WorldWideScience

Sample records for technologies including nuclear

  1. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. II. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers. The Agency wishes to thank the scientists who attended this Conference for their papers and for many spirited discussions that truly mark a successful meeting. The Agency wishes also to record its gratitude for the assistance and generous hospitality accorded the Conference, the participants and the Agency's staff by the Government of the Czechoslovak Socialist Republic and by the people of Prague. The scientific information contained in these Proceedings should help to quicken the pace of progress in the fabrication of new and m ore economical fuels, and it is hoped that these proceedings will be found useful to all workers in this and related fields

  2. Nuclear technology

    International Nuclear Information System (INIS)

    1983-03-01

    This report examines nuclear technology in Canada, with emphasis on Quebec, as a means of revitilizing industry. The historical, present day, and future states of Atomic Energy of Canada Limited are examined. Future research programs are discussed in greatest detail. These range from disposal of porcine wastes to new applications for electricity to nuclear medical techniques (to cite only a few examples). The executive summary is written in English. (23 fig., 16 tab.)

  3. Nuclear technology

    International Nuclear Information System (INIS)

    Steele, L.E.

    1986-01-01

    This book has sixteen peer-reviewed papers divided into four sections that reflect changes in the nuclear power industry occurring since 1981, including escalating capital requirements and a growing worldwide dependence on nuclear power for electricity production. The four sections of this book are: Overview of National Programs; Surveillance and Other Radiation Embrittlement Studies; Pressure Vessel Integrity and Regulatory Considerations; and Mechanisms of Irradiation Embrittlement

  4. Nuclear technology in Peru

    International Nuclear Information System (INIS)

    Montoya, M.

    1993-01-01

    This book deals with the Nuclear Energy in Peru. It consists of ten chapters. In the first chapter is presented a rapid overview on nuclear science history. The second chapter describes the nuclear proliferation and the nuclear competition in South America. The nuclear organization in Peru, the Peruvian Institute of Nuclear Energy, and the main centers are described in the third chapter. The following chapters deals with peruvian advances in nuclear medicine, agriculture and food, nuclear application to industry, hydrology, earth sciences and environmental considerations. In the last chapter, the perspectives for nuclear science and technology in Peru are described from the inter institutional cooperation point of view. This book also includes appendix and bibliography. (author)

  5. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  6. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  7. Nuclear science and technology

    International Nuclear Information System (INIS)

    Daud Mohamad; Abd Khalik Wood; Azali Muhammad; Idris Besar; Jaafar Abdullah; Mohd Tadza Abdul Rahman; Muhammad Lebai Juri; Noriah Mod Ali; Samsurdin Ahamad; Syed Abdul Malik Syed Zain; Zaharudin Ahmad

    2005-01-01

    The Nuclear Science and Technology contains valuable information on many aspects of nuclear sciences and technology particularly, its application in various socio-economic sectors, presented in 26 chapters. In general, the book addresses 5 main subjects, covering the following: 1] Introduction; contains basic information on ionising radiation and radioactivity including the what of ionising radiation is all about, interaction with matter and sources of radiation. 2] Detection and measurements; describes detection system and methods capable of detecting specific type of radiation and exposure rate. The QA/QC aspects are also given due consideration in this segment. 3] Safety and health. Outlines the effects of radiation on man, proper working procedures and the organisational radiation protection programme required in accordance to the Atomic Energy Licensing Act 1984 (Act 304) and its subsidiaries. 4] Techniques and applications; as the nucleus of the book, focussing on the various applications and some success stories; power production (for electricity) and other utilizations from both sealed and unsealed sources used in industry, medical and non-medical sectors for the benefit of mankind. 5] Prospects; provides information on the current situation and status of nuclear technology, and prominent organisations responsible in the development of the technology. The direction and future outlook of the technology are also presented to gauge the position and possible contribution that the nuclear technology can play a significant role for the socio-economic progress and nation, well being. Each, chapter in this book is developed around three pillars - basic principle, equipment and system, techniques and operational aspects - as a backbone of the chapter, to ease the understanding of the readers, step by step. Those dealing, with ionising radiation related matters, be it a researcher, a scientist, a laboratory worker or even a member of the public would find this book

  8. Nuclear Technology applications

    International Nuclear Information System (INIS)

    Cibils Machado, W. E- mail: wrcibils@adinet.com.uy

    2002-01-01

    The present work tries on the applications of the nuclear technology in the life daily, such as agriculture and feeding, human health, industry, non destructive essays, isotopic hydrology, and the nuclear power stations for electricity production and radioisotopes production

  9. Nuclear Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  10. Nuclear technology programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  11. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  12. Nuclear technology review 2004

    International Nuclear Information System (INIS)

    2004-08-01

    The viability and credibility of a wide range of nuclear-based technologies require ready access to high-quality atomic, molecular and nuclear data. The demands of new nuclear technologies continue to determine the direction(s) of future data development, including the requirements for data that address innovative fuel cycles, accelerator-driven systems, nuclear incineration, fusion devices, diagnostic and therapeutic medical treatment by radiation, optimization of medical isotope production, non-destructive materials testing, radiation analytical techniques, minerals exploration and land-mine detection. Some recent data development projects with diverse applications are a search engine for Atomic and Molecular data to permit simultaneous data retrieval from a number of different sources for both numerical and bibliographic databases to aid designers. For over 50 years, research reactors have made valuable contributions to the development of nuclear power, basic science, materials development, radioisotope production for medicine and industry, and education and training. They remain core experimental instruments. As of June 2004, 672 research reactors are recorded in the IAEA's Research Reactor Data Base (RRDB), of which 274 are operational in 56 countries (85 in 39 developing countries), 214 are shut down, 168 have been decommissioned and 16 are planned or under construction. Nuclear power supplied 16% of global electricity generation in 2002, and as of 31 December 2003 there were 439 NPPs operating worldwide. Their global energy availability factor has risen steadily from 74.2% in 1991 to approximately 84% in 2003. In 2003 two new NPPs were connected to the grid, a 665 MW(e) pressurized heavy water reactor (PHWR) in China and a 960 MW(e) pressurized water reactor (PWR) in the Republic of Korea. In addition Canada restarted two units that had been shutdown. Construction started on one new NPP in India. Four 50 MW(e) units in the UK were retired, as were one 640 MW

  13. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  14. Nuclear technology review 2002

    International Nuclear Information System (INIS)

    2002-08-01

    The unifying theme of the Nuclear Technology Review 2002 (NTR-2002) is the importance of innovation. Innovation makes it possible to step beyond incremental evolutionary improvements constrained by diminishing returns. For crop production and public health, for example, the sterile insect technique created a whole new path for future improvements, distinctly different from applying ever larger amounts of pesticides. Nuclear techniques offer a new and safer approach to removing the world's estimated 60,000,000 abandoned land mines. New precision techniques create the potential for ever less intrusive and more effective radiation treatments for cancer. For nuclear power continuing innovation will be a key factor in closing the projection gap between long term global energy scenarios in which nuclear power expands substantially and near term scenarios with only modest expansion or even decline. While the NTR-2002 presents a worldwide review of the state-of-the-art of nuclear science and technology, and not an annual report on IAEA activities, it notes areas where the Agency has a particularly important role to play. Part I of the NTR-2002 'Fundamentals of Nuclear Development', reviews developments in the field of nuclear, atomic and molecular data. Research reactors remain essential to progress in nuclear science and technology. Part I reviews advances in radioisotope production, the use of accelerators and neutron activation analysis relevant to applications ranging from medicine particularly the light against cancer to industry. Part I also reviews developments in nuclear instrumentation and nuclear fusion, particularly in connection with the International Thermonuclear Experimental Reactor. Part II begins with a summary of nuclear power production in 2001. At the end of 2001 there were 438 nuclear power plants (NPPs) in operation, corresponding to a total capacity of 353 GW(e), more than 10000 reactor-years of cumulative operating experience and about 16% of global

  15. Nuclear technology review 2006

    International Nuclear Information System (INIS)

    2006-08-01

    Cadarache, France.The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) grew to 24 members, with the addition in 2005 of Ukraine and the United States of America. Current INPRO activities include completion of a user manual on the INPRO methodology, application of the methodology to assessing innovative nuclear energy systems (INSs) in national and multinational studies, analyses of the role and structure of INSs in meeting energy demands in a sustainable manner, and selection of the most suitable areas for collaborative development. Developments in accelerator based techniques, production of radioisotopes and some novel uses of nanotechnology are also reported. Nuclear technologies continue to play key and often unique roles in food production and safety, in human and animal health, in water resource management and in the environment. Mutation breeding of crops, for example, has led to the use of previously unusable land in many countries for rice production. In human health, the use of stable isotopes is becoming an accepted tool for the development of nutrition programmes. Nuclear medicine is benefiting from technological advances in computing. Sustainable water management and desalination remain high on the international agenda. New developments in isotopic analysis of hydrological samples hold promise for increasing the use of isotopes in water resources management. Advances in sampling and analytical techniques have assisted in better understanding of the environment. Developments in all these areas are also reported

  16. Proceedings of the 9th national conference on nuclear electronics and nuclear detection technology

    International Nuclear Information System (INIS)

    1999-01-01

    It is the proceedings of the 9th national conference on nuclear electronics and nuclear technology. 114 theses are collected in this proceedings. It includes nuclear electronics, nuclear detector, radiation hardened electronics, computer application in nuclear sciences and technology, nuclear instruments and its application, nuclear monitoring and nuclear explosion measurement, nuclear medical electronics and liquid scintillation counting technology

  17. Nuclear Technology Review 2007

    International Nuclear Information System (INIS)

    2007-08-01

    The year 2006 saw increasing activities in the field of nuclear power. Significant plans for expansion were announced in some countries and plans for introducing nuclear power in some others. The year began with announcements by both the Russian Federation and the United States of America of international fuel cycle proposals in anticipation of a substantial expansion of nuclear power worldwide. In January, Russian President Vladimir Putin outlined a proposal to create 'a system of international centres providing nuclear fuel cycle services, including enrichment, on a non-discriminatory basis and under the control of the IAEA'. In February, the USA proposed a Global Nuclear Energy Partnership to develop advanced recycling technologies that would not separate pure plutonium; international collaboration in supplying fuel for States which agree not to pursue enrichment and reprocessing; advanced reactors to consume recycled spent fuel while providing energy; and safe and secure small reactors suited to the needs of developing countries. New medium-term projections by the IAEA and the International Energy Agency present a picture with opportunities for substantial nuclear expansion, but still with notable uncertainty. A number of countries have announced plans for significant expansion: China, India, Japan, Pakistan, the Russian Federation and the Republic of Korea. Announcements of planned license applications by US companies and consortia mentioned approximately 25 new reactors. Two site preparation applications were submitted in Canada. A major energy review by the United Kingdom concluded that new nuclear power stations would make a significant contribution to meeting the UK's energy policy goals. Utilities from Estonia, Lithuania and Latvia launched a joint feasibility study of a new nuclear power plant to serve all three countries, and Belarus, Egypt, Indonesia, Nigeria and Turkey made announcements of steps they are taking toward their first nuclear power plants

  18. Nuclear technology and beyond

    International Nuclear Information System (INIS)

    Akiyama, Mamoru

    1997-01-01

    After the confrontation of East and West, and the problem of North and South, we are now facing the era of Globalization in the presence of twenty-first century. Tracing the history of civilization, human being has progressed along with the accumulation of experience, and the development of science and technology. Science and technology bloomed in modern ages, especially, energy technology showed the giant leap in this century. Nuclear science and technology has been developed for peaceful purposes, and for the benefit of humanity. As a result, today, its progress led nuclear science and technology to have the great applicability to the development of the society. Toward the twenty-first century and Globalization, the science and technology developed in nuclear field is hoped to play a great contribution in various area of the society. (author)

  19. Chemistry and nuclear technology

    International Nuclear Information System (INIS)

    De Wet, W.J.

    1977-01-01

    The underlying principles of nuclear sciece and technology as based on the two basic phenomena, namely, radioactivity and nuclear reactions, with their relatively large associated energy changes, are outlined. The most important contributions by chemists in the overall historical development are mentioned and the strong position chemistry has attained in these fields is indicated. It is concluded that chemistry as well as many other scientific discplines (apart from general benefits) have largely benefitted from these nuclear developments [af

  20. Nuclear science and technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Nuclear Science and Technology comprehends Nuclear and Condensed Matter Physics, Neutron Activation Analysis, Radiation Metrology, Radioprotection and Radioactive Waste Management. These activities are developed at the Research Reactor Center, the Radiation Metrology Center and the Radioactive Waste Management Laboratory. The Radioprotection activities are developed at all radioactive and nuclear facilities of IPEN-CNEN/SP. The Research Reactor Center at IPEN-CNEN/SP is responsible for the operation and maintenance of the Research Reactor IEA-R1 and has a three-fold mission: promoting basic and applied research in nuclear and neutron related sciences, providing educational opportunities for students in these fields and providing services and applications resulting from the reactor utilization. Specific research programs include nuclear structure study from beta and gamma decay of radioactive nuclei and nuclear reactions, nuclear and neutron metrology, neutron diffraction and neutron multiple-diffraction study for crystalline and magnetic structure determination, perturbed -angular correlation (PAC) using radioactive nuclear probes to study the nuclear hyperfine interactions in solids and instrumental neutron activation analysis, with comparative or ko standardization applied to the fields of health, agriculture, environment, archaeology, reference material production, geology and industry. The research in the areas of applied physics includes neutron radiography, scientific computation and nuclear instrumentation. During the last several years a special effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power. The primary objective was to modernize the IEA-R1 reactor for safe and sustainable operation to produce primary radioisotopes, such as 99 Mo and 131 I, among several others, used in nuclear medicine, by operating the reactor

  1. Nuclear science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Science and Technology comprehends Nuclear and Condensed Matter Physics, Neutron Activation Analysis, Radiation Metrology, Radioprotection and Radioactive Waste Management. These activities are developed at the Research Reactor Center, the Radiation Metrology Center and the Radioactive Waste Management Laboratory. The Radioprotection activities are developed at all radioactive and nuclear facilities of IPEN-CNEN/SP. The Research Reactor Center at IPEN-CNEN/SP is responsible for the operation and maintenance of the Research Reactor IEA-R1 and has a three-fold mission: promoting basic and applied research in nuclear and neutron related sciences, providing educational opportunities for students in these fields and providing services and applications resulting from the reactor utilization. Specific research programs include nuclear structure study from beta and gamma decay of radioactive nuclei and nuclear reactions, nuclear and neutron metrology, neutron diffraction and neutron multiple-diffraction study for crystalline and magnetic structure determination, perturbed -angular correlation (PAC) using radioactive nuclear probes to study the nuclear hyperfine interactions in solids and instrumental neutron activation analysis, with comparative or ko standardization applied to the fields of health, agriculture, environment, archaeology, reference material production, geology and industry. The research in the areas of applied physics includes neutron radiography, scientific computation and nuclear instrumentation. During the last several years a special effort was made to refurbish the old components and systems of the reactor, particularly those related with the reactor safety improvement, in order to upgrade the reactor power. The primary objective was to modernize the IEA-R1 reactor for safe and sustainable operation to produce primary radioisotopes, such as {sup 99}Mo and {sup 131}I, among several others, used in nuclear medicine, by operating

  2. Nuclear Forensics Technologies in Japan

    International Nuclear Information System (INIS)

    Shinohara, N.; Kimura, Y.; Okubo, A.; Tomikawa, H.

    2015-01-01

    Nuclear forensics is the analysis of intercepted illicit nuclear or radioactive material and any associated material to provide evidence for nuclear attribution by determining origin, history, transit routes and purpose involving such material. Nuclear forensics activities include sampling of the illicit material, analysis of the samples and evaluation of the attribution by comparing the analysed data with database or numerical simulation. Because the nuclear forensics methodologies provide hints of the origin of the nuclear materials used in illegal dealings or nuclear terrorism, it contributes to identify and indict offenders, hence to enhance deterrent effect against such terrorism. Worldwide network on nuclear forensics can lead to strengthening global nuclear security regime. In the ESARDA Symposium 2015, the results of research and development of fundamental nuclear forensics technologies performed in Japan Atomic Energy Agency during the term of 2011-2013 were reported, namely (1) technique to analyse isotopic composition of nuclear material, (2) technique to identify the impurities contained in the material, (3) technique to determine the age of the purified material by measuring the isotopic ratio of daughter thorium to parent uranium, (4) technique to make image data by observing particle shapes with electron microscope, and (5) prototype nuclear forensics library for comparison of the analysed data with database in order to evaluate its evidence such as origin and history. Japan’s capability on nuclear forensics and effective international cooperation are also mentioned for contribution to the international nuclear forensics community.

  3. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  4. Nuclear Technology Review 2008

    International Nuclear Information System (INIS)

    2008-08-01

    The year 2007 saw signs of recent rising expectations for nuclear power starting to translate into increased construction. There were seven construction starts, plus the resumption of active construction at Watts Bar 2 in the USA, and a total of 33 reactors under construction at the end of the year. Watts Bar 2 is the first active construction in the USA since 1996. The US Nuclear Regulatory Commission (NRC) received four applications for combined licences (COLs), the first applications for new nuclear reactors in the USA in nearly 30 years. Construction also began at Flamanville 3, the first construction start in France since 1991. Current expansion, as well as near term and long term growth prospects, however, remain centred in Asia. Of the 33 reactors under construction, 19 were in Asia. By the end of the year, 28 of the last 39 new reactors to have been connected to the grid were in Asia. The IAEA revised its medium term projections for global growth in nuclear power upwards in 2007, to 447 GW(e) and 691 GW(e), respectively in its low and high projections for 2030. Others, for instance the OECD International Energy Agency, also revised their projections upwards. Reported uranium resources increased significantly relative to those in the last edition of the 'Red Book', Uranium 2005: Resources, Production and Demand, due mainly to resource increases reported by Australia, the Russian Federation, South Africa and Ukraine. The spot market uranium price reached almost $360/kg in June before falling back to $240/kg in December. Construction began on USEC's new American Centrifuge Plant, and Japan Nuclear Fuel Limited started cascade tests at its advanced centrifuge uranium enrichment plant at Rokkasho. Kazakhstan and the Russian Federation established the International Uranium Enrichment Centre in East Siberia as one step in President Vladimir Putin's 2006 proposal to create a system of international centres providing nuclear fuel cycle services, including enrichment

  5. Latest nuclear emulsion technology

    Science.gov (United States)

    Rokujo, Hiroki; Kawahara, Hiroaki; Komatani, Ryosuke; Morishita, Misaki; Nakano, Toshiyuki; Otsuka, Naoto; Yoshimoto, Masahiro

    2017-06-01

    Nuclear emulsion is a extremely high-resolution 3D tracking detector. Since the discovery of the pion by C.F. Powell et al. in 1946, experiments with nuclear emulsions have contributed to the development of particle physics. (e.g. the OPERA collaboration reported the discovery of νμ * ντ oscillations in appearance mode in 2015) The technology of nuclear emulsion still keeps making progress. Since 2010, we have introduced a system of nuclear emulsion gel production to our laboratory in Nagoya University, and have started self-development of the new gel, instead of from the photographic film companies. Moreover, a faster automated emulsion scanning system is developed. Its scanning speed reaches 4000 cm2/h, and the load for analyzing becomes more and more lighter. In this presentation, we report the status of nuclear emulsion technologies for cosmic ray experiments.

  6. Latest nuclear emulsion technology

    Directory of Open Access Journals (Sweden)

    Rokujo Hiroki

    2017-01-01

    Full Text Available Nuclear emulsion is a extremely high-resolution 3D tracking detector. Since the discovery of the pion by C.F. Powell et al. in 1946, experiments with nuclear emulsions have contributed to the development of particle physics. (e.g. the OPERA collaboration reported the discovery of νμ * ντ oscillations in appearance mode in 2015 The technology of nuclear emulsion still keeps making progress. Since 2010, we have introduced a system of nuclear emulsion gel production to our laboratory in Nagoya University, and have started self-development of the new gel, instead of from the photographic film companies. Moreover, a faster automated emulsion scanning system is developed. Its scanning speed reaches 4000 cm2/h, and the load for analyzing becomes more and more lighter. In this presentation, we report the status of nuclear emulsion technologies for cosmic ray experiments.

  7. Nuclear Proliferation Technology Trends Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  8. Nuclear technology and society

    International Nuclear Information System (INIS)

    Suzuki, Tatsujiro; Tanaka, Yutaka; Taniguchi, Taketoshi; Oyama, Kosuke

    1999-01-01

    This special issue of Journal of the Atomic Energy Society of Japan deals with the relation between nuclear technology and society, and is composed of four papers: (1) Nuclear energy and international politics - sociotechnics around plutonium utilization; (2) Risk recognition and benefit recognition of nuclear facilities and social acceptance; (3) Environmental risk management and radioactive waste problem; and, (4) Public administration around the relation between nuclear energy and society. (1) describes the historical development of nuclear energy since its birth, focusing on how the leading countries tried to control nuclear proliferation. Peaceful utilization of nuclear energy is closely connected with the Non-proliferation problem. (1) also discusses the relation of plutonium utilization of Japan with international society. (2) discusses how nuclear facilities can be accepted by society, analyzing the background of risk recognition, in particular, of psychological character of mass society. (3) introduces an new approach (risk-based or risk-informed regulation) of environmental risk management for radioactive waste disposal problem, focusing on HLW (high-level waste). (4) explains the approach from public administration to nuclear energy and general energy policy and introduces PPA (participatory policy analysis) as a means for policy making. (M.M.)

  9. Reexamining the Ethics of Nuclear Technology.

    Science.gov (United States)

    Andrianov, Andrei; Kanke, Victor; Kuptsov, Ilya; Murogov, Viktor

    2015-08-01

    This article analyzes the present status, development trends, and problems in the ethics of nuclear technology in light of a possible revision of its conceptual foundations. First, to better recognize the current state of nuclear technology ethics and related problems, this article focuses on presenting a picture of the evolution of the concepts and recent achievements related to technoethics, based on the ethics of responsibility. The term 'ethics of nuclear technology' describes a multidisciplinary endeavor to examine the problems associated with nuclear technology through ethical frameworks and paradigms. Second, to identify the reasons for the intensification of efforts to develop ethics in relation to nuclear technology, this article presents an analysis of the recent situation and future prospects of nuclear technology deployment. This includes contradictions that have aggravated nuclear dilemmas and debates stimulated by the shortcomings of nuclear technology, as well as the need for the further development of a nuclear culture paradigm that is able to provide a conceptual framework to overcome nuclear challenges. Third, efforts in the field of nuclear technology ethics are presented as a short overview of particular examples, and the major findings regarding obstacles to the development of nuclear technology ethics are also summarized. Finally, a potential methodological course is proposed to overcome inaction in this field; the proposed course provides for the further development of nuclear technology ethics, assuming the axiological multidisciplinary problematization of the main concepts in nuclear engineering through the basic ethical paradigms: analytical, hermeneutical, and poststructuralist.

  10. Nuclear Technology Review 2014

    International Nuclear Information System (INIS)

    2014-08-01

    With 434 nuclear power reactors in operation worldwide at the end of 2013, nuclear energy had a global generating capacity of 371.7 GW(e). There were four new grid connections and ten construction starts on new reactors. Belarus became the second nuclear ‘newcomer’ State in three decades to start building its first nuclear power plant. Near and long term growth prospects remained centred in Asia, particularly in China. The 72 reactors under construction in 2013 represented the highest number since 1989. Of these, 48 were in Asia, as were 42 of the last 52 new reactors to have been connected to the grid since 2000. Thirty States currently use nuclear power and about the same number are considering including it as part of their energy mix. Of the 30 States already operating nuclear power plants, 13 are either constructing new plants or actively completing previously suspended constructions, and 12 are planning to either construct new plants or to complete suspended constructions. The IAEA Ministerial Conference on Nuclear Power in the 21st Century, held in June 2013, reaffirmed that nuclear power remains an important option for many States to improve energy security, reduce the impact of volatile fossil fuels prices and mitigate the effects of climate change. The Concluding Statement said that “nuclear power, as a stable base-load source of electricity in an era of ever increasing global energy demands, complements other energy sources including renewables.” In the IAEA’s 2013 projections, nuclear power is expected to grow by between 17% as the low projection and 94% as the high projection by 2030. These figures are slightly lower than projected in 2012, reflecting the continued impact of the Fukushima Daiichi accident, the low prices of natural gas and the increasing use of renewable energy. Additional information focuses on the linkages between nuclear power and climate change, as nuclear power, hydropower and wind energy have the lowest life cycle

  11. Nuclear technology in Canada

    International Nuclear Information System (INIS)

    1983-01-01

    This pamphlet provides a summary of the research being carried out by Atomic Energy of Canada Limited. The design and development of the CANDU type reactor are highlighted and the contribution of nuclear technology to medicine, agriculture and the Canadian economy is briefly discussed

  12. Nuclear technology and societal needs

    International Nuclear Information System (INIS)

    2004-11-01

    This volume aims to review the present status of development of nuclear technologies and their applications in the country and also to make projections for future requirements. This will also cover state-of-the-art technologies in these areas. The following topics are covered in detail: nuclear technologies for water desalination, water resources development and management using nuclear technology, industrial applications of isotopes and radiation technology, radiation technology in health care, nuclear technology for food preservation, agricultural applications of nuclear technology. Papers relevant to INIS are indexed separately

  13. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  14. Why nuclear technology

    International Nuclear Information System (INIS)

    Vieira, Wilson J.; Ishiguro, Yuji; Urbina, Ligia M. Soto

    1996-01-01

    The importance of nuclear energy in the global society implies the nacional need to give priority and maintain an effective technology policy for nuclear science. In this work, it is considered three points that, although do not represent all the problems in the nuclear sector, were chosen because of their importance and need of change that require: evaluation of the Brazilian scientific policy, which is directed towards the publication in international periodicals, yielding more benefits to the developed countries; evaluation of the few and small investment in laboratories and research institutes, which are the natural producers of technology for the industry and service sectors; evaluation of the lack of concrete of concrete objectives in the universities and research institutes, whose policies are elaborated with-out the due consideration of the collective benefits. It is necessary a national plan for the nuclear are that makes investments in technology development, investments in the laboratories and research institutes, and that makes these universities and research institutes accountable for the success or failure to accomplish the proposed objectives. (author)

  15. International nuclear technology transfer

    International Nuclear Information System (INIS)

    Cartwright, P.; Rocchio, J.P.

    1978-01-01

    Light water reactors (LWRs), originally developed in the United States, became the nuclear workhorses for utilities in Europe and Japan largely because the U.S. industry was willing and able to transfer its nuclear know-how abroad. In this international effort, the industry had the encouragement and support of the U.S. governement. In the case of the boiling water reactor (BWR) the program for technology transfer was developed in response to overseas customer demands for support in building local designs and manufacturing capabilities. The principal vehicles have been technology exchange agreements through which complete engineering and manufacturing information is furnished covering BWR systems and fuel. Agreements are held with companies in Germany, Japan, Italy, and Sweden. In recent years, a comprehensive program of joint technology development with overseas manufacturers has begun. The rapidly escalating cost of nuclear research and development make it desirable to minimize duplication of effort. These joint programs provide a mechanism for two or more parties jointly to plan a development program, assign work tasks among themselves, and exchange test results. Despite a slower-than-hoped-for start, nuclear power today is playing a significant role in the economic growth of some developing countries, and can continue to do so. Roughly half of the 23 free world nations that have adopted LWRs are developing countries

  16. Nuclear Science and Technology for Thai Society

    International Nuclear Information System (INIS)

    Thailand Institute of Nuclear Technology, Bangkok

    2009-07-01

    Full text: Full text: The 11th conference on the nuclear science and technology was held on 2-3 July 2009 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for the infestation tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  17. Nuclear technology options

    International Nuclear Information System (INIS)

    Salvatores, Massimo

    2013-01-01

    Different strategies and motivations in different countries have led to diverse options. In Europe the SNETP (Sustainable Nuclear Energy Technology Platform) has the objective of developing R&D supporting GEN-II (present) and GEN-III nuclear systems under development; allowing sustainability and minimisation of waste burden, promoting advanced Gen-IV Fast Reactors; and accounting for a Nuclear Cogeneration Industrial Initiative. A remarkable initiative in the USA has been the promotion of small modular reactors (SMRs) – at less than 300 MWe in capacity, much smaller than typical reactors – which can be an ideal choice for (remote) areas which cannot support a larger reactor. Compact scalable design offers a host of potential safety, construction and economic benefits. More “upbeat” strategies are expected in other areas of the world where significant increase in nuclear energy demand is predicted in the next decades. If this growth materialises, future fuel cycles characteristics, feasibility and acceptability will be crucial. This paper will discuss different scenarios for future fuel cycles, resources optimisation and/or waste minimization, the range from full fast reactor deployment to phase-out, management of spent nuclear fuel and the significant potential benefits of advanced cycles. The next 45 years will be dominated by deployment of standard large or medium size plants operating for 60 years. Available resources do allow it. However, fuel cycle will be a growing and most challenging issue and early assessments will be needed for public acceptance and policy decisions.

  18. Nuclear Technology Review 2015

    International Nuclear Information System (INIS)

    2015-08-01

    With 438 reactors operating at the end of 2014, nuclear energy had a global generating capacity of 376.2 GW(e). There was only one permanent shutdown. There were five new grid connections and three construction starts on new reactors. Near and long term growth prospects remained centred in Asia, particularly in China. Of the 70 reactors under construction, 46 were in Asia, as were 32 of the last 40 reactors that have been connected to the grid since 2004. Thirty countries currently use nuclear power and about the same number are considering, planning or actively working to include it as part of their energy mix. Of the 30 operating countries, 13 are either constructing new plants or actively completing previously suspended construction projects, and 12 are planning either to construct new plants or to complete suspended construction projects. Several countries that have decided to introduce nuclear power are at advanced stages of infrastructure preparation. The IAEA’s 2014 projections show a growth between 8% and 88% in nuclear power capacity by the year 2030. Growth of population and demand for electricity in the developing world, recognition of the role nuclear power plays in reducing greenhouse gas emissions, the importance of security of energy supply and the volatility of fossil fuel prices point to nuclear energy playing an important role in the energy mix in the long run. Safety improvements have continued to be made at nuclear power plants (NPPs) throughout the world. These have included identifying and applying lessons learned from the accident at the Fukushima Daiichi Nuclear Power Plant, improving the effectiveness of defence in depth, strengthening emergency preparedness and response capabilities, enhancing capacity building, and protecting people and the environment from ionizing radiation

  19. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  20. New nuclear technologies

    International Nuclear Information System (INIS)

    Bouchard, J.; Thomas, J.B.

    2001-01-01

    The potential of nuclear energy for sustainable development is based on its competitiveness, environmental friendliness and sustainability of natural resources. The improvements to be achieved relate to cleanliness (by reducing the production of long lived radioactive waste), safety demonstration and sobriety which contributes to minimise the consumption of natural resources. The current level of competitiveness, which is fairly good, has to be maintained. The required improvements benefit from a high efficiency and a simpler architecture of industrial systems; they imply the recycling of nuclear materials and a high efficiency of nuclear combustion. The latter requires a hardened spectrum using fast neutrons, which makes the nuclear core 'omnivorous' as for transuranics. The studies must take into account reactor design, nuclear fuel and fuel cycle. Diverse coolants (water, gas, liquid metals) are considered, with solid fuel (pins, particles) and reprocessing by hydrometallurgical or pyrochemical processes, as well as liquid fuel reactors. Several ways of combining options look promising. The required time before industrial implementation is highly variable. A nuclear fleet can include diversified, specialized components and new applications (hydrogen production) can be envisaged. The R and D programme will rely on the development of simulation power and will imply a strong international cooperation. (authors)

  1. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  2. Nuclear safeguards technology handbook

    International Nuclear Information System (INIS)

    1977-12-01

    The purpose of this handbook is to present to United States industrial organizations the Department of Energy's (DOE) Safeguards Technology Program. The roles and missions for safeguards in the U.S. government and application of the DOE technology program to industry safeguards planning are discussed. A guide to sources and products is included

  3. Space technology needs nuclear power

    International Nuclear Information System (INIS)

    Leidinger, B.J.G.

    1993-01-01

    Space technology needs nuclear power to solve its future problems. Manned space flight to Mars is hardly feasible without nuclear propulsion, and orbital nuclear power lants will be necessary to supply power to large satellites or large space stations. Nuclear power also needs space technology. A nuclear power plant sited on the moon is not going to upset anybody, because of the high natural background radiation level existing there, and could contribute to terrestrial power supply. (orig./HP) [de

  4. Nuclear Technology Review 2012

    International Nuclear Information System (INIS)

    2012-09-01

    In 2011, nuclear energy continued to play an important role in global electricity production despite the accident at the Fukushima Daiichi nuclear power plant (NPP). Total generating nuclear power capacity was slightly lower than in previous years due to the permanent shutdown of 13 reactors in 2011, including 8 in Germany and 4 in Japan in the wake of the accident. However, there were 7 new grid connections compared to 5 in 2010, 2 in 2009 and none in 2008. Significant growth in the use of nuclear energy worldwide is still anticipated - between 35% and 100% by 2030 - although the Agency projections for 2030 are 7-8% lower than projections made in 2010. The factors that have contributed to an increased interest in nuclear power did not change: an increasing global demand for energy, concerns about climate change, energy security and uncertainty about fossil fuel supplies. Most of the growth is still expected in countries that already have operating NPPs, especially in Asia, with China and India remaining the main centres of expansion while the Russian Federation will also remain a centre of strong growth. The 7-8% drop in projected growth for 2030 reflects an accelerated phase-out of nuclear power in Germany, some immediate shutdowns and a government review of the planned expansion in Japan, as well as temporary delays in expansion in several other countries. Measures taken by countries as a result of the Fukushima Daiichi nuclear accident have been varied. A number of countries announced reviews of their programmes. Belgium, Germany and Switzerland took additional steps to phase out nuclear power entirely while others re-emphasized their expansion plans. Many Member States carried out national safety assessment reviews in 2011 (often called 'stress tests'), and commitments were made to complete any remaining assessments promptly and to implement the necessary corrective action. In countries considering the introduction of nuclear power, interest remained strong

  5. Nuclear Technology Review 2010

    International Nuclear Information System (INIS)

    2010-09-01

    . The Swedish Nuclear Fuel and Waste Management Company (SKB) selected Osthammar as the site for a final spent fuel geological repository, following a nearly 20 year selection process. In the USA, the Government decided to terminate its development of a permanent repository for high level waste at Yucca Mountain, while continuing the licensing process. It plans to establish a commission to evaluate alternatives. With respect to nuclear fusion, site preparations for the International Thermonuclear Experimental Reactor (ITER) were completed and procurement arrangements signed for facilities worth approximately Euro 1.5 billion, about a third of total anticipated procurements. Construction of the National Ignition Facility in the USA was completed. Food security, human health including disease prevention and control, environmental protection, water resource management as well as the use of radioisotopes and radiation are all areas where nuclear and isotopic techniques are beneficial in supporting socioeconomic development in many countries throughout the world. In the food and agriculture area, nuclear techniques are being used, together with complementary techniques, to address a growing number of insect pests that threaten agricultural productivity as well as international trade. The analysis of the genetic resources of livestock is a high international priority because it provides crucial options for the sustainable expansion of livestock production. Nuclear techniques can assist in these efforts. As concern over carbon emissions grows, the option of storing (sequestering) carbon in soils is of increasing interest. Isotopic tools are useful for determining the sequestration capacity of specific land areas.

  6. Advanced nuclear energy analysis technology

    International Nuclear Information System (INIS)

    Gauntt, Randall O.; Murata, Kenneth K.; Romero, Vicente Josce; Young, Michael Francis; Rochau, Gary Eugene

    2004-01-01

    A two-year effort focused on applying ASCI technology developed for the analysis of weapons systems to the state-of-the-art accident analysis of a nuclear reactor system was proposed. The Sandia SIERRA parallel computing platform for ASCI codes includes high-fidelity thermal, fluids, and structural codes whose coupling through SIERRA can be specifically tailored to the particular problem at hand to analyze complex multiphysics problems. Presently, however, the suite lacks several physics modules unique to the analysis of nuclear reactors. The NRC MELCOR code, not presently part of SIERRA, was developed to analyze severe accidents in present-technology reactor systems. We attempted to: (1) evaluate the SIERRA code suite for its current applicability to the analysis of next generation nuclear reactors, and the feasibility of implementing MELCOR models into the SIERRA suite, (2) examine the possibility of augmenting ASCI codes or alternatives by coupling to the MELCOR code, or portions thereof, to address physics particular to nuclear reactor issues, especially those facing next generation reactor designs, and (3) apply the coupled code set to a demonstration problem involving a nuclear reactor system. We were successful in completing the first two in sufficient detail to determine that an extensive demonstration problem was not feasible at this time. In the future, completion of this research would demonstrate the feasibility of performing high fidelity and rapid analyses of safety and design issues needed to support the development of next generation power reactor systems

  7. Nuclear fuel manufacture and technology

    International Nuclear Information System (INIS)

    Nuclear power accounts for approximately 17% of the world's total electrical energy production. Over 30 countries operate in excess of 430 nuclear power plants with a combined generating capacity of more than 340 000 MWe. BNFL is a leading force in the international nuclear industry, supplying products and services across the complete fuel cycle business spectrum. These services and products include fuel and intermediate products manufacture, reprocessing, transport, waste management and decommissioning. This paper describes the processes involved in taking uranium ore as a raw material through to the production of advanced fuels and focuses on the manufacture and technology for both uranium oxide (UO 2 ) and mixed oxide (MOX) fuels. As a light water reactor (LWR) fuel fabricator, BNFL is able to manufacture MOX or UO 2 fuel utilizing recycled uranium. This paper discusses the technology involved in the use of plutonium or uranium oxide recovered from reprocessing and other advanced fuel technical issues. Improved production methods and the application of advanced engineering permits the next generation of fuel fabrication plants to capitalize on advances in technology. The long-term research and development (R and D) commitments by BNFL are outlined in this paper, indicating the levels of investment needed in R and D to accommodate a high technology company in an international market. (author)

  8. Nuclear Technology Review 2011

    International Nuclear Information System (INIS)

    2011-09-01

    IAEA low enriched uranium (LEU) bank, which will be owned and managed by the IAEA, as a supply of last resort, for power generation. Also in December, an LEU reserve under the aegis of the Agency was opened in Angarsk, Russian Federation, comprising 120 tonnes of LEU, which is sufficient for two full cores of fuel for a 1000 MW(e) power reactor. More than 50 Member States are considering alternatives or have begun developing disposal options appropriate for their waste inventories. In January 2010, a decree came into force in Slovenia confirming the site for its low and intermediate level waste repository. In November 2010, the European Commission issued a proposal for a Council Directive on the management of spent fuel and radioactive waste that included asking EU Member States to present national programmes, indicating when, where and how they will build and manage final repositories aimed at guaranteeing the highest safety standards. Finland and Sweden are preparing the documentation for construction licences for deep geological facilities designated for spent fuel. The French Nuclear Safety Authority (ASN) presented a new edition of the national plan for the management of radioactive material. In the USA, the Blue Ribbon Commission on America's Nuclear Future was established in January 2010 after the US Government's 2009 decision not to proceed with the Yucca Mountain deep geological repository. The Commission's first, interim report is expected in July 2011. IAEA support continued to Member States and international programmes to return research reactor fuel to its country of origin. As part of the Russian Research Reactor Fuel Return (RRRFR) programme, approximately 109 kg of fresh high enriched urarium (HEU) fuel and 376 kg of spent HEU fuel were repatriated to the Russian Federation. 2500 kg of degraded, spent, research reactor fuel was transported from Vinca, Serbia, to the Russian Federation at the end of 2010. The Vinca repatriation work also marked the

  9. Korean experiences on nuclear power technology

    International Nuclear Information System (INIS)

    Kim, H.; Yang, H.

    1994-01-01

    This paper describes the outstanding performance of the indigenous development program of nuclear power technology such as the design and fabrication of both CANDU and PWR fuel and in the design and construction of nuclear steam supply system in Korea. The success has been accomplished through the successful technology transfer from foreign suppliers and efficient utilization of R and D manpower in the design and engineering of nuclear power projects. In order to implement the technology transfer successfully, the joint design concept has been introduced along with effective on-the-job training and the transfer of design documents and computer codes. Korea's successful development of nuclear power program has resulted in rapid expansion of nuclear power generation capacity in a short time, and the nuclear power has contributed to the national economy through lowering electricity price by about 50 % as well as stabilizing electricity supply in 1980s. The nuclear power is expected to play a key role in the future electricity supply in Korea. Now Korea is under way of taking a step toward advanced nuclear technology. The national electricity system expansion plan includes 18 more units of NPPs to be constructed by the year 2006. In this circumstance, the country has fixed the national long-term nuclear R and D program (lgg2-2001) to enhance the national capability of nuclear technology. This paper also briefly describes future prospects of nuclear technology development program in Korea

  10. Asian Network for Education in Nuclear Technology (ANENT). Report of the 1. Coordination Committee meeting including the ANENT Terms of Reference and the Action Plan

    International Nuclear Information System (INIS)

    2007-01-01

    It was noted that ANENT activities have started and ANENT is operational. The following conclusions are made: 1. Member States representatives are encouraged to contact IAEA TC through their respective official channels to request support for ANENT as a Regional TC Project; 2. Member States are invited to consider hosting one of the next Coordination Committee meetings; 3. The further ANENT activities should take into account the fact that nuclear energy and nuclear applications play equally important roles in Asia; 4. Nuclear safety plays a very important role and is being addressed through the ANSN. The meeting encouraged that ANSN and ANENT work together for synergistic effects. It was agreed that a representative from MINT would take the role of spokesperson of ANENT until the next Coordination Committee meeting

  11. Annual meeting on nuclear technology 2011. Documentation

    International Nuclear Information System (INIS)

    2011-01-01

    The program of annual meeting on nuclear technology 2011 included plenary sessions, topical sessions, a workshop and technical sessions. The topical sessions covered the following topics: the final waste disposal, from scientific basis to application; nuclear competence in Germany and Europe; sodium cooled fast reactors; characteristics of a high reliability organization (HRO) considering experience gained from events at nuclear power stations; CFD simulations for safety related tasks. The workshop concerned the issue preserving competence in nuclear technology. The technical sessions covered the following issues: reactor physics and methods of calculations; Thermo- and fluid dynamics; radioactive waste management - storage; fusion technology; safety of nuclear installations - methods, analyses, results; operation of nuclear installations; decommissioning of nuclear installations; education, expert knowledge, know-how transfer; new build and innovations; front end of the fuel cycle, fuel elements and core components, radiation protection; energy industry and economics.

  12. A study on the nuclear technology policy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Maeng Ho; Eom, T. Y.; Ham, C. H.; Kim, H. J.; Chung, W. S.; Lee, T. J.; Lee, B. O.; Yun, S. W.

    1997-01-01

    Work scopes and major contents carried out by nuclear technology policy analysis project in 1996, are as follows: First, reviews and provisions of recommendations for the revision draft of Atomic Energy Act, the national long-tem plan of use and development of nuclear technologies forward the 21st century, and KAERI vision for the next 10 years have been undertaken as parts of division`s role to support the implementation and set-up of national nuclear policy. Second, the trends of nuclear policy, research and development activities of nuclear institutes and the nuclear industries of the major advanced countries, were analyzed. Nuclear development trends in the East-Asia region emerging as a new nuclear market in the near future, were also analyzed including China. Finally, as the research works for the development of nuclear technology policy, a comparative analyses of the forecasted future nuclear technologies of nuclear advanced countries and a study for the improvement of spin-off effectiveness of nuclear research and development activities were undertaken respectively. (author). 19 refs., 29 tabs., 19 figs.

  13. Innovation in nuclear technology

    International Nuclear Information System (INIS)

    Bertel, E.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its future. For the continued safe and economically effective operation and maintenance of existing nuclear systems, and to meet the goals set out by projects aiming at designing and implementing advanced systems for the future, efficient innovation systems are needed. Consequently, analysing innovation systems is essential to understand their characteristics and enhance their performance in the nuclear sector. Lessons learnt from innovation programmes that have already been completed can help enhance the effectiveness of future programmes. The analysis of past experience provides a means for identifying causes of failure as well as best practices. Although national and local conditions are important factors, the main drivers for the success of innovative endeavors are common to all countries. Cooperation and coordination among the various actors are major elements promoting success. All interested stakeholders, including research organisations, industrial actors, regulators and civil society, have a role to play in supporting the success of innovation, but governments are an essential trigger, especially for projects with long durations and very ambitious objectives. Governments have a major role to play in promoting innovation because they are responsible for the overall national energy policy which sets the stage for the eventual deployment of innovative products and processes. Moreover, only governments can create the stable legal and regulatory framework favourable to the undertaking and successful completion of innovation programmes. International organisations such as the NEA may help enhance the effectiveness of national policies and innovation programmes by providing a forum for exchanging information, facilitating multilateral collaboration and joint endeavors, and offering technical support for the management of innovative programmes

  14. Nuclear medical technology

    International Nuclear Information System (INIS)

    Daga, Avinash; Sharma, Smita; Sharma, K.S.

    2012-01-01

    Nuclear medical technology helps to use radiopharmaceuticals (drugs that give off radiation) to diagnose and treat illness. A more recent development is Positron Emission Tomography (PET) which is a more precise and sophisticated technique that uses isotopes produced in a cyclotron. F-18 in FDG (fluorodeoxyglucose) is one such positron-emitting radionuclide. Chemically, it is 2-deoxy-2-( 18 F) fluoro-D-glucose, a glucose analog with the positron-emitting radioactive isotope fluorine-18 substituted for the normal hydroxyl group at the 2' position in the glucose molecule. It is introduced, usually by injection, and then it gets accumulated in the target tissue. As it decays it emits a positron, which promptly combines with a nearby electron resulting in the simultaneous emission of two identifiable gamma rays in opposite directions. These are detected by a PET camera when the patient is placed in the PET scanner for a series of one or more scans which may take from 20 minutes to as long as an hour. It gives very precise indication of their origin. 18 F in FDG (fluorodeoxyglucose) has become very important in detection of cancers and the monitoring of progress in their treatment, using PET. (author)

  15. The Technology of Nuclear Warfare

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    The present technical status of the nuclear weapon system and of the systems for their delivery is explained. All these systems have made tremendous progress since the 1960s. Available destructive power now is literally millions of times larger than at the time of Hiroshima. Moreover, technical progress has had, especially through the MIRV principle and the cruise missile, a destabilizing influence and threatens the equilibrium of terror. New strategy doctrines for winning rather than preventing nuclear war are developed. According to the counterforce strategy the retaliation capacity of the opponent is to be destroyed by a surprise attack. Moreover, plans for the tactical first-use of nuclear weapons have been accepted. In a nuclear conflict, the commanders-in-chief are overburdened by the need for ultra-urgent decisions. As a consequence tendencies in the direction of increasing automatization become ever more conspicuous. In the extreme case, decisions may be entirely left to machines, and man would not any more be included in decision-making. The increasing automatization leads to further escalation of insecurity for the whole world. A solution cannot be found on the level of technology, but only on that of practical peace policy. (author)

  16. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1972-01-01

    Advances in Nuclear Science and Technology, Volume 6 provides information pertinent to the fundamental aspects of nuclear science and technology. This book covers a variety of topics, including nuclear steam generator, oscillations, fast reactor fuel, gas centrifuge, thermal transport system, and fuel cycle.Organized into six chapters, this volume begins with an overview of the high standards of technical safety for Europe's first nuclear-propelled merchant ship. This text then examines the state of knowledge concerning qualitative results on the behavior of the solutions of the nonlinear poin

  17. Nuclear fuel technology - Administrative criteria related to nuclear criticality safety

    International Nuclear Information System (INIS)

    2004-01-01

    An effective nuclear criticality-safety programme includes cooperation among management, supervision, and the nuclear criticality-safety staff and, for each employee, relies upon conformance with operating procedures. Although the extent and complexity of safety-related activities may vary greatly with the size and type of operation with fissile material, certain safety elements are common. This International Standard represents a codification of such elements related to nuclear criticality safety. General guidance for nuclear criticality safety may be found in ISO 1709. The responsibilities of management, supervision, and the nuclear criticality-safety staff are addressed. The Objectives and characteristics of operating and emergency procedures are included in this International Standard. ISO 14943 was prepared by Technical Committee ISO/TC 85, Nuclear energy, Subcommittee SC 5, Nuclear fuel technology

  18. Analysis on Japanese nuclear industrial technologies and their military implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  19. 11-th International conference Nuclear power safety and nuclear education - 2009. Abstracts. Part 1. Session: Safety of nuclear technology; Innovative nuclear systems and fuel cycle; Nuclear knowledge management

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of the 11-th International conference Nuclear power safety and nuclear education - 2009 (29 Sep - 2 Oct, 2009, Obninsk). Problems of safety of nuclear technology are discussed, innovative nuclear systems and fuel cycles are treated. Abstracts on professional education for nuclear power and industry are presented. Nuclear knowledge management are discussed

  20. Nuclear technology in Germany in 1993

    International Nuclear Information System (INIS)

    1993-07-01

    On 28-29 January 1993, the Nuclear Safety Department of the Federal Office for Radiation Protection in co-operation with the Office of the Nuclear Safety Standards Commission organized a winter seminar on 'Nuclear technology in the Federal Republic in 1993 - tasks, problems, perspectives from the point of view of those concerned'. Main topics were the practical aspects of nuclear safety regulations and the application of the nuclear safety rules. This volume includes the welcome and opening addresses and the 12 papers presented; the views expressed remain, however the responsibility of the named authors and are not necessarily those of the editor. (orig.) [de

  1. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1962-01-01

    Advances in Nuclear Science and Technology, Volume 1 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book covers a variety of topics, including nuclear power stations, graft polymerization, diffusion in uranium alloys, and conventional power plants.Organized into seven chapters, this volume begins with an overview of the three stages of the operation of a power plant, either nuclear or conventionally fueled. This text then examines the major problems that face the successful development of commercial nuclear power plants. Other chapters consider

  2. The future of nuclear (science and) technology

    International Nuclear Information System (INIS)

    Walker, R.

    2011-01-01

    This paper outlines the future of nuclear science and technology. It discusses the implications of nuclear renaissance, nuclear social contract and Fukushima for nuclear science and technology. Nuclear science and technology priorities for Canada are to understand and address the fear of radiation, reduce the threats and address the fear of nuclear proliferation and terrorism, preclude core melt and make used fuel an asset.

  3. Technology of nuclear war

    International Nuclear Information System (INIS)

    Broda, E.

    1973-01-01

    This Article is the Note of a lecture, which was hold by Engelbert Borda at the Catholic-Theological Faculty of the University of Vienna in 27. 03. 1973. The author describes the development of modern nuclear weapon systems and the resulting war strategies. He is concerned about a possible end of the ‚balance of terror’ and the development in automation of nuclear strike back strategies. (rössner) [de

  4. Implementation digital technologies in nuclear utilities

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, C.; Maselli, A.J., E-mail: Tony.Maselli@Invensys.com [Invensys Operations Management, London (United Kingdom)

    2012-07-01

    The introduction of digital technologies into the nuclear industry has assisted in many ways and made many of the Life Extensions and Uprates a possibility. But with this introduction of digital technologies comes some potentially challenging issues which need to be addressed for ultimate project success. This presentation discusses what a nuclear utility should consider and establish when implementing digital technologies in their plant. Digital technologies have been employed in many safety critical industries such as Aerospace, Pharmaceutical, Oil and Gas, and Chemical. However, nuclear industry implementation of digital technologies has been slow and in many ways tenuous. There are even documented operating experience events in which plant trips/SCRAMs occurred during a digital system implementation. This presentation aims to prevent those issues drawing upon the lessons learned over the past 5 years. Considerations include general challenges to overcome when implementing Digital Technologies, how to justify and execute projects, evaluation of resource knowledge, and the new challenges of Cyber Security. (author)

  5. Implementation digital technologies in nuclear utilities

    International Nuclear Information System (INIS)

    Wiegand, C.; Maselli, A.J.

    2012-01-01

    The introduction of digital technologies into the nuclear industry has assisted in many ways and made many of the Life Extensions and Uprates a possibility. But with this introduction of digital technologies comes some potentially challenging issues which need to be addressed for ultimate project success. This presentation discusses what a nuclear utility should consider and establish when implementing digital technologies in their plant. Digital technologies have been employed in many safety critical industries such as Aerospace, Pharmaceutical, Oil and Gas, and Chemical. However, nuclear industry implementation of digital technologies has been slow and in many ways tenuous. There are even documented operating experience events in which plant trips/SCRAMs occurred during a digital system implementation. This presentation aims to prevent those issues drawing upon the lessons learned over the past 5 years. Considerations include general challenges to overcome when implementing Digital Technologies, how to justify and execute projects, evaluation of resource knowledge, and the new challenges of Cyber Security. (author)

  6. Advanced technology for nuclear powerplants

    International Nuclear Information System (INIS)

    Rohm, H.H.

    1987-01-01

    Advanced technology offers significant potential benefit to the nuclear industry. Improvements can be anticipated in plant performance, reliability, and overall plant safety as well as reduced life cycle costs. Utilizing artificial intelligence and expert systems, robotics, advanced instruments and controls, and modularization technologies can enhance plant operations and provide new insights and perspectives to plant risk and thus focus resources to areas of importance. Plant reliability, operability, availability, accident interdiction and limitation, and plant recovery are expected to improve. However, utilizing these technologies is not an automatic process. In addition to the actual costs associated with developing and implementing the technologies, operator training and acceptance represents a potential significant problem. Traditional plant operators have little or no experience with computer technology. There has already been some difficulty getting nuclear plant operators to accept and use the new technologies that have been implemented to accept and use the new technologies that have been implemented thus far

  7. Nuclear technology review 2005 update

    International Nuclear Information System (INIS)

    2005-08-01

    The year 2004 marked the 50th anniversary of civilian nuclear power generation. While the current outlook for nuclear energy remains mixed, there is clearly a sense of rising expectations. Both the OECD International Energy Agency and the IAEA adjusted their medium-term projections for nuclear power upwards. The IAEA now projects 423 - 592 GW(e) of nuclear power installed worldwide in 2030, compared to 366 GW(e) at the end of 2004. This is driven by nuclear power's performance record, by growing energy needs around the world coupled with rising oil and natural gas prices, by new environmental constraints including entry-into-force of the Kyoto Protocol, by concerns about energy supply security in a number of countries, and by ambitious expansion plans in several key countries. National research on advanced reactor designs continues on all reactor categories - water cooled, gas cooled, liquid metal cooled, and hybrid systems. Five members of the US-initiated Generation IV International Forum (GIF) signed a framework agreement on international collaboration in research and development on Generation IV nuclear energy systems in February 2005. The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) grew to 23 members. It completed a series of case studies testing its assessment methodology and the final report on the updated INPRO methodology was published in December. The realization of the International Thermonuclear Experimental Reactor, ITER, came closer with the announcement on 28 June 2005 by the ITER parties. The aim of ITER is to demonstrate the scientific and technological feasibility of fusion energy by constructing a functional fusion power plant. Nuclear technology developments are rapid and cover many fields of application. Not all can be covered in this update review, but certain key areas and trends are covered where these are seen to be of significant interest to IAEA Member States, and which are of relevance to and have

  8. Nuclear Technology Review 2009

    International Nuclear Information System (INIS)

    2009-08-01

    The year 2008 was paradoxical for nuclear power. Projections of future growth were revised upwards, but no new reactors were connected to the grid. It was the first year since 1955 without at least one new reactor coming on-line. There were, however, ten construction starts, the most since 1985. At least until the global financial crisis, cost estimates reported for new nuclear reactors were often higher than those in previous years, particularly in regions with less recent experience in new construction. However, growth targets for nuclear power were raised in the Russian Federation, and similar considerations were under review in China. India negotiated a safeguards agreement with the Agency in August, and the Nuclear Suppliers Group subsequently exempted India from previous restrictions on nuclear trade, which should allow India to accelerate its planned expansion of nuclear power. In the USA, the Nuclear Regulatory Commission (NRC) received combined licence (COL) applications for 26 new reactors. The US Department of Energy (USDOE) received 19 'Part I applications' for Federal loan guarantees to build 21 new reactors. Nonetheless, current expansion, as well as near term and long term growth prospects, remain centred in Asia. Of the ten construction starts in 2008, eight were in Asia. Twenty-eight of the 44 reactors under construction at the end of the year were in Asia, as were 28 of the last 39 new reactors to have been connected to the grid. Armenia joined the Russian Federation and Kazakhstan as members of the International Uranium Enrichment Centre in Angarsk, Siberia. The Ukrainian Government announced that Ukraine would also join. AREVA and USEC applied to the USDOE for loan guarantees for the construction of AREVA's proposed Eagle Rock Enrichment Facility and USEC's American Centrifuge Plant. Construction of an underground repository for low and medium level radioactive waste began at the former Konrad iron mine in Germany. The USDOE submitted a formal

  9. Industrial applications of nuclear technology

    International Nuclear Information System (INIS)

    Vargas, Celso

    2010-01-01

    Industrial applications of nuclear technology have been very diverse worldwide. This type of technology has begun to introduce in Costa Rica to evaluate and improve different industrial processes. These applications have been classified into two or three categories, according to the criteria used. Nucleonic control systems, the gamma logging and radiotracers are determined. (author) [es

  10. Church - Technology - Nuclear Power

    International Nuclear Information System (INIS)

    May, H.

    1982-01-01

    In order to cope with the problems causing a great deal of trouble today, i.e. with fear and with the ethical substantiation of technology, the author considers an integration model necessary which is to link science and technology and religion and philosophy. (RW) [de

  11. Proceeding of the Fifth Scientific Presentation on Nuclear Safety Technology

    International Nuclear Information System (INIS)

    Suhaemi, Tj.; Sudarno; Sunaryo, G. R.; Supriatna, P.; Antariksawan, A. R.; Sumijanto; Febrianto; Histori; Aliq

    2000-01-01

    The proceedings includes the result of research and development activities on nuclear safety technology that have been done by research Center for Nuclear Safety Technology in 2000 and was presented on June 28, 2000. The proceedings is expected to give illustration of the research result on Nuclear Safety Technology

  12. International Nuclear Science and Technology Conference 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Conference Nuclear technology has played an important role in many aspects of our lives, including agriculture, medicine and healthcare, materials, environment, forensics, energy, and frontier advancement. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics and students to share knowledge and experiences about all aspects of nuclear sciences. INST2016 was the second of the INST conference series organized by Thailand Institute of Nuclear Technology. INST has evolved from a national conference series on nuclear science and technology that was held every two years in Bangkok for over a twenty-year period. INST2016 was held from 4 - 6 August 2016 in Bangkok, Thailand, under the central theme “Nuclear for Better Life”. The conference working language was English. The oral and poster research presentations covered seven major topics: • Nuclear physics and engineering (PHY) • Nuclear and radiation safety (SAF) • Medical and nutritional applications (MED) • Environmental applications (ENV) • Radiation processing and industrial applications (IND) • Agriculture and food applications (AGR) • Instrumentation and other related topics (INS) The welcome addresses, committees, program of the conference and the list of presentations can be found in the PDF. (paper)

  13. Nuclear energy technology: theory and practice of commercial nuclear power

    International Nuclear Information System (INIS)

    Knief, R.A.

    1982-01-01

    Reviews Nuclear Energy Technology: Theory and Practice of Commercial Nuclear Power by Ronald Allen Knief, whose contents include an overview of the basic concepts of reactors and the nuclear fuel cycle; the basics of nuclear physics; reactor theory; heat removal; economics; current concerns at the front and back ends of the fuel cycle; design descriptions of domestic and foreign reactor systems; reactor safety and safeguards; Three Mile Island; and a brief overview of the basic concepts of nuclear fusion. Both magnetic and inertial confinement techniques are clearly outlined. Also reviews Nuclear Fuel Management by Harry W. Graves, Jr., consisting of introductory subjects (e.g. front end of fuel cycle); core physics methodology required for fuel depletion calculations; power capability evaluation (analyzes physical parameters that limit potential core power density); and fuel management topics (economics, loading arrangements and core operation strategies)

  14. Nonproliferation criteria for assessing civilian nuclear technologies

    International Nuclear Information System (INIS)

    Rowen, H.S.

    1980-01-01

    Two trends are affecting the spread of nuclear weapons. One is the growing access to readily fissionable materials as a by-product of the spread of civilian nuclear technology. The second is the fact that many countries acquiring easier access also have an increased incentive to acquire nuclear explosives, or at least to shorten the lead time to them. Nonproliferation strategies might seek to influence the demand for nuclear explosives through improved alliance ties, regional security associations, and nuclear free zones, as well as the ease of access to explosives through agreement on increasing the difficulty of each access through changes in international agreements on technologies, or through a mix of such measures. The discussion focuses on a supply-oriented strategy, not because such a strategy by itself is likely to be optimal, but because it would be a significant component of a broad strategy, and it is the one that has been central to the nonproliferation efforts of the United States in the past several years. A supply-oriented strategy could have two components: 1. A set of incentives for choosing less dangerous nuclear systems instead of more dangerous ones (and in some cases the choosing of non-nuclear rather than nuclear technologies); 2. A set of political agreements restricting especially dangerous systems or components of systems. For such a strategy to have a prospect of being effective, it should encompass all the paths to a bomb from a legitimate safeguarded state. Specifically, it should include: 1. Paths starting from large plutonium reactors, including those labeled research reactors; 2. Isotope separation technologies; 3. Power-reactors-related paths, based on using either a. Material available at the front end, or b. Material available at the back end; and 4 Various possible future technologies, such as accelerator breeders or fusion-fission technology. Some illustrative cases are discussed

  15. Graduate diplomas in nuclear technology

    International Nuclear Information System (INIS)

    Bereznai, G.

    2009-01-01

    The University of Ontario Institute of Technology (UOIT) offers a graduate diploma program in nuclear technology that consists of a suite of six sub-specialties: Fuel, Materials and Chemistry; Reactor Systems; Operation and Maintenance; Safety, Licensing and Regulatory Affairs; Health Physics; and Radiological Applications. Four courses selected from a list that covers the knowledge and skill set of each sub-specialty have to be completed in order to gain a graduate diploma in the specific area. The program is designed to accommodate the needs of people working in the nuclear industry to upgrade their knowledge and skills, to promote career advancement and to provide a framework for lifelong learning. (author)

  16. Graduate diplomas in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Bereznai, G. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2009-07-01

    The University of Ontario Institute of Technology (UOIT) offers a graduate diploma program in nuclear technology that consists of a suite of six sub-specialties: Fuel, Materials and Chemistry; Reactor Systems; Operation and Maintenance; Safety, Licensing and Regulatory Affairs; Health Physics; and Radiological Applications. Four courses selected from a list that covers the knowledge and skill set of each sub-specialty have to be completed in order to gain a graduate diploma in the specific area. The program is designed to accommodate the needs of people working in the nuclear industry to upgrade their knowledge and skills, to promote career advancement and to provide a framework for lifelong learning. (author)

  17. Membrane processes in nuclear technologies

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.

    2006-01-01

    The treatment of radioactive wastes is necessary taking into account the potential hazard of radioactive substances to human health and surrounding environment. The choice of appropriate technology depends on capital and operational costs, wastes amount and their characteristics, appointed targets of the process, e.g. the values of decontamination factors and volume reduction coefficients. The conventional technologies applied for radioactive waste processing, such as precipitation coupled with sedimentation, ion exchange and evaporation have many drawbacks. These include high energy consumption and formation of secondary wastes, e.g. the sludge from sediment tanks, spent ion exchange adsorbents and regeneration solutions. There are also many limitations of such processes, i.e. foaming and drop entrainment in evaporators, loses of solvents and production of secondary wastes in solvent extraction or bed clogging in ion exchange columns. Membrane processes as the newest achievement of the process engineering can successfully supersede many non-effective, out-of-date methods. But in some instances they can also complement these methods whilst improving the parameters of effluents and purification economy. This monograph presents own research data on the application of recent achievements in the area of membrane processes for solving selected problems in nuclear technology. Relatively big space was devoted to the use of membrane processing of low and intermediate radioactive liquid wastes because of numerous applications of these processes in nuclear centres over the world and also because of the interests of the author that was reflected by her recent research projects and activity. This work presents a review on the membrane methods recently introduced into the nuclear technology against the background of the other, commonly applied separation techniques, with indications of the possibilities and prospects for their further developments. Particular attention was paid

  18. Geology behind nuclear fission technology

    International Nuclear Information System (INIS)

    Dhana Raju, R.

    2005-01-01

    Geology appears to have played an important role of a precursor to Nuclear Fission Technology (NFT), in the latter's both birth from the nucleus of an atom of and most important application as nuclear power extracted from Uranium (U), present in its minerals. NFT critically depends upon the availability of its basic raw material, viz., nuclear fuel as U and/ or Th, extracted from U-Th minerals of specific rock types in the earth's crust. Research and Development of the Nuclear Fuel Cycle (NFC) depends heavily on 'Geology'. In this paper, a brief review of the major branches of geology and their contributions during different stages of NFC, in the Indian scenario, is presented so as to demonstrate the important role played by 'Geology' behind the development of NFT, in general, and NFC, in particular. (author)

  19. Nuclear energy: A female technology

    International Nuclear Information System (INIS)

    Tennenbaum, J.

    1994-01-01

    Amongst the important scientific and technological revolutions of history there is none in which women have played such a substantial and many-sided role as in the development of nuclear energy. The birth of nuclear energy is not only due to Marie Curie and Lise Meitner but also to a large number of courageous 'nuclear women' who decided against all sorts of prejudices and resistances in favour of a life in research. Therefore the revolution of the atom has also become the greatest breakthrough of women in natural sciences. This double revolution is the subject of this book. Here the history of nuclear energy itself is dealt with documented with the original work and personal memories of different persons - mainly women - who have been substantially involved in this development. (orig./HP) [de

  20. Nuclear technology and anthroposophic theory

    International Nuclear Information System (INIS)

    Leben, S.

    1982-01-01

    The construction of nuclear power plants as a solution to the current energy, crisis is controversial. That was not so in the beginning of the 'peaceful' utilization of nuclear power; with thousands of millions to promote it given as subsidies by the governments it was developing fast, until citizens' initiatives asked ecologic and moral questions delaying the further extension of this energy production. Both positions can be substantiated. But can a first judgement, too, be given with any degree of safety. And what cognitive aids are provided by the anthroposophic theory. This is demonstrated in some aspects. From the contents: The energy crisis and its apparent way out; of the causes: modern scientific methods; New forces: some facts and phenomena; Destructive powers as viewed by ancient mysteries; Of desirable states of conscience and technical forms; spelling their distortion; Nuclear powers and morality; Untimeliness in historicity; 'What's the stance of anthroposophic theory with regard to nuclear technology'. (orig./HP) [de

  1. Current Abstracts Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  2. The development of nuclear technology transfer

    International Nuclear Information System (INIS)

    Nack-chung Sung

    1987-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigeneous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turnkey approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented. (author)

  3. Proceedings of the 9th National Conference on Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Tran Huu Phat; Le Van Hong; Nguyen Nhi Dien; Nguyen Mong Sinh; Phan Si An; Le Huy Ham; Le Quang Luan; Trinh Van Giap; Le Ba Thuan; Cao Dinh Thanh; Bui Dang Hanh; Le Thuy Mai

    2011-01-01

    The National Conference on Nuclear Science and Technology is organized every two years to present and summarise results of studies and applications of nuclear energy in Vietnam. Proceedings of the 9 th Conference include following parts: nuclear power and nuclear reactors; nuclear physics and nuclear data; nuclear analytical techniques, radiation measurement and radiation protection; nuclear application in health care; nuclear application in agriculture and biology; nuclear application in industry and hydrology; nuclear fuel cycle, material technology and radioactive waste management. (NHA)

  4. The European fusion nuclear technology effort

    International Nuclear Information System (INIS)

    Darvas, J.

    1989-01-01

    The role of fusion technology in the European fusion development strategy is outlined. The main thrust of the present fusion technology programme is responding to development needs of the Next European Torus. A smaller, but important and growing R and D effort is dealing with problems specific to the Demonstration, or Fusion Power, Reactor. The part of the programme falling under the somewhat arbitrarily defined category of 'fusion nuclear technology' is reviewed and an outlook to future activities is given. The review includes tritium technology, blanket technology and breeder materials development, technology and materials for the protection of the first wall and of other plasma facing components, remote handling technology, and safety and environmental impact studies. A few reflections are offered on the future long-term developments in fusion technology. (orig.)

  5. Proceedings of the 6th nuclear science and technology conference

    International Nuclear Information System (INIS)

    1996-12-01

    The 6th conference on nuclear science and technology was held on 2 - 4 December, 1996 in Bangkok. This conference contain papers on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  6. Proceedings of the 5th nuclear science and technology conference

    International Nuclear Information System (INIS)

    1994-11-01

    The 5th conference on nuclear science and technology was held on 21-23 November, 1992 in Bangkok. This conference contain papers on non-power applications of nuclear technology in medicine, agriculture and industry. These application including irradiation of food for desinfestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of the nuclear power industry are also discussed

  7. Half Century and Upcoming Decade of Nuclear Technology in Thailand

    International Nuclear Information System (INIS)

    Thailand Institute of Nuclear Technology, Bangkok

    2011-06-01

    Full text: The 12 t h conference on the nuclear science and technology was held on 6-7 June 2011 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for the infestation tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  8. Proceedings of the 7. Nuclear Science and Technology Conference

    International Nuclear Information System (INIS)

    1998-12-01

    The 7. conference on nuclear science and technology was held on 1-2 December 1998 in Bangkok. This conference contain papers on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for disinfestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  9. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.7--pulse power technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about nuclear electronics, nuclear detecting technology, pulse power technology, nuclear fusion and plasma

  10. Nuclear technology for the year 2000

    International Nuclear Information System (INIS)

    1987-01-01

    Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base

  11. A Study on the Nuclear Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K. B.; Lee, K. S.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, I.; Lee, J. H

    2007-02-15

    The objective of the study was to make policy-proposals for enhancing the effectiveness and efficiency of national nuclear technology R and D programs. To do this, environmental changes of international nuclear energy policy and trends of nuclear technology development were surveyed and analyzed. This Study analyzed trends of nuclear technology policies and developed the nuclear energy R and D innovation strategy in a viewpoint of analyzing the changes in the global policy environment associated with nuclear technology development and development of national nuclear R and D strategy.

  12. ANSTO: Australian Nuclear Science and Technology Organization

    International Nuclear Information System (INIS)

    1989-01-01

    The Australian Nuclear Science and Technology Organization conducts or is engaged in collaborative research and development in the application of nuclear science and associated technology. Through its Australian radio-isotopes unit, it markets radioisotopes, their products and other services for nuclear medicine industry and research. It also operates national nuclear facilities ( HIFAR and Moata research reactors), promote training, provide advice and disseminates information on nuclear science and technology. The booklet briefly outlines these activities. ills

  13. Nuclear Systems (NS): Technology Demonstration Unit (TDU)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA's Space Technology Mission Directorate. To this end, the...

  14. Interviews concerning topical questions in nuclear technology

    International Nuclear Information System (INIS)

    Segatz, U.; Schatz, A.; Stephany, M.; Michaelis, H.

    1978-01-01

    On the occasion of the Nuclex meeting, October 3-7, 1978, Basle/Switzerland, the editorial department of 'Atom und Strom' questioned some leading scientists in nuclear technology on particularly relevant topics. The following subjects were discussed: - How long can we do without nuclear energy, - Modern technology for nuclear power plants, - Nuclear fuel cycle and environment, - Nuclear energy and European Communities, - Nuclear energy and its risks (reflections on incidents). (orig./UA) [de

  15. Fusion of Nuclear and Emerging Technology

    International Nuclear Information System (INIS)

    Nahrul Khaer Alang Rashid

    2005-04-01

    The presentation discussed the following subjects: emerging technology; nuclear technology; fusion emerging and nuclear technology; progressive nature of knowledge; optically stimulated luminescence - application of luminescence technology to sediments; Biosystemics technology -convergence nanotechnology, ecological science, biotechnology, cognitive science and IT - prospective impact on materials science, the management of public system for bio-health, eco and food system integrity and disease mitigation

  16. Proceedings of the 3. nuclear science and technology conference

    International Nuclear Information System (INIS)

    1990-01-01

    Non-power applications of nuclear technology in medicine, agriculture and industry are discussed. These applications include irradiation of food for desinfestation; tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of the nuclear power industry are also discussed

  17. Innovation in nuclear energy technology

    International Nuclear Information System (INIS)

    Dujardin, Th.; Bertel, E.; Kwang Seok, Lee; Foskolos, K.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its sustainable future. Many research and development programmes focus on enhancing the performance of power plants in operation, current fuel design and characteristics, and fuel cycle processes used in existing facilities. Generally performed under the leadership of the industry. Some innovation programmes focus on evolutionary reactors and fuel cycles, derived from systems of the current generation. Such programmes aim at achieving significant improvements, in the field of economics or resource management for example, in the medium term. Often, they are undertaken by the industry with some governmental support as they require basic research together with technological development and adaptation. Finally, large programmes, often undertaken in an international, intergovernmental framework are devoted to design and development of a new generation of systems meeting the goals of sustainable development in the long term. Driving forces for nuclear innovation vary depending on the target technology, the national framework and the international context surrounding the research programme. However, all driving factors can be grouped in three categories: market drivers, political drivers and technology drivers. Globally, innovation in the nuclear energy sector is a success story but is a lengthy process that requires careful planning and adequate funding to produce successful outcomes

  18. New technologies for monitoring nuclear materials

    International Nuclear Information System (INIS)

    Moran, B.W.

    1993-01-01

    This paper describes new technologies for monitoring the continued presence of nuclear materials that are being evaluated in Oak Ridge, Tennessee, to reduce the effort, cost, and employee exposures associated with conducting nuclear material inventories. These technologies also show promise for the international safeguarding of process systems and nuclear materials in storage, including spent fuels. The identified systems are based on innovative technologies that were not developed for safeguards applications. These advanced technologies include passive and active sensor systems based on optical materials, inexpensive solid-state radiation detectors, dimensional surface characterization, and digital color imagery. The passive sensor systems use specialized scintillator materials coupled to optical-fiber technologies that not only are capable of measuring radioactive emissions but also are capable of measuring or monitoring pressure, weight, temperature, and source location. Small, durable solid-state gamma-ray detection devices, whose components are estimated to cost less than $25 per unit, can be implemented in a variety of configurations and can be adapted to enhance existing monitoring systems. Variations in detector design have produced significantly different system capabilities. Dimensional surface characterization and digital color imaging are applications of developed technologies that are capable of motion detection, item surveillance, and unique identification of items

  19. China nuclear science and technology reports

    International Nuclear Information System (INIS)

    1987-01-01

    114 abstracts of nuclear science and technology reports, which were published in 1986-1987 in China, are collected. The subjects inclucled are: nuclear physics, nuclear medicine, radiochemistry, isotopes and their applications, reactors and nuclear power plants, radioactive protection, nuclear instruments etc... They are arranged in accordance with the INIS subject categories, and a report number index is annexed

  20. Nuclear fission and nuclear safeguards: Common technologies and challenges

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1989-01-01

    Nuclear fission and nuclear safeguards have much in common, including the basic physical phenomena and technologies involved as well as the commitments and challenges posed by expanding nuclear programs in many countries around the world. The unique characteristics of the fission process -- such as prompt and delayed neutron and gamma ray emission -- not only provide the means of sustaining and controlling the fission chain reaction, but also provide unique ''signatures'' that are essential to quantitative measurement and effective safeguarding of key nuclear materials (notably 239 Pu and 235 U) against theft, loss, or diversion. In this paper, we trace briefly the historical emergence of safeguards as an essential component of the expansion of the nuclear enterprise worldwide. We then survey the major categories of passive and active nondestructive assay techniques that are currently in use or under development for rapid, accurate measurement and verification of safe-guarded nuclear materials in the many forms in which they occur throughout the nuclear fuel cycle. 23 refs., 14 figs

  1. Nuclear technology for a sustainable future

    International Nuclear Information System (INIS)

    2012-06-01

    The IAEA helps its Member States to use nuclear technology for a broad range of applications, from generating electricity to increasing food production, from fighting cancer to managing fresh water resources and protecting the world's seas and oceans. Despite the Fukushima Daiichi accident in March 2011, nuclear power will remain an important option for many countries. Use of nuclear power will continue to grow in the next few decades, although growth will be slower than was anticipated before the accident. The factors contributing to the continuing interest in nuclear power include increasing global demand for energy, as well as concerns about climate change, volatile fossil fuel prices and security of energy supply. It will be difficult for the world to achieve the twin goals of ensuring sustainable energy supplies and curbing greenhouse gases without nuclear power. It is up to each country to choose its optimal energy mix. The IAEA helps countries which opt for nuclear power to use it safely and securely. Every day, millions of people throughout the world benefit from the use of nuclear technology. The IAEA helps to make these benefits available to developing countries through its extensive Technical Cooperation programme. For instance, we provide assistance in areas such as human health (through our Programme of Action for Cancer Therapy), animal health (we were active partners in the successful global campaign to eradicate the deadly cattle disease rinderpest), food, water and the environment. The IAEA contributes to the development of global policies to address the energy, food, water and environmental challenges the world faces. We look forward to helping to make Rio+20 a success. This brochure provides an overview of the many ways in which nuclear technology is contributing to building the future we want.

  2. Pakistan's experience in transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad Khan, Nunir

    1977-01-01

    Of all technologies, nuclear technology is perhaps the most interdisciplinary in character as it encompasses such varied fields as nuclear physics, reactor physics, mechanical, electrical electronics controls, metallurgical and even civil and geological engineering. When we speak of transfer of acquisition of nuclear technology we imply cumulative know-how in many fields, most of which are not nuclear per se but are essential for building the necessry infrastructure and back-up facilities for developing and implementing any nuclear energy program. In Pakistan, efforts on utilization of nuclear energy for peaceful applications were initiated about twenty years ago. During these years stepwise development of nuclear technology has taken place. The experience gained by Pakistan so far in transfer of nuclear technology is discussed. Suggestions have been made for continuing the transfer of this most essential technology from the advanced to the developing countries while making sure that necessary safeguard requirements are fullfilled

  3. Methodology and technology of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. In response to increased international interest in decommissioning and to the needs of Member States, the IAEA's activities in this area have increased during the past few years and will be enhanced considerably in the future. A long range programme using an integrated systems approach covering all the technical, regulatory and safety steps associated with the decommissioning of nuclear facilities is being developed. The database resulting from this work is required so that Member States can decommission their nuclear facilities in a safe time and cost effective manner and the IAEA can effectively respond to requests for assistance. The report is a review of the current state of the art of the methodology and technology of decommissioning nuclear facilities including remote systems technology. This is the first report in the IAEA's expanded programme and was of benefit in outlining future activities. Certain aspects of the work reviewed in this report, such as the recycling of radioactive materials from decommissioning, will be examined in depth in future reports. The information presented should be useful to those responsible for or interested in planning or implementing the decommissioning of nuclear facilities

  4. American Chemical Society. Division of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The meeting of the 201st American Chemical Society Division of Nuclear Chemistry and Technology was comprised from a variety of topics in this field including: nuclear chemistry, nuclear physics, and nuclear techniques for environmental studies. Particular emphasis was given to fundamental research concerning nuclear structure (seven of the nineteen symposia) and studies of airborne particle monitoring and transport (five symposia). 105 papers were presented

  5. History of nuclear technology development in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp [Visiting Professor, at the Faculty of Petroleum and Renewable Energy Engineering, University Teknologi Malaysia Johor Bahru 81310 (Malaysia); General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195 (Japan)

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  6. History of nuclear technology development in Japan

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu

    2015-01-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident

  7. Review of Current Nuclear Vacuum System Technologies

    International Nuclear Information System (INIS)

    Carroll, M.; McCracken, J.; Shope, T.

    2003-01-01

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested

  8. Strategies and technologies for nuclear materials stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, P.T.; Arthur, E.D.; Wagner, R.L. Jr.; Hanson, E.M.

    1997-10-01

    A strategy for future nuclear materials management and utilization from proliferation and long-term waste perspectives is described. It is aimed at providing flexible and robust responses to foreseeable nuclear energy scenarios. The strategy also provides for a smooth transition, in terms of technology development and facility implementation, to possible future use of breeder reactor technology. The strategy incorporates features that include minimization of stocks of separated plutonium; creation of a network of secure interim, retrievable storage facilities; and development and implementation of a system of Integrated Actinide Conversion Systems (IACS) aimed at near and far-term management of plutonium and other actinides. Technologies applicable to such IACS concepts are discussed as well as a high-level approach for implementation.

  9. Strategies and technologies for nuclear materials stewardship

    International Nuclear Information System (INIS)

    Cunningham, P.T.; Arthur, E.D.; Wagner, R.L. Jr.; Hanson, E.M.

    1997-01-01

    A strategy for future nuclear materials management and utilization from proliferation and long-term waste perspectives is described. It is aimed at providing flexible and robust responses to foreseeable nuclear energy scenarios. The strategy also provides for a smooth transition, in terms of technology development and facility implementation, to possible future use of breeder reactor technology. The strategy incorporates features that include minimization of stocks of separated plutonium; creation of a network of secure interim, retrievable storage facilities; and development and implementation of a system of Integrated Actinide Conversion Systems (IACS) aimed at near and far-term management of plutonium and other actinides. Technologies applicable to such IACS concepts are discussed as well as a high-level approach for implementation

  10. Nuclear energy and nuclear technology in Switzerland

    International Nuclear Information System (INIS)

    Graf, P.

    1975-01-01

    The energy crisis, high fuel costs and slow progress in the development of alternative energy sources, e.g. solar energy have given further impetus to nuclear power generation. The Swiss nuclear energy programme is discussed and details are given of nuclear station in operation, under construction, in the project stage and of Swiss participation in foreign nuclear stations. Reference is made to the difficulties, delays and resulting cost increases caused by local and regional opposition to nuclear power stations. The significant contributions made by Swiss industry and Swiss consulting engineers are discussed. (P.G.R.)

  11. Public fear of nuclear technology

    International Nuclear Information System (INIS)

    Nealey, S.M.; Radford, L.R.

    1987-01-01

    Excessive fear of nuclear technology (EFONT) is estimated to affect from 35-50 percent of the U.S. public, EFONT is defined as an unpleasant state of fear with components of stress and anxiety, threat to security, and anger. The cognitive aspect of EFONT involves perception of risks, benefits, and values which reinforce and perpetuate the fear. EFONT can be reduced through communications and outreach programs by providing basic information, encouraging participation, and targeting misinformation. Risks need to be put in perspective and benefits made explicit. Safety messages should be combined with other information. Understanding and patience are indispensable in dealing with those who are afraid

  12. Macrosystems management approach to nuclear technology transfer

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Maultsby, T.E.

    1978-01-01

    The world of the 1980s will be a world of diminishing resources, shifting economic bases, rapidly changing cultural and societal structures, and an ever increasing demand for energy. A major driving function in this massive redistribution of global power is man's ability to transfer technology, including nuclear technology, to the developing nations. The major task facing policy makers in planning and managing technology transfer is to avoid the difficulties inherent in such technology exploitation, while maximizing the technical, economic, social, and cultural benefits brought about by the technology itself. But today's policy makers, using industrial-style planning, cannot adequately deal with all the complex, closely-coupled issues involved in technology transfer. Yet, policy makers within the developing nations must be capable of tackling the full spectrum of issues associated with technology transfer before committing to a particular course of action. The transfer and acceptance of complex technology would be significantly enhanced if policy makers followed a macrosystems management approach. Macrosystems management is a decision making methodology based on the techniques of macrosystems analysis. Macrosystems analysis combines the best quantitative methods in systems analysis with the best qualitative evaluations provided by multidisciplined task teams. These are focused in a project management structure to produce solution-oriented advice to the policy makers. The general relationships and management approach offered by macrosystems analysis are examined. Nowhere are the nuclear power option problems and issues more complex than in the transfer of this technology to developing nations. Although many critical variables of interest in the analysis are generic to a particular importer/exporter relationship, two specific issues that have universally impacted the nuclear power option, namely the fuel cycle, and manpower and training, are examined in the light of

  13. Strategy development of nuclear fuel cycle technologies for nuclear energy program in Yugoslavia

    International Nuclear Information System (INIS)

    Afgan, N.

    1987-01-01

    Strategy of technology development includes also development of nuclear fuel cycle technologies required for nuclear energy programme in Yugoslavia. For this reason, it is of interest to take into consideration possible options which would be the basis for long-term strategy of the nuclear fuel technology development in our country. In the paper criteria which could be used in the technology selection and its valorisation are given. Based on postulated criteria priority selection is made which has shown that the highest importance in the selection of nuclear fuel cycle should be given to the uranium enrichment technology and irradiated fuel reprocessing. (author)

  14. Status of nuclear technology education in Mongolia

    International Nuclear Information System (INIS)

    Davaa, S.; Khuukhenkhuu, G.

    2007-01-01

    industry, scientific institutions that use nuclear technology and also will become secondary schools' and colleges' physics teachers. Requirement for Educational Institution: An institution that conducts training in Nuclear Technology major should meet requirements for providing training, sanitary and safe environment and possess sufficient physical space, technology and equipment to conduct courses included in curriculum. For each course included in the curriculum of Nuclear Technology bachelor major there should be sufficient information database and books in line with the content of courses to be taught. Nuclear physics related journals are to be regularly subscribed

  15. Localization of nuclear power plant technology

    International Nuclear Information System (INIS)

    Stiteler, F.Z.; Rudek, T.G.

    1998-01-01

    Asia, and particularly China, has an enormous need for power and must deal with the practicalities of building large base load units. In China, as in other countries, there are limitations on the use of large quantities of fossil fuel. This raises the possibility of turning to nuclear power to satisfy their energy needs. Other issues tend to point to the nuclear option for these growing economies, including economic considerations, environmental concerns, energy independence and raising the technological capabilities of the country. When a country embarks on a nuclear power program with the intention of localizing the technology, a long-term commitment is necessary to achieve this objective. Localization of nuclear technology is not a new phenomenon. The nature of the industry from the early beginnings has always involved transfer of technology when a new country initiated a nuclear power construction program. In fact, most previous experiences with this localization process involved heavy governmental, political and financial support to drive the success of the program. Because of this strong governmental support, only the receiving nation's companies were generally allowed to participate in the local business operations of the technology recipient. What is new and different today is the retreat from heavy financial support by the receiving country's government. This change has created a strong emphasis on cost-effectiveness in the technology transfer process and opportunities for foreign companies to participate in local business activities. ABB is a world-wide company with two parent companies that have been very active over many years in establishing cost-justified local operations throughout the world. Today, ABB has become the largest electrical engineering company in the world with respected local operations in nearly every country. Lessons learned by ABB in their world-wide localization initiatives are being applied to the challenge of cost

  16. Nuclear technology for global markets

    International Nuclear Information System (INIS)

    1995-01-01

    Energy fuels the future. It powers economic and social advances that drive the progress of nations. In Canada, we've been in the business of nuclear energy for fifty years. Our CANDU reactors are consistently in the world's top ten for lifetime performance. Established in 1952 by the Canadian Government, Atomic Energy of Canada Limited (AECL) leads Canada's nuclear export industry which comprises the utilities operating CANDU plants, private sector consulting engineering and construction companies and more than 100 large, medium and small manufacturers and equipment suppliers. AECL-led activities are anticipated to contribute $3.5 billion to Canada's gross domestic product (GDP) over the next five years. Moreover, between 1962 and 1992, the Canadian nuclear industry contributed at least $23 billion to Canada's GDP, with substantive economic benefits in electricity and other goods and services. AECL develops and markets CANDU power reactors and MAPLE research reactors, supplies power and research reactor support services, and offers radioactive waste management products and services. An important component of AECL's success has been its ability to transfer technology to clients. The CANDU reactor comprises components that can be manufactured in other countries, under appropriate agreements. (author)

  17. Instituto de Asuntos Nucleares: Science and technology for progress

    International Nuclear Information System (INIS)

    Ahumada, J.J.; Zuleta, S.; Lucero, E.; Guzman, O.; Zamora, H.; Briceno de M, C.

    1989-01-01

    On the thirtieth anniversary celebration of the ''Instituto de Asuntos Nucleares'', a historical review of its activities has been made, emphasizing on its politics of development, technological and scientific advances, including the goals and accomplishments attained for the uses and applications of nuclear technology in Colombia. This includes the technical assistance which is being provided by International Organizations. National and international influences are shown for each one of the technical areas: agricultural applications, industrial applications and metallurgy, biochemistry and radiopharmacy, development process, nuclear electronics, solar and non-conventional energies, gamma facility, nuclear physics, hydrology, raw materials, chemistry, health radiophysics, reactor, nuclear documentation and information center and administration

  18. Development of nuclear analytical technology

    International Nuclear Information System (INIS)

    Jee, Kwang Yong; Kim, W. H.; Park, Yeong J.; Park, Yong J.; Sohn, S. C.; Song, B. C.; Jeon, Y. S.; Pyo, H. Y.; Ha, Y. K.

    2004-04-01

    The objectives of this study are to develop the technology for the determination of isotopic ratios of nuclear particles detected from swipe samples and to develop the NIPS system. The R and D contents and results of this study are firstly the production of nuclear micro particle(1 ∼ 20 μm) and standardization, the examination of variation in fission track characteristic according to nuclear particle size and enrichment( 235 U: 1-50%), the construction of database and the application of this technique to swipe samples. If this technique is verified its superiority by various field tests and inter-laboratory comparison program with other institutes in developed countries, it can be possible to join NWAL supervised under IAEA and to export our technology abroad. Secondly, characteristics of alpha track by boron (n, α) nuclear reaction were studied to measure both total boron concentration and 10B enrichment. The correlation of number of alpha tracks and various 10B concentration was studied to evaluate the reliability of this method. Especially, cadmium shielding technique was introduced to reduce the background of alpha tracks by covering the solid track detector and the multi-dot detector plate was developed to increase the reproducibility of measurement by making boron solution dried evenly in the plate. The results of the alpha track method were found to be well agreed with those of mass spectroscopy within less than 10 % deviation. Finally, the NIPS system using 252 Cf neutron source was developed and prompt gamma spectrum and its background were obtained. Monte Carlo method using MCNP-4B code was utilized for the interpretation of neutron and gamma-ray shielding condition as well as the moderation of a fast neutron. Gamma-gamma coincidence was introduced to reduce the prompt gamma background. The counting efficiency of the HPGe detector was calibrated in the energy range from 50 keV to 10 MeV using radio isotope standards and prompt gamma rays of Cl for the

  19. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Lim, C. Y.; Lee, K. S.; Jeong, I.; Lee, J. H.

    2009-04-01

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, recent changes of international nuclear energy policy and trends of nuclear technology R and D was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed the trends of nuclear technology policies and (2) discussed the mid and long term strategy of nuclear energy R and D. To put it in more detail, each subject was further explored as follows; (1) analyzed the trends of nuclear technology policies - Trend and prospects of the international and domestic nuclear policies - Investigation of development of small and medium sized policies - International collaboration for advanced nuclear technologies (2) discussed the mid and long term strategy of nuclear energy R and D - The long term development plan for future nuclear energy system - The facilitation of technology commercialization

  20. Science and nuclear technology communication in Cordoba

    International Nuclear Information System (INIS)

    Martin, Hugo R.

    2012-01-01

    This paper describes the communication activities conducted nuclear science and technology in 2012 in the scientific, educational and tourist areas of Cordoba. The first is the Promotion of the realization of scientific research school works to present in science and technology fairs. The public exhibitions fairs consist of projects conducted by students from all levels of the education system. To do this, students have the guidance of Advisory Teachers, researchers and technologists of the local scientific community, which involves training them for a period of approximately six months. During this year the courses were conducted in 37 cities in the interior province, which are the sites of Regional Headquarters, which included the promotion of the realization of school scientific research on the peaceful applications of nuclear technology and / or national nuclear activities. During the meetings, made presentations basing pedagogical and didactic aspects to coordination between teaching of conceptual content and activities practical introduction to nuclear scientific methodology. As a result of this initiative, between the months of June and September was reached more than 3,000 teachers, using the infrastructure of the Ministry of Science and Technology and Internet. As a result, a dozen schools have begun to seek assistance to develop projects related to nuclear power. Other activities under the name of Scientific School Research Incursion through Experiences with Natural Radiation, consisted of the design and realization of simple laboratory experiences in laboratory's schools. The objective was to strengthen the curriculum and promote critical thinking about the risks and benefits of nuclear technologies in relation to exposure to ionizing radiation involving them. As a result it has been observed that these activities contribute to a progressive scientific and technological literacy of students, who build original knowledge for themselves and develop

  1. Commercialization of nuclear power plant decommissioning technology

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    The commercialization of nuclear power plant decommissioning is presented as a step in the commercialization of nuclear energy. Opportunities for technology application advances are identified. Utility planning needs are presented

  2. New nuclear technology; International developments. Review 1995

    International Nuclear Information System (INIS)

    Devell, L.; Aggeryd, I.; Hultgren, Aa.; Lundell, B.; Pedersen, T.

    1995-09-01

    A summary review of the development of new nuclear rector technology is presented in this report. Fuel cycle strategies and waste handling developments are also commented. Different plans for dismantling nuclear weapons are presented. 18 refs

  3. The German competence network on nuclear technology

    International Nuclear Information System (INIS)

    Kuczera, B.; Fritz, P.

    2004-01-01

    Full text: The present German energy policy is based on the phase-out of nuclear electricity generation, which means that the last of the currently operating eighteen German nuclear power plants will run until about 2022. While the plants will be shut down one after the other, decommissioning will start together with interim storage of the radioactive waste. The safe waste disposal in a final repository is planned to start around 2030 and may take another two decades, i.e., in Germany nuclear competence is further needed, at least until the mid of this century. Against this background, a high-ranking commission under the direction of the Federal Ministry of Economy and Technology evaluated the publicly funded nuclear safety related research and development (R and D) activities in Germany. One of the recommendations made by the commission was the foundation of a Competence Network on Nuclear Technology for an optimum coordination of the remaining nuclear activities including aspects of future human resources in this area. This Network was established in March 2000 with the following member institutions: Research Centre Juelich, Research Centre Karlsruhe, Research Centre Rossendorf and the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) in Munich and their neighbouring Technical Universities. The strategic objectives of the Competence Network include: Trend investigations on job development and on university education capacities in the nuclear technology sector; Enhanced cooperation of the Research Centres with universities in the nuclear field and support of international education initiatives (e.g. ENEN, WNU); Coordination and bundling of the activities in publicly funded reactor safety and waste management R and D programmes; Support of qualified young scientists and engineers (pre-doctoral students) - also by third-party funds; Participation in and collaboration with international projects and activities for advancements of international nuclear safety

  4. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1968-01-01

    Advances in Nuclear Science and Technology Volume 4 provides information pertinent to the fundamental aspects of advanced reactor concepts. This book discusses the advances in various areas of general applicability, including modern perturbation theory, optimal control theory, and industrial application of ionizing radiations.Organized into seven chapters, this volume begins with an overview of the technology of sodium-cooled fast breeder power reactors and gas-cooled power reactors. This text then examines the key role of reactor safety in the development of fast breeder reactors. Other chapt

  5. Nuclear techniques and new technology revolution

    International Nuclear Information System (INIS)

    Wang Yongxian; Qian Junlong; Yang Fujia

    1990-01-01

    As a high technique, nuclear techniques play specific roles in the new technological revolution. Technological developments have been enhanced by a number of nuclear techniques, such as industrial applications of computed tomography systems in non-destructive inspections and tests, ion implantation in electronical device manufacturing, analytial nuclear techniques in elemental and sub-surface analysis, nuclear logging in surveying energy resources and radiation processing in developing new polymeric materials

  6. Nuclear energy technology transfer: the security barriers

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1975-08-01

    The problems presented by security considerations to the transfer of nuclear energy technology are examined. In the case of fusion, the national security barrier associated with the laser and E-beam approaches is discussed; for fission, the international security requirements, due to the possibility of the theft or diversion of special nuclear materials or sabotage of nuclear facilities, are highlighted. The paper outlines the nuclear fuel cycle and terrorist threat, examples of security barriers, and the current approaches to transferring technology. (auth)

  7. Non-nuclear power application of nuclear technology in Nigeria

    International Nuclear Information System (INIS)

    Funtua, I.I.

    2008-01-01

    Nuclear Technology applications are found in Food and Agriculture, Human Health, Water Resources, Industry, Environment, Education and Research.There are more potentials for the deployment of nuclear technology in more aspects of our life with needed economic development in Nigeria.Nuclear Technology plays and would continue to play vital role in Agriculture, Human health, Water resources and industry in Nigeria.Nuclear technologies have been useful in developmental efforts worldwide and for these to take hold, capacity building programmes must be expanded and the general public must have informed opinions about the benefits and risk associated with the technologies.This presentation gives an overview of nuclear technology applications in Nigeria in the following areas: Food and Agriculture, Human Health, Water Resources, Industry, Education and Research

  8. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  9. Nuclear science and technology education and training in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Deployment of nuclear technology requires adequate nuclear infrastructure which includes governmental infrastructure, science and technology infrastructure, education and training infrastructure, and industrial infrastructure. Governmental infrastructure in nuclear, i.e. BATAN (the National Nuclear Energy Agency) and BAPETEN (the Nuclear Energy Control Agency), need adequate number of qualified manpower with general and specific knowledge of nuclear. Science and technology infrastructure is mainly contained in the R and D institutes, education and training centers, scientific academies and professional associations, and national industry. The effectiveness of this infrastructure mainly depends on the quality of the manpower, in addition to the funding and available facilities. Development of human resource needed for research, development, and utilization of nuclear technology in the country needs special attention. Since the national industry is still in its infant stage, the strategy for HRD (human resource development) in the nuclear field addresses the needs of the following: BATAN for its research and development, promotion, and training; BAPETEN for its regulatory functions and training; users of nuclear technology in industry, medicine, agriculture, research, and other areas; radiation safety officers in organizations or institutions licensed to use radioactive materials; the education sector, especially lecturers and teachers, in tertiary and secondary education. Nuclear science and technology is a multidisciplinary and a highly specialized subject. It includes areas such as nuclear and reactor physics, thermal hydraulics, chemistry, material science, radiation protection, nuclear safety, health science, and radioactive waste management. Therefore, a broad nuclear education is absolutely essential to master the wide areas of science and technology used in the nuclear domain. The universities and other institutions of higher education are the only

  10. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Kim, H. J.; Lim, C. Y.; Yang, M. H.

    2008-03-01

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, changes of international nuclear energy policy environment and trends of nuclear technology development was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy environment surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed trends of nuclear technology policies and (2) developed the nuclear energy R and D innovation strategies. To put it in more detail, each subject was further explored as follows; (1) themes to analyze trends of nuclear policies: nuclear Renaissance and forecast for nuclear power plant, International collaboration for advanced nuclear technologies in GIF, INPRO and I-NERI, The present situation and outlook for world uranium market (2) themes to develop of nuclear energy R and D innovation strategies: The mid-term strategy plan of the KAERI, The technological innovation case of the KAERI

  11. A Study on the Nuclear Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Lim, C. Y.; Yang, M. H. (and others)

    2008-03-15

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, changes of international nuclear energy policy environment and trends of nuclear technology development was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy environment surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed trends of nuclear technology policies and (2) developed the nuclear energy R and D innovation strategies. To put it in more detail, each subject was further explored as follows; (1) themes to analyze trends of nuclear policies: nuclear Renaissance and forecast for nuclear power plant, International collaboration for advanced nuclear technologies in GIF, INPRO and I-NERI, The present situation and outlook for world uranium market (2) themes to develop of nuclear energy R and D innovation strategies: The mid-term strategy plan of the KAERI, The technological innovation case of the KAERI.

  12. Physics and technology of nuclear materials

    CERN Document Server

    Ursu, Ioan

    2015-01-01

    Physics and Technology of Nuclear Materials presents basic information regarding the structure, properties, processing methods, and response to irradiation of the key materials that fission and fusion nuclear reactors have to rely upon. Organized into 12 chapters, this book begins with selectively several fundamentals of nuclear physics. Subsequent chapters focus on the nuclear materials science; nuclear fuel; structural materials; moderator materials employed to """"slow down"""" fission neutrons; and neutron highly absorbent materials that serve in reactor's power control. Other chapters exp

  13. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  14. Coating technologies in the nuclear industry

    International Nuclear Information System (INIS)

    Kaae, J.L.

    1993-01-01

    Metallic, ceramic, and organic coatings are so commonly used in modern industry that virtually everyone can name several applications in which coatings are employed. Thus, it is no surprise that coating technologies are widely employed in the nuclear industry. Some of these technologies utilize processes that are mature and well developed, and others utilize processes that are new and state of the art. In this paper, five generic coating processes that include almost all vapor deposition processes are described, and then applications of each of these processes for deposition of specific materials in nuclear applications are described. These latter selections, of course, are very subjective, and others will be able to name other applications. Because of their wide range of application, coating technologies are considered to be national critical technologies. The generic coating processes that cover almost all vapor deposition technologies are as follows: (1) stationary substrate chemical vapor deposition; (2) fluidized bed chemical vapor deposition; (3) plasma-assisted chemical deposition; (4) sputtering; (5) evaporation

  15. Progress report on nuclear science and technology in China (Vol.2). Proceedings of academic annual meeting of China Nuclear Society in 2011, No.7--Nuclear electronics and nuclear detection technology sub-volume

    International Nuclear Information System (INIS)

    2012-10-01

    Progress report on nuclear science and technology in China (Vol. 2) includes 698 articles which are communicated on the second national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about Nuclear electronics and nuclear detection technology

  16. Current status of Chinese nuclear power industry and technology

    International Nuclear Information System (INIS)

    Kim, Hyun Min; Kim, Min; Jeong, Hee Jong; Hwang, Jeong Ki; Cho, Chung Hee

    1996-10-01

    China has been carrying out active international cooperation aiming to be a country where is to be an economical super power and an advanced country in nuclear power technology by the year early 2000, and China also has begun to be recognized as the largest potential market for the construction of nuclear power plants(NPPs) expecting to construct more than thirty nuclear power units by the year 2020. China has advanced technology in the basic nuclear science including liquid metal breeder reactor technology, nuclear material, medium and small size power plants, and isotope production technology, and also China has complete nuclear fuel cycle technology. However, China still has low NPP technology. Therefore, it is expected that China may have complementary cooperative relationship with China, it is expected that Korea may have an access to the advanced Chinese nuclear science technology, and may have a good opportunity to explore the Chinese market actively exporting excellent Korean NPP technology, and further may have a good position to the neighboring Asian countries' NPP markets. From this perspective, general Chinese social status, major nuclear R and D activity status, and correct NPP and technology status have been analyzed in this report, and this report is expected to be a useful resource for cooperating with China in future. 10 tabs., 6 figs., 16 refs. (Author)

  17. Managing nuclear knowledge: IAEA activities and international coordination. Including resource material full text CD-ROM

    International Nuclear Information System (INIS)

    2005-06-01

    The present CD-ROM summarizes some activities carried out by the Departments of Nuclear Energy and Nuclear Safety and Security in the area of nuclear knowledge management in the period 2003-2005. It comprises, as open resource, most of the relevant documents in full text, including policy level documents, reports, presentation material by Member States and meeting summaries. The collection starts with a reprint of the report to the IAEA General Conference 2004 on Nuclear Knowledge [GOV/2004/56-GC(48)/12] summarizing the developments in nuclear knowledge management since the 47th session of the General Conference in 2003 and covers Managing Nuclear Knowledge including safety issues and Information and Strengthening Education and Training for Capacity Building. It contains an excerpt on Nuclear Knowledge from the General Conference Resolution [GC(48)/RES/13] on Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications. On the CD-ROM itself, all documents can easily be accessed by clicking on their titles on the subject pages (also printed at the end of this Working Material). Part 1 of the CD-ROM covers the activities in the period 2003-2005 and part 2 presents a resource material full text CD-ROM on Managing Nuclear Knowledge issued in October 2003

  18. Nuclear technology for the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base. (DLC)

  19. The nuclear materials control technology briefing book

    Energy Technology Data Exchange (ETDEWEB)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  20. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  1. Mass spectrometry in nuclear science and technology

    International Nuclear Information System (INIS)

    Komori, Takuji

    1985-01-01

    Mass spectrometry has been widely used and playing a very important role in the field of nuclear science and technology. A major reason for this is that not only the types of element but also its isotopes have to be identified and measured in this field. Thus, some applications of this analytical method are reviewed and discussed in this article. Its application to analytical chemistry is described in the second section following an introductory section, which includes subsections for isotropic dilution mass spectrometry, resonance ionization mass spectrometry and isotopic correlation technique. The isotopic ratio measurement for hydrogen, uranium and plutonium as well as nuclear material control and safeguards are also reviewed in this section. In the third section, mass spectrometry is discussed in relation to nuclear reactors, with subsections on natural uranium reactor and neutron flux observation. Some techniques for measuring the burnup fraction, including the heavy isotopic ratio method and fission product monitoring, are also described. In the fourth section, application of mass spectrometry to measurement of nuclear constants, such as ratio of effective cross-sectional area for 235 U, half-life and fission yield is reviewed. (Nogami, K.)

  2. Canadian Experience in Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Boulton, J.

    1987-01-01

    Technology transfer has and will continue to play a major role in the development of nuclear power programs. From the early beginnings of the development of the peaceful uses of nuclear power by just a few nations in the mid-1940s there has been a considerable transfer of technology and today 34 countries have nuclear programs in various stages of development. Indeed, some of the major nuclear vendors achieves their present position through a process of technology transfer and subsequent development. Canada, one of the early leaders in the development of nuclear power, has experience with a wide range of programs bout within its own borders and with other countries. This paper briefly describes this experience and the lessons learned from Canada's involvement in the transfer of nuclear power technology. Nuclear technology is complex and diverse and yet it can be assimilated by a nation given a fire commitment of both suppliers and recipients of technology to achieve success. Canada has reaped large benefits from its nuclear program and we believe this has been instrumentally linked to the sharing of goals and opportunity for participation over extended periods of time by many interests within the Canadian infrastructure. While Canada has accumulated considerable expertise in nuclear technology transfer, we believe there is still much for US to learn. Achieving proficiency in any of the many kinds of nuclear related technologies will place a heavy burden on the financial and human resources of a nation. Care must be taken to plan carefully the total criteria which will assure national benefits in industrial and economic development. Above all, effective transfer of nuclear technology requires a long term commitment by both parties

  3. Overview of Nuclear Reactor Technologies Portfolio

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2012-01-01

    Office of Nuclear Energy Roadmap R&D Objectives: • Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; • Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; • Develop sustainable nuclear fuel cycles; • Develop capabilities to reduce the risks of nuclear proliferation and terrorism

  4. Overview of fusion nuclear technology in Europe

    International Nuclear Information System (INIS)

    Andreani, R.; Gasparotto, M.

    2002-01-01

    The fusion nuclear technology programme in the EU is focussed on materials and breeding blankets development, tritium and high heat flux component technologies. A strong effort is also devoted to the validation of the design of an intense 14 MeV neutron source (IFMIF). The material programme includes the development of reduced activation ferritic martensitic steel (EUROFER) to be used as structural material in a DEMO reactor, and potentially more attractive higher performance materials: ODS and SiC/SiC composites. The breeding blanket activities are focussed in the preparation of the two European Test Blanket Moduli to be installed in ITER. The Fuel Cycle activities for ITER include development of the torus exhaust cryopump, fuel storage system, performance characterisation of the torus exhaust processing and design of water detritiation system. High heat flux components have been developed in the framework of ITER R and D programme and based on copper alloy heat sink protected by an armour of beryllium, CFC or tungsten. Studies give an important contribution in defining the nuclear technology programme strategy

  5. Overview of fusion nuclear technology in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, R. E-mail: roberto.andreani@tech.efda.org; Gasparotto, M. E-mail: maurizio.gasparotto@tech.efda.org

    2002-11-01

    The fusion nuclear technology programme in the EU is focussed on materials and breeding blankets development, tritium and high heat flux component technologies. A strong effort is also devoted to the validation of the design of an intense 14 MeV neutron source (IFMIF). The material programme includes the development of reduced activation ferritic martensitic steel (EUROFER) to be used as structural material in a DEMO reactor, and potentially more attractive higher performance materials: ODS and SiC/SiC composites. The breeding blanket activities are focussed in the preparation of the two European Test Blanket Moduli to be installed in ITER. The Fuel Cycle activities for ITER include development of the torus exhaust cryopump, fuel storage system, performance characterisation of the torus exhaust processing and design of water detritiation system. High heat flux components have been developed in the framework of ITER R and D programme and based on copper alloy heat sink protected by an armour of beryllium, CFC or tungsten. Studies give an important contribution in defining the nuclear technology programme strategy.

  6. New developments in nuclear medicine technology

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.J.

    2000-01-01

    During the past few years, there have been new impulses in the development of a number of technologies employed in Nuclear Medicine imaging. These include new scintillation materials, the way of detecting the scintillation light, and completely novel methods to detect gamma rays by means of semiconductor detectors. In addition to combined instrumentation that can be used for SPECT and PET, already in clinical use, combined scintigraphic and anatomic imaging devices are now becoming available, for example SPECT/CT or PET/CT. This review article describes the most important of the new components, part of which have already entered product development and part of which are still in the research phase. The review focus on the employment of modern semiconductor detectors in Nuclear Medicine. (orig.) [de

  7. Nuclear Technologies for Space Exploration Conference

    International Nuclear Information System (INIS)

    Dudenhoefer, J.E.; Winter, J.M.; Alger, D.

    1992-08-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC

  8. The recent status of nuclear technology development in Thailand

    International Nuclear Information System (INIS)

    Laoharojanaphand, Sirinart; Cherdchu, Chainarong; Sumitra, Tatchai; Sudprasert, Wanwisa; Chankow, Nares; Tiyapan, Kanokrat; Onjun, Thawatchai; Bhanthumnavin, Duangduen

    2016-01-01

    Thailand has started the peaceful utilization of nuclear program in 1961. The program has developed considerably in various aspects. Laws and regulations were established while applications in medical, agriculture, industry as well as research and education have been accomplished successfully in the country. As for the energy production, Thailand has realized the importance of nuclear power generation several years back. However, the implementation has been delayed. There are four main nuclear organizations namely The Thai Atomic Energy Commission - the country's policy holder, the Office of Atoms for Peace (OAP) - the nuclear regulatory bodies, Thailand Institute of Nuclear Technology (TINT: Public Organization) - the research and services provider in nuclear field and the Nuclear Society of Thailand the non-governmental organization. Major research in nuclear technology is actively carried out at TINT. Filed of research include medical and public health, agricultural, material and industrial, environmental and advanced technology like neutron scattering and nuclear fusion. Nuclear density gauge has been utilized in many industries including petrochemical production and refineries. TINT is also providing services on nuclear radiography to industrial and clients. Additionally, x-ray techniques have been utilized in many manufacturers for quality and process control. Nuclear applications for medical purpose have been utilized in Thailand several years back both for diagnostic and therapeutic purposes. To ensure safe and peaceful use of nuclear technology and for the safety of the general public in Thailand, OAP has launched laws, regulations and ministerial announcements. Thailand has only one multi-purposes nuclear research reactor and no NPP. Yet we have realized the importance of nuclear power generation several years back. (N.T.)

  9. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  10. Interviewing Objects: Including Educational Technologies as Qualitative Research Participants

    Science.gov (United States)

    Adams, Catherine A.; Thompson, Terrie Lynn

    2011-01-01

    This article argues the importance of including significant technologies-in-use as key qualitative research participants when studying today's digitally enhanced learning environments. We gather a set of eight heuristics to assist qualitative researchers in "interviewing" technologies-in-use (or other relevant objects), drawing on concrete…

  11. Technology, Effects and Doctrines of Nuclear Warfare

    International Nuclear Information System (INIS)

    Broda, E.

    1981-01-01

    The development and the status of the nuclear weapons systems and of the systems for their delivery are explained. All these systems have made tremendous progress since the 1960s. Available destructive power now is literally millions of times larger than at the time of Hiroshima. Moreover, technical progress has had, especially through the MIRV principle and the cruise missile, a destabilizing influence and threatens the equilibrium of terror. New strategic doctrines for winning rather than preventing nuclear war have come to the foreground. Plans for the tactical first-use of nuclear weapons have been accepted. Alternatively, the retaliation capacity of the opponent could be destroyed by surprise attack - The First Strike. In a nuclear conflict, the commanders-in-chief are overburdened by the need for ultra-urgent decisions. This applies especially to a First Strike situation. As a consequence tendencies in the direction of increasing automatization become ever more conspicuous. In the extreme ease, decisions may be left entirely to machines, and men would not any more be included in decision-making. The increasing automatization leads to further escalation of insecurity for the whole world. Solutions for the principal problem of the world, war or peace, cannot be found On the level of technology, but only on that of practical policy of detente, disarmament, collaboration and reconciliation. (author)

  12. 9th Pacific Basin Nuclear Conference. Nuclear energy, science and technology - Pacific partnership. Proceedings Volume 1

    International Nuclear Information System (INIS)

    1994-04-01

    The theme of the 9th Pacific Basin Nuclear conference held in Sydney from 1-6 May 1994, embraced the use of the atom in energy production and in science and technology. The focus was on selected topics of current and ongoing interest to countries around the Pacific Basin. The two-volume proceedings include both invited and contributed papers. They have been indexed separately. This document, Volume 1 covers the following topics: Pacific partnership; perspectives on nuclear energy, science and technology in Pacific Basin countries; nuclear energy and sustainable development; economics of the power reactors; new power reactor projects; power reactor technology; advanced reactors; radioisotope and radiation technology; biomedical applications

  13. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    International Nuclear Information System (INIS)

    Casey, Leslie A.

    2014-01-01

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  14. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  15. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1976-01-01

    Advances in Nuclear Science and Technology, Volume 9 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of the possible consequences of a large-scale release of radioactivity from a nuclear reactor in the event of a serious accident. This text then discusses the extension of conventional perturbation techniques to multidimensional systems and to high-order approximations of the Boltzmann equation.

  16. JAERI Nuclear Engineering School and technology transfer

    International Nuclear Information System (INIS)

    Nishimura, Kazuaki; Kawaguchi, Chiyoji

    1978-01-01

    A method is introduced to evaluate the degree of nuclear technology transfer; that is, the output powers of Japanese nuclear reactors constructed in these 20 years are chronologically plotted in a semi-log figure. All reactors plotted are classified into imported and domestic ones according to a value of domestication factor. A space between two historical trajectories of reactor construction may be interpreted as one of the measures indicating the degree of nuclear technology transfer. In connection with this method, historical change of educational and training courses in Nuclear Engineering School of Japan Atomic Energy Research Institute is reviewed in this report. (author)

  17. Nuclear technology in research and everyday life

    International Nuclear Information System (INIS)

    2015-12-01

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  18. MSFC nuclear thermal propulsion technology program

    Science.gov (United States)

    Swint, Shane

    1993-01-01

    Viewgraphs on non-nuclear materials assessment, nuclear thermal propulsion (NTP) turbomachinery technologies, and high temperature superconducting magnetic bearing technology are presented. The objective of the materials task is to identify and evaluate candidate materials for use in NTP turbomachinery and propellant feed system applications. The objective of the turbomachinery technology task is to develop and validate advanced turbomachinery technologies at the component and turbopump assembly levels. The objective of the high temperature superconductors (HTS) task is to develop and validate advanced technology for HTS passive magnetic/hydrostatic bearing.

  19. Technology transfer from Canadian nuclear laboratories

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Evans, W.; MacEwan, J.R.; Melvin, J.G.

    1985-09-01

    Canada has developed a unique nuclear power system, the CANDU reactor. AECL - Research Company (AECL-RC) has played a key role in the CANDU program by supplying its technology to the reactor's designers, constructors and operators. This technology was transferred from our laboratories to our sister AECL companies and to domestic industries and utilities. As CANDUs were built overseas, AECL-RC made its technology available to foreign utilities and agencies. Recently the company has embarked on a new transfer program, commercial R and D for nuclear and non-nuclear customers. During the years of CANDU development, AECL-RC has acquired the skills and technology that are especially valuable to other countries embarking on their own nuclear programs. This report describes AECL-RC's thirty years' experience with the transfer of technology

  20. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    1999-04-01

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  1. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs

  2. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs

  3. The nuclear education and staffing challenge: Rebuilding critical skills in nuclear science and technology

    International Nuclear Information System (INIS)

    Wogman, N.A.; Bond, L.J.; Waltar, A.E.; Leber, R.E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of nuclear legacies, global security, nonproliferation, homeland security and national defense, radiobiology and nuclear energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. Current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs are presented. (author)

  4. Terrorism cover in France for property damage including nuclear risks

    International Nuclear Information System (INIS)

    Stanislas, A.

    2004-01-01

    The obligation to include terrorism cover in all Property Damage policies issued on the French Market is ruled by an Act of 1986 and introduced under Section R 126-2 of the French Code of Insurance. This section stipulates that Property Damage policies must provide cover for damage resulting from acts of terrorism, with the same deductible and the same limit than that of the other damage covered in the policy. Soon after the dramatic events of September 11, 2001 in the United States and although reinsurers worldwide restricted their offer of capacities, French insurers recognized that they had to maintain this global cover for the benefit of their insurers. After difficult discussions between insurers, reinsurers, brokers, risk managers and representatives of the State, the creation of a new Pool, backed with a State guarantee, was decided in less than three months. Effective January 1, 2002 and called Gestion d'Assurance et de Reassurance des Risques Attentats et Actes de Terrorisme (GAREAT), the Pool offers a multiple layers stop-loss cover for Property Damage only, i.e. excluding TPL policies. Considering that nuclear risks should be treated in the same way as other industrial risks, it was decided that they would be covered by GAREAT as well. In the meantime, by a Decree of December 28, 2001 modifying Section R 126-2, a special provision, aiming at reducing the limit and thus the price of this cover, was introduced in the Code. The purpose of this paper is to expose the present situation applying through GAREAT and, after two years of operation to discuss future developments, including other sources of capacity for the coverage of acts of terrorism in nuclear risks insurance.(author)

  5. Proceedings of the first nuclear science and technology conference no. 1. Nuclear science and its application

    International Nuclear Information System (INIS)

    1986-01-01

    This conference contains papers on non-power applications of nuclear technology in agriculture and industry. These applications include irradiation of food for disinfestation and radiopreservation, radiation monitoring, and radiation chemistry important to industrial processes

  6. An Effective Method For Nuclear Technology Transfer

    International Nuclear Information System (INIS)

    Jeon, Jan Pung

    1987-01-01

    Three basic entities involved in the implementation of nuclear projects are the Owner, Regulatory Authority and Nuclear Industry. Their ultimate objective is to secure the safe, reliable and economical nuclear energy. For s successful nuclear power program, the owner should maintain a good relationship with the other entities and pursue an optimization of the objectives. On the other hand, he should manage projects along the well - planned paths in order to effectively learn the nuclear technology. One of the problems in the nuclear projects of developing countries was the absence of long - term technology development program, a limited local participation and the technical incapability. For the effective technology transfer, a motivation of the technology supplier and a readiness of the recipient to accommodate such technologies are required. Advanced technology is usually developed at considerable expense with the expectation that the developer will use it in furthering his own business. Therefore, he tends to be reluctant to transfer it to the others, particularly, to the potential competitors. There is a disinclination against further technology transfer beyond the minimum contractual obligation or the requirements by Government Regulatory. So, an additional commercial incentive must be provided to the developer

  7. Configuration and technology implications of potential nuclear hydrogen system applications.

    Energy Technology Data Exchange (ETDEWEB)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options

  8. Russian youth for nuclear technologies

    International Nuclear Information System (INIS)

    Tsiboulia, A.

    2002-01-01

    Nuclear industry has a half-century of history, but its development today depends on the young scientists and specialists, who have decided to devote themselves to work in this area. Unfavorable public opinion and insufficient support from state authorities in the last years have led to the fact that the professions of nuclear specialty have become less popular. Nuclear professionals leave their field in search of more lucrative jobs. Therefore, the real problem today is how to attract the youth to the industry and transfer the industry's years of accrued experience to the youth. (orig.)

  9. Nuclear technology and the export control laws

    International Nuclear Information System (INIS)

    Munroe, J.L.; Pankratz, M.C.; Hogsett, V.H.; Lundy, A.S.

    1988-01-01

    Three basic US laws regulate the export of commodities, services, and technical data. People working in nuclear fields need to know of these laws and their impact on professional endeavors. Export of technical data means the communication of any information by oral, written, or any other means to foreign nationals within or outside the US. The medium for the communication may be a model, blueprint, sketch, or any other device that can convey information. If the data relates to items on one of the control lists, a license must be sought from the appropriated federal agency. The Militarily Critical Technologies List (MCTL), though not itself a control list, plays a major role in determining what technical data will require a validated license. The US Department of Energy (DOE), through Technical Working Gorup (TWG) 11, is responsible for the Nuclear Technology chapter of the MCTL. TWG 11 also prepares the Nuclear Technology Reference Book (NTRB), a classified guide to sensitive nuclear technology

  10. Nuclear technology and human civilization in interplay

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    This lecture was held by E. Broda during a series of lectures “Wiener Internationale Hochschulkurse”, organized by the University of Vienna in 1979. The lecture is about nuclear technology and human civilization in interplay. (nowak)

  11. China's nuclear technology for economy growth

    International Nuclear Information System (INIS)

    Lu, Yanxiao

    1998-01-01

    The transfer of nuclear technology to practical applications in energy, agriculture, food, industries and others has made important contributions to the prosperity of the national economy and the improvement of living standard of Chinese people in the past 40 years. Facing the great challenges in upcoming years, sustained efforts are needed to promote industrialization, commercialization and internationalization of nuclear technology. Rapid economic growth is providing the golden opportunities for the development of nuclear technology in China. With the trends to globalization of economic development, civilian applications of nuclear technology will have to be involved in international co-operation and competitive world markets to narrow the gap between China and other developed countries in the world in the next century. (author)

  12. Nuclear Science and Technology in Myanmar

    International Nuclear Information System (INIS)

    Tin-Hlaing

    2001-01-01

    This article is about the Establishment of the Department of Atomic Energy (DAE) and its historical background. The department is organized under the Ministry of Science and Technology. It is the only national nuclear institution in Myanmar

  13. Application of analysis technology in nuclear plant

    International Nuclear Information System (INIS)

    Takaoka, Keiko; Miura, Hiromi; Umeda, Kenji

    1996-01-01

    Recently, thanks to the rapid improvement of EWS performance, the authors have been able to carry out design evaluation comparatively, easily, utilizing computational fluid dynamics (CFD) technology. The Nuclear Plant Engineering Department has carried out some analyses in the past several years with the main purpose of evaluating the design of nuclear reactor internals. These studies included ''Thermal Hydraulic Analysis for Top Plenum'' and ''Flow Analysis for Lower Plenum''. It is considered to be a special matter in thermal hydraulic analysis of the top plenum that temperature distribution has been estimated with a relatively small number of meshes by means of an imaginary spray nozzle, and in the flow analysis for the lower plenum that flow distribution has been found to change largely, depending on the reactor internals. One of the ways to confirm the safety of nuclear plants, detailed structural analysis, is required for all possible combinations of transient and load conditions during operation. In particular, it is very important to clarify the thermal stress behavior under operating conditions and to evaluate fatigue analysis in accordance with the Code Requirements. However, it is very complicated and it takes a lot of time. A new system was developed which can operate continuously all of the definitions of the analytical model, the analyzation of pressurized thermal and external stress, and editing reports. In this paper, the authors introduce this system and apply it to a pressurized water reactor

  14. Environmental assessment report: Nuclear Test Technology Complex

    International Nuclear Information System (INIS)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report

  15. Nuclear Science and Technology Branch Report 1975

    International Nuclear Information System (INIS)

    1975-10-01

    A summary is given of research activities. These include: nuclear techniques of analysis, nuclear techniques in hydrology, industrial applications of radioisotopes, biological and chemical applications of irradiation, radiation detection and measurement, environmental studies and biophysics and radiation biology. Patent applications and staff of the nuclear science and applications secretariat are listed. (R.L.)

  16. Wireless Technology Application to Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jeong Kweon; Jeong, See Chae; Jeong, Ki Hoon; Oh, Do Young; Kim, Jae Hack

    2009-01-01

    Wireless technologies are getting widely used in various industrial processes for equipment condition monitoring, process measurement and other applications. In case of Nuclear Power Plant (NPP), it is required to review applicability of the wireless technologies for maintaining plant reliability, preventing equipment failure, and reducing operation and maintenance costs. Remote sensors, mobile technology and two-way radio communication may satisfy these needs. The application of the state of the art wireless technologies in NPPs has been restricted because of the vulnerability for the Electromagnetic Interference and Radio Frequency Interference (EMI/RFI) and cyber security. It is expected that the wireless technologies can be applied to the nuclear industry after resolving these issues which most of the developers and vendors are aware of. This paper presents an overview and information on general wireless deployment in nuclear facilities for future application. It also introduces typical wireless plant monitoring system application in the existing NPPs

  17. The project of Esfahan Nuclear Technology Center (ENTEC) and the transfer of nuclear tecnology in Iran

    International Nuclear Information System (INIS)

    Khazaneh, Reza

    1977-01-01

    In 1974, the Atomic Energy Organization of Iran (AEOI) decided to set up a Nuclear Technology Center on Esfahan (ENTEC) in collaboration with France's Technicatome Company and the CEA. This center is scheduled to go into operation during 1976-1980. The purposes for setting up ENTEC are threefold: a. to give scientific and technical support to the operation of nuclear power plants and nuclear industries in Iran. b. to carry out research and development in the area of nuclear technology on an industrial level. c. to give supplementary education and training to the manpower needs for the AEOI. To carry out the program of technology transfer, temporary laboratories have been set up in Tehran for engineers, technicians and training programs have been organized primarily in France. The ENTEC project will also include a school for education of junior scientists and engineers in the field of nuclear technology

  18. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  19. Nuclear power economics and technology: an overview

    International Nuclear Information System (INIS)

    1992-01-01

    Intended for the non-specialist reader interested in energy and environmental policy matters, this report presents an overview of the current expert consensus on the status of nuclear power technology and its economic position. It covers the potential demand for nuclear energy, its economic competitivity, and the relevant aspects of reactor performance and future technological developments. The report provides an objective contribution to the ongoing scientific and political debate about what nuclear power can offer, now and in the future, in meeting the world's growing demand for energy and in achieving sustainable economic development. 24 refs., 18 figs;, 12 tabs., 5 photos

  20. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1973-01-01

    Advances in Nuclear Science and Technology, Volume 7 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of irradiation-induced void swelling in austenitic stainless steels. This text then examines the importance of various transport processes for fission product redistribution, which depends on the diffusion data, the vaporization properties, and the solubility in the fuel matrix. Other chapters co

  1. A study on nuclear technology policy

    International Nuclear Information System (INIS)

    Kim, H. J.; Oh, K. B.; Lee, K. S.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, I.

    2004-01-01

    This study was conducted as a part of institutional activities of KAERI, and the objective of the study is to survey and analyze the change of international environment in nuclear use and research and development environment, and to propose systematic alternatives on technology policy for efficiency and effectiveness of research and development through national R and D program while timely responding to the environmental change in local and global sense. Acknowledging the importance of the relationship between the external environment and the national nuclear R and D strategic planning, this study focused on the two major subjects: (1) the international environmental and technological change attached to the development of nuclear power; (2) the direction and strategy of nuclear R and D to improve effectiveness through national R and D programs as role of electricity in the future society, strategic environment of nuclear use and R and D in the future society, energy environment and nuclear technology development scenario in the future, strategic study on future vision of KAERI and technological road-mapping of national nuclear R and D for enhancing competitiveness

  2. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  3. Technology transfer in the Spanish nuclear programme

    International Nuclear Information System (INIS)

    Perez-Naredo, F.

    1983-01-01

    The paper describes the process of technology transfer under the Spanish nuclear programme and its three generations of nuclear power plants during the last 20 years, with special reference to the nine new plants equipped with Westinghouse pressurized water reactors and the rising level of national involvement in these stations. It deals with the development of Westinghouse Nuclear's organization in Spain, referring to its staff and to the manufacturers who supply equipment for the programme, going into particular detail where problems of quality assurance are concerned. In conclusion, it summarizes the present capacity of Spanish industry in various areas connected with the design, manufacture and construction of nuclear power plants. (author)

  4. Technology transfer from nuclear research

    International Nuclear Information System (INIS)

    1989-01-01

    A number of processes, components and instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, find application in industry and are available for transfer to private or public sector undertakings for commercial exploitation. The Technology Transfer Group (TTG) constituted in January 1980 identifies such processes and prototypes which can be made available for transfer. This catalogue contains brief descriptions of such technologies and they are arranged under three groups, namely, Group A containing descriptions of technologies already transferred, Group B containing descriptions of technologies ready for transfer and Group C containing descriptions of technology transfer proposals being processed. The position in the above-mentioned groups is as on 1 March 1989. The BARC has also set up a Technology Corner where laboratory models and prototypes of instruments, equipment and components are displayed. These are described in the second part of the catalogue. (M.G.B.)

  5. Radiation and nuclear safety included in the environmental health programme

    International Nuclear Information System (INIS)

    Salomaa, S.

    1996-01-01

    Finland is currently preparing a national environmental health programme, the objective of which is to chart the main environmental health problems in Finland, to identify means for securing a healthy environment, and to draw up a practical action programme for preventing and rectifying problems pertaining to environmental health. Radiation and nuclear safety form an essential part of preventive health care. The action programme is based on decisions and programmes approved at the WHO Conference on the Environment and Health, held in Helsinki in June 1994. In addition to the state of the Finnish environment and the health of the Finnish population, the programme addresses the relevant international issues, in particular in areas adjacent to Finland. The Committee on Environmental Health is expected to complete its work by the end of the year. A wide range of representatives from various branches of administration have contributed to the preparation of the programme. Besides physical, biological and chemical factors, the environmental factors affecting health also include the physical environment and the psychological, social and aesthetic features of the environment. Similarly, environmental factors that have an impact on the health of present or future generations, on the essential preconditions of life and on the quality of life are investigated. The serious risk to nature caused by human actions is also considered as a potential risk to human health. (orig.)

  6. International Nuclear Technology Forum: Future prospects of nuclear power plants and Turkey

    International Nuclear Information System (INIS)

    1994-01-01

    The document includes 19 papers presented at the 'International Nuclear Technology Forum: Future Prospects of Nuclear Power Plants in Turkey', held between 12-15 October 1993 in Ankara (Turkey). A separate abstract was prepared for each paper prepared for each paper

  7. A study on nuclear technology policy

    International Nuclear Information System (INIS)

    Yang, M. H.; Kim, H. J.; Chung, W. S.; Yun, S. W.; Kim, H. S.

    2001-01-01

    This study was carried out as a part of institutional activities of KAERI. Major research area are as follows; Future directions and effects for national nuclear R and D to be resulted from restructuring of electricity industry are studied. Comparative study was carried out between nuclear energy and other energy sources from the point of views of environmental effects by introducing life cycle assessment(LCA) method. Japanese trends of reestablishment of nuclear policy such as restructuring of nuclear administration system and long-term plan of development and use of nuclear energy are also investigated, and Russian nuclear development program and Germany trends for phase-out of nuclear electricity generation are also investigated. And trends of the demand and supply of energy in eastern asian countries in from the point of view of energy security and tension in the south china sea are analyzed and investigation of policy trends of Vietnam and Egypt for the development and use of nuclear energy for the promotion of nuclear cooperation with these countries are also carried out. Due to the lack of energy resources and high dependence of imported energy, higher priority should be placed on the use of localized energy supply technology such as nuclear power. In this connection, technological development should be strengthened positively in order to improve economy and safety of nuclear energy and proliferation resistance of nuclear fuel cycle and wide ranged use of radiation and radioisotopes and should be reflected in re-establishment of national comprehensive promotion plan of nuclear energy in progress

  8. Proceedings of the 12th national conference on nuclear electronics and nuclear detection technology

    International Nuclear Information System (INIS)

    2004-01-01

    The 12th national conference on nuclear electronics and nuclear detection technology were hold by Nuclear Electronics and Nuclear Detection Technology Branch Society on November, 6th-11th 2004 in Kunming of Yunnan province. 158 articles is collected in the proceedings. The contents involved nuclear electronics and its application, nuclear detector and its application, nuclear instruments and its application, nuclear medical electronics and its application, nuclear monitoring technology and nuclear explosion detection, radiation hardened electronics and electromagnetic pulse technology and its application, liquid scintillation detection technology and its application, computer applications in sciences and technology and so on

  9. Nuclear technology for sustainable development

    International Nuclear Information System (INIS)

    2001-01-01

    Introduces three of the IAEA's current programmes: Promoting food security - use of the sterile insect technique to eradicate the tsetse fly in Sub-Saharan Africa; Managing water resources - use of isotope hydrology to check water for traces of arsenic in Bangladesh; Improving human health - use of nuclear techniques for diagnosis, imaging and cancer treatment in developing countries

  10. Nuclear technology review 2003 update

    International Nuclear Information System (INIS)

    2003-09-01

    Worldwide there were 441 nuclear power plants (NPPs) operating at the end of 2002.These supplied 16% of global electricity generation in 2002, down slightly from 16.2% in 2001.1 Table 1 summarizes world nuclear experience as of the end of 2002. The global energy availability factor for NPPs rose to 83.4% in 2001, from 82.1% in 2000 and 74.2% in 1991. In 2002, upratings calculated from data on the IAEA's Power Reactor Information System (PRIS) totalled approximately 672 MW(e), of which the United States of America accounted for 574 MW(e) and the United Kingdom accounted for 98 MW(e).The United States Nuclear Regulatory Commission (NRC) expects applications for 2270 MW(e) worth of upratings over the next five years. Six new NPPs were connected to the grid in 2000, three in 2001, and six in 2002. There were three retirements in 2000: Chernobyl-3 in Ukraine and two units at Hinkley Point A in the United Kingdom.There were no retirements in 2001 and four in 2002:Kozloduy-1 and -2 in Bulgaria and Bradwell units A and B in the UK. In 2002, construction started on seven new NPPs: six in India and one in the Democratic People's Republic of Korea. This issue covers the following topics: Medium-Term Projections; Sustainable Development; Resources And Fuel; Decommissioning; Advanced Designs; Research Reactors; Waste From Non-Power Applications; Nuclear Knowledge; Matters Of Interest To The IAEA Arising From The World Summit On Sustainable Development; International Project On Innovative Nuclear Reactors And Fuel Cycles (INPRO); Knowledge Management; Key Commitments, Targets And Timetables From The Johannesburg Plan Of Implementation; Management Of The Natural Resource Base

  11. Development of Nuclear Analytical Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Joon; Kim, J. Y.; Sohn, S. C. (and others)

    2007-06-15

    The pre-treatment and handling techniques for the micro-particles in swipe samples were developed for the safeguards purpose. The development of screening technique for the swipe samples has been established using the nuclear fission track method as well as the alpha track method. The laser ablation system to take a nuclear particle present in swipe was designed and constructed for the determination of the enrichment factors for uranium or plutonium, and its performance was tested in atmosphere as well as in vacuum. The optimum conditions for the synthesis of silica based micro-particles were obtained for mass production. The optimum ion exchange resin was selected and the optimum conditions for the uranium adsorption in resin bead technique were established for the development of the enrichment factor for nuclear particles in swipe. The established technique was applied to the swipe taken directly from the nuclear facility and also to the archive samples of IAEA's environmental swipes. The evaluation of dose rate of neutron and secondary gamma-ray for the radiation shields were carried out to design the NIPS system, as well as the evaluation of the thermal neutron concentration effect by the various reflectors. D-D neutron generator was introduced as a neutron source for the NIPS system to have more advantages such as easier control and moderation capability than the {sup 252}Cf source. Simulated samples for explosive and chemical warfare were prepared to construct a prompt gamma-ray database. Based on the constructed database, a computer program for the detection of illicit chemical and nuclear materials was developed using the MATLAB software.

  12. Effective citizen advocacy of beneficial nuclear technologies

    International Nuclear Information System (INIS)

    McKibben, J. Malvyn; Wood, Susan

    2007-01-01

    In 1991, a small group of citizens from communities near the Savannah River Site (SRS) formed a pro-nuclear education and advocacy group, Citizens for Nuclear Technology Awareness (CNTA). Their purpose was to: (1) counter nuclear misinformation that dominated the nation's news outlets, (2) provide education on nuclear subjects to area citizens, students, elected officials, and (3) provide informed citizen support for potential new missions for SRS when needed. To effectively accomplish these objectives it is also essential to establish and maintain good relations with community leaders and reporters that cover energy and nuclear subjects. The organization has grown considerably since its inception and has expanded its sphere of influence. We believe that our experiences over these fifteen years are a good model for effectively communicating nuclear subjects with the public. This paper describes the structure, operation and some of the results of CNTA. (authors)

  13. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  14. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  15. Space nuclear power, propulsion, and related technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government

  16. Maintenance welding technology in nuclear power plant

    International Nuclear Information System (INIS)

    Matsuda, Fukuhisa

    1999-01-01

    Welding technology used for a nuclear power plant greatly differs depending on either when the plant is being constructed or when the plant is in operation. Welding used in plant construction does not much differ, in method and technology, from that used in ordinary thermal power, chemical or other plants. On the other hand, repair welding technology for the reactor section of a nuclear power plant in operation greatly differs from that used for those plants. The recent requests for the prolongation of the life of nuclear power plants have remarkably improved welding technology for maintenance and repair in the nuclear field. Thus, the existing welding technology has been improved and new advanced welding technologies have been created one after another. Problems with the reactor section and welding technology for its maintenance and repair are presented. The temper bead method and the laser beam cladding and modification method for reactor pressure vessels, SCC and irradiation-assisted SCC measures for vessel structures, and SCC measures for heat-exchange tubes and the overall replacement of a steam generator are presented. (N.H.)

  17. Pursuit of nuclear science and technology education

    International Nuclear Information System (INIS)

    Rangacharyulu, C.

    2009-01-01

    While it is quite encouraging to note that there is a nuclear renaissance underway around the world, there is a growing concern that the knowledge-base of nuclear technologies will be lost. Several international organizations are making concerted efforts to avert this situation by establishing collaborative workshops etc. In Western Canada, our challenges and opportunities are many-fold. As a uranium mining region, we can engage our economy in the full life-cycle of the nuclear energy industry. It is also important that we maintain and augment nuclear technologies. We need to develop the infrastructure to jump-start the education and training of the youth. We are taking a multi-prong approach to this end. We are initiating specializations in undergraduate programs which emphasize nuclear radiation physics and technology. We are collaborating with Canadian organizations such as University Network of Excellence in Nuclear Engineering (UNENE) and University of Ontario Institute of Technology (UOIT). We are organizing collaborations with our colleagues at foreign institutions in Europe and Asia to provide an international component. We are also working with local industry and health organizations to provide a wide-range of learning opportunities to students by engaging them in research projects of immediate interest to professionals. My presentation will focus on these developments and we will also seek thoughts and suggestions for future collaborations.

  18. Proliferation Persuasion. Coercive Bargaining with Nuclear Technology

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, Tristan A. [George Washington Univ., Washington, DC (United States)

    2015-08-31

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits? My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the

  19. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  20. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    Ignatiev, V.; Devell, L.

    1995-01-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  1. Nuclear medicine. Medical technology research

    International Nuclear Information System (INIS)

    Lerch, H.; Jigalin, A.

    2005-01-01

    Aim, method: the scientific publications in the 2003 and 2004 issues of the journal Nuklearmedizin were analyzed retrospectively with regard to the proportion of medical technology research. Results: out of a total of 73 articles examined, 9 (12%) were classified as medical technology research, that is, 8/15 of the original papers (16%) and one of the case reports (5%). Of these 9 articles, 44% (4/9) focused on the combination of molecular and morphological imaging with direct technical appliance or information technology solutions. Conclusion: medical technology research is limited in the journal's catchment area. The reason for this is related to the interdependency between divergent development dynamics in the medical technology industry's locations, the many years that the area of scintigraphic technology has been underrepresented, research policy particularly in discrepancies in the promotion of molecular imaging and a policy in which health is not perceived as a predominantly good and positive economic factor, but more as a curb to economic development. (orig.)

  2. Nuclear data evaluation methodology including estimates of covariances

    Directory of Open Access Journals (Sweden)

    Smith D.L.

    2010-10-01

    Full Text Available Evaluated nuclear data rather than raw experimental and theoretical information are employed in nuclear applications such as the design of nuclear energy systems. Therefore, the process by which such information is produced and ultimately used is of critical interest to the nuclear science community. This paper provides an overview of various contemporary methods employed to generate evaluated cross sections and related physical quantities such as particle emission angular distributions and energy spectra. The emphasis here is on data associated with neutron induced reaction processes, with consideration of the uncertainties in these data, and on the more recent evaluation methods, e.g., those that are based on stochastic (Monte Carlo techniques. There is no unique way to perform such evaluations, nor are nuclear data evaluators united in their opinions as to which methods are superior to the others in various circumstances. In some cases it is not critical which approaches are used as long as there is consistency and proper use is made of the available physical information. However, in other instances there are definite advantages to using particular methods as opposed to other options. Some of these distinctions are discussed in this paper and suggestions are offered regarding fruitful areas for future research in the development of evaluation methodology.

  3. Nuclear technology centre. Preserving and developing competence and resources

    International Nuclear Information System (INIS)

    Tiren, I.

    1995-01-01

    The Royal Institute of Technology in Stockholm provides one third of Sweden's capacity for engineering studies and technical research at the post-high-school level. Altogether, the institute includes about 8000 students and 900 active postgraduate students and has a staff of nearly 2500. The research activities cover a broad spectrum of the natural sciences and technology, as well as architecture, industrial economics, urban planning, work science and environmental technology. In 1993, a Nuclear Technology Centre was established at the institute. The purpose of this Centre is to stimulate education and research in nuclear technology in order to contribute to the preservation and development of competence in the nuclear field. The formation of the Centre should be regarded as one of several recent initiatives aimed at maintaining a high level of safety and reliability in the operation of nuclear power plants at a time when there are political manoeuvres to phase out nuclear energy in Sweden. The paper summarizes the motives that led to the formation of the Centre, its goals and organization, and its initial activities and results. The paper may be of interest to similar organizations in other countries which are also faced with uncertainties regarding the future of existing nuclear power plants or of current programmes, and which consider that co-operation between the industry and universities is an important factor in ensuring the quality of technological development. (author). 4 refs

  4. Planning, design and technological criteria of conventional and nuclear shelters

    International Nuclear Information System (INIS)

    Sadoon, A.S.

    1989-01-01

    The thesis aims to establish a special criteria for building the shelters in two types. The conventional and nuclear, in respect to planning design and technological aspects, and finally establishing a special reference of planning, design and technology for Iraq which can be used when planning or designing a conventional or nuclear shelter. The thesis included four chapters, the first chapter included definition of shelters, and explanation of the effects of all types of weapons on buildings, and the second chapter included definition of planning and design concepts of shelters in its two types and analytical studies for international examples. The third chapter covered definition for technologies of structural, mechanical, electrical and sanitary systems. The fourth chapter included details of a case study in order to approach the results of research which included the conclusions, recommendations, criteria and prospects of planning design and technological aspects. 51 tabs.; 180 figs.; 32 refs.; 15 apps

  5. Waging nuclear peace: The technology and politics of nuclear war

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, R.

    1985-01-01

    Since the explosions of the first atomic bombs, a large literature has appeared on the effects and risks of nuclear war. The most widely quoted recent publications have concentrated on the impossibility of any meaningful survival after a superpower nuclear exchange. By contrast, Dr. Ehrlich tries to show both sides of the various arguments involved. As a result, he undoubtedly succeeds in his avowed intention of angering both hawks and doves. He offers a critical analysis of most considerations apposite to the current nuclear-weapon impasse, including the nature of current nuclear arms, the possibility of limited nuclear war, the short-term and long-term effects of nuclear weapons, the value of civil defense, the importance of public opinion, and the feasibility of arms control.

  6. Nuclear technologies for Moon and Mars exploration

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs

  7. Nuclear technologies for Moon and Mars exploration

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  8. Nuclear data for fusion reactor technology

    International Nuclear Information System (INIS)

    1988-06-01

    The meeting was organized in four sessions and four working groups devoted to the following topics: Requirements of nuclear data for fusion reactor technology (6 papers); Status of experimental and theoretical investigations of microscopic nuclear data (10 papers); Status of existing libraries for fusion neutronic calculations (5 papers); and Status of integral experiments and benchmark tests (6 papers). A separate abstract was prepared for each of these papers

  9. The status of nuclear power technology

    International Nuclear Information System (INIS)

    Calori, F.

    1976-01-01

    A survey is presented of the present state of development concerning nuclear power technology, and the prospects of a modified future development of nuclear energy in the world are dealt with, modification being necessary on account of altered conditions in the development of the energy economy. Projections are made for the development of the fuel market taking into account the quantities and costs for the various steps of the fuel cycle. (UA) [de

  10. Nuclear matter descriptions including quark structure of the hadrons

    International Nuclear Information System (INIS)

    Huguet, R.

    2008-07-01

    It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)

  11. Promoting the acceptance of nuclear technology

    International Nuclear Information System (INIS)

    Rueckl, E.

    1998-01-01

    Restoring the public acceptance of nuclear technology requires optimized public relations work and an enhanced interaction among the nuclear industry and schools and universities. Thinking in contexts needs to be promoted, also in order to improve knowledge of mass flows. Specific terms often mean different things to experts and to the public. This can be corrected by careful use of language and precision in public relations work. The young generation is more openminded towards technology now than it was in the seventies and eighties. This is a point of departure in winning young people also for nuclear technology. For this to happen, science education in schools needs to be improved and the appropriate courses need to be introduced. (orig.) [de

  12. Qualtity assurance in nuclear technology

    International Nuclear Information System (INIS)

    Roesler, U.

    1977-01-01

    The demand for safety in nuclear power plants is rooted in the Atomic Energy Act of the Federal Republic of Germany, under which 'preplanned safety' is a licensing condition. Moreover, the safety of nuclear power plants is outlined in more precise terms in the guidelines of the German Advisory Committee for Reactor Safeguards (Reaktorsicherheitskommission). The usual approach taken in this country, i.e., to establish quality assurance for each specific product, with supplementary quality assurance measures geared to systems requirements being implemented by industry, has proved to work satisfactorily. Product-based quality assurance mainly stems from the classical quality control concept, whereas systems-based quality assurance primarily is to ensure that both manufacturers and systems suppliers take all measures in advance which are needed for the satisfactory processing of an order and to achieve the quality level required. The special features and the advantages of the joint action of manufacturers, systems suppliers and experts, which are characteristic of the German approach, very clearly emerge from a comparison with practices in the United States. In the further refinement of the quality assurance concept as practised in Germany, qhich will have a particularly great impact on costs and schedules because of the manpower requirement involved, it should be carefully weighed where there are exaggerations and unnecessary complications which can no longer be justified by the demand for more safety. (orig.) [de

  13. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.4--nuclear material

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally.This is the fourth one, the content is about nuclear materials, isotope separation, nuclear chemistry and radiological chemistry.

  14. Latest Developments in Nuclear Emulsion Technology

    Science.gov (United States)

    Morishima, Kunihiro

    Nuclear emulsion is high sensitive photographic film used for detection of three-dimensional trajectory of charged particles. These trajectories are recorded as tracks consist of a lot of silver grains. The size of silver grain is about 1 μm, so that nuclear emulsion has submicron three-dimensional spatial resolution, which gives us a few mrad three-dimensional angular resolution. The important technical progress was speed-up of the read-out technique of nuclear emulsions built with optical microscope system. We succeeded in developing a high-speed three-dimensional read-out system named Super Ultra Track Selector (S-UTS) with the operating read-out speed of approximately 50 cm2/h. Nowadays we are developing the nuclear emulsion gel independently in Nagoya University by introducing emulsion gel production machine. Moreover, we are developing nuclear emulsion production technologies (gel production, poring and mass production). In this paper, development of nuclear emulsion technologies for the OPERA experiment, applications by the technologies and current development are described.

  15. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1970-01-01

    Advances in Nuclear Science and Technology, Volume 5 presents the underlying principles and theory, as well as the practical applications of the advances in the nuclear field. This book reviews the specialized applications to such fields as space propulsion.Organized into six chapters, this volume begins with an overview of the design and objective of the Fast Flux Test Facility to provide fast flux irradiation testing facilities. This text then examines the problem in the design of nuclear reactors, which is the analysis of the spatial and temporal behavior of the neutron and temperature dist

  16. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1966-01-01

    Advances in Nuclear Science and Technology, Volume 3 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book presents the advances in the atomic energy field.Organized into six chapters, this volume begins with an overview of the use of pulsed neutron sources for the determination of the thermalization and diffusion properties of moderating as well as multiplying media. This text then examines the effect of nuclear radiation on electronic circuitry and its components. Other chapters consider radiation effects in various inorganic solids, with empha

  17. China nuclear science and technology report. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1993 (Report Numbers CNIC-00675∼CNIC-00800) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  18. Saving Harvests Through Nuclear Technology

    International Nuclear Information System (INIS)

    Dixit, Aabha; Madsen, Michael

    2013-01-01

    Crop diseases are one of the most challenging threats we face, affecting everyone on the planet directly or indirectly. Like so many crops, wheat — a key component for bread making — has over periods of time faced horrific destruction from diseases. One such disease, a wheat stem rust caused by a new virulent race (Ug99) can destroy whole wheat crops in a matter of days. Getting into action, the international community has strived over the years to protect crops against plant diseases. Leading in the use of nuclear techniques, the Joint FAO/IAEA Laboratories at Seibersdorf, Austria, irradiate seeds to induce biological variation from which varieties with disease resistance may be developed, thereby helping farmers as well as consumers

  19. Technology of controlled nuclear fusion

    International Nuclear Information System (INIS)

    Hopkins, G.R.

    1977-01-01

    A review is presented of the following topics treated at the meeting (invited papers and sessions): international programs (Japanese, Joint European Tokamak, Euratom non-JET, ERDA magnetic, ERDA laser, and Electric Power Research Institute programmes); non-commercial reactor designs; commercial reactor designs; radiation damage; plasma engineering; tritium and neutronics; confinement system technology; environment and safety; blanket engineering and materials testing; fusion-fission hybrid reactors

  20. Future global manpower shortages in nuclear industries with special reference to india including remedial measures

    International Nuclear Information System (INIS)

    Ghosh Hazra, G.S.

    2008-01-01

    Full text: The Radiation Protection Program of the Environmental Protection Agencies of countries employ scientists, engineers, statisticians, economists, lawyers, policy analysts, and public affairs professionals amongst others. These professionals aim to protect workers, the general public, and the environment from harmful radiation exposures and to provide the technical basis for radiation protection policies and regulations. Professionals include Health physicists, Bio statistician, Radio chemist, Radio ecologist, Radio biologist etc. With a large proportion of the population of the nuclear workforce of many countries now approaching retirement age, existing power plants of these countries will be hard pressed to find enough qualified professionals to support their operations. The potential shortage of skilled manpower not only affects utilities, but also impacts the entire nuclear infrastructure, including national laboratories, federal and state agencies, nuclear technology vendors and manufacturing companies, nuclear construction companies, and university nuclear engineering departments. Manpower requirements exist in the nuclear power industry, universities and research establishments, hospitals, government departments, general industry e.g. radiography, transport, instrumentation etc., specialist contractors, agencies and consultancies serving radiation protection. India is no exception. India has the world's 12 th largest economy. Assuming India's average growth rate p.a. of more than 5%, total GDP by 2050 will increase substantially which will require proportionate increase of manpower for all industries. Also chance of brain drain is very high from developing countries e.g. from India to developed countries because of much higher pay and better lifestyle as there will be shortage of manpower in developed countries as explained above. With population growth to be stabilized in future in India, the working age population may not increase in the year 2030

  1. Development of nuclear equipment qualification technology

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heon O; Kim, Wu Hyun; Kim, Jin Wuk; Kim, Jeong Hyun; Lee, Jeong Kyu; Kim, Yong Han; Jeong, Hang Keun [Korea Institute of Machinery and Materials, Taejon (Korea)

    1999-03-01

    In order to enhance testing and evaluation technologies, which is one of the main works of the Chanwon branch of KIMM(Korea Institute of Machinery and Materials), in addition to the present work scope of the testing and evaluation in the industrial facilities such as petroleum and chemical, plants, the qualification technologies of the equipments important to safety used in the key industrial facilities such as nuclear power plants should be localized: Equipments for testing and evaluation is to be set up and the related technologies must be developed. In the first year of this study, of vibration aging qualification technologies of equipments important to safety used in nuclear power plants have been performed. (author). 27 refs., 81 figs., 17 tabs.

  2. 9th Pacific Basin Nuclear Conference. Nuclear energy, science and technology - Pacific partnership. Proceedings Volume 2

    International Nuclear Information System (INIS)

    1994-04-01

    The theme of the 9th Pacific Basin Nuclear Conference held in Sydney from 1-6 May 1994, embraced the use of atom in energy production and in science and technology. The focus was on selected topics of current and on-going interest to countries around the Pacific Basin. The two-volume proceedings include both invited and contributed papers which have been indexed separately. This document, Volume 2 covers the following topics: education and training in Nuclear Science, public acceptance, nuclear safety and radiation protection, nuclear fuel resources and their utilisation, research reactors, cyclotrons and accelerators. refs., tabs., figs., ills

  3. Status of technology for nuclear waste management

    International Nuclear Information System (INIS)

    Lieberman, J.A.

    1984-01-01

    In the area of low- and intermediate-level radioactive wastes the successful development and application of specific management technologies have been demonstrated over the years. The major area in which technology remains to be effectively implemented is in the management of high-level wastes from the nuclear fuel cycle. Research and development specifically directed at the management of high-level radioactive wastes in the USA and other countries is briefly reviewed in the article introduced

  4. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J; Yuldashev, B; Labov, S; Knapp, R

    2006-06-12

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

  5. Nuclear technology in pest management

    International Nuclear Information System (INIS)

    Seth, R.K.

    2012-01-01

    Nuclear energy has been greatly explored for its use in various disciplines of entomology related to agriculture, medicine and industry. Since the ravages of the insects especially in the tropical and subtropical zones of the world are particularly serious, insect control is essential in the production of crop, animal produce and protection from dreadful communicable diseases. Presently, biological and para-biological control programmes are receiving major prominence due to insecticidal ill effects on health and environment, and due to development of insecticidal resistance in pests. The exposure to ionizing radiation is now the principal method for inducing reproductive sterility in mass-reared insects. Irradiation of insects is a relatively straightforward process with reliable quality control procedures. Using radiation may offer other advantages, such as insignificant increase in temperature during the process, use of treated insects immediately after processing, no addition of any residues harmful to human health or environment, etc. Various pragmatic perspectives of utilization of radiation as a tool in entomological research studies, in relation to noxious insects as well as ecologically beneficial insects, are highlighted. (author)

  6. Applying Digital Technologies to Strengthen Nuclear Safety

    International Nuclear Information System (INIS)

    Huffeteau, S.; Roy, C.

    2016-01-01

    Full text: The paper describes how the development of some information technologies can further contribute to the safety of nuclear facilities and their competitiveness. After repositioning the nuclear industry engineering practices in their historical and economic context, the paper describes five engineering practices or use cases widely developed especially in the aerospace industry: requirement management, business process enforcement by digitization of data and processes, facilities configuration management, engineering information unification, and digital licensing. Information technology (IT) plays a mandatory role for driving this change since IT is now mature enough to handle the level of complexity the nuclear industry requires. While the detailed evaluation of the expecting gains in cost decrease or safety increase can be difficult to quantify, the paper presents illustrative benefits reachable by a development of these practices. (author

  7. Prospective of the nuclear energy, technological tendency

    International Nuclear Information System (INIS)

    Cruz F, G. De la; Salaices A, M.

    2004-01-01

    The world's concern about the energy supply in the near future, has had as an answer diverse proposals in which two multinational initiatives are highlighted, that of the International Project on Nuclear Innovative Reactors and Fuel Cycles (INPRO) and that of the Generation-l V International Forum (GIF). Both initiatives direct their efforts to the development of new technologies in nuclear energy that would satisfy the energy requirements of the future. In this article, an analysis based on a) the available information on these technologies, b) a joint study (IEA/OECD/IAEA) on the new technologies regarding its capacity to confront the current challenges of the nuclear energy, and c) the authors' experience and knowledge about the phenomenology, design and security of nuclear facilities, is presented. Moreover, the technologies that, in the authors' opinion, will have the better possibilities to compete successfully in the energy markets and could be one of the viable options to satisfy the energy demands of the future, are described. (Author)

  8. Nuclear energy for technology and industry

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1987-01-01

    It is a sad commentary on the complete lack of informed realism of the Government and people of Australia that, after thirty years of vacillation and political chicanery, nuclear technology, one of this nation's potential ''sunrise industries'' is in its death throes. Whilst our third world neighbours, in particular Indonesia, Malaysia, the Philippines, the People's Republic of China and even impoverished Bangladesh are making giant strides to develop an autonomous expertise Australia's potential has been dissipated and its opportunities for leadership and technology transfer lost. By chance this paper was written some weeks before the nuclear accident at Chernobyl (U.S.S.R.) and many years after accidents at the Three Mile Island nuclear power plant (U.S.A.) and the plutonium production reactor at Windscale (U.K.). None of these incidents alter the basic arguments or conclusions contained in this manuscript. (See Appendix). The year 1986 might represent the final opportunity for concerned professionals to seek to improve the quality of public education and information to end ''the war against the atom''. It will be necessary to re-motivate the public and private sector of a demoralised technology and to launch it on a road of responsible and successful expansion unshackled by beaurocratic interference. It is the purpose of this paper to examine why the first three decades of nuclear technology in Australia have been so singularly unsuccessful and to discuss a coherent and rational implementation of plans and policies for the future. (author)

  9. Future of nuclear energy technology in Switzerland

    International Nuclear Information System (INIS)

    Tiberini, A.; Brogli, R.; Jermann, M.; Alder, H.P.; Stratton, R.W.; Troyon, F.

    1988-01-01

    Despite the present gloom surrounding the nuclear option for electricity and heat generation, there are still people in Switzerland in industry, research, banking and even politics willing and capable to think in terms of long-range projections. The basis for these projections is the belief that a well-functioning and prosperous society always needs large and reliable sources of acceptably priced energy, which must be generated with a high respect for the necessity of a clean environment. Being aware of the current low acceptance level of the nuclear option, efforts to keep this option open are directed to achieving the following goals: to maintain and improve the country's capabilities to safely operate the four existing nuclear power plants of Beznau (twin units), Muehleberg, Goesgen and Leibstadt; to keep the capability of extending the applications of nuclear energy technology. In practice, this could be in the fields of district heating, fusion, and advanced power reactors

  10. JENDL. Nuclear databases for science and technology

    International Nuclear Information System (INIS)

    Shibata, Keiichi

    2013-01-01

    It is exactly 50 years since the Japanese Nuclear Data Committee was founded both in the Atomic Energy Society of Japan and in the former Japan Atomic Energy Research Institute. The committee promoted the development of Japan's own evaluated nuclear data libraries. As a result, we managed to produce a series of Japanese Evaluated Nuclear Data Libraries (JENDLs) to be used in various fields for science and technology. The libraries are categorized into general-purpose and special-purpose ones. The general-purpose libraries have been updated periodically by considering the latest knowledge on experimental and theoretical nuclear physics that was available at the time of the updates. On the other hand, the special-purpose libraries have been issued in order to meet the needs for particular application fields. This paper reviews the research and development for those libraries. (author)

  11. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    nuclear power plant, other waste generators, or regulatory bodies. What is absent from the available literature is a publication written for managers, plant designers, and other decision makers which will assist them to synthesize the growing list of available technologies in a way which best meets their local needs. Thus, a need existed to develop a document which provides an overview of the innovative technologies currently employed at or in support of NPP, including the applicable waste streams, benefits and impacts of each technology, current applications within the nuclear community (who is using the technology), and any non-technical innovative approaches. This publication provides that information for key decision makers. The report was prepared by series of consultants and technical meetings during 2004-2006. A list of contributors to review of the material collected and to drafting and revision of the report is provided at the end of this report

  12. Nuclear science and technology branch report 1977

    International Nuclear Information System (INIS)

    1977-12-01

    A summary is given of research activities. These include: nuclear techniques of analysis, isotope techniques in hydrology, industrial applications of radioisotopes, biological and chemical applications of radiation, radiation detection and measurement, environmental studies, biophysics and radiation biology. (J.R.)

  13. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  14. New Technologies for Seawater Desalination Using Nuclear Energy

    International Nuclear Information System (INIS)

    2015-01-01

    , and zero brine discharge systems. Additional objectives of the CRP were to analyse the economics of various desalination projects. Such analysis was expected to generate feedbacks, new ideas and suggestions to improve the IAEA DEEP software. The outcome of the CRP was expected to enhance collaboration among researchers representing the nine Member States on various subjects related to seawater desalination using nuclear energy, including information exchange on feasibility studies and aspects of new technologies. The CRP was also to include the quest and analysis of potential new technologies that are expected to enhance the application of nuclear desalination, such as the re-use of waste heat from nuclear power plants and an update of the IAEA DEEP with new models to enhance its use, for example the addition of the model for bankable feasibility studies of desalination projects. The aim of this publication is to summarize the outputs from the Member States which participated in this CRP. The publication follows the same objectives and scope as those established for the CRP. It also presents the Member States’ results and highlights major advances, difficulties and recommendations in the area of seawater desalination using nuclear energy which are of importance to the nuclear communities at large and to scientists and engineers focusing on potential new technologies, technical considerations and economics of the overall nuclear power plant coupled to seawater desalination plants

  15. Development of nuclear technology transfer - Korea as a recipient

    International Nuclear Information System (INIS)

    Sung, N.C.

    1988-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigenous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turn-key approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented

  16. Semi-annual report of Nuclear Technology and Development Center (CDTN) - July to December 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The main activities developed by the several divisions of Nuclear Technology Development Center (CDTN) are described, including areas of reactor tecnologies, fuel cycle, materials and component, nuclear safety and tecnical substructure. (C.G.C.) [pt

  17. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — Key steps to ensure identification of relevant effluent treatment technologies for Nuclear Thermal Propulsion (NTP) testing include the following. 1. Review of...

  18. NASA's progress in nuclear electric propulsion technology

    Science.gov (United States)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  19. Radiation and life: Proceedings of the 8. Nuclear Science and Technology Conference (NST8)

    International Nuclear Information System (INIS)

    2001-06-01

    The 8th conference on nuclear science and technology was held on 21-22 June 2001 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestration tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  20. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Workshop: Preserving competence in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Steinwarz, Wolfgang

    2017-10-15

    On the 19{sup th} workshop ''Preserving Competence in Nuclear Technology'' 17 young scientists presented the results from their thesis work for a diploma, mastership or a PhD covering a broad spectrum of technical areas. This demonstrated again the strong engagement of the younger generation for the nuclear technology and the significant support by the involved German institutions. The jury awarded Thomas Schaefer (Helmholtz-Zentrum Dresden- Rossendorf) with the Siempelkamp Competence Price 2017.

  1. Proceedings of the second nuclear science and technology conference no. 2

    International Nuclear Information System (INIS)

    1988-01-01

    This conference includes papers on a broad range of applications for nuclear technologies. Some of the topics covered are the electron beam and its applications, nuclear applications in industry, nuclear chemistry, radiobiology for the environment, and significant developments in nuclear medicine

  2. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1975-01-01

    Advances in Nuclear Science and Technology, Volume 8 discusses the development of nuclear power in several countries throughout the world. This book discusses the world's largest program of land-based electricity production in the United States.Organized into six chapters, this volume begins with an overview of the phenomenon of quasi-exponential behavior by examining two mathematical models of the neutron field. This text then discusses the finite element method, which is a method for obtaining approximate solutions to integral or differential equations. Other chapters consider the status of

  3. Planning a revolution in nuclear power technology

    International Nuclear Information System (INIS)

    Egan, J.R.

    1987-01-01

    Approaching the marketing and deployment of small, inherently safe reactors from the standpoint of the legal and financial community, the author suggests various ideal planning criteria that should be adhered to by designers and suppliers in order for the new plants to achieve political and financial acceptability. Although new nuclear technology based on those criteria promise to rekindle the prospects for nuclear fission, neither governments nor suppliers are likely to undertake the requisite investments. Rather, the author proposes a private development initiative between the political community, private investors, and would-be suppliers. (author)

  4. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.10--nuclear technology economy and management modernization sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 18 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the tenth one, the content is about nuclear technology economy and management modernization sub-volume

  5. Transfer of industry-oriented nuclear technology at NUCOR

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1983-10-01

    The transfer of industry-oriented nuclear technology at the Nuclear Development Corporation of South Africa (Pty) Ltd (NUCOR) is centred in a few divisions only, as most of the NUCOR's program is internally oriented. The industry-oriented activities include radiation technology, production of radioisotopes and application of nuclear techniques in solving problems of industry. The study is concerned mainly with the last of these activities. The general problem of transferring innovative technology is reviewed and a systems approach is used to analyse the transfer process at NUCOR, in terms of the organisation itself and its environment. Organisational strengths and weaknesses are identified and used as a basis to determine opportunities and threats. Possible objectives are formulated and a strategy to meet them is suggested. 'Demand-pull' as opposed to 'technology-push' is advanced as the main triggering mechanism in the transfer of industry-oriented nuclear technology. The importance of marketing this technology, as well as its commercialization, are discussed

  6. Managing nuclear knowledge: IAEA activities and international coordination. Asian Network for Education in Nuclear Technology (ANENT)

    International Nuclear Information System (INIS)

    2007-07-01

    This CD-ROM is attached to the booklet 'Managing nuclear knowledge: IAEA activities and international coordination. Asian Network for Education in Nuclear Technology (ANENT)'. It contains the background material with regard to ANENT in full text, including policy level papers, reports, presentation material made by Member States, and meeting summaries during the period 2002-2005. Further information on the current ANENT activities and related IAEA activities is available at 'http://anent-iaea.org' and 'http://iaea.org/inisnkm'

  7. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    Science.gov (United States)

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  8. Technology assessment Jordan Nuclear Power Plant Project

    International Nuclear Information System (INIS)

    2010-01-01

    Preliminary regional analysis was carried out for identification of potential sites for NPP, followed by screening of these sites and selecting candidate sites. Aqaba sites are proposed, where it can use the sea water for cooling: i.Site 1; at the sea where it can use the sea water for direct cooling. ii.Site 2; 10 km to the east of Gulf of Aqaba shoreline at the Saudi Arabia borders. iii.Site 3, 4 km to the east of Gulf of Aqaba shoreline. Only the granitic basement in the east of the 6 km²site should be considered as a potential site for a NPP. Preliminary probabilistic seismic hazard assessment gives: Operating-Basis Earthquake-OBE (475 years return period) found to be in the range of 0.163-0.182 g; Safe Shutdown Earthquake-SSE (10,000 years return period) found to be in the range of 0.333-0.502g. The process include also setting up of nuclear company and other organizational matters. Regulations in development are: Site approval; Construction permitting; Overall licensing; Safety (design, construction, training, operations, QA); Emergency planning; Decommissioning; Spent fuel and RW management. JAEC's technology assessment strategy and evaluation methodology are presented

  9. Nuclear Systems (NS): Technology Demonstration Unit (TDU) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA’s Space Technology Mission Directorate. To this end,...

  10. Radioactive waste management and advanced nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    2007-01-01

    In 2007 ENEA's Department of Nuclear Fusion and Fission, and Related Technologies acted according to national policy and the role assigned to ENEA FPN by Law 257/2003 regarding radioactive waste management and advanced nuclear fuel cycle technologies

  11. Consideration on the interaction between society and nuclear technology

    International Nuclear Information System (INIS)

    Shinoda, Yoshihiko

    2007-01-01

    A social conflict over nuclear technology arises from the different interactions between society and nuclear technology. The purpose of this review is to grasp the essential points of this social conflict from a social viewpoint. These essential points can be discerned by interpreting results of polls about nuclear technology and the future of society in general. As a result, attitudes towards nuclear technology can be explained in terms of differences of general views on society such as social order or social progress. The attitudes of people toward nuclear technology were divided into strong agreement, weak agreement, weak objection and strong objection in order to obtain useful information for clarification of social conflict on this issue. Results of polls of people who have weak agreement for nuclear technology reveal their ambivalence about nuclear technology. This raises concern that further implementation of nuclear technology might cause these people to shift their views to objection. (author)

  12. Image processing technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Beom; Kim, Woong Ki; Park, Soon Young

    1993-05-01

    Digital image processing technique is being actively studied since microprocessors and semiconductor memory devices have been developed in 1960's. Now image processing board for personal computer as well as image processing system for workstation is developed and widely applied to medical science, military, remote inspection, and nuclear industry. Image processing technology which provides computer system with vision ability not only recognizes nonobvious information but processes large information and therefore this technique is applied to various fields like remote measurement, object recognition and decision in adverse environment, and analysis of X-ray penetration image in nuclear facilities. In this report, various applications of image processing to nuclear facilities are examined, and image processing techniques are also analysed with the view of proposing the ideas for future applications. (Author)

  13. Y-Notes; Introductory Sessions on Nuclear Technology

    International Nuclear Information System (INIS)

    2001-01-01

    This chapter is divided into next parts: What is 'Y-Notes ; Young generation opening session; Nuclear education and transfer of know-how; Nuclear technology; Other applications of nuclear technology; Nuclear programs and technical cooperation; Political aspects; Environment and safety; Communication and public perception; Economics; Fuel cycle challenges; Video

  14. Various pressure measurement technologies in nuclear engineering

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori (Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors); Hosoma, Takashi; Kawa, Tsunemichi

    1993-02-01

    Pressure measurement is one of major measurements in various plants as well as temperature and flow rate ones. Recently, a new pressure and differential pressure transducers, which can be applied to high temperature and high pressure conditions and have very high accuracy, were needed and have been developed to enhance safety of nuclear plants and reliability of their components. In the present paper, their new pressure measurement technologies, which have been established through using them in fundamental studies, proof testing and plants, are discussed from view points of their application to other nuclear fields. Furthermore, the measuring principle of the new sensors applied for their measurement technologies and the problems of their utilization are presented. (author).

  15. Various pressure measurement technologies in nuclear engineering

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Hosoma, Takashi; Kawa, Tsunemichi.

    1993-01-01

    Pressure measurement is one of major measurements in various plants as well as temperature and flow rate ones. Recently, a new pressure and differential pressure transducers, which can be applied to high temperature and high pressure conditions and have very high accuracy, were needed and have been developed to enhance safety of nuclear plants and reliability of their components. In the present paper, their new pressure measurement technologies, which have been established through using them in fundamental studies, proof testing and plants, are discussed from view points of their application to other nuclear fields. Furthermore, the measuring principle of the new sensors applied for their measurement technologies and the problems of their utilization are presented. (author)

  16. Technology Road-map - Nuclear Energy. 2015 edition

    International Nuclear Information System (INIS)

    Houssin, Didier; Dujardin, Thierry; Cameron, Ron; Tam, Cecilia; Paillere, Henri; Baroni, Marco; Bromhead, Amos; Baritaud, Manual; Cometto, Marco; Gaghen, Rebecca; Herzog, Antoine; Remme, Uwe; Urso, Maria-Elena; Vance, Robert

    2015-01-01

    Since the release in 2010 of Technology Road-map: Nuclear Energy (IEA/NEA, 2010), a number of events have had a significant impact on the global energy sector and on the outlook for nuclear energy. They include the Fukushima Daiichi nuclear power plant (NPP) accident in March 2011, the global financial and economic crises that hit many industrialised countries during the period 2008-10 and failings in both electricity and CO 2 markets. Despite these additional challenges, nuclear energy still remains a proven low-carbon source of base-load electricity, and many countries have reaffirmed the importance of nuclear energy within their countries' energy strategies. To achieve the goal of limiting global temperature increases to just 2 deg. C by the end of the century, a halving of global energy-related emissions by 2050 will be needed. A wide range of low-carbon energy technologies will be needed to support this transition, including nuclear energy. This edition of the nuclear road-map prepared jointly by the IEA and NEA take into account recent challenges facing the development of this technology. The 2015 edition of the Nuclear Energy Technology Road-map aims to: Outline the current status of nuclear technology development and the need for additional R and D to address increased safety requirements and improved economics. Provide an updated vision of the role that nuclear energy could play in a low-carbon energy system, taking into account changes in nuclear policy in various countries, as well as the current economics of nuclear and other low-carbon electricity technologies. Identify barriers and actions needed to accelerate the development of nuclear technologies to meet the Road-map vision. Share lessons learnt and good practices in nuclear safety and regulation, front- and back-end fuel cycle practices, construction, decommissioning, financing, training, capacity building and communication. Key findings: Nuclear power is the largest source of low

  17. Medical isotopes and emerging nuclear medicine technologies

    International Nuclear Information System (INIS)

    Urbain, J-L.

    2010-01-01

    This presentation discusses medical isotopes and the emerging nuclear medicine technologies as well as the impact of Chalk River reactor shutdown on patient management and diseases. It outlines the chain of supply of isotopes across the globe and isotope shortage impact. It recommends the following mitigating strategies: modifications of scanning techniques, adjustment of patient scheduling, optimization of Tc-99m generator use, patient prioritization, alternate procedures and PET scanning.

  18. Nuclear Technologies Secure Food For Future

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: For nearly fifty years, applications of nuclear technology have been helping the world's farmers, contributing new varieties of crops, controlling pests, diagnosing livestock disease, improving soil and water management and increasing food safety. The significant role of nuclear technology in supporting agriculture will be the focus of this year's IAEA Scientific Forum in Vienna on 18-19 September. Food for the Future: Meeting the Challenges with Nuclear Applications is the theme of the Forum, which takes place during the annual IAEA General Conference. ''Demand for food is rising significantly as the world's population grows,'' IAEA Director General Yukiya Amano said. ''Fighting hunger is a key priority. It is essential not only that the world should produce more food. We must also protect crops and livestock and make sure that food is safe to eat. Nuclear applications can make a real difference in all of these areas.'' ''The goal of the Scientific Forum is to make Member States more aware of the very important work of the IAEA in nuclear applications related to food and to encourage more countries to make use of our services.'' Nuclear technology has many possible uses in food and agriculture. By irradiation, scientists can accelerate natural spontaneous mutation and improve crop varieties to suit particular conditions. Farmers are benefitting from rice that grows in salty conditions, barley that flourishes above 4 000 metres (13 000 feet) and hundreds of other crop varieties. The use of the sterile insect technique, in which males of a targeted species such as the tsetse fly or the Mediterranean fruit fly are sterilised by radiation and released into the wild, is expanding significantly. This effectively combats insect pests that damage crops and spread disease among humans and livestock, while limiting pesticide use. The world was last year declared free of the deadly cattle disease rinderpest after a campaign made possible by nuclear techniques. The

  19. 75 FR 71464 - Metlife Technology, Operations, and Information Technology Groups Including On-Site Leased...

    Science.gov (United States)

    2010-11-23

    ... Employment and Training Administration Metlife Technology, Operations, and Information Technology Groups Including On-Site Leased Workers From Adecco, Cognizant, IBM, Infosys, Kana, Patni, Siemens, Tapfin, Veritas... Workers From At&T Solutions, Chimes, Cognizant, Patni, Siemens, Xerox Clarks Summit, PA; Notice of Revised...

  20. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    International Nuclear Information System (INIS)

    Clark, J.S.; Mcdaniel, P.; Howe, S.; Helms, I.; Stanley, M.

    1993-04-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies

  1. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    International Nuclear Information System (INIS)

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ''The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  2. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only

  3. Extended analysis on impact of nuclear technology

    International Nuclear Information System (INIS)

    Ainul Hayati Daud; Hazmimi Kasim

    2010-01-01

    This chapter discusses a number of economic, social and knowledge impacts of the applications of nuclear technology in Malaysia as well as benchmarking with Japan and the Republic of Korea. Under economic impacts, index of gross value of products and services, index of gross value of exports, index of gross value of training expenditures, and index of total number of human resource trained are developed. In addition, the contribution of the application of nuclear technology to both Gross Domestic Products (GDP) and GDP per capita are also highlighted. The impact of the application of nuclear technology to Total Factor Productivity (TFP) is also covered in this chapter. Much of the discussions on economic impacts are based on findings in private companies. That is because many of their operations can be expressed in monetary terms by virtue of them operating in commercial environment. Public agencies, however, play crucial role in enabling the private companies attain the level of development reported in this study. Towards that end, public agencies invested in Research and development activities, human capital development, as well as in the setting-up, operation and maintenance of both technical and administrative infrastructures. The impact of such activities is discussed in the later part of this chapter. (author)

  4. Exploration Technology Development including Surface Acoustic Wave RFID chips

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is focused on maturing future surface exploration technologies and instrumentation and working towards flight instrumentation and systems to support...

  5. Nuclear technologies for local energy systems

    International Nuclear Information System (INIS)

    McDonnell, F.N.; Lynch, G.F.

    1990-03-01

    If nuclear energy is to realize its full potential as a safe and cost-effective alternative to fossil fuels, applications beyond those that are currently being serviced by large, central nuclear power stations must be identified and appropriate reactors developed. The Canadian program on reactor systems for local energy supply is at the forefront of these developments. This program emphasizes design simplicity, low power density and fuel rating, reliance on natural processes, passive systems, and reduced reliance on operator action. The first product, the SLOWPOKE Energy System, is a 10 MW heat source specifically designed to provide hot water to satisfy the needs of local heating systems for building complexes, institutions and municipal district heating systems. A demonstration heating reactor has been constructed at the Whiteshell Nuclear Research Establishment in Manitoba and has been undergoing an extensive test program since first operation in 1987 July. Based on the knowledge learned from the design, construction, licensing and operational testing of this facility, the design of the 10 MW commercial-size unit is well advanced, and Atomic Energy of Canada Limited is prepared to commit the construction of the first commercial unit. Although the technical demonstration of the concept is important, it is recognized that another crucial element is the public and regulatory acceptance of small nuclear systems in urban areas. The decision by a community to commit the construction of a SLOWPOKE Energy System brings to a sharp focus the current public apprehension about nuclear technologies

  6. Opening address at the 2007 annual meeting on nuclear technology

    International Nuclear Information System (INIS)

    Hohlefelder, W.

    2007-01-01

    International developments in nuclear power clearly show that the peaceful utilization of nuclear power is becoming more and more important worldwide. A total of 29 nuclear generating units are currently under construction in 10 countries. On top of that, power utilities are preparing for the construction of some forty nuclear power plants. The United Kingdom, the key country of this year's Annual Nuclear Technology Conference, is reassessing nuclear power. Building new nuclear power plants is once more considered indispensable, not only for climate protection. For Europe, the Europen Commission, in its strategy paper on 'One Energy Policy for Europe', finds that nuclear power is good for the climate, enhances security of supply, and is a competitive form of energy production. Accordingly, it is high time for Germany to develop a consistent and long-term energy concept incorporating a broad energy mix which includes nuclear power. This has to be done within the framework of the Energy Summit and beyond. Nuclear power, together with the other CO 2 -free energy resources, is an indispensable component in meeting also national short-, medium-, and long-term goals of climate protection, as German politicians keep reiterating. A milestone in the repository issue was reached in early April with the decision refuting the Federal Administrative Court action against the Konrad Mine repository. The license issued for the repository is legally valid and the road to final installation is now open. Now exploration of the Gorleben salt dome must be resumed with a specific end in mind. Also in the interest of freedom of research, the existing Red-Green ban on research into reactor development must be lifted. A country of science and technology cannot, must not, afford clinging to this kind of 'yesterday's principles'. (orig.)

  7. The nuclear technology education consortium: an innovative approach to nuclear education and training

    International Nuclear Information System (INIS)

    Roberts, Dzh.; Klark, Eh.

    2010-01-01

    The authors report on the Nuclear Technology Education Consortium (NTEC) that includes 12 UK universities and Higher Education Institutes. It was established in 2005 to provide nuclear education and training at the Masters, Diploma, Certificate and Continuing Professional Development (CPD) levels. Module and providers of the NTEC are described (all modules are available in industry-friendly short formats). Students are allowed to select from 22 different modules, taught by experts, covering all aspects of nuclear education and training. It is the acknowledgement by each partner that they cannot deliver the range of modules individually but by cooperating. The NTEC program structure is given [ru

  8. ANENT - a cooperative framework for enhancing education in nuclear technology

    International Nuclear Information System (INIS)

    Fatimah Mohd Amin

    2005-01-01

    The issues of emerging shortfall in nuclear expertise due to ageing workforce and declining enrolment in nuclear programmes were discussed. Nuclear options and the IAEA move on nuclear knowledge preservation also were discussed. ANENT established in February 2004 to address concerns on sustainability of nuclear technology in the Asian region

  9. Nuclear Technology Review 2013. Report by the Director General

    International Nuclear Information System (INIS)

    2013-01-01

    In response to requests by Member States, the Secretariat produces a comprehensive Nuclear Technology Review each year. Attached is this year's report, which highlights notable developments principally in 2012. The Nuclear Technology Review 2013 covers the following areas: power applications, atomic and nuclear data, accelerators and research reactors, and nuclear sciences and applications. Additional documentation associated with the Nuclear Technology Review 2013 is available on the Agency's website1 in English on nuclear hydrogen production technology and preliminary lessons learned from the Fukushima Daiichi accident for advanced nuclear power plant technology development. Information on the IAEA's activities related to nuclear science and technology can also be found in the IAEA's Annual Report 2012 (GC(57)/3), in particular the Technology section, and the Technical Cooperation Report for 2012 (GC(57)/INF/4). The document has been modified to take account, to the extent possible, of specific comments by the Board of Governors and other comments received from Member States. (author)

  10. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Choi, Wang Kyu; Won, Hui Jun; Kim, Gye Nam

    2004-02-01

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  11. Safety management in nuclear technology. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    At the symposium of TueV Sued AG (Munich, Federal Republic of Germany) held in Munich on 28 and 29 October 2008, the following lectures were held: (1) Fundamental requirements of the management system in nuclear technology - Experiences from the international developments at IAEA and WENRA (M. Herttrich); (2) Information from a comparison of requirements of safety management systems (B. Kallenbach-Herbert); (3) Requirements of a modern management system in German nuclear power plants from the view of nuclear safety (D. Majer); (4) Requirements on safety management in module 8 of the regulations project (M. Maqua); (5) Requirements on the management system in nuclear power plants according to GRS-229 and developments at the KTA 1402 ''Integrated management system for safe operation of nuclear power plants (in progress)'' (C. Verstegen); (6) Experiences from the development and implementation of safety management systems in connection with the works management of a nuclear power plant (K. Ramler); (7) Design of a safety management system of a nuclear power plant in consideration of existing management systems (U. Naumann); (8) Experiences in the utilization and evaluation of a safety management system (J. Ritter); (9) Aspects of leadership of safety management systems (S. Seitz); (10) Management of safety or safety management system? Prevailing or administration? (A. Frischknecht); (11) Change management - strategies for successful transfer of new projects: How can I motivate co-workers for a further development of the safety management system? (U. Schnabel); (12) Requirements concerning indicators in integrated management systems and safety management systems (J. Stiller); (13) Integration of proactive and reactive indicators in the safety management system (B. Fahlbruch); (14) What do indicators show? About the use of indicators by regulatory authorities (A. Kern); (15) Safety management and radiation protection in nuclear technology (K. Grantner); (16) Any more

  12. Control technology for nuclear power system of next generation

    International Nuclear Information System (INIS)

    1995-01-01

    This report is the summary of the results obtained by the investigation activities for two years carried out by the expert committee on investigation of control technology for nuclear power system of next generation. The course of investigation is outlined, and as the results, as advanced control technologies, adaptive control. H sub (infinite) control, fuzzy control and the application of autonomous distributed system and genetic algorithm to control; as operation support technology, the operation and monitoring system for nuclear power plants and safety support system; as interface technology which is the basic technology of them, virtual reality, multimedia and so on; further, various problems due to human factors, computer technology, artificial intelligence and others were taken up, and the grasp of the present status and the future subjects was carried out, including the information in international conferences. The items of the investigation are roughly divided into measurement and control technologies, interface technology and operation support, human factors, computer technology and artificial intelligence, and the trend in foreign countries, and the results of investigation for respective items are reported. (K.I.)

  13. International conference on innovative technologies for nuclear fuel cycles and nuclear power. Unedited proceedings

    International Nuclear Information System (INIS)

    2004-01-01

    Nuclear power is a significant contributor to the global supply of electricity, and continues to be the major source that can provide electricity on a large scale with a comparatively minimal impact on the environment. But it is evident that, despite decades of experience with this technology, nuclear power today remains mainly in a holding position, with its future somewhat uncertain primarily due to concerns related to waste, safety and security. One of the most important factors that would influence future nuclear growth is the innovation in reactor and fuel cycle technologies to successfully maximize the benefits of nuclear power while minimizing the associated concerns. The main objectives of the Conference were to facilitate exchange of information between senior experts and policy makers from Member States and international organizations on important aspects of the development of innovative technologies for future generations of nuclear power reactors and fuel cycles; to create an understanding of the social, environmental and economic conditions that would facilitate innovative and sustainable nuclear technologies; and to identify opportunities for collaborative work between Member States and international organizations and programmes. All relevant aspects of innovative technologies for nuclear fuel cycles and nuclear power were discussed in an open, frank and objective manner. These proceedings contain a summary of the results of the conference, invited and contributed papers, and summaries of panel discussions. No large increase in the use of nuclear energy is foreseen in the near and medium term, but is likely in the long term if developing country per-capita electricity consumption reaches that of the developed world. The nuclear sector including regulators view an increased use of nuclear energy as the solution for global sustainable energy needs considering that significant reductions in CO 2 emissions would be required. Although the current nuclear

  14. Utilization of nuclear technology in medicine: MINT and USM cooperation

    International Nuclear Information System (INIS)

    Ainul Hayati Daud

    1997-01-01

    Cooperation in the medicial application of nuclear technology between MINT and USM was first started in early 1990 under the technical assistance and cooperation program of International Atomic Energy Agency (IAEA). The cooperation was further strengthened through the Bilateral Technical assistance program of Malaysia-Australia. Under the cooperation, projects related to nuclear technology were implemented and assistance received was in the form of expert service, equipment and training. Several pharmaceutical kits were developed and used for the radiotherapy and radiodiagnotic. The cooperation has led to the establishment of nuclear medicine service center at hospital USM and tissue banks, one at Hospital USM and other at MINT. On the 29 April 1997, a MoU was signed between MINT and USM with the objective to widen the scope of the cooperation, to include human resource developement and commercialization of R and D

  15. Annual Technology Baseline (Including Supporting Data); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate; Cory, Karlynn; Hand, Maureen; Parkhill, Linda; Speer, Bethany; Stehly, Tyler; Feldman, David; Lantz, Eric; Augusting, Chad; Turchi, Craig; O' Connor, Patrick

    2015-07-08

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  16. Expanding Health Technology Assessments to Include Effects on the Environment

    DEFF Research Database (Denmark)

    Marsh, Kevin; Ganz, Michael Lee; Hsu, John

    2016-01-01

    for incorporating environmental impacts into the health technology assessment (HTA) process and discusses the associated challenges. Two arguments favor incorporating environmental impacts into HTA: 1) environmental changes could directly affect people's health and 2) policy decision makers have broad mandates...

  17. Scenario-based roadmapping assessing nuclear technology development paths for future nuclear energy system scenarios

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Roelofs, Ferry; Yacout, Abdellatif

    2009-01-01

    Nuclear energy may play a significant role in a future sustainable energy mix. The transition from today's nuclear energy system towards a future more sustainable nuclear energy system will be dictated by technology availability, energy market competitiveness and capability to achieve sustainability through the nuclear fuel cycle. Various scenarios have been investigated worldwide each with a diverse set of assumptions on the timing and characteristics of new nuclear energy systems. Scenario-based roadmapping combines the dynamic scenario-analysis of nuclear energy systems' futures with the technology roadmap information published and analysed in various technology assessment reports though integrated within the nuclear technology roadmap Nuclear-Roadmap.net. The advantages of this combination is to allow mutual improvement of scenario analysis and nuclear technology roadmapping providing a higher degree of confidence in the assessment of nuclear energy system futures. This paper provides a description of scenario-based roadmapping based on DANESS and Nuclear-Roadmap.net. (author)

  18. Korean efforts for education and training network in nuclear technology

    International Nuclear Information System (INIS)

    Han, Kyong-Won; Lee, Eui-Jin

    2007-01-01

    Nuclear energy has been a backbone for Korea's remarkable economic growth, and will continue its essential role with 18 nuclear power plants in operation, 2 more units under construction, 6 more units in planning. Korea is operating its own designed nuclear power plants, such as KSNP, 1400, as well as self-design and operation of 30 MW Hanaro research reactor. Korea makes strong efforts to develop future nuclear technology. They are the System-Integrated Modular Advanced Reactor, SMART, Korea Advanced Liquid Metal reactor, KALIMER, Hydrogen Production reactor, and Proliferation-resistant Nuclear Fuel Cycle. In parallel, Korea is establishing an Advanced Radiation Technology R and D Center and a High Power Proton Accelerator Center. International, next generation nuclear power technologies are being developed through projects such as the IAEA Innovative Nuclear Reactors and Fuel Cycle, INPRO, Generation IV International Forum, GIF, and International thermonuclear Experimental reactor, ITER. In the new millennium, Korea expects that radiation technology combined with bio, nano, and space technology will sustain our civilization. About 21,000 qualified nuclear human resources are engaged in power and non-power fields such as design and manufacturing of equipment, plant operation and maintenance, safety, RI production, R and D, etc. However, it is recognized that the first generation of nuclear work force is getting older and retired, less of our youth are studying nuclear science and engineering. Korean Government has established a promotion program on nuclear human resources development, which is needed until 2010. For the sustainable development of nuclear science and technology, it calls for more qualified human resources. We ought to encourage our youth to become more interested in nuclear studies and careers. Korea is making strong efforts to support nuclear education and training for young generations. It is believed that internationally accepted advanced

  19. Nuclear imaging technology and global requirements

    International Nuclear Information System (INIS)

    Lele, R.D.

    1991-01-01

    After a brief review of the present state of availability of nuclear medicine services in the countries of world, a mention has been made of WHO programme on nuclear medicine. Nuclear medicine services in the developing countries are dependent on the availability of appropriate instrumentation and radiopharmaceuticals at affordable costs and existence of basic infrastructure required for giving such services. Basic infrastructure requirements are stable power supplies, air-conditioning systems, preventive maintenance and repair facilities. These are discussed. It is pointed out that the use of rectilinear scanners with 113m In instead of costly gamma cameras is still relevant in the third world countries. Need to develop a too low-cost gamma camera is emphasized. Electronics Corporation of India Ltd has plans to manufacture such cameras. Design of this camera is described. Foreign collaboration or technology transfer through concerned governement department needs to be explored so that the benefits of nuclear medicine can be brought to the third world countries by 2000 AD. (M.G.B.). 2 tabs

  20. Telerobotic technology for nuclear and space applications

    International Nuclear Information System (INIS)

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs

  1. Nuclear science and technology branch report 1975

    International Nuclear Information System (INIS)

    1975-10-01

    Research being conducted include: assessment of world energy sources and their utilization, basic information on fission reactors, reactor performance and safety, nuclear marine propulsion, controlled thermonuclear fusion and alternative energy sources. Staff publications and research interests are outlined. (R.L.)

  2. SNETP – Sustainable Nuclear Energy Technology Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aït Abderrahim, Hamid

    2016-07-01

    SNETP is one of the EU’s official European Technology & Innovation Platforms established to implement the SET-Plan. SNETP and its pillars gather more than 120 European stakeholders involved in the research and innovation, deployment and operation of nuclear fission reactors and fuel cycle facilities: industry, research centres, universities, technical safety organisations, small and medium enterprises, service providers, non-governmental organisations. Despite industrial competition, SNETP has achieved efficient collaboration between its stakeholders. It has developed a common vision on the future contribution of nuclear fission energy in Europe, with the publication of a Vision Report, a Strategic Research & Innovation Agenda (two editions) and a Deployment Strategy report. It issued also a dedicated report on the R&D topics related to safety issues triggered by the Fukushima accident.

  3. A roadmap for nuclear energy technology

    Science.gov (United States)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge

  4. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2009-04-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production cost. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items confirmed to the NHDD concepts. We developed and applied R and D quality management methodology to meet 'Development of Key Technologies for Nuclear Hydrogen' project. And we also distributed R and D QAM and R and D QAP to each teams and are in operation. The preconceptual flow diagrams of SI, HTSE, and HyS processes are introduced and their material and energy balances have been proposed. The hydrogen production thermal efficiencies of not only the SI process as a reference process but also the HTSE and HyS processes were also estimated. Technical feasibility assessments of SI, HTSE, and HyS processes have been carried out by using the pair-wise comparison and analytic hierarchy process, and it is revealed that the experts are considering the SI process as the most feasible process. The secondary helium pathway across the SI process is introduced. Dynamic simulation codes for the H2S04vaporizer, sulfuric acid and sulfur trioxide decomposers, and HI decomposer on the secondary helium pathway and for the primary and secondary sulfuric acid distillation columns, HIx solution distillation column, and preheater for HI vapor have been developed and integrated

  5. 2006 annual nuclear technology conference - opening address

    International Nuclear Information System (INIS)

    Hohlefelder, W.

    2006-01-01

    The Energy Summit organized by Federal Chancellor Merkel set the right course in energy research. The funds to be made available by the federal government for energy research and innovation are to be raised by more than 30% by 2009. However, the Red-Green ban on research into reactor development still needs to be lifted. For Germany, 2005 was a year of change. As far as energy policy is concerned, it was a year more of disenchantment, as the diametrally opposed positions held by CDU/CSU and SPD in matters nuclear mean that, for the time being, the current regulations about residual plant lifetimes will continue to be valid. The Energy Summit as the first round in a process at the end of which, in 2007, there is to be a complete energy policy concept for the next few decades, does raise hopes. Clear emphasis must be given to worldwide developments, however. The assumption that others would follow Germany's 'good' example in opting out of the use of nuclear power has turned out to be naive. Ultimate clarity about which technology will turn out to be a bridge or an interim technology will be obtained in retrospect only. We should buy time now by extending nuclear power plant life so as to be able later to decide more freely about our options. The repository question, which is still considered a point of dispute, is less a technical than a political problem. The sequence of steps to be taken for solution is outlined in great detail and with high precision in the nuclear agreement. Following the ruling by the Lueneburg higher administrative court, Konrad can be installed and commissioned by 2013. After handling the so-called points of doubt, exploration of Gorleben can be completed. Nuclear power is an important building block in the energy mix in peaceful coexistence of various energy resources in accordance with their respective possible uses. For this reason, the renewables and nuclear power should no longer by played off one against the other. Both of them have a

  6. Technologies for detection of nuclear materials

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1996-01-01

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling

  7. Technical requirement of experiments and facilities for fusion nuclear technology

    International Nuclear Information System (INIS)

    Abdou, M.; Tillak, M.; Gierszwski, P.; Grover, J.; Puigh, R.; Sze, D.K.; Berwald, D.

    1986-06-01

    The technical issues and requirements of experiments and facilities for fusion nuclear technology (FNT) have been investigated. The nuclear subsystems addressed are: a) blanket, b) radiation shield, c) tritium processing system, and d) plasma interactive components. Emphasis has been placed on the important and complex development problems of the blanket. A technical planning process for FNT has been developed and applied, including four major elements: 1) characterization of issues, 2) quantification of testing requirements, 3) evaluation of facilities, and 4) development of a test plan to identify the role, timing, characteristics and costs of major experiments and facilities

  8. Transferring nuclear power technology to foster Chinese self-reliance

    International Nuclear Information System (INIS)

    Levi, J-D.

    1998-01-01

    Being convinced that nuclear energy will play an important role in meeting its huge future energy demands, China considers that the development of a very strong national nuclear industry capable of covering all aspects of a major national power program is of paramount importance.In this context, China has invited its foreign partners to propose contributions to the studies for this development, in view of establishing a suitable cooperation program with the entire Chinese nuclear power industry, including design institutes, equipment manufacturers, construction companies and plant operators.One of the main objectives defined by the Chinese authorities for the further development of their nuclear industry with some international cooperation is the achievement of a very high level of self-reliance by Chinese industry in all of the following areas: project management, design and engineering, construction, equipment design and manufacturing,operation and maintenance. The major key to reaching this target of overall and long term self reliance lies in the implementation of thorough design know how transfer towards all partners of the Chinese nuclear industry, who shall acquire the necessary capabilities so as to completely master nuclear engineering. While this policy might entail fairly high front end investments by the technology receivers, in terms of industrial infrastructure nad engineering capabilities it is expected to pay off over the long term with the development of a substantial nuclear power plant construction program.(DM)

  9. General framework and key technologies of national nuclear emergency system

    International Nuclear Information System (INIS)

    Yuan Feng; Li Xudong; Zhu Guangying; Song Yafeng; Zeng Suotian; Shen Lifeng

    2014-01-01

    Nuclear emergency is the important safeguard for the sustainable development of nuclear energy, and is the significant part of national public crisis management. The paper gives the definition of nuclear emergency system explicitly based on the analysis of the characteristics of the nuclear emergency, and through the research of the structure and general framework, the general framework of the national nuclear emergency management system (NNEMS) is obtained, which is constructed in four parts, including one integrative platform, six layers, eight applications and two systems, then the paper indicate that the architecture of national emergency system that should be laid out by three-tiers, i.e. national, provincial and organizations with nuclear facilities, and also describe the functions of the NNEMS on the nuclear emergency's workflow. Finally, the paper discuss the key technology that NNIEMS needed, such as WebGIS, auxiliary decision-making, digitalized preplan and the conformity and usage of resources, and analyze the technical principle in details. (authors)

  10. Dry refabrication technology development of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun Il; Lee, J. W.; Song, K. C.; and others

    2012-04-15

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed.

  11. Nuclear waste transmutation and related innovative technologies

    International Nuclear Information System (INIS)

    2002-01-01

    The main topics of the summer school meeting were 1. Motivation and programs for waste transmutation: The scientific perspective roadmaps; 2. The physics and scenarios of transmutation: The physics of transmutation and adapted reactor types. Impact on the fuel cycle and possible scenarios; 3. Accelerator driven systems and components: High intensity accelerators. Spallation targets and experiments. The sub critical core safety and simulation physics experiments; 4. Technologies and materials: Specific issues related to transmutation: Dedicated fuels for transmutation. Fuel processing - the role of pyrochemistry. Materials of irradiation. Lead/lead alloys. 5. Nuclear data: The N-TOF facility. Intermediate energy data and experiments. (orig./GL)

  12. Proceedings of the Nuclear Criticality Technology Safety

    International Nuclear Information System (INIS)

    Sanchez, Renee G.

    1998-01-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons

  13. Expanding Health Technology Assessments to Include Effects on the Environment.

    Science.gov (United States)

    Marsh, Kevin; Ganz, Michael L; Hsu, John; Strandberg-Larsen, Martin; Gonzalez, Raquel Palomino; Lund, Niels

    2016-01-01

    There is growing awareness of the impact of human activity on the climate and the need to stem this impact. Public health care decision makers from Sweden and the United Kingdom have started examining environmental impacts when assessing new technologies. This article considers the case for incorporating environmental impacts into the health technology assessment (HTA) process and discusses the associated challenges. Two arguments favor incorporating environmental impacts into HTA: 1) environmental changes could directly affect people's health and 2) policy decision makers have broad mandates and objectives extending beyond health care. Two types of challenges hinder this process. First, the nascent evidence base is insufficient to support the accurate comparison of technologies' environmental impacts. Second, cost-utility analysis, which is favored by many HTA agencies, could capture some of the value of environmental impacts, especially those generating health impacts, but might not be suitable for addressing broader concerns. Both cost-benefit and multicriteria decision analyses are potential methods for evaluating health and environmental outcomes, but are less familiar to health care decision makers. Health care is an important and sizable sector of the economy that could warrant closer policy attention to its impact on the environment. Considerable work is needed to track decision makers' demands, augment the environmental evidence base, and develop robust methods for capturing and incorporating environmental data as part of HTA. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  14. Advanced pyrochemical technologies for minimizing nuclear waste

    International Nuclear Information System (INIS)

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-01-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts

  15. Who works with nuclear fusion technology

    International Nuclear Information System (INIS)

    Boettiger, H.

    1977-01-01

    Humanity today, and especially the youth in industrial nations, undergoes a trend towards a 'post-industrial society'. This may be due to the resignation of those who think themselves unable to meet the increasing demands made on social production. The paper draws up a concept to give humanity a new interest in life. First, the paradox educational situation in the FRG today is outlined. Nuclear fusion technology and the industrial development necessary for its implementation are offered as a way out of the paradox situation of the present educational system. The demands to be made on an educational system for fusion technology are discussed. This strategy for world-wide economic growth integrates the intelligence potential of the industrial nations and the potential labour force of the Third World. (GG) [de

  16. Improved best estimate plus uncertainty methodology, including advanced validation concepts, to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Unal, C.; Williams, B.; Hemez, F.; Atamturktur, S.H.; McClure, P.

    2011-01-01

    Research highlights: → The best estimate plus uncertainty methodology (BEPU) is one option in the licensing of nuclear reactors. → The challenges for extending the BEPU method for fuel qualification for an advanced reactor fuel are primarily driven by schedule, the need for data, and the sufficiency of the data. → In this paper we develop an extended BEPU methodology that can potentially be used to address these new challenges in the design and licensing of advanced nuclear reactors. → The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. → The methodology includes a formalism to quantify an adequate level of validation (predictive maturity) with respect to existing data, so that required new testing can be minimized, saving cost by demonstrating that further testing will not enhance the quality of the predictive tools. - Abstract: Many evolving nuclear energy technologies use advanced predictive multiscale, multiphysics modeling and simulation (M and S) capabilities to reduce the cost and schedule of design and licensing. Historically, the role of experiments has been as a primary tool for the design and understanding of nuclear system behavior, while M and S played the subordinate role of supporting experiments. In the new era of multiscale, multiphysics computational-based technology development, this role has been reversed. The experiments will still be needed, but they will be performed at different scales to calibrate and validate the models leading to predictive simulations for design and licensing. Minimizing the required number of validation experiments produces cost and time savings. The use of multiscale, multiphysics models introduces challenges in validating these predictive tools - traditional methodologies will have to be modified to address these challenges. This paper gives the basic aspects of a methodology that can potentially be used to address these new challenges in

  17. Training at the Australian School of Nuclear Technology

    International Nuclear Information System (INIS)

    Culley, D.; Fredsall, J.R.; Toner, B.

    1987-01-01

    The Australian School of Nuclear Technology was founded in 1964 as a joint enterprise of the Australian Atomic Energy Commission and the University of New South Wales to support nuclear developments primarily in Australia. However, ASNT has developed into an important centre for nuclear science and technology training within the South East Asian Region with participants also attending from countries outside this Region. (author)

  18. Training at the Australian School of Nuclear Technology

    International Nuclear Information System (INIS)

    Culley, D.; Fredsall, J.R.; Toner, B.

    1987-04-01

    The Australian School of Nuclear Technology (ASNT) was founded in 1964 as a joint enterprise of the Australian Atomic Energy Commission and the University of New South Wales to support nuclear developments primarily in Australia. However, ASNT has developed into an important centre for nuclear science and technology training within the South East Asian Region with participants also attending from countries outside this Region

  19. Proceeding of the Eighth Scientific Presentation on Nuclear Safety Technology

    International Nuclear Information System (INIS)

    Geni Rina Sunaryo; Sony Tjahjani, D.T.; Anhar Riza Antariksawan; Sudarno; Djoko Hari Nugroho; Roziq Himawan; Ari Satmoko; Histori; Sumijanto

    2003-02-01

    The Proceeding of Scientific Meeting and Presentation is routine activity that held in National Nuclear Energy Agency (BATAN) by Centre for Development of Nuclear Safety Technology for monitoring the research activity which was achieved in BATAN. The aims of the proceeding to able to information and reference for nuclear safety technology. There are 30 papers which separated index. (PPIN)

  20. Educating nuclear engineers by nuclear science and technology master at UPM

    International Nuclear Information System (INIS)

    Ahnert, C.; Minguez, E.; Perlado, M.

    2014-01-01

    One of the main objectives of the Master on Nuclear Science and Technology implemented in the Universidad Politecnica de Madrid, is the training for the development of methodologies of simulation and advanced analysis necessary in research and in professional work in the nuclear field, for Fission Reactors and Nuclear Fusion, including fuel cycle and safety aspects. The students are able to use the current computational methodologies/codes for nuclear engineering that covers a difficult gap between nuclear reactor theory and simulations. Also they are able to use some facilities, as the Interactive Graphical Simulator of PWR power plant that is an optimal tool to transfer the knowledge of the physical phenomena that are involved in the nuclear power plants, from the nuclear reactor to the whole set of systems and equipment on a nuclear power plant. The new Internet reactor laboratory to be implemented will help to understand the Reactor Physics concepts. The experimental set-ups for neutron research and for coating fabrication offer new opportunities for training and research activities. All of them are relevant tools for motivation of the students, and to complete the theoretical lessons. They also follow the tendency recommended for the European Space for higher Education (Bologna) adapted studies. (orig.)

  1. INTERNATIONAL TECHNOLOGY TRANSFER AND LOCALIZATION: SUCCESS STORIES IN NUCLEAR BRANCH

    Directory of Open Access Journals (Sweden)

    Yulia V. Chernyakhovskaya

    2016-01-01

    Full Text Available countries are considering nuclear power industry development [2, p. 3; 3, p. 3; 4]. For newcomer-countries it is of great importance to stimulate the national industry through NPP projects implementation based on technology transfer and localization (TTL. The study and systematization of world experience is useful in purpose to elaborate the national industry development programs. Objectives. The aim of article is to determine success factors of TTL; tasks: 1 to study TTL international experience in the fi eld of nuclear power technologies; 2 on the ground of the world practice to analyze preconditions, contents, stages, arrangement modes, formats and results of TTL. Methods. The following methods are utilized in the study: analysis and synthesis including problem-chronological, cause and eff ect and logical analysis and historical-diachronic method (method of periodization. Results. The following conclusions presented below have been made on the basis of the three cases study related to nuclear industry development using TTL (France, South Korea and China. Conclusions. The TTL success factors includes: Government support that provides long-term governmental development plan of nuclear power and industry for nuclear power based on TTL, and an appropriate international cooperation (under favorable conditions of “NPP buyers market”; Complex approach to implementation of the national TTL program and NPP construction projects: signing of NPP construction contracts with vendors stipulating technology transfer; NPP designing and constructing should be performed jointly with training and transferring of technical documentation and software. Technology transfer cooperation should be implemented through the licenses agreements and setting up joint ventures; Public acceptance and support.

  2. A comparative assessment of the economics of plutonium disposition including comparison with other nuclear fuel cycles

    International Nuclear Information System (INIS)

    Williams, K.A.; Miller, J.W.; Reid, R.L.

    1997-01-01

    DOE has been evaluating three technologies for the disposition of approximately 50 metric tons of surplus plutonium from defense-related programs: reactors, immobilization, and deep boreholes. As part of the process supporting an early CY 1997 Record of Decision (ROD), a comprehensive assessment of technical viability, cost, and schedule has been conducted. Oak Ridge National Laboratory has managed and coordinated the life-cycle cost (LCC) assessment effort for this program. This paper discusses the economic analysis methodology and the results prior to ROD. Other objectives of the paper are to discuss major technical and economic issues that impact plutonium disposition cost and schedule. Also to compare the economics of a once-through weapons-derived MOX nuclear fuel cycle to other fuel cycles, such as those utilizing spent fuel reprocessing. To evaluate the economics of these technologies on an equitable basis, a set of cost estimating guidelines and a common cost-estimating format were utilized by all three technology teams. This paper also includes the major economic analysis assumptions and the comparative constant-dollar and discounted-dollar LCCs

  3. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  4. Nuclear Medicine Technology Undergraduate Research Methods.

    Science.gov (United States)

    Nielsen, Cybil J

    2017-12-22

    Introduction: The purpose of this article is to introduce nuclear medicine technology (NMT) educators to a method of incorporating research methodologies into the curriculum. Methods: The research methodology in the NMT program at Indiana University (IU) is taught in five steps (1. Introduction to research articles and statistics 2. Mock project and individual project design 3. Data collection 4. Writing the research paper 5. Presenting the abstract and mentoring new students). These steps could be combined for programs of shorter length or with credit hour restrictions. Results: All IU NMT students (100%) presented their research abstracts as part of a continuing education program for technologists. Seventeen of twenty-five (68%) presented their abstracts at a regional professional meeting. Six of twenty-five (24%) presented their research abstracts at a national professional meeting. Three of those six (50%) received travel grants. Two students submitted their research for publication and one was successful. Conclusion: The goal of incorporating a research methodology program into the nuclear medicine program should be to introduce undergraduates to the research process and instill excitement for new technologists to continue participation in research throughout their career. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Nuclear technology education at the new AKR-2 of the technical university Dresden

    International Nuclear Information System (INIS)

    Hansen, W.; Wolf, T.; Hurtado, A.

    2009-01-01

    The former research and training reactor AKR-1 was completely renewed, including the peripheral technical systems and the modernization of the reactor instrumentation with digital control technology. After licensing by the local authorities the technical University Dresden has Germany's latest training reactor. Basic experiments are performed for the following disciplines: nuclear energy technology, physics, teacher training, industrial engineering, nuclear medicine. Training courses cover nuclear medicine, nuclear physics, radiation protection and reactor physics. Further tasks include research program on neutron detectors, neutron physics, radiation spectroscopy, nuclear data bases.

  6. Science and technology as strategic way for nuclear activities

    International Nuclear Information System (INIS)

    Paiano, Silvestre

    2000-01-01

    The article brings few instructive examples on the interaction between nuclear energy and other areas of science and technology, Microelectronics, computer technology, and new materials are among the many technologies which are crucial for developing nuclear energy technology. On the other way round, nuclear energy presents also a wide range of new demands and opportunities for several areas of science and technology. The problem is that such a relationship is not well understood by the society, and to a large extent it brings about the very process of legitimating the use of nuclear energy (author)

  7. The transfer of nuclear technology: necessities and limitations

    International Nuclear Information System (INIS)

    Haunschild, H.-H.

    1978-01-01

    Political and economical importance of the transfer of nuclear technologies to less developed countries is examined. Energy needs of the world create the necessity of technology transfer. Three levels are distinguished: 1) Basic elements of cooperation are agreed between the two Governments, 2) scientific cooperation and 3) industrial cooperation. Technology transfer is more than mere technology export. Limitations of nuclear technology transfer are: the lack of infrastructure, the high price of a nuclear power station but above all the problem of proliferation. In conclusion the solution of international problems of nuclear energy is the concept of cooperation on the basis of equal rights

  8. Nuclear science and technology branch report 1977

    International Nuclear Information System (INIS)

    Symonds, J.L.

    1977-12-01

    Research being conducted includes: assessment of world energy sources and their utilization, basic information on fission reactors, reactor performance and safety, reviews of fission reactor technology, collaborative work on fission reactors, thermonuclear fusion and alternative energy sources. Staff publications are also included

  9. 2009 annual conference on nuclear technology opening address

    International Nuclear Information System (INIS)

    Hohlefelder, Walter

    2009-01-01

    To Germany, 2009 first and foremost is an election year. The course will be reset. At any rate, reassessing nuclear power policy in Germany in the sense of plant life extension and real progress in solving the energy problem is indispensable. One major reason is the change in boundary conditions since 2000, the year of the agreement between the Red-Green federal government and the nuclear power plant licensees. Climate change, security of power supply, and overcoming the worldwide financial and economic crisis are important points to be mentioned. The world of nuclear power, too, has changed. Besides Finland, also Switzerland, the United Kingdom, Sweden, Italy, and Poland are European countries intending to build new nuclear power plants. Premature shutdown of 7 out of the 17 German nuclear power plants in the next legislative term of the German federal parliament would have grave consequences for the security of supply and would greatly jeopardize the objectives of climate protection. In addition, it would weaken Germany's position as a center of industry. It is important, therefore, to negotiate a sensible approach after the national elections. Like the politically motivated alliance of coal and nuclear in the 1970s and 1980s, a model encompassing renewables, efforts towards energy efficiency, and nuclear power could be possible. As nuclear power has lost its divisive effect on society, despite ongoing discussions, the necessary reassessment must be put on the agenda also in Germany. One major issue is real progress in the waste management problem. This dialog will have to be carried on in a committed as well as unbiased way particularly in the weeks and months to come. We need all power technologies, nuclear included. (orig.)

  10. Review of the IAEA nuclear fuel cycle and material section activities connected with nuclear fuel including WWER fuel

    International Nuclear Information System (INIS)

    Sokolov, F.

    2001-01-01

    Program activities on Nuclear Fuel Cycle and Materials cover the areas of: 1) raw materials (B.1.01); 2) fuel performance and technology (B.1.02); 3) pent fuel (B.1.03); 4) fuel cycle issues and information system (B.1.04); 5) support to technical cooperation activities (B.1.05). The IAEA activities in fuel performance and technology in 2001 include organization of the fuel experts meetings and completion of the Co-ordinate Research Projects (CRP). The special attention is given to the advanced post-irradiation examination techniques for water reactor fuel and fuel behavior under transients and LOCA conditions. An international research program on modeling of activity transfer in primary circuit of NPP is finalized in 2001. A new CRP on fuel modeling at extended burnup (FUMEX II) has planed to be carried out during the period 2002-2006. In the area of spent fuel management the implementation of burnup credit (BUC) in spent fuel management systems has motivated to be used in criticality safety applications, based on economic consideration. An overview of spent fuel storage policy accounting new fuel features as higher enrichment and final burnup, usage of MOX fuel and prolongation of the term of spent fuel storage is also given

  11. A study on the enhancement of nuclear cooperation with African countries including utilization of radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Maeng Ho; Oh, K. B; Lee, H. M. and others

    2005-05-15

    In this study, potential countries for nuclear cooperation in African region and possible cooperation areas were investigated between Korea and African countries including radioisotopes and more fields were also analysed in depth in order to suggest the recommendations for future cooperation to be considered as follows; First, current status and perspectives of demand and supply of energy and electricity in the African countries, use and development of nuclear energy and international nuclear cooperation were analyzed. Second, current status of nuclear cooperation between Korea and African countries were investigated as well as analysis of future cooperation potential and countries having potential for nuclear cooperation and possible cooperative activities were suggested considering potential of nuclear market in mid- and long term base and step by step. Third, desirable strategies and directions for the establishment and promotion of nuclear cooperation relations between Korea and African developing countries were suggested in order to develope cooperative relations in efficient and effective manners with African developing countries.

  12. A study on the enhancement of nuclear cooperation with African countries including utilization of radioisotope

    International Nuclear Information System (INIS)

    Yang, Maeng Ho; Oh, K. B; Lee, H. M. and others

    2005-05-01

    In this study, potential countries for nuclear cooperation in African region and possible cooperation areas were investigated between Korea and African countries including radioisotopes and more fields were also analysed in depth in order to suggest the recommendations for future cooperation to be considered as follows; First, current status and perspectives of demand and supply of energy and electricity in the African countries, use and development of nuclear energy and international nuclear cooperation were analyzed. Second, current status of nuclear cooperation between Korea and African countries were investigated as well as analysis of future cooperation potential and countries having potential for nuclear cooperation and possible cooperative activities were suggested considering potential of nuclear market in mid- and long term base and step by step. Third, desirable strategies and directions for the establishment and promotion of nuclear cooperation relations between Korea and African developing countries were suggested in order to develope cooperative relations in efficient and effective manners with African developing countries

  13. Nuclear technology and biotechnology for enhancing agricultural production in Malaysia

    International Nuclear Information System (INIS)

    Mohamad Osman

    2005-04-01

    The presentation discussed the following subjects: sustainable development, agriculture in Malaysia, role of biotechnology, role of nuclear technology, improving crops through induced mutations with Malaysian experience in rice and roselle, fusion of nuclear and biotechnology challenges and opportunities

  14. The Application of Nuclear Technology for a Better World

    International Nuclear Information System (INIS)

    Ita, E.B.

    2015-01-01

    Nuclear Technology is widely used in different areas and sector of our economy to better man kind and his environment. Peaceful applications of nuclear technology have several benefits to the world today. It is widely believed that nuclear technology is mainly used mainly for the production of electricity (Nuclear Power Plants – NPPs). Many are not aware of the other numerous benefits of nuclear technology. Nuclear technology can be applied in different fields for numerous benefits. Different sectors Nuclear Technology application can improve the living standard of man and his environment: – Food and Agriculture; – Medicine; – Industrial; – Energy; – Education; — Research and Development; – Environment. The benefits of the application of nuclear technology cannot be over emphasised. These benefits range from the improved quality of purified water we drink, the textiles we wear, improved quality of stored grains for preservation of foods, water analyses, improved transportation system work, drugs production, medical tests and analysis, clean environment through radioisotope techniques etc. The application of nuclear technology also gives a safer, greener, healthier and pollution free environment and atmosphere for human habitation. In my poster, the numerous benefits of the various applications of Nuclear Technology will be clearly enumerated and heighted. (author)

  15. Vitrification technology for treating low-level waste from nuclear facilities

    International Nuclear Information System (INIS)

    Oniki, Toshiro; Nabemoto, Toyonobu; Fukui, Toshiki

    2016-01-01

    The development of technologies for treating nuclear waste generated by nuclear power plants and reprocessing plants during their operation or decommissioning is underway both in Japan and abroad. Of the many types of treatment technologies that have been developed, vitrification technology is attracting attention as being the most promising technology for converting such waste into a stable state. As a brief review of technical developments aimed at reducing nuclear waste and finding a solution to the final disposal issue, this paper describes approaches to completing the development of vitrification technology in Japan, including IHI's activities. (author)

  16. 2012 annual meeting on nuclear technology. Workshop on 'Preservation of competence in nuclear technology'

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang

    2012-01-01

    Within the 2-day workshop on 'Preservation of Competence in Nuclear Technology,' 31 young scientists competed for the 'Competence Prize' awarded by Siempelkamp Nukleartechnik for the 14th time. They reported about their papers focusing on nuclear technology, reactor technology, innovative reactor systems, radioactive waste management, radiological protection and energy supply systems. The jury composed of Prof. J. Starflinger (Universitaet Stuttgart, IKE), Prof. M.K. Koch (Ruhr-Universitaet Bochum, LEE), and Dr. W. Steinwarz (Siempelkamp Nukleartechnik) assessed the advance compacts as well as the oral presentations. The winner of the 2012 Competence Prize is Dipl.-Ing.(M.S.) Thomas M. Fesich (University Stuttgart). Dr.-Ing. Oliver Czaikowski (Techn. University Clausthal) and Dipl.-Ing. Mario Kuschewski (Universitaet Stuttgart) won the second and third prizes. (orig.)

  17. A project in support of Nuclear Technology Cooperation

    International Nuclear Information System (INIS)

    Jung, Ki Jung; Choi, Pyong Hoon; Yi, Ji Ho

    2005-12-01

    Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing. - Promotion of domestic nuclear energy technology by utilizing nuclear energy informations and computer software developed in the advanced countries. - Establish strategies of international cooperation in an effort to promote our nation's Leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate

  18. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  19. Nuclear technology programs. Semiannual progress report, April--September 1991

    International Nuclear Information System (INIS)

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  20. Nuclear Technology Programs semiannual progress report, April-- September 1990

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  1. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  2. Nuclear technology programs semiannual progress report, April--September 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1991-08-01

    This document reports on the work done by the Nuclear Technology Program of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with developing a process for separating the organic and inorganic constitutents of the red-water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 154 refs., 154 figs., 100 tabs

  3. Nuclear technology programs. Semiannual progress report, April--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  4. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  5. Nuclear Technology Programs semiannual progress report, April-- September 1990

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. [ed.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  6. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories. 127 refs., 76 figs., 103 tabs

  7. Including information technology project management in the nursing informatics curriculum.

    Science.gov (United States)

    Sockolow, Paulina; Bowles, Kathryn H

    2008-01-01

    Project management is a critical skill for nurse informaticists who are in prominent roles developing and implementing clinical information systems. It should be included in the nursing informatics curriculum, as evidenced by its inclusion in informatics competencies and surveys of important skills for informaticists. The University of Pennsylvania School of Nursing includes project management in two of the four courses in the master's level informatics minor. Course content includes the phases of the project management process; the iterative unified process methodology; and related systems analysis and project management skills. During the introductory course, students learn about the project plan, requirements development, project feasibility, and executive summary documents. In the capstone course, students apply the system development life cycle and project management skills during precepted informatics projects. During this in situ experience, students learn, the preceptors benefit, and the institution better prepares its students for the real world.

  8. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--isotope

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  9. Survey and studies on the roles of nuclear power development in economy and technology

    International Nuclear Information System (INIS)

    1985-01-01

    The development and utilization of nuclear energy is principally for security of energy supplies but, on the other hand, is contributing largely to the economic activities and technology developments in Japan. In order to clarify the economic and the technological roles played by the nuclear energy development and utilization, Atomic Energy Commission has made survey and studies on the present state of nuclear power industry and of nuclear power technology and the respective effects in other areas. The nuclear power industry, through its high growth, is now a substantial portion, and so has significant influence, in Japan's whole economic activities. Then, the nuclear power technology, started with its introduction, is now on the world's leading level. Its effects in other areas include quality control, system technology, etc. (Mori, K.)

  10. The role of nuclear data for fusion technology studies

    International Nuclear Information System (INIS)

    Forrest, Robin A.

    2011-01-01

    Highlights: → Nuclear data are of fundamental importance in studies of nuclear technology. → Data libraries cover: experiments (EXFOR), theory (RIPL) and evaluations (ENDF). → Libraries are general purpose or special purpose (decay, dosimetry and activation). → Activation files contain many reactions, only a fraction needs to be known precisely. → Covariance data are important, but details of formatting are being worked out. - Abstract: Nuclear data are of fundamental importance in studies of nuclear technology. In these studies, experiments to measure cross sections and decay properties and simulations of the design of fission power plants, fusion devices and accelerators are included. The large amount of data required is stored in computer readable formats in data libraries and the most common of these are the general purpose files used for neutronics or transport calculations. These files also contain the standards against which most measurements are made. The other class of libraries are the special purpose ones containing decay data, fission yields and cross section data for dosimetry and activation. This paper gives examples of what data are available and describes their use for various fusion applications. The focus will be on neutron-induced activation data with examples of how the reactions of particular importance can be identified. All data should be accompanied by estimates of the uncertainty. This is best achieved by including covariance data; however, this is extremely challenging and only a subset of the available data has such uncertainty data. The general principles of how covariance matrices are used are outlined.

  11. Economy and technology roles played by nuclear power

    International Nuclear Information System (INIS)

    Yamada, Eiji

    1985-01-01

    On the basis of the survey analysis made by Atomic Energy Commission on the roles in economy and technology played in the nuclear energy development and utilization, the following are described: economic roles in nuclear energy development and utilization (the present state of nuclear power industry in Japan and the economy effects); technological roles in the same (the present state of nuclear power technology in Japan and the technology effects). The economy effects in other areas are on higher level than in other industries etc. Then, in the technology effects, system technology and quality control in the nuclear power possess significant effects in other areas. While the nuclear energy development and utilization is important in Japan's energy security, it is contributing largely to the economy and society in Japan. (Mori, K.)

  12. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Kang, Y. A.; Kim, G. H.

    2007-06-01

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  13. Decommissioning Technology Development for Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kang, Y. A.; Kim, G. H. (and others)

    2007-06-15

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely.

  14. AFRA Network for Education in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Hashim, O.N.; Wanjala, F.

    2017-01-01

    The Africa Regional Cooperative Agreement for Research Development and Training related to Science and Technology (AFRA) established the AFRA Network for Education in Nuclear Science and Technology (AFRA-NEST) in order to implement AFRA strategy on Human Resource Development (HRD) and Nuclear Knowledge Management (NKM). The strategies for implementing the objectives are: to use ICT for web-based education and training; recognition of Regional Designated Centres (RDCs) for professional nuclear education in nuclear science and technology, and organization of harmonized and accredited programs at tertiary levels and awarding of fellowships/scholarships to young and brilliant students for teaching and research in the various nuclear disciplines

  15. Fuzzy Logic and Intelligent Technologies in Nuclear Science

    International Nuclear Information System (INIS)

    Da Ruan

    1998-01-01

    FLINS is the acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science. The main task for FLINS is to solve intricate problems pertaining to the nuclear environment by using modern technologies as additional tools and to bridge the gap between novel technologies and the industrial nuclear world. In 1997, major efforts went to the specific prototyping of Fuzzy Logic Control of SCK-CEN's BR1 research Reactor. Progress and achievements are reported

  16. Nuclear technology transfer adapted to the needs of developing countries

    International Nuclear Information System (INIS)

    Martin, A.; Nentwich, D.

    1983-01-01

    The paper explains the build-up of nuclear know-how in the Federal Republic of Germany after 1955, when activities in the nuclear field became permitted. Furthermore, it shows the development of nuclear technology transfer via the increasing number of nuclear power plants exported. The inevitable interrelationship between the efficient transfer of know-how and long-term nuclear co-operation is demonstrated. Emphasis is put on the adaptation of nuclear technology transfer to the needs of the recipient countries. Guidelines to achieve the desired goal are given. (author)

  17. Contribution of Heavy Water Board in nuclear fuel cycle technologies. Contributed Paper IT-03

    International Nuclear Information System (INIS)

    Mohanty, P.R.

    2014-01-01

    The three stage Indian nuclear power programme envisages use of closed nuclear fuel cycle and thorium utilization as its mainstay for long term energy security on sustainable basis. India is committed to realize this objective through the development and deployment of frontier technologies pertaining to all aspects of a closed nuclear fuel cycle. Comprehensive indigenous capabilities have been developed in all aspects of nuclear power and associated fuel cycles. Heavy Water Board (HWB), with its abiding objective of fulfilling demand of heavy water for India's flourishing nuclear power program, is one of the frontrunner in Nuclear Fuel Cycle Technology. HWB is now engaged in wide spectrum of activities in various facets of fuel cycle covering all the three stages of Indian Nuclear Power Programme. HWB is contributing to Nuclear Fuel Cycle through large scale production and sustained supply of key input materials including heavy water, solvents for nuclear hydrometallurgy, 10 B enriched boron etc

  18. Nuclear reactor technology: the next 50 years

    International Nuclear Information System (INIS)

    Sollychin, R.; Subki, H.; Adelfang, P.; Koshy, T.

    2013-01-01

    In light of the growing awareness of the environmental externalities of fossil fuel combustion, alternatives for electric power generation such as solar, wind and nuclear energy are becoming more desirable. In developed countries, large power markets are currently served by a centralized energy system through well inter-connected electricity grids. However, as shares of variable renewable energy sources (mainly wind and solar power) are increasing in the future; larger fluctuation in power generation can be expected which lead to higher risk of grid instabilities. Less-capital intensive small and medium sized nuclear reactors (SMR) are emerging as an important element of alternative power generation system to fossil fuel, with a unique additional role of balancing the power generation fluctuation caused by the solar and wind power generation. In regions not served by large electricity grids, including many parts of the developing countries with increasing demand for energy at rates above world's average, power generation using locally available energy sources including renewable energy is the practical means of providing basic energy needed for social and economic development. The integration of locally supportable SMR and local renewable energy system in a hybrid fashion can reduce the relative scale but not eliminate the fluctuation in power generation caused by the irregular availability of solar and wind energy. Without the use of commercial electricity trading that is only available in regions served by large inter-connected electricity grids, further minimization of power generation fluctuation can be done by the installation of local energy (electricity and/or heat) applications and/or energy storage device. The operation of these applications and energy storage can be done in synchronization with the availability of excess power throughout the fluctuation of the overall power generation in the region. Under these conditions, SMRs utilization as part of

  19. Legal aspects of the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Sartorelli, C.

    1980-03-01

    The paper stresses the importance of nuclear technology transfer and describes the legal instruments for transfer of technical and scientific technology, particularly from the contractual viewpoint. A description follows of the setting-up of national joint ventures for nuclear power plant projects with emphasis on technological know-how to enable operation of plants in compliance with safety standards. The possibility is discussed of the export of nuclear technology, and finally mention is made of a proposal for a 'code of conduct' on such transfers in the framework of the United Nations, having regard to the 'London agreements' on nuclear exports. (NEA) [fr

  20. Applying RFID technology in nuclear materials management

    International Nuclear Information System (INIS)

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J.P.; Bellamy, S.; Shuler, J.

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness

  1. Strategy for Nuclear Technology Education at Uppsala University

    International Nuclear Information System (INIS)

    Osterlund, M.; Hakansson, A.; Tengborn, E.

    2010-01-01

    After the TMI accident 1979, and later the Tjernobyl accident, the future of nuclear power was vividly debated in Sweden. The negative public opinion governed a number of political decisions that marked an ambition to out-phase nuclear power prior to 2010. Due to this, the student's interest in nuclear technology ceased and together with the fact that public funding to nuclear technology was withdrawn, academic research and education within the field were effectively dismounted. In the beginning of 1990 it became clear to the society that nuclear power could not easily be closed down and the issue of the future competence supply to the nuclear industry was initiated. In the mid-nineties the situation became acute due to the fact that personnel in the nuclear industry started to retire in an increasing pace necessitating measures to be taken in order to secure the future operation of the nuclear power plants. In the year 2000, the Swedish nuclear power plants, Westinghouse Electric Sweden and the Swedish Radiation Safety Authority embarked a project together with the three major universities in the field, Uppsala University, The Royal Institute of Technology and Chalmers University of Technology. The aim of this project was to define a financial platform for reconstructing the Swedish research and education in nuclear technology. The project, named the Swedish Centre for Nuclear Technology (SKC), has during a decade been the major financier to nuclear technology research and education. Using funding from SKC, Uppsala University formulated a strategy along two tracks: 1) Instead of creating ambitious master programs in nuclear technology, the already existing engineering programs in a wide range of fields were utilized to expose as many students as possible to nuclear technology. 2) A program was initiated together with the nuclear industry aiming at educating newly employed personnel. The result is encouraging; starting from essentially zero, typically 100

  2. Siting technology of underground nuclear power station

    International Nuclear Information System (INIS)

    Motojima, M.; Hibino, S.

    1989-01-01

    For the site of a nuclear power station, it may be possible to select a seaside mountain area, if the condition is suitable to excavate large rock caverns in which a reactor and other equipments are installed. As the case study on the siting technology for an underground nuclear power station, the following example was investigated. The site is a seaside steep mountain area, and almost all the equipments are installed in plural tunnel type caverns. The depth from the ground surface to the top of the reactor cavern is about 150 m, and the thickness of the rock pillar between the reactor cavern of 33 m W x 82 mH x 79 mD and the neighboring turbine cavern is 60 m. In this paper, the stability of rock caverns in this example, evaluated by numerical analysis, is described. The numerical analysis was carried out on the central cross section of the reactor cavern, taking the turbine cavern, geostress, the mechanical properties of rock mass and the process of excavation works in consideration. By the analysis, the underground caverns in this example were evaluated as stable, if the rock quality is equivalent to C H class or better according to the CRIEPI rock classification. (K.I.)

  3. The value of communication in changing public perception on nuclear technology: an experience with college students

    International Nuclear Information System (INIS)

    Soares, Wellington Antonio

    2009-01-01

    Nowadays public acceptance is the most frequent keyword used in the Brazilian nuclear scenario with the revival of the nuclear program, in which the construction of more nuclear power plants and a national radioactive waste repository are expected. The acceptance of such activities is tightly linked to a strategic communication plan, the effective tool to be implemented if success is intended. Isolated communication actions are being done in the nuclear area and this paper presents one example of them, describing the experience with college students from two educational institutions, who attended the lecture 'Nuclear technology: prejudice, fundamentals, applications and challenges'. Opinion surveys were done before and after each event, to know the opinions towards nuclear technology. The surveys were based on the choice of three words from about 10 not ordered stimulating keywords and each participant was invited to choose the first three ones that could represent the image he/she had when faced with the theme 'nuclear technology'. The lecture included topics covering positive and negative points of the nuclear technology. The measured results after the lectures shown positive perspective in the first images associated with the nuclear technology, despite focus on accidents was given in the final part of the event. The results show that some effectiveness on the target public was achieved in terms of bringing new perceptions on this technology. It is expected that this article can contribute somehow to the discussion of public acceptance of nuclear technology in Brazil. (author)

  4. Nuclear science and technology branch report 1976

    International Nuclear Information System (INIS)

    1976-12-01

    Research being conducted includes: assessment of world energy sources and their utilization, basic information on fission reactors, reactor performance and safety, reviews of fission reactor technology, collaborative work on fission reactors, thermonuclear fusion and alternative energy sources. Staff publications and research interests are outlined. (J.R.)

  5. Survey of Public Understanding on Energy Resources including Nuclear Energy (I)

    International Nuclear Information System (INIS)

    Park, Se-Moon; Song, Sun-Ja

    2007-01-01

    Women in Nuclear-Korea (WINK) surveyed the public understanding on various energy resources in early September 2006 to offer the result for establishment of the nuclear communication policy. The reason why this survey includes other energy resources is because the previous works are only limited on nuclear energy, and also aimed to know the public's opinion on the present communication skill of nuclear energy for the public understanding. The present study is purposed of having data how public understands nuclear energy compared to other energies, such as fossil fuels, hydro power, and other sustainable energies. The data obtained from this survey have shown different results according to the responded group; age, gender, residential area, etc. Responded numbers are more than 2,000 of general public and university students. The survey result shows that nuclear understanding is more negative in women than in men, and is more negative in young than older age

  6. Long term panorama of the nuclear technology

    International Nuclear Information System (INIS)

    Velez, C.

    2009-01-01

    The concern for the security of the hydrocarbons supply, essentials for the transport and every time more important in the electricity production, it is one of the rebirth causes of interest for the nuclear energy. On the other hand, it is the increase of the hydrocarbons price. In some countries, included Mexico, the price of gas is subject to strong seasonal fluctuations, aggravating by the congestion of the ducts. It is certain that great part of the prices rise of petroleum that we are experiencing is due to speculation, for what it is necessary to look for objective elements that allow to venture in the difficult topic of the future price of crude. One finishes reason of the resurgence of interest for the nuclear energy, is the growing perception that with the gases emission of greenhouse effect we are exposing our planet to an uncontrollable experiment with consequences potentially catastrophic. This perception is translated in a pressure of the public opinion for to use renewable energy sources that do not contribute to the greenhouse effect. In this work a general panorama is exposed on the advances that exist at the present time, like nuclear reactors with the purpose of solving the current problem that the world is crossing. (Author)

  7. Physical Protection of Nuclear Safeguards Technology

    International Nuclear Information System (INIS)

    Hoskins, Richard

    2004-01-01

    IAEA's Nuclear Security Plan is established to assist Member States in implementing effective measures against nuclear terrorism. Four potential threats were identified: theft of nuclear weapon, nuclear explosive device, radiological dispersal device and an attack on radiation facility. In order to achieve effective protection of nuclear materials and facilities, the IAEA sponsored the Convention of the Physical Protection of Nuclear Materials which focuses on the protection of nuclear materials 'in international transport. The IAEA also promoted INFCIRC/255 entitled the Physical Protection of Nuclear Materials and Nuclear Facilities and published TECDOC/967 for the protection of nuclear materials and facilities against theft and sabotage and during transport. Assistance is available for the Member States through the International Physical Protection Advisory Service (IPPAS) and the International Nuclear Security Advisory Service (INSServ). (author)

  8. The broad view of nuclear technology for aerospace

    Science.gov (United States)

    Buden, David; Angelo, Joseph A., Jr.

    1991-01-01

    Nuclear technologies can directly support advanced space initiatives. For near-Earth missions, nuclear technology can be used to power air traffic control, communications and manufacturing platforms, provide emergency power for manned platforms, provide power for maneuvering units, move asteroids for mining, measure the natural radiation environment, provide radiation protection instruments, and design radiation hardened robotic systems. For the Lunar and Mars surfaces, nuclear technology can be used for base stationary, mobile, and emergency power, energy storage, process heat, nuclear thermal and electric rocket propulsion, excavation and underground engineering, water and sewage treatment and sterilization, food processing and preservation, mineral exploration, self-luminous systems, radiation protection instrumentation, radiation environmental warning systems, and habitat shielding design. Outer planet missions can make use of nuclear technology for power and propulsion. Programs need to be initiated to ensure the full beneficial use of nuclear technologies in advanced space missions.

  9. Nuclear science in the 20th century. Nuclear technology applications in material science

    International Nuclear Information System (INIS)

    Pei Junchen; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear technology to material science has led to a new cross subject, nuclear material science (also named nuclear solid physics) which covers material analysis, material modification and new material synthesis. This paper reviews the development of nuclear technical applications in material science and the basic physics involved

  10. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Williams, Brian [Los Alamos National Laboratory; Mc Clure, Patrick [Los Alamos National Laboratory; Nelson, Ralph A [IDAHO NATIONAL LAB

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M&S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost

  11. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    International Nuclear Information System (INIS)

    Unal, Cetin; Williams, Brian; McClure, Patrick; Nelson, Ralph A.

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M and S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for

  12. Transfer of nuclear technology: A designer-contractor's perspective

    International Nuclear Information System (INIS)

    See Hoye, D.; Hedges, K.R.; Hink, A.D.

    2000-01-01

    The paper presents the successful Canadian experience in developing a nuclear power technology - CANDU - and exporting it. Consideration is paid to technology that has to be transferred, receiver country objectives and mechanisms and organizational framework. (author)

  13. 2010 annual meeting on nuclear technology. Workshop on ''Preservation of competence in nuclear technology''

    International Nuclear Information System (INIS)

    Steinwarz, Wolfgang

    2010-01-01

    Within the two-day workshop on ''Preservation of Competence in Nuclear Technology'', 21 young scientists competed for the ''Competence Prize'' awarded by Siempelkamp Nukleartechnik for the twelfth time. They reported about their term papers, diploma or doctoral theses focusing on reactor technology and reactor safety, the development of innovative reactor systems, and waste management. For the first time, contributions this year were presented also from the field of radiation protection. The jury composed of Prof. T. Schulenberg (Karlsruhe Institute of Technology), Prof. M.K. Koch (Ruhr University, Bochum), and Dr. W. Steinwarz (Siempelkamp Nukleartechnik) assessed the advance compacts as well as the oral presentations. The winner of the 2010 Competence Prize is Heiko Herbell of the Karlsruhe Institute of Technology. Cornelia Heintze of the Dresden-Rossendorf Research Center, and Carola Hartel of the GSI Helmholtz Center for Heavy Ion Research won the second and third prizes. (orig.)

  14. Siemens technology transfer and cooperation in the nuclear fuel area

    International Nuclear Information System (INIS)

    Holley, H.-P.; Fuchs, J. H.; Rothenbuecher, R. A.

    1997-01-01

    Siemens is a full-range supplier in the area of nuclear power generation with broad experience and activities in the field of nuclear fuel. Siemens has developed advanced fuel technology for all types fuel assemblies used throughout the world and has significant experience worldwide in technology transfer in the field of nuclear fuel. Technology transfer and cooperation has ranged between the provision of mechanical design advice for a specific fuel design and the erection of complete fabrication plants for commercial operation in 3 countries. In the following the wide range of Siemens' technology transfer activities for both fuel design and fuel fabrication technologies are shown

  15. Nuclear Technology Series. Course l: Radiation Physics.

    Science.gov (United States)

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Nuclear Technology Series. Course 19: Radiation Shielding.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. 2011 annual meeting on nuclear technology fully on line

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The 2010 ANNUAL MEETING ON NUCLEAR TECHNOLOGY, in its familiar structure of 3 days of conferencing about topics from politics, economy, and technology, was the forum for presentations and discussions in the field of nuclear power. Participants accepted the new concept. This was borne out in particular by the great interest shown in the pre-conference evening with its keynote address, but also by the success of the plenary day, which included a press forum and a panel discussion as components of active communication making the plenary day much more attractive. The 2011 Annual Meeting on Nuclear Technology will be held again at the Berlin Congress Center (bcc) in Alexanderplatz on May 17-19. From September 1, some first important information is available under www.kerntechnik.info, for instance, the call for Papers. All other information about the program will be published in due course. All steps of importance to participants, from registration for the meeting to booking hotel accommodation, can be handled online. (orig.)

  18. The challenge of making nuclear technologies acceptable, accessible and affordable

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.

    2009-01-01

    Full text: It is more than five decades since the first successful demonstration of nuclear power for commercial electricity production. The same decades have also seen the successful demonstration of several other applications of nuclear technologies that can contribute directly to human development, as for example, in the Food and Agriculture, Human and animal Health, Environment and Water sectors. In spite of several successful demonstrations and applications in these fields, it is somewhat strange that their full potential is yet to be realized. More importantly, their availability to populations across the world is highly skewed. Three barriers have been identified for the wide spread use of nuclear technologies for development- Acceptability, Accessibility and Affordability. It is an unfortunate twist of fate that the first public demonstration of nuclear technology was its destructive power. The following demonization of anything nuclear was further compounded by the discussions on the unresolved questions on tackling long lived radioactive wastes, our inability to arrive at a global consensus on nuclear disarmament and issues of nuclear proliferation. These have certainly had a negative impact on the public acceptance of nuclear technologies across the board. While the recent concerns on the global climate change following the emission of carbon-di-oxide from excessive hydrocarbon burning for meeting our increasing energy needs have revived the interest in nuclear energy, a lot needs to be done to de-demonize nuclear technologies in public mind leading to increased acceptance of nuclear technologies for development. Lack of resources, infrastructure and trained man power also have a negative impact on the accessibility and affordability of the nuclear technologies for development. It is argued that only education holds the key for this. The role of international partnerships is also highlighted in realizing the full potential of nuclear technologies for

  19. Innovations in and by nuclear technology - review and perspectives

    International Nuclear Information System (INIS)

    Barthelt, K.

    1984-01-01

    An innovative technology like nuclear technology does not make progress by itself once it has to prove its profitability. It was a long way from technical to economic perfection which took courageous managemental descisions. Since nuclear fission was discovered, its exploitation as an energy source has been perfected. Now it is not only technically safe, reliable and ecological; it has also proved to be economically efficient as compared with the competing primary energies. As with other great innovations, the innovative force of nuclear technology is characterized by two directions: its assimilating capacity and its expanding capacity. Further issues are the so-called technological spin-off of nuclear technology and the fresh impetus nuclear technology gives to other fields. Another aspect beyond technological spin-off affecting all of our society: It was the first large technology requiring risk analyses to be carried out. Discussion broke out in public on the question: ''How safe is nuclear technology''. To sum up, the basic innovation of nuclear technology is now an important economic factor. It came just in time. It is capable of providing relief to the world's energy problems. It is up to us to use it in an intelligent way in the future despite any short-breathed complaints. (orig./HSCH) [de

  20. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--radiation research and radiation technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  1. Proceedings of the 9. National Seminar on Technology and Safety of Nuclear Power Plants and Nuclear Facilities

    International Nuclear Information System (INIS)

    Antariksawan, Anhar R.; Soetrisnanto, Arnold Y; Aziz, Ferhat; Untoro, Pudji; Su'ud, Zaki; Zarkasi, Amin Santoso; Lasman, As Natio

    2003-08-01

    The ninth proceedings of seminar safety and technology of nuclear power plant and nuclear facilities held by National Nuclear Energy Agency and PLN-JTK. The aims of seminar is to exchange and disseminate information about Safety and Nuclear Power Plant Technology and Nuclear Facilities consist of Technology High Temperature Reactor and Application for National Development Sustainable and High Technology. This seminar cover all aspects Technology, Power Reactor, Research Reactor High Temperature Reactor and Nuclear Facilities. There are 20 articles have separated index

  2. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  3. 2. JAPAN-IAEA workshop on advanced safeguards technology for the future nuclear fuel cycle. Abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    This international workshop addressed issues and technologies associated with safeguarding the future nuclear fuel cycle. The workshop discussed issues of interest to the safeguards community, facility operators and State Systems of accounting and control of nuclear materials. Topic areas covered were as follows: Current Status and Future Prospects of Developing Safeguards Technologies for Nuclear Fuel Cycle Facilities, Technology and Instrumentation Needs, Advanced Safeguards Technologies, Guidelines on Developing Instrumentation to Lead the Way for Implementing Future Safeguards, and Experiences and Lessons learned. This workshop was of interest to individuals and organizations concerned with future nuclear fuel cycle technical developments and safeguards technologies. This includes representatives from the nuclear industry, R and D organizations, safeguards inspectorates, State systems of accountancy and control, and Member States Support Programmes

  4. ''Perspectives in nuclear technology'': recruiting young scientists and engineers

    International Nuclear Information System (INIS)

    Wasgindt, V.

    2003-01-01

    Securing competence in nuclear technology is a topic of great interest especially because the preservation and promotion of scientific and technical know-how in Germany are particularly important under conditions of an opt-out of the use of nuclear power. In the light of decreasing numbers of graduates from courses in nuclear science and technology, positive action is indicated. For the first time, the Deutsches Atomforum e.V., together with major partners in cooperation, therefore organized a colloquy last year on 'Perspectives in Nuclear Technology'. Young students of various disciplines were given an opportunity to obtain in-depth information about nuclear power as part of the entire field of energy supply by attending lectures, round-table discussions, and on-site events. Because of the positive response elicited by that first event, another 'Perspectives in Nuclear Technology' colloquy will be held in 2003. (orig.)

  5. The Indian nuclear power programme: Challenges in PHWR technology

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    1997-01-01

    The long-term strategy for development of nuclear power generation in India is based on a three-stage programme, formulated by Dr. H.J. Bhabha. This strategy takes into account and is optimally suited for achieving self reliance in nuclear technology; India's technological infrastructure; limited resources of Natural Uranium and abundant availability of Thorium within the country

  6. Nuclear Science and Technology in Human Progress. Inaugural Lecture

    International Nuclear Information System (INIS)

    Mshelia, M. D.

    1997-01-01

    The paper is a general discourse on the significance and development of nuclear science and technology and the potential peaceful uses to which it may be put. In particular nuclear science and technology and their applications in Nigeria are well discussed

  7. The Proceeding on National Seminar in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Duyeh Setiawan; Rochestri Sofyan; Nurlaila Z; Poppy Intan Tjahaja; Efrizon Umar; Muhayatun; Nanny K Oekar; Sudjatmi K Alfa; Dani Gustaman Syarif; Didi Gayani; Djoko Hadi P; Saeful Hidayat; Ari Darmawan Pasek; Nathanel P Tandian; Toto Hardianto

    2009-11-01

    The proceeding on national seminar in nuclear science and technology by National Atomic energy Agency held in Bandung on June 3, 2009. The topic of the seminar is the increasing the role of nuclear science and technology for the welfare. The proceeding consist of the article from BATAN participant as well as outside. (PPIN)

  8. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators

  9. Safety improvement technologies for nuclear power generation

    International Nuclear Information System (INIS)

    Nishida, Koji; Adachi, Hirokazu; Kinoshita, Hirofumi; Takeshi, Noriaki; Yoshikawa, Kazuhiro; Itou, Kanta; Kurihara, Takao; Hino, Tetsushi

    2015-01-01

    As the Hitachi Group's efforts in nuclear power generation, this paper explains the safety improvement technologies that are currently under development or promotion. As efforts for the decommissioning of Fukushima Daiichi Nuclear Power Station, the following items have been developed. (1) As for the spent fuel removal of Unit 4, the following items have mainly been conducted: removal of the debris piled up on the top surface of existing reactor building (R/B), removal of the debris deposited in spent fuel pool (SFP), and fuel transfer operation by means of remote underwater work. The removal of all spent fuels was completed in 2014. (2) The survey robots inside R/B, which are composed of a basement survey robot to check leaking spots at upper pressure suppression chamber and a floor running robot to check leaking spots in water, were verified with a field demonstration test at Unit 1. These robots were able to find the leaking spots at midair pipe expansion joint. (3) As the survey robot for reactor containment shells, robots of I-letter posture and horizontal U-letter posture were developed, and the survey on the upper part of first-floor grating inside the containment shells was performed. (4) As the facilities for contaminated water measures, sub-drain purification equipment, Advanced Liquid Processing System, etc. were developed and supplied, which are now showing good performance. On the other hand, an advanced boiling water reactor with high safety of the United Kingdom (UK ABWR) is under procedure of approval for introduction. In addition, a next-generation light-water reactor of transuranic element combustion type is under development. (A.O.)

  10. DUPIC nuclear fuel manufacturing and process technology development at KAERI

    International Nuclear Information System (INIS)

    Yim, Sung Paal; Lee, Jung Won; Kim, Jong Ho; Kim, Soo Sung; Kim, Woong Ki; Yang, Myung Seung

    2000-01-01

    DUPIC fuel cycle development project in KAERI of Korea was initiated in 1991 and has advanced in relevant technologies for last 10 years. The project includes five different topics such as nuclear fuel manufacturing, compatibility evaluation, performance evaluation, manufacturing facility management, and safeguards. The contents and results of DUPIC R and D up to now are as follow: - the basic foundation was established for the critically required pelletizing technology and powder treatment technology for DUPIC. - development of DUPIC process line and deployment of 20 each process equipment and examination instruments in DFDF. - powder and pellet characterization study was done at PIEF based on the simfuel study results, and 30 DUPIC pellets were successfully produced. - the manufactured pellets were used for sample fuel rods irradiated in July,2000 in HANARO research reactor in KAERI and has been under post irradiation examination. (Hong, J. S.)

  11. Managing Nuclear Knowledge: IAEA Activities and International Coordination. Asian Network for Education in Nuclear Technology (ANENT)

    International Nuclear Information System (INIS)

    2007-07-01

    The important role which the International Atomic Energy Agency (IAEA) plays in assisting Member States in the preservation and enhancement of nuclear knowledge and in facilitating international collaboration in this area has been recognized by the General Conference of the International Atomic Energy Agency in resolutions GC(46)/RES/11B, GC(47)/RES/10B, GC(48)/RES/13 and GC(50)/RES/13. The IAEA continues to support the enhancement and stabilization of nuclear education and training with the objective of securing the availability of qualified human resources for the nuclear sector. Its most important approaches are networking regional educational institutions and fostering cooperation to develop harmonized curricula, prepare and disseminate teaching materials. The Asian Network for Education in Nuclear Technology (ANENT), established by the IAEA in 2004, became operational in 2005. An ANENT website has been set up and is being expanded, such as developing a long-distance learning platform. Also, a reference curriculum for nuclear engineering is being developed with the cooperation of external partners.This booklet summarizes the main activities being carried out by the IAEA with regard to the Asian Network for Education in Nuclear Technology (ANENT) and other related activities including those completed during the period 2002–2005. It briefly describes the background information on the events leading to the formation of the ANENT; the terms of reference formulated at the second Coordination Committee meeting held in Vietnam, October 2005; and objectives, strategy and other institutional and managerial policies reaffirmed by the members. CD-ROM attached to the printed booklet containing nearly all of the background material in full text, including policy level papers, reports, presentations made by Member States, and meeting summaries

  12. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  13. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  14. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  15. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  16. Introduction into the nuclear safety technologies

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Vasil'chenko, V.M.; Pavlenko, A.A.; Pis'mennyj, E.N.; Shirokov, S.V.

    2006-01-01

    The theoretical and practical issues of the power and research nuclear reactor safety existing on the territory of Ukraine, the radwaste and nuclear material management objects, as well as the 'Shelter' object, the aspects of the nuclear and radiation safety regulation are considered

  17. The current state of FPGA technology in the nuclear domain

    Energy Technology Data Exchange (ETDEWEB)

    Ranta, J.

    2012-07-01

    Field programmable gate arrays are a form of programmable electronic device used in various applications including automation systems. In recent years, there has been a growing interest in the use of FPGA-based systems also for safety automation of nuclear power plants. The interest is driven by the need for reliable new alternatives to replace, on one hand, the aging technology currently in use and, on the other hand, microprocessor and software-based systems, which are seen as overly complex from the safety evaluation point of view. This report presents an overview of FPGA technology, including hardware aspects, the application development process, risks and advantages of the technology, and introduces some of the current systems. FPGAs contain an interesting combination of features from software-based and fully hardware-based systems. Application development has a great deal in common with software development, but the final product is a hardware component without the operating system and other platform functions on which software would execute. Currently the number of FPGA-based applications used for safety functions of nuclear power plants is rather limited, but it is growing. So far there is little experience or common solid understanding between different parties on how FPGAs should be evaluated and handled in the licensing process. (orig.)

  18. Atomic Information Technology Safety and Economy of Nuclear Power Plants

    CERN Document Server

    Woo, Taeho

    2012-01-01

    Atomic Information Technology revaluates current conceptions of the information technology aspects of the nuclear industry. Economic and safety research in the nuclear energy sector are explored, considering statistical methods which incorporate Monte-Carlo simulations for practical applications. Divided into three sections, Atomic Information Technology covers: • Atomic economics and management, • Atomic safety and reliability, and • Atomic safeguarding and security. Either as a standalone volume or as a companion to conventional nuclear safety and reliability books, Atomic Information Technology acts as a concise and thorough reference on statistical assessment technology in the nuclear industry. Students and industry professionals alike will find this a key tool in expanding and updating their understanding of this industry and the applications of information technology within it.

  19. Impact of Nuclear Technology to the National Socio-Economy: Technical Support by Nuclear Malaysia

    International Nuclear Information System (INIS)

    Hazmimi Kasim; Ainul Hayati Daud; Jamal Khaer Ibrahim; Alawiah Musa

    2011-01-01

    In Malaysia, the development of nuclear technology began in the year 1972. More than 30 years of application, today, the technology made impact to the national socio-economy through contribution to GDP and; improving quality of life and enhanced societal well-being. The application of nuclear technology both in public and private agencies in industrial, medical and agricultural sectors were considered. In 2008, the impact of nuclear technology shows the contribution of 0.032% to the total GDP. Industry sector shows an increasing trend and is the highest contributor, while agriculture sector remains the lowest. In this regard, Malaysian Nuclear Agency (Nuclear Malaysia) played an important role as a technical support agency in nuclear technology, as a supplier and provider for the service, training and research for the industrial, medical and agricultural sectors. (author)

  20. Strategy of nuclear power technology: learn from Korea experience

    International Nuclear Information System (INIS)

    Sriyana; Nurlaila

    2003-01-01

    Technology is one of the economic and social elements which play an important role in modernization process. When modernity ideas come into society, technology will become fundamental prerequisite for the shake of its form of modem economic social system of the society. Therefore, various effort modernize society involve program of transfer technology in main agenda. Purpose of this study is to choose a process of technology transfer and according to be able to reach for technological ability of nuclear power self-reliance. This research is conducted by study of existing literature, namely learn from experience of Korea which have succeeded to develop nuclear energy technology with self-reliance. While this research scope is to describe the process of technology transfer and according to be able to reach for technological ability of nuclear energy self-reliance. This study conclude that program of technology transfer have to start since nuclear power development pre-project period, project construction of NPP period and also in operation period. To reach for technological ability of self-reliance require to be done by long-term program and require to be build by several units which last for a transfer of technology. Government Commitment to have important role also have to be strong to push the happening of technology transfer. Institutions in concerned should have to be clear and hold responsible according to its interest. National industries as executor of technology transfer require to be given by larger ones opportunity in course of transfer this technology. (author)

  1. Handling and carrying head for nuclear fuel assemblies and installation including this head

    International Nuclear Information System (INIS)

    Artaud, R.; Cransac, J.P.; Jogand, P.

    1986-01-01

    The present invention proposes a handling and carrying head ensuring efficiently the cooling of the nuclear fuel asemblies it transports so that any storage in liquid metal in a drum within or adjacent the reactor vessel is suppressed. The invention claims also a nuclear fuel handling installation including the head; it allows a longer time between loading and unloading campaigns and the space surrounding the reactor vessel keeps free without occupying a storage zone within the vessel [fr

  2. Expanding Nuclear Power Programmes - Romanian experience: Master - Nuclear Materials and Technologies Educational Plan

    International Nuclear Information System (INIS)

    Valeca, S.; Valeca, M.

    2012-01-01

    The main objectives of the Master Nuclear Materials and Technologies Educational Plan are: 1. To deliver higher education and training in the following specific domains, such as: Powders Technology and Ceramic Materials, Techniques of Structural Analysis, Composite Materials, Semiconductor Materials and Components, Metals and Metallic Alloys, Optoelectronic Materials and Devices, Nuclear Materials, The Engineering of Special Nuclear Materials, 2. To train managers of the Nuclear Waste Products and Nuclear Safety, 3. To qualify in ICT Systems for Nuclear Process Guidance, 4. To qualify in Environmental Protection System at the Level of Nuclear Power Stations, 5. To train managers for Quality Assurance of Nuclear Energetic Processes, 6. To deliver higher education and training regarding the International Treatises, Conventions and Settlements in force in the field of nuclear related activities. (author)

  3. Bilateral agreements in the field of nuclear trade and technology

    International Nuclear Information System (INIS)

    Di Primio, J.C.

    1989-03-01

    This report analyses the evolution of the Non-Proliferation Treaty and the non-proliferation regime since the nineteen sixties from the angle of an interdisciplinary approach. The medium- and long-term issues of non-proliferation are identified and discussed in connection with the NPT revisional conference to be held in 1990, and the NPT extension conference in 1995. The major subjects under review include: the international safeguards system; NP aspects of new technologies; bilateral agreements on cooperation in nuclear energy; developments on the international nuclear market; arms control issues of relevance to the NPT; the non-proliferation interests of the Federal Republic of Germany. Looking ahead to the conferences in 1990 and 1995, the report reveals some major aspects and recommendations for consideration in decisions on the future line of non-proliferation policy pursued by the Federal German government. (orig./HP) [de

  4. Symposium on nuclear technology in Southern Africa. Final programme [and papers

    International Nuclear Information System (INIS)

    1990-06-01

    The symposium on Nuclear Technology in Southern Africa was organized by the Institution of Nuclear Engineers South Africa Branch. It was held at ESKOM Megawatt Park, June 20 and 21, 1990. The scope of the meeting covered nuclear activities in South Africa including performance and industry perspective of Koeberg, planning for nuclear siting, uranium resources, production and demand, uranium conversion and enrichment, fuel fabrication and post irradiation examination. National nuclear programmes of France, Spain, the United Kingdom and the United States were presented and the pubic acceptance in South Africa discussed. In addition papers dealt with future reactor types of advanced light water reactors and fast breeders, nuclear developments in Europe and Far East and accident management in the US. Developments in Southern Africa concentrated on the role of nuclear energy in the future energy strategy, trends in nuclear licensing and prerequisites for successful nuclear generation. 21 papers are indexed individually

  5. Revolution of Nuclear Power Plant Design Through Digital Technology

    International Nuclear Information System (INIS)

    Zhang, L.; Shi, J.; Chen, W.

    2015-01-01

    In the digital times, digital technology has penetrated into every industry. As the highest safety requirement standard, nuclear power industry needs digital technology more to breed high quality and efficiency. Digital power plant is derived from digital design and the digitisation of power plant transfer is an inevitable trend. This paper introduces the technical solutions and features of digital nuclear power plant construction by Shanghai Nuclear Engineering Research & Design Institute, points out the key points and technical difficulties that exist in the process of construction and can serve as references for further promoting construction of digital nuclear power plant. Digital technology is still flourishing. Although many problems will be encountered in construction, it is believed that digital technology will make nuclear power industry more safe, cost-effective and efficient. (author)

  6. Managing nuclear knowledge: IAEA activities and international coordination. Asian Network for Education in Nuclear Technology (ANENT)

    International Nuclear Information System (INIS)

    2007-07-01

    This booklet summarizes the main activities being carried out by the IAEA with regard to the Asian Network for Education in Nuclear Technology (ANENT) and other related activities including those completed during the period 2002-2005. It briefly describes the background information on the events leading to the formation of the ANENT; the terms of reference formulated at the second Coordination Committee meeting held in Vietnam, October 2005; and objectives, strategy and other institutional and managerial policies reaffirmed by the members. The attached CD-ROM contains nearly all of the background material in full text, including policy level papers, reports, presentations made by Member States, and meeting summaries

  7. Electronics in nuclear science and technology

    International Nuclear Information System (INIS)

    Dastidar, P.R.

    1979-01-01

    Electronics plays a vital role in the field of nuclear research and industry. Nuclear instrumentation and control systems rely heavily on electronics for reliable plant operation and to ensure personnel safety from harmful radiations. Rapid developments in electronics have resulted in the gradual phasing out of pneumatic instruments and replacement by solid-state electronic systems. On-line computers are now being used extensively for centralised monitoring and control of large nuclear plants. The paper covers the following main topics: (i) radiation detection and measurement, (ii) systems for nuclear research and design, (iii) nuclear reactor control and safety systems and (iv) modern trends in reactor control and nuclear instrumentation systems. The methods for radiation detection, ionization chambers, self-powdered detectors and semiconductor detectors are discussed in brief, followed by the description of the electronic systems commonly used in nuclear research, namely the pulse height, multichannel, correlation and fourier analysers. NIM and CAMAC, the electronic system standards used in nuclear laboratories/industries are also outlined. Electronic systems used for nuclear reactor control, safety, reactor core monitoring, failed fuel detection and process control instrumentation, have been described. The application of computers to reactor control, plant data processing, better man-machine interface and the use of multiple computer systems for achieving better reliability have also been discussed. Micro-computer based instrumentation systems, computers in reactor safety and advanced nuclear instrumentation techniques are briefly illustrated. (auth.)

  8. Applications of the gas chromatography in the nuclear science and technology

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.

    1972-01-01

    This paper is a review on the applications of the gas chromatography in the nuclear science and technology published up to December 1971. Its contents has been classified under the following heads; I) Radiogaschromatography, II) Isotope separation, III) Preparation of labelled molecules, IV) Nuclear fuel cycle, V) Nuclear reactor technology, VI) Irradiation chemistry, VIl) Separation of me tal compounds in gas phase, VIII) Applications of the gas chromatography carried out at the Junta de Energia Nuclear, Spain. Arapter VIII only includes the investigations carried out from January 1969 to December 1971. Previous investigations in this field has been published elsewhere. (Author)

  9. Nuclear technology and the developing world

    International Nuclear Information System (INIS)

    Walsh, Kathleen

    2005-01-01

    through air travel, industry out sourcing, and intangible channels of communication such as the Internet. Simply put, as international borders become more porous as a result of free-trade arrangements, opportunities for proliferators multiply as well. Although the collection of information and intelligence to aid nonproliferation has become easier in a more open and transparent trade environment, efforts to stem proliferation have become more difficult as the means of acquiring and transporting nuclear and other WMD-related technologies have also multiplied. As these examples suggest, existing nonproliferation tools and export control mechanisms are not up to the task of dealing with new global economic realities. IAEA Director noted recently: 'The relative ease with which a multinational illicit network could be set up and operated demonstrates clearly the inadequacy of the present export control system.' Nor is it likely -absent substantial support from authorities in developing countries around the globe - that all of today's new proliferation channels can be effectively plugged. What is needed, therefore (and has long been recognized as essential by nonproliferation advocates) is a universal norm supporting nonproliferation. But how can this goal be achieved? As with much of today's discussion about globalization, the answer may lie in China. A credible proliferation control system is viewed in Beijing as a prerequisite to China becoming a high-tech economy. China also could play a more critical role in promoting international cooperative nonproliferation activities. It is incumbent even more so, however, on the international community to recognize, promote, and engage efforts by China and other developing States to institute improved trade controls, even though these are made in the countries' own national self interest. In this endeavor, the interests of the international community and the state intersect. Support for such activities should be given high priority in

  10. Technology transfer assessment in the nuclear agreement Brazil-Germany

    International Nuclear Information System (INIS)

    Cecchi, J.C.

    1985-04-01

    The three main arguments utilized in the Nuclear Brazil-Germany Agreement celebrated in 1975 were the following: a) the low Brazilian hydroelectric potential insufficient to attend the increasing of electrical energy demand; b) the low cost of nuclear energy related to hydroelectric energy: c) and finally, the nuclear technology transfer, involving inclusive the fuel cycle and that could permit to Brazil self-sufficiency in the nuclear energy field. Thus, this work intends to describe and discussing the 'technology transfer strategy' trying to understand and showing which are its main characteristics, and also which are the real actuals results. (author) [pt

  11. Proceedings of the first annual Nuclear Criticality Safety Technology Project

    International Nuclear Information System (INIS)

    Rutherford, D.A.

    1994-09-01

    This document represents the published proceedings of the first annual Nuclear Criticality Safety Technology Project (NCSTP) Workshop, which took place May 12--14, 1992, in Gaithersburg, Md. The conference consisted of four sessions, each dealing with a specific aspect of nuclear criticality safety issues. The session titles were ''Criticality Code Development, Usage, and Validation,'' ''Experimental Needs, Facilities, and Measurements,'' ''Regulation, Compliance, and Their Effects on Nuclear Criticality Technology and Safety,'' and ''The Nuclear Criticality Community Response to the USDOE Regulations and Compliance Directives.'' The conference also sponsored a Working Group session, a report of the NCSTP Working Group is also presented. Individual papers have been cataloged separately

  12. A project in support of Nuclear Technology Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Jung; Choi, Pyong Hoon; Yi, Ji Ho (and others)

    2005-12-15

    Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing. - Promotion of domestic nuclear energy technology by utilizing nuclear energy informations and computer software developed in the advanced countries. - Establish strategies of international cooperation in an effort to promote our nation's Leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate.

  13. ICT based training on nuclear technology applications in Tanzania

    International Nuclear Information System (INIS)

    Mdoe, S.L.; Kimaro, E.

    2006-01-01

    Peaceful application of nuclear technology has contributed to socio-economic resource development in Tanzania. The Tanzania Atomic Energy Commission has taken some active steps for the incorporation and or adoption of ICT-based training modules in nuclear science and technology and its applications. The overall objective of this programme is to establish a sustainable national capability for using the potential of information communication technologies (ICTs) for training and education in the field of nuclear science and technology. This paper reviews some of the experience which the authors gained in the area of ICT based training in nuclear technology applications, it describes some of the challenges experienced, and some proposals to address the issues involved. (author)

  14. Success in nuclear technology transfer: A Canadian perspective

    International Nuclear Information System (INIS)

    Lawson, D.S.; Stevens, J.E.S.; Boulton, J.

    1986-10-01

    Technology transfer has played a significant part in the expansion of nuclear power to many countries of the world. Canada's involvement in nuclear technology transfer spans four decades. The experience gained through technology transfer, initially to Canadian industry and then to other countries in association with the construction of CANDU nuclear power plants, forms a basis from which to assess the factors which contribute to successful technology transfer. A strong commitment from all parties, in terms of both financial and human resources, is essential to success. Detailed planning of both the scope and timing of the technology transfer program is also required together with an assessment of the impact of the introduction of nuclear power on other sectors of the economy. (author)

  15. Nuclear Technology Programs semiannual progress report, October 1987--March 1988

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-08-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1987--March 1988. Work in applied physical chemistry included investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  16. Reference nuclear data for space technology

    International Nuclear Information System (INIS)

    Burrows, T.W.; Holden, N.E.; Pearlstein, S.

    1977-01-01

    Specialized bibliographic searches, data compilations, and data evaluations help the basic and applied research scientist in his work. The National Nuclear Data Center (NNDC) collates and analyzes nuclear physics information, and is concerned with the timely production and revision of reference nuclear data. A frequently revised reference data base in computerized form has the advantage of large quantities of data available without publication delays. The information normally handled by coordinated efforts of NNDC consists of neutron, charged-particle, nuclear structure, radioactive decay, and photonuclear data. 2 figures

  17. International Nuclear Management Academy Requirements for University Master’s Programmes in Nuclear Technology Management

    International Nuclear Information System (INIS)

    Grosbois, J. de; Hirose, H.; Adachi, F.; Liu, L.; Hanamitsu, K.; Kosilov, A.; Roberts, J.

    2016-01-01

    Full text: The development of any national nuclear energy programme is dependent on the successful development of qualified human resources, through a sustainable nuclear education and training programmes supported by government and industry. Among the broad range of specialists needed for the continued safe and economic utilization of nuclear technology for peaceful purposes, are a most vital component—managers. The International Nuclear Management Academy (INMA) is an IAEA facilitated collaboration framework in which universities provide master’s degree programmes focusing on the management aspect for the nuclear sector. INMA master’s programmes in Nuclear Technology Management (NTM) specify a common set of competency requirements that graduates should acquire to prepare them to become competent managers. This paper presents an overview of the INMA collaboration framework and the requirements for partner universities to implement master’s programmes in Nuclear Technology Management. (author

  18. Program strategy document for the Nuclear Materials Transportation Technology Center

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1979-07-01

    A multiyear program plan is presented which describes the program of the Nuclear Materials Transportation Technology Center (TIC) at Sandia Laboratories. The work element plans, along with their corresponding work breakdown structures, are presented for TTC activities in the areas of Technology and Information Center, Systems Development, Technology, and Institutional Issues for the years from 1979 to 1985

  19. Nuclear data for science and technology: Centres for development

    International Nuclear Information System (INIS)

    Lemmel, H.

    1996-01-01

    The IAEA Nuclear Data Section operates a centre which maintains the world's most comprehensive collection of nuclear and atomic data libraries that are needed for nuclear and radiation technologies in Member States. This article reviews these services, and the particular role of developing countries in this global data network. The availability of various data files to scientists in all IAEA Member States and its sources are mentioned. More recently the world's major data libraries have also become accessible on-line through NDIS, the Nuclear Data Information System, via the Internet or World Wide Web. The availability of various data files to scientists in all IAEA Member States and its sources are mentioned. Examples of nuclear data categories, Nuclear data libraries, Special purpose libraries, Network of nuclear data center and Nuclear data handbooks are given

  20. Guidelines for wireless technology in nuclear power plants

    International Nuclear Information System (INIS)

    Shankar, Ramesh

    2003-01-01

    As a result of technological breakthroughs, increased demand for the use of wireless technology is common in all industries today, and the electric power industry is no exception. Already, wireless technology has many applications in our industry, including - but not limited to - cellular phone systems, paging systems, two-way radio communication systems, dose management and tracking systems, and operator logs. EPRI has prepared a comprehensive guidelines document to support evaluation of wireless technologies in power plants for integrated (voice/data/video) communication, remote equipment and system monitoring, and to complement an electronic procedures support system (EPSS). The guidelines effort focuses on the development of a rules structure to support the deployment of wireless devices in a plant without compromising continuous, safe, and reliable operation. The guidelines document consists of two volumes. The first volume is introductory in nature and lays out the business case for applying wireless technologies. The intended audience is senior plant management personnel and utility industry executives. This volume contains background information, templates, worksheets, processes, and presentations that will allow internal sponsors to create business cases for piloting wireless projects. The second volume includes guidance on implementation and regulatory issues relevant to plant implementation. It covers the following application areas: implementation of integrated communication capability, equipment monitoring, work quality control, time and knowledge management, and business process automation. It details regulatory issues relevant to the adoption of wireless technology within nuclear power plants and offers guidance on preparing for and executing pilot and implementations of wireless technologies. The paper will cover important aspects on the guidelines. (author)

  1. Recommended numerical nuclear physics data for cutting-edge nuclear technology applications

    International Nuclear Information System (INIS)

    Ganesan, S.; Srivenkatesan, R.; Anek Kumar; Murthy, C.S.R.C.; Dhekne, P.S.

    2005-01-01

    This paper introduces some aspects of online nuclear data services at Mumbai as part of today's technology of sharing knowledge of the recommended numerical nuclear physics data for nuclear applications. The physics foundation for cutting-edge technology applications is significantly strengthened by such knowledge generation and sharing techniques. A BARC server is presently mirroring the nuclear data services of the IAEA, Vienna. The users can get all the nuclear data information much faster from the BARC nuclear data mirror website that is now fully operational. The nuclear community is encouraged to develop the habit of accessing the website for recommended values of nuclear data for use in research and applications. The URL is: www-nds.indcentre.org.in (author)

  2. Reflection on the talent structure of knowledge-service oriented nuclear technology library

    International Nuclear Information System (INIS)

    Zhang Xue; Zhang Ruiping

    2010-01-01

    Nuclear technology library is the only authoritative organization in collection of nuclear technology literatures.It has exceptional advantage and a large number of customers with great requirement. With promotion of network and digitization of information resource, new situation is posed before nuclear technology library-transforming from traditional library to knowledge-service oriented library. In order to carry on knowledge service effectively and conveniently, a variety of talents are essential. So establishing a talent team with high quality and complete specialities is the fundamental guarantee. Based on a great deal research and discussion, requirements for establishment of a talent team are put forward in the paper and suggestion are present: 5 basic specialized talents are required in nuclear technology library, including organization and management talent, basic operation talent, search service talent, technology application talent, information development talent. (authors)

  3. Nuclear Medicine Technology: A Suggested Postsecondary Curriculum.

    Science.gov (United States)

    Technical Education Research Center, Cambridge, MA.

    The purpose of this curriculum guide is to assist administrators and instructors in establishing nuclear medicine technician programs that will meet the accreditation standards of the American Medical Association (AMA) Council on Medical Education. The guide has been developed to prepare nuclear medicine technicians (NMT's) in two-year…

  4. Technology in the policy process - controlling nuclear power

    International Nuclear Information System (INIS)

    Collingridge, D.

    1983-01-01

    The discussion in this book is built around nuclear power. The technology of nuclear power is shown to have features which make it inflexible in the sense that, once built, it is difficult and expensive to control. If inflexible technology is to be avoided, it is crucially important to be able to identify this failing at an early stage in the technology's development, before it has acquired an immunity to political control. Again, this problem is approached through the example of nuclear power, in particular the breeder reactor. The breeder is shown to be even less flexible than today's nuclear technology, because it will have higher capital costs, be of greater capital intensity, longer lead time, larger unit size, and will require more infrastructure for its operation. If this is developed, the breeder will be even less open to political control than the nuclear plant of the present. To put it another way, its planning will be even more open to errors and whatever errors are made will be even more costly than for existing nuclear technology. It is therefore even less of a socially and economically acceptable technology than today's nuclear power. (author)

  5. A study on the nuclear technology policy

    International Nuclear Information System (INIS)

    Yang, Maeng Ho; Ham, C. H.; Kim, H. J.; Chung, W. S.; Lee, T. J.; Lee, B. O.; Yun, S. W.; Choi, Y. M.; Eom, T. Y.

    1998-01-01

    This study analyzed the major issues as the research activities for the support of establishment and implementation of national policy. The analyses were focused on the recommendations of the responsive direction of national policy in positive and effective manners in accordance with the changes of international nuclear affairs. This study also analyzed the creation of environmental foundation for effective implementation of the national policy and national R and D investment such as securing national consensus and openings of policy information to the public. The major results of the role and position of nuclear policy, trends of nuclear policy and nuclear R and D activities of USA, France, Japan, Asian developing countries etc. and international trends of small- and medium-sized reactor as well as spin-offs of nuclear R and D activities, were analyzed. (author). 66 refs., 27 tabs., 15 figs

  6. Nuclear technology and knowledge management in radioprotection

    International Nuclear Information System (INIS)

    Alonso, A.

    2007-01-01

    The cycle of life of nuclear power plant expands along seven well defined phases lasting about a century and therefore employing three successive generations. Each one of such phases is in need of specific knowledge on radiation protection matters. The nuclear moratorium introduced in Spain in 1983 suspended all those activities related to site selection, design and construction of new units and their commissioning. As it does not seem to be prudent to renounce to nuclear energy on a permanent basis, nuclear utilities, engineering and service companies, academic, research and state organizations agencies should establish programmes to recuperate the radiological knowledge and experience, among other subjects, acquired in the interrupted activities. Likewise, those responsible for the operation of nuclear power plants and the follow up activities should also establish knowledge management activities on radiation protection and other subject matters in line with the IAEA recommendations. (Author) 19 refs

  7. Nuclear data measurement and evaluation activities for nuclear power technology applications

    International Nuclear Information System (INIS)

    Bioux, P.; Mouney, H.; Rowlands, J.L.

    1994-05-01

    Activity in the field of nuclear data for the fission power technology applications is reviewed. The present situation is of concern to the French nuclear industry because of the few measurement facilities which are now funded for work in the field and the reductions in the number of scientists expert in measurement and evaluation of nuclear data. It is argued that there are requirements which justify work to improve many items of nuclear data. (authors)

  8. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.5

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fifth one, the content is about radiation protection and nuclear chemical industry.

  9. Overview of materials technologies for space nuclear power and propulsion

    Science.gov (United States)

    Zinkle, S. J.; Ott, L. J.; Ingersoll, D. T.; Ellis, R. J.; Grossbeck, M. L.

    2002-01-01

    A wide range of different space nuclear systems are currently being evaluated as part of the DOE Special Purpose Fission Technology program. The near-term subset of systems scheduled to be evaluated range from 50 kWe gas-, pumped liquid metal-, or liquid metal heat pipe-cooled reactors for space propulsion to 3 kWe heat pipe or pumped liquid metal systems for Mars surface power applications. The current status of the materials technologies required for the successful development of near-term space nuclear power and propulsion systems is reviewed. Materials examined in this overview include fuels (UN, UO2, UZrH), cladding and structural materials (stainless steel, superalloys, refractory alloys), neutron reflector materials (Be, BeO), and neutron shield materials (B4C,LiH). The materials technologies issues are considerably less demanding for the 3 kWe reactor systems due to lower operating temperatures, lower fuel burnup, and lower radiation damage levels. A few reactor subcomponents in the 3 kWe reactors under evaluation are being used near or above their engineering limits, which may adversely affect the 5 to 10 year lifetime design goal. It appears that most of these issues for the 3 kWe reactor systems can be accommodated by incorporating a few engineering design changes. Design limits (temperature, burnup, stress, radiation levels) for the various materials proposed for space nuclear reactors will be summarized. For example, the temperature and stress limits for Type 316 stainless steel in the 3 kWe Na-cooled heat pipe reactor (Stirling engine) concept will be controlled by thermal creep and CO2 corrosion considerations rather than radiation damage issues. Conversely, the lower operating temperature limit for the LiH shield material will likely be defined by ionizing radiation damage (radiolysis)-induced swelling, even for the relatively low radiation doses associated with the 3 kWe reactor. .

  10. Nuclear power technologies for application in developing countries

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.

    2000-01-01

    The tremendous social and political changes which have occurred during the recent decade in the former USSR made it possible to launch the process of commercialization of defense-related technologies in Russia. The so-called dual-use technologies are meant to be initially developed by the state for defense needs, but having a high commercial potential as well. To date, the process of such technology transfer from the state sector to a private one has been limited primarily by insufficient progress of the national private sector. Essentially, the main economic problem still remains the attraction of private capital for the promotion of dual-use technologies to the point at where they acquire commercially viable. A large number of advanced technologies are waiting to be commercialized. The report presented considers the prospects of civil use of some technologies related to the nuclear power area: space nuclear power systems, nuclear powered submarines and rector-pumped lasers. (author)

  11. Development of pressure boundaries leak detection technology for nuclear reactor

    International Nuclear Information System (INIS)

    Zhang Yao; Zhang Dafa; Chen Dengke; Zhang Liming

    2008-01-01

    The leak detection for the pressure boundaries is an important safeguard in nuclear reactor operation. In the paper, the status and the characters on the development of the pressure boundaries leak detection technology for the nuclear reactor were reviewed, especially, and the advance of the radiation leak detection technology and the acoustic emission leak detection technology were analyzed. The new advance trend of the leak detection technology was primarily explored. According to the analysis results, it is point out that the advancing target of the leak detection technology is to enhance its response speed, sensitivity, and reliability, and to provide effective information for operator and decision-maker. The realization of the global leak detection and the whole life cycle health monitoring for the nuclear boundaries is a significant advancing tendency of the leak detection technology. (authors)

  12. Combating climate change: How nuclear science and technology are making a difference

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2015-01-01

    Climate change is the biggest environmental challenge of our time. As governments around the world prepare to negotiate a legally binding, universal agreement on climate at the United Nations Climate Change Conference in Paris at the end of the year, it is important that the contributions that nuclear science and technology can make to combating climate change are recognized. Nuclear science, including nuclear power, can play a significant role in both climate change mitigation and adaptation.

  13. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of highly enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of {sup 233,235}U and {sup 239}Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL. The complete library, or any part of it, may be retrieved from www.nndc.bnl.gov.

  14. Measuring Public Acceptance of Nuclear Technology with Big data

    International Nuclear Information System (INIS)

    Roh, Seugkook

    2015-01-01

    Surveys can be conducted only on people in specific region and time interval, and it may be misleading to generalize the results to represent the attitude of the public. For example, opinions of a person living in metropolitan area, far from the dangers of nuclear reactors and enjoying cheap electricity produced by the reactors, and a person living in proximity of nuclear power plants, subject to tremendous damage should nuclear meltdown occur, certainly differs for the topic of nuclear generation. To conclude, big data is a useful tool to measure the public acceptance of nuclear technology efficiently (i.e., saves cost, time, and effort of measurement and analysis) and this research was able to provide a case for using big data to analyze public acceptance of nuclear technology. Finally, the analysis identified opinion leaders, which allows target-marketing when policy is executed

  15. Catastrophe theory with application in nuclear technology

    International Nuclear Information System (INIS)

    Valeca, Serban Constantin

    2002-01-01

    The monograph is structured on the following seven chapters: 1. Correlation of risk, catastrophe and chaos at the level of polyfunctional systems with nuclear injection; 1.1 Approaching the risk at the level of power systems; 1.2 Modelling the chaos-catastrophe-risk correlation in the structure of integrated classical and nuclear processes; 2. Catastrophe theory applied in ecosystems models and applications; 2.1 Posing the problems in catastrophe theory; 2.2 Application of catastrophe theory in the engineering of the power ecosystems with nuclear injection; 4.. Decision of abatement of the catastrophic risk based on minimal costs; 4.1 The nuclear power systems sensitive to risk-catastrophe-chaos in the structure of minimal costs; 4.2 Evaluating the market structure on the basis of power minimal costs; 4.3 Decisions in power systems built on minimal costs; 5. Models of computing the minimal costs in classical and nuclear power systems; 5.1 Calculation methodologies of power minimal cost; 5.2 Calculation methods of minimal costs in nuclear power sector; 6. Expert and neuro expert systems for supervising the risk-catastrophe-chaos correlation; 6.1 The structure of expert systems; 6.2 Application of the neuro expert program; 7. Conclusions and operational proposals; 7.1 A synthesis of the problems presented in this work; 7.2 Highlighting the novel aspects applicable in the power systems with nuclear injection

  16. 2005 meeting nuclear technology conference: plenary address

    International Nuclear Information System (INIS)

    Hohlefelder, W.

    2005-01-01

    In retrospect, last year on the whole was a good year for nuclear power in Germany. Nuclear power plants achieved excellent outputs, fuel transports were carried out without any interruptions, construction of interim stores progresses, and there are no more vociferous public exchanges about nuclear power. In view of the more and more urgent questions of future energy supply of the country, the attitude of the German public to nuclear power has changed for a more pragmatic view. As foreseeable, the idea of replacing nuclear power by renewable energy resources more and more turns out to be an illusion. The consequences can be seen, e.g., in the emission balances of the dena Study, and would lead to considerably higher costs, respectively. The stagnation in the final storage area must be ended. Concrete real progress in the field is necessary, and German politics is required to take pragmatic steps. This will be possible only if we stick to the two-repositories concept. The nuclear industry in many ways works to preserve know-how in the field on the long term. Its commitment goes far beyond the commercial interests of any specific company, for instance, in co-financing research projects. Nuclear power is gaining more and more ground in international development. The EPR is under construction in Finland, and a decision to build the EPR has been taken in France. (orig.)

  17. A study on international nuclear cooperation and technology self-reliance strategies for nuclear development in other countries

    International Nuclear Information System (INIS)

    Choi, Young Myung; Han, Pil Soon; Park, Yun Sik; Song, Ki Dong; Yang, Mang Ho; Oh, Keun Bae; Jang, Hong Lae; Lee, Dong Jin; Lee, Kang Suk; Kim, Sung Ki; Ko, Han Suk

    1993-12-01

    This study deals with international nuclear cooperation and technology self-reliance for nuclear development in other countries. This study also analyses the international and domestic nuclear environment such as NPT, nuclear export control, gloval environmental issues, and public acceptance. Finally, a suggestion is made for the future direction of strategy for nuclear technology self-reliance in Korea. (Author)

  18. Atoms for peace: Extending the benefits of nuclear technologies

    International Nuclear Information System (INIS)

    Qian, J.; Rogov, A.

    1995-01-01

    The article focuses on the projects co-operatively undertaken through IAEA mechanisms to extend the reach of beneficial nuclear technologies in response to increasing demands for technical support and assistance from its Member States

  19. Three voices: women working in nuclear science and technology

    International Nuclear Information System (INIS)

    1999-01-01

    Nuclear science and technology is a fascinating and growing work area for women. This short video portrays three professional women working within this field for the International Atomic Energy Agency

  20. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    International Nuclear Information System (INIS)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-01-01

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  1. Annual meeting on nuclear technology '92. Technical session 'Nuclear energy discussion'

    International Nuclear Information System (INIS)

    1992-05-01

    The report contains the six special papers red at the 1992 annual conference on nuclear engineering at Karlsruhe, all of which are individually retrievable from the database. They deal with the following subjects: historical development of the basic trends of technology criticism; communication problems in connection with the conveying of technical facts; psycho-sociological patterns of technology anxiety-mental infection or risk consciousness; field of tension between technology and journalism; handling of insecurities; ethical justifiability of nuclear energy use. (HSCH) [de

  2. Fallout: the defence, industrial and technological benefits of nuclear deterrence

    International Nuclear Information System (INIS)

    Tertrais, Bruno

    2015-01-01

    In the current climate of budgetary restrictions, it is fair to question the weight of military nuclear defence spending. Upon examination, however, nuclear deterrence has numerous military, industrial, and technological benefits. It is, in fact, totally intertwined with the other elements of our defence system. (author)

  3. Radiation protection and safety: for nuclear technology development support

    International Nuclear Information System (INIS)

    San Pedro, A.; Hermida, J.; Fraga, H.

    1996-01-01

    A study about ICRP 60 changes as well as legal aspects and radiation protection activities in Uruguay was reported in this article. Special attention in the personnel dosimetry, radioactive sources control and their national inventory, SSDL, radioactive wastes management and SAMARI system can found among main activities developed in the Radiation Protection and Nuclear Safety Sector in National Nuclear Technology Direction

  4. Development of a national neutron database for nuclear technology

    International Nuclear Information System (INIS)

    Igantyuk, A.V.; Kononov, V.N.; Kuzminov, B.D.; Manokhin, V.N.; Nikolaev, M.N.; Furzov, B.I.

    1997-01-01

    This paper describes the stages of a many years activities at the IPPE consisting of the measurement, theoretical description and evaluation of neutron data, and of the establishment of a national data bank of neutron data for nuclear technology. A list of libraries which are stored at the Nuclear Data Centre is given. (author). 16 refs, 14 tabs

  5. China nuclear science and technology report: Abstracts, 1992

    International Nuclear Information System (INIS)

    1992-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1992 (Report Numbers CNIC-00555 ∼ CNIC-00674) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  6. Abstracts: China Nuclear Science and Technology Report (1989)

    International Nuclear Information System (INIS)

    1990-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Report published in 1989 (Report Numbers CNIC--00255∼CNIC--00354) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  7. Abstracts China nuclear science and technology reports (1988)

    International Nuclear Information System (INIS)

    1989-03-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1988 (Report Numbers CNIC -00115 ∼ CNIC-00254) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  8. Abstracts China nuclear science and technology report (1999)

    International Nuclear Information System (INIS)

    2001-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1999 (Report Numbers CNIC-01331 -CNIC-01430) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  9. 2008 annual meeting on nuclear technology. Pt. 1. Section reports

    International Nuclear Information System (INIS)

    Dagan, Ron; Sanchez Espinoza, Victor Hugo; Faber, Wolfgang; Berlepsch, Thilo v.; Spann, Holger; Schaffrath, Andreas; Schubert, Bernd; Rieger, Udo; Christ, Bernhard G.; Gulden, Werner; Bogusch, Edgar

    2008-01-01

    Summary report on these 5 - out of 11 - Sections of the Annual Conference on Nuclear Technology held in Hamburg on May 27-29, 2008: - Reactor Physics and Methods of Calculation - Thermodynamics and Fluid Dynamics - Safety of Nuclear Installations - Methods, Analysis, Results - Front End and Back End of the Fuel Cycle, Radioactive Waste, Storage - Fusion Technology. Other Sections will be covered in reports in further issues of atw. (orig.)

  10. Abstracts: China Nuclear Science and Technology Report (1990)

    International Nuclear Information System (INIS)

    1991-05-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1990 (Report Numbers CNIC--00355 to CNIC-00454) are presented. The items are arranged according to INIS subjects categories, which mainly are physics, chemistry, materials, earth sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  11. The social shaping of nuclear energy technology in South Africa

    OpenAIRE

    Rennkamp, Britta; Bhuyan, Radhika

    2016-01-01

    This paper analyses the question why the South African government intends to procure nuclear energy technology, despite affordable and accessible fossil and renewable energy alternatives. We analyse the social shaping of nuclear energy technology based on the statements of political actors in the public media. We combine a discourse network analysis with qualitative analysis to establish the coalitions in support and opposition of the programme. The central arguments in the debate are cost, s...

  12. Abstracts of China Nuclear Science and Technology Report (1998)

    International Nuclear Information System (INIS)

    1999-09-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1998 (Report Numbers CNIC-01231-CNIC-01330) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  13. China nuclear science and technology report (1991). Abstracts

    International Nuclear Information System (INIS)

    1992-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1991 (Report Numbers CNIC-00455 to CNIC-00554) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  14. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    International Nuclear Information System (INIS)

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  15. The status and prospects of nuclear reactor technology development

    International Nuclear Information System (INIS)

    Juhn, P.E.

    2001-01-01

    Nuclear power is a proven technology which currently contributes about 16% to the world electricity supply and, to a much lesser extent, to heat supply in some countries. Nuclear Power is economically competitive with fossil fuels for base load electricity generation in many countries, and is one of the commercially proven energy supply options that could be extended in the future to reduce environmental burdens, especially greenhouse gas emissions, from the electricity sector. Over the past five decades, nearly ten thousand reactor-years of operating experience have been accumulated with current nuclear power plants. However, nuclear power is currently at a cross-road. There are no new nuclear power construction projects in most parts of the world, except some countries in East Asia and Eastern Europe. The main issues are economic competitiveness with cheap gas plants and public concerns on nuclear waste disposal and safety. Strong economic growth and the shrinking of existing electricity over-capacities could favour nuclear power. Since nuclear power emits no greenhouse gases to the environment, its development could be further accelerated by a breakthrough in innovative nuclear reactor technology development. Great attention also needs to be paid to the design of new nuclear reactors, which are modularized and faster to construct, thus reducing capital investment and construction period, and thereby improving their overall economics and their compatibility with the infrastructure of, in particular, developing countries, where new energy demands are expected. This paper discusses the future world energy outlook, challenges for and progresses on nuclear power; overview of new nuclear reactor technology development; and the role of the International Atomic Energy Agency (IAEA) in the development of new innovative nuclear reactors. (author)

  16. Overview on Fusion Nuclear Technology Experimental Testing

    Czech Academy of Sciences Publication Activity Database

    Entler, Slavomír; Kysela, J.

    2016-01-01

    Roč. 2, č. 2 (2016), č. článku 021018. ISSN 2332-8983 Institutional support: RVO:61389021 Keywords : fusion * corrosion * thermohydraulic * LiPb * HHF * ITER Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  17. Innovative technology for safe, sustainable nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    The report presents the ONET experience many areas related to nuclear energy, such as: new facility design and; construction & plant; revamping; operations support; maintenance; testing and inspection; decontamination, dismantling; waste treatment; asbestos removal; training and other engineering and logistic services

  18. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    Suripto, A.; Sastratenaya, A.S.; Sutarno, D.

    2000-01-01

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  19. Artificial intelligence and nuclear power. Report by the Technology Transfer Artificial Intelligence Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    The Artificial Intelligence Task Team was organized to review the status of Artificial Intelligence (AI) technology, identify guidelines for AI work, and to identify work required to allow the nuclear industry to realize maximum benefit from this technology. The state of the nuclear industry was analyzed to determine where the application of AI technology could be of greatest benefit. Guidelines and criteria were established to focus on those particular problem areas where AI could provide the highest possible payoff to the industry. Information was collected from government, academic, and private organizations. Very little AI work is now being done to specifically support the nuclear industry. The AI Task Team determined that the establishment of a Strategic Automation Initiative (SAI) and the expansion of the DOE Technology Transfer program would ensure that AI technology could be used to develop software for the nuclear industry that would have substantial financial payoff to the industry. The SAI includes both long and short term phases. The short-term phase includes projects which would demonstrate that AI can be applied to the nuclear industry safely, and with substantial financial benefit. The long term phase includes projects which would develop AI technologies with specific applicability to the nuclear industry that would not be developed by people working in any other industry

  20. Transfer of nuclear technology to the developing countries

    International Nuclear Information System (INIS)

    Cisse, A.M.

    1977-01-01

    The increased Agency assistance for transfer of nuclear technology is essential for the developing countries and especially Africa. It would have a beneficial effect on the implementation of training programmes. The introduction of teaching in nuclear physics at universities in Nigeria, Tanzania and Madagascar should be extended to other universities in order further to orientate African students towards nuclear sciences. In the peaceful uses of atomic energy the African States are concentrating their activities in the spheres of agriculture and medicine. The Agency assists these countries in programmes in agriculture and the exploitation of natural resources, including water. The introduction of radioisotope techniques should be accelerated at all existing agricultural research centres. Services of this kind exist in a few countries, including Senegal, Kenya, the Ivory Coast, Morocco and the Sudan. Radioisotopes employed there make it possible, in particular, to trace the movement of fertilizers from soil to plant and to measure soil humidity. Ionizing radiations can be used to produce genetic effects for the purpose of creating hew varieties of important crop plants and selecting varieties requiring less water for their growth. Such activities are naturally of the greatest interest to the African continent which, as a whole, lives basically from agriculture. The guarantee of food supplies during the next decade is a subject of concern for Africa, and the prevention of losses of foodstuffs is one of the main objectives of African policy.Food irradiation projects are being conducted in Ghana (on cocoa beans) and in Nigeria (on sweet potatoes) with the support of Agency research projects. The Agency's project on the radiation preservation of fish, at present being implemented in countries in Asia, could - provided that the results are satisfactory - have important economic repercussions for the African countries.In the medical sphere, the improvement in health

  1. AFRA Network for Education in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Hashim, N.; Wanjala, F.

    2017-01-01

    AFRA-NEST was Conceived at the AFRA Ministerial Conference held in Aswan in 2007. The main objective of AFRA-NEST is to facilitate operation and networking in higher education, training and related research in Nuclear Science (NS&T) in the African Region through: • Sharing of information and materials of nuclear education and training. The strategies for implementing the objectives are: the use ICT for web-based education and training,; recognition of Regional Designated Centres (RDCs) for professional nuclear education in nuclear science and technology, and organization of harmonized and accredited programs at tertiary levels for teaching and research in the various nuclear disciplines. The main function of the AFRA-NEST is to; foster sustainable human resource development and nuclear knowledge management; host the Cyber Learning Platform for Nuclear Education and Training for the AFRA region and to integrate all available higher education capabilities in Africa

  2. A study on future nuclear reactor technology and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels.

  3. High energy nuclear database: a test-bed for nuclear data information technology

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.A.; Vogt, R.; Beck, B.; Pruet, J. [Lawrence Livermore National Lab, Livermore, CA (United States); Vogt, R. [Davis Univ. of California, CA (United States)

    2008-07-01

    We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a test-bed for the further development of an object-oriented nuclear data format and database system. By using 'off-the-shelf' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a 'Grand Unified Nuclear Format' encapsulating data types used in the ENSDF, Endf/B, EXFOR, NSR and other formats, including processed data formats. (authors)

  4. Quality assurance for the research and development of nuclear technology

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Kim, Young Sea; Lim, Nam Jin

    1991-01-01

    KAERI is carrying out several large nuclear R and D projects to achieve the indigenization of nuclear technology in Korea. In order to accomplish nuclear projects effectively, the KAERI-wide quality assurance system as well as project quality systems has been prepared for the coordination and effective implementation of various quality activities. The revision of KAERI QA Program Plan will help to establish and upgrade the effective and efficient KAERI-wide QA system. Technical support activities to the project QA program were performed in more systematic way. KAERI QA Committee was organized, and the meeting was held periodically to discuss and find out the optimum solution for the critical quality problems. Quality evaluation including internal audits was carried out to analyze the QA activities in the various projects and evlauation results was condensed to quality trend analysis. QA record preserving facility was built and was being used to maintain the QA records. The basic studies on the computer S/W QA, QA in R and D, quality costs analysis were also performed to upgrade the safety and reliability. (Author)

  5. The Establishment of a Long-term Development Direction for Nuclear Power Technology in Korea

    International Nuclear Information System (INIS)

    Juhn, Poongeil

    1987-01-01

    Korea has about 30 years of experience in nuclear technology development. Until the late 1960's, main effort was employed to carry out basic reactors. The first nuclear power project in Korea was started in the early 1970's. And the first oil embargo in late 1973 stimulated to accelerate nuclear power program to get rid of dependency on oil considering the scarcity of domestic energy resources. During the decade of 1970's decision was made to construct nine nuclear power plants, namely, three 600 MW units and six 900 MW units, through various forms of contracts with foreign suppliers. Three 600 MW nuclear power projects, so called the first phase nuclear power projects, were implemented in a form of turn-key contract, mainly due to the lack of experienced manpower in the nuclear power technology. With some experiences obtained in the course of carrying out the first phase nuclear power projects, six 900 MW nuclear power projects, entitled as the second phase nuclear power projects, have been carried out under the framework of non-turn-key contract or component approach. It is realized, however, that software related technology including nuclear steam supply system design cannot be developed without having indigenous technological back-up or R and D support. Last year, mainly by the virtue of successful experience in indigenous development of CANDU fuel technology, Korea decided to carry out two more 900 MW nuclear power projects through which self-reliance in nuclear power projects, all nuclear-related organizations in Korean will participate in the project according to the respective functions or roles. The purpose of functional identification of each organization is to eliminate duplicated investment and to have or maintain critical manpower in each designated technical field in order to effectively achieve self-reliance in nuclear power technology by the 2000. The part and parcel of the nuclear activities on research and development of nuclear power technology

  6. A web-based resource for the nuclear science/technology high school curriculum - a summary

    International Nuclear Information System (INIS)

    Ripley, C.

    2009-01-01

    On November 15, 2008, the CNA launched a new Nuclear Science Technology High School Curriculum Website. Located at www.cna.ca the site was developed over a decade, first with funding from AECL and finally by the CNA, as a tool to explain concepts and issues related to energy and in particular nuclear energy targeting the public, teachers and students in grades 9-12. It draws upon the expertise of leading nuclear scientists and science educators. Full lesson plans for the teacher, videos for discussion, animations, games, electronic publications, laboratory exercises and quick question and answer sheets will give the student greater knowledge, skills and attitudes necessary to solve problems and to critically examine issues in making decisions. Eight modules focus on key areas: Canada's Nuclear History, Atomic Theory, What is Radiation?, Biological Effects of Radiation, World Energy Sources, Nuclear Technology at Work, Safety (includes Waste Disposal) in the Nuclear Industry and Careers. (author)

  7. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Science.gov (United States)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    agreement for simulations of thermal high-enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of 233,235U and 239Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, fusion, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL, and can be retrieved from www.nndc.bnl.gov.

  8. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Oblozinsky, P.; Herman, M.

    2006-01-01

    agreement for simulations of thermal high-enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of 233,235 U and 239 Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, fusion, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL, and can be retrieved from www.nndc.bnl.gov

  9. Semantic Technologies for Nuclear Knowledge Modelling and Applications

    International Nuclear Information System (INIS)

    Beraha, D.; Gladyshev, M.

    2016-01-01

    Full text: The IAEA has been engaged in working with Member States to preserve and enhance nuclear knowledge, and in supporting wide dissemination of safety related technical and technological information enhancing nuclear safety. The knowledge organization systems (ontologies, taxonomies, thesauri, etc.) provide one of the means to model and structure a given knowledge domain. The significance of knowledge organization systems (KOS) has been greatly enhanced by the evolution of the semantic technologies, enabling machines to “understand” the concepts described in a KOS, and to use them in a variety of applications. Over recent years semantic technologies have emerged as efficient means to improve access to information and knowledge. The Semantic Web Standards play an important role in creating an infrastructure of interoperable data sources based on principles of Linked Data. The status of utilizing semantic technologies in the nuclear domain is shortly reviewed, noting that such technologies are in their early stage of adoption, and considering some aspects which are specific to nuclear knowledge management. Several areas are described where semantic technologies are already deployed, and other areas are indicated where applications based on semantic technologies will have a strong impact on nuclear knowledge management in the near future. (author

  10. The role of computer simulation in nuclear technologies development

    International Nuclear Information System (INIS)

    Tikhonchev, M.Yu.; Shimansky, G.A.; Lebedeva, E.E.; Lichadeev, V. V.; Ryazanov, D.K.; Tellin, A.I.

    2001-01-01

    In the report the role and purposes of computer simulation in nuclear technologies development is discussed. The authors consider such applications of computer simulation as nuclear safety researches, optimization of technical and economic parameters of acting nuclear plant, planning and support of reactor experiments, research and design new devices and technologies, design and development of 'simulators' for operating personnel training. Among marked applications the following aspects of computer simulation are discussed in the report: neutron-physical, thermal and hydrodynamics models, simulation of isotope structure change and damage dose accumulation for materials under irradiation, simulation of reactor control structures. (authors)

  11. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  12. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  13. Nuclear science and technology: perspective prospects for Philippine development

    International Nuclear Information System (INIS)

    Aleta, C.R.

    1996-01-01

    The paper provides some historical perspectives on nuclear energy utilization and development in the Philippines. Highlights on applications in agriculture, medicine, industry, environment and regulations are mentioned. Current activities include gamma sterilization, food irradiation, sterile insect technique for pest eradication, medical applications, isotope techniques, radiation protection activities and nuclear power. Prospective contribution of national development through the use of radiation and nuclear techniques include those for water resources assessment, environmental and pollution studies, electricity generation and nuclear desalination. The regulatory aspects in support of the nuclear energy development are also discussed. (author)

  14. Bridging technology gaps in realizing goals towards peaceful uses of nuclear energy

    International Nuclear Information System (INIS)

    Mohanty, P.R.; Haldar, T.K.

    2009-01-01

    India is committed towards peaceful uses of Nuclear Energy and Nuclear Power occupies its centre stage. In the nuclear fuel cycle, apart from the fuel material itself, the programme needs a host of other materials in specific physical and chemical form. In this context, Heavy Water Board, a constituent unit of DAE, initiated technology development campaigns centering around three broad areas, i.e Specialty chemicals like organo-phosphorus solvents; solvent extraction technology including suitable equipment for use as liquid-liquid contacting device; and stable isotope like Boron-10. In a short span of about 7 years, it has successfully developed, demonstrated and deployed these technologies. This article gives an overview of these activities and the strategy adopted towards bridging technology gaps in realizing goals towards peaceful uses of Nuclear Energy. (author)

  15. Survey of Nuclear Methods in Chemical Technology

    International Nuclear Information System (INIS)

    Broda, E.

    1966-01-01

    An attempt is made to classify nuclear methods on a logical basis to facilitate assimilation by the technologist. The three main groups are: (I) Tracer methods, (II) Methods based on the influence of absorbers on radiations to be measured, and (III) Radiation chemical methods. The variants of the first two groups are discussed in some detail, and typical examples are given. Group I can be subdivided into (1) Indicator methods, (2) Emanation methods, (3) Radioreagent methods, and (4) Isotope dilution methods, Group II into (5) Activation methods, (6) Absorption methods, (7) Induced Nuclear Reaction methods, (8) Scattering methods, and (9) Fluorescence methods. While the economic benefits due to nuclear methods already run into hundreds of millions of dollars annually, owing to radiation protection problems radiochemical methods in the strict sense are not widely used in actual production. It is suggested that more use should be made of pilot plant tracer studies of chemical processes as used in industry. (author)

  16. The NEA Nuclear Education, Skills and Technology (NEST) Framework

    International Nuclear Information System (INIS)

    Andreeva, Liudmila; Gulliford, Jim

    2016-01-01

    Since the use of nuclear technology for a wide range of purposes is increasing, with many NEA member countries constructing or planning to construct new generation nuclear power plants, the NEA is developing the NEA Nuclear Education, Skills and Technology (NEST) Framework in partnership with its member countries. This initiative will help address important gaps in nuclear skills capacity building, knowledge transfer and technical innovation in an international context. It will also assist countries examining long-term options to manage high-level radioactive waste and spent nuclear fuel, as well as better ways to decommission old facilities. The majority of these countries are likewise facing challenging issues in other fields related to nuclear energy, ranging from medicine to the environment. The need to develop and apply innovative technologies in order to meet these challenges is apparent in all these areas. At the same time, advances in fields such as materials science and instrumentation, linked with the availability of high-performance computing, have opened up new avenues ripe for exploitation, which makes for a combination of exciting new areas of innovation alongside longstanding challenges in the nuclear field. The goal of NEST is to energise advanced students, post-doctoral appointees and young professionals to pursue careers in the nuclear field

  17. Towards a nuclear energy technology roadmap. A new service to the nuclear community

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Thomas, Chris Creighton

    2005-01-01

    The role of nuclear energy in a future sustainable energy mix has been the subject of debates over the past few years. The future for nuclear energy will not only depend on this energy market development and the socio-political environment, but also on the innovation potential of the nuclear community to cope with the ever shorter business cycles in the energy market and the inherently longer term horizon needed in developing nuclear energy at its potential. Today's nuclear R and D community is in a transition phase, i.e. from former 'national' R and D-organisational structure to a truly international research area based on partnerships between organisations and companies creating networks-of-excellence. Several studies in the recent past have indicated the need for a shared vision in guiding this process. Identification of shared R and D-programmes, mergers and acquisitions of organizations and companies, knowledge gap analysis and the strategic mapping for each organization or company active in this nuclear R and D community. Technology Roadmapping is the appropriate tool to respond to these needs. Several stand-alone nuclear roadmap activities have been undertaken but lacked the possibility to analyse and make use of the synergies and interactions inherent to this technology development. The development has started of a master nuclear roadmap portal covering all the roadmap and technology foresight information in one so-called master nuclear roadmap. This master nuclear roadmap is implemented in an electronic online format allowing easy access, easy updating and lots of functionalities which may not be offered by traditional snap-shot roadmap reports. The paper will bring an overview on the role that technology roadmapping is playing in various industry sectors and the added value it may bring in the nuclear technology sector on a organizational as well as technology sector level. The paper will highlight the current status of this new initiative. (author)

  18. Nuclear Wastes: Technologies for Separations and Transmutation

    National Research Council Canada - National Science Library

    .... The committee examines the currently used "once-through" fuel cycle versus different alternatives of separations and transmutation technology systems, by which hazardous radionuclides are converted...

  19. Developing new products from Canadian nuclear technology

    International Nuclear Information System (INIS)

    Hatcher, S.R.; Lyon, R.B.

    1987-06-01

    By 1990, the Federal Government will have reduced its support for Atomic Energy of Canada Limited's nuclear R and D from the 1985 level of $200 million, to $100 million (1985 dollars). To meet the need for a broadened funding base, AECL Research Company has been restructured to become more responsive to our sponsors and customers. Although supporting the CANDU nuclear power program remains by far our largest R and D activity, we have put in place a comprehensive process for generating new business and commercial activities. Examples of such business opportunities are presented in the paper

  20. National Blue Ocean Strategy in Nuclear Technology Visibility

    International Nuclear Information System (INIS)

    Hasfazilah Hassan; Sabariah Kader Ibrahim; Mohamad Radzuan Othman; Abdul Halim Jumat; Abdul Halim Mohd Ali

    2016-01-01

    This paper describes the strategic approach taken by Malaysian Nuclear Agency in carrying out public information and public acceptance on nuclear technology activities. The main objective of this study is to ensure that public and stake holders are continuously getting correct information from credible sources. Through the feedback received, comprehensive and holistic approach provides the desired impact. Obtaining the correct information from credible sources culture should always be inculcate to ensure that the benefits of nuclear technologies can be practiced and accepted by civil society without prejudice. Through strategic approach and activities implemented, monitoring and review, and measurement of the effectiveness of ongoing programs are expected to increase public awareness of the importance and contribution of nuclear technology in Malaysia. (author)

  1. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Ho Dong; Kim, Sung Ki; Song, Kee Chan

    2010-04-01

    This report is aims to establish design requirements for constructing mock-up system of pyroprocess by 2011 to realize long-term goal of nuclear energy promotion comprehensive plan, which is construction of engineering scale pyroprocess integrated process demonstration facility. The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The detailed contents of research for these are as follows; - Design of Mock-up facility for demonstrate pyroprocess, Construction, Approval, Trial run, Performance test - Development of nuclear material accountancy technology for unit processes of pyroprocess and design of safeguards system - Remote operation of demonstrating pyroprocess / Development of maintenance technology and equipment - Establishment of transportation system and evaluation of pre-safety for interim storage system - Deriving and implementation of a method to improve nuclear transparency for commercialization proliferation resistance nuclear fuel cycle Spent fuel which is the most important pending problem of nuclear power development would be reduced and recycled by developing the system engineering technology of pyroprocess facility by 2010. This technology would contribute to obtain JD for the use of spent fuel between the ROK-US and to amend the ROK-US Atomic Energy Agreement scheduled in 2014

  2. A Lesson from the Nuclear Industry: Professionalism and Technology.

    Science.gov (United States)

    Roth, Gene L.; Widen, W. C.

    1991-01-01

    Focuses on an innovative approach to instill professionalism in workers such as reactor operators and other nuclear power workers. It may be used by technology instructors to send a message to their students: regardless of the advanced state of technology, the human element provides the key to desirable outcomes. (Author/JOW)

  3. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  4. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs

  5. A decade of 3C technologies: insights into nuclear organization

    NARCIS (Netherlands)

    de Wit, E.; de Laat, W.

    2012-01-01

    Over the past 10 years, the development of chromosome conformation capture (3C) technology and the subsequent genomic variants thereof have enabled the analysis of nuclear organization at an unprecedented resolution and throughput. The technology relies on the original and, in hindsight, remarkably

  6. Application of nuclear technology for sustainable development, and IAEA activities

    International Nuclear Information System (INIS)

    Machi, Sueo

    1998-01-01

    The role of radiation and isotopes for sustainable development in improving agriculture, industry and environmental conservation is presented. The radiation and isotope technology can increase productivity in a sustainable way. The IAEA programmes encompass mutation breeding, soil fertility and crop production, animal production, food irradiation, agrochemicals and insect pest control using nuclear technology

  7. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1987-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  8. Nuclear Science and Engineering education at the Delft University of Technology

    International Nuclear Information System (INIS)

    Bode, P.

    2009-01-01

    There is a national awareness in the Netherlands for strengthening education in the nuclear sciences, because of the ageing workforce, and to ensure competence as acceptability increases of nuclear power as an option for diversification of the energy supply. This may be reflected by the rapidly increasing number of students at the Delft University of Technology with interest in nuclear science oriented courses, and related bachelor and MSc graduation projects. These considerations formed the basis of the Nuclear Science and Engineering concentration, effectively starting in 2009. The programme can be taken as focus of the Research and Development Specialisation within the Master Programme in Applied Physics or as a Specialisation within the Master's Programme in Chemical Engineering. Both programmes require successful completion of a total of 120 ECTS study points, consisting of two academic years of 60 ECTS (1680 hours of study). Of that total, 100 ECTS are in the field of Nuclear Science and Engineering, depending on students choices within the programme, including a (industrial) internship, to be taken in companies all over the world. In Chemical Engineering, there is a compulsory design project during which a product or process should be developed. Both programmes also require a final graduation project. In both curricula, Nuclear Science and Engineering comprises compulsory and elective courses, which allow students to focus on either health or energy. Examples of courses include Nuclear Science, Nuclear Chemistry, Nuclear Engineering, Reactor Physics, Chemistry of the Nuclear Fuel Cycle, Medical Physics and Radiation Technology and Radiological Health Physics. (Author)

  9. Economic viability of innovative nuclear reactor and fuel cycle technologies

    International Nuclear Information System (INIS)

    Samejima, K.; Suzuki, Tatsujiro; Yokoyama, Hayaichi; Kurosawa, Atsushi; Tabaru, Yasuhiko

    2003-01-01

    Full text: Nuclear power has established its position as one of the most stable electricity supply sources in many countries in the world, supplying about 17% of total electricity generated. However, in order to keep that position, there are two important challenges that nuclear energy will face in the coming decades. They are: competition, and social/political acceptance (including non-proliferation and terrorism). There is an increasing concern that existing nuclear technologies may not be able to overcome such tough challenges. It is expected that innovative technologies can be a part of the solutions to overcome such challenges. This paper focuses on economic viability of innovative nuclear reactor and its associated fuel cycle technologies. First, it is important to consider the long term energy paths and potential role of nuclear power under different scenarios. We applied global energy optimization model based on IPCC scenarios. Then, we look at Japan, where electricity market is being liberalized, in order to explore how liberalization will have influence economic viability of nuclear power. The following are our basic conclusions: CO2 constraints as well as power generation cost competitiveness could affect future growth of nuclear power quite significantly. Current trend suggests that nuclear power would not grow much without CO2 constraints, or even face minus growth if its power generation cost became higher. On the other hand, cost reduction with CO2 constraints could accelerate future expansion of nuclear power quite significantly; In addition to life-long average generation cost, other investment criteria (such as asset productivity) may become critically important under the liberalized market. Under the liberalized electricity market, short term investment criteria could become more important than 30 year life time average cost. This suggests that small initial investment is more acceptable than large capital investment. Advanced nuclear reactor

  10. Frontiers in nuclear medicine and technology. Editorial

    NARCIS (Netherlands)

    Lemahieu, I; Viergever, M.A.; van Rijk, P.P.; Dierckx, R.A.

    This special issue of Computerized Medical Imaging and Graphics contains the full length papers of invited oral communications presented at the symposium entitled: “Frontiers in Nuclear Medicine Technology” held at the Studie Centrum voor Kernenergie — Centre d'Etude de l'Energie Nucléaire (SCK —

  11. Reviving nuclear requires broad technology fix

    International Nuclear Information System (INIS)

    Hyman, L.S.

    1991-01-01

    What will it take to revive nuclear power in this country? For a beginning, nuclear plants must be the lowest-cost alternative to providing additional energy supplies; they must be smaller in size and easier to build and license than in the past, and public confidence in nuclear power must be restored. But even this is not enough to attract investors, he says. Regulatory policies, corporate structures, and financial arrangements must change as well. Hyman offers some ideas for changes that would be attractive to investors: place construction work in progress in the rate base, create a pay-as-you-go approach to construction; federal rather than state regulation of power rates; and ownership and construction by a consortium of electrical equipment manufacturers, engineering and construction firms, utilities, and fuel supplies. But even then, Hyman is not optimistic. Fixing nuclear power is possible only if there is a need for the product, the price is right, the profit is adequate, the people want it, the waste is disposed of, and somebody will take the risk of financing its revival

  12. Canadian nuclear technology faces tough competition abroad

    International Nuclear Information System (INIS)

    Guard, R.F.W.

    1979-01-01

    The history of Canadian nuclear exports is related, starting with the CIRUS reactor and ending with the Romanian contract. The sale of the Cordoba reactor to Argentina is set in its historical perspective of continuing competition with German vendors. The Wolsung reactor is mentioned. The author considers that political rather than engineering problems hamper exports. (NDH)

  13. Developing a Science and Technology Centre for Supporting the Launching of a Nuclear Power Programme

    International Nuclear Information System (INIS)

    Badawy, I.

    2013-01-01

    The present investigation aims at developing a science and technology centre for supporting the launching of a nuclear power [NP] programme in a developing country with a relatively high economic growth rate. The development approach is based on enhancing the roles and functions of the proposed centre with respect to the main pillars that would have effect on the safe, secure and peaceful uses of the nuclear energy -particularly- in the field of electricity generation and sea-water desalination. The study underlines the importance of incorporating advanced research and development work, concepts and services provided by the proposed centre to the NP programme, to the regulatory systems of the concerned State and to the national nuclear industry in the fields of nuclear safety, radiation safety, nuclear safeguards, nuclear security and other related scientific and technical fields including human resources and nuclear knowledge management.

  14. The International Science and Technology Center (ISTC) and ISTC projects related to nuclear safety. Information review

    International Nuclear Information System (INIS)

    Tocheny, Lev V.

    2003-01-01

    The ISTC is an intergovernmental organization created ten years ago by Russia, USA, EU and Japan in Moscow. The Center supports numerous science and technology projects in different areas, from biotechnologies and environmental problems to all aspects of nuclear studies, including those focused on the development of effective innovative concepts and technologies in the nuclear field, in general, and for improvement of nuclear safety, in particular. The presentation addresses some technical results of the ISTC projects as well as methods and approaches employed by the ISTC to foster close international collaboration and manage projects towards fruitful results. (author)

  15. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    Energy Technology Data Exchange (ETDEWEB)

    David Shropshire

    2009-09-01

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.

  16. Nuclear science and technology in higher education in the Philippines

    International Nuclear Information System (INIS)

    Bernido, C.C.

    2007-01-01

    Education and training in nuclear science and technology in the Philippines are obtained from higher education institutions, and from courses offered by the Philippine Nuclear Research Institute. The Philippine Nuclear Research Institute (PNRI), an institute under the Department of Science and Technology (DOST), is the sole government agency in charge of matters pertaining to nuclear science and technology, and the regulation of nuclear energy. The PNRI was tasked with fast-tracking nuclear education and information, together with the Department of Education, Culture and Sports (DECS), the Commission on Higher Education (CHED), and some other government agencies which constituted the Subcommittee on Nuclear Power Public Education and Information, by virtue of Executive Order 243 enacted by then President Ramos on May 12, 1995. This Executive Order created the Nuclear Power Steering Committee; the Subcommittee on Nuclear Power Public Education and Information was one of the subcommittees under it. The Nuclear Power Steering Committee was created when the government was again considering the feasibility of the nuclear power option; this Committee had since become inactive because the government has not re-embarked on a nuclear power program. The Philippines had a nuclear power program in the 1970's. The first nuclear power plant was nearing completion when Chernobyl and Three Mile Island happened. Due to the change in political climate and strong anti-nuclear sentiment, the first nuclear power plant had been mothballed. However, there is a possibility for the introduction of nuclear power in the country's projected energy sources by the year 2025. The country has one research reactor, a 3 MW Triga reactor, but at the present time it is not operational and is under extended shutdown. In the event that the Philippines will again implement a nuclear power program, there will be a great need for M.S. and Ph.D. holders in nuclear engineering. There are less than five

  17. New technologies in nuclear power plant monitoring and diagnosis

    International Nuclear Information System (INIS)

    Turkcan, E.; Verhoef, J.P.; Ciftcioglu, O.

    1996-01-01

    Several representative new technologies being introduce for monitoring and diagnosis in nuclear power plants (NPP) are presented in this paper. In Sec. 2, the Kalman filtering is briefly described and it relevance to conventional time series analysis methods are emphasized. In this respect, its NPP monitoring and fault diagnosis implementations are given and the important features are pointed out. In Sec. 3, the NN technology is briefly described and the scope is focused on the NPP monitoring and fault diagnosis implementations. In Sec. 4, the wavelet technology is briefly described and the utilization of this technology in Nuclear Technology is exemplified. In this respect, also the prospective role of this technology for real-time monitoring and fault diagnosis is revealed. (author). 33 refs, 6 figs

  18. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.7--pulse power technology and its application sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 18 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the seventh one, the content is about pulse power technology and its application sub-volume

  19. Relationship of sea level muon charge ratio to primary composition including nuclear target effects

    Science.gov (United States)

    Goned, A.; Shalaby, M.; Salem, A. M.; Roushdy, M.

    1985-01-01

    The discrepancy between the muon charge ratio observed at low energies and that calculated using pp data is removed by including nuclear target effects. Calculations at high energies show that the primary iron spectrum is expected to change slope from 2 to 2.2 to 2.4 to 2.5 for energies approx. 4 x 10 to the 3 GeV/nucleon if scaling features continue to the highest energies.

  20. Experience in nuclear materials accountancy, including the use of computers, in the UKAEA

    International Nuclear Information System (INIS)

    Anderson, A.R.; Adamson, A.S.; Good, P.T.; Terrey, D.R.

    1976-01-01

    The UKAEA have operated systems of nuclear materials accountancy in research and development establishments handling large quantities of material for over 20 years. In the course of that time changing requirements for nuclear materials control and increasing quantities of materials have required that accountancy systems be modified and altered to improve either the fundamental system or manpower utilization. The same accountancy principles are applied throughout the Authority but procedures at the different establishments vary according to the nature of their specific requirements; there is much in the cumulative experience of the UKAEA which could prove of value to other organizations concerned with nuclear materials accountancy or safeguards. This paper reviews the present accountancy system in the UKAEA and summarizes its advantages. Details are given of specific experience and solutions which have been found to overcome difficulties or to strengthen previous weak points. Areas discussed include the use of measurements, the establishment of measurement points (which is relevant to the designation of MBAs), the importance of regular physical stock-taking, and the benefits stemming from the existence of a separate accountancy section independent of operational management at large establishments. Some experience of a dual system of accountancy and criticality control is reported, and the present status of computerization of nuclear material accounts is summarized. Important aspects of the relationship between management systems of accountancy and safeguards' requirements are discussed briefly. (author)

  1. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  2. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  3. 76 FR 22729 - Polaris Industries, Including On-Site Leased Workers From Westaff, Supply Technologies, Aerotek...

    Science.gov (United States)

    2011-04-22

    ... Industries, including on-site leased workers from Westaff, Supply Technologies, Aerotek, Securitas Security... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,336] Polaris Industries, Including On-Site Leased Workers From Westaff, Supply Technologies, Aerotek, Securitas Security Services...

  4. Global Nuclear Energy Partnership Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  5. Materials technology applied to nuclear accelerator targets

    International Nuclear Information System (INIS)

    Barthell, B.L.

    1986-01-01

    The continuing requests for both shaped and flat, very low areal density metal foils have led to the development of metallurgical quality, high strength products. Intent of this paper is to show methods of forming structures on various substrates using periodic vapor interruptions, alternating anodes, and mechanical peening to alter otherwise unacceptable grain morphology which both lowers tensile strength and causes high stresses in thin films. The three technologies, physical vapor deposition, electrochemistry, and chemical vapor deposition and their thin film products can benefit from the use of laminate technology and control of grain structure morphology through the use of materials research and technology

  6. Transactions of the American Nuclear Society (ANS) and the European Nuclear Society with cooperation from the Nuclear Energy Institute. 2000 International Conference on Nuclear Science and Technology: Supporting Sustainable Development Worldwide. [2000 Winter Meeting.

    International Nuclear Information System (INIS)

    Yoelin, Christine A.

    2000-01-01

    Summaries of 450 to 900 words are given for papers presented at the Winter Meeting. Topics included the following: long-term globally sustainable energy options; fuel cycle, spent fuel, and waste management; safety, reliability, and risk; nuclear industry growth; nuclear science and technology; decommissioning and decontamination; operating reactors experience; nonpower and radiation applications; policy and public information

  7. Basic research for nuclear energy. y Study on the nuclear materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, I. H.; Lee, H. S.; Jeong, Y. H.; Sung, K. W.; Han, J. H.; Lee, J. T.; Lee, H. K.; Kim, S. J.; Kang, H. S.; An, D. H.; Kim, K. R.; Park, S. D.; Han, C. H.; Jung, M. K.; Oh, Y. J.; Kim, K. H.; Kim, S. H.; Back, J. H.; Kim, C. H.; Lim, K. S.; Kim, Y. Y.; Na, J. W.; Ku, J. H.; Lee, D. H.

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs.

  8. Basic research for nuclear energy. y Study on the nuclear materials technology

    International Nuclear Information System (INIS)

    Kuk, I. H.; Lee, H. S.; Jeong, Y. H.; Sung, K. W.; Han, J. H.; Lee, J. T.; Lee, H. K.; Kim, S. J.; Kang, H. S.; An, D. H.; Kim, K. R.; Park, S. D.; Han, C. H.; Jung, M. K.; Oh, Y. J.; Kim, K. H.; Kim, S. H.; Back, J. H.; Kim, C. H.; Lim, K. S.; Kim, Y. Y.; Na, J. W.; Ku, J. H.; Lee, D. H.

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs

  9. Information Technology for Nuclear Power Plant Configuration Management

    International Nuclear Information System (INIS)

    2010-07-01

    Configuration management (CM) is an essential component of nuclear power plant design, construction and operation. The application of information technology (IT) offers a method to automate and ensure the timely and effective capture, processing and distribution of key nuclear power plant information to support CM principles and practical processes and procedures for implementation of CM at nuclear power plants. This publication reviews some of the principles established in IAEA-TECDOC-1335, 'Configuration Management in Nuclear Power Plants.' It also recaps tenets laid out in IAEA- TECDOC-1284, 'Information Technology Impact on Nuclear Power Plant Documentation' that supports CM programmes. This publication has been developed in conjunction with and designed to support these other two publications. These three publications combined provide a comprehensive discussion on configuration management, information technology and the relationship between them. An extensive discussion is also provided in this publication on the role of the design basis of the facility and its control through the CM process throughout the facility's lifetime. While this report was developed specifically for nuclear power plants, the principles discussed can be usefully applied to any high hazard nuclear facility

  10. Changing relations between civil and military nuclear technology

    International Nuclear Information System (INIS)

    Walker, W.B.

    1999-01-01

    Nuclear energy has inhabited two distinct environments since its inception - the environments of nuclear deterrence and of electricity supply. The relationships between the technologies and institutions inhabiting these environments have been both intimate and troublesome. As both nuclear weapons and nuclear power rely upon the fission energy of uranium and plutonium, and as both generate harmful by-products, they are bound to have technologies, materials and liabilities in common. However, nuclear deterrence belongs in the realm of high politics, whilst electricity production is part of the commercial world rooted in civil society. Establishing a political, industrial and regulatory framework that allows nuclear activities to develop safely and acceptably in both domains has been a difficult and contentious task. In this paper I wish to make some observations about the relations between military and civil nuclear technology at the end of this century, and about their likely character in years ahead. My main contention is that developments in the military sector and in international security will remain influential, but that their consequences will be of a different kind than in the past. (orig.)

  11. Annual conference on nuclear technology. Nuclear power 2001: option for the future

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Dresden Palace for Culture was the venue of the ANNUAL MEETING ON NUCLEAR TECHNOLOGY on May 15-17, 2001, the first to be held in Dresden and the first also to be held in one of the new German federal states. Although no nuclear plant is in operation in East Germany after the Greifswald Nuclear Power Station was decommissioned, nuclear technology continues to play an important role especially in research and university teaching in this part of Germany. The organizers of the conference, Deutsches Atomforum e.V. (DAtF) and Kerntechnische Gesellschaft e.V. (KTG), welcomed more than 1000 participants from nineteen countries. The three-day program, with its traditional, proven structure, featured plenary sessions on the first day, and specialized sessions, technical sessions, poster sessions, and other events on the following days. The partner country at the Annual Meeting on Nuclear Technology was Russia, with a session specially devoted to selected topics of the country. The conference was accompanied by a technical exhibition with company meeting points of vendors, suppliers, and service industries. A video film forum was arranged for the interested public which featured contributions about nuclear research, nuclear power plant operation, transport and storage as well as decommissioning. Another major event was a workshop on 'Preserving Competence in Nuclear Technology'. The plenary day is described in this summary report, while the results of the technical sessions as seen by the rapporteurs are printed elsewhere in this issue of atw 8/9, 2001. (orig.) [de

  12. Maintaining quality control in a nontraditional nuclear technology degree program

    International Nuclear Information System (INIS)

    DeSain, G.W.

    1989-01-01

    Regents College, created by the Board of Regents of the University of The State on New York in 1971, has been offering, since January 1985, AS and BS degrees in nuclear technology. The impetus for establishing the nuclear technology degrees came from nuclear utility management and had to do with the US Nuclear Regulatory Commission proposed rule regarding degreed operators on shift. There are a variety of ways to earn credits in Regents College degree programs: (1) college courses taken for degree-level credit from regionally accredited colleges; (2) courses sponsored by business, industry, or government that have been evaluated and recommended for credit by the New York National or American Council on Education (ACE's) Program on Noncollegiate Sponsored Instruction (PONSI); (3) military education that has been evaluated by ACE PONSI; (4) approved college-proficiency examinations; and (5) special assessment: an individualized examination of college-level knowledge gained from experience or independent study. Nuclear technology students primarily use college course work, evaluated military education, and proficiency examinations to complete degree programs. However, an increasing number of utilities are having training programs PONSI evaluated, resulting in an increased use of these courses in the nuclear technology degrees. Quality control is a function of several factors described in the paper

  13. Communicating with the public: space of nuclear technology

    International Nuclear Information System (INIS)

    Maffei, Patricia Martinez; Aquino, Afonso Rodrigues; Gordon, Ana Maria Pinho Leite; Oliveira, Rosana Lagua de; Padua, Rafael Vicente de; Vieira, Martha Marques Ferreira; Vicente, Roberto

    2011-01-01

    For two decades the Nuclear and Energy Research Institute (IPEN) has been developing activities for popularization of its R and D activities in the nuclear field. Some of the initiatives already undertaken by IPEN are lectures at schools, guided visits to IPEN facilities, printed informative material, FAQ page in the Web, and displays in annual meetings and technology fairs highlighting its achievements. In order to consolidate these initiatives, IPEN is planning to have a permanent Space of Nuclear Technology (SNT), aiming at introducing students, teachers and the general public to the current applications of nuclear technology in medicine, industry, research, electric power generation, etc. It is intended as an open room to the public and will have a permanent exhibit with historical, scientific, technical and cultural developments of nuclear technology and will also feature temporary exhibitions about specific themes. The space will display scientific material in different forms to allow conducting experiments to demonstrate some of the concepts associated with the properties of nuclear energy, hands-on programs and activities that can be customized to the students' grade level and curriculum. (author)

  14. A Study of KHNP Nuclear Power Plant Technology Level Evaluation

    International Nuclear Information System (INIS)

    Yang, Seung Han; Lee, Sung Jin; Kim, Yo Han

    2016-01-01

    KHNP's 2030 mid and long term plan goal in technology field is securing global No. 1 NPP technology level. Quantifying technology level for this purpose, technology level at present should be surveyed. Technology level of South Korea has been surveyed by KISTEP (Korea Institute of S and T Evaluation and Planning) every two year but the technology level of KHNP has not been surveyed by any organization including KHNP itself. Also the size of technology surveyed by KISTEP was too broad to quantifying technology level of KHNP. In this paper, technology level of KHNP and South Korea are presented. In this study, NPP related technologies were divided into Level I and Level II technologies and conducted a survey for each Level II technologies using Delphi questionnaire survey that is widely used in technology level evaluation. The results of technology level and gap will be used from strategic point of view and also as a reference data for technology improvement planning

  15. Nuclear Science and Technology Branch report 1977

    International Nuclear Information System (INIS)

    1977-12-01

    Research programs are reported for the following divisions: Physics, Chemical Technology, Materials, Engineering Research, Isotopes, Instrumentation and Control, Health Physics Research and Applied Maths and Computing. Staff responsible for each project are indicated

  16. The technological prospective of non nuclear channels

    International Nuclear Information System (INIS)

    Claverie, M.; Clement, D.; Girard, C.

    2000-07-01

    This prospective study concerns the electric power demand in 2050. It examines the three non nuclear sectors of production: the natural gas combined cycle power plants, the wind turbines among the renewable energies and the cogeneration electric power - heat in the ternary and building sector. The necessity of the network adaptation to the european competition and the decentralized production of electric power will suppose new investments of transport and storage. (A.L.B.)

  17. Contributions to thermal and fluid dynamic problems in nuclear technology

    International Nuclear Information System (INIS)

    Mueller, U.; Krebs, L.; Rust, K.

    1984-02-01

    The majority of contributions compiled in this report deals with thermal and fluid dynamic problems in nuclear engineering. Especially problems of heat transfer and cooling are represented which may arise during and afer a loss-of-coolant accident both in light water reactors and in liquid metal cooled fast breeder reactors. Papers on the mass transfer in pressurized water, tribological problems in sodium cooled reactors, the fluid dynamics of pulsed column, and fundamental investigations of convective flows supplement these contributions on problems connected with accidents. Furthermore, a keynote paper presents the individual activities relating to the reliability of reactor components, a field recently included in our research program. Technical solutions to special problems are closely connected to the investigations based on experiments. Therefore, several contributions deal with new developments in technology and measuring techniques. (orig.) [de

  18. Proceedings of the nuclear criticality technology safety project

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings

  19. Proceedings of the nuclear criticality technology safety project

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  20. Enhancement of international cooperation and experience exchange: international and regional cooperation in nuclear technology

    International Nuclear Information System (INIS)

    Henderson, R.R.

    1987-01-01

    This paper will explore methods that have been effective in accomplishing broad-based technology transfer relationships between international commercial nuclear organizations, and have enhanced the benefits from such relationships through mutual participation in the development of new technology. The factors involved in accomplishing technology transfer will be examined based on the 25 years of Westinghouse experience in establishing successful nuclear technology relationships with over 20 different associates world-wide. This will include information pertaining to organization, training, consultation, technical information transmission, and other important aspects of technology transfer. Additionally, the methodology of enhancing and increasing the benefits of technology transfer through cooperative development programs as produced and promoted by Weatinghouse with its associates will be examined. This will include reviews of several significant copperative programs, such as the programs for the Advanced Pressurized Water Reactor and the Integrated Protection and Control Systems for future plants. (author)