technology to screen compound libraries. SAGE is a high-throughput, high-efficiency method to simultaneously detect and measure the expression levels of genes expressed in a cell at a given time, including rare genes. SAGE can be used in a wide variety of applications to identify disease-related genes, to analyze the effect of drugs on tissues and to provide insights into disease pathways. It works by isolating short fragments of genetic information from the expressed genes that are present in the cell being studied. These short sequences, called SAGE tags, are linked together for efficient sequencing. The sequence data are then analyzed to identify each gene expressed in the cell and the levels at which each gene is expressed. This information forms a library that can be used to analyze the differences in gene expression between cells [293437]. By December 1999, GMO had identified a set of 40 genes from 3.5 million transcripts that were expressed at elevated levels in all cancer tissue but not seen in normal tissue. The company hope these may provide diagnostic markers or therapeutic targets. The studies also provided data furthering the understanding of the way cells use their genome [349968]. GMO has signed a collaborative agreement with the National Cancer Institute (NCI) to search for new drug candidates in the field of cancer chemotherapy. The collaboration combines GMO's SAGE technology with the NCI's extensive array of 60 cell-based cancer screens. Under the agreement, the NCI will evaluate Genzyme's library consisting of one million compounds against selected cancer screens to identify compounds with anticancer properties [255082]. Xenometrix granted a license agreement for gene expression profiling to GMO in February 1999, giving company access to claims covered in issued US and European patents. The license is non-exclusive and covers the

  15. International cooperation program on non-destructive inspection. Overview of PINC and PARENT

    International Nuclear Information System (INIS)

    Komura, Ichiro

    2016-01-01

    PINC (The Program for the Inspection of Nickel Alloy Components) and its successor program PARENT (The Program to Assess the Reliability of Emerging Nondestructive Techniques) are the programs on the verification of nondestructive inspection technology for detecting / dimension-evaluating the stress corrosion cracking (SCC) generated in the weld zone of nickel-based alloy. The US Nuclear Regulatory Commission plays a leading role, and the institutions of the United States, Japan, Korea, Sweden, Finland, and Switzerland participate in them. PINC was run from 2003 to 2009, and PARENT is currently underway with a schedule from 2010 to July 2017, including the extension period after July 2015. This paper outlined the implementation items and test results / achievements of PINC and PARENT programs. The target parts of PINC were a safe-end reducer and a reactor bottom instrument tube rest, and the flaw detection test and its analytical evaluation were carried out with a focus on the detectability and the sizing accuracy of defects. As a feature of the verification test of the non-destructive inspection technology in PARENT, two kinds of flaw detection tests, namely blind test and open test, are distinctively carried out. (A.O.)

  16. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Bert R. Bock; Richard G. Rhudy; David E. Nichols

    2001-07-01

    In order to plan for potential CO{sub 2} mitigation mandates, utilities need better information on CO{sub 2} mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO{sub 2} sequestration technologies and practices, both geologic storage of captured CO{sub 2} and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO{sub 2} sequestration, including captured CO{sub 2} storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO{sub 2} sequestration options. Designs and data collection are nearly complete for each of the CO{sub 2} sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO{sub 2}. No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO{sub 2} sequestration options that differ in timing and permanence of CO{sub 2} sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget.

  17. REMEDIATION TECHNOLOGY EVALUATION AT THE GILT EDGE MINE, SOUTH DAKOTA

    Science.gov (United States)

    This document reports the findings of the Mine Waste Technology Program's Activity III, Project 29,The Remediation Technology Evaluation Project at the Gilt Edge Mine, S.D. This project consisted of evaluating three emerging acidic waste rock stabilization technologies and compar...

  18. Evaluation technology of radiation resistant materials in nuclear power plant and satellite

    International Nuclear Information System (INIS)

    Kang, P. H.; Kim, K. Y.; Lee, C.; Jeong, S. H.; Kim, J. A.

    2007-06-01

    The developed evaluation method using dielectric relaxation characteristic is measuring the increment of dipoles and mobile ions inside PEEK with deterioration, and calculate the dielectric relaxation intensity. Dielectric relaxation intensity were evaluated using Cole-Cole's circular arcs from the multi-frequencies measurements around glass transition temperature. The other proposed method using mechanical relaxation characteristic is measuring the brittleness of the deteriorated PEEK, non-destructively. The values of dielectric relaxation intensity showed the deterioration levels of each aged PEEK. Similarly, mechanical relaxation intensity showed decreasing tendency as increasing ageing time, but it did not show a certain tendency for the multi-aged PEEK. The novel developed evaluation method using dielectric relaxation characteristic will be applicable to classification of EQ, and contribute to the reliability of the lifetime extension in the NPP. These results establish a test method for both TID (Total Ionizing Dose) and SEEs through the evaluation, test, design technology. The results turned out to be quite successful, and these can be applied for parts localization for the nuclear power plant and the satellite

  19. Evaluation of Smart Gun Technologies preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D.R.

    1996-01-01

    The Smart Gun Technology Project has a goal to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing {open_quote}smart{close_quote} technologies. Smart technologies are those that can in some manner identify an officer. This report will identify, describe, and grade various technologies as compared to the requirements that were obtained from officers. This report does not make a final recommendation for a smart gun technology, nor does it give the complete design of a smart gun system.

  20. Assistive Technology for Persons with Physical Disabilities: Evaluation and Outcomes

    NARCIS (Netherlands)

    Rigby, P.J.

    2009-01-01

    This thesis presents a compilation of published studies that evaluated assistive technology interventions for children and adults with physical disabilities. The first chapter introduces the need for and the challenges involved in studying the outcomes of assistive technology interventions. The

  1. Improving early cycle economic evaluation of diagnostic technologies

    NARCIS (Netherlands)

    Steuten, Lotte Maria Gertruda; Ramsey, Scott D.

    2014-01-01

    The rapidly increasing range and expense of new diagnostics, compels consideration of a different, more proactive approach to health economic evaluation of diagnostic technologies. Early cycle economic evaluation is a decision analytic approach to evaluate technologies in development so as to

  2. Non-destructive inservice inspections

    International Nuclear Information System (INIS)

    Kauppinen, P.; Sarkimo, M.; Lahdenperae, K.

    1998-01-01

    In order to assess the possible damages occurring in the components and structures of operating nuclear power plants during service the main components and structures are periodically inspected by non-destructive testing techniques. The reliability of non-destructive testing techniques applied in these inservice inspections is of major importance because the decisions concerning the needs for repair of components are mainly based on the results of inspections. One of the targets of this research program has been to improve the reliability of non-destructive testing. This has been addressed in the sub-projects which are briefly summarised here. (author)

  3. DYNAPHORE, INC. FORAGER™ SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals from aqueous waste streams. The Developer states that the technology can be utilized to remove and concentrate heavy metals f...

  4. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability.

    Science.gov (United States)

    Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong

    2003-08-15

    Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes.

  5. Nondestructive sensing and stress transferring evaluation of carbon nanotube, nanofiber, and Ni nanowire strands/polymer composites using an electro-micromechanical technique

    Science.gov (United States)

    Park, Joung-Man; Kim, Sung-Ju; Jung, Jin-Gyu; Hansen, George; Yoon, Dong-Jin

    2006-03-01

    Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT), nanofiber (CNF), and Ni nanowire strands/epoxy composites were investigated using electro-micromechanical technique. Electrospun PVDF nanofiber was also prepared as a piezoelectric sensor. High volume% CNT/epoxy composites showed significantly higher tensile properties than neat and low volume% CNT/epoxy composites. CNF /epoxy composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type and content/epoxy composites were indirectly measured apparent modulus using uniformed cyclic loading and electro-pullout test. CNT or Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to increased crystallization, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also responded the sensing effect on humidity and temperature. Nanocomposites using CNT, CNF, Ni nanowire strands, and electrospun PVDF nanofiber web can be applicable practically for multifunctional applications nondestructively.

  6. Evaluation of automated vehicle technology for transit.

    Science.gov (United States)

    2015-01-01

    The purpose of this report is to provide an overview of the state of automated vehicle (AV) technology : in transit. The Florida Department of Transportation (FDOT) wishes to know what AV technology is : currently available that could be used in tran...

  7. Industrial strategy for nondestructive control

    International Nuclear Information System (INIS)

    Martin, P.; Michaut, J.P.

    1994-01-01

    For Electricite de France, the nondestructive control strategy passes by a responsibility of services, a competition between companies, a clarification of the market access and a dialogue with the companies

  8. HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.ELECTRON BEAM TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report evaluates a high-voltage electron beam (E-beam) technology's ability to destroy volatile organic compounds (VOCs) and other contaminants present in liquid wastes. Specifically, this report discusses performance and economic data from a Superfund Innovative Technology...

  9. NDA technology for uranium resource evaluation. Progress report, January 1-June 30, 1980

    International Nuclear Information System (INIS)

    Evans, M.L.

    1981-08-01

    This report describes work performed during the time period from January 1, 1980, to June 30, 1980, on the contract for Nondestructive Nuclear Analysis Technology for Uranium Resource Evaluation in the Safeguards Technology, International Safeguards, and Training Group, Q-1, at Los Alamos National Laboratory. The calculational effort was concentrated on the development of a generalized computer model to simulate the emission, transport, and detection of natural gamma radiation from various logging environments. The model yields accurate high-resolution gamma-ray pulse-height spectra that can be used to correct both gross gamma-ray and spectral gamma-ray logs. The experimental effort focused on the analytical chemistry assay of a series of crushed concrete samples ten from the Department of Energy (DOE) Grand Junction calibration models used to calibrate logging tools employing active neutron interrogation techniques. The results establish the levels of neutron poisons in the test pits. In addition, the outfitting of a Bendix Field Engineering Corporation/DOE logging truck for the field testing of the photoneutron probe is described, as is a sodium iodide passive gamma-ray probe used to verify the absence of obstructions in a borehole and to locate uranium-bearing ore zones

  10. High-Resolution and Non-destructive Evaluation of the Spatial Distribution of Nitrate and Its Dynamics in Spinach (Spinacia oleracea L. Leaves by Near-Infrared Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Hao-Yu Yang

    2017-11-01

    Full Text Available Nitrate is an important component of the nitrogen cycle and is therefore present in all plants. However, excessive nitrogen fertilization results in a high nitrate content in vegetables, which is unhealthy for humans. Understanding the spatial distribution of nitrate in leaves is beneficial for improving nitrogen assimilation efficiency and reducing its content in vegetables. In this study, near-infrared (NIR hyperspectral imaging was used for the non-destructive and effective evaluation of nitrate content in spinach (Spinacia oleracea L. leaves. Leaf samples with different nitrate contents were collected under various fertilization conditions, and reference data were obtained using reflectometer apparatus RQflex 10. Partial least squares regression analysis revealed that there was a high correlation between the reference data and NIR spectra (r2 = 0.74, root mean squared error of cross-validation = 710.16 mg/kg. Furthermore, the nitrate content in spinach leaves was successfully mapped at a high spatial resolution, clearly displaying its distribution in the petiole, vein, and blade. Finally, the mapping results demonstrated dynamic changes in the nitrate content in intact leaf samples under different storage conditions, showing the value of this non-destructive tool for future analyses of the nitrate content in vegetables.

  11. Nondestructive Testing with Shearography

    International Nuclear Information System (INIS)

    Chang, Seog Weon

    2001-01-01

    Nondestructive testing(NDT) is one of the fundamental tools to improve the quality of commercial and industrial products. NDT is potentially a major application of interferometry. Interferometry(ESPI, Shearography, ect) has successfully been applied in various industrial environments such as high performance aircraft, home appliance, automotive, and laminates on engine structures, etc. Today's industry demands high performance components with toughest mechanical features and ultimate safety standards. Especially in automotive and aircraft industry the development process focuses on tailor-made design and solutions to meet customer specifications. To reconcile economy, ligh-weight construction has become a key issue. Many companies are looking for new advanced NDT techniques to archive cost efficiency over the limitations of classical methods. ESPI and shearography allow a rapid, full field and 3D-measurement without contact. In this paper recent applications of ESPI and shearography for NDT are described. Advanced features of classical techniques are specified and new applications in material and component testing are presented

  12. Evaluation and technologic improvement of an enhanced imaging system

    International Nuclear Information System (INIS)

    Henry, D.

    1990-08-01

    Feature-based systems that combine imaging and signal analysis capabilities may be useful for nondestructive evaluation (NDE) of plant components. This report describes the metallurgical evaluation conducted to verify the performance of a feature-based system to discriminate intergranular stress corrosion cracking (IGSCC) from benign geometrical reflectors. The ultrasonic examination results were also evaluated by examination personnel trained in intergranular stress corrosion cracking (IGSCC) detection techniques. The welds were examined prior to their removal from the recirculation and Residual-Heat-Removal (RHR) piping systems of the Peach Bottom Atomic Power Plant, as described in the Phase 2 Interim Report issued in June 1989. In this phase of the program, a metallurgical evaluation was performed on piping system welds that were examined ultrasonically using a feature-based system for analysis. The feature-based system correctly identified crack, but incorrectly identified other features, e.g., root geometry and metallurgical interfaces, as cracks. While the results of the analysis by the feature-based system were not identical to the results of analysis by trained personnel, the overall performance of the feature-based system was comparable to that of the trained personnel. Based on the results of this program, the feature-based system may be useful as a supplementary method of identifying IGSCC indications. When used in conjunction with existing methods and techniques, it could improve the accuracy of IGSCC identification

  13. Evaluation of User Acceptance of Mixed Reality Technology

    Science.gov (United States)

    Yusoff, Rasimah Che Mohd; Zaman, Halimah Badioze; Ahmad, Azlina

    2011-01-01

    This study investigates users' perception and acceptance of mixed reality (MR) technology. Acceptance of new information technologies has been important research area since 1990s. It is important to understand the reasons why people accept information technologies, as this can help to improve design, evaluation and prediction how users will…

  14. Analysis and evaluation of the applicability of green energy technology

    Science.gov (United States)

    Xu, Z. J.; Song, Y. K.

    2017-11-01

    With the seriousness of environmental issues and the shortage of resources, the applicability of green energy technology has been paid more and more attention by scholars in different fields. However, the current researches are often single in perspective and simple in method. According to the Theory of Applicable Technology, this paper analyzes and defines the green energy technology and its applicability from the all-around perspectives of symbiosis of economy, society, environment and science & technology etc., and correspondingly constructs the evaluation index system. The paper further applies the Fuzzy Comprehensive Evaluation to the evaluation of its applicability, discusses in depth the evaluation models and methods, and explains in detail with an example. The author holds that the applicability of green energy technology involves many aspects of economy, society, environment and science & technology and can be evaluated comprehensively by an index system composed of a number of independent indexes. The evaluation is multi-object, multi-factor, multi-level and fuzzy comprehensive, which is undoubtedly correct, effective and feasible by the Fuzzy Comprehensive Evaluation. It is of vital theoretical and practical significance to understand and evaluate comprehensively the applicability of green energy technology for the rational development and utilization of green energy technology and for the better promotion of sustainable development of human and nature.

  15. New Technologies, New Approaches to Evaluating Academic Productivity

    Science.gov (United States)

    Rich, Peter J.; West, Richard E.

    2012-01-01

    Technology has enabled a proliferation of publication venues for disseminating academic work. The task of evaluating the relative quality of each of these venues is simultaneously exacerbated and resolved by the use of new technologies. In this article, the authors propose a three-pronged framework for evaluating the quality of scholarly work that…

  16. Waste disposal technologies: designs and evaluations

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    Many states and compacts are presently in the throes of considering what technology to select for their low level waste disposal site. Both the technical and economic aspects of disposal technology are important considerations in these decisions. It is also important that they be considered in the context of the entire system. In the case of a nuclear power plant, that system encompasses the various individual waste streams that contain radioactivity, the processing equipment which reduces the volume and/or alters the form in which the radioisotopes are contained, the packaging of the processed wastes in shipment, and finally its disposal. One further part of this is the monitoring that takes place in all stages of this operation. This paper discusses the results of some research that has been sponsored by EPRI with the principal contractor being Rogers and Associates Engineering Corporation. Included is a description of the distinguishing features found in disposal technologies developed in a generic framework, designs for a selected set of these disposal technologies and the costs which have been derived from these designs. In addition, a description of the early efforts towards defining the performance of these various disposal technologies is described. 5 figures, 1 table

  17. Weapons of Mass Destruction Technology Evaluation and Training Range

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Larry Young

    2009-05-01

    The Idaho National Laboratory (INL) has a long history for providing technology evaluation and training for military and other federal level Weapons of Mass Destruction (WMD) response agencies. Currently there are many federal organizations and commercial companies developing technologies related to detecting, assessing, mitigating and protecting against hazards associated with a WMD event. Unfortunately, very few locations exist within the United States where WMD response technologies are realistically field tested and evaluated using real chemical, biological, radiological, nuclear and explosive materials. This is particularly true with biological and radiological hazards. Related to this lack of adequate WMD, multi-hazard technology testing capability is the shortage of locations where WMD response teams can train using actual chemical, biological, and radiological material or highly realistic simulates. In response to these technology evaluation and training needs, the INL has assembled a consortium of subject matter experts from existing programs and identified dedicated resources for the purpose of establishing an all-hazards, WMD technology evaluation and training range. The author describes the challenges associated with creating the all-hazards WMD technology evaluation and training range and lists the technical, logistical and financial benefits of an all-hazards technology evaluation and training range. Current resources and capabilities for conducting all-hazard technology evaluation and training at the INL are identified. Existing technology evaluation and training programs at the INL related to radiological, biological and chemical hazards are highlighted, including successes and lessons learned. Finally, remaining gaps in WMD technology evaluation and training capabilities are identified along with recommendations for closing those gaps.

  18. SANDIA NATIONAL LABORATORIES IN SITU ELECTROKINETIC EXTRACTION TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As a part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated the In-Situ Electrokinetic Extraction (ISEE) system at Sandia National Laboratories, Albuquerque, New Mexico.The SITE demonstration results show ...

  19. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G.A.

    1999-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites

  20. Assessment and evaluation of technologies for environmental restoration. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Uzochukwu, G. A. [North Carolina A and T State Univ., Greensboro, NC (United States)

    2000-06-30

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  1. Assessment and evaluation of technologies for environmental restoration. Progress report

    International Nuclear Information System (INIS)

    Uzochukwu, G. A.

    2000-01-01

    Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration objectives of the Department of Energy are being evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objective of the environmental restoration effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.

  2. Technology Validation: Fuel Cell Bus Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-02

    This presentation describing the FY 2016 accomplishments for the National Renewable Energy Laboratory's Fuel Cell Bus Evaluations project was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, June 7, 2016.

  3. Technology evaluation for space station atmospheric leakage

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, D.K.; Friesel, M.A.; Griffin, J.W.; Skorpik, J.R.; Shepard, C.L.; Antoniak, Z.I.; Kurtz, R.J.

    1990-02-01

    A concern in operation of a space station is leakage of atmosphere through seal points and through the walls as a result of damage from particle (space debris and micrometeoroid) impacts. This report describes a concept for a monitoring system to detect atmosphere leakage and locate the leak point. The concept is based on analysis and testing of two basic methods selected from an initial technology survey of potential approaches. 18 refs., 58 figs., 5 tabs.

  4. Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis

    International Nuclear Information System (INIS)

    Kajiya, E.A.M.; Campos, P.H.O.V.; Rizzutto, M.A.; Appoloni, C.R.; Lopes, F.

    2014-01-01

    This paper presents systematic studies and analysis that contributed to the identification of the forgery of a work by the artist Emiliano Augusto Cavalcanti de Albuquerque e Melo, known as Di Cavalcanti. The use of several areas of expertise such as brush stroke analysis (“pinacologia”), applied physics, and art history resulted in an accurate diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). For this work we used non-destructive methods such as techniques of infrared, ultraviolet, visible and tangential light imaging combined with chemical analysis of the pigments by portable X-Ray Fluorescence (XRF) and graphic gesture analysis. Each applied method of analysis produced specific information that made possible the identification of materials and techniques employed and we concluded that this work is not consistent with patterns characteristic of the artist Di Cavalcanti. - Highlights: • Identification of the forgery of an easel painting of Di Cavalcanti. • Diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). • X-Ray fluorescence spectroscopy and image analysis. • Image analyses allow some identification as hidden underlying lines. • Materials and techniques not characteristic of the artist

  5. Students’ Perception on Teaching Practicum Evaluation using Video Technology

    Science.gov (United States)

    Chee Sern, Lai; ‘Ain Helan Nor, Nurul; Foong, Lee Ming; Hassan, Razali

    2017-08-01

    Video technology has been widely used in education especially in teaching and learning. However, the use of video technology for evaluation purpose especially in teaching practicum is extremely scarce and the benefits of video technology in teaching practicum evaluation have not yet been fully discovered. For that reason, this quantitative research aimed at identifying the perceptions of trainee teachers towards teaching practicum evaluation via video technology. A total of 260 students of Teacher Certification Programme (Program Pensiswazahan Guru - PPG) from the Faculty of Technical and Vocational Education (FPTV) of Universiti Tun Hussein Onn Malaysia (UTHM) had been randomly selected as respondents. A set of questionnaire was developed to assess the suitability, effectiveness and satisfaction of using video technology for teaching practicum. Conclusively, this research showed that the trainee teachers have positive perceptions in all three aspects related teaching practicum evaluation using video technology. Apart from that, no significant racial difference was found in the measured aspects. In addition, the trainee teachers also showed an understanding of the vast importance of teaching practicum evaluation via video. These research findings suggest that video technology can be a feasible and practical means of teaching practicum evaluation especially for distance learning program.

  6. Nondestructive verification and assay systems for spent fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Phillips, J.R.; Bosler, G.E.; Eccleston, G.W.; Halbig, J.K.; Hatcher, C.R.; Hsue, S.T.

    1982-04-01

    This is an interim report of a study concerning the potential application of nondestructive measurements on irradiated light-water-reactor (LWR) fuels at spent-fuel storage facilities. It describes nondestructive measurement techniques and instruments that can provide useful data for more effective in-plant nuclear materials management, better safeguards and criticality safety, and more efficient storage of spent LWR fuel. In particular, several nondestructive measurement devices are already available so that utilities can implement new fuel-management and storage technologies for better use of existing spent-fuel storage capacity. The design of an engineered prototype in-plant spent-fuel measurement system is approx. 80% complete. This system would support improved spent-fuel storage and also efficient fissile recovery if spent-fuel reprocessing becomes a reality

  7. Non-destructive, preclinical evaluation of root canal anatomy of human teeth with flat-panel detector volume CT (FD-VCT)

    International Nuclear Information System (INIS)

    Heidrich, G.; Hassepass, F.; Dullin, C.; Grabbe, E.; Attin, T.; Hannig, C.

    2005-01-01

    Purpose: Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). Materials and methods: 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. Results: The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as dentricles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 μm. Only around 73% of the main root canals detected with FD-VCT and 87% of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. (orig.)

  8. Development of Technology for Structural Integrity Evaluation

    International Nuclear Information System (INIS)

    Choun, Young Sun; Choi, I. K.; Kim, M. K. and others

    2005-03-01

    The purpose of this study is a development of seismic safety and structural integrity evaluation method of the structure in the Nuclear Power plant (NPP). The purpose of 1st sub-Topic is the development and improvement of the seismic safety evaluation methodology for the Nuclear Power Plant structures and safety related equipment. The purpose of 2nd sub-topic is the increasing of structure and equipment seismic capacity through the reducing of seismic force. The purpose of 3rd sub-topic is the development of 3-D nonlinear finite element analysis program for prestressed concrete containment building. The last purpose if the evaluation of the failure mechanism of containment structure and structure capacity and the assessment of integrity of containment through the of leakage test. As a result of this research, there are many research results were produced. The scenario earthquake developing method was developed and the effect of the structures and equipment was analyzed. The effectiveness of isolation system was determined and optimum isolation systems for each equipment were selected. The NUCAS-3D program for the 3 dimensional numerical analysis of containment building using the embedded tendon element and rebar element was developed. The tension behavior of containment building was examined and the leakage rate of the concrete crack was determined. The results of this research can be successfully used for many fields of integrity of NPP site. It can be used for development of design earthquake for the seismic design and safety evaluation and establishment of seismic safety evaluation program and seismic capacity improvement program for existing NPP. In case of seismic isolation part, it can be used for the application to the selection of optimum isolation devices for equipment isolation and to the effective evaluation of each seismic isolation devices. In containment analysis part, it can be used for ultimate pressure capacity evaluation of prestressed concrete

  9. Miniaturized Time Domain Terahertz Non Destructive Evaluation for In-Orbit Inspection of Inflatable Habitats and Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Picometrix's time-domain terahertz (TD-THz) non-destructive evaluation (NDE) technology could be used to inspect space flight structures such as inflatable space...

  10. Miniaturized Time Domain Terahertz Non Destructive Evaluation for In-Orbit Inspection of Inflatable Habitats and Thermal Protection Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Picometrix's time-domain terahertz (TD-THz) non-destructive evaluation (NDE) technology could be used to inspect space flight structures such as inflatable space...

  11. Nondestructive measurement of environmental radioactive strontium

    Directory of Open Access Journals (Sweden)

    Saiba Shuntaro

    2014-03-01

    Full Text Available The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days, Cs-134 (2.1 years, Cs-137 (30 years, Sr-89 (51 days, and Sr-90 (29 years. We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  12. Panel 1 - comparative evaluation of deposition technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R.; Stodolsky, F. [Argonne National Lab., IL (United States); Benson, D.K.; Pitts, R.J. [National Renewable Energy Lab., Golden, CO (United States); Bhat, D.G. [GTE Valenite Corp., Troy, MI (United States); Yulin Chen [Allison Gas Turbine Division, GM, Indianapolis, IN (United States); Gat, R.; Sunkara, M.K. [Case Western Reserve Univ., Cleveland, OH (United States); Kelly, M. [Stanford Univ., CA (United States); Lawler, J.E. [Univ. of Wisconsin, Madison (United States); Nagle, D.C. [Martin Marietta Labs., Baltimore, MD (United States); Outka, D. [Sandia National Laboratories, Livermore, CA (United States); Revankar, G.S. [Deere & Co., Moline, IL (United States); Subramaniam, V.V. [Ohio State Univ., Columbus (United States); Wilbur, P.J. [Colorado State Univ., Fort Collins (United States); Mingshow Wong [Northwestern Univ., Evanston, IL (United States); Woolam, W.E. [Southwest Research Inst., Arlington, VA (United States)

    1993-01-01

    This working group attempted to evaluate/compare the different types of deposition techniques currently under investigation for depositing diamond and diamond-like carbon films. A table lists the broad types of techniques that were considered for depositing diamond and diamond-like carbon films. After some discussion, it was agreed that any evaluation of the various techniques would be dependent on the end application. Thus the next action was to list the different areas where diamond and DLC films could find applications in transportation. These application areas are listed in a table. The table intentionally does not go into great detail on applications because that subject is dealt with specifically by Panel No. 4 - Applications To Transportation. The next action concentrated on identifying critical issues or limitations that need to be considered in evaluating the different processes. An attempt was then made to rank different broad categories of deposition techniques currently available or under development based on the four application areas and the limitations. These rankings/evaluations are given for diamond and DLC techniques. Finally, the working group tried to identify critical development and research issues that need to be incorporated into developing a long-term program that focuses on diamond/DLC coatings for transportation needs. 5 tabs.

  13. Evaluation of Recent Technologies of Nonvolatile RAM

    Science.gov (United States)

    Nuns, Thierry; Duzellier, Sophie; Bertrand, Jean; Hubert, Guillaume; Pouget, Vincent; Darracq, FrÉdÉric; David, Jean-Pierre; Soonckindt, Sabine

    2008-08-01

    Two types of recent nonvolatile random access memories (NVRAM) were evaluated for radiation effects: total dose and single event upset and latch-up under heavy ions and protons. Complementary irradiation with a laser beam provides information on sensitive areas of the devices.

  14. Nondestructive Characterization of Aged Components

    Energy Technology Data Exchange (ETDEWEB)

    Panetta, Paul D.; Toloczko, Mychailo B.; Garner, Francis A.; Balachov, Iouri I.

    2003-10-21

    may be used for material properties measurements. A more appealing solution is to use nondestructive evaluation (NDE) methods.

  15. Evaluation of selected sewage sludge gasification technological parameters

    Science.gov (United States)

    Gałko, Grzegorz; Król, Danuta

    2018-02-01

    Evaluation of selected sewage sludge gasification technological parameters was shown in this paper. Degree of carbon conducted in combustible substance and syngas efficiency (technological readiness coefficient) in accordance with equations were calculated. Enthalpy of individual compounds formation and energy balance were calculated in accordance with rule of Hess.

  16. Light detection and ranging (LiDAR) technology evaluation.

    Science.gov (United States)

    2010-10-01

    Evaluation project was undertaken to provide an analysis on the current state of Laser based technology and its applicability, : potential accuracies and information content with respect to Missouri Department of Transportation( MODOT) applications.

  17. Review and evaluation of alternative chemical disposal technologies

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    .... In light of the fact that alternative technologies have evolved since the 1994 study, this new volume evaluates five Army-chosen alternatives to the baseline incineration system for the disposal...

  18. Healthy China 2020 : Policy and Technology Evaluation | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Healthy China 2020 : Policy and Technology Evaluation ... aimed at providing a blueprint for universal basic healthcare coverage for all by 2020. ... Implementing clinical pathway management and reforming compensation mechanism in rural ...

  19. FHWA research and technology evaluation program summary report spring 2016

    Science.gov (United States)

    2016-08-01

    This report summarizes the 16 evaluations being conducted by the Volpe National Transportation Systems Center on behalf of FHWAs Research and Technology Program. The FHWA R&T Program furthers the Turner-Fairbank Highway Research Centers goal of...

  20. Nondestructive characterization of low-level transuranic waste

    International Nuclear Information System (INIS)

    Barna, B.A.; Reinhardt, W.W.

    1981-10-01

    The use of nondestructive evaluation (NDE) methods is proposed for characterization of transuranic (TRU) waste stored at the Radioactive Waste Management Complex. These NDE methods include real-time x-ray radiography, real-time neutron radiography, x-ray and neutron computed tomography, thermal imaging, container weighing, visual examination, and acoustic measurements. An integrated NDE system is proposed for characterization and certification of TRU waste destined for eventual shipment to the Waste Isolation Pilot Plant in New Mexico. Methods for automating both the classification waste and control of a complete nondestructive evaluation/nondestructive assay system are presented. Feasibility testing of the different NDE methods, including real-time x-ray radiography, and development of automated waste classification techniques are covered as part of a five year effort designed to yield a production waste characterization system

  1. Computed Tomography Technology: Development and Applications for Defence

    International Nuclear Information System (INIS)

    Baheti, G. L.; Saxena, Nisheet; Tripathi, D. K.; Songara, K. C.; Meghwal, L. R.; Meena, V. L.

    2008-01-01

    Computed Tomography(CT) has revolutionized the field of Non-Destructive Testing and Evaluation (NDT and E). Tomography for industrial applications warrants design and development of customized solutions catering to specific visualization requirements. Present paper highlights Tomography Technology Solutions implemented at Defence Laboratory, Jodhpur (DLJ). Details on the technological developments carried out and their utilization for various Defence applications has been covered.

  2. Comparative evaluation of CVD diamond technologies

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, T.R. [General Electric Corporate Research & Development Center, Schenectady, NY (United States)

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  3. Non-Destructive Detection and Separation of Radiation Damaged Cells in Miniaturized, Inexpensive Device, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a clear and well-identified need for rapid, efficient, non-destructive detection and isolation of radiation damaged cells. Available commercial technologies...

  4. Evaluation of Technologies for Retrieval of Waste from Leaking Tanks

    International Nuclear Information System (INIS)

    Bamberger, Judith A.; Hatchell, Brian K.; Lewis, Benjamin E.; Randolph, John D.; Killough, Stephen M.

    2000-01-01

    The US Department of Energy Environmental and Waste Management Tanks Focus Area selected as a strategic initiative the need to identify and develop technologies for remediation of tanks that are known or are suspected to leak. This investigation identified and evaluated technical options for single-shell tank waste retrieval applicable to retrieve waste from potentially leaking tanks. Technologies that minimize leakage use minimal water, and dry retrieval technologies were evaluated. Safety, cost, authorization basis, and schedule risks were identified for each technology to provide River Protection Program with information to evaluate technical and programmatic risk. A workshop was held to identify technology needs and solutions. These approaches grouped into five categories: those related to waste dislodging, waste conveyance, both waste dislodging and conveyance, the deployment platform, and technologies related to leak detection, monitoring, and mitigation. Based on the ranking, six technologies were selected as potential candidates for further evaluation. These items were prioritized into four technologies to recommend for further evaluation (1) Air assisted TORE(R). The TORE(R) produces a processing vortex core with the ability to convey solids at pre-determined slurry concentrations over great distances. The dry TORE(R) concept uses air to develop the vortex to fluidize dry solids. The TORE(R)the solids in a slurry transport line. (2) Sonication for waste dislodging utilizes ultrasonic energy to fracture and dislodge hard waste types such as salt cake and sludge. (3) Novel long-reach manipulators concept is to investigate novel cost effective approaches for long-reach manipulator technology. (4) Next generation crawler technology envisions a non-umbilical dislodger, possibly radio controlled and powered remotely to provide a deployment platform not affected by path, or the need to retrace steps

  5. 49 CFR 192.243 - Nondestructive testing.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nondestructive testing. 192.243 Section 192.243... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive testing. (a) Nondestructive testing of welds must be performed by any process, other than trepanning, that...

  6. Recent improvements concerning nondestructive testing

    International Nuclear Information System (INIS)

    Asty, M.

    1984-12-01

    Rare are the techniques of which development is not already touched by microelectronics and micro-data processing. Nondestructive testing and more particularly ultrasonic and Foucault current testing follow this general rule. With some examples, this paper focuses on the potential of numerical signal processing [fr

  7. Nondestructive testing at the CEA

    International Nuclear Information System (INIS)

    Colomer, J.; Lucas, G.

    1976-01-01

    The different nondestructive testing methods used at the CEA are presented: X-ray or gamma radiography, X-ray stress analysis, neutron radiography, ultrasonic testing, eddy currents, electrical testing, microwaves, thermal testing, acoustic emission, optical holography, tracer techniques. (102 references are cited) [fr

  8. Evaluation of air cleaning technologies existing in the Danish market

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2014-01-01

    Five portable air cleaning technologies including one new technology were evaluated to find their effectiveness in removing ultrafine particles. Measurements were carried out both in a duct and in a test room. The results showed that the technologies that use/create ozone to clean air can increase...... the ozone level significantly in the room. Moreover, they can cause generation of ultrafine particles and consequently increase ultrafine particle concentration in the room. The study suggests using a mechanical filter with low pressure drop as a recommended air cleaning technology in order to remove...

  9. Transferability of economic evaluations of medical technologies: a new technology for orthopedic surgery.

    Science.gov (United States)

    Steuten, Lotte; Vallejo-Torres, Laura; Young, Terry; Buxton, Martin

    2008-05-01

    Transferring results of economic evaluations across countries or jurisdictions can potentially save scarce evaluation resources while helping to make market access and reimbursement decisions in a timely fashion. This article points out why transferring results of economic evaluations is particularly important in the field of medical technologies. It then provides an overview of factors that are previously identified in the literature as affecting transferability of economic evaluations, as well as methods for transferring results in a scientifically sound way. As the current literature almost exclusively relates to transferability of pharmacoeconomic evaluations, this article highlights those factors and methodologies that are of particular relevance to transferring medical technology assessments. Considering the state-of-the-art literature and a worked, real life, example of transferring an economic evaluation of a product used in orthopedic surgery, we provide recommendations for future work in this important area of medical technology assessment.

  10. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-03-01

    Full Text Available Non-destructive and timely determination of leaf nitrogen (N concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0, 165 (N1, 330 (N2, 660 (N3, and 990 (N4 kg·N·ha−1. The mid-portion leaves on the year’s shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB. Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index. Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets—both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration (n = 1000 and validation (n = 420 of this model resulted in high R2 values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%. Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R2 = 0.77 and 2014 (R2 = 0.59. Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24–27 g/kg.

  11. A Survey on Economic-driven Evaluations of Information Technology

    NARCIS (Netherlands)

    Mutschler, B.B.; Zarvic, N.; Reichert, M.U.

    2007-01-01

    The economic-driven evaluation of information technology (IT) has become an important instrument in the management of IT projects. Numerous approaches have been developed to quantify the costs of an IT investment and its assumed profit, to evaluate its impact on business process performance, and to

  12. Comparative evaluation of nitrate removal technologies

    International Nuclear Information System (INIS)

    Darbi, A.; Viraraghavan, T.; Butler, R.; Corkal, D.

    2002-01-01

    Due to the extensive application of artificial nitrogen-based fertilizers and animal manure on land, many water agencies face problems of increasing concentrations of nitrate in groundwater. The contamination of groundwater by nitrate may pose a significant public health problem. The threat of methemoglobinemia is well documented and reflected in the U.S. drinking water standard of 10 mg/L as nitrate-nitrogen. Approximately 45% of Saskatchewan's population use groundwater for drinking purposes, out of which, approximately 23% (230,000) are rural residents. The water used is made available from over 48,000 privately owned wells in regions where there is an extensive application of chemical fertilizers. Biological denitrification, ion exchange and reveres osmosis (RO) processes were selected for further study. Field studies were conducted on these processes. The sulfur/limestone autotrophic denitrification (SLAD) process was selected to achieve biological removal of nitrate from groundwater. The feasibility of the system was evaluated under anaerobic conditions. An ion exchange study was conducted using Ionac A554 which is strong anion exchange resins. In the case of groundwater containing low sulfate concentrations, A554 offered high nitrate removal. However, the disposal of regenerant brine can be a problem. A reverse osmosis unit with Filmtec membrane elements (FT30-Element Family) was used in the study on nitrate removal. The unit effluent average nitrate concentration was less than the maximum allowable concentration. (author)

  13. Irradiated fuel performance evaluation technology development

    International Nuclear Information System (INIS)

    Koo, Yang Hyun; Bang, J. G.; Kim, D. H.

    2012-01-01

    Alpha version performance code for dual-cooled annular fuel under steady state operation, so called 'DUOS', has been developed applying performance models and proposed methodology. Furthermore, nonlinear finite element module which could be integrated into transient/accident fuel performance code was also developed and evaluated using commercial FE code. The first/second irradiation and PIE test of annular pellet for dual-cooled annular fuel in the world have been completed. In-pile irradiation test DB of annular pellet up to burnup of 10,000 MWd/MTU through the 1st test was established and cracking behavior of annular pellet and swelling rate at low temperature were studied. To do irradiation test of dual-cooled annular fuel under PWR's simulating steady-state conditions, irradiation test rig/rod design/manufacture of mock-up/performance test have been completed through international collaboration program with Halden reactor project. The irradiation test of large grain pellets has been continued from 2002 to 2011 and completed successfully. Burnup of 70,000 MWd/MTU which is the highest burnup among irradiation test pellets in domestic was achieved

  14. Public participation in the evaluation of innovative environmental cleanup technology

    International Nuclear Information System (INIS)

    Peterson, T.; McCabe, G.; Serie, P.; Niesen, K.

    1994-08-01

    Technologies for remediation of contamination are urgently needed to clean up US Department of Energy (DOE) sites across the country. DOE is managing a national program to develop, demonstrate, and deploy new technologies with promise to expedite this cleanup. The Integrated Demonstration for Cleanup of Volatile Organic Compounds at Arid Sites (VOC-Arid ID) is one such effort. Time and resources, however, are too limited to be invested in methods of remediation that will never be deployed because they have not been rigorously evaluated or because they face the withering opposition of stakeholders. Therefore the VOC-Arid ID is assessing technology both in terms of its technical effectiveness and its stakeholder acceptability. Only if a technology performs as required and is acceptable to regulators, users of technology, and the public will the VOC-Arid ID recommend its use. What distinguishes public involvement in the VOC-Arid ID is the direct influence stakeholders have on the design of technology demonstrations by working directly with technology developers. Stakeholders participated in defining the criteria with which innovative environmental cleanup technology is being evaluated. The integrated demonstration is committed to providing stakeholders with the information they've indicated they need to reach reasoned judgments about the use of specific cleanup technologies. A guiding principle of the VOC-Arid ID is that stakeholder participation improves the technologies being developed, enhances the acceptance of the technologies, and will lead to the broad and timely deployment of appropriate and effective methods of environmental remediation. The VOC-Arid ID has involved stakeholders from the host demonstration site, Hanford, Washington, and from other and sites where the ID technologies may be deployed

  15. Nondestructive examination requirements for PWR vessel internals

    International Nuclear Information System (INIS)

    Spanner, J.

    2015-01-01

    This paper describes the requirements for the nondestructive examination of pressurized water reactor (PWR) vessel internals in accordance with the requirements of the EPRI Material Reliability Program (MRP) inspection standard for PWR internals (MRP-228) and the American Society of Mechanical Engineers Section XI In-service Inspection. The MRP vessel internals examinations have been performed at nuclear plants in the USA since 2009. The objective of the inspection standard is to provide the requirements for the nondestructive examination (NDE) methods implemented to support the inspection and evaluation of the internals. The inspection standard contains requirements specific to the inspection methodologies involved as well as requirements for qualification of the NDE procedures, equipment and personnel used to perform the vessel internals inspections. The qualification requirements for the NDE systems will be summarized. Six PWR plants in the USA have completed inspections of their internals using the Inspection and Evaluation Guideline (MRP-227) and the Inspection Standard (MRP-228). Examination results show few instances of service-induced degradation flaws, as expected. The few instances of degradation have mostly occurred in bolting

  16. Magnetic Non-destructive Testing of Plastically Deformed Mild Steel

    Directory of Open Access Journals (Sweden)

    Jozef Pala

    2004-01-01

    Full Text Available The Barkhausen noise analysis and coercive field measurement have been used as magnetic non-destructive testing methods for plastically deformed high quality carbon steel specimens. The strain dependence of root mean square value and power spectrum of the Barkhausen noise and the coercive field are explained in terms of the dislocation density. The specimens have been subjected to different magnetizing frequencies to show the overlapping nature of the Barkhausen noise. The results are discussed in the context of usage of magnetic non-destructive testing to evaluate the plastic deformation of high quality carbon steel products.

  17. [Decision modeling for economic evaluation of health technologies].

    Science.gov (United States)

    de Soárez, Patrícia Coelho; Soares, Marta Oliveira; Novaes, Hillegonda Maria Dutilh

    2014-10-01

    Most economic evaluations that participate in decision-making processes for incorporation and financing of technologies of health systems use decision models to assess the costs and benefits of the compared strategies. Despite the large number of economic evaluations conducted in Brazil, there is a pressing need to conduct an in-depth methodological study of the types of decision models and their applicability in our setting. The objective of this literature review is to contribute to the knowledge and use of decision models in the national context of economic evaluations of health technologies. This article presents general definitions about models and concerns with their use; it describes the main models: decision trees, Markov chains, micro-simulation, simulation of discrete and dynamic events; it discusses the elements involved in the choice of model; and exemplifies the models addressed in national economic evaluation studies of diagnostic and therapeutic preventive technologies and health programs.

  18. Evaluation methodologies for security testing biometric systems beyond technological evaluation

    OpenAIRE

    Fernández Saavedra, María Belén

    2013-01-01

    The main objective of this PhD Thesis is the specification of formal evaluation methodologies for testing the security level achieved by biometric systems when these are working under specific contour conditions. This analysis is conducted through the calculation of the basic technical biometric system performance and its possible variations. To that end, the next two relevant contributions have been developed. The first contribution is the definition of two independent biometric performance ...

  19. Technology evaluation: cystic fibrosis therapy, Genzyme.

    Science.gov (United States)

    Cockett, M I

    1999-04-01

    Genzyme is developing therapies to replace the defective forms of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein in CF patients. The company is developing a gene therapy, as well as a recombinant production of CFTR for protein replacement therapy. Both approaches have been granted orphan drug status by the FDA [156348]. The results of several clinical trials were discussed at the first annual meeting of the American Society of Gene Therapy in May 1998. A single dose nasal administration was well tolerated by volunteers, but had disappointing efficacy. In a study completed at the Royal Brompton Hospital, London, a single dose aerosol application of GL-67:DOPE was administered to eight patients, while another eight received GL-67:DOPE plus pCF1-CFTR. In the second group, a moderate increase in the potential difference in the lung was observed, with a slight trend towards bacterial adherence normalization in the airway cells. Seven of the patients in the second group, and three patients who received lipid alone, developed, flu-like symptoms within 24 h. A trial at the University of Alabama, using the same formulation, showed that flu-like symptoms developed in six of eight patients by day two, and in all patients by day seven [290120]. In 1995, the company began a clinical safety trial involving delivery of a normal CF gene to the patient's lungs via an adenovirus vector. The administration involves the inhalation of an aerosol containing the vector or, separately, delivery to one lobe of the patient's lung via a bronchoscope [191678]. To evaluate additional delivery methods for the gene, Genzyme has an exclusive research agreement for the use of Vical's cytofectins as non-viral delivery vectors for CFTR. Also under investigation are delivery systems for the nasal epithelium using liposomes or lipid-DNA complexes. These protocols are being developed in collaboration with the National Heart & Lung Institute, London, and an undisclosed

  20. Methane mitigation timelines to inform energy technology evaluation

    Science.gov (United States)

    Roy, Mandira; Edwards, Morgan R.; Trancik, Jessika E.

    2015-11-01

    Energy technologies emitting differing proportions of methane (CH4) and carbon dioxide (CO2) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH4-emitting technologies prior to an optimal switching year, followed by CH4-light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers.